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Abstract In the design of BatteryManagement Systems (BMS) for a lithium-ion cell,
it is crucial to accurately simulate the device in real-time usingmathematical models.
Often, Equivalent Circuit Models (ECM) are used to this end, due to their simplicity
and efficiency. However, they are purely phenomenological (their parameters are
fitted to emulate empirical data) and their internal variables lack physical meaning.
On the other hand, the most popular physics-based electrochemical model in the
literature, the pseudo-two-dimensional (P2D) model, presents a high computational
cost. In this paper, we review the single particle model (SPM), a physics-basedmodel
of reduced complexity that is suitable for real-time applications.

1 Introduction

In the last decades, there has been an increasing interest in the development and
improvement of electric energy storage devices. The electrochemical batteries based
on lithium-ion chemistry present good properties, such as high energy and power
density, long life expectancy, low self-discharge rate, non-memory effect, among
others [8]. Its advantages, compared to other chemistries, make this technology the
preferred candidate for electrical vehicles [14]. However, lithium-ion cells are sensi-
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tive to inappropriate use conditions [3] [4]. Hence, for safety reasons and to improve
their performance, it is very important to estimate the cell’s state.

For real-time applications, like BMS, a mathematical model is necessary, as a
virtual cell. Often, an ECM is implemented [25]. In these models, that are purely
phenomenological, their parameters are fitted to reproduce empirical measures. In
consequence, the internal variables lack true physical meaning. Modern BMS pre-
tend to implement advanced features, such as optimal/fast charge protocols, cell
degradation estimation, and internal cell states monitoring [17] [18]. For such fea-
tures, physics-based models are better suited than equivalent models.

In the literature, the most popular validated physics-based model is the P2D
model, firstly proposed in [9]. From a mathematical point of view, the P2D model
can be formulated as a non-linear partial differential equations (PDEs) system, of
parabolic and elliptic equations, all of them coupled by non-linear algebraic equa-
tions, in particular, Butler-Volmer kinetics equations [12]. Due to its complexity, its
computational cost is prohibitive for real-time applications. Different approaches are
found in the literature to simplify this model. For example, order reduction tech-
niques [5] [6] [10] [11] or just simplifying assumptions [30] [31]. Among the latter,
the SPM is one of the most popular choices. Its formulation is deduced from the P2D
model under the main assumption that the intercalation/deintercalation reaction flux
across each electrode is homogeneously distributed.

The first examples of SPM considered that the electric potentials and electrolyte
physics in the cell are negligible under lowC-rate current profiles [22]. In [28], a SPM
was compared with a P2D model. The SPM performance was acceptable for low C-
rates protocols, up to 1C. In other works, lithium-ion distribution is modeled in terms
of average concentrations in the solid particles, obtaining linear ordinary differential
equations, and allowing for a readily implementation of linear filter techniques, such
as the Kalman filter [7] [29]. Different approaches have been proposed to enhance the
SP model for its use under higherC-rates currents [13] [19] [26]. Furthermore, it can
be extended to capture thermal dynamics [2] [23] and to estimate cell degradation
over-time [15] [27], usingmeaningful internal electrochemical quantities of the cells.

In this paper, we review the single particle model with electrolyte dynamics
(SPMe) [16] [21]. We focus on its derivation from the P2D model stating and
describing the main physical simplifying assumptions. The SPMe is numerically
solved using the finite element library FEniCS [1]. The results are compared to
those provided by the P2D model in terms of applicability range, accuracy, and
computational cost.
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Table 1 Nomenclature
Symbol Units Name and description

Greek symbols
α, 1 − α 1 asymmetric charge transfer coefficients
εe , εs 1 volume fraction of the electrolyte and the solid phases
κ S/m ionic conductivity of the electrolyte
Ω macroscale cell domain

Ω−,Ω+,Ωo macroscale subdomains: negative and positive electrode, separator
Ωap microscale solid phase domain
φe , φs V electric potential in the electrolyte and solid phase
σ± S/m electric conductivity of the solid phase
θ K temperature

Latin symbols
as m2/m3 surface area density of solid particles

brugg 1 Bruggeman coefficient
ce mol/m3 lithium salt concentration in the electrolyte
c±s mol/m3 intercalated lithium concentration in the solid particles

c±s ,max mol/m3 maximum concentration of intercalated lithium
D±s ,De m2/s solid phase and electrolyte diffusion coefficients

F C/mol Faraday’s constant
i A current intensity
j±Li mol/m2s lithium intercalation-deintercalation reaction flux at Ω±

k±0
mol

−1
2 m

5
2

s effective rate constant of the in-deintercalation reaction
L−, L+, Lo m electrodes and separator thickness

L m cell thickness, L := L− + L+ + Lo

r m microscale radial space variable
rSEI m SEI layer radial thickness
R J/K mol ideal gas constant
Rcol Ω total current collectors resistance
R±s m average solid particles radius in each electrode
S m2 current collectors area
to+ 1 ionic transfer number of the electrolyte
U±ocp V OCP of the positive/negative electrode solid material
V V cell voltage
x m macroscale space variable

x0%, x100%, y0%, y100% 1 nominal stoichiometry window
z±film Ωm2 resistance of the film on the solid particles surface

2 The P2D Model

The equations of physics-based models for lithium-ion cells can be naturally de-
duced applying conservation laws for mass and charge at the three-dimensional
particle scale or "micro-scale". Then, using volume-averaging techniques, and under
some simplifying assumptions, one can obtain the P2D model equations. Further
details and gentle explanations of all this can be found in [24].

For completeness, we state a P2D model equations. We assume that the cell
temperature is spatially homogeneous and known at every time, and neglect cell
degradation over-time mechanisms. We use a second-order elliptic formulation for
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the electric potentials, which is a better-suited formulation for the model resolution
using the finite element method. For brevity, we avoid presenting symbols, which
are summarized in Table 1.

It is assumed that all the main processes occur in the direction perpendicular
to the cell. Therefore, only the cell thickness is accounted as a spatial dimension
and the domain of the problem, representing the device, is modeled as an 1D-
domain, Ω = (0, L). Within, we distinguish the negative electrode, the separator
and the positive electrode as subdomains, denoted respectively as Ω− = (0, L−),
Ωo = (L−, L− + Lo) and Ω+ = (L− + Lo, L). Furthermore, to model the intercalated
lithium diffusion in the solid reactive particles at each electrode, we need to introduce
the 2D microscale domain Ωap =

( (
0,R−s

)
×Ω−

)
∪

( (
0,R+s

)
×Ω+

)
. A simple sketch

of a cell is represented in Fig. 1. The model equations are stated as follows.

L− Lo L+

R−s

R−s + rSEI

R+s

Ω−
Ω+Ωo

Fig. 1 Sketch of a cell. On the left (resp. right), the negative electrode,Ω− (resp. positive electrode,
Ω+). In the middle, the separator, Ωo, which is an electric insulator. At the micro-scale level, the
electrode’s solid particles are assumed to be spheres. Usually, the SEI layer is formed on the surface
of the particles in Ω−. Modified with permission from [12]

2.1 Butler-Volmer Equation

At every x ∈ Ω±, the intercalation/deintercalation reaction flux on the solid particle
surfaces is modeled using Butler-Volmer kinetics, namely,

j±Li (x, t) =
i±0 (x, t)

F

(
exp

(
(1 − α±) F

Rθ
η± (x, t)

)
− exp

(
−
α±F
Rθ

η± (x, t)
))
, (1)

where

i±0 (x, t) = Fk±0
(
ce (x, t)

(
c±s,max − c±s

(
R±s , x, t

) ) )1−α± (
c±s

(
R±s , x, t

) )α±
, (2)
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η± (x, t) = φ±s (x, t) − φe (x, t) −U±ocp

(
c±s

(
R±s , x, t

)
c±s,max

)
− Fz±film j±Li (x, t) . (3)

We further define

j (x, t) :=


j−Li (x, t) , x ∈ Ω−,
0, x ∈ Ωo,

j+Li (x, t) , x ∈ Ω+.
(4)

2.2 Intercalated Lithium Concentration in the Solid Particles

The distribution of lithium inside the particles is assumed to respond only to diffusion
effects. The corresponding parabolic PDE is defined in the micro-scale 2D-domain,
namely,

∂cs
∂t
(r, x, t) −

1
r2

∂

∂r

(
Dsr2 ∂cs

∂r
(r, x, t)

)
= 0, in Ωap, (5)

∂cs
∂r
(0, x, t) = 0, ∀ (0, x) ∈ Ωap, (6)

−Ds
∂c±s
∂r

(
R±s , x, t

)
= j±Li (x, t) , ∀

(
R±s , x

)
∈ {R±s } ×Ω

±, (7)

where c±s (r, x, t) := cs (r, x, t) in
(
0,R±s

)
× Ω±. Notice that only the boundary

condition depends on x ∈ Ω±. Initial conditions, c±s (r, x,0), have to be given.

2.3 Lithium Salt Concentration in the Electrolyte

For the lithium salt distribution in the electrolyte, themodel accounts for the diffusion
effects, the electroneutrality condition of themedium and the reaction flux as a source
term,

∂ (εece)
∂t

(x, t) −
∂

∂x

(
Deff
e

∂ce
∂x
(x, t)

)
=

(
1 − to+

)
as j (x, t) , in Ω, (8)

∂ce
∂x
(0, t) =

∂ce
∂x
(L, t) = 0, (9)

where Deff
e (x, t) ≡ De (θ) εe (x, t)brugg. An initial condition, ce (x,0), has to be

given.
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2.4 Electric Potential in the Electrolyte

The electric potential in the electrolyte spatially varies due to the lithium salt gradient
effects and due to the electrochemical reaction flux distribution across the cell,

∂

∂x

(
κeff

∂φe
∂x
(x, t)

)
+

∂

∂x

(
κeffD

∂ ln ce
∂x

(x, t)
)
= −Fas j (x, t) , in Ω, (10)

∂φe
∂x
(0, t) =

∂φe
∂x
(L, t) = 0, (11)

where κeff (x, t) = κ (ce, θ) εe (x)brugg, κeffD (x, t) = κD (x, t) εe (x)
brugg and κD (x, t) :=

2κ(ce ,θ)Rθ(to+ −1)
F .

2.5 Electric Potential in the Solid Phase

In the solid phase, the electric potential spatially varies due to the reaction flux
distribution across each electrode,

∂

∂x

(
−σeff ∂φs

∂x
(x, t)

)
= −Fas j (x, t) , in Ω− ∪Ω+, (12)

∂φ−s
∂x
(L−, t) =

∂φ+s
∂x
(L− + Lo, t) = 0, (13)

−σeff ∂φ
−
s

∂x
(0, t) = −σeff ∂φ

+
s

∂x
(L, t) =

i (t)
S
, (14)

where σeff (x, t) = σ (θ) εs (x)brugg. We are assuming that the current signal, i (t),
is given, so that the PDE is stated using Neumann boundary conditions.

2.6 Gauge Conditions on Potentials

Notice that we cannot expect uniqueness of solution for thismodel. Indeed, disregard-
ing the Butler-Volmer equation, both potentials are always affected by a derivative.
Moreover, the dependence on the potentials in the Butler-Volmer equation is through
the difference φs (x, t) − φe (x, t). In consequence, if we find a solution to the system,
by adding a constant to both potentials (the same for both), we would get a different
new solution. For that reason, it is necessary to impose a gauge condition only on
one of them. In this study, we propose the condition∫

Ω

φe (x, t) dx = 0. (15)
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3 Derivation of the SPM

We will now derive the SPM from the P2D equations presented in the previous
section. A similar derivation process has been addressed in [21].

We consider that, initially, the cell is in rest and in steady-state. Hence, the
spatial distribution of intercalated lithium in the solid phase at each electrode is
approximately homogeneous, c±s (r, x,0) = c±

s,0, with c±
s,0 ∈ R

+. And the same is
true for the lithium salt in the electrolyte across the entire cell, ce (x,0) = ce,0, with
ce,0 ∈ R+. Then, we assume:

A1 Some cell material properties are constant per subdomain. In particular:
εe (x), εs (x), Rs (x) and κ (ce, θ).

A2 The electrochemical reactionfluxdistribution of the intercalation/deintercalation
process is homogeneous across each electrode. Namely, j±Li (x, t) ≡ j±Li (t),
in Ω±.

A2 α± = (1 − α±) ≡ α = 1/2.

Remark 1 Assumption A3 is not strictly necessary to derive a single-particle model.
Nevertheless, it simplifies the resolution of themodel (seeRemark 2). In the literature,
A3 is assumed frequently, even when dealing with the P2D model.

Next, we apply assumptions A1 - A3 to the P2D model (1 - 15). We will refer
to figures of numerical result to illustrate qualitative properties of the new model
equations, even though the technical details of those numerical experiments will not
be given until the next section.

3.1 Butler-Volmer Equation

Now, (1 - 3) become

j±Li (t) =
1
F

i±0,avg (t)
(
exp

(
αF
Rθ

η± (t)
)
− exp

(
−
αF
Rθ

η± (t)
))
, in Ω±, (16)

i±0,avg (t) :=
1

L±

∫
Ω±

Fk±0
( (

c±s,max − c±s
(
R±s , t

) )
ce (x, t) c±s

(
R±s , t

) )α dx, (17)

η± (t) = φ±s (x, t) − φ
±
e (x, t) −U±ocp

(
c±s

(
R±s , t

) )
− Fz±film j±Li (t) . (18)

In each electrode, we have approximated the exchange current density i±0 (x, t) in
(2) by its average, i±0,avg (t), and assumed that the overpotential η± (x, t) ≈ η± (t). In
practice, k±0 is usually given as a constant value per electrode. In that case, to com-
pute i±0,avg (t), it would be enough to average the lithium salt distribution function
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ce (x, t)α in Ω±. Notice that, to all this to be physically accurate, ce (x, t) and the
difference φs (x, t) − φe (x, t) have to be homogeneous enough across the electrodes.

Integrating (12) across each electrode, applying boundary conditions (13-14), we
obtain an explicit linear expression for j (x, t) as a linear function of the current,

j (x, t) =


j−Li (t) =

i(t)
FSL−a−s

, in Ω−,
0, in Ωo,

j+Li (t) = −
i(t)

FSL+a+s
, in Ω+.

(19)

Furthermore, (16) is analytically invertible, and its left-hand side is given by (19).
Then,

η± (t) =
Rθ
αF

sinh−1

(
j±Li (t) F
2i±0,avg (t)

)
=

Rθ
αF

sinh−1

(
∓

i (t)
2i±0,avg (t) SL±a±s

)
. (20)

Remark 2 Notice that we have used A3 to obtain this closed form for η± (t). The
values of coefficients α± could be, eventually, different. This would require solving
(16) as non-linear equations.

3.2 Intercalated Lithium Concentration in the Solid Particles

The PDE (5 - 7) is no longer x-dependent, because j±Li (t) is homogeneous acrossΩ±.
Moreover, we are assuming that εs (x) and Rs (x) are constant per subdomain (A1),
i.e., that the distribution and size of the solid particles are homogeneous and constant
across each electrode. As a consequence, every solid particle in Ω± will behave the
same and, then, c±s (r, x, t) ≡ c±s (r, t). It will be enough to solve the following two
linear parabolic PDEs,

∂c±s
∂t
(r, t) −

1
r2

∂

∂r

(
Dsr2 ∂c±s

∂r
(r, t)

)
= 0, r ∈

(
0,R±s

)
, (21)

∂c±s
∂r
(0, t) = 0, (22)

−Ds
∂c±s
∂r

(
R±s , t

)
= ∓

i (t)
FSL±a±s

. (23)

Notice that the two-dimensional micro-scale domain of the P2D model has been
simplified to a one-dimensional domain. In each electrode, the intercalated lithium
distribution profile of the single particle, modeled by (21 - 23), will be an average
of the heterogeneous distribution of solid particles across the electrode in the P2D
model, as it is shown in Fig. 2 and Fig. 3.
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Fig. 2 Discharge under constant 0.5C-rate. Lithium distribution within particles of the negative
electrode, at the middle of the electrode (x = 1/2) for the P2D model (left), and for the SP model
(right)

3.3 Lithium Salt Concentration in the Electrolyte

Under assumptions A1 and A2, the coefficients of (8) become constant per subdo-
main, and the source term is given by (19). Thus, the equation becomes a linear
parabolic PDE, uncoupled from the rest of the equations of the model. Compared to
the P2D model, the biggest differences should appear when this source term is far
from being spatially homogeneous. For current signals that are piece-wise constant
over time, that is especially true the first moments after a change in the current
magnitude. When the current signal stays constant, both models reach, eventually,
similar steady-state profiles. This is illustrated in Fig. 4 and Fig. 5.

3.4 Cell Voltage

In the P2D model, the cell voltage is typically computed as
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Fig. 3 Discharge under constant 0.5C-rate (left) and 8C-rate (right). Lithium concentration distri-
bution inside the solid particles of the positive electrode. For the P2D model, we are representing
values inside the particles at the end sides and at the middle of the electrode



10 Alfredo Ríos Alborés and Jerónimo Rodríguez

0 0.5 1 1.5 2 2.5 3

(0,L), x[1]

1197

1198

1199

1200

1201

1202

[m
o
l/
m3

]

Lithium-ion concentration, electrolyte, C-rates comparison

D1/2C, t=2s, P2D

D1/2C, t=2s, SP

D8C, t=0.125s, P2D

 D8C, t=0.125s, SP

0 0.5 1 1.5 2 2.5 3

(0,L), x[1]

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

[m
o
l/
m3

]

Lithium-ion concentration, electrolyte, C-rates comparison

D1/2C, t=7200s, P2D

D1/2C, t=7200s, SP

D8C, t=334.875s, P2D

D8C, t=334.875s, SP

Fig. 4 Discharge under constant 0.5 and 8C-rates. Lithium salt concentration in the electrolyte at
the first (left) and the last (right) time step simulated

V (t) = φ+s (L, t) − φ
−
s (0, t) − Rcoli (t) . (24)

For our SPM, we can use (18) and (20) to obtain an explicit expression of voltage
as a non-linear function of current and lithium concentration in the different phases.
Hence, it is not necessary to solve PDEs (10 - 15). Indeed, from (18),

φ+s (L, t) − φ
−
s (0, t) = φe (L, t) − φe (0, t) −

(
z+film
L+a+s

+
z−film
L−a−s

)
i(t)
S + η

+ (t) (25)

−η− (t) +U+ocp
(
c+s (R

+
s ,t)

c+s ,max

)
−U−ocp

(
c−s (R

−
s ,t)

c−s ,max

)
. (26)

We recall the assumption that κeff and κeffD are constant per subdomain (A1).
Integrating (10) across Ω, one can deduce the equality

φe (L, t) − φe (0, t) = −
2Rθ

F
(
to+ − 1

)
(ln (ce (L, t)) − ln (ce (0, t))) (27)

−
i (t)
2S

(
L−

κeff,−
+

2Lo

κeff,o
+

L+

κeff,+

)
. (28)
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Fig. 5 Discharge under constant 0.5C-rate. Lithium salt distribution across the cell for the P2D
(left) and SP (right) models, at different times
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Fig. 6 Cell voltage and state of charge values obtained using the P2D and SP models for 5
discharge-charge cycles, under constantC-rate current signals

Substituting (20), (25 - 26) and (27 - 28) in (24), we finally obtain

V (t) = Rθ
αF

(
sinh−1

(
−

i(t)
2Sa+s i+0,avg(t)L

+

)
− sinh−1

(
i(t)

2Sa−s i−0,avg(t)L
−

))
(29)

−

(
z+film
L+a+s

+
z−film
L−a−s

)
i(t)
S −

(
L−

κeff,−
+ 2Lo

κeff,o
+ L+

κeff,+

)
i(t)
2S (30)

−Rcoli (t) − 2Rθ
F

(
to+ − 1

)
(ln (ce (L, t)) − ln (ce (0, t))) (31)

+U+ocp
(
c+s (R

+
s ,t)

c+s ,max

)
−U−ocp

(
c−s (R

−
s ,t)

c−s ,max

)
. (32)

The SPM expression for the cell voltage accounts for solid particles saturation at
their surfaces, the lithium salt gradient in the electrolyte, and materials resistance
effects. We find a good agreement between the qualitative behavior of cell voltage
computed with the P2D and the SPM, both capturing cell polarization and relaxation
effects under high C-rates, Fig. 6 and Fig. 7.

0 500 1000 1500 2000

Time [s]

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

V
o
lt

a
g
e
 [

V
]

P2D
V

SP
V

0 500 1000 1500 2000
10

20

30

40

50

60

70

80

90

100

S
o
C

[%
]

4C, discharge-rest-charge-rest

SP
%

P2D
%

0 10 20 30 40 50 60 70 80 90 100

DoD [%]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

V
o
lt

a
g
e
 [

V
]

Voltage C-rate dependent hysteresis

P2D
1C

SP
1C

P2D
2C

SP
2C

P2D
4C

SP
4C

P2D
8C

SP
8C
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effects. To the right, under constant current discharges-charges, voltageC-rate dependent hysteresis
as a function of the cell deep of discharge, due to the difference between average and surface lithium
saturation of solid particles
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3.5 State of Charge of the Cell

The state of charge (SoC) of a cell is a measure of the amount of charge stored in the
device.

In physics-based models, it can be expressed in terms of the average lithium
saturation of the solid phase, in any of the electrodes. Using the SPM, the average
lithium concentration of intercalated lithium in each electrode can be computed as

c±s,avg (t) =
3

R±s
3

∫ R±s

0
r2c±s (r, t) dr . (33)

Then, we relatively measure the state of charge of the cell, with respect to the
nominal stoichiometry coefficients, as a linear function of c±s,avg (t) by the expression

SoC (t)
100

=

c−s ,avg(t)

c−s ,max
− x0%

x100% − x0%
= 1 −

c+s ,avg(t)

c+s ,max
− y0%

y100% − y0%
. (34)

The presented models in this work (P2D model and SPM) conserve charge and
mass in terms of the current signal. Hence, SoC is equivalently estimated for both,
since the SPM just averages the P2D dynamics.

4 Numerical Results

In the previous section, we have discussed some qualitative properties of the SPM
using numerical results. We give now the technical and quantitative details of the
numerical experiments. We did not aim for an optimal choice of meshes or imple-
mentation of the SPM in terms of computational cost and accuracy. The experiments
were designed to get an insightful first approach to the SPM features. Every result
presented could be potentially improved. Our main goal was to summarize the SPM
performance, comparing it with the original P2D model.

The P2D equations present several implementation challenges: different spatial
scales domains, non-linear coupled parabolic and elliptic PDEs, non-linear alge-
braic constraints (Butler-Volmer kinetics), etc. Numerical simulations of this model
have been carried out using a Repsol1 & Itmati2 software, temporally ceded for this
work [12].

On the other hand, the SPM derived consists of three decoupled, one-dimensional
and linear parabolic PDEs. The cell voltage is expressed as a non-linear function of

1 www.repsol.com
2 www.itmati.com
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the current and the lithium concentrations value in the different phases. When simu-
lating for a given current signal, one can compute the cell voltage as a post-process,
after the numerical resolution of the model. Due to its linearity and simplicity,
it presents a classical variational formulation for parabolic PDEs, using weighted
Sobolev functional spaces in the case of spherical PDEs. For its numerical resolu-
tion, the finite element method library FEniCS [1] with linear Lagrange elements
has been used.

Several charge and discharge protocols with piece-wise constant current signals
were considered. For both models, an implicit Euler integrator was used, with a
fixed time discretization step, computed as dt = 1

n [s], whenever the current applied
as input was a nC-rate signal, with n ∈ N. The parameters data of the cell models
were taken from [20]. Models were run in a laptop computer with processor Intel(R)
Core(TM) i5-6200U CPU @ 2.30 GHz 2.40 GHz with 8GB RAM memory and
64-bits Windows 10 (OS).

Notice that the SPM does not present a two-dimensional micro-scale domain, as
the P2D model does. Therefore, the number of degrees of freedom of the discretized
problem is greatly reduced, as shown in Table 2, where we summarize the number of
nodes of the meshes involved in the computations. The simplicity of the SPM allows
avoiding several not negligible technical difficulties of the P2D model numerical
resolution like, for example, the micro-macro scale coupling.

In Table 3 we compare voltage value difference between models and computa-
tional times for single discharges under constant C-rate current signals. As expected,
the voltage differences norm grows for higher C-rates. But, the relative maximum
difference is similar for every current signal. Notice that the greatest differences
occur at the beginning of the discharge simulations when P2D dynamics are far from
being homogeneous at each electrode. The SPM does not capture the reaction flux
behavior for those instants, under any C-rate current signal.

Table 2 Mesh data for each model

Subdomain Dimension Number of nodes

P2D model

Ω 1D 300
Ω± 1D 100(

0, R±s
)
×Ω± 2D 10000

SPM

Ω 1D 100(
0, R±s

)
1D 100
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Table 3 Voltage values and computational times comparison between the P2D and the SP models,
under different constantC-rate discharges

0.5C 1C 2C 4C 8C

Voltage

Max. error 2.889% 2.887% 2.885% 2.882% 2.877%
‖V h

P2D −V
h
SPe ‖2 0.0063 0.0123 0.0441 0.0524 0.08598

Resolution time

SPe 97.9s 108.0s 121.8s 100.9s 74.0s
P2D 3246s 3470s 3320s 3279s 2700s
Gain ×33 ×32 ×27 ×32 ×36

5 Conclusions

Assuming homogeneous and known cell temperature, and neglecting degradation
mechanisms over-time, a single particle model with electrolyte dynamics has been
deduced from a P2D model. We have stated the necessary simplifying assumptions
for the model derivation and exemplified their consequences with numerical experi-
ments.

The SPM presents a linear formulation of uncoupled one-dimensional parabolic
PDEs and, hence, its implementation is straightforward. Compared to the P2Dmodel,
the number of degrees of freedom of the discretized problem can be significantly
reduced, while obtaining equivalent estimations of the cell state of charge, and
a good agreement for the voltage estimation under high C-rate constant current
protocols. With a maximum of, approximately, 3% difference in voltage estimation,
the computational cost was reduced up to 27-36 times. All this justifies the SPM
potential as a physics-based model of reduced complexity for real-time applications.
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