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Abstract

This paper presents a novel and efficient methodology to reduce the time needed to reach the steady-state in
the finite element simulation of induction machines. More precisely, the work focuses on induction motors
with squirrel cage rotor, where sources in the stator coil sides are given in terms of periodic currents.
Essentially, the procedure consists in computing suitable initial conditions for the currents in the rotor
bars, thus allowing to obtain the steady-state fields of the machine by solving a transient magnetic model
in just a few revolutions. Firstly, the mathematical model that simulates the behavior of the machine
is introduced. Then, an approximation of this model is developed, from which suitable initial currents
are derived by computing the solution in the least-square sense to an overdetermined problem with only
two unknowns. Finally, the method is applied to a particular induction machine working under different
operating conditions. The results show important computational savings to reach the motor steady-state in
comparison with assuming zero initial conditions, which validate the efficiency of the procedure.

Keywords: Steady-state solution; Induction motor; Transient magnetic; Nonlinear partial differential
equations; Finite element methods; Periodic solution

1. Introduction

This work deals with the finite element approximation of the steady-state behavior of squirrel cage
induction machines by using a fast numerical procedure. For this purpose, a numerical method to compute
periodic solutions by determining suitable initial currents in the rotor bars is developed, shortening the
transient part of the solution considerably, so that the steady-state is reached in a reduced number of cycles.

Numerical simulation is an essential tool in the design and analysis of electric machines, as it avoids
building unnecessary prototypes and significantly reduces both cost and time to obtain new configurations.
In particular, the numerical simulation of electric machines by using finite element methods generally re-
quires the solution of a nonlinear system of partial differential equations derived from Maxwell’s equations,
eventually coupled with thermal, mechanical and/or electric circuit equations (see [1] and references therein).

The electromagnetic model of electric machines is often based on describing the active zone of the motor
as a 2D distributed nonlinear eddy current or transient magnetic problem. Indeed, in order to reduce
electromagnetic losses, the magnetic cores of electric machines are laminated media consisting of a large
number of stacked steel sheets, which are orthogonal to the direction of the currents traversing the stator
coil sides. Considering the high number of sheets and their small thickness (usually less than one millimeter),
solving a three-dimensional model would require to consider homogenization techniques (see [2]) or a very
fine mesh, the latter leading to extremely high computational costs. As a consequence, the usual simulation
model consists in an electromagnetic problem defined on a cross-section of the machine, while the end regions
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of the stator windings and some other elements (for instance, the squirrel cage end-rings) are modeled by
circuit elements; in this way, the distributed 2D model will be coupled with a lumped one (see, for instance,
[3]). On the other hand, the interplay between the magnetic fields in stator and rotor gives raise to a force
that causes the latter to rotate around the machine axis. Therefore, the result is a transient eddy current
or transient magnetic problem defined in a moving geometry with prescribed speed.

Frequently, the resulting mathematical model needs to be provided with initial conditions which are
neither known a priori, nor easy to obtain. Notice that, due to the fact that the rotor currents are caused
by the rotating field from the stator, “pure” stationary finite element simulations are not possible, because
the stationary rotor bar currents are unknown when the simulations start. When unappropriate values are
prescribed for these conditions (for instance, when they are simply set to zero), a very long CPU time is
needed to reach the steady-state solution. In fact, the computation of the steady currents can take several
days although the engineer is only interested in the final attained state, whose computation would need only
a few minutes of computer time if appropriate initial conditions were known. Thus, techniques allowing us
to compute the steady solution in the shortest possible time are in high demand and, in particular, those
based on determining suitable initial conditions. Notice that the steady solution is independent of these
initial conditions. They only affect the time required to achieve the steady-state.

In the literature, we can find several approaches to the problem of reducing the computational cost to
reach the steady-state in the numerical simulation of induction motors. The worst case scenario would be
what is known as brute-force method, which consists in starting with zero initial conditions and letting the
simulation advance in time until the steady-state is reached. In this case, long time simulations may be
needed, even with the performance of modern computers. In recent years, different techniques have been
developed to address the problem we are considering. For example, the so-called Time Periodic Finite
Element Methods (TPFEM) are based on writing the discretized problem in a time-interval in which its
solution is periodic, and solving all time steps simultaneously (see [4]). Even though this method avoids
the step-by-step simulation, it requires solving nonlinear systems, which involves dealing with very large
non-symmetric matrices. Therefore, parallelization techniques, which can be applied in space or time, are
almost unavoidable (see [5]). Alternatively, in the Time Periodic - Explicit Error Correction Methods (TP-
EEC), (see [6]), and the Time Differential Correction (TDC), (see [7]), convergence of the transient model is
accelerated by incorporating error correction techniques already present in more general iterative methods,
along with some properties of TPFEM. Another strategy is based on using a time-decomposition of the
solution in terms of sinusoidal basis functions and obtaining a large system of algebraic equations; this
technique is known as harmonic balance method and has also been applied in [8] to induction machines.
Recently, an approach framed in the so-called parareal or parallel-in-time integration methods has been
introduced in [9]. In that work, the authors try to speed up integration in time by splitting the time-domain
and solving several time steps in parallel, thus taking advantage of the parallel architecture of modern
computers. Finally, we highlight the methodology which consists in prescribing as initial conditions the ones
obtained as the solution to a nonlinear eddy current problem in the frequency domain. In such a case, the
harmonic approximation is based on the hypothesis that the time variation of the fields can be written in
terms of a complex exponential function. Then the nonlinear effects are taken into account by means of
an effective magnetization curve and the rotor motion by an adjustment in the electric conductivity of the
rotor bars (see [10]).

A common obstacle for TPFEM, TP-EEC and TDC methods is choosing a suitable time interval in which
the solution is assumed to be periodic. This is due to the fact that the magnetic fields in rotor and stator
oscillate at different frequencies, and the common time at which both are periodic (the so-called effective
period) is generally quite large. However, at the same time, the periodicity condition has to be defined in
a small enough time interval for the method to be useful. In TPFEM methods, there are several strategies
to deal with this restriction, most of them based on the spatio-temporal symmetries of the problem ([5]).
On the other hand, TP-EEC and TDC methods handle it by accelerating the convergence in both domains
separately, or even only in one of them ([6]). A definition of a fundamental frequency common to rotor and
stator is also needed in the harmonic balance method. In this regard, our methodology has the advantage
of making use of the periodicity condition only in the rotor bars, so that the cited limitations do not apply.
Moreover, the computational cost of our approach does not depend on the size of this period, and the number
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of unknowns is very small in comparison with the previous methods.
As already said, the main objective of this article is to reduce the simulation time, so that the steady

regime is reached in the shortest possible time. For this purpose, we develop a methodology that seeks good
approximations of the initial currents in the rotor bars of a squirrel cage induction motor, which allows us
to avoid the otherwise long transient state in its simulation. The proposed methodology is inspired in the
techniques introduced in [11] for a 2D transient magnetic model with sources given in terms of currents
and voltage drops. In the present paper, we will extend some of the ideas proposed in that reference to a
case including motion of some parts of the domain and conductors in which neither currents nor voltage
drops are known. Moreover, initial currents are sought in these conductors, what represents an additional
difficulty.

The outline of the paper is the following. In Section 2 we state the problem to be solved, that consists
of a transient 2D nonlinear distributed model coupled with a lumped one for the electrical circuit of the
squirrel cage. Then, in Section 3, we will rewrite the problem formally as an implicit system of ODE in
terms of the current in the rotor bars of the squirrel cage. Section 4 is devoted to the approximation of the
initial condition corresponding to a periodic steady solution. For this purpose, we perform twice a time-
integration of the reduced problem, neglect some terms and approximate the currents in the rotor bars by
their respective main harmonics. Finally, in Section 5 we validate the method with some numerical results
that illustrate its performance.

2. Mathematical Modeling

In this section we present a 2D transient magnetic model that describes the electromagnetic behavior
of induction machines. As detailed in the introduction, we follow the strategy of studying a bidimensional
distributed problem defined on a cross-section of the induction motor, integrating the end-rings of the squirrel
cage by means of a lumped model built with circuit equations. In particular, we assume that the magnetic
flux lies on the plane of this section and neglect the effects of eddy currents in the z space direction except
along the rotor bars, as the ferromagnetic core is laminated in this direction. Thus, the laminated core can
be considered as a homogeneous non-conducting medium.

Eddy currents are usually modelled by the low-frequency Maxwell system of equations:

curlH = J , (1)

∂B

∂t
+ curlE = 0, (2)

divB = 0, (3)

along with Ohm’s law in stationary conductors

J = σE, (4)

and the constitutive magnetic law

H = νB, (5)

where H is the magnetic field, B is the magnetic flux density, E is the electric field, J is the current
density (which is null in dielectrics), σ > 0 is the electric conductivity in conductors and ν is the magnetic
reluctivity, which will be specified later.

Let us assume that the current density J has non-null component only in the z spatial direction and
that this component does not depend on z, i.e., J = Jz(x, y, t)ez. We also assume that the geometry and
the magnetic field H are invariant along the z spatial direction, and that all materials are magnetically
isotropic. In this case, under an appropriate decay of fields at infinity (see [12]), the magnetic field H, and
then the magnetic induction B, have only components on the xy−plane and both are independent of z, i.e.,

H = Hx(x, y, t)ex +Hy(x, y, t)ey,

B = Bx(x, y, t)ex +By(x, y, t)ey.
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Figure 1: Main parts integrating an induction motor. From Wikimedia Commons by Mtodorov 69 under license CC-BY-SA-3.0.

Since we are interested in using a finite element method for the numerical solution, we will restrict
ourselves to a bounded domain. Let us consider the 2D bounded domain Ω, corresponding to the cross-
section of the initial configuration of a squirrel cage induction motor (see Figure 1). Hence, domain Ω consists
of nc connected conductors (stator coil sides and rotor bars), the ferromagnetic core (in rotor and stator),
the air between rotor and stator (air-gap), and the rotor shaft which will be modeled as air. Moreover, we
have considered the outer boundary of the stator as domain boundary, but the same methodology applies
with no change to the case in which the motor is surrounded by an artificial box filled with air. In Figure 2
a quarter of domain Ω is shown (the whole domain is sketched in Figure 6). In the sequel, the following
notations will be used:

• Ω0: domain occupied by air (white color in Figure 2).

• Ωi, i = 1, . . . , nc: linear conductors representing the cross-sections of the rotor bars (i = 1, . . . , nb;
grey color in Figure 2) and of the stator coil sides (i = nb + 1, . . . , nc; blue, yellow and red colors in
Figure 2). Furthermore, Ωc := ∪nc

i=1Ωi.

• Ωmc: non-conducting nonlinear magnetic cores (brown color in Figure 2).

Figure 2: A quarter of domain Ω at time t = 0 (left) and t > 0 (right). Modification of a picture provided by Robert Bosch
GmbH.
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Finally, we consider a global magnetic reluctivity function ν : Ω× [0,∞) −→ (0,∞) defined by

ν(x, y; s) :=

 ν0 if (x, y) ∈ Ω0,
νc if (x, y) ∈ Ωc,
νmc(s) if (x, y) ∈ Ωmc,

where ν0 is the reluctivity of the vacuum, νc is a constant and νmc(s) is a nonlinear function of the magnetic
flux, νmc(|B|). Notice that the value of νc could be different in each conductor Ωi but we will assume, for
the sake of simplicity, that it is the same for all of them.

The eddy current problem (1)–(5) is completed with the boundary condition B · n = 0 on ∂Ω, which
means there is no magnetic flux through the boundary.

2.1. The Transient Magnetic Model

Now, we are going to obtain the transient magnetic formulation that models the electromagnetic behavior
of the induction motor. In particular, we will see how the rotation of the motor can be included in the
formulation.

In the method proposed in this paper, we will make a simplification based on assuming that the bars
are stranded conductors, that is, conductors where the induced currents are uniformly distributed on their
respective cross-sections. In a similar way, we will also treat the stator coil sides as stranded conductors.
These assumptions amount to say that the current density field is uniformly distributed in all conducting
subdomains Ωi and is given by

Jz,i(t) =


yi(t)

meas(Ωi)
, i = 1, . . . , nb,

Ii(t)

meas(Ωi)
, i = nb + 1, . . . , nc,

where we have denoted yi(t), i = 1, . . . , nb, the currents through the cross-section of each rotor bar at time
t, and Ii(t), i = nb + 1, . . . , nc, the currents through the cross-section of each stator coil side at time t. We
notice that, in the simulation of an induction machine, the bars of the squirrel cage are usually modeled
as solid conductors, where, in opposition to stranded conductors, the induced currents are not uniformly
distributed (see, for instance, the classical model presented in [3]). Nevertheless, assuming the rotor bars as
stranded conductors is not a limitation to the applicability of the method (see Remark 11 in Section 5.2.1).

In order to solve the described two-dimensional model, it is convenient to introduce a magnetic vector
potential because it leads to solve a scalar problem instead of a vector one. Since B is divergence-free, there
exists a so-called magnetic vector potential A such that B = curlA. Under the assumptions above, we can
choose a magnetic vector potential that is independent of z and does not have either x or y components,
i.e., A = Az(x, y, t)ez (see, for instance, [13]).

We notice that the currents in the rotor bars are not known but we will show how to include in the
formulation some additional equations to link currents with potential drops per unit length. However, we
advance that these potential drops are not a problem data either, and therefore we will need to couple the
PDE problem with a lumped model for the squirrel cage circuit.

For the sake of simplicity, we will assume that the electric conductivity σ is constant for all conductors,
but otherwise the development below can be applied with no significant change (see [11]). Taking into
account Faraday’s law in the rotor bars (2), and the assumptions of invariance under translation in the
z-direction and axial direction of currents, we deduce that there exist nb scalar potentials Vi, i = 1, . . . , nb,
unique up to a constant, such that

∂A

∂t
+ E = −gradVi in Ωi × R, i = 1, . . . , nb.

From the assumptions on J and Ohm’s law (4), we deduce that E in the rotor bars has non-null component
only in the z spatial direction which is, furthermore, spatially constant in each Ωi, i = 1, . . . , nb. Moreover,

5



since A = Az(x, y, t)ez, we have

−gradVi = −∂Vi
∂z

ez

in each Ωi, i = 1, . . . , nb. As a consequence, the above equation reduces to

∂Az
∂t

+ Ez = −Ci(t) in Ωi, i = 1, . . . , nb, (6)

where Ci(t) := (∂Vi/∂z)(t) is the potential drop per unit length along direction z in conductor Ωi, i =
1, . . . , nb. Multiplying (6) by the electric conductivity, integrating on each Ωi, i = 1, . . . , nb, and taking
Ohm’s law into account we deduce

d

dt

∫
Ωi

σAz(x, y, t) dxdy + yi(t) = −Ci(t)σmeas(Ωi), i = 1, . . . , nb. (7)

Now, in order to take into account the motion of the machine, we split the domain Ω into two parts,
Ωrot and Ωsta separated by a circumference Γ strictly contained in the air-gap. Therefore, domains Ωmc and
Ω0 are split into two parts as well, one of them included in the rotor (Ωrot

mc and Ωrot
0 ) and the other one in

the stator (Ωsta
mc and Ωsta

0 ). Notice that each of the two parts in which the airgap is also divided has been
included in the corresponding adjacent subdomain Ωrot

0 or Ωsta
0 . Thus, for the initial position of the motor,

we can write

Ωrot = int

(
Ωrot

0 ∪

(
nb⋃
i=1

Ωi

)
∪ Ωrot

mc

)
, Ωsta = int

(
Ωsta

0 ∪

(
nc⋃

i=nb+1

Ωi

)
∪ Ωsta

mc

)
.

In the case of moving bodies, Ohm’s law (4) changes (see [14] for a short presentation). However, we
consider a reference frame moving with the rotor so that, in this particular frame, Ωrot is fixed and Ωsta

is moving. As a consequence, equations (7) remain valid. We notice that, in the framework of induction
machines, a usual solution is working with Lagrangian coordinates in both rotor and stator (see, for instance,
[15, 3, 16]). However, in our case, it is enough to consider a unique reference system moving with the rotor
as the conductors present in the stator are stranded conductors and their respective currents are known.
Therefore, neither Ohm’s law (4) nor Faraday’s law (2) are needed to state the problem in the domain
corresponding to the stator.

If we call rt the rotation whose angular velocity is the opposite to the one of the rotor the stator has a
different position with respect to the initial time, given by rt (Ωsta).

It is important to notice that both the rotor and stator geometric sets, Ωrot and Ωsta, are always the
same, but the physical parameters at each point may change along the time as they are not invariant with
respect to rotation rt.

In what follows, we will denote by [·]Γ the jump across interface Γ. Thus, in terms of Az, the transient
magnetic model reads:

−div(ν(x, y; |gradAz|)gradAz) =

nb∑
i=1

yi(t)

meas(Ωi)
χΩi

in Ωrot, (8)

−div(ν(x, y; |gradAz|)gradAz) =

nc∑
i=nb+1

Ii(t)

meas(Ωi)
χrt(Ωi) in rt

(
Ωsta

)
, (9)

[Az]Γ = 0, (10)

[ν0 gradAz · n]Γ = 0, (11)

d

dt

∫
Ωi

σAz(x, y, t) dxdy + yi(t) = −Ci(t)σmeas(Ωi), i = 1, . . . , nb, (12)

where χD is the characteristic function of subset D. Notice that the interface conditions (10)-(11) guarantee
the continuity of B ·n and H×n through the interface separating rotor and stator. Moreover, on boundary
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Figure 3: Example of graph topology and associated incidence matrix.

∂Ω we consider the homogeneous Dirichlet boundary condition Az = 0, which ensures B · n = 0 on ∂Ω.

As we mentioned before, the magnetic field in the squirrel cage is induced by the one in the stator.
Therefore, neither currents yi(t) nor potential drops per unit length Ci(t), i = 1, . . . , nb, are known in
advance. To be able to compute them, we have to take into account that all bars are connected to each
other through the end-rings. Since we cannot include these end-rings in the 2D model of the cross-section
of the motor, we will write a lumped model for the squirrel cage electrical circuit to be coupled with the
distributed one. The topology of this circuit is modelled as a directed graph. Let us recall that the incidence
matrix of a directed graph is the nnod × nedg (nodes by edges) matrix A = (aij) defined by

aij =

 −1 if i = m(1, j),
1 if i = m(2, j),
0 otherwise,

for i ∈ {1, . . . , nnod}, j ∈ {1, . . . , nedg}, where m(1, j), m(2, j) denote the first and second nodes of the j-th
edge, respectively. A simple example is shown in Figure 3 where the number of nodes is nnod = 6 and
the number of edges nedg = 9. We notice that for a symmetric squirrel cage like the one schematized in
Figure 3, we have, nnod = 2nb and nedg = 3nb. We also notice that, in order for the lumped model to
be coherent with the distributed one, the edges corresponding to the rotor bars have to be oriented in the
positive z-direction. Moreover, in order to fix the notation, we advance that we are going to number the
edges of the graph corresponding to the rotor bars in the first place. Besides, the nodes of the graph will be
numbered in such a way that all nodes corresponding to one of the rings go first, followed by those of the
other ring.

By using the incidence matrix, the first Kirchhoff’s law can be written as follows:

A~y(t) = ~0, (13)

where ~y(t) ∈ Rnedg denotes the vector of currents along the edges of the graph. Let us introduce the vector
of nodal electric potentials at time t, denoted by ~v(t) ∈ Rnnod , and the resistance of the i-th bar per unit
length in the z spatial direction denoted by

αi :=
1

σmeas(Ωi)
,

i = 1, . . . , nb. Then, the constitutive equations for the circuit elements can be written as (see, for instance,
[17])

D~y(t) +A>~v(t) = ~0, (14)

where D denotes the diagonal operator given by (D~y(t))i = Di (yi(t)), with

Di (yi(t)) =

 Ri
d

dt

∫
Ωi

σAz(t) +Riyi(t) i = 1, . . . , nb,

Riyi(t) i = nb + 1, . . . , nedg,
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Ri, i = nb + 1, . . . , nedg, being the resistance of the i-th edge of the graph, and Ri = `iαi, i = 1, . . . , nb, the
resistance of the i-th rotor bar with `i its length. We notice that expressions for Di (yi(t)), i = 1, . . . , nb,
are obtained similarly to (7).

Thus, the problem to be solved is the following:

Problem 1. Given currents along the coil sides, Ii(t), i = nb + 1, . . . , nc, and a vector of initial currents
along the bars, ~y b,0 = (y0

1 , . . . , y
0
nb

), find, for every t ∈ [0, T ], a field Az(x, y, t), currents along the edges of
the graph, yi(t), i = 1, . . . , nedg, and voltages at the nodes of the graph, vi(t), i = 1, . . . , nnod, such that

−div(ν(x, y; |gradAz|)gradAz) =

nb∑
i=1

yi(t)

meas(Ωi)
χΩi

in Ωrot, (15)

−div(ν(x, y; |gradAz|)gradAz) =

nc∑
i=nb+1

Ii(t)

meas(Ωi)
χrt(Ωi) in rt

(
Ωsta

)
, (16)

[Az]Γ = 0, (17)

[ν0 gradAz · n]Γ = 0, (18)

Az = 0 on ∂Ω, (19)

D~y(t) +A>~v(t) = ~0, (20)

A~y(t) = ~0, (21)

yi(0) = y0
i , i = 1, . . . , nb. (22)

To the authors’ knowledge, the analysis of the field-circuit problem stated in Problem 1 has not been
done in the literature. Regarding this question, we can cite the recent work [18] where the authors analyze
a simplified coupled problem without motion, imposing the voltage drops in all conducting domains. We
must also highlight reference [15] which deals with an eddy current problem including the motion of the
machine, but restricted to the linear magnetic case and without circuit coupling.

3. A Reduced Problem

The goal of this section is to obtain an equivalent formulation to Problem 1 having the currents along
the rotor bars as the only unknowns. For this purpose, let us first introduce some notations that will allow
us to write Problem 1 in a more compact form. Let ~F : [0, T ] × Rnb −→ Rnb be the nonlinear mapping
defined as

~F(t, ~w) :=

(∫
Ω1

σAz(x, y, t) dx dy, . . . ,

∫
Ωnb

σAz(x, y, t) dx dy

)>
∈ Rnb ,

with Az(x, y, t) the solution to the following nonlinear magnetostatic problem:

Problem 2. Given a fixed t ∈ [0, T ], currents along the coil sides Ii(t), i = nb + 1, . . . , nc, and ~w ∈ Rnb ,

8



find a field Az(x, y, t) such that

−div(ν(x, y; |gradAz|)gradAz) =

nb∑
i=1

wi
meas(Ωi)

χΩi in Ωrot, (23)

−div(ν(x, y; |gradAz|)gradAz) =

nc∑
i=nb+1

Ii(t)

meas(Ωi)
χrt(Ωi) in rt

(
Ωsta

)
, (24)

[Az]Γ = 0, (25)

[ν0 gradAz · n]Γ = 0, (26)

Az = 0 on ∂Ω. (27)

This is a nonlinear magnetostatic problem for each time t > 0. We refer the reader to [19] for the analysis
of nonlinear magnetostatic problems defined on fixed domains.

Notice that two blocks can be distinguished in equation (20), one corresponding to the rotor bars and
another one corresponding to the remaining edges of the squirrel cage, namely, those of the end-rings. Let us
denote the incidence matrices of their respective subgraphs by Ab (nnod × nb) and Ar (nnod × (nedg − nb));
notice that, in terms of nb, the dimensions of Ab and Ar are 2nb × nb and 2nb × 2nb, respectively. Thus,
we have A =

(
Ab | Ar

)
, and, accordingly, the vector of currents ~y is decomposed as

~y =

(
~y b

~y r

)
.

Then, equation (20) can be rewritten as

Rb d
dt
~F
(
t, ~y b(t)

)
+Rb~y b(t) +

(
Ab
)>
~v(t) = ~0, (28)

Rr~y r(t) + (Ar)> ~v(t) = ~0, (29)

where Rb and Rr are the diagonal matrices defined by(
Rb
)
ij

= Riδij , i, j = 1, . . . , nb,

(Rr)ij = Ri+nb
δij , i, j = 1, . . . , nedg − nb,

with δij the Kronecker delta, that is,

δij =

{
0 if i 6= j,
1 if i = j.

Notice that (28) involves operator ~F which is defined in terms of Ii(t), i = nb + 1, . . . , nc, through the
solution of Problem 2. Thus, equations (15)–(21) can be rewritten in the more compact manner,

Rb d
dt
~F
(
t, ~y b(t)

)
+Rb~y b(t) +

(
Ab
)>
~v(t) = ~0, (30)

Rr~y r(t) + (Ar)> ~v(t) = ~0, (31)

Ab~y b(t) +Ar~y r(t) = ~0. (32)

Moreover, since Rr is a non-singular matrix, from (31) we get

~y r(t) = −(Rr)−1 (Ar)> ~v(t),

and thus ~y r can be eliminated from the above system. Therefore, Problem 1 can be written in the following
way:
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Problem 3. Given currents along the coil sides Ii(t), i = nb + 1, . . . , nc, and initial currents along the bars
~y b,0 = (y0

1 , . . . , y
0
nb

), find, for every t ∈ [0, T ], currents yi
b(t), i = 1, . . . , nb, along the bars and voltages

vi(t), i = 1, . . . , nnod, at the nodes of the graph such that

Rb d
dt
~F
(
t, ~y b(t)

)
+Rb~y b(t) +

(
Ab
)>
~v(t) = ~0, (33)

Ab~y b(t)−Ar(Rr)−1 (Ar)> ~v(t) = ~0, (34)

~y b(0) = ~y b,0, (35)

where mapping ~F depends on the given currents in the coils, Ii(t), i = nb + 1, . . . , nc, through the solution
of Problem 2.

Remark 4. Problem 1 and Problem 3 are equivalent in the following sense: given currents along the coil
sides Ii(t), i = nb + 1, . . . , nc, and initial currents along the bars ~y b,0 = (y0

1 , . . . , y
0
nb

), for every t ∈ [0, T ] we
have:

i) If Az(x, y, t), ~y(t) ∈ Rnedg and ~v(t) ∈ Rnnod are solutions of Problem 1, then ~y b(t) defined as ybi (t) =
yi(t) for i = 1, . . . , nb and ~v(t) are solutions of Problem 3.

ii) Reciprocally, for t ∈ [0, T ] let ~y b(t) ∈ Rnb and ~v(t) ∈ Rnnod be solutions of Problem 3. Let us define
~y r(t) := −(Rr)−1(Ar)>~v(t), ~y(t) := (~y b|~y r)> and let us also consider Az(x, y, t) the solution of
Problem 2 with data ~w = ~y b(t). Then, Az(x, y, t), ~y(t) and ~v(t) are solutions of Problem 1.

Statement i) is a direct consequence of the construction of Problem 3. Let us see the proof of ii).
Multiplying ~y r(t) := −(Rr)−1(Ar)>~v(t) by Rr we have

Rr~y r(t) + (Ar)> ~v(t) = ~0. (36)

From (36), (33) and the definition of D we obtain (20).
On the other hand, by replacing the definition of ~y r in (34) we clearly obtain

Ab~y b(t) +Ar~y r(t) = ~0.

Consequently, ~y(t) = (~y b|~y r)> satisfies (21). Finally, equations (15)-(19) are an immediate consequence of
the definition of Az(x, y, t) and the initial condition (22) is derived from (35).

Next, we show that ~v(t) can be eliminated from system (33)-(34) although matrix Ar(Rr)−1 (Ar)>
in (34) is not invertible.

Lemma 5. If the currents along the bars, ybi (t), i = 1, . . . , nb, are such that

Ab~y b(t) ·
(
~0
~e

)
= 0, (37)

with ~e = (1, . . . , 1)> ∈ Rnb , then there exist an invertible matrix B and a scalar function λ(t) such that

~v(t) = B−1Ab~y b(t) + λ(t)

(
~0
~e

)
.

Proof. Let us start by analyzing the nullspace of matrix (Ar)>. Firstly, since the graph corresponding to
the whole squirrel cage is connected, we have

N
(

(A)
>
)

=<

(
~e
~e

)
>, (38)

10



where the notation < ~u1, ~u2, . . . , ~un > stands for the span of {~u1, ~u2, . . . , ~un}. Similarly, since the subgraph
obtained by removing the bars has two connected components (the two end-rings), each of them having nb

nodes, the rank of matrix Ar is 2nb−2 (see Theorem 7.2 in [20]). Therefore, we conclude that the dimension

of the nullspace of (Ar)> is two. If we number the nodes of one of the rings first and then the nodes of the
other ring, this nullspace is given by

N
(

(Ar)>
)

=<

(
~e
~0

)
,

(
~0
~e

)
> .

Moreover, it is easy to prove that

N
(
Ar(Rr)−1 (Ar)>

)
= N

(
(Ar)>

)
.

Indeed, it is obvious that N((Ar)>) ⊂ N(Ar(Rr)−1(Ar)>). Conversely, if ~z ∈ N(Ar(Rr)−1(Ar)>), we have,

0 = Ar(Rr)−1 (Ar)> ~z · ~z = (Rr)−1 (Ar)> ~z · (Ar)> ~z

and, since the linear transformation associated to (Rr)−1 is bijective, we conclude that ~z also belongs to
N((Ar)>).

Thus, from well-known results in linear algebra, the linear mapping

˜Ar(Rr)−1(Ar)> : R2nb/N
(
(Ar)>

)
→ Im

(
Ar(Rr)−1(Ar)>

)
is an isomorphism, where ˜Ar(Rr)−1(Ar)> is well-defined by

˜Ar(Rr)−1(Ar)>(~w + N
(
(Ar)>

)
) := Ar(Rr)−1(Ar)> ~w, ∀~w ∈ R2nb .

Therefore, ifAb~y b(t) ∈ Im
(
Ar(Rr)−1(Ar)>

)
, there exists a unique ~v(t) in the quotient space R2nb/N

(
(Ar)>

)
solution of (34). Firstly, let us characterize Im

(
Ar(Rr)−1(Ar)>

)
. We have,

Im
(
Ar(Rr)−1(Ar)>

)
= N

(
Ar(Rr)−1(Ar)>

)⊥
= N

(
(Ar)>

)⊥
=<

(
~e
~0

)
,

(
~0
~e

)
>⊥ .

Now, let us notice that the assumption (37) is equivalent to the following conditions

~y b ⊥
(
Ab
)>( ~e

~0

)
, (39)

~y b ⊥
(
Ab
)>( ~0

~e

)
. (40)

Indeed, taking into account (38) we have

~0 = (A)
>
(
~e
~e

)
=

( (
Ab
)>

(Ar)>

)(
~e
~e

)
=


(
Ab
)>( ~e

~e

)
(Ar)>

(
~e
~e

)
 ,

and then

~0 =
(
Ab
)>( ~e

~e

)
=
(
Ab
)>( ~e

~0

)
+
(
Ab
)>( ~0

~e

)
.

Consequently, if (40) holds (39) also holds.
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Therefore, the assumption (37) guarantees that Ab~y b(t) belongs to Im(Ar(Rr)−1(Ar)>) and we can
solve equation (34) to get

v̂(t) =
(

˜Ar (Rr )−1 (Ar )>
)−1

Ab~y b(t) ∈ R2nb/N
(
(Ar)>

)
.

We know that ~v(t) ∈ v̂(t) so there are two free parameters that have to be determined to compute ~v(t), as
two is the dimension of the nullspace N((Ar)>). Let ~w(t) be any element in v̂(t). Then

~v(t) = ~w(t) + φ(t)

(
~e
~0

)
+ λ(t)

(
~0
~e

)
,

for any choice of φ(t) and λ(t). Since the potential is defined up to a constant, we can arbitrarily choose
either φ(t) or λ(t). For instance, if we take φ(t) = 0, λ(t) is an unknown of the problem that is determined
by condition

Ab~y b(t) ·
(
~0
~e

)
= 0.

Now, we are going to build a particular solution ~w(t). To attain this goal, let us denote by E the matrix
of order 2nb × (2nb − 2) whose columns span N((Ar)>)⊥. Since N((Ar)>)⊥ = Im(Ar), matrix E can be
obtained from matrix Ar by eliminating two columns, each corresponding to an edge of each end-ring.

It is easy to see that E>Ar(Rr)−1 (Ar)> E is an invertible matrix of order 2nb−2. By using this matrix,
we define the vector ~w(t) as

~w(t) := E(E>Ar(Rr)−1 (Ar)> E)−1E>Ab~y b(t).

Next, we are going to proof that ~w(t) ∈ v̂(t). We have

E>Ar(Rr)−1 (Ar)> ~w(t)

= E>Ar(Rr)−1 (Ar)> E(E>Ar(Rr)−1 (Ar)> E)−1E>Ab~y b(t) = E>Ab~y b(t) (41)

and, since E> is one-to-one on Im(Ar(Rr)−1 (Ar)>), (41) implies

Ar(Rr)−1 (Ar)> ~w(t) = Ab~y b(t).

Finally, we conclude the lemma for

B :=
(
E(E>Ar(Rr)−1 (Ar)> E)−1E>

)−1

.

Remark 6. Since ~w(t) is any element in v̂(t), instead of building matrix B−1, ~w could also be obtained by
blocking two particular degrees of freedom, each corresponding to one node of each ring of the squirrel cage,
when solving the otherwise singular linear system

Ar(Rr)−1 (Ar)> ~v(t) = Ab~y b(t).

Thanks to the above lemma, the problem to be solved can be written in terms of ~y b(t) and λ(t) as
follows:
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Problem 7. Given currents along the coil sides Ii(t), i = nb + 1, . . . , nc, and initial currents along the bars
~y b,0 = (y0

1 , . . . , y
0
nb

), find, for every t ∈ [0, T ], currents yi
b(t), i = 1, . . . , nb, along the bars and λ(t) ∈ R

such that

Rb d
dt
~F
(
t, ~y b(t)

)
+
(
Rb +

(
Ab
)> B−1

(
Ab
))
~y b(t)

+λ(t)
(
Ab
)>( ~0

~e

)
= ~0, (42)

Ab~y b(t) ·
(
~0
~e

)
= 0, (43)

~y b(0) = ~y b,0, (44)

where mapping ~F depends on the given currents in the coils, Ii(t), i = nb + 1, . . . , nc, through the solution
of Problem 2

4. An Approximate Method to Compute Appropriate Initial Currents in Rotor Bars

In this section, we propose a method to compute an approximation of the initial condition of Problem 7
corresponding to a periodic steady solution, under the assumption that currents along the stator coil sides
are periodic functions of the same frequency fc. In order to compute this solution, we could take any initial
condition vector ~y b,0 = (y0

1 , . . . , y
0
nb

), (null, for instance), and integrate the differential-algebraic system of
equations given above until convergence. However, this procedure can be very costly from the computational
point of view if the initial currents are far from the ones corresponding to the periodic solution we are looking
for. The aim is to determine these initial currents in such a way that the periodic steady solution can be
obtained by integrating the problem along a time-interval as small as possible.

Firstly, we will introduce some notation. Let us assume that the rotor is moving at a constant angular
velocity nr (in rpm). Also, let ns be the so-called synchronous speed (that is, the rotation rate of the
magnetic field in the stator), which is given by ns = (60fc)/p (in rpm), p being the number of pole-pairs
of the machine. Furthermore, let s be the slip, that is, the difference between synchronous and operating
speed, relative to the synchronous speed, s = (ns − nr)/ns. Then, one can prove that the period of the
current in the bars, Tb, is such that Tb = Tc/s, where Tc denotes the electrical period of the stator coils (see,
for instance, [21]).

If we successively integrate (42) first in [0, t] and then in [0, Tb] and we change the order of integration
in the last two terms, we obtain

Rb
(∫ Tb

0

~F
(
t, ~y b(t)

)
dt− Tb ~F

(
0, ~y b,0

))

+
(
Rb + (Ab)>B−1(Ab)

) ∫ Tb

0

(Tb − t)~y b(t) dt

+

(∫ Tb

0

(Tb − t)λ(t) dt

)
(Ab)>

(
~0
~e

)
= ~0. (45)

Now, we first conjecture that the leftmost term in (45), namely,

Rb
∫ Tb

0

~F
(
t, ~y b(t)

)
dt

can be neglected because, in real situations, it seems to be much smaller than the other terms. This can be
seen for the particular example shown in Figure 4. From a physical point of view, this assumption means
that the flux linkages of the rotor bars have approximately zero mean over one period of the fundamental

13



1 3 6 9 12 15 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bar number

R
el

at
iv

e 
w

ei
gh

t

 

 

Rb

∫ Tb

0

~F(t, ~y b(t))(t) dt

−Rb Tb
~F(0, ~y b,0)

Rb

∫ Tb

0

(Tb − t) ~y b(t) dt

(Ab)⊤ B−1 Ab

∫ Tb

0

(Tb − t) ~y b(t) dt

(∫ Tb

0

(Tb − t)λ(t) dt

)

(Ab)⊤
(

~0
~e

)

Figure 4: Relative value of the different terms in equation (45) versus the bar number.

frequency of currents in the rotor bars. Let us notice, however, that the term involving the resistances,
namely, (

Rb + (Ab)>B−1Ab
) ∫ Tb

0

(Tb − t)~y b(t) dt

cannot be neglected (see again Figure 4).
On the other hand, we would also like to avoid the calculation of ~y b(t) because it is very expensive.

Indeed, notice that at each iteration of any iterative algorithm solving (43)–(45), the computation of ~y b(t)
starting from ~y b,0 would involve the solution to the full model along the interval [0, Tb]. In order to avoid
such a drawback, we notice that the currents along the rotor bars can be approximated by a harmonic
function of frequency fb := 1/Tb (see Figure 5). This is a key point in the proposed technique because it
allows us to approximate the original problem by means of a time-independent one. Moreover, for symmetry
reasons, we will assume the amplitudes of the approximations of the currents in the rotor bars to be the
same in all of them, which will be denoted by Y . Then, the idea is to approximate the vector of rotor bar
currents, ~y b(t), as follows:

ybi (t) '
[
(Ab)>

(
~0
~e

)]
i

Y cos(2πfbt+ βi), (46)

where βi is the phase-shift between the current source in the coil sides and the current of the i-th bar.
Accordingly, the initial currents are given by,

yb,0i = Y

[
(Ab)>

(
~0
~e

)]
i

cosβi. (47)

On the other hand, from periodicity arguments one can show that the phase angles are

βi = β1 + (i− 1)γ, i = 1, . . . , nb, (48)

with γ = (2πp)/nb, and then only two unknowns remain: Y and β1. In order to compute them we will
construct a system of nb nonlinear equations that will be solved in the least-square sense.
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Figure 5: Comparison between yb1(t) and the approximation given in (46).

Let us introduce the column vectors ~u and ~w, whose respective i-th components are

ui :=

[
(Ab)>

(
~0
~e

)]
i

cosβi and wi :=

[
(Ab)>

(
~0
~e

)]
i

sinβi,

i = 1, . . . , nb. Then, ~y b, 0 = Y ~u. We also observe that

~u =
∂ ~w

∂β1
and ~w = − ∂~u

∂β1
. (49)

Lemma 8. If p 6= kNb, k ∈ N, the approximate currents introduced in (46) satisfy constraint (43) for any
values of Y and β1.

Proof. Taking into account that [
(Ab)>

(
~0
~e

)]
i

= ±1,

for i = 1, . . . , nb, depending on the orientation of the i-th edge, we have

~y b(t) · (Ab)>
(
~0
~e

)
≈

nb∑
i=1

[
(Ab)>

(
~0
~e

)]2

i

Y cos(2πfbt+ βi)

= Y

nb∑
i=1

cos(2πfbt+ βi) = Y Re

(
nb∑
i=1

e i(2πfbt+β1+(i−1)γ)

)

= Y Re

(
e i(2πfbt+β1) e inbγ − 1

e iγ − 1

)
= Y Re

(
e i(2πfbt+β1) e i2πp − 1

e iγ − 1

)
= 0, (50)

as long as γ is not an integer multiple of 2π (which would mean that p is a multiple of nb), because e i2πp = 1
for all integer p.
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Now, let us compute the integral
∫ Tb

0
(Tb − t)ybi (t) dt by using the approximation introduced in (46). We

have ∫ Tb

0

(Tb − t)ybi (t) dt ≈
[
(Ab)>

(
~0
~e

)]
i

∫ Tb

0

(Tb − t)Y cos

(
2π

Tb
t+ βi

)
dt

= −
[
(Ab)>

(
~0
~e

)]
i

Y
T 2
b

2π
sinβi

and hence, ∫ Tb

0

(Tb − t)~y b(t) dt ≈ −Y
T 2
b

2π
~w. (51)

Finally, using the notation

µ =

∫ Tb

0

(Tb − s)λ(s) ds,

the problem to be solved reduces to the following:

Problem 9. Given periodic currents along the coil sides Ii(t), i = nb + 1, . . . , nc, find Y ∈ R, β1 ∈ [0, 2π)
and µ ∈ R such that,

−TbRb ~F (0, Y ~u)− T 2
b

2π
Y
(
Rb + (Ab)>B−1Ab

)
~w + µ(Ab)>

(
~0
~e

)
= ~0.

We notice that β1 appears in the previous system through ~u and ~w. Similarly, ~F (0, Y ~u) is defined in
terms of Ii(0), i = nb + 1, . . . , nc, through the solution of Problem 2.

Moreover, in the above system, it is possible to eliminate unknown µ in terms of Y and β1 (through ~u),
which is more convenient from the computational point of view. Indeed, taking into account Lemma 8, it is
easy to see that

−Y T
2
b

2π
~w · (Ab)>

(
~0
~e

)
= 0

and, consequently,

µ =

(
Rb + (Ab)> B−1 Ab

)−1
TbRb ~F(0, Y ~u) · (Ab)>

(
~0
~e

)
(Rb + (Ab)> B−1 Ab)−1

(Ab)>
(
~0
~e

)
· (Ab)>

(
~0
~e

) .

By replacing this expression for µ we get

1

a

[(
Rb + (Ab)> B−1 Ab

)−1
TbRb ~F(0, Y ~u) · (Ab)>

(
~0
~e

)]
(Ab)>

(
~0
~e

)
− TbRb ~F(0, Y ~u)− Y T

2
b

2π

(
Rb + (Ab)>B−1Ab

)
~w = ~0, (52)

where

a :=
(
Rb + (Ab)> B−1 Ab

)−1
(Ab)>

(
~0
~e

)
· (Ab)>

(
~0
~e

)
.

Therefore, Problem 9 can also be written as

Problem 10. Given periodic currents along the coil sides Ii(t), i = nb + 1, . . . , nc, find Y ∈ R and
β1 ∈ [0, 2π) such that,

Tb

[
1

a
(Ab)>

(
~0
~e

)
⊗
((
Rb + (Ab)> B−1 Ab

)−>
(Ab)

>
(
~0
~e

))]
Rb ~F(0, Y ~u)

− TbRb ~F(0, Y ~u)− Y T
2
b

2π
(Rb + (Ab)>B−1Ab)~w = ~0. (53)

16



This is an overdetermined system that can be solved, for instance, in the least-square sense. With this
aim, let us define the mapping

~f(Y, β1) := −Y T
2
b

2π
(Rb + (Ab)>B−1Ab)~w

+ Tb

[
1

a
(Ab)>

(
~0
~e

)
⊗
((
Rb + (Ab)> B−1 Ab

)−>
(Ab)>

(
~0
~e

))]
Rb ~F(0, Y ~u)

− TbRb ~F(0, Y ~u). (54)

Then,

(Y, β1) = arg min
Z, ξ

{∥∥∥~f(Z, ξ)
∥∥∥2

2
: Ymin ≤ Z ≤ Ymax, 0 ≤ ξ < 2π

}
.

This minimization can be performed with different algorithms, for which, in general, the Jacobian matrix
of function ~f with respect to (Y, β1) should be computed. This can be done from (53) by using the chain
rule. Let us introduce the matrix

C :=

[
1

a
(Ab)>

(
~0
~e

)
⊗
((
Rb + (Ab)> B−1 Ab

)−>
(Ab)>

(
~0
~e

))
− I

]
Rb,

where I is the identity matrix. We denote by D~w
~F(0, ~x) the Jacobian matrix of mapping ~F with respect

to ~w at point (0, ~x). By using (49) we get

∂ ~f

∂Y
(Y, β1) = Tb CD~w

~F(0, Y ~u)~u− T 2
b

2π

(
Rb + (Ab)>B−1Ab

)
~v,

∂ ~f

∂β1
(Y, β1) = −Tb Y CD~w

~F(0, Y ~u)~v − Y T
2
b

2π

(
Rb + (Ab)>B−1Ab

)
~u.

Let us notice that the calculation of the Jacobian matrix of mapping ~F(0, ·) involves the solution of the
magnetostatic problem (23)–(27) for time t = 0. We refer the reader to [11] for further details on the
computation of this matrix in a similar case.

5. Numerical Results

In this section we present the numerical results obtained for a particular induction machine with squirrel
cage rotor, which allow us to validate the methodology proposed in this paper. Therefore, we first use the
numerical method proposed in Section 4 to estimate suitable initial currents in the bars of the induction
motor. Next, we solve a transient eddy current model using the obtained currents as initial condition and,
finally, we compare the time needed to reach the steady-state with the one needed by taking null initial
currents. In what follows, we describe some of the characteristics of the machine, which have been provided
to us by the company Robert Bosch GmbH. Then, we apply the method to different operating conditions.

5.1. Description of the Machine

A cross-section of the induction machine is sketched in Figure 6. It is composed by nb = 36 slots in the
rotor and 48 slots in the stator.

This induction motor is a three-phase machine having 2 pole pairs with 12 slots per pole. Figure 6 also
shows the winding distribution in the stator: red, yellow and blue slots correspond to phases A, B and C,
respectively. These source currents are characterized by an electrical frequency fc and a RMS current Ic
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Figure 6: Computational domain. Courtesy of Robert Bosch GmbH.

through each slot. Hence, the analytical expressions of currents corresponding to each phase of the stator
are

IA(t) =
√

2 Ic cos (2πfct) ,

IB(t) =
√

2 Ic cos (2πfct+ 2π/3) ,

IC(t) =
√

2 Ic cos (2πfct− 2π/3) .

Finally, concerning the materials, the rings of the squirrel cage are characterized by a resistance R and
the stator coil sides are made of copper. Moreover, the laminated nonlinear material is the electrical steel
M330 35A (see [22]).

5.2. Initial Currents for Different Operating Points

We recall that if the currents along the rotor bars are approximated by harmonic functions of frequency
fb, the only unknowns to be determined for computing their initial values are Y and β1. In particular, we
have interpreted β1 as the phase shift between the current through the first bar and the current corresponding
to phase A. In the example, the first bar has been chosen as the one placed in the first quadrant nearest to
the horizontal axis. We have approximated these values by

(Y, β1) = arg min
Z, ξ

{∥∥∥~f(Z, ξ)
∥∥∥2

2
: Ymin ≤ Z ≤ Ymax, 0 ≤ ξ < 2π

}
,

where function ~f is defined by (54). In order to validate this methodology, we have considered two operating
points corresponding to different electrical sources in the stator and rotational speed nr; see Table 1. In
particular, we notice that the period of the current in the rotor bars, Tb = 1/fb, is one order of magnitude
smaller in the second operating point 2 with respect to the first one. However, as we have already mentioned,
the methodology to compute the initial currents is time-independent, and therefore its computational cost
does not depend on these sizes.

We recall that for a given operating speed nr and electrical frequency fc in the stator, Tb can be easily
computed as Tb = 1/s/fc where the slip s is given by s = (ns − nr)/ns and the value of the synchronous
speed ns is computed from the number of poles p (2 in this case) using the relation ns = (60fc)/p.
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Table 1: Characteristics of the different operating points.

fc (Hz) nr (rpm) Ic (ARMS) fb (Hz) Tb (s)

Op. Point 1 171.2 5000 314 4.533 0.221

Op. Point 2 632.0 18000 531 531 0.031

For each operating point, we have found the minimum value of function ‖~f(Y, β1)‖22 by using the Matlab
function lsqnonlin. Table 2 shows the optimal values obtained for Y and β1 and the residual at each
operating point. Moreover, in order to measure the computational effort of the lsqnonlin function, we have

included the initial values (Y (0) and β
(0)
1 ) the number of nonlinear magnetostatic solutions (NL solutions)

and the number of the iterations needed by the lsqnonlin function (LSQ iterations). Since the lsqnonlin

function employs a local search minimization algorithm, to select the global minimum we have provided
some starting points in order to choose a local minimum with a minor residual. To perform this task, we
have used a multi-start strategy with an average of 25 initial points (5 values for the amplitude Y and 5
values for the phase β1) for each operating point.

Table 2: Optimal values for the different operating points and computational effort.

Op. Point 1 Op. Point 2

Y (A) 477.78 942.20

β1 (rad) 3.34 2.87

‖~f(Y, β1)‖2 1.12e−08 3.80e−10

Y (0) (A) 400.00 1000.00

β
(0)
1 (rad) 2.00 2.00

LSQ iterations 5 4

NL solutions 6 5

Next, we will analyze the consequence of using these optimal values to define the initial currents along
the bars in the transient magnetic simulation.

5.2.1. Sensitivity Analysis of Steady-State in terms of Initial Currents

In this section, we will show that the time needed to reach the steady-state in a transient simulation
strongly depends on the choice of the initial currents in the rotor bars of the machine. To attain this goal,
we will perform a transient simulation starting with initial currents defined from the values of Y and β1

found in the previous section. Then, we will compare the results with those corresponding to null initial
currents. The initial current intensities for both operating points are shown in Table 3. Due to the machine
periodicity, we only specify the values for bars 1 to 9.

To analyze if the solution of the transient eddy current model has reached the steady-state, it is usual
to study the torque in the rotor and the currents in the bars of the squirrel cage. We notice that the torque
is one of the basic specifications of a motor. In particular, the power output is expressed as its torque
multiplied by the rotational speed of the shaft. Figures 7 and 8 show the electromagnetic torque in rotor
(left) and the current through the first bar (right) versus time for the two operating points. In these figures,
τ : R+ −→ R denotes the scalar function that expresses the electromagnetic torque as a function of time.
The red curve corresponds to null initial values for the current along the bars, while the blue ones have been
obtained by using the values provided by the proposed methodology.

Remark 11. We emphasize that one of the hypotheses of the procedure for computing suitable initial currents
in the rotor bars consists in assuming that these currents are uniformly distributed, i.e., that the rotor
bars are stranded conductors. This assumption has allowed us to write an electromagnetic model for the
induction machine having time derivatives only in the equation linking currents and voltage drops avoiding,
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Table 3: Initial currents (in A) defined from Y and β1 for the different operating points.

Op. Point 1 Op. Point 2

Bar 1 −468.41 −907.66

Bar 2 −407.95 −939.37

Bar 3 −298.29 −857.78

Bar 4 −152.65 −672.73

Bar 5 11.40 −406.53

Bar 6 174.08 −91.31

Bar 7 315.76 234.94

Bar 8 419.35 532.84

Bar 9 472.37 766.48

in particular, the need of solving a parabolic partial differential equation in the bars. However, we emphasize
that the transient simulations presented in this section have been performed by considering the bars as solid
conductors (see Figure 9), and therefore solving a classical eddy current model coupled with circuit equations,
like the one presented, for instance, in [3].
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Figure 7: Op. Point 1. Torque vs. time (left). Current in bar 1 vs. time (right).
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Figure 8: Op. Point 2. Torque vs. time (left). Current in bar 1 vs. time (right).

In order to assess the potential computational saving of the method, we will introduce in the next section
a mathematical criterion to achieve the steady-state, what allows us to specify the number of time steps
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Figure 9: Current density distribution in a rotor bar.

needed to reach such state.

5.2.2. Analysis of the Computational Savings

Let us introduce Tsteady as the time of the transient FEM simulation for which the steady-state is reached.
To define this value, let us denote Tr the mechanical period of the rotor motion, that is, Tr = 60/nr.

For each revolution of the machine, Di := [iTr, (i+ 1)Tr], i = 0, 1, 2, . . . , let us consider its uniform time
discretization with time step ∆t, which is given by:

{iTr + j∆t, j = 1, . . . , N} ⊂ Di.

Then, the mean torque can be defined as:

τi :=
1

N

N∑
j=1

τ (iTr + j∆t) .

Thus, Tsteady will be defined as Tsteady = (m+ 1)Tr, with m the first natural number for which the relative
error between the mean torque in the m-th revolution and the five subsequent ones is less than 2%. In other
words, m is the first natural number for which the following property holds:

|τm − τm+j |
|τm|

< 2%, j = 1, . . . , 5.

The above criterion has been employed to compute the time to the steady-state for the different operating
points under study, with the two different initial conditions. The results have been summarized in Table 4,
both in terms of Tsteady and the number of revolutions needed to achieve convergence.

Figures 10 to 12 show the torque versus time for the considered operating points. In all cases, the time
needed to reach the steady-state has been indicated with vertical lines; in particular, in Figure 12, the blue
line corresponds to initial condition ~y b(0) = ~0 and the red one to initial condition ~y b(0) = Y ~u. We remark
that, in comparison with the case of null initial currents, starting with the initial currents computed with
the proposed methodology leads to a very important computational saving.

6. Conclusions

This paper proposes a numerical method to accelerate the computation of the steady-state solution for
induction motors with squirrel cage rotor when the periodic currents in the stator coil sides are given. When
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Table 4: Time to reach the steady-state for different operating points.

Initial condition Tsteady (s)
Number of

revolutions m
Saving (%)

Op. Point 1 ~y b(0) = ~0 0.0840 7
86

~y b(0) = Y ~u 0.0120 1

Op. Point 2 ~y b(0) = ~0 0.3467 104
96

~y b(0) = Y ~u 0.0133 4
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Figure 10: Op. Point 1. Torque vs. time. ~y b(0) = ~0 (left) and ~y b(0) = Y ~u (right).

a 2D transient magnetic nonlinear model defined in a cross-section of the machine is coupled with circuit
equations for the squirrel cage, we obtain a problem in which we also need to provide the initial currents
in the rotor bars as data. We focus on approximating these currents in such a way that time-consuming
simulations to obtain the steady-state can be shortened. The performance of the methodology is shown with
numerical experiments obtained for an induction machine for different operating conditions. In particular,
Figures 7 and 8 show that, when starting from the optimal values, the currents reach the steady-state very
quickly. On the contrary, the time to reach the steady-state electromagnetic torque can be very large starting
from null currents. Moreover, in Table 4 we describe the savings in terms of machine revolutions. These
are quite remarkable, specially for the second operating point. It is worth to emphasize that one advantage
of our method with respect to others dealing with the same problem is that we only use the periodicity
condition in the rotor bars. Thus, limitations appearing in other methodologies related with the presence
of several frequencies or the size of the effective period are avoided. Additionally, the problem to be solved
to determine the initial conditions is a minimization problem with a very low number of unknowns.
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Figure 11: Operating point 2. Torque vs. time. ~y b(0) = ~0 (left) and ~y b(0) = Y ~u (right).
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Figure 12: Time to steady-state comparison. Op. Point 1 (left). Op. Point 2 (right).
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