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ABSTRACT
The clothoid, also known as Cornu spiral or Euler spiral, is a curve widely used as a

transition curve when designing the layout of railway tracks and roads because of a key feature:
its curvature is proportional to its length. The classical method to compute a clothoid is based on
the use of Taylor expansions of sine and cosine functions, usually starting with zero curvature at
the initial point. In this paper the clothoid is presented as the only curve with a constant rate of
change of curvature,which parametrization can be obtained by solving an initial value problem.
In this initial value problem the curvature at the starting point can be chosen, being able to
develop simple, efficient and accurate algorithms to connect two oriented circumferences by
means of clothoids. These algorithms are presented as an useful tool for designing egg and
double-egg curves in highway connections and interchanges.

INTRODUCTION
The use of transition curves in the design of the layout of railway tracks and roads

is a key to reach a gradual change of the centrifugal force experimented by a vehicle,
which not only increases the comfort of the passengers but also improves the visual
perception of the road by the driver and considerably decreases the risk of accident.

Those kind of curves have been used principally for horizontal alignment, but
transition curves for highway vertical alignments have been recently introduced (Easa
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and Hassan 2000a; Easa and Hassan 2000b; Kobryń 2016a). In the recent Kobryń
(2017) different types of curves are presented as transition curves, among others: Bloss
curves, Grabowski curves, sinusoidal and co-sinusoidal, parabolic, polynomial (Baykal
et al. 1997; Tari and Baykal 2005; Kobryń 2011; Bosurgi and D’Andrea 2012; Kobryń
2016b), and general transition curves (Kobryń 2011; Kobryń 2014), but the transition
curve that has been most widely used in design of roads is the clothoid (Baass 1984;
Kobryń 1993; Dong et al. 2007).

Originally, chlotoidsweremanually represented by draughtsmen, whichwhile being
a simple process, is also usually quite laborious, and some trial and error can not be
avoided. As the clothoid is a spiral defined parametrically in terms of Fresnel integrals,
it seems that a clear step forward in computing the curve can come hand in hand
with improving efficiency in computing those integrals. As such, some results about
approximations to the Fresnel integrals by terms of direct evaluation of the standard
Maclaurin and asymptotic series (see Heald (1985) and the references therein) will be
most useful.

Different approaches in computing the clothoid can be found in Wang et al. (2001),
where the clothoid is approximated by a high degree Bézier polynomial, in Sánchez-
Reyes and Chacón (2003), where the approximation is given by an s-power series (the
two point version of Taylor series), or in Meek and Walton (2004a), where the spiral
is approximated by an arc spline. In Press et al. (2002) some approximations based
in power series and continued fractions are given, although in this case, as in the case
of the rational approximation by Maclaurin series, the methods are not specifically
designed to compute clothoids.

In a previous paper (Vázquez-Méndez and Casal 2016), authors have proposed an
alternative method for computing clothoids and have shown its usefulness for connect-
ing two oriented straight segments and also an oriented straight segment with an arc
of an oriented circumference. These connections are basic in highway alignments,
and recently the method has been successfully used in road design and reconstruction
(Casal et al. 2017; Vázquez-Méndez et al. 2018). For highway connections and inter-
changes, shorter links are highly desirable, and it is frequent to have to connect two
oriented circumference arcs with a transition curve, avoiding straight segments between
them. Different transition curves between circumferences, forming egg and double-egg
curves, have been proposed in the literature (Bosurgi and D’Andrea 2012; Koç et al.
2015). There are also oval-shaped transition curves that can be used to linking two
circumferences with the same orientation (Kobryń 2011; Kobryń 2016b). The use of
clothoid arcs (partial spirals) for linking circumferences has also been studied from a
mathematical point of view (Meek and Walton 1989; Meek and Walton 2004b; Stoer
1982). In road design, these partial spirals are usually obtained as an arch of the
standard clothoid (clothoid starting at (0, 0) with zero curvature and tangent to OX+)
suitably rotated and translated (Lovell et al. 2001). In this paper, the alternative method
studied in Vázquez-Méndez and Casal (2016) for calculating clothoids is extended to
partial spirals (Algorithm 1), and this method is used for linking any two given circum-
ferences. Then, simple, efficient and accurate algorithms for computing egg curves
(Algorithm 2) and double-egg curves (Algorithm 3) are detailed.
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In order to do it, the next section is devoted to characterize the clothoid as the only
curve with a constant rate of change of curvature. Then, a partial spiral is presented as
the solution of an initial value problem, where the length of curve, the rate of change of
curvature, and the azimuth and the oriented curvature at initial point should be given
as input data.

In the second section we analyze the case of linking two circumferences with only
one clothoid arc. First, based on the numerical solution of the initial value problem
given the partial spiral, we propose an alternative method for computing it. This
algorithm is simple, efficient and accurate (even when the classical procedure fails) and
then it is used for designing an egg curve linking two any interior circumferences.

In order to be linked by a partial spiral, the circumference with smaller radius has
to be completely inside the larger one, without intersecting and being concentric. And
even in this case, the clothoid arc that links them may not be useful. These situations
are analyzed in the penultimate section, where an algorithm for computing the double
egg curve is detailed and used for linking two any (interiors, exteriors and secants)
circumferences.

Finally, the last section presents some brief and interesting conclusions.

CURVES WITH A CONSTANT RATE OF CHANGE OF CURVATURE: THE
CLOTHOID
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y(s)
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Fig. 1. Arc length parametrization

Let C ⊂ R2 be a smooth plane curve of length L and let r(s) = (x(s), y(s)) be a
parametrization of C where s ∈ [0, L] is the arc length parameter. If Φ(s) ∈ [0, 2π)
denotes the angle between the tangent vector r′(s) at the point r(s) and the positive
abscissa axis OX+ (see Fig. 1), then Φ′ = dΦ/ds represents the rate of change of Φ
with respect to the arc length s, that is, the oriented curvature of C,

Φ
′(s) = λ(s)|Φ′(s)|,
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where |Φ′(s)| is usually known as curvature of C, and λ(s) = ±1 indicates the way
in which the unit tangent vector r′(s) rotates as a function of the arc length parameter
along the curve (if λ = −1, the angle is decreasing and the unit tangent vector rotates
clockwise, while if λ = 1, the angle is increasing and the unit tangent vector rotates
counterclockwise).

In road and railway horizontal alignment, in order to improve the transition connect-
ing straight line segments and circular arcs, or linking two circular arcs, it is common
to use curves C ∈ R2 with constant rate of change of curvature. It is not difficult to see
that a curve with such a property is uniquely defined by the system,

dΦ′

ds
= Φ′′(s)= vc, s ∈ (0, L),

Φ(0)= Φ0,
Φ′(0)= Φ′0,

(1)

where, following the previous notation:

1. Φ0 ∈ [0, 2π) is the angle between the tangent vector at the initial point of the
curve C and the positive abscissa axis OX+.

2. Φ′0 = λ |Φ
′
0 | is the orientated curvature at the initial point.

3. vc = ν |vc |, where ν = ±1 and |vc | ≥ 0 gives the rate of change of the curvature.
Whenever vc , 0, the case λν = 1 indicates that the curvature is increasing
(the curve is “closing”), while the case λν = −1 indicates that the curvature is
decreasing (the curve is “opening”).

So it is not difficult to obtain that

Φ(s) =
1
2
vcs2 + Φ′0s + Φ0. (2)

Remark 1 The case vc = 0 in system (1) corresponds either to a circumference or
to a straight line, depending on the value of the curvature |Φ′0 |. Whenever |Φ′0 | > 0
system (1)models a circumference of radius 1/|Φ′0 |, while the case |Φ

′
0 | = 0 corresponds

to a straight line.
In both of cases, of course, the curvature is a constant value in all the points of the

curve, what follows from the rate of change of the curvature, |vc |, is equal to zero.

By the other hand, as r(s) is the arc length parametrization of C it follows that
| |r′(s)| | = 1 and, therefore (see Fig. 1),{

x′(s) = cos(Φ(s)), s ∈ (0, L),
y′(s) = sin(Φ(s)), s ∈ (0, L). (3)

Thus, if the initial point of the curveC is (x0, y0), then the arc length parametrization
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r(s) of C is the solution of the following initial value problem:

x′(s) = cos
(
1
2
vcs2 + Φ′0s + Φ0

)
, s ∈ (0, L),

x(0) = x0,

y′(s) = sin
(
1
2
vcs2 + Φ′0s + Φ0

)
, s ∈ (0, L),

y(0) = y0.

(4)

Now, with a suitable change of variable, problem (4) would become

x′(s) = cos
(
1
2
vcs2 + Φ̃0

)
, s ∈ (s0, s0 + L),

x(s0) = x0,

y′(s) = sin
(
1
2
vcs2 + Φ̃0

)
, s ∈ (s0, s0 + L),

y(s0) = y0,

(5)

where

s0 =
Φ′0
vc
, Φ̃0 = Φ0 −

(Φ′0)
2

2vc
.

In fact, (5) is the equation of an arc of the clothoid with parameter A =
√

1/|vc |, that
is traversed as indicates ν for s > 0 and satisfies that the angle between the unit vector
tangent at the initial point and the axis OX+ takes the value Φ̃0 (see Vázquez-Méndez
and Casal (2016)).

It has just presented that the only curve with a constant rate of change of curvature is
the clothoid. From (2) it is easy to see that this characterization is, of course, equivalent
to the usual characterization of the clothoids as the curves in what their curvature is a
linear function of the arc of length (see, for instance Stoer (1982)).

In Vázquez-Méndez and Casal (2016) it is shown how to solve the problem (5) by
using a numerical method, and how much useful that algorithm is in order to compute
the transition curves (clothoids) in a horizontal road alignment made up of straight
lines and circular arcs. Moreover, it was shown how to connect two fixed points of two
oriented circumferences with clothoid-line-clothoid, whenever their center points are
enough far apart (see Figures 7 and 8 in Vázquez-Méndez and Casal (2016)).

In that mentioned paper, the authors started with system (5) in order to obtain the
arc length parametrization of the clothoid, but a zero curvature at the initial point of the
clothoid was imperative. Due to this, the classical egg curve (circular arc-clothoide-
circular arc) and double-egg curve (circular arc-clothoid- circular arc-clothoid-circular
arc) have not been considered.

In this paper, system (4) will be used to obtain the arc length parametrization of arc
of clothoids. In this model the curvature at the initial point of the curve can be chosen
and, as will be pointed out below, it provides a simple method to compute partial spirals
linking circular arcs.
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In the sequel, for i ∈ {1, 2, 3} letCi ⊂ R
2 be a circumference with center ci = (xi, yi)

and radius Ri > 0. The distance between the centers ci and c j will be denoted by
di j =

√
(x j − xi)

2 + (y j − yi)
2, and the minimum distance between circumferences

Ci and Cj , by Di j (see Fig. 2). We say that two circumferences are interior if
0 < di j < |Ri − Rj | (see, for instance, Fig. 2, 3, 6 and 7). On the contrary, we say
that they are secant (Fig. 9) or exterior (Fig. 8) whenever |Ri − Rj | < di j < Ri + Rj
or di j > Ri + Rj respectively. It is convenient to note that concentric or tangent
circumferences are not considered.

LINKING TWO CIRCUMFERENCES WITH AN ARC OF CLOTHOID. THE EGG
CURVE

The objective is to find an arc of clothoid C linking two circumferences C1 and
C2, that is: the curve C has to meet the circumferences C1 and C2 at points P1 and P2
respectively and, at such points, the curvature and the slope have to be the same both
in the clothoid and the corresponding circumference. Notice that, in order to be linked
correctly, the two circumferences has to be traversed with the same orientation, given
by the λ parameter, and they have to be interior (Stoer 1982).

If L denotes the length of the arc of clothoid between the points P1 and P2, it has to
be fulfilled that Φ′0 = λ/R1 and Φ′(L) = λ/R2 and, consequently,

vc = λ

1
R2
−

1
R1

L
=
λ(R1 − R2)

LR1R2
. (6)

Remark 2 From (6) it is not difficult to see that if R1 > R2 the signs of vc and λ match
and the clothoid has to be closing, while if R1 < R2 then vc and λ have opposing signs
and the clothoid has to be opening. In the limiting case, when R1 = R2 holds, it has
that νc = 0, there is an only circumference C1 = C2, and the points P1 and P2 are
connected by a circular arc, so it is not necessary to calculate the arc of clothoid C.

From (2) it follows that

Φ(L) =
R1 + R2
2R1R2

λL + Φ0. (7)

By the other hand, if ∆Φ > 0 denotes the increase in the azimuth between the initial
and the end points of the arc of clothoid, then necessarily

Φ(L) = Φ0 + λ∆Φ, (8)

and, therefore
L = ∆Φ

2R1R2
R1 + R2

. (9)

Next, two different cases will be studied.
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Changing the Curvature and the Azimuth with a Fixed Initial Point
Let us suppose that the circumference C1 (with radius R1) is traversed with the

orientation determined by the parameter λ and, in a given point P1=(x0, y0) ∈ C1, it
is wanted to link with an arc of clothoid C in order to reach a radius R2 changing
the azimuth ∆Φ radians. Such an arc is the solution of (4), where vc is given in (6),
L is given in (9), Φ′0 = λ/R1, and Φ0 is the angle between the tangent vector to the
circumference C1 at (x0, y0) and OX+, that is:

Φ0 =


arccos

(
λ(y1 − y0)

R1

)
, if x0 ≥ x1,

2π − arccos
(
λ(y1 − y0)

R1

)
, if x0 < x1.

(10)

There are many suitable numerical methods to solve such a problem (4) (see
Atkinson et al. (2009)). For example, the classical Euler method (used previously
in Vázquez-Méndez and Casal (2016)) leads to the following algorithm to compute the
arc of clothoid C.

Algorithm 1

1. Choose a positive natural number N ∈ N.
2. Take ∆s = L/N , x0 = x0, y0 = y0, and, for each n ∈ {0, . . . , N}, set sn = n∆s.
3. For each n ∈ {0, 1, . . . , N − 1}, compute

xn+1 = xn + ∆s cos
(
1
2
vc(sn)

2
+ Φ′0sn + Φ0

)
, (11)

yn+1 = yn + ∆s sin
(
1
2
vc(sn)

2
+ Φ′0sn + Φ0

)
, (12)

4. For n ∈ {0, 1, . . . , N−1} take the approximations (x(sn+1), y(sn+1)) ≈ (xn+1, yn+1)
as the N equispaced points of the arc of clothoid C.

The Fig. 2 presents an example of arc of clothoid obtained with the Algorithm
1. It shows a spiral linking a circumference with center c1 = (200, 300) and radius
R1 = 500m to a circumference with radius R2 = 300m, starting at the point (x0, y0) =
(−155,−55), with azimuth of 7π/4, and ending at a point with azimuth of 5π/12, so
that ∆Φ = 2π/3.

Once obtained the final point (x(L), y(L)) of the arc of clothoid, the center of the
circumference C2 is given by

c2 =
(
x(L), y(L)

)
+ R2λ

(
− sin(Φ(L)), cos(Φ(L))

)
. (13)

In the literature, this kind of transition curve (partial spiral) is obtained as an arch of
the standard clothoid suitably rotated and translated (Lovell et al. 2001). The standard
clothoid, which starts at (0, 0) with zero curvature and is is tangent to OX+ at this
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Fig. 2. Egg curve starting at a fixed initial point

point, is traditionally obtained by using Taylor series expansions of the cosine and sine
functions (e.g. Lovell (1999)). This type of approximations is sharp whenever the
spiral angle is small (as usually in simple applications of surveying engineering) but,
as it is pointed out in Vázquez-Méndez and Casal (2016), can deviate from the clothoid
as the angle grows, what can happen when the clothoid is used to connect two circular
arcs in the design of egg curves in link roads.

Fig. 3 shows, as an example, the transition curve of length L = 169.56m connecting
two interior circumferences of radii R1 = 130m and R2 = 100m. The solid curve (in
blue) is the partial spiral obtained using the Algorithm 1, while the dashed one (in
magenta) is the corresponding standard clothoid computed with Taylor series of sixth
degree for cosine function and seventh degree for sine, as it is proposed in Lovell et al.
(2001). Both methods give the same curve in the beginning, but the approximation
obtained by the Taylor series gives a end point P′2 outside C2, and the partial spiral
obtained with this method does not link both circumferences. Cartesian coordinates
of some characteristic points of the egg curve can be seen in Table 1. The end point
of the clothoid arc obtained with Algorithm 1 (P2) is very good (it is on C2, with
appropriate curvature and azimuth), but the computed with Taylor series (P′2) is not a
good approximation.
Connecting Two Fixed Interior Circumferences

It will be now considered the case of two given fixed interior circumferences C1
and C2, which are traversed with the same orientation determined by λ. Assuming that
R1 > R2, an arc of clothoid C̄ with initial point (x1, y1 − R1) will link C1 to a new
circumference C̄2, with radius R2 and center c̄2, such that de distance between c1 and
c̄2 is equal to d12. Once this arc has been calculated, the final arc of clothoid C linking

8 Vázquez-Méndez et al. June 8, 2021



0

100 (m)

R
1

R
2

-200 -100 0

-100

100

(m) P
S

P
2

P
1

P
2

c
1

c
2

P
E

Fig. 3. Egg curve: arc of clothoid linking two circular arcs of radii R1 = 130m and
R2 = 100m. The solid line (blue) is the arc of clothoid computed with Algorithm 1 and
the dashed line (magenta) is the standard clothoid computed with the classical method
(Taylor series).

TABLE 1. Coordinates of some characteristic points of the egg curve depicted in
Fig. 3, corresponding with radii R1 = 130m and R2 = 100m

Arc length Cartesian coordinates
s (meters) Pi = (xi, yi) (meters)

0.00 PS=(0,130)
69.20 P1=(-65.98,112.01)
238.77 P2=(-114.80,-34.16) P′2=(-105.35,-66.11)
349.68 PE=(-25.27,-89.61)

— C1=(0,0)
— C2=(-25.27,10.39)

C1 and C2 is obtained rotating C̄ (and C̄2) around c1, until C̄2 and C2 match.
As it has been explained previously, an arc of clothoid, with initial point (x0, y0) =

(x1, y1 − R1), linking C1 to a circumference of radius R2 is uniquely defined by the
increase in the azimuth ∆Φ. Moreover, once ∆Φ > 0 is known, the center of C̄2 is
given by (13) and, therefore, the distance between the centers c1 and c̄2 is

d(∆Φ) =
√
(x(L) − R2 sin(Φ(L)) − x1)

2 + (y(L) + R2 cos(Φ(L)) − y1)
2. (14)

It is further required that such a distance has to be equal to the distance between the
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centers c1 and c2, that is to say,
d(∆Φ) = d12. (15)

Remark 3 It is not difficult to see that equation (15) has solution if and only if there
exists an arc of clothoid linkingC1 toC2 under the conditions presented at the beginning
of this subsection. Theorem (2.4) in Stoer (1982) guarantees that such a spiral exists
in this case and, consequently, equation (15) has solution.

Thus, the arc of clothoid C joining C1 and C2 can be computed with the following
algorithm:

Algorithm 2

1. Take (x0, y0) = (x1, y1 − R1) and consider d(∆Φ) given by (14), where x(L) and
y(L) are computed by Algorithm 1, Φ(L) is given by (8), L is given by (9) and
Φ0 is given by (10), taking into account that, in this case, Φ0 = arccos (λ).

2. Get ∆Φ by solving equation (15).
3. From the value ∆Φ calculated in the previous step, use Algorithm 1 to compute

the arc of clothoid C̄ linking C1 and C̄2, that is, N points (x̄n, ȳn) for n ∈
{1, . . . , N} setting C̄.

4. Rotate the obtained arc of clothoid C̄ until C̄2 and C2 match. That is, compute
points (xn, yn) setting the arc of clothoid C, following the next steps:

a) Compute c̄2 = (x̄2, ȳ2), the center of C̄2, as

x̄2 = xN − λR2 sin(Φ(L)), (16)
ȳ2 = yN + λR2 cos(Φ(L)). (17)

b) Compute the rotate angle as following:

• Take
α = arccos

(
(c2 − c1)·(c̄2 − c1)

(x1 − x2)2 + (y1 − y2)2

)
. (18)

• Define c̃2 = (x̃2, ỹ2) as

x̃2 = x1 + (x̄2 − x1) cos(α) − (ȳ2 − y1) sin(α), (19)
ỹ2 = y1 + (x̄2 − x1) sin(α) + (ȳ2 − y1) cos(α). (20)

• If c2 , c̃2, take

α = 2π − arccos
(
(c2 − c1)·(c̄2 − c1)

(x1 − x2)2 + (y1 − y2)2

)
.

c) Rotate points on the arc of clothoid, that is, for n ∈ {1, . . . , N}, compute

xn = x1 + (x̄n − x1) cos(α) − (ȳn − y1) sin(α), (21)
yn = y1 + (x̄n − x1) sin(α) + (ȳn − y1) cos(α). (22)
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There exist diverse numerical methods that can be employed in order to solve
equation (15) (step 2). In this work, the authors have used the trust-region-reflective
method (see Powell (1970)), that is also implemented in the fsolve command of
MATLAB R2012a.

To show the usefulness of Algorithm 2 and its accuracy for obtaining arcs of
clothoids linking circular arcs, we consider the example given in Koç et al. (2015): we
take circumferencesC1,C2 andC3 of radii R1 = 200m, R2 = 150m and R3 = 100m and
centers c1=(6736.338,4146.877), c2=(6736.461,4196.1287) and c3=(6687.231,4198.388).
We use Algorithm 2 for linkingC1 withC2 andC2 withC3, and the final curve is showed
in Fig. 4. In Table 2, the coordinates of characteristic points obtained with our method
are compared with points given in Koç et al. (2015). As we can see, our method is
accuracy and very useful for obtaining the parametrization of the final curve.

R
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c
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R
2

R
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P
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6884.1516588.771
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1

Fig. 4. Arcs of clothoid (solid line) obtained by applying Algorithm 2 to link
three circumferences given in the literature. Centers and radii of these cir-
cumferences are, respectively, c1=(6736.338,4146.877), c2=(6736.461,4196.1287),
c3=(6687.231,4198.388) and R1 = 200m, R2 = 150m, R3 = 100m. The cartesian
coordinates of characteristic points Pi are given in Table 2.

Nevertheless, it can not be excluded that some solutions of equation (15) could be
not suitable since, depending on the considered problem, the increase in the azimuth
can be bounded above. In fact, arcs of clothoid rotating more than once are often out
of interest and, as a general rule, only solutions in which ∆Φ is smaller than a given
threshold will be useful.

For each pair of values of R1 and R2 will be very helpful to analyze the graph of
the function d(∆Φ). For example, in Fig. 5 the graph of d(∆Φ) for R1 = 500m and
R2 = 200m is showed. In this case it can be observed that the circumferences will only
be linked with an arc of clothoid rotating less than one time, if the value of d12 is greater
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TABLE 2. Coordinates of some characteristic points of the double-egg curve depicted
in Fig. 4, obtained by linking the circumferences of centers c1=(6736.338,4146.877),
c2=(6736.461,4196.1287), c3=(6687.231,4198.388) and radii R1 = 200m, R2 = 150m,
R3 = 100m. Results obtained with Algorithm 2 are compared with results given in the
literature.

Characteristic Point Cartesian coordinates (meters) Cartesian coordinates (meters)
in Fig. 4 in Koç et al. (2015) obtained with Algorithm 2

PS (6856.861,4306.484) ——
P1 (6788.271,4340.017) (6788.376,4339.989)
P1

2 (6685.739,4337.290) (6685.705,4337.273)
P2

2 (6592.540,4238.393) (6592.560,4238.466)
P3 (6592.139,4167.443) (6592.167,4167.364)
PE (6615.414,4128.800) ——

than dmin = 124m, i.e., if the distance D12 = R1 − R2 − d12 between the circumferences
is smaller than Dmax = 176m.

So, there are cases where no acceptable clothoid arc can be found to form an egg
curve. In Fig. 6 two different arcs of clothoid built using Algorithm 2 are presented:
one of them (Fig. 6(a)) connects a circumference C1 with c1 = (0, 0) and R1 = 500m,
to a circumference C2 with c2 = (100, 0) and R2 = 200m, while the other (Fig. 6(b))
connects the same C1 with a circumference C2 with c2 = (200, 0) and R2 = 200m.
In the first case the distance between the circumferences is D12 = 200 > Dmax , so
that the arc of clothoid rotates more than once, while in the other case it happens that
D12 = 100 < Dmax and the arc of clothoid is much shorter.

0 50 100 150 200
Df (rad)

2p
0

0.1

0.2

0.3

d (km)

0.124 0

0.3

2p
0.124

Df (rad)

Zoom of the grey zoned (km)

Fig. 5. Graphic of function d(∆Φ) for radii R1 = 500m and R2 = 200m
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Fig. 6. Egg curves joining two interior circumferences

LINKING WITH CLOTHOID-CIRCUMFERENCE-CLOTHOID. THE DOUBLE-EGG
CURVE

As explained in the previous section, whenever the increasing of the azimuth is
greater than a given threshold, the egg curve linking the two interior circumferences is
not useful for the design of roads. In such cases there exists an alternative transition
curve connecting the circumferences known as double-egg curve: it is needed to
introduce a new circumference C3, and the double-egg curve will consist in an arc of
clothoid joining C1 and C3, an arc of C3 and an arc of clothoid joining C3 and C2. In
Fig. 7 can be seen how to connect with a double-egg curve the circumferences that
could not be linked with a suitable arc of clothoid in Fig. 6(a) .
Connecting Two Given Interior Circumferences

A double-egg curve linking two given interior circumferences C1 and C2 can be
computed with the next Algorithm 3. Notice that whenever C1 and C2 are interior,
R2 < R3 < R1 and D12 ≥ D13 + D23 must be satisfied.

Algorithm 3

1. In order to set the auxiliary circumference C3, take R3 > 0, D13 > 0 and
D23 > 0.

2. Calculate d13 = |R1 − R3 | − D13 and d23 = |R3 − R2 | − D23.
3. Calculate c3 to completely determine C3, in the following way:

a) Compute

v =
1

d12
((x2 − x1, y2 − y1), (23)

v⊥ =
λ

d12
(y2 − y1, x1 − x2). (24)

b) Compute

α = arccos

(
d2

13 + d2
12 − d2

23
2d13d12

)
. (25)
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c) Compute
c3 = c1 + d13 cos(α)v + d13 sin(α)v⊥. (26)

4. Use Algorithm 2 to calculate the clothoids joining C1 to C3 and C3 to C2.
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Fig. 7. Double-egg curve joining two interior circumferences: C1 (dashed green) with
center c1 = (0, 0) and radius R1 = 500m, and C2 (dashed red) with center c2 = (100, 0)
and radius R2 = 200m. In dashed light blue, an auxiliary circumference C3; in solid
dark blue, arcs of clothoid linking C1 to C3 and C3 to C2; in solid light blue, a circular
arc in C3.

Connecting Two Circumferences Either Exterior or Secant
Whenever the circumferences C1 and C2 are not interior and are traversed with the

same orientation, it is also required an auxiliary circumferenceC3, in order to join them,
and both pairs C1C3 and C2C3 of circumferences must be interior (see Stoer (1982)).

In the case of C1 and C2 are exterior, both circumferences must be inside the
auxiliary circumference Cout

3 , that is, Rout
3 > R1 and Rout

3 > R2 must hold. By the other
hand, if C1 and C2 are secant there are two options: a case analogous to the previous,
with C1 and C2 inside Cout

3 , or an auxiliary circumference Cin
3 can be chosen such that

is both inside C1 and C2, that is, Rin
3 < R1 and Rin

3 < R2 must hold.
In any case, the auxiliary circumference C3 has to fulfill

Di3 < |R3 − Ri |, for i ∈ {1, 2}, (27)
D13 + D23 < |R3 − R1 | + |R3 − R2 | − d12, (28)
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and additionally, depending on the case,

Rout
3 >

1
2
(R1 + R2 + d12) , (29)

Rin
3 <

1
2
(R1 + R2 − d12) . (30)

The former Algorithm 3 provide the way to compute the double-egg curve cor-
responding to each chosen auxiliary circumference C3. For example, in Fig. 8 is
presented a transition curve linking two exterior circumferences, while in Fig. 9 two
different curves joining two secant circumferences are shown: one of them built from
an auxiliary circumference Cin

3 that is inside both C1 and C2, and the other built with
the help of an auxiliary circumference Cout

3 .
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Fig. 8. Double-egg curve joining two exterior circumferences: C1 (dashed green)
with center c1 = (400, 500) and radius R1 = 200m, and C2 (dashed red) with center
c2 = (200, 100) and radius R2 = 150m. In dashed light blue, an auxiliary circumference
C3; in solid dark blue, arcs of clothoid linking C1 to C3 and C3 to C2; in solid light blue,
a circular arc in C3.

CONCLUSIONS
In this paper, the method presented in Vázquez-Méndez and Casal (2016) for cal-

culating clothoids is extended to compute partial spirals for linking two circumferences
in a suitable way. Partial spirals are very useful for designing transition curves between
two circular curves in highway connections and intersections. The classical method to
compute clothoids is not accurate for partial spirals and, in some practical applications,
it can give wrong results. On the contrary, the alternative method proposed in this paper
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Fig. 9. Two different double-egg curves joining two secant circumferences: C1 (dashed
green) with center c1 = (500, 0) and radius R1 = 400m, andC2 (dashed red) with center
c2 = (0, 0) and radius R2 = 300m. In dashed light blue, both auxiliary circumferences
Cin

3 and Cout
3 ; in solid dark blue, arcs of clothoid linking C1 and C2 to the auxiliary

circumference; in solid light blue, a circular arc in the auxiliary circumference.

results very useful and it has allowed us to develop two algorithms for designing the two
classical transition curves between circular curves: egg and double-egg curves. These
algorithms are very simple, efficient and accurate, and they can be easily included in
any model (computer application) for horizontal road design. Particularly, they are
very useful tools for designing highway connections and intersections.
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