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Abstract
& Key message We evaluated the use of low-density airborne laser scanning data to estimate diameter distributions in
radiata pine plantations. The moment-based parameter recovery method was used to estimate the diameter distributions,
considering LiDAR metrics as explanatory variables. The fitted models explained more than 77% of the observed vari-
ability. This approach can be replicated every 6 years (temporal cover planned for countrywide LiDAR flights in Spain).
& Context The estimation of stand diameter distribution is informative for forest managers in terms of stand structure, forest growth
model inputs, and economic timber value. In this sense, airborne LiDAR may represent an adequate source of information.
& Aims The objective was to evaluate the use of low-density Spanish countrywide LiDAR data for estimating diameter distri-
butions in Pinus radiata D. Don stands in NW Spain.
& Methods The empirical distributions were obtained from 25 sample plots. We applied the moment-based parameter recovery
method in combination with the Weibull function to estimate the diameter distributions, considering LiDAR metrics as explan-
atory variables. We evaluated the results by using the Kolmogorov–Smirnov (KS) test and a classification tree and random forest
(RF) to relate the KS test result for each plot to stand-level variables.
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& Results The models used to estimate average (dm) and quadratic (dg) mean diameters from LiDAR metrics, required for
recovery of the Weibull parameters, explained a high percentage of the observed variance (77 and 80%, respectively), with
RMSE values of 3.626 and 3.422 cm for the same variables. However, the proportion of plots accepted by the KS was low. This
poor performance may be due to the strictness of the KS test and/or by the characteristics of the LiDAR flight.
&Conclusion The results justify the assessment of this approach over different species and forest types in regional or countrywide
surveys.

Keywords PNOA(PlanNacional deOrtofotografíaAéreadeEspaña) project .Airborne laser scanning (ALS) .Remote sensing .

Weibull . Distribution function .Moment-based parameter recoverymethod

1 Introduction

Diameter at breast height (DBH, 1.3 m above ground level) is
the explanatory variable most commonly used in single- and
multiple-entry equations to predict tree-level attributes, main-
ly because it is easy to measure in the field and is strongly
related to many forest variables (Burkhart and Tomé 2012).
The empirical diameter distribution (specified by the DBH
measurements within the stand) is one of the most descriptive
and important characteristics for forest managers because it
provides information about stand structure and inputs for for-
est growthmodels and enables economic assessment of timber
value and development of management schedules (Bollandsås
and Næsset 2007; Kangas et al. 2007; Pascual et al. 2013).

Diameter distributions can be represented using a discrete
density (or frequency) histogram, a continuous probability
density function (PDF) (or the equivalent cumulative distribu-
tion), or a list of quantiles or percentiles. In forestry practice,
DBH measurements are not always available, and the diame-
ter distribution must therefore be predicted by using stand
attributes as explanatory variables (e.g., density, site index,
age, mean tree size), usually under the assumption that it fol-
lows a specified theoretical PDF (Liu et al. 2004; Maltamo
and Gobakken 2014). Although numerous PDFs have been
used to describe unimodal diameter distributions (e.g.,
Charlier, Normal, Log-normal, Exponential, Beta, Gamma,
Pearl-Reed, SB Johnson, Weibull), the Weibull function is
the most frequently used for managed, even-aged stands
(e.g., Poudel and Cao 2013). Specifically, the two-parameter
formulation of the Weibull function has proven simple to use,
yet flexible enough to describe different shapes of unimodal
distributions (e.g., Maltamo et al. 1995; Gorgoso et al. 2007).

Two parametric methods are available for predicting diam-
eter distributions from field-derived stand variables: (i) the
parameter prediction method (PPM), which directly models
the PDF parameters as a function of stand variables, and (ii)
the parameter recovery method (PRM), which recovers the
PDF parameters from moments (moment-based PRM) or per-
centiles (percentile-based PRM) of the diameter distribution,
which are expressed as functions of stand-level attributes
(Hyink and Moser 1983). The moment-based PRM is usually

preferred because it guarantees that the sum of the disaggre-
gated stem density and basal area obtained by the Weibull
function equals the stand stem density and stand basal area,
respectively, resulting in numerical compatibility (e.g., Hyink
and Moser 1983; Siipilehto and Mehtätalo 2013).

In the last 20 years, airborne LiDAR has been increasingly
used for forest inventories at different scales (Yu et al. 2011),
because of its capacity to provide spatially explicit detailed
three-dimensional information about the size and structure of
the forest canopy over entire areas (Reitberger et al. 2008;
Wagner et al. 2008). Canopy cover and tree height are the
variables most closely related to LiDAR data, as LiDAR data
is mainly affected by the vertical distribution of the canopy
layers (Maltamo and Gobakken 2014). However, LiDARmet-
rics are also related to characteristics of the diameter distribu-
tions (Maltamo and Gobakken 2014).

Three approaches have been considered for estimating the
diameter distribution from LiDAR data, within the framework
of parametric prediction (Maltamo and Gobakken 2014). The
first uses regression analysis to directly relate LiDAR metrics
to the PDF parameters (e.g., Breidenbach et al. 2008; Thomas
et al. 2008) or the moments or percentiles of the diameter
distribution, which are then used to recover the PDF parame-
ters (e.g., Gobakken and Næsset 2004, 2005; Bollandsås and
Næsset 2007). The second approach considers modeling the
PDF parameters from stand-level variables predicted using
area-based LiDAR metrics (e.g., Maltamo et al. 2006, 2007;
Holopainen et al. 2010). It requires two equations: one to
relate the stand variables to LiDAR metrics and another to
relate the PDF parameters to the estimated stand variables,
implying model error accumulation and cross-correlated re-
siduals. The third approach predicts the diameter distribution
on the basis of recognition of individual trees (Hyyppä and
Inkinen 1999; Persson et al. 2002; Villikka et al. 2007), which
requires high pulse densities (usually more than 5 pulses m−2:
Bollandsås and Næsset 2007). In this case, only the dominant
tree layer is usually detected (Næsset et al. 2004); for the
tallest trees, the DBH for a given height is more variable and
the relationship between DBH and height is weaker (Maltamo
et al. 2004) and affected by site factors (Maltamo and
Gobakken 2014). Because the first approach does not have
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any of the above disadvantages, and as Peuhkurinen et al.
(2011) have demonstrated its superiority for predicting diam-
eter distributions in even-aged stands, we selected this ap-
proach for use in the present study.

We aimed to predict the diameter distributions in Pinus
radiata D. Don plantations in Galicia (NW Spain) by using
height and canopy cover LiDAR metrics from a
small-footprint, discrete-return system. For this purpose, we
used the moment-based PRM in combination with the
two-parameter Weibull function. LiDARmetrics were obtain-
ed from low-density LiDAR data provided by the Spanish
countrywide PNOA (Plan Nacional de Ortografía Aérea,
www.pnoa.ign.es) project.

2 Material and methods

2.1 Study area and data

The study was conducted over the main distribution area of
P. radiata in Galicia (NW Spain), i.e., the province of Lugo
(Fig. 1). The forests under study are representative of
P. radiata stands in NW Spain and are thus mainly character-
ized by high planting-density, low-intensity silvicultural treat-
ments and the presence of moderate shrub fuel loads
(Castedo-Dorado et al. 2012).

The field data used for modeling the diameter distribu-
tions were obtained from two different sources. The first
source (A) comprises a network of 10 rectangular plots
(600 to 1000 m2 in size, depending on stand density)
established for growth modeling purposes. The inventory
design was thus focused on obtaining an adequate repre-
sentation of the existing range of ages, stem densities, and
site indices (for details, see Castedo-Dorado et al. 2007).

The second source (B) comprises 15 rectangular plots
(1000 m2 in size) established for assessing the influence
of thinning treatments in crown fire potential. The inven-
tory design was deliberately focused on representing
young and highly stocked stands, as these are usually fire
prone (see Gómez-Vázquez et al. 2013, for details).
Although both networks of plots cover a larger area, only
the abovementioned 25 plots were selected for this study
because they were re-measured close to the PNOA
LiDAR flight date.

For all plots, DBH and total tree height were measured
in all trees with a caliper and a Vertex III hypsometer,
respectively. In addition, the UTM coordinates of the four
corners of each plot were obtained from topographic sur-
veys by using a total station and a differential GPS.

Table 1 Summarized field and LiDAR data for the 25 sample plots
used

Variable Average Minimum Maximum Standard deviation

N 1009 393 1820 425

G 36.9 16.7 68.1 11.0

H 23.4 14.8 35.6 6.6

V 352 97 913 195

t 24.0 12.0 41.0 9.33

dm 22.2 13.5 38.2 7.6

dg 23.3 14.4 39.1 7.7

LRD 0.476 0.194 1.098 0.200

N number of stems per hectare,G stand basal area (m2 ha−1 ),H dominant
height (m), V stand volume (m3 ha−1 ), t stand age (years), dm arithmetic
mean diameter (cm), dg quadratic mean diameter (cm), LRD LiDAR
return density within the plots (pulses m−2 )

a) b)

Fig. 1 Maps showing the
locations of inventory field plots.
a The presence of Pinus radiata
in Galicia (source: Fourth Spanish
National Inventory) and
administrative boundaries of the
provinces included in the region
of Galicia. b Centroids of the 25
field plots established in the
province of Lugo
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The following stand variables were calculated for each
plot: stand density (N, stems ha−1), stand basal area (G,
m2 ha−1), average height (Hm, m), dominant height (H, m,
defined as the average height of the 100 largest-DBH trees
per hectare), site index (S, defined as the dominant height at
a reference age of 20 years, using the height growth model
developed by Diéguez-Aranda et al. 2005), arithmetic mean
diameter (dm, cm), and quadratic mean diameter (dg, cm).
Stand age (t, years) was determined from the plantation date.
Additionally, the empirical diameter distribution was obtained
for each plot from field measurements, as well as the empirical
weighted distributions for tree basal area (g-weighted) and tree
volume (v-weighted). While gwas calculated straightforward-
ly from the diameter measurements, tree volume had to be
estimated from the diameter by predicting height with a
height–diameter model (Castedo Dorado et al. 2006) and sub-
sequently estimating the volume with a stem taper function
(Diéguez-Aranda et al. 2009).

Table 1 shows the summary statistics of the tree and stand
variables. Figure 2 shows a scatter plot matrix for the variables
t, N, H, and S, which reveals that field data cover the entire

duration of stand development, considering the rotations usu-
ally applied to this species in Galicia (on average around
25 years in private forests; Rodríguez et al. 2002).

LiDAR data were acquired for the PNOA project under the
direction of the Spanish Ministry of Development (Dirección
General del Instituto Geográfico Nacional and Centro
Nacional de Información Geográfica), between 5 September
and 29 October 2009, with an RIEGL LMS-Q680 sensor,
operated at 1064 nm, pulse repetition rate of 70 kHz, scan
frequency of 46 Hz, maximum scan angle of ± 30°, and aver-
age flying height of 1300 m above sea level. A maximum of 4
returns per pulse were registered, with a theoretical laser pulse
density required for the PNOA project of 0.5 first returns per
square meter. Summary statistics of the LiDAR return density
per square meter within the plots are shown in Table 1.

2.2 Extraction of LiDAR metrics

We used FUSION V. 3.50 software (McGaughey 2015) to
filter and interpolate the data and generate the digital elevation
model (DEM) and normalized height of the LiDAR data cloud

Fig. 2 Pairwise scatter diagrams
of age (t), stand density (N),
dominant height (H), and site
index (S) for the field plots. Filled
circles and empty circles
represent data from sources A and
B, respectively (see text for
details)
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(NHD). We used LiDAR data within the limits of the 25 field
plots to calculate metrics related to the height distribution and

canopy closure using the returns from above 1 m, following
the steps described in González-Ferreiro et al. (2017) (see
Table 2 for details of the LiDAR-derived metrics).

2.3 Method of moments for recovery of Weibull
parameters

The PDF of the two-parameter Weibull, considering x as a
continuous random variable, is expressed as follows (Bailey
and Dell 1973):

f xð Þ ¼ c
b

� �
⋅
x
b

� �c−1
⋅exp −

x
b

� �c� �
ð1Þ

where, the f(x) value represents the density function for x, b is
a scale parameter, and c is a shape parameter.

In the method of moments, the parameters of the Weibull
density function are recovered from the first two moments of
the diameter distribution: arithmetic mean diameter (dm) and
diameter variance (σd

2) (Newby 1980; Burk and Newberry
1984). Thus, the following expressions were used to recover
parameters b and c:

dm ¼ b⋅Γ 1þ 1

c

� �
ð2Þ

d2g ¼
d2m

Γ 2 1þ 1

c

� � ⋅Γ 1þ 2

c

� �
ð3Þ

where dg is related to the second moment of the diameter
distribution through the expression

σd
2 ¼ dg2−dm2 ð4Þ

and Γ(i) is the Gamma function for i, where i is the variable on
which the function depends.

When using stand-level field inventory data, the recovery
procedure relies on dm being estimated from dg and other
stand-level attributes (e.g., t, N, H, S); dg, in turn, can be
directly calculated from G and N. Within the LiDAR data
framework, these stand-level variables can be replaced by
LiDAR metrics as explanatory variables to estimate dg and
dm. Once these variables are estimated, parameters b and c
can be obtained by solving the system of Eqs. 2 and 3.

We have also considered another option whereby parame-
ters b and dg were modeled through LiDAR metrics, and pa-
rameter cwas then recovered. However, as poorer results were
obtained than with the abovementioned methodology, this op-
tion was ruled out for further analyses.

2.4 Regression models

We used a linear model to establish the empirical relationship
between dg and LiDAR metrics:

Table 2 Potential explanatory variables related with height distribution
and canopy closure

Variables related with
height distribution (m)

Description

hmin Minimum

hmax Maximum

hmean Mean

hmode Mode

hmedian Median

hSD Standard deviation

hCV Coefficient of variation

hskw Skewness

hkurt Kurtosis

hID Interquartile distance

hAAD Average absolute deviation

hMADmedian Median of the absolute deviations
from the overall median

hMADmode Median of the absolute deviations
from the overall mode

hL1, hL2…, hL4 L-moments

hLskw L-moment of skewness

hLkur L-moment of kurtosis

h05, h10, h20…,
h90, h95

Percentiles

h25 and h75 First and third quartiles

Variables related
to canopy closure (%)

Description

PFRAhmean Ratio of the number of the first
laser returns above hmean to the
number of first laser returns for
each plot

PFRAhmode Ratio of the number of the first
laser returns above hmode to the
number of first returns for each
plot

PARAhmean Ratio of the number of the all
laser returns above hmean to the
number of all laser returns for
each plot

PARAhmode Ratio of the number of the all
laser returns above hmode to the
number of all returns for each plot

PFRA2 Ratio of the number of the first laser
returns above 2 m height to the total
number of first laser returns for each plot

LRA1 Number of last returns above 1 m
height for each plot

FRA1 Number of first returns above 1 m
height for each plot

CRR Canopy relief ration:
(hmean − hmin)/(hmax − hmin)

The variables related to the metrics of height distributions were computed
from all LiDAR returns in the database, i.e., all returns per laser pulse
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dg ¼ α0 þ α1X 1 þ α2X 2 þ…þ αnX n þ ε ð5Þ

where X1, X2,…, Xn are potential explanatory variables related
to the LiDAR-derived height distribution and canopy closure
(Table 2); α0, α1,…, αn are the parameters to be estimated in
the fitting process; and ε is the additive error term, which is
assumed to be independent and normally and identically dis-
tributed with zero mean.

For a given stand, dm is always smaller than or equal to dg,
and we therefore used the following model expression to take
this restriction into account (Frazier 1981):

dm ¼ dg−exp β0 þ β1Y 1 þ β2Y 2 þ…þ βmYmð Þ ð6Þ

Finally, we applied a natural logarithmic transformation to
Eq. 6 to linearize the model and facilitate selection of the
independent variables:

ln dm−dg
� � ¼ β0 þ β1Y 1 þ β2Y 2 þ…þ βmYm þ ε ð7Þ

where Y1, Y2,…, Ym are potential explanatory variables related
to the LiDAR-derived height distribution and canopy closure
(Table 2); β0, β1, …, βm are the parameters, and ε as
aforementioned.

2.5 Model fitting and selection

In the first step, we applied the stepwise selection procedure to
select the best subset of independent variables to be included
in Eqs. 5 and 7. We used a combination of forward and back-
ward algorithms for variable selection implemented in the
regsubsets function, of the leaps package (Lumley and
Miller 2017) of the R statistical software (R Core Team
2016). We selected those models with the lowest values of
the Bayesian information criterion (BIC: Schwarz 1978), with
no problems related to multicollinearity between explanatory
variables (i.e., those with a condition index below 30; Belsley
1991) and with all parameter estimates significant at the 5%
level.

In the second step, we fitted the system of two equations
(Eqs. 5 and 6), considering LiDARmetrics selected in the first
step as exogenous variables (i.e., obtained outside the system)
and dm and dg as endogenous variables (i.e., variables that the
model is intended to predict; Borders 1989). As the endoge-
nous variable dg occurs on both sides of the equations,
cross-equation correlation between error components is ex-
pected. Therefore, biased and inconsistent parameter estima-
tions would be obtained using the ordinary least-squares tech-
nique (Borders and Bailey 1986; Borders 1989). Accordingly,
the system of equations was fitted simultaneously by a
three-stage least-squares method (3SLS: Zellner and Theil
1962), which combines two-stage least squares (2SLS)
with seemingly unrelated regression (SUR), taking the
cross-equation error correlations into account. For this

purpose, we used the nlsystemfit function of the systemfit
package (Henningsen and Hamann 2007) of R (R Core
Team 2016). We used the coefficient of determination (R2)
and the root mean square error (RMSE) to evaluate the good-
ness of fit of the models.

2.6 Accuracy assessment

We applied the Kolmogorov–Smirnov (KS) test, which com-
pares theoretical and empirical (field-observed) diameter dis-
tributions, to assess the suitability of the two-parameter
Weibull function for predicting the diameter distribution from
the moment-based PRM and LiDAR metrics. As the diameter
distribution parameters are estimated from empirical informa-
tion (LiDAR data), the estimated distribution is not theoreti-
cal. For this case, Lilliefors (1967) stated that the KS statistic
existing distribution is no longer valid and should be obtained
by Monte Carlo simulation. Therefore, for each plot, we gen-
erated 10,000 independent identically distributed
pseudo-random samples under the null hypothesis: we used
the rweibull function of R (R Core Team 2016) to generate
random samples with a size equal to the number of observa-
tions of the corresponding plot, and with recovered parameters
(from field or from LiDAR information), computing then the
KS statistic for each sample. This subsequently enabled esti-
mation of the distribution of the KS statistic under the null
hypothesis for each plot. If the KS statistic value obtained
from the comparison between the estimated and empirical
distribution of a plot exceeds the critical value at a specified
significance level (obtained from the approximated distribu-
tion of the KS statistic), the hypothesis that the observations
belong to a Weibull distribution of the specified parameters
should be rejected. The significance level was established at
5%.

In addition, the performance of the methodology was also
evaluated on the basis of numerical and graphical analyses.
We used the former type of analysis to assess the RMSE ob-
tained for prediction of DBH, G, and V from predicted diam-
eter distributions (from field variables and LiDAR metrics).
The predicted variables were obtained using the following
procedures: (1) for DBH, we predicted the diameter values
of a plot by applying the inverse of the diameter distribution
function (i.e., the quantile function) over the empirical distri-
bution function values; (2) for G, we integrated the diameter
density function multiplied by squared diameter (to obtain the
expected value of quadratic mean diameter), subsequently
obtaining G by direct calculation from dg and N; and (3) for
V, we integrated the diameter density function multiplied by
the tree volume of the corresponding diameter, scaled by the
number of trees per hectare. For graphical analysis, we plotted
the unweighted and weighted predicted diameter distributions
(from field and LiDAR variables) against the empirical
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diameter distributions, for visual assessment of the prediction
accuracy.

2.7 KS acceptance/rejection prediction

After applying the KS test and comparing the estimated un-
weighted and weighted distributions with the empirical distri-
butions, we used a classification tree to relate the result of the
KS test for each plot (null hypothesis accepted or rejected)
with the measured stand-level attributes N, G, H, V, S, t, dm,
and dg. The aim of this analysis is to search for common
properties in accepted and rejected plots. If any patterns are
observed, they could be used in field data stratification, thus
increasing the efficiency of the diameter distribution modeling
approach (e.g., Thomas et al. 2008).

Moreover, we used the random forest (RF) approach to
examine the influence of stand variables on the suitability of
the two-parameter Weibull PDF for characterizing the empir-
ical diameter distribution. The relevance of each stand vari-
able in RF was calculated by analyzing the changes in the
classification error when the values of the variable are ran-
domly permuted; if the effect is large, the variable is assigned
greater importance (Reif et al. 2006). We implemented the
classification tree analyses and RF using the R software pack-
ages rpart (Therneau et al. 2017) and randomForest (Liaw and
Wiener 2002) (R Core Team 2016).

Data availability LiDAR data is freely available at http://mapas.
xunta.gal/visores/descargas/ and http://centrodedescargas.cnig.
es/CentroDescargas/buscadorCatalogo.do?codFamilia=
LIDAR. Field datasets generated and analyzed during the
current study are not publicly available due to authors are still
using them in other research activities, but they are available
from the corresponding author on reasonable request.

3 Results

Table 3 summarizes the parameter estimates and
goodness-of-fit statistics of the simultaneous fitting of the sys-
tem of Eqs. 5 and 6. Note that in Eq. 5, the intercept was not
included because it was not significant at a 95% confidence
level. The fitted models explained 80 and 77% of the observed
variability in dg and dm, respectively, with RMSE values of
3.422 and 3.626 cm for the same variables.

Table 4 shows the plots with diameter distribution ade-
quately estimated according to the KS test results. The per-
centage of plots in which the null hypothesis was accepted
(i.e., the estimated distribution is equal to the empirical distri-
bution) varied between 28 and 40% (7, 9, and 10 plots for the
unweighted, g-weighted, and v-weighted distributions, re-
spectively; see Table 4) when we used LiDAR data to estimate
dg and dm, subsequently recovering the distribution

parameters. In six plots, the null hypothesis was accepted for
all unweighted and weighted diameter distributions estimated
from LiDAR data, while it was rejected for all cases in 14
plots. Comparatively, the percentage of acceptance increased
up to 96–100% when we used field data (i.e., real values of dg
and dm) in the parameter recovery process (the only case of
rejection was plot number 8 for the unweighted diameter
distributions).

Figure 3 shows the v-weighted observed cumulative relative
frequency of each plot and the corresponding estimated distri-
butions obtained from parameters recovered using field data
(real information) and LiDAR data (the corresponding graphs
for the unweighted and g-weighted distributions are included in
Supplementary Figure 1a and b, respectively). We can observe
that the empirical distribution is adequately described for the
six plots that passed the KS test in all cases (see Table 4). On
the other hand, the 14 plots where null hypothesis was always
rejected usually display bias at a coarse scale.

Comparison between empirical distributions and the esti-
mated diameter distributions using LiDAR metrics as predic-
tors revealed RMSE values of 10.85 and 96.93 m3 ha−1 for the
g- and v-weighted distributions, respectively. However,
RMSE values < 0.001 and 17.36 m3 ha−1 were obtained di-
rectly from estimation from the field data for the same weight-
ed distributions.

Because the best results of the KS test were obtained for the
estimated v-weighted distributions, the classification tree was
fitted for the groups obtained for these diameter distributions
(15 plots were rejected and 10 plots were accepted). The re-
sults showed thatH was the only predictor with a threshold of
22.6 m. Sample plots with values of H equal to or higher than
22.6 m were considered accepted by the KS test; otherwise,
they were considered rejected. Application of this threshold
yielded correct classification of 84% of the sample plots.
These results are consistent with those obtained with the RF
approach, in which the two most important stand variables
were dominant height (H) and stand density (N).

4 Discussion

Many countries throughout the world have completed coun-
trywide airborne LiDAR surveys in recent years (e.g.,
Denmark, Kortforsyningen; Finland, National Land Survey
of Finland; Netherlands, Actueel Hoogte Bestand
Nederland; Slovenia, Slovenian Environment Agency;
Spain, Instituto Geográfico Nacional; Switzerland, Federal
Office of Topography), with the main aim of producing
high-resolution terrain maps (Ahokas et al. 2005). However,
the flight parameters used in these surveys are not usually
considered as optimal for quantifying natural resources, since
low density, high flight height, and large scan angle are used in
order to reduce the associated costs (González-Ferreiro et al.
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2014). Nevertheless, this type of data has also proven useful
for forest inventories (e.g., Villikka et al. 2012), practical for-
est management (e.g., Valbuena et al. 2016), and ecological
applications (e.g., Vihervaara et al. 2015), among others.

In Spain, the low-density LiDAR data obtained in the
PNOA project have proved useful for assessing numerous
forest variables such as stand volume (Guerra-Hernández
et al. 2016b), stand basal area (Guerra-Hernández et al.
2016b), Lorey’s mean height (González-Ferreiro et al. 2014;
Guerra-Hernández et al. 2016b), canopy fuel variables
(González-Ferreiro et al. 2014, 2017), fire severity
(Montealegre et al. 2014), and biomass (Guerra-Hernández
et al. 2016a, b). However, LiDAR data have not yet been used
to estimate diameter distributions.

In this study, we first had to model dg and dm from LiDAR
metrics, as these variables are needed to recover the parame-
ters of the two-parameter Weibul l funct ion. The
goodness-of-fit statistics obtained in the fitting phase were
similar to others reported in the international literature. For
example, for German forests dominated by Picea abies (L.)
Karst., Breidenbach et al. (2008) used data from a
0.44 pulse m−2 LiDAR flight and reported an RMSE of
2.44 cm for dm, while Treitz et al. (2012) studied a broad range
of forest types (coniferous and hardwoods) and conditions
across Ontario by using artificially reduced LiDAR database

of 0.5 pulses m−2 and reported RMSE values ranging from
0.76 to 4.3 cm for dg.

Conversely, the comparison between the estimated and the
observed diameter distributions provided less satisfactory re-
sults, as the null hypothesis was accepted in only 40% of the
plots. There are two possible explanations for these poor re-
sults: the use of the KS test for accuracy assessment and the
characteristics of the countrywide PNOA LiDAR flight.
Concerning the first possibility, most studies that have
modeled diameter distributions from LiDAR data have report-
ed the standard deviation of the differences between estimated
and empirical values (e.g., Gobakken and Næsset 2004) rather
than the KS test results. In this sense, Magnussen and Renaud
(2016) used multidimensional scaling to estimate diameter
distribution and considered differences less than 2.70 cm in
diameter estimation as not relevant for practical applications,
downplaying rejection rates in the KS test. In the present
study, computation of the differences between estimated and
empirical values revealed that the mean error for individual
tree diameter estimations was 3.37 cm for the unweighted
distribution predicted from LiDAR data. This error appears
acceptable, considering the precision obtained from field mea-
surements with, e.g., the laser relascope (up to 1.6 cm,
Kalliovirta et al. 2005) or a laser dendrometer (up to 0.9 cm,
Parker and Matney 1999). Although these errors are propor-
tionally smaller than those reported in the present study,
field-measured diameters are usually obtained from a small
number of sample plots, and larger errors are expected in the
extrapolation process, while LiDAR data allows complete
coverage of the area of interest. Concerning the countrywide
PNOA LiDAR data used, the acquisition flight was not spe-
cifically designed for forest inventory purposes (scanning an-
gles of up to 30°, low-density data of 0.5 first returns m−2, and
high average flying height of 1300 masl). According to White
et al. (2013), a minimum of 1 pulse m−2 (> 4 pulses m−2 for
dense forests on complex terrain) is recommended to produce
an operational LiDAR-based enhanced forest inventory. Other
possible explanations could be related to the lack of silvicul-
tural treatments and with the morphology of radiata pine.
P. radiata is a shade-intolerant conifer species and has a much
lower crown morphological plasticity in relation to light avail-
ability than other more shade-tolerant species such as spruce

Table 3 Parameter estimates and goodness-of-fit statistics of the simultaneous fitting of Eqs. 6 and 7 used to estimate dm and dg from LiDAR data

Equation Dependent variable Independent variable Parameter Parameter estimate Standard error t-value P > |t| R2 RMSE

6 dg LRA1 α1 0.2952 0.0800 3.69 0.0005 0.800 3.422

h75 α2 1.251 0.0382 32.7 < 0.0001

7 dm Intercept β0 0.2845 0.1005 2.83 0.007 0.772 3.626

h01 β1 − 0.06321 0.0309 − 2.05 0.046

dg quadratic mean diameter (cm), dm arithmetic mean diameter (cm), LRA1 number of LiDAR last returns above 1 m height, h75 third quartile of LiDAR-
derived height distribution (m), h01 percentile of 1% of LiDAR-derived height distribution (m)

Table 4 Results of the Kolmogorov–Smirnov test (α = 0.05) for the 25
plots

Diameter
distribution

% of accepted
plots (estimated
using field data)

% of accepted plots
(estimated using
LiDAR data)

Accepted plots
(estimated using
LiDAR data)

Unweig-
hted

96 28 7, 9, 10, 13, 15,
19, 24

g-weighted 100 36 3, 5, 7, 8, 9, 10,
13, 15, 24

v-weighted 100 40 3, 5, 6, 7, 8, 9, 10,
13, 15, 24

Accepted plots: those for which the null hypothesis of equality between
predicted Weibull distribution and empirical distribution was accepted,
according to the KS test
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(Parent and Messier 1995), which means that the plastic
changes in the canopy dimensions do not follow a regular
pattern of growth and this species is less efficient in covering
the open holes in the canopy. This could have some implica-
tions in area-based approaches, especially when using very
low LiDAR density.

Regarding the possible alternatives to the parametric
PRM, non-parametric approaches such as the k-nearest
neighbor method and RF regression have yielded satisfac-
tory results for predicting diameter distributions in some
area-based LiDAR studies (Packalén and Maltamo 2008;
Maltamo et al. 2009; Shang et al. 2017). Nevertheless, the
relatively small number of sample plots used in the pres-
ent study may have led to overfitting, which could

negatively affect the predictive performance of the models
(Hawkins 2004; Zaffalon 2005).

According to the KS test, the best performance was
achieved with g- and v-weighted diameter distributions,
which gave greater weighting to larger and more valuable
trees. This is consistent with the findings of Gobakken
and Næsset (2004), who reported that the results obtained
for diameter density function weighted by g were better
than those corresponding to the unweighted distribution.

Explanatory variables for dg were LRA1 and h75, while the
unique explanatory variable for dm was h01. LiDAR variables
are usually classified as height metrics expressing the central
trend in LiDAR height distribution (e.g., hmean and hmode),
height metrics expressing the dispersion of LiDAR height

Fig. 3 Plots of cumulative relative frequencies against diameter at breast
height (DBH) for v-weighted diameter distributions. The continuous lines
represent field measurements (empirical distribution); the dashed lines

represent the diameter distribution function estimated from field data;
and the filled dots represent the diameter distribution function estimated
from LiDAR data
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distribution (e.g., hSD, hVAR, hAAD, hIQ, hCV, hmax, hmin),
height metrics expressing the shape of LiDAR height distri-
bution (e.g., hSkw, hKurt), percentiles of the LiDAR height
distribution (e.g., h01, h10…, h95, h99), and canopy cover met-
rics (e.g., PFRAhmean, PFRAhmode, PARAhmean, PARAhmode,
PFRA2, LRA1, FRA1, CRR). The highest percentiles of the
LiDAR height distribution are commonly included as explan-
atory variables in most of the models based on area-based
approach, because they fairly describe the mean height or
the dominant height, and these field variables have a large
importance in the description of vertical structure of a forest
stand. Canopy cover metrics perform well in modeling those
forest variables related with forest density, like basal area,
quadratic mean diameter, canopy cover, or number of trees
per hectare; these field variables are important in the
description of the horizontal structure of a forest stand.
Thus, the presence of explanatory variables like LRA1 and
h75 was expected. The inclusion of h01 is more difficult to
explain, since it is one of the lowest percentiles of the
LiDAR height distribution; nevertheless, Gobakken and
Næsset (2004, 2005) also found strong relationships between
the percentile of the first pulse laser canopy heights for 0% (m)
and the logarithmic transformations of 93 and 24 percentile
for diameter distribution modeling, in young and mature for-
ests dominated by P. abies and Pinus sylvestris L.

Finally, the results of the classification tree and the RF
approach indicated that dominant height may be a significant
variable for field data stratification. It is remarkable that 84%
of the sample plots with values of H equal to or higher than
22.6 m were accepted by the KS test which suggests that this
methodology performs much better in mature forest stands of
P. radiata. Nonetheless, these results should be considered
with caution, due to the low number of plots available for this
study. The validity of these results should be verified when
new data become available.

5 Conclusion

This study describes and tests an approach for predicting di-
ameter distributions from LiDAR information, applied to a set
of 25 plots established in P. radiata plantations in Galicia
(NW Spain). Given the interest of the species in Galicia
(NW Spain), forest managers and practitioners could benefit
from better knowledge of diameter distributions for use in
practical forest applications. The approach used was based
on the moment-based parameter recovery method and the
two-parameter Weibull function. The results showed that only
28 to 40% of the diameter distributions were accurately pre-
dicted with this method, according to the KS test. However,
this may be explained by the strictness of this statistical test
and/or by the characteristics of the LiDAR flight, which was
not specifically designed for forest inventories. Analysis of

why the null hypothesis was accepted or rejected by a classi-
fication tree and random forest approach demonstrated the
importance of dominant height. The approach described has
the potential to be replicated in different species and forest
types in regional or countrywide surveys, although a larger
number of field inventory plots would be required. In this
respect, contracts for new PNOA flights have already been
tendered, and the temporal cover provided by these flights
has been established at 6 years. This should encourage new
research studies, given the growing interest in the use of the
Spanish countrywide LiDAR dataset for performing repeated
large-scale forest inventories in an economically viable way.
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