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ABSTRACT. Let M be a stratum of a compact stratified space A. It is equipped
with a general adapted metric g, which is slightly more general than the
adapted metrics of Nagase and Brasselet-Hector-Saralegi. In particular, g
has a general type, which is an extension of the type of an adapted metric.
A restriction on this general type is assumed, and then g is called good. We
consider the maximum/minimum ideal boundary condition, d,. /min, Of the
compactly supported de Rham complex on M, in the sense of Briining-Lesch.
Let H;;ax/min(M) and Apax/min denote the cohomology and Laplacian of
dmax/min- The first main theorem states that Ap .y /min has a discrete spec-
trum satisfying a weak form of the Weyl’s asymptotic formula. The second
main theorem is a version of Morse inequalities using Hrtlax/min(M) and what
we call rel-Morse functions. An ingredient of the proofs of both theorems is
a version for diyax/min Of the Witten’s perturbation of the de Rham complex.
Another ingredient is certain perturbation of the Dunkl harmonic oscillator
previously studied by the authors using classical perturbation theory.

The condition on g to be good is general enough in the following sense.
Assume that A is a stratified pseudomanifold, and consider its intersection
homology IP H, (A) with perversity p; in particular, the lower and upper middle
perversities are denoted by m and 7, respectively. Then, for any perversity
p < m, there is an associated good adapted metric on M satisfying the Nagase
isomorphism H7, (M) = IPH,.(A)* (r € N). If M is oriented and p > 7, we
also get H' . (M) = IPH,.(A). Thus our version of the Morse inequalities can
be described in terms of IP Hy(A).
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1. INTRODUCTION

1.1. Ideal boundary conditions of the de Rham complex. The following
usual notation is used for a densely defined linear operator 7" in a Hilbert space. Its
domain and range are denoted by D(T) and R(T). If T is essentially self-adjoint,
its closure is denoted by T. If T is self-adjoint, its smooth core is D®(T) :=
N_; D(T™), and its spectrum is denoted by o(T).

A Hilbert complex (D,d) is a differential complex of finite length given by a
densely defined closed operator d in a graded separable Hilbert space $ [9]. Then
the operator D = d + d*, with D(D) = D(d) N D(d*), is self-adjoint in ), and
therefore the Laplacian A = D? = dd*+d*d is also self-adjoint. Moreover D> (A)
is a subcomplex of (D,d) with the same homology [9, Theorem 2.12]; it may be
also said that D*°(A) is the smooth core of d.

The above notion is applied here in the following case. For a Riemannian man-
ifold M, let Qo(M) be the space of compactly supported differential forms, and
L2Q(M) the graded Hilbert space of square integrable differential forms. Let d and
d be the de Rham derivative and coderivative acting on Qq(M), and let D =d+§
and A = D? = d§ + §d (the Laplacian). Every Hilbert complex extension d
of d in L2Q(M) is called an ideal boundary condition (i.b.c.) [9], giving rise to
self-adjoint extensions D and A of D and A in L?Q(M). There exists a mini-
mum/maximum i.b.c., dpin = d and dpax = ¢*, inducing self-adjoint extensions
Dpax/min and Apay/min of D and A. If M is oriented, then A,y corresponds to
Anin by the Hodge star operator. The corresponding cohomologies, H .« /min(M ),
are quasi-isometric invariants of M; for instance, Hyax(M) is the usual L? co-
homology H2y(M) [12]. They give rise to versions of Betti numbers and Euler
characteristic, 3] Jmin = B o /min(M ) and Xmax/min = Xmax/min(M). These con-
cepts can indeed be defined for arbitrary elliptic complexes [9]. It is well known that
dmin = dmax if M is complete. Thus considering an i.b.c. becomes interesting when
M is not complete. For example, if M is the interior of a compact Riemannian
manifold N with with ON # (), then d,ax /min 18 defined by taking absolute/relative
boundary conditions. With more generality, we will assume that M is a stratum of
a compact stratified space A [41] BTl 32| [42], equipped with a generalization of the
adapted metrics considered in [33, 34, [§]. As we will see, we can assume M = A if
desired (it can be said that M is the regular strum in this case).

1.2. Stratified spaces. Roughly speaking, a (Thom-Mather) stratified space (or
stratification) is a Hausdorff, locally compact and second countable space A equipped
with a partition into C'°° manifolds (the strata), satisfying certain conditions [41]
31]. In particular, an order relation on the family of strata is defined by declar-
ing X <Y when X C Y. With respect to this ordering, the maximum length
of chains of strata less or equal than a stratum X is called the depth of X. The
supremum of the strata depth is called the depth of A, denoted depth A. The pre-
cise definition and needed preliminaries were collected in [4, Section 3|, where we
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have mainly followed [42]. Instead of recalling it, let us describe how the strata of
A fit together, describing also morphisms/isomorphisms of stratifications, and, in
particular, the group of automorphisms, Aut(A). We proceed by induction on its
depth. If depth A = 0, then A is just a C*° manifold, and Aut(A) consists of its
diffeomorphisms.

Now, given any k € Z,, assume that any stratified space L is described if
depth L < k, as well as Aut(L). If L is compact, the cone with link L is ¢(L) =
(L x [0,00))/(L x {0}), whose vertez is the point * = L x {0} € ¢(L). Let L' be
another compact stratification of depth < k, and ¢ : L — L’ a morphism. Then
let ¢(¢) : ¢(L) — ¢(L') be the map induced by ¢ x id : L x [0,00) = L’ x [0, 00);
in particular, we get the group c(Aut(L)) = {c(¢) | ¢ € Aut(L)}. It is also
declared that ¢(f) = {x}, for the empty stratification, and ¢(f}) = id, for the empty
map. The cone ¢(L) is used as a model stratified space of depth k if L is of depth
k — 1, whose strata are {*#} and the manifolds Y x R, for strata Y of L. The
second factor projection L x [0, 00) — [0, 00) defines a ¢(Aut(L))-invariant function
p: ¢(L) — [0,00), called the radial function. The restrictions of p to the strata
are C™. A conic bundle is a fiber bundle T over a manifold X with typical fiber
¢(L) and structural group c¢(Aut(L)). Then p induces a radial function on T, also
denoted by p, and the vertex of ¢(L) defines the vertex section of T, whose image
is identified with X. Moreover the stratified structure defined on ¢(L) can be used
to define a stratified structure on T', where X becomes the vertex stratum.

For any stratification A of depth k, every stratum X has an open neighborhood
(a tube representative) that is isomorphic to an open neighborhood of X in some
conic bundle Tx over X (with the obvious restrictions of stratified structures to
open subsets). The typical fiber of Tx is of the form ¢(Lyx) for some compact
stratification Lx (the link of X) with depth Lx < depth A. The vertex and radial
function of ¢(Lx) are denoted by xx and px. Two such neighborhoods of X
represent the same tube if their structure is equal on some smaller neighborhood of
X. Note that X is open in A if and only if Lx = 0.

Finally, a morphism between two stratifications is a continuous map sending
every stratum to another stratum, whose restrictions to the strata are C*°, and
whose restrictions to small enough tube representatives are restrictions of conic
bundle morphisms. Then isomorphisms and automorphisms of stratifications have
the obvious meaning. This completes the description because the depth is locally
finite by the local compactness.

The (topological) dimension of a stratification A equals the supremum of the
dimensions of its strata. It may be infinite, but it is locally finite. The codimension
of every stratum X is dim A — dim X. Our main results will assume that the
stratification is compact, but non-compact stratifications will be also used in the
proofs. In any case, we will only consider stratifications of finite dimension. If the
above description of A is modified by requiring that, at every inductive step, only
stratifications with no strata of codimension 1 are used, then A is called a stratified
pseudomanifold.

A locally closed subset B C A is called a substratification of A if the restrictions
of the strata and tubes of A to B define a stratified structure on B. For instance,
A can be restricted to any open subset, to any locally closed union of strata, and to
the closure of any stratum. If moreover there are tube representatives of A whose
restrictions to B have the same fibers over points of B, then B is called saturated.



4 J.A. ALVAREZ LOPEZ, M. CALAZA, AND C. FRANCO

Let x be a point of a stratum X of dimension mx in a stratification A. A local
trivialization of Tx on some open neighborhood U of x defines a chart O = O’
of A for some open O' C R™* x ¢(Lx). We can assume O’ = U’ x ¢.(Lx),
where U’ is some open neighborhood of 0 in R™X and ¢.(Lx) is the subset of
¢(Lx) defined by the condition px < €, for some € > 0. This chart is said to
be centered at x if © = (0,xx) € O’. The corresponding concept of atlas has
the obvious meaning. These concepts can be generalized as follows. Any finite
product of stratifications has a non-canonical stratified structure [4, Section 3.1.2];
in particular, any finite product of cones is isomorphic to a cone [4, Lemma 3.8].
Moreover Aut(P) x Aut(Q) is canonically injected in Aut(P x @) for stratifications
P and Q. Thus it makes sense to consider a decomposition ¢(Lx) = []7¥ ¢(Lx ;)
(ax € N), for compact stratifications Lx ;. The vertex and radial function of
every ¢(Lx ;) are denoted by *x; and px,. Then we can also consider general
tube representatives given by bundles Tx with typical fibers [[7* ¢(Lx ;) and
structural groups [[7* ¢(Aut(Lx,;)). This gives rise to a general chart O = O’
around z for some open O’ C R™* x [['X ¢(Lx,;), which is centered at x if
z=(0,%x1,...,%x,0x) € O'. As above, we can assume O’ = U’ x [[**, ¢.(Lx,:)
for some € > 0. Let px o denote the norm function on R™X. The function
p=(pko+ 4 pka,)/? is called the radial function of R™* x [T{* e(Lx.s),
even though, when myx = 0, p is not the radial function of any cone structure on
[17%, e(Lx,;) M Example 3.6 and Proof of Lemma 3.8]. A collection of general
charts covering A is called a general atlas.

We can suppose that the strata of A are connected [4, Remark 1 (v)]. Fix
a stratum M of dimension n in A. Since the stratified structure of A can be
restricted to M [4, Section 3.1.1], we can also assume without loss of generality
that M = A (any other stratum is < M); in particular, depth A = depth M and
dim A = n. With the above notation, for a chart O = O’ centered at =, we get
MNO=MnNO', where M' = R™x x N x R, for some dense stratum N on Lx.
In the case of a general chart O = O’ centered at x, we have M NO = M’ N O’ for
M' = R™x x H‘Zjl (N; x Ry), where every N; is some dense stratum of Lx ;. We
will use the notation kx ; = dim V; + 1.

1.3. General adapted metrics. A general adapted metric g on M is defined by
induction on the depth of M. It is any (Riemannian) metric if depth M = 0. Now,
assume that depth M > 0 and general adapted metrics are defined for lower depth.
Given any general chart O = O’ as above, take any general adapted metric §; on
every N; (depth N; < depth M), and let g; = p?f”ﬁi + (dpx,;)? on N; x Ry for
some ux; > 0. Let also go be the Euclidean metric on R™X. Then g is a general
adapted metric if, via any such general chart, g|o is quasi-isometric to (3%, gi)|o’-
In this case, the mapping X — ux = (ux,1,...,Ux,ax) € R{* (X < M) is called
the general type of g. Such a general chart is called compatible with g, or with its
general type.

Let us point out that a general metric does not completely determine its general
type. For instance, suppose ux; = ux,; = 1 for indices ¢ # j. Write ¢(Lx ;) x
¢(Lx ;) = ¢(L), with radial function p, for some stratification L. Then N; x Ry x
N;j xRy = N x R, for some dense stratum N of L. Moreover there is a general
adapted metric § on N such that g; + g; is quasi-isometric to p?g + (dp)? via the
above identity. Therefore we can omit ux; or ux ; in ux, obtaining a different
type of g. This cannot be done if ux ; = ux,; # 1 (Proposition .
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If the above definition of general adapted metric is modified by requiring that,
at every inductive step, the general type satisfies ux,; < 1 for all X < M and
i = 1,...,ax, then the general adapted metric is called good for the scope of
this paper. On the other hand, if the definition is modified by requiring at every
inductive step that ax = 1 and uy depends only on k£ := kx,; = codim X for all
X < M, then we get the adapted metrics considered in [33], 34, [8]. In this case,
the general charts compatible with the general type are indeed charts. Writing
up = ux = ux,1 € R4, the condition on an adapted metric g to be good becomes
ug < 1 for all k, at every inductive step of its definition. In [33],[34] 8], it is assumed
that A is a stratified pseudomanifold, and then @& = (ug, ..., u,) stands for the type
of g. This 4 is determined by g. In particular, if the definition is modified by taking
ur = 1 for all k at every inductive step, we get the adapted metrics of conic type
considered in [12] 13|, [14]. Be alerted about the three slightly different terms used
for the scope of this paper: adapted metrics of conic type, adapted metrics and
general adapted metrics. The class of (good) general adapted metrics is preserved
by products, as well as the class of adapted metrics of conic type, but the class
of adapted metrics does not have this property. The existence of general adapted
metrics with any possible general type can be shown like in the case of adapted
metrics [33, Lemma 4.3], [8 Appendix].

Like in [4], the term “relative(ly)” (or simply “rel-”) usually means that some
condition is required in the intersection of M with small neighborhoods of the points
in M, or that some concept can be described using those intersections.

Let M be equipped with a general adapted metric g, with a general type X +— ux
as above. The rel-local metric completion M of M consists of the points in the
metric completion represented by Cauchy sequences that converge in M (J\//f is the
metric completion of M if M is compact). Figure |1 1llustrates this concept. The
limits of Cauchy sequences define a continuous map lim : M — M. The following
properties can be proved like in the case of conic metrics [4, Proposition 3. 20 (1),(i1)].
M has a unique stratified structure with connected strata so that lim : M — M is
a morphism whose restrictions to the strata are local diffeomorphisms. Moreover g
is also a general adapted metric with respect to M.

(a) M (b) M
FI1GURE 1. The stratified space M.

1.4. Relatively Morse functions. A smooth function f on M is called rel-
admissible when the functions f, |df| and | Hess f| are rel-bounded. In this case,
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f may not have any continuous extension to M but it has a continuous exten-
sion to M. So it makes sense to say that = € M is a rel-critical point of f when
liminf |df(y)] =0 as y — z in M with y € M. The set of rel-critical points of f is
denoted by Critye (f). It is said that f is a rel-Morse function if it is rel-admissible
and has the following description around every z € Crit,e(f):

e there is a general chart O = O’ of M , centered at x and compatible with
g, such that M NO =M'NO’ for M/ = R™* x !X (N; x Ry ), where X
is the stratum of M containing x; and

e fluno = f(z) + %(p?F — p2)|mnor, where py is the radial function of
R™% % [[;e;, ¢(Lx,i) for some expression mx =my +m_ (my € N) and
some partition of {1,...,ax} into sets Iy.

This local condition is used instead of requiring that Hess f is “rel-non-degenerate”
at the rel-critical points because a “rel-Morse lemma” is missing. Moreover, for
every r € {0,...,n}, let

V;,max/min = Z Hﬁmdx/mm ) (1)

(11, 5Tay ) 2=1

where (r1,...,74, ) runs in the subset of N*X determined by
r=m_ 4y X+,
R } .
* or v,
kx,i—1 1 e x,max
rp> sty eI (2)
i < kx,zi—l _ 2u1x - ifi e I+ } ¢
or v, .
kX,i—l 1 op . T, min
Ti>T_2uX,i leEI_

When ax = 0 in , the singleton N° consists of the empty sequence, obtainingﬂ
vl = Jym_ with the convention that the value of empty products is 1.

z,max/min
Finally, let v” =3 . max/min With @ running in Crityel(f). The notation

mdx/mm
Vi max/min (f) a0d v (f) may be used if necessary. The existence of rel-Morse
functions for general adapted metrics holds like in the case of adapted metrics [4,

Proposition 4.9].

1.5. Main theorems. The following is our first main theorem, where property
is a weak version of the Weyl’s asymptotic formula.

Theorem 1.1. The following properties hold on any stratum of a compact strati-
fication with a good general adapted metric:

(Z) Ama,x/min has a discrete spectrum, 0< )‘max/min,O < )\rnax/min,l <y where
every eigenvalue is repeated according to its multiplicity.
(1) liminfy Apax/min,k k=% > 0 for some 6 > 0.

Our second main result is the following version of Morse inequalities for rel-Morse
functions.

Kronecker’s delta symbol is used.
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Theorem 1.2. For any rel-Morse function on a stratum of dimension n of a com-
pact stratification, equipped with a good general adapted metric, we have

k k
> D Brsimin € DD T Vi (0< k<),
r=0 r=0
Xmax/min = Z(_l)r Vr;ax/min :
r=0

In the case of adapted metrics of conic type, Theorem is essentially due
to Cheeger [12] [13] (see also [I}, 2} 4]), Theorem was proved by the authors
[], and Theorem was proved by the authors [4] and Ludwig [30] (with more
restrictive conditions but stronger consequences). Other developments of elliptic
theory on strata were made in [I0} 25 23] [39, 6] 2 1], all of them using adapted
metrics of conic type. The main novelty of our paper is the extension of the elliptic
theory on strata to the wider class of good general adapted metrics, including good
adapted metrics.

1.6. Applications to intersection homology. Consider now the case where A
is a stratified pseudomanifold, and therefore M is its regular stratum. Let I? H,(A)
denote its intersection homology with perversity p [19] 20], taking real coefficients.
Let 87 = BP(A) and xP = xP(A) denote the versions of Betti numbers and Euler
characteristic for I H,(A). Every perversity can be considered as a sequence p =
(p2, ps, - .) in N satisfying po = 0 and pg < prr1 < pr + 1. For example, the zero
perversity is 0 = (0,0,...), the top perversity is £ = (0,1,2,...) (tx = k — 2), the
lower middle perversity is m = (0,0,1,1,2,2,3,...) (my = L%J —1), and the upper
middle perversity is 7 = (0,1,1,2,2,3,3,...) (ng = (%1 —1). Recall also that two
perversities p and 7 are called complementary if p+G = #. Write p < g if p, < ¢ for
all k. Let g be an adapted metric on M of type 4 = (ua,...,uy). If 4 is associated
with a perversity p < /m in the sense

1 <up <oo if 2pb=k—2,

then H{, (M) = IPH.(A)* [33, 34, 8], and therefore S = f,,,. In particular,
Hy (M) = I™H,(A)" if g is an adapted metric of conic type [14]. Thus the
incompatibility of adapted metrics with products is related to the subtleties of the
versions of the Kiinneth theorem for intersection homology [15] [I7]. For instance,
the isomorphism IPH,(Px Q) = IPH,(P)®IPH,(Q), for arbitrary pseudomanifolds
P and @, only holds with some special perversities p, including p = m. According
to , there exist good adapted metrics on M whose type is associated with any
given perversity < m.

In , only the choices 2pr, = k — 2,k — 4, ... are possible if k is even, and only
the choices 2p, = k — 3,k — 5,... are possible if k£ is odd. Thus, for every k,
establishes a bijection between the possibilities for p, and a partition of [ﬁ, 00)
into semi-open intervals, where wuy is taken.

Let f be a rel-Morse function on M, let z € Critye1(f), let X be the stratum
of M containing z, and let k¥ = codim X. With the above notation for a chart
O = O' of M centered at x, there is an adapted metric g on N so that, via the
chart, g|o is quasi-isometric to the restriction of go + p?kg + (dpx)? to M'NO'.
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Then the type of g is also associated with p. Moreover there is some expression,
myx = m4 +m_ (my € N), and some decomposition, ¢(Lx) = ¢(L4) x ¢(L_), so
that M/ = R™+ x Ny x Ry x R™- x N_ x R, for dense strata N1 of L., and
flo = f(z) + 3(p% — p*)|o’, where py is the radial function of R™+ x ¢(L+). Let
ky = dim Ny + 1; thus k = ky + k_. Here, some of the stratifications L1 may be
empty; in fact, L+ # 0 # L_ only can happen if u = 1 (Section [1.3)). From .
and (2), it follows that the numbers Vymax areé independent of the choice of @
associated with p, and therefore the notation 1/1’77“ = 1/577,( f) will be used. Precisely,
they have the following expressions:

o If Ly #D#L_ (onlyifukzl) then
= Y ALy (L),

(rqr-)

where (7, ,7_) runs in the subset of N? determined by the conditions
r=m_+ry+r_+1, r+<%, T_ 2%
o If Ly =Ly #0 (L_ =0), then

=> B¢ (Lx)

where r4 runs in the subset of N determined by the conditions

kE—1-— if up, <1
r=m_+r4y, r+<{lc Pr .

o If Lx=L_#0 (Ly =0), then
Vg,r = ZBE, (LX) )

where r_ runs in the subset of N determined by the conditions

k—1-— if up <1
r=m_+4+r_-+1, T_Z{k P 1t Uk

o If Ly =0, then 1/13 =0rm_.

Finally, let v2 = vP(f) = ZI P+ (z € Critre(f)), which equals vy, .

Suppose now that A is oriented (M is oriented) and compact. We have 5l . =
Braw for all r because Apin corresponds to Apax by the Hodge star operator. On
the other hand, for any perversity ¢ > n, if p < m ib complementary of (j, then
IH,.(A) 2 IPH,,_,.(A)* [19,120], and therefore 87 = 8- obtaining 3 = A", . As
before, it follows from and that the numbers vy ;) are independent of the
choice of 4 associated with p. Precisely, with the notation v{ . = vl (f) = v
they have the following expressions:

e If L, #D#L_ (only if up = 1), then
= > BL(LyBL(L),
(T+’T )
where (r,,7_) runs in the subset of N? determined by the conditions

r=m_+ry+r_+1, r+<k—+f , 7"_>%71.
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e If Ly =Ly #0 (L_ =0), then
Vg,’l" = Zﬁg+(LX) )
L

where 71 runs in the subset of N determined by the conditions

k—2—q, ifup<l

r=m_+r ry <
o +—{’;—1 ifu, =1.

Vg,r = ZB:@(LX) )

where r_ runs in the subset of N determined by the conditions

k—2—qp ifup<l1

r=m_+r_+1, r_> .
{’2“—1 fu,=1.

o If Lx =0, then v, = 6pn_.

Like v?, we also define vd = vI(f) = > vi, (z € Critya(f)), which equals ] ;,.
Theorem has the following direct consequence.

Corollary 1.3. Let A be a compact pseudomanifold of dimension n, let M be its
reqular stratum, and let p be a perversity. If p < m, or if A is oriented and p > 7,
then, for any rel-Morse function on M (with respect to any good adapted metric),
we have

k k
DDA <N (=) (0<k<n),
r=0 r=0
n
XP=) (1)
r=0

Stratified Morse theory was introduced by Goresky and MacPherson [21], and has
a great wealth of applications. In particular, Goresky and MacPherson have proved
Morse inequalities on complex analytic varieties with Whitney stratifications, in-
volving the intersection homology with perversity m [2I, Chapter 6, Section 6.12].
Ludwig also gave an analytic interpretation of Morse theory in the spirit of Goresky
and MacPherson for conformally conic manifolds [26], 27, 28, 29]. Our version of
Morse functions, critical points and associated numbers is different from those used
in [2], even in the case of perversity m. To the authors’ knowledge, Corollary
is the first version of Morse inequalities for intersection homology with perversity
% m.
1.7. Ideas of the proofs. In the proofs of Theorems and [I.2] several steps
are like in the case of adapted metrics of conic type [4]. Ounly brief indications of
those steps are given in this paper, whereas the parts with new ideas are explained
with detail. We adapt the well-known analytic method of Witten [43]; specially,
as described in [36, Chapters 9 and 14]. Thus, given a rel-Morse function f on
M, we consider the Witten’s perturbation d, = e*fde®/ = d + sdf A on Qo(M)
(s > 0). Let dy max/min denote its maximum/minimum i.b.c., with corresponding
Laplacian Ay ax/min- Since Ay max/min — Amax/min 18 bounded, it is enough to
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prove the properties of TheoremEl for Ay max/min- Moreover, using a globalization
procedure [, Propositions 14.2 and 14.3] and a version of the Kiinneth theorem
[0, Corollary 2.15], [4, Lemma 5.1], it is enough to consider the case of a stratum
M = N x R4 of a cone ¢(L) (a non-compact stratification), with a good general
adapted metric of the form g = p?“§+dp?, and the rel-Morse function :I:%p2, where
p is the radial function and L a compact stratification of smaller depth. A tilde is
added to the notation of concepts considered for N. By induction on the depth, it is
assumed that Ap . /min satisfies the properties of Theorem Then its eigenforms
are used like in [4] to split dg max/min into a direct sum of Hilbert complexes of
length one and two, which can be described as the maximum/minimum i.b.c. of
certain elliptic complexes on Ry. The elliptic complexes of length one are of the
same kind as in [4], so that the Laplacian of their maximum/minimum i.b.c. is
induced by the Dunkl harmonic oscillator on R [3], whose spectrum is well known.
However, the Laplacian of the elliptic complexes of length two is a perturbation of
the Dunkl harmonic oscillator containing new terms of the form p=2% and p~—24~1.
A different analytic tool is used here, which was developed by the authors [5].
Precisely, classical perturbation methods were used in [5] to determine self-adjoint
operators with discrete spectra defined by this perturbation of the Dunkl harmonic
oscillator, giving also upper and lower estimates of its eigenvalues. The application
of this analytic tool is what requires g to be good. The information obtained for
this perturbation is weaker than for the Dunkl harmonic oscillator. For instance,
such self-adjoint operators are only known to exist in some cases, and only a core of
their square root is known. Thus more work is needed here than in [4] to describe
the Laplacians of the maximum /minimum i.b.c. of the simple elliptic complexes of
length two, using those self-adjoint operators. The proof of Theorem can be
completed with such information like in [4]. On the other hand, only eigenvalue
estimates of those self-adjoint operators are known, which makes it more difficult
to determine the “cohomological contribution” of the rel-critical points. This is the
key idea to complete the proof of Theorem like in [4].

1.8. Some open problems. We do not know whether the condition on g to be
good could be deleted. It depends on whether the result used from [5] holds with
weaker hypothesis.

The applications would increase by extending our version of Morse inequalities
to “rel-Morse-Bott functions.” Their rel-critical point set would be a finite union
of substratifications.

There should be an extension of the isomorphism Hp, (M) = IPH,.(A)* to the

case of general adapted metrics and general perversities [I8]. In that direction, an
extension of the de Rham theorem with general perversities was proved in [37} [38].
The case with classical perversities was previously considered in [I1} [7].

It is also natural to continue with the following program, already achieved on
closed manifolds. First, it should be shown that there is a spectral gap of the form
7 (Ag max/min) N (Cre=C2% C3s) = ), for some Cy,Cy,C3 > 0. This would define
a finite-dimensional complex (Ss max/min,ds) generated by the eigenforms corre-
sponding to eigenvalues in [0, C;e~2%] (“small eigenvalues”). Second, it should be
proved that (S; max/min,ds) “converges” to the “rel-Morse-Thom-Smale complex,”
assuming that the function satisfies the “rel-Morse-Smale transversality condition.”
It seems that the existence of the above spectral gap would follow easily by adapting
the arguments of [4, Propositions 14.2 and 14.3]. The comparison of (S, max/min» ds)
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with the “rel-Morse-Thom-Smale complex” would require additional techniques,
according to the case of closed manifolds [22], [6, Section 6]. This program was
developed by Ludwig in a special case [30].

2. PRELIMINARIES

2.1. Products of cones. Let L and L’ be compact stratifications, and let * and p,
and #” and p’ be the vertices and radial functions of ¢(L) and ¢(L’). Any morphism
Y :¢(L) = ¢(L') is of the form ¢(¢) around * for some morphism ¢ : L — L’. In
particular, ¥ (x) = *', and ¢¥*p’ = p around x.

The product of two stratifications, A x A’, has a stratification structure whose
strata are the products of strata of A and A’. However the tubes in A x A’ depend
on the choice of a function & : [0,00)? — [0, 00) that is continuous, homogeneous of
degree one, smooth on R?2, with 271(0) = {(0,0)}, and such that, for some C' > 1,
we have h(r,7’) = max{r,7’} if Cmin{r,r'} < max{r,r'} [, Section 3.1.2]. Thus
the stratification structure of A x A’ is not unique.

In the case of two cones, ¢(L) x ¢(L') can be described as another cone in the
following way [4, Lemma 3.8]. The function h(pxp’) : ¢(L) xc(L') — [0, 00) satisfies
that L = (h(p x p'))~1(1) is a compact saturated substratification of ¢(L) x ¢(L’).
Then the map

br el = (L) x (L), (], [y, 8] o (foors], [ 8])
is an isomorphism of stratifications. The vertex of ¢(L"”) is " = ¢~1(x,+'), and
its radial function is p” = ¢*(h(p x p')). Thus the radial function of ¢(L) x ¢(L’),
(p2 + p'*)1/2, does not correspond to p” via ¢ if L # 0 # L.

Assume that L # 0 # L’. Let N and N’ be strata of L and L', and let M =
N xRy and M’ = N’ x Ry be the corresponding strata of ¢(L) and ¢(L’). Take
general adapted metrics § and ¢’ on N and N’, and fix any u > 0. We get general
adapted metrics g = p?“g + (dp)? and ¢’ = g+ (dp')? on M and M’. On the
other hand, with the above notation, we have ¢='(M x M') = N” x Ry =: M",
where N = (M x M') N L" (a stratum of L"). Let §" be any general adapted
metric on N” so that N” < M x M’ is quasi-isometric; for instance, we may take
G’ = (g+¢")|n». We get the general adapted metric ¢ = p"*"“§" + (dp”)? on M”.
Equip M x M’ with g + ¢’ and M" with g".

Proposition 2.1. (i) Ifu=1, then ¢ : M" — M x M’ is a quasi-isometry.
(i) Ifu<1, theng: M"NO — (M x M')YN¢(O) is not quasi-isometric for any
neighborhood O of " in c¢(L").

Proof. Without lost of generality, we can assume §” = (g + ¢’)|n~. We have
M'"=N'xRy CMxM xR =NxRy x N' xRy xRy .
According to this expression, an arbitrary point p € M" can be written as p =

(z,r,2',7",7") = (p,r"), obtaining
o(p) = (z,rr", 2", 7'y e M x M =N xRy x N' xR, .
Thus we can canonically consider
T;N'cCT,NeR®T,N &R,
T,M"CT,NOoR®T,N' dR®R,
T¢(p)(M X MI) =T,N @R@TI/N/ OR.
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We easily get

¢+ (0pr (p)) = (0,70, (rr"), 0,70, (1)) ,
0. (X,0) = (Y, er"d,(rr"), Y, 7" 8, (r'1"))

for X = (Y,¢0,(r),Y’, 0, (1)) € Tz N". Hence

10y (P12 =1, (4)

164 (B DD gy =72+ 772, (5)
1050 = " X345

= (VI + @+ Y3 + %) (6)

6. (X, 0240 = (2 IV I3+ 2072 4072 Y12 4 2
=2 (V2 + AP0 Y+ ) ()

where every metric is added as subindex of the corresponding norm.
Observe that Cy := miny~ (p? + p’2) > 0 and C; := maxy~(p? + p’2) < o0 by
the properties of h. So, by and (5| ,

Co 18, (P)lIgr < 116+ (P))llg1gr < C1 118 ()l -

Moreover, if u = 1, then ||¢. (X, O)Hg+g/ = [|(X, 0)“3// by (6) and (7)), obtaining ().

Now, suppose that u < 1. With the above notation, by the conditions satisfied
by h, we can take p = (z,r,2’,1) € N and X = (0,0,(r),0,0) € TzN" for all r
small enough. By @ and @, it follows that

H(ZS*(X O)||2g+g :T//2(17u) 0
[(X,0)[I2,

as r’ — 0, giving (ii). O

Similar observations apply to the product of any finite number of cones.

2.2. General adapted metrics. Consider the notation of Section [T.3]

Remark 1. For every m € Z., there is a canonical homeomorphism ¢(S™~1) ~ R™,
[x,p] — pz, so that the radial function p corresponds to the norm on R™ [4]
Example 3.7]. This is not an isomorphism of stratifications: ¢(S™~!) has two strata
and R™ only one; the stratum S™~! x R of ¢(S™~!) corresponds to R~ {0}. If §
denotes the standard metric on S~ then p?g + (dp)? on S™~1 x R corresponds
to the Euclidean metric on R™ ~ {0}. Thus, with the notation of Section [1} the
factors R™X or R™# could be also described as cones, or as strata of cones after
removing one point.

Remark 2. By taking charts and using induction on the depth, we get the following
(cf. [, Remark 7]):

(i) If two general adapted metrics on M have the same type with respect to the
same general tubes, then they are rel-locally quasi-isometric. In particular,
they are quasi-isometric if M is compact.
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(ii) Any point in M has a countable base { O,, | m € N} of open neighborhoods
such that, with respect to any general adapted metric, vol(M N O,,) — 0 and
max{diam P | P € mo(M N O,,)} — 0 as m — oo. Thus, if M is compact,
then vol M < oo and diam P < oo for all P € mo(M).

Remark 3. The argument of [8, Appendix] also shows the following. Let {O,} be
a locally finite open covering of M, let {\,} be a smooth partition of unity of M
subordinated to the open covering {MNO,}, and let g, be a general adapted metric
on every M N O,. Suppose that the metrics g, have the same general type with
respect to restrictions to the sets O, of the same general tubes. Then the metric
Y Aaba is general adapted on M and has the same general type with respect to
those general tubes.

When M is not connected, M is defined as the disjoint union of the rel-local
completion of the connected components of M (Section[L.3)), using [4, Remark 1 (v)].

Remark 4. (i) By Remark 7 M is independent of the choice of the general
adapted metric of a given general type. In fact, by Remark and [4
Example 3.19], M is also independent of the general type.

(ii) For any open O C A, we have MNO= lim ' (M nO) c M.

Remark 5. The following is a direct consequence of Remark and [, Re-
mark 9 (i),(ii) and Proposition 3.20 (iii)]:
(i) lim: M — M is surjective with finite fibers.

(ii) M is rel-locally connected with respect to M.

(iii) Let M’ be a connected stratum of another stratification A’ equipped with a
general adapted metric, and let ¢ : A — A’ be a morphism with ¢(M) C M’.
Then the restriction ¢ : M — M’ extends to a morphism ¢ : M — M.
Moreover gZ; is an isomorphism if ¢ is an isomorphism.

2.3. Relatively Morse functions. Consider the notation of Section[T.4] Besides
the observations given in that section, the following holds like in the case of adapted
metrics of conic type [4, Section 4].

Remark 6. (i) The rel-local boundedness of |df| is invariant by rel-local quasi-
isometries, and therefore it depends only on the general type of g. Similarly,
the definition of rel-critical point depends only on the general type of g. But
the rel-local boundedness of | Hess f| depends on the choice of g. However
it follows from and below that the existence of g so that f is rel-
admissible with respect to g is a rel-local property.

(ii) If depth M = 0, then any smooth function is admissible, and its rel-critical
points are its critical points.

(iii) With the notation of Section let h € C*°(R;) with A’ € C§°(Ry). Then
the function h(p) is rel-admissible on the stratum M of ¢(L) with respect to
any general adapted metric.

(iv) Let {O, | @ € A} be a locally finite covering of M by open subsets of A.
Then there is a C*° partition of unity {A,} on M subordinated to {M NO,}
such that |dA,| is rel-locally bounded for all general adapted metrics on M of
any fixed general type.

(v) Suppose that {\,} and {g,} satisfy the conditions of Remark 3| and (iv]). Let
f € C>(M) such that every f|ano, is rel-admissible with respect to g,. Then
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f is rel-admissible with respect to the general adapted metric g = > A\aga
on M.

(vi) Let F C C*°(M) denote the subset of functions with continuous extensions
to M that restrict to rel-Morse functions with respect to all general adapted
metrics of all possible general types on all strata < M. Then F is dense in
C>°(M) with the weak C*° topology.

2.4. Hilbert and elliptic complexes. Consider the notation of Section [1.1

2.4.1. Hilbert complezes with a discrete positive spectrum. Let (D,d) be a Hilbert
complex in a graded separable Hilbert space §), defining self-adjoint operators D
and A according to Section [I.I] The direct sum of homogeneous subspaces of
even/odd degree are denoted with the subindex “ev/odd”. The same subindex is
used to denote the restriction of homogeneous operators to such subspaces.

Lemma 2.2. The positive spectrum of Aey is discmteﬂ and bounded away from
zero if and only if the positive spectrum of Agqq is discrete and bounded away from
zero. In this case, both operators have the same positive eigenvalues, with the same
multiplicity.

Proof. For instance, suppose that the positive spectrum of A, is discrete and
bounded away from zero. It follows from the spectral theorem that

Doo(Aev/odd) = ker Aev/odd ® A(DOO(Aev/odd)) 5

and
DeV : A(DOO(AeV>) — A(DOO(AOdd>)

is a linear isomorphism satisfying DeyAev = AgqdDev- O

2.4.2. Elliptic complezes with a term that is a direct sum. Let E = @, E, be a
graded Riemannian or Hermitian vector bundle over a Riemannian manifold M.
The space of its smooth sections is denoted by C°°(FE), its subspace of compactly
supported smooth sections is denoted by C§°(FE), and the Hilbert space of square
integrable sections of F is denoted by L?(E). All of these are graded spaces.
Consider differential operators of the same order, d, : C*°(E,) — C*°(E, 1), such
that (C*(E),d = @, d,) is an ellipti(ﬂ complex. The simpler notation (E,d) (or
even d) will be preferred. Elliptic complexes with nonzero terms of negative degrees
or homogeneous differential operators of degree —1 may be also considered without
any essential change. For instance, we have the formal adjoint elliptic complex
(E,9).

Suppose that there is an orthogonal decomposition F, 11 = E,41.1 ® Ep41,2 for
some degree r + 1. Thus

C™(Eyy1) =C™(Erg1,1) © C*(Erg1,2) »
Co°(Bri1) = C5°(Ery1,1) © C5° (Brga,2)
L2(Er+1) LQ(ErJrl,l) ® LQ(ET+1,2) )

2Recall that a complex number is in the discrete spectrum of a normal operator in a Hilbert
space when it is an eigenvalue of finite multiplicity.

3Recall that ellipticity means that the sequence of principal symbols of the operators d, is
exact over every nonzero cotangent vector.
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and we can write

d,,
d»,- = (d 1) s 57“ = (57‘,1 67‘,2) )

T,2

Oy
dr+1 = (dr+1,1 dr+1,2) ) 5r+1 = <(5 +1’1> .
r+1,2

The operators d,; and 6, ; can be also considered as elliptic complexes of length one,
and therefore they have a maximum/minimum i.b.c., d;; max/min a0d 0y ; max /min-

Lemma 2.3 ([4, Lemma 8.2]). We have:

D(dmax r) = D(dr 1 max) N D(dr 2,maX) s Omaxr = (dr’17maX|D(dmam7‘)> '
s )Ly ’ ’ dr,2,maX|D(dmax,r)

Lemma 2.4. We have:
D(dr+1,l,max/min) S5 D(dr+172,max/min) - D(dmax/mimr—i-l) . (8)

P?”OOf. Take any (g) S D(dr+1,1,min) D D(dT+1,27111in), and let v = d7~+1,17minu and
v = dy11.9minv. This means that there are sequences, u; in C§°(E,41,1) and v; in
C§°(Ey41.2), such that u; — u in L?(Eyy11), v; = v in L2(Ery1.2), degp1 1w — o/
and dy41 2v; — v in L?(Eyy2). So (4) € C°(Ers11) ®C (Brg12) = C°(Eri1),
(vi) = (%) in L3(Eyy1) and dyyq (37) — o' + 0" in L?(E, o), obtaining (%) €
D(dmin,7‘+1)-

Now, take any (4 ) € D(dr4+1,1,max) ®D(dr11,2 max), and let «' = dy 11 1 maxu and
V' = dy41,2,max?. This means that (u,d,111w) = (v, w) and (v, 0,41 2w) = (V',w)
for all w € C§°(Er42). Thus ((3),0r+1w) = (W' 4+ v, w) for all w € C§C(E,12),
obtaining that (3 ) € D(dmax,r+1)- O

3. A PERTURBATION OF THE DUNKL HARMONIC OSCILLATOR

This section is devoted to recall the study of self-adjoint operators on R induced
by the Dunkl harmonic oscillator on R [3], and also by certain perturbation of the
Dunkl harmonic oscillator on R [5]. This is the main analytic tool of the paper.

Let S = S(R) be the real-/complex-valued Schwartz space on R, with its Fréchet
topology. It decomposes as direct sum of subspaces of even and odd functions,
S = Sev @ Soqq- For o > f%, the sequence of generalized Hermite polynomials,
Pk = Ps,0.k(2), consists of the orthogonal polynomials associated with the measure
6*5"”2|;U|2“ dx on R [40] p. 380, Problem 25]. It is assumed that every py is nor-
malized and has positive leading coefficient. They give rise to the general Hermite
functions ¢ = ¢s o k(z) = 1);6675””2/2 € S. If k is odd, then p; . and ¢ . also
make sense for 7 > f%.

Now, let p denote the canonical coordinate of R;. Consider the spaces of real-
/complex-valued functions, C>* = C*(R), C3° = C*(R;) and C7°, = C5°(Ry),
where the subindex 0 is used for compactly supported functions or sections. For
every a € R, the operator of multiplication by the function p* on C%° will be also
denoted by p®. We have

a—1

2
(a5 0l = ap®™ ", (350" = 20p" 1 b+ ala —1)p* 2. 9)

For every ¢ € C™, let ¢, = ¢[r,, and let Sev/oda+ = { P+ | @ € Sevjodd }-
For ¢,d > —3, let L2, = L*(Ry,p*dp) and L2, , = L2, & L3, whose scalar
products are denoted by ( , ). and (, )4, and the corresponding norms by || ||.
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and || ||,q, respectively. The simpler notation L2, (, ) and || || is used when ¢ = 0.

Recall that the harmonic oscillator on C%° is the operator H = —d”‘l—; +52p? (s > 0).
For ¢1,c,dy,dsy € R, let
Po=H—2c1p" " L+cop™®, Qo=H—2dijp~ " +dap?. (10)
Proposition 3.1 ([3, Theorem 1.4)). If a € R satisfies
a4+ (2c; —1)a—cy =0, (11)
ci=a+c >-1, (12)

then the following holds:
(i) Py, with D(Py) = p*Sev +, is essentially self-adjoint in L§1’+,
(i) The spectrum of Py := Py consists of the eigenvalues
A= (2k+1+420)s, (13)
for k € 2N, with multiplicity one and corresponding normalized eigenfunctions
Xk = Xs,ouak i= V2P Ps ok +-
(iii) D>(Po) = p*Sev,+-
Proposition 3.2 (See [3, Section 5]). If b € R satisfies
b+ (2d; +1)b—dy =0, (14)
Ti=b+d > -2, (15)
then the following holds:
(i) Qo, with D(Qo) = p’Soad.+, is essentially self-adjoint in L317+.

(it) The spectrum of Qo = Qo consists of the eigenvalues given by the expres-
sion , for k € 2N + 1 and using T instead of o, with multiplicity one and
corresponding normalized eigenfunctions X = Xs,rbk = \/ipquS,T’k,Jr.

(iii) D>(Qo) = p*Soad,+-

Proposition 3.3 ([5, Corollary 8.1]). Let £ > 0 and

O<u<l. (16)
If a € R satisfies and
(17)
then there is a positive self-adjoint operator P in L3,17+ satisfying the following:

(i) p°Sev.+ is a core of P2 and, for all ¢,1 € p®Sey +,

(P20, PY2) e, = (Podd)er +E(p™ 60 W), - (18)

(it) P has a discrete spectrum. Let \g < Ay < --- be its eigenvalues, repeated

according to their multiplicity. There is some D = D(o,u) > 0 and, for any
€ > 0, there is some C = C(e,0,u) > 0 so that, for all k € 2N,

Mo > (2k + 1+ 20)s + EDs"(k +1)7" (19)
A < (2k+1420)(s + €es™) +£Cs™ . (20)

Proposition 3.4 ([5, Corollary 8.2]). For & and u like in Proposition[3.3, if b € R
satisfies and

— 1
c=a+c>u—j3,

Ti=b+d >u—32, (21)

then there is a positive self-adjoint operator Q in L31,+ satisfying the following:
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(i) p*Soaa,+ is a core of QY2 and, for all ¢,v € P*Sodd, +
<Ql/2¢7 Ql/2¢>d1 = <Q0¢7w>d1 + §<P_u¢ap_u¢>d1 . (22)

(i) Q has a discrete spectrum. Let Ay < A3 < --- be its eigenvalues, repeated
according to their multiplicity. There is some D = D(7,u) > 0 and, for any
e > 0, there is some C = C(e,7,u) > 0 so that and are satisfied,
for k € 2N + 1 and with T instead of 0.

Proposition 3.5 ([5, Corollary 8.3]). Consider the notation and conditions of
Propositions and[5 Fiz also some n € R, and let

6>—1. (23)
Moreover suppose that the following properties hold:
(a) Ifc =0#7 and 7 — 0 & —N, then

c-l1<r<o+120+1%. (24)
(b) Ifo#0 =71 and o — 7 & —N, then
-1, 7T—1<o<3r+1,11l7+2,7+1. (25)
(¢) Ifo#0=7+1ando—7—1¢ —N, then
THl<o<T+32r+71. (26)
(d) If o £0#7 and o — 0,7 — 0 & —N, then
o-r 1,759, o+Z—1’ a+i1’)2—2’ 3045274’ a+g—1 <0< %‘F*Fl 7 } 27)
T—1l<o<T71+43.
Then there is a positive self-adjoint operator W in Lzl,d1,+ satisfying the following:

(i) p*Sev + @p%’odd# is a core of WY2, and, for ¢ = (¢1, d2) and v = (Y1, 12)
in pSev+ B p"Sodd,+»

<W1/2¢a Wl/2w>cl,d1 = <(PO 2] QO)QSa 1/}>c1,d1 + £<p7u¢’ p7u¢>cl,d1
+n ((p_a_b_1¢52»1/}1>0 + <¢17P_a_b_11/12>0) . (28)

(ii) W has a discrete spectrum. Its eigenvalues form two groups, Ag < Ao < ---
and \1 < A3 < -+, repeated according to their multiplicity, such that there
is some D = D(o,7,u) > 0 and, for every ¢ > 0, there are some C =
C(e,o,7,u) >0 and E = E(e,0,7,0) > 0 so that, for all k € N,

vt1 vt1

Ae > (2k + 1+ 26) (s — 2[nles =) +EDs"(k+1)7" = 2[n|Es =, (29)
Mo < (2k 4+ 14 26) (s + (€5 +2[n|s 3 ) + £Cs* + 2|n|Es™T (30)
where v =0+ 7 — 20, ¢ =0 if k is even, and ¢ = 7 if k is odd.
(i) Let 4 € R such that
0,1},7—29—1—%70—29—%<ﬁ<1,v+170+%77+%7 (31)

and let & = max{a,v + 1 — a}. There is some D = D(o,7,u) > 0 and, for
any € > 0, there is some C = C(e,0,7,u) > 0 so that, for all k € N,

Ap > (2k + 1+ 26) (s — |nles™) + EDs%(k +1)7% — [n|Cs® . (32)
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(iv) If u= "t and & > |n|, then there is some D = D(o,7,u) > 0 so that, for all
keN,

Ak > (2k+142¢,)s+ (£ — n|)Ds“(k+1)7*. (33)

(v) If we add the term & {¢1, V1), + & {2, ¥2)a, to the right-hand side of (28),

for some £',&" € R, then the result holds as well with the additional term

max{¢’,&"} in the right-hand side of (30), and the additional term, &' for

k € 2N and &" for k € 2N+ 1, in the right-hand sides of (29), and (33).

Remark 7. (i) If h is a bounded measurable function on Ry with h(p) — 1 as
p — 0, then (hxo, X0)e; — 1 as s = oo [4, Lemma 7.3].

(ii) The existence of a € R satisfying is characterized by the condition (2¢; —
1)2 + 4cy > 0, which holds if ¢; > min{0,2¢1}. If co = 0, then means
that a € {0,1 — 2¢1}. If c2 = 2¢, then means that a € {1, —2¢; }.

(iii) The existence of b € R satisfying is characterized by the condition (2d; +
1)2 + 4dy > 0, which holds if dy > min{0, —2d;}. If dy = 0, then (14) means
that b € {0, —1 — 2d; }. If dy = —2d;, then means that b € {—1, —2d, }.

(iv) Propositions and are indeed equivalent, as well as Propositions
and because, if ¢; = di + 1 and ¢y = da, then Qo = pPop~! by (), and
p: L317+ — Lfll7+ is a unitary isomorphism.

(v) We have P = P, Q@ = Q and W = W, where

P=P+& ™, Q=Qu+& ™, (34)

P np2(9—cl)—a—b—1>
W = , 35
(an(G—dl)—a—b—l Q ( )

with D(P) = D*>°(P), D(Q) = D*°(Q) and D(W) = D*(W) [ Remark 1.4 (i)
and Section 8|.
(vi) We have

D(PY/%) =D(Py’*), D(Q'%) =D(Qy*), DW2) =D((Py® Q)"/?).

Thus the expressions , and can be extended to ¢ and ¥ in
D(P1/2), D(Q'/2) and D(W?'/2), respectively, using

(P26, Py e (Q5/%6, Q5% 0)ay »  ((Po® Q0)Y26, (Po ® Q0)/*®) s

instead of

<P0¢7 ¢>c1 ’ <Q0¢7 ¢>d1 ) <(P0 D Q0)¢7 ’(/}>Clgd1 )
respectively [5, Remark 3.21 and Section 8].

(vii) In Proposition , the condition means that , and also
hold with @ and v + 1 — @ instead of w. There exists @ satisfying (31) just
when

O,v,7’—29+%,0—29—%<1,v—|—1,0—|—%,7’+%. (36)
This property is satisfied in the cases (]E[) and @ by (16)), (L7)), (21), , (125))
and ; in particular, we can take @ = %"1 By , (117), (21), (23) and (24)
(respectively, (26])), in the case @ (respectively, in the case (), we have (36|
if and only if 7 < 30 (respectively, o < 37 + 4).

Consider the conditions and notation of Proposition [3.3] and the notation of
Proposition Take a complete orthonormal system { Xx = Xpx | k € 2N} of

LZ, | so that every xj is a Ag-eigenfunction of P. Let xj, = Xpx and Xi = Xp i
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denote the orthogonal projections of every xi to the subspaces spanned by xj and
S o

{xi | k > i € 2N}, respectively; in particular, xg = 0. Let also x}" = X, =

Xk = Xi, — Xi-
Lemma 3.6. [|Xp ;lle, = 1 as s — oo for every k € 2N.
Proof. We proceed by induction on k. For k& = 0, take some ¢ > 0 and C > 0
satisfying . By Propositions and , and Remark ,
(14 20)(s + Ees™) + ECs™ > Ao = (PY2%0, PV R0)er > (Po/* R0, Py’ * X0
(771/2)26, 731/2>A<6>61 <7>1/2)23/, ,P1/2 v

> (1+20)s | %0l13, + (54 20)s IR, = (1+20)s + 45 I38')2,
giving
1+2 C
||A///|| (( + 0)€+ )£_>0
481—u

as s — oo, and therefore ||xgl|Z, — 1.

Now, take any even integer k£ > 0 and suppose that the result holds for all even
indices < k. This yields ||x}|le; = 0 as s — oo. Thus, given any 6 > 0, we have
[X%ll?, < d/k for s large enough. Take some € > 0 and C > 0 satisfying (20). By

Pr0p051tions and , and Remark m ,

(2k+1+20)(s+ Ees™) + EC5" > A = (PY 25000, P20 e, > (Po/* %0 P * %) e

P’ %00 P Shes + (P50 Py )er + (P30 Py e

)
=Py
> (2k +1+20)s |[XklI2 + (1+20)s [IXENIZ, + (2k + 5+ 20)s | X{I12,
(
(

1+20)s + 2ks([G 12, + [IXR'112,) + 4s [IXE11Z,

> (14 20)s+ 2ks(1 — 6/k) + 4s | X}|12,
giving
oz (k414 20)e+ C)E 0
|| || 451771( + 2 < (5

for s large enough. Thus ||

A’"H — 0 as s — oo, and the result follows. O

Corollary 3.7. If h is a bounded measurable function on Ry such that h(p) — 1
as p — 0, then (hXp o0, XP0)e; = 1 as s — 0.
Proof. This follows from Lemma and Remark . a

Similar results hold for @ and W, but they are omitted because they are not
used.

4. TWO SIMPLE TYPES OF ELLIPTIC COMPLEXES

Here, we study two simple elliptic complexes on R, , which will show up in a
direct sum splitting of the rel-local model of Witten’s perturbation (Section |§[)
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4.1. An elliptic complex of length one. Consider the standard metric on R.
Let E be the graded Riemannian/Hermitian vector bundle over R} whose nonzero
terms are Ey and FE;, which are real/complex trivial line bundles equipped with
the standard Riemannian/Hemitian metrics. Thus

C™(Ey) =C =C™(Ey), L*(Ey)=L2%=L*E),

where real-/complex-valued functions are considered in C° and L%. For any fixed
s> 0and k € R, let

C>=(Ep) C>(E)

be the differential operators defined by
d:d%f/ipflztsp, 5:7%711;)*1:&5;).
It is easy to check that (F,d) is an elliptic complex, and thatﬁ §=d.

4.1.1. Self-adjoint operators defined by the Laplacian. By @D, the homogeneous
components of A (or A¥) are:

Ag=H+r(k—1)p 2 Fs(1+2k), (37)

Ay =H+r(k+1)p 2 £5(1 —2k), (38)
where H is the harmonic oscillator on C3° defined with the constant s. Then Ag
and A; are like Py and Qg in , with ¢y = 0 = dy, plus a constant. Then, by
Propositions and Ay and A; define the self-adjoint operators A; and B;
in Li indicated in Table |1} where the conditions come from and . The
notation A and Bf may be used as well to specify that these operators are defined
by AF and AT. In these cases, we have ¢; = d; = 0, and therefore ¢ = a and

7 = b, which are given by and .

o T Condition
./41 K K > —%
Ag 3
Ay |1 -k k<3
B K K> —%
Ay i
By -1-Kk|r<3

TABLE 1. Self-adjoint operators defined by Ay and A,

There are the following overlaps in Table
e Both A; and Ay are defined if —% <K< %, and they are equal just when

1
K = bR
e Both By and By are defined if —% <K< %, and they are equal just when
1
K= —xz.

2

The cores of A; and B;, given by Propositions and will be denoted by £ and
&L, respectively. Note that the graded subspace & = &P @ &} of C®(E) N L*(E),
whenever defined, is preserved by D = d+ 4. Propositions and also describe
the spectra of A; and B;:

4The superindex f is used to denote the formal adjoint.
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e The spectrum of A; consists of the eigenvalues

2k+(1F1)(1+2k))s

of multiplicity one.
e The spectrum of Ay consists of the eigenvalues

2k +4—-(1+1)(1+2k))s

of multiplicity one.
e The spectrum of B; consists of the eigenvalues

2k+2+ (1 F1)(-14+2K))s

of multiplicity one.
e The spectrum of By consists of the eigenvalues

(2k—2—-(1£1)(-142k))s

of multiplicity one.

(k € 2N)

(k € 2N)

(k€ 2N+1)

(k€ 2N+1)

21

(40)

(41)

(42)

These eigenvalues have normalized eigenfunctions yj, defined for the corresponding
values of a = o and b = 7. For A, becomes 2ks. For Ay, is 2(k+1+2k)s.
For Aj, becomes 2(k + 1 — 2k)s. For A, , is 2(k + 2)s. For B, is
2(k 4+ 1)s. For B, becomes 2(k + 2k)s. For By, is 2(k — 2K)s. For
B, becomes 2(k — 1)s. Using this, we get the information about the sign of
the eigenvalues of A; and B; given in Table |2l In the tables, grey color is used for
cases that will be disregarded later (for instance, if there may exist some negative
eigenvalue), and a question mark is used for unknown information.

Sign of eigenvalues Sign of eigenvalues
e 0 ifk=0 B + VkEe2N+1
! + ifk>2even k>—1 |+ Vke2N+1
A + Vke2N 1 |0 k=1
K=—5
_ 21+ ifk>3o0dd
Bl
0 ifk=2k-1
A + ifk>2k—-1 0 ifk=-2k
? L0 ifE=0 + ifk> -2k
K=z
|+ ifk>2even By + VEe2N+1
K<i|+ Vke2N . 0 ifk=1
Ay + Vke2N 2 + ifk>3o0dd

TABLE 2. Sign of the eigenvalues of A;

4.1.2. Laplacians of the maximum/minimum i.b.c.

Proposition 4.1 ([4, Proposition 8.4]). Table@ describes Apax /min-
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Amaxo | Amino | Amaxt | Amins
K> % Ay B
wl<i| A | A B | B
Kk < —% Ao Bs

TABLE 3. Description of Ay ax/min

Remark 8. (1) In [], the proof of Proposition uses the following property
M, Lemma 8.5]. Suppose that either § > 3, or § = £ = k (respectively,
0= % = —k). Then, for every & € p?Sey 1, considered as subspace of C*(Ej)
(respectively, C*°(Ey)), there is a sequence (&) in C§°(Ep) (respectively,
C§°(E1)), independent of s, such that lim, &, = ¢ in L?(Ep) (respectively,
L?(E,)) and lim,, d&,, = d¢ in L?(E;) (respectively, lim,, 6¢, = §¢ in L?(Ejp)).
In particular, ,095,3‘,74r is contained in D(dmin) (respectively, D(dmin)). More-
over, according to the proof of [4, Lemma 8.5], given 0 < a < b, we can take
&n = apd for some a, € CF° satisfying X[t ona] S On < X[2,nb), Where xg
denotes the characteristic function of every subset S C R,.

(ii) &2 (respectively, £}) is also a core of dp .y /min (respectively, duin/max) When
Amax/min,0 = Ai (respectively, Apax/min,1 = Bi)-
4.2. An elliptic complex of length two. Consider again the standard metric
on Ry. Let F be the graded Riemannian/Hermitian vector bundle over R whose
nonzero terms are Fy, Fy and Fy, which are trivial real/complex vector bundles of
ranks 1, 2 and 1, respectively, equipped with the standard Riemannian/Hermitian
metrics. Thus
C™¥(Fy) =0 =C™(Fy), C¥(F)=CraCy,
L*(Fy) = L% = L*(F), L*(F)=L%elL%,

where real- /complex-valued functions are considered in C'%° and Lﬁ_. Fix s, u > 0,

0<u<1landk€R. Let

do = (32;) di = (di,1 di,2)
C*>(Fy) ‘(5 C>®(F)) = — C>®(Fy)
IR
be the differential operators defined by
doy = pp™ ", doo = d% —(k+u)ptEsp,
diy =45 —rptEsp,  dig=—pp",
o =pp~ ", S0 = —4b = (k+u)p" +sp,

011 = *d% —kp Tt Esp, Gip=—pp

Observe that dp = d(T-, and 01 = d}. We may also use the more explicit notation
d¥, 6F, deEZ and 6;—;-. A direct computation shows that dy and d; define an elliptic
complex (F,d) of length two. Note that, by @,

dig=p “do2p”, do2=p “o11p". (43)
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4.2.1. Self-adjoint operators defined by the Laplacian. By @D, the homogeneous
components of the corresponding Laplacian A (or A¥) are given by
Ao=H+ (k+u)(s+u—1Dp 2+ p2p 2 Fs(1+2(k+u)),
Ay =H+k(k+1)p 2+ p@2p 2" +s(1 —2k),
Ay = ( Al’i -1 2uup“1> )
—2pup™t AN
Ay =H+r(k=1)p 2+ p2p " Fs(1+2r)
Ao=H+(k+u)k+u+1)p 2+ pu2p 2" +s(1—2(k+u)).
(We may also use and to compute easily some parts of the above compo-

nents of A.) The operators Ay, Ag, Ay1 and Aq o are like P and @ in , with
c¢1 = 0 = dq, plus a constant term. Write Ay = U F sV, where

V= (1 +02K —1+2(E/i+u)> ' (44)

Then, by Propositions and and Remark , Ag, Ag and Aq define
the self-adjoint operators P; and Q; in L%, and W ; in L3 @& L%, indicated in
Table where the conditions come from , , , , , and .

The notation ’Pii7 Q;E and ij may be used as well to specify that these operators
are defined by AT, AT and AE. Note that v = u for all W; ;. The cores of P/

7 9

Q;/Q and Wilf, given by Propositions and will be denoted by F?, }'j2
and fi{j = Fil’l @ .Fjl’z, respectively.

Remark 9. In contrast to &; in Section note that the graded subspace F? @
Fi; ®F; of C°(F)NL*(F), whenever defined, is not preserved by D = d+ 4. For
instance, it is preserved by d but not by § when ¢ = j = 1, and it is preserved by
but not by d when ¢ = j = 2.

o T 0 Condition

P1 K+u n>—%
A 3

P l—-k—u k<3 —2u

9, K n>uf%
JAD T

Qs —-1—k k<3 —u

Wi K K+u K /€>u—%

Wa o 1-k —1l—-Kk—-u|—-Kk—u /<;<%72u
Aq

Wa 1 1—k K+u % —1—%</€<1—%

TABLE 4. Self-adjoint operators defined by Ag, Ay and Ay

Let us explain the contents of Table [d] Since ¢; = d; = 0, we have 0 = a and

7 = b, which are given by (11)) and . Moreover o, T and u determine 6 in Table
35)

so that U is of the form ( because 20 — o — 7 = —u. Let us check the conditions
written in this table, which are given by the hypothesis of Propositions[3.3H3.5] For
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P; and Qj, only (17) and are required. For W; ;, we also require (23)), and the
hypothesis 1@]) of Proposition obtaining the following:

For Wi 1, we have 0 = 0 # 7 and 7 — o0 = u ¢ —N. Thus @ applies in

this case. Note that , and mean Kk > u — % Then holds
because 0 < u <1 and kK > u — % So (ED is satisfied.

For Wao, wehave o #0 =7+1lando—7—-1=1+u ¢ —N. Thus
applies in this case. Now, , and mean K < % — 2u. Then

holds because 0 < u < 1 and kK < % —2u. So is satisfied.
There is no Wi 2 because 6 < —% in that case.

For Wh 1, , and mean —% < K < % — u, and we have the
following possibilities:

— The case ¢ = 6 = 7 is not possible because u # 0.

— The case 0 = 0 # 7 happens when xk = % Then o = % and 7 = %—&—u,

obtaining 7—o = u € —N. Thus @ applies in this case. Moreover

holds because 0 < u < 1. So @ is satisfied.

— Thecaseo#@:Thappenswhenn:%fu. Then0:%+uand

T = %, obtaining ¢ — 7 = v ¢ —N. Thus applies in this case.

Moreover holds because 0 < u < 1. Hence @ is satisfied.

— Thecasecr;é9:7'+1happenswhen/@:—%—u. Thena:%+u

and 7 = —%, obtaining o —7—1 =1+u ¢ —N. Thus applies in this

case. Moreover holds because 0 < u < 1. Hence () is satisfied.
— Finally, assume that ¢ # 6 # 7. The condition ¢ — 6,7 — 0 ¢ —N

means that £ € (3 +N) U (2 — u — N), which in turn means that

k# L l—u,—%—ubecauuse—%<f~€<%—u. Butaz@if,‘i:%,
T=0ifk=1%1—wuand § =7+ 1if K = —1 — u, as we have seen in
the previous cases. So o0 — 0,7 — 0 ¢ —N, and @ applies in this case.
Moreover, since 0 < u < 1, holds just when —1 -5 <x <1-— 3.
Thus @ is satisfied assuming the stated conditions on k.

Therefore W5 ; is defined in one of the above ways if -1 —§ <x <1- 3.

There are the following overlaps of the conditions in Table [

Both P; and P, are defined for —% <K< % — 2u, and P; = P, just when

k=1_u.

Both Q1 and 95 are defined for u—% < k< %—u, and Q1 = Qs just when
1

KR = —5-

Both Wi 1 and Wa» are defined for u — § < £ < & —2u (if u < 1), but
Wi 1 # Wa o for all such k.

Both W; ; and W, ; are defined for u — % <k<1l-—2%

b and W1)1 = Wg’l

; _ 1
just when k = 3.

Both W5 2 and Wy 1 are defined for —1—3 <k < % —2u, and Wa 2 = Wh 4
1

just when k = —5 —w.

Propositions[3.3] [3:4 and [3-5] also give the following spectral estimates, for all € > 0:

The spectrum of P; consists of eigenvalues A\g < Ao < .-+, taking mul-
tiplicity into account, such that there are some D = D(k,u) > 0 and
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C = C(e,k,u) > 0 so that, for all k& € 2N,

e > (2k+ (L F1)(142(k +u))s + > Ds*(k+ 1), (45)
M < 2k+ (1 FD(A+2(k+u)))s
+ (2k 4+ 1+ 2(k 4+ u))pes” + p*Cs™ . (46)

The first term of the right-hand side of and for P;" and Py is 2ks
and 2(k + 1+ 2(k + u))s, respectively.

The spectrum of P, consists of eigenvalues \g < Ao < .-+, taking mul-
tiplicity into account, such that there are some D = D(k,u) > 0 and
C = C(e,k,u) > 0 so that, for all k& € 2N,

Me > 2k +4—(1£1)(1+2(k+u)))s +p?Ds*(k+1)7" (47)
M < (2k 44— (1£1)(1+2(k +u)))s
+ (2k + 3 — 2(k + u))pPes" + p*Cs™ . (48)

The first term of the right-hand side of and for Py and Py
becomes 2(k + 1 — 2(k 4+ u))s and 2(k + 2)s, respectively.

The spectrum of Q; consists of eigenvalues \; < A3 < ---, taking mul-
tiplicity into account, such that there are some D = D(x,u) > 0 and
C = C(e,k,u) > 0 so that, for all k € 2N + 1,

Me > (2k+2— (17 1)1 —2k))s +p?Ds*(k+1)7 (49)
M < (2k4+2—(1F 1)1 —2k))s + (2k + 1 + 2k)p2es® —l—,u2Cs (50)

The first term of the right-hand side of and for Qf and Q7 is
2(k+1)s and 2(k 4 2k)s, respectively.

The spectrum of Q, consists of eigenvalues \; < A3 < ---, taking mul-
tiplicity into account, such that there are some D = D(k,u) > 0 and
C = C(e,k,u) > 0 so that, for all k € 2N + 1,

A > (2k =2+ (1£1)(1 —2k))s + p?Ds"(k + 1) (51)
Me < (2k =2+ (1 £1)(1 = 2k))s + (2k — 1 — 2K)pes™ + p>Cs™ . (52)
The first term of the right-hand side of and for Q; and Q5 is
2(k — 2k)s and 2(k — 1)s, respectively.

For W, 1, we can take & = “TH satisfying . Moreover the maximum
eigenvalue of FsV is s(1F (2k+u) —u). Thus the spectrum of W 1 consists

of two groups of eigenvalues, A\g < Ay < --- and A\; < A3 < -+ repeated
according to multiplicity, such that there are some D = D(k,u) > 0, C =

Cle,k,u) > 0, C = Cle,k,u) > 0 and E = E(e, k) > 0 so that, for all
k € 2N,

Ao > (1— 2uuesuT_l)(2k +3-2kK)s

+12Ds (k+1)"% — 2uuCs ™ F (1 + 2k)s , (53)
M < (2k+4—-(1x1D)(26+u))s

+ (2k + 3 — 2r)e(p?s" + 4uus%) + 120s" + él/mEesuTJr1 ) (54)
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and, for all k£ € 2N + 1,

A= (1— 2#%65%)(2]41 +1+2(k+u))s

+ p2Ds*(k4+1)"" — 2,uu53% +(1+2(k+u))s, (55)
e < (2k+2+ (1 F1)(26 +u))s
2k + 1+ 2(k + u))e(pds™ + dpus > ) + p2Cs* + duuEs™> . (56)

e Wi 1 and W, » also have a discrete spectrum, which has the lower bound
given by and Proposition . We omit its explicit expression
because it will not be used. The lower estimate of Proposition
may not be possible for YW; ; and W, in general. In fact, according to
Remark , the existence of @ for Wi 1 (respectively, Wh o) is charac-
terized by the additional condition 2k > u (respectively, 2k < —3u), which
is an additional restriction.

Table [5| contains the information about the sign of the eigenvalues of P;, Q; and
W;,; given by the above spectral estimates.

Sign of eigenvalues
P1 + Vke2N
77; + ifk>2(k+u)—1even
k<i-u |+ Vke2N
Py + Vke2N
of + Vke2N+1
K> -3 + Vke2N+1
Qr
+ if k> -2k odd
Q2 + Vke2N+1
Wi ; + ifk>0

TABLE 5. Sign of the eigenvalues of P;, Q; and W, ;

4.2.2. Laplacians of the mazimum/minimum i.b.c.

Proposition 4.2. Tables @ @ and@ describe Apyax /min for the stated values of k.
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Amax,O Amin,()
K> —2 P1 K —ul| P
—Uu 772

Y
M| [N

1
5—u P2

TABLE 6. Description of Aax/min,o

Amaux,Q Amin,2
-3 Q K2 Q

1

5 Q2

N[

K < % —u Qs
TABLE 7. Description of Ay ax/min,2

Amax,l Amin,l
K>Uu— % Wl,l W171
Wa 1

IN IV
=N NTE

(SIS
N|—=

1 1
—§—u<,‘£§—§ Ws 1

KS—%—U Wa o /{<%—2u Wa o
TABLE 8. Description of A ax/min,1

Proof. The operators do 2, do,2, di,1 and 61,1 are like d and ¢ in Section So
Proposition and Remark give the following:

]:0 ifr>-1_u
do 2 max) D 2 57
D(do.2,max) { 1f/<;§f%fu, (57)
if Kk >1—
dOQmm :){ ' H_% " (58)
itk <35—u,
Fb2 oiftg>1_y
D(60.2.max) D ¢ > =2 59
0.2 {]-"212 iflﬂ?<%—u, (59)
ifr>—-1—u
D(0,2,min) D 2 60
02 { 1ff<a<—%—u, (60)
if K> -1
dl 1 max D) { . 2 (61)
1f/f§—%,
Foloifr>1
dllmm D{ 1 Hi% (62)
ifk <3,
ifr>1
611max D{ 2 (63)
1fn<%,
if k> -1
61,1,m1n D{ 2 (64)
1f/<;<—%,
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dO,Q,max = d0,2,min ) 50,2,max = 50,2,min if |”€ + U| >

Nl= M=

dl,l,max = dl,l,min ) 51,1,max = 51,1,min if ‘K?| >

On the other hand, since dg 1, d¢,1, di2 and d; 2 are multiplication operators, we
have

dO,l,max = dO,l,min ; 50,1,max = 50,1,min )

d1,2,max = d1,2,min ; 61,2,max = 61,2,min .

These are maximal multiplication operators [24, Examples I11-2.2 and V-3.22].
They satisfy the following;:

.7:? if/i>—%

D(d max/min) 2
(do,1,me/min) {.7:8 if v <3—2u,

Fhloifr>u—1
D(4, max/min) 2 ! 2 66
(%.1.masx/min) {.7-"21’1 if/{<%—u, (66)
D(d )5 f11’2 ifn>f% (67)
1,2,max/min f21,2 if k< % —2u ,
F?oifk>u—2
D 5 max/min D) ! 2 68
(91.2.max/min) {.7:22 ifr<i—u. (68)
By Remark , we also get
d min i
D(dmin,0) = D(do,1,min) N D(do,2,min) ;  dmin,0 = (dg’; . iﬁEZm‘“")i) , (69)
54, 1NN min,0
o min i
D(0min,1) = D(01,1,min) N D(01,2,min) s  Omin,1 = (51; , IEEZ’“T"’I;) , (70)

complementing Lemma [2.3]in this case.

From 7, Lemmas and and [44] Chapter XI-12, p. 338, Eq. (1)],
it follows that

FPoifk>—4

D(AY2 Y = D(dyax.0) = D(do 1 max) O D(do 2.1max) O
( mdx,O) ( ,0) ( 0,1, ) ( 0,2, ) Fg if K S _1 u,

2
FO ifk>1_y
D(AY2 ) = D(dumino) = D(do1 min) N D(do 2.min) D 41 -2
( mln,O) ( ,0) ( 0,1, ) ( 0,2, ) fg ifrk < % — 5
Foifk> -1
D(AY2 ) = D(Smin1) = D(61.1min) N D(61 2.min) O 4~ 2
(Aax.2) = D(Omin,1) = D(01,1,min) N D(61,2,min) F2 o<1,
FZ ifg>1
D(AY2 Y = D(Smax1) = D(61 1 max) N D(61 2.max) D 4 L — 2
( m1n,2) ( 71) ( 1,1, ) ( 1,2, ) ]_—22 if < % —u,
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D(Aifxg) = D(5m1n70 + dmaX,l) = D((;min,()) N D(dmaX,l)
D (D(d0,1,min) @ D(d0,2,min)) N (D(d1,1,max © D(d1,2,max))
Fl, fr>u—1
D Fyy f—f-—u<w< -3
Fio ifr<—1—u,
D(Aim 1) = D(Gmas.0 + dunin1) = D(Gmas.0) N D(iyin,1)
D (D(60,1,max) € D(d0,2,max)) N (D(d1,1,min © D(d1 2,min))
.7:11,1 if kK > %
D{Fy, fi-u<k<i
2 if k< $—2u.
1/2

Since F, F7 and F}; are cores of P;’”, Q;/ % and Wilf, respectively, and taking
into account Table [4] it follows that

1/2 7311/2 if/{>—% 1/2 7311/2 if kK > %—u
max,0 P21/2 iflﬁg—%—u, min,0 P21/2 if kK < %—u,
1/2 . 1/2 .
AM2Z o Ql/ if k> —1 AVZ o Ql/ if k> 1
max,2 Q;/Q i< 1 min,2 Q;/Q fr<l_y
> 73 P} )

W11/12 if K >u—3
1/2 1/2 . 1 1
Apaxa 2 1/\/2’/1 if —5—u<r<—3
W21/22 ifng—%—u,
W11/12 if K >
1/2 /2 .1 1
Apin1 2 4WL if g —u<k<3
W21/22 if v <$—2u.

SIS

But these inclusions are equalities because they involve self-adjoint operators. [
Proposition 4.3. We have ker Ay /min = 0.

Proof. We have ker Aax /min,ev = 0 because ker dpax /min,0 = 0 and ker dpay jmin,1 =
0 by Lemma and , since do 1 max/min a0d 01 2 max/min are maximal
multiplication operators in Li by continuous non-vanishing functions

Since 0(Amax/min,ev) is bounded away from 0, we get R(Apax/min,0) = L =
R(Amax/min,2) by the spectral theorem. The maximal multiplication operator by
pT%in L2 will be also denoted by pTt. Let ¢ € D(Amax/min,0) such that Aax /min,0® €

D(p*). By (43),
1 —u u —u
1;[} = ;pudO,Q,max/mind) S D(6072,max/min P ) N D(p 50,27max/min P )

= D(P_u 61,1,max/min) N D((Sl,l,max/min) .

Then ¢ € D(dmax/min,1) DY since p~ ¥ € Lﬁ_ and 01 2 max/min 15 the maximal
multiplication operator by —up~". In the following, for the sake of simplicity, the

SWe may also use Table [5| and Proposition for some values of k (Tables |§| and E)



30 J.A. ALVAREZ LOPEZ, M. CALAZA, AND C. FRANCO

notation d0,2a 51,17 50,2 and A0 is used for d0,27max/min7 6171,max/mina 60,2,max/min and
A max /min,0, Tespectively. It also follows from that

pp~td + o1 11/)>
dmax min + 5max min = —,u
/ ,0(¢) / ,1(¢) (d0,2¢ — pp ’L/J
_ (ro7 o+ 0iaptdo2d _ (upT b+ o 02do2d _ (50" Ao
0 0 0 '

Since R(Amax/minﬁ()) = Liv we get

R(Pu) 2 0C R(dmax/min,O) + R(émax/min,l) .

With an analogous argument, using Lemma instead of , we get

0® R(Pu) - R(dmax/min,o) + R(émax/min,l) .

Therefore
R(pu) @ R(pu) - R(dmax/min,O) + R(émax/min,l) )
obtaining that R(dyax/min,0) + R(Omax/min,1) is dense in L% & L3 because R(p") is
dense in L2 . Thus ker A ax/min1 = 0 [9, Lemma 2.1]. O
+ /min,

Corollary 4.4. Aax/minev @A Apax/min,1 have the same eigenvalues, with the
same multiplicity.
Proof. This is a direct consequence of Proposition [£.3] and Lemma O

Remark 10. Some generalities about this complex of length two hold for all u > 0,

like 7, Proposition and Corollary But the main results require
0<u<l

Concerning the spectrum, the following corollary fills the gaps in Tables

Corollary 4.5. Tablesg and describe the spectra of Apax /min,ev 014 Apyax /min,1
in terms of the spectra of P;, Q; and W; ; for the stated values of k.

U(Amax,cv) U(Amin,cv)

K> -1 a(P1® Q1) K>3 a(P1® Q1)
—%—u<fi§—% o(Wa,1) %—u§m< % o(Wa 1)

/{S—%—u o(Ps ® Qo) l£<%—u o(Py ® Qo)

TABLE 9. Spectrum of Ay .y /min,ev

U(Amax,l) U(Amin,l)
K>u—3 oc(Wi1) K>3 oW 1)
~l<n<u—1 [o(PieQ) 3-u<Kr<3 a(Wei)
1 u<k<-1 o(Wa1) 1-u<k<i—u|oPdQy)
K< —1—u o(Wa,2) k<3 —2u o(W2,2)

TABLE 10. Spectrum of Apay/min,1

Proof. This is a direct consequence of Proposition and Corollary O
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4.3. The wave operator. For the Hermitian bundle versions of F and F', con-
sider the wave operator exp(itDiax/min) (i = vV—1) on L*(E) or L?(F), which is
bounded.

Proposition 4.6. For ¢ in L*(E) or L*(F), let ¢y = exp(it Dimax/min)P-  If
supp ¢ C (0,a] for some a > 0, then supp ¢y C (0,a + |t]] for all t € R.

Proof. The case of E is given by [4, Proposition 8.7 (ii)]. Then consider the case
of F, where the proof needs a slight change because the needed description of
D*°(Amax/min) 18 not available. Since exp(it Dyax/min) is bounded, we can assume
that ¢ € D®(Anax/min). Write ¢y = dr0 + ¢r1 + ¢r2 with ¢y, € CF(F,) = CF°

(r=0,2), and ¢y = (‘b“’l) € O%(F) = C* @ CY. Suppose that ¢ > 0, the

Pt,1,2
other case being analogous. For any ¢ > a,
d (&3 (3 ) )
7 |6:(p)I* dp = / ((iDy, ¢1) + (64,iD1)) (p) dp — |de(a + 1) |?
a+t a+t

=i [ (D060 = 60 Do) do ~ lorla+ 07

+t

Now, do1 = dp,1 and d; 2 = 97,2 are multiplication operators by real valued func-
tions. Moreover dy 2 and dg 2 are equal to dip and —%, respectively, up to the sum

of multiplication operators by the same real valued functions, and the same is true
for dl,l and 51,1. Thus

(D¢, 1) — (¢, D)

= (60,10¢,1,1 + 00,20¢,1,2, Pr,0) + (di,10¢,1,1 + d1,2011,2, Pr,2)
+ (do,19pt,0 + 01,1012, Pr,1,1) + (do2de,0 + 12012, Pr.1.2)
— (¢4,0,00,10¢,1,1 + 00,2011,2) — (1,2, d110e1,1 + di204,1,2)
—(¢1,1,1,do,101,0 + 61101,2) — (Pr,1,2,do,2¢t,0 + 01,201 2)

= =@} 12060 + Ph11062 — Dhobri1 + D obr e
+ Gt00; 10 — G211+ e110)y — G120t

=2 %(@,Om + G102 + d)t,l,l% + Gt oPr1.2)

=2iS(pr11012 + brodeie) -

Therefore
i [ (D616~ (6. Do0) ) dp € B

and

/ac ((Déy, d¢) — (¢, Doy))(p) dp’

+t
< 2[(h4,1,101,2 + Pr,008,1,2)(€) = (D1,1,101,2 + Dr00t,1,2) (@ +1)]
< a1 (@) + |oe2()* + de,2()* + deo(e)?
+loe1(a+ 1)+ [de2(a+ ) + |pr12(a+ ) + |prola+t)[?
= [6u(c)* + pe(a + 1) .
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Since t — ¢; defines a differentiable map with values in L?(F), it follows that there
is a sequence a < ¢; T oo such that ¢;(c;) — 0, and
d (o]

N .
G| teoPdo=tm g [ jont) dp <timlse =0
a+t ¢ a+t v

So
2d 2d = 2d =0. O
/a . [¢¢(p)|"dp < /a l¢o(p)|” dp /a [o(p)|" dp

+
5. WITTEN’S PERTURBATION ON A CONE

For rel-Morse functions, the rel-local analysis of the Witten’s perturbed Lapla-
cian will be reduced to the case of the functions :I:% p? on a stratum of a cone with
a model adapted metric, where p denotes the radial function. This kind of rel-local
analysis begins in this section.

5.1. Witten’s perturbation. To begin with, recall the following generalities about
the Witten’s perturbation. Let M = (M, g) be a Riemannian n-manifold. For all
r €M and a € T, M*, let

.
as=(=1)""TTl o A k= —1,: on /\TwM* :

involving the Hodge star operator x on A T, M* defined by any choice of orienta-
tion of T, M. For any f € C°°(M), E. Witten [43] has introduced the following
perturbations of d, §, D and A, depending on s > 0:

dy=e " de’f =d+ sdfn, (71)

bs=el e =5 —sdf, (72)
D,=d,+;=D+ sR,

Ay =D?=d6, +sds = A+ s(RD + DR) + s*R? (73)

where R = dfA —df 1. Notice that d, = di; thus Dy and A, are formally self-adjoint.
By analyzing the terms RD + DR and R?, the expression becomes
A, = A+ sHessf + s |df]? , (74)

where Hessf is an endomorphism defined by Hess f [36, Lemma 9.17], satisfying
|Hess f| = | Hess f| [4, Section 9].

5.2. De Rham operators on a cone. Let L be a non-empty compact stratifica-
tion. Consider a stratum N of L, and the corresponding stratum M = N x Ry of
¢(L). We use the notation 7 = dimN and n = dimM =n+ 1. Let 7 : M - N
be the first factor projection, and p the radial function on ¢(L). From ATM* =
ATN* K A\TR* , we get a canonical identity

/\ TM* = 1* /\ TN* @ dp A7 /\1 TN*=n* /\ TN*@®n* T/\l TN*  (75)

for every degree r. So
Q" (M) =C™®(Ry,Q2"(N))@dp AC=(Ry, Q" (N)) (76)
= C®(R4, Q" (N)) ® C®(Ry, Q7 H(N)) . (77)

Here, smooth functions Ry — Q(N) are defined by considering Q(N) as Fréchet
space with the weak C*° topology. In this section, all matrix expressions of vector
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bundle homomorphisms on A" TM* or differential operators on Q" (M) will be
considered with respect to the decompositions and .
Let d and d denote the exterior derivatives on Q(M) and Q(N), respectively. We

have [4, Lemma 10.1]
d 0
d= = (78)
(4%

Fix a general adapted metric § on N. For u > 0, the metric g = p?“§ + dp? is
a general adapted metric on M. The induced metrics on A TM* and ATN* are
also denoted by g and g, respectively. Fix some degree r € {0,1,...,n}, and, to
simplify the expressions, let

k=(n—-2r—-1)%. (79)

According to ,
g = p—27'ug @ p—2(7‘—1)ug (80)
on \"TM*. Choose an orientation on an open subset W C N, and let & denote

the corresponding g-volume form on W. Consider the orientation on W x R, C M
so that the corresponding g-volume form is

w=p" VAP NG . (81)

The corresponding Hodge star operators on AT(W x R;)* and ATW™* will be
denoted by * and *, respectively. Like in [4, Lemma 10.2], from and , it

follows that )
_ 0 p2 rtu) &
* = <(_1)Tp2ﬁ * 0 ) (82)

on N"T(W x Ry)*. Let L?Q"(M) = L?*Q"(M,g) and L?Q"(N) = L*Q"(N,3).
From and , we also get that induces the identity of Hilbert Spacesﬂ
L*Q" (M) = (L%, ® L*Q"(N)) @ (L2, ® L*Q"H(N)) . (83)

Let & and § denote the exterior coderivatives on Q(M) and Q(N), respectively. Like
in [4, Lemma 10.3], using , and @D, we get

—2u 5 _d -1
s= (P70 2(_’24?“)” (84)
0 —p76

on Q"(M). Let A and A denote the Laplacians on Q(M) and Q(N), respectively.
Like in [4, Corollary 10.4], from (78], and (9), it follows that

A= (_zupiu—l ; _2“51d> (85)

on Q" (M), where
P=p2"A— % —2kp 1t d% , (86)
Q=pA— L —ostu)Lpt. (87)

6Recall that, for Hilbert spaces ' and $”, with scalar products (, Y and {, )", the notation
$' ® " is used for the Hilbert space tensor product. This is the Hilbert space completion of the
algebraic tensor product ' ® H” with respect to the scalar product defined by (v’ @u”,v' ®v"") =
<u/7 ,U/>/ <u//, UII>II.
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5.3. Witten’s perturbation on a cone. Let d, ds, Ds and A (s > 0) denote
the Witten’s perturbations of d, §, D and A induced by the function f = j:%p2 on
M. The more explicit notation df, §F, D¥ and AT may be used if needed. In this
case, df = £pdp. According to ,

_(0 0 _ (0 p
pdp/\:(p 0), —pdpJ:(O 0).

So, by (@), B4, () and (),

d 0
ds = -, 88
(di) + sp —d) (88)
—2u 5 _d _ -1
5, = (p 0 —g 2k :“)? + Sp) , (89)
0 —p~ %4

on 2"(M). Now,

_ _ . (0 p
R:I:p(dp/\dpJ):lz(p O) ,

and therefore

R? = <p02 [?2) =’ (90)
Like in [4] Lemma 10.6], we get
RD+DR=FV (91)
on Q"(M), where V is given by . As a consequence of 7 and , we
obtain
A= <—2up€s2“_15 _272;8 1d) (92)

on Q"(M), where

Py=p A+ H—2kp™" 45 T 5(1+2r), (93)
Qs =p A+ H =2k +u)gh p Fs(—1+2(r +u)) . (94)

6. SPLITTING OF THE WITTEN’S COMPLEX ON A CONE

6.1. Spectral decomposition on the link of the cone. Theorem [I.1]is proved
by induction on the depth. Thus, with the notation of Section [5 suppose that g
is good, and ﬁmax /min Satisfies the statement of Theorem Moreover suppose
that g is also good; that is, u < 1.

Let ﬁmax/min = ker ﬁmax/min = ker Amax/mm, which is a graded subspace of
Q(N) N L?>Q(N). For every degree r, let ﬁmax/min,r—hﬁ;lax/min,r C L*Q7(N)
be the images of cimax/min,r,l and Smax/min,r, respectively, which are closed sub-
spaces. By restriction, Emax /min defines self-adjoint operators in ﬁmax /min,r—1 and

*

max /min,r—17 with the same eigenvalues [4, Section 5.1]. For any eigenvalue A of
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*

the restriction of Apax/min t0 Rimax/min,r—1, 16t Rmax/min,rq;\ and Rmax/min,rqj\

denote the corresponding S\—eigenspaces. We hav

—

LQQT(N) = :nax/min D @ (Rmax/min,r—l,x D R:nax/min,r,j\’) ) (95)
N

>

where X and \ run in the spectrum of the restrictions of ﬁmax/mm to ﬁmax/min,rq
and R*

max /min,r respectively.

T

max /min’ consider the canon-

6.2. Subcomplexes of length one. Given 0 # v € H
ical identities

CP=CPyCQ(M), CF=CPdpAyC QT (M). (96)
The following result follows from and .

Lemma 6.1. For s >0, ds and &5 define maps

ds,r—l dsyr ds,r+1
0 C_?_O y O_?_o dp Ny =———=
63,7‘—1 5s,r 5s,r+1

Moreover, using 7
ds,T:dipZtspa 6sr:_d%)_2’ip_1:tsp'

s

Let &, denote the subcomplex of length one of (2(M),ds) defined by

— 1 —
El0=CT1 =00, &5 =CydpAy=C5.

The closure of £, ¢ in L2Q(M) is denoted by L2E,. By (83),
L& =L  v=L.,, L& =L dpry=L., .

Assume now that s > 0. With the notation of Section 4.1} consider the real
version of the elliptic complex (F, d) determined by s and x (given by ) Using
Lemma [6.1] and (9)), like in [4, Proposition 12.3], we get the following.

Proposition 6.2. The operator p* : Li’+ — Li defines a unitary isomorphism

L2E, — L?(E), which restricts to an isomorphism of complezes, (E,0,ds) —
(C§°(E),d), up to a shift of degree.

By Proposition (€4,0,ds) has a maximum/minimum Hilbert complex ex-
tension in L?E,. Let (D,,d, ) be the maximum/minimum Hilbert complex ex-

tension of (&,,0,ds) if v € anax/min, and A; . the corresponding Laplacian. Let

Hsy = Hi, @ Hg# = ker A, ,, with the induced grading. The more explicit

notation d Afv and ’Hsiv = H;t’{ @ "H;t’vr*l may be also used.

77

Corollary 6.3. (i) A, has a discrete spectrum.
(it) The dimensions of Hi‘f;f and Hg“—;;‘“ are given in Table .
(i3) Ifes € Hs~ with norm one for every s, and h is a bounded measurable function
on Ry with h(p) — 1 as p — 0, then (hes,es) — 1 as s — oo.
() All nonzero eigenvalues of A~ are positive and in O(s) as s — oo.
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v € Hinax 7 € Hinin
, ;741 -, —,r+1 , ,r+1 -, —,r+1
H;’YT HIVTJF Hs,vr Hs,'yﬂr ’H;’YT ,H;F,’YT+ HSWT Hs,WTJr
K> % 1 0
- 1 0
S 0 1

TABLE 11. Dimensions of HE" and HE T

Proof. This follows from Propositions [6.2] and Corollary [3.7] Section [£.1.1] and
the choice made to define d . O

6.3. Subomplexes of length two. Let = \/i for an eigenvalue X of the restric-

tion of Anax/min t0 Rimax/min,r—1- According to [4, Section 5.1], there are nonzero
differential forms,

o c Rmax/min,r—l,s\ - QT(N) ’ 6 S ﬁ* C Qr_l(N) ’

max/min,rfl,s\
such that d8 = pa and 6o = pB. Consider the canonical identities

X =CTBCUHM), CF=CFdphac QTHM), (97)
CP 0T =CFa+C0FdpABCQ(M). (98)

The following result follows from and .

Lemma 6.4. For s >0, ds and §5 define maps

ds77‘_2 ds,r—l
0 cr B Cra+C¥dpAp
65,7‘72 53,7‘71
ds,'r d517'+1
C¥dpha =————= 0.
55,7“ 6s,r+1

Moreover, according to and ,

dp
d
ds,r = (UTP + sp _:U/) ;
(551‘ = <_ddp a 2l€€;1 * Sp)
s —pp u

"Consider a family of Hilbert spaces, ), with scalar product ( , ),. Recall that the Hilbert
space direct sum, @, ¢, is the Hilbert space completion of the algebraic direct sum, @, H%, with

respect to the scalar product ((u®), (v*)) = >, (u*, v%)q. Thus @aﬁ“ = P, H® if and only if
the family is finite.
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Let Fa 0 = ]-"’"_170 ® Fo 50D .7-'2)731,0 denote the subcomplex of length two of

a?

(Q(M),ds) defined by

[

50 =CTha+CTdpAB=CT0BCT, .

—1 — 1 —
‘FQ,B,O:C-T‘?OBZC-?‘?O’ ]:r:%’O:C_T_(jodp/\a: f()’

The closure of F, g0 in L?Q(M) is denoted by L2F, 5. By (83),

2 —1 2 712 2 1 2 — 72
L f(z,ﬁ = Ln+u,+ﬁ - Ln+u,+ ) L fr?Lﬁ = L/{,+ dp/\a = Ln,+ 3

«

LPFLs=L. ya+ L2, dpANB=L2 L2, .

Assume now that s > 0. With the notation of Section [£.2] consider the real
version of the elliptic complex (F,d) determined by s and « (given by ) Using
Lemma and @D, we get the following (cf. [4] Proposition 12.9]).

Proposition 6.5. If u < 1, then p® : Li’Jr — L% and p"t - Li+u’+ — L%
define a unitary isomorphism L*F, g — L?(F), which restricts to an isomorphism
of complexes, (Fu,p,0,ds) = (C§°(F),d), up to a shift of degree.

By Proposition (Fa.8,0,ds) has a maximum/minimum Hilbert complex ex-
tension in L2F, 5. Let (D4 g,ds,0,5) be the maximum/minimum Hilbert complex
extension of (Fu g,0,ds) if a € Rmax/min,rq,i and 8 € R;knax/min,rfl,j\' Let A o8
denote the corresponding Laplacian. The more explicit notation dsia 5 and A:m 3

may be used.

Corollary 6.6. (i) As o has a discrete spectrum.
(i) The eigenvalues of Ay o p are positive and in O(s) as s — 0.

Proof. In the case u < 1, this follows from Proposition and Corollary In
the case u = 1, this is the content of [4, Proposition 12.11]. O

Remark 11. According to 7, we have

ASEH—2HP71%:FS(1+2KJ) on C¥* =CF,
ASEH—Z/@d%p_liFs(—l—i—Zi) on CF =C¥dpAy,
Ay=H—-2rk+u)p ! d% +p?p M Fs(1+2(k+u) onCF=C¥P,
ASEH—Q&%p‘l+M2p_2“¥s(—1+2/@) on C¥ =CFdpNha,
and
A. = Pp,,s —QMUP_I
* _ZMup_zu_l Qu,s

on CP @ CP =CPa+ Cdp A B, where
P,s=H— 2kp~ L dip +pu?p~2 F 5(1 + 2k)
Qus = H = 2(k +u)gh p~" + p2p™ " F s(~1+2(k +u)) .

So the results of Section [3] could be applied to these expressions. We opted for
analyzing first the complexes of Section [] for the sake of simplicity because we have
a="b=0, Lf_ is used instead of Li,+ or Li—&-u,—‘—? and Remarkis directly applied.
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6.4. Splitting into subcomplexes. Let Cpax/min,0 denote an orthonormal frame
of ﬁmax /min consisting of homogeneous differential forms. For every positive eigen-
value p of Bmax /min> 1€t Cinax/min,, be an orthonormal frame of the p-eigenspace of
ﬁmax /min consisting of differential forms a + 3 like in Section m Then let

@dsv@@@dsa,ﬁ;

noatp

d, ,max/min —

where vy Tuns in Cpax/min,0, 4 Tuns in the positive spectrum of 5max/mln, and a+
runs in Cpax/min,u- ©Lhe notation d*t may be also used when di and dF

s,max/min s,a,8
are considered.

Proposition 6.7. We have dg max/min =

ds,max/min'
Proof. This follows like [4, Proposition 12.12], using [4, Lemma 5.2], [9, Lemma 3.6

and (2.38b)], (76) and (95). m

Let Hg max/min = D, ’H;max/min = ker A max/min, With the induced grading.

The superindex “+” may be added to this notation to indicate that we are referring
to AT

s,max/min’
Corollary 6.8. (i) A, max/min has a discrete spectrum.

(it) Table|14 describes the isomorphism class of 'HS max/min-

(7ii) If es € Hgmax/min has norm one for every s, and h is a bounded measurable
function on Ry with h(p) = 1 as p — 0, then (hes,es) = 1 as s — 0.

() Let 0 < Ag max/min,0 < As;max/min,1 < --- be the eigenvalues of Ag max/min
repeated according to their multiplicities. Gwen k € N, if Ay max/mink > 0 for
some s, then Ag max/mink > 0 for all s, and Ag max/mink € O(S) as s — oc.

(v) There is some 6 > 0 such that lim infy, )\s’max/min’kk‘_‘g > 0.

Himax | Momdd | Himw | Homin
>1 H". (N 0
K= 21 Hrqqax(N) 0 mln( )
K <3
| | 21 r 0 Hgnn(N)
K < ) 0 Hmax(N)

TABLE 12. Spaces isomorphic to HE

s max/mm

Proof. In the case u = 1, this result was already shown in [4, Corollary 12.13]. So
we consider only the case 0 < u < 1. For all v, 11 and a + 3 as above, A, 5 and
A; 3 have a discrete spectrum by Corollaries and (). Moreover the
union of their spectra has no accumulation points according to Section [ and since
A nax/min is discrete. Then (f) follows by Proposition

Now, properties (ii)—(iv) follow directly from Corollaries[6.3]and and Propo-
sition ) )

’1:10 prove 7 let 0 < Amax/min,O < Amax/min,l < e
of Apax/min, repeated according to their multiplicities.
rem with g, there is some Cp, 6y > 0 such that

S\max/min,é > COKGO (99)

denote the eigenvalues
Since N satisfies Theo-
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for all ¢ large enough. Consider the counting function
s),t;‘:max/min()\)::/%.é{kEN|)\;|:max/mink <)\} ()‘>0

From Proposition [£.3] Corollary .5 (39)-[@2), (F), (7)., (@9), 1), [E3), .

and (| ., and the choices made to define d, and da 5 ( SeCthIlb 6.2 and 6.3)), it
follows that there are some Cy,Cs > 0 and C’g, C’% € R such that

mztmax/mm(/\)
< # { (k,0) € N? | Ck + Ca A jmin,e(k + 1) 7" + C4 < A}

< H#{(k,0) € N? | C1k 4 CoCol% (k4+1)"" 4+ C35 < A}

A—Cy A—Cs—Cik\ %0
< p< (A3 RN
0< Cl,_( e )(+>}

S#{w@eW

Consider the function

Fo|Le= 220 S, f<x>=(“c3‘c””);< F1)

Cl CQOO
Elementary calculus shows that f vanishes at © = —1, a, it reaches its maximum at
AU — Cg’u — Cl
r=0b:= ,
Ci1(1 4 u)

and it is strictly increasing (respectively, decreasing) on [—1, b] (respectively, [b, a]).
It follows thatf]

nE (A ’ z)dx + 2f(b 1.
s,max/mm()g/of() + f()+a+

#6) = ()\—03—1—01)910 <u(A—03+01)>é‘6
(1 +u)C2Cy (1+u)Cy ’
and

a A—fs _ _ % *—10'3 . %
/ f(z)dz < / : <>\C’301I> dz / ‘ (x4 1)% dz
0 0 C2Co

<<ﬂ@ @%“ o(A — @+a)
— \(2+60)(C200) 90 01 2u+90 ot

o 90(/\—03)90 ()\ C +C

(24 60)% (2u + 0p)* (czco)%cl+90 '

But

Nl

8A similar argument is made in the proof of [, Corollary 12.13-(viii)]. In that case, the authors
use a strictly decreasing function f : (—oo, a] — [0, 00). The resulting estimate should be
a
+
W prin ) < [ F@ o+ F0) +a+ 1,

but the terms f(0 ) + a + 1 were missing in that publication. This correction does not affect the
final estimate of NT ) obtained there.

s max/mm(
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So ‘ﬁimax/min(/\) < CA% ! for some C' > 0 and all large enough A, giving (v)
with 6 = 1E% 4 1. O

Table [[3] describes the above conditions on & in terms of r.

1 n—=1_ 1
K>3 | TS5 2u
1 n1 1
Kl <3 |Ir="F 1<z
1 n—1 1
RE—3 | 7275 ta

TABLE 13. Correspondence between conditions on x and r

7. RELATIVELY LOCAL MODEL OF THE WITTEN’S PERTURBATION

Let m € N, and let Ly, ..., L, be compact stratifications. For each i =1, ..., a,
let N; be a dense stratum of L;, let k; = dim N; + 1, and let %; and p; be the vertex
and radial function of ¢(L;). Then M :=R™ x [[{_, (N; x Ry) is a dense stratum
of A :=R™ x [[{_, ¢(L;). For any relatively compact open neighborhood O of
x:=(0,%1,...,%q), all general adapted metrics on M are quasi-isometric on M NO
to a metric of the form g = go + >0, p7*“'g; + (dp;)?, where gy is the Euclidean
metric on R™, every g; is a general adapted metric on N;, and u; > 0. Suppose
that g is good; i.e., the metrics g; are good, and u; < 1. We can assume that every
N, is connected, which means that the fiber of lim : M — M over z consists of
a unique point, which can be identified to = (see [d, Proof of Proposition 3.20]).
According to Section the rel-local model of a rel-Morse function around a rel-
critical point is of the form f = 2(p2 — p%), where py is the radial function of
R™% % [[ ez, ¢(Li), for some decomposition m = my +m_ (my € N), and some
partition of {1,...,a} into sets I1. The rel-critical set of f consists only of . Let
ds, 0s, Ds and Ag be the Witten’s perturbations of d, §, D and A on (M) induced
by f. Let Hy max/min = D, ’H:’max/min = ker Ay max/min, With the induced grading.
The following result is a direct consequence of Corollary and [4, Example 9.1
and Lemma 5.1], taking also into account Table

Corollary 7.1. (i) A, max/min has a discrete spectrum.
(i) We have

a

:,max/min = @ H;:ax/min(Ni) P

(r1,ea) =1

where (r1,...,7r4) Tuns in the subset of N® defined by the conditions

a
r:m_+2ri+|f_|,
i=1

ry < B4 2}“ ifiel, N
rp > k:i;1 4 ﬁ ’Lf’L cl } f07“ Hs,max ’
rp < Bl — o ifie Iy .
r; > kigl _ 211” ZfZ el } fOT Hs,min .
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(7ii) If es € Hy max/min With norm one for every s, and h is a bounded measurable
function on Ry with h(p) — 1 as p — 0, then (hes,es) = 1 as s — 0.

() Let 0 < Agmax/min,0 < Asmax/min,1 < -+ be the eigenvalues of Ay max/min;
repeated according to their multiplicities. Given k € N, if Ay max/min,k > 0 for
some s, then Ag max/min,k > 0 for all s and Ay pax /minx € O(s) as s — .

(v) There is some 6 > 0 such that liminfy A max/min,k k=% > 0.

For every p > 0, let B, be the open ball of center 0 and radius p in R™, and let

Us,p =B, x [[(Ni x (0,p)) € M .

i=1

Taking complex coefficients, by Propositions and[6.7] the following result
clearly boils down to the case of Proposition [4.6]

Proposition 7.2. Fora € L2Q(M), let oy = exp(it D max/min )@~ Ifsuppa C Uy 4
for some a > 0, then supp ay C Uy 44| for all t € R.

8. PROOF OF THEOREM [I.1]

This theorem follows from Corollary , with the same arguments as [4]
Theorem 1.1]. More precisely, [4, Propositions 14.2 and 14.3] are used to glob-
alize the properties of the rel-local model, the min-max principle (see e.g. [35]
Theorem XIII.1]) is used to show that the properties of the statement are invari-
ant by taking Witten’s perturbation defined by rel-admissible functions, and Re-
mark |§| , is used to produce rel-admissible cutoff functions and partitions
of unity with bounded differential. These functions are needed for the Witten’s
perturbation and to apply [4, Propositions 14.2 and 14.3].

9. FUNCTIONAL CALCULUS

Let M be a stratum of a compact stratification, equipped with a good general
adapted metric g. Let f be any rel-admissible function on M, and let dg, 5, Ds and
Ay be the corresponding Witten’s perturbations of d, §, D and A. Since f is rel-
admissible, for every s, A; — A is a homomorphism with uniformly bounded norm
by . From and the min-max principle (see e.g. [35, Theorem XIIL.1]), it
also follows that D<As,max/min) = D(Amax/min)u DOO(As,max/min) = Doo(Amax/min)7
and that the properties stated in Theorem can be extended to the perturbation
As,max min-

For /any rapidly decaying function ¢ on R, ¢(A; max/min) is a Hilbert-Schmidt
operator on L?Q(M) by the version of Theorem for Ay max/min- In fact,
A(As max/min) i a trace class operator because ¢ can be given as the product
of two rapidly decaying functions, |¢|*/? and sign(¢)|¢|'/2, where sign(¢)(z) =
sign(¢(z)) € {£1} if ¢(z) # 0.

Like in the case of closed manifolds (see e.g. [36, Chapters 5 and 8]), ¢(As max/min)
is given by a Schwartz kernel K, and Tr ¢(A; max/min) €quals the integral of the
pointwise trace of K on the diagonal. But we do not know whether K is uniformly
bounded because a “rel-Sobolev embedding theorem” is missing [4, Section 19].
Theorem becomes important in our arguments to make up for this lack.
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10. THE WAVE OPERATOR

With the notation of Section [9} suppose that f is a rel-Morse function. Take a
general chart O = O’ around every x € Crit(f), like in Section Let us add
the subindex “z” to the notation of M’, N;, m4 and I in this case. Take a good
adapted metric g/, on M. of the form used in Section Consider the Witten’s
perturbed operators d, o, 0, ., D; o and A} o on Q(M;) defined by the function
f":= 3(p% —p%) (a prime and the subindex z is added to their notation). Add also
a prime to the notation of the sets U, , of Sectionm considered in M. Let pg > 0
such that m C O'. Then, for 0 < p < po, there is some open U, , C M so that
Uz,p = U, ,. Moreover, according to Remark |3, we can assume g|v, , = g;|v;

z,p0 "
Consider the wave equation

da .
ditt —iDsay =0, (100)

where oy € Q(M) depends smoothly on t. Given any a € D*(A; max/min); its
solution with the initial condition oy = «a is given by a; = exp(it D max/min)-
Moreover a usual energy estimate shows that such a solution is unique (see e.g. [36,
Proposition 7.4]); in fact, given any ¢ > 0, it is also unique for |¢| < c.

Proposition 10.1. Let 0 < a < b < pg and o € L2Q(M). The following properties
hold for oy = exp(it D max /min) -

(1) Ifsuppa C M N\ Uy, then suppoy C M N\ Uy oy for 0 < |t| < a.

(71) If suppa C Uy 4, then supp oy C Uy qye) for 0 <[t < b —a.

Proof. First, let us prove (ii). We can assume that a € D> (A, max/min) because
exp(it D max/min) is bounded. Since suppa C U, 4, we have a\UWO = o[y, o
for a unique o’ € Q(M;) supported in U; ,. We get o' € D*(A!

a:,s,max/min) be-

cause o € D™(A, yax/min). Let o) = exp(itD), . ;,)a'. By Proposition

we have suppa; C Us appy for 0 < [t} < b—a. Then O‘“U;,,)O = Bilu,,, for

a unique f; € Q(M) supported in U, q1py|- Now, B; € D*(A max/min) because
oy € D¥(A] | ax/min)- Moreover B, satisfies (100) for [t < b — a with initial
condition By = a. So B; = a4 by the uniqueness of the solution of (100), obtaining
supp oy C Uy a4 t|-

Finally, follows from in the following way. For any 8 € Qo(M) with
supp B C Ugq—je), let Br = exp(iTDg max/min)B for 7 € R. By , we get
supp f— C Uy q, and therefore (oy, 5) = (a, f—;) = 0. This shows that suppay C
M ~ ULG—M' [l

Remark 12. The steps given to achieve Proposition [10.1] are simpler here than in
[]. In fact, it would be difficult to adapt the arguments of [4] since an expression
of D*°(Apax/min) s missing in Section

11. PROOF OF THEOREM

This theorem now follows like [4, Theorem 1.2]. Thus the details are omitted.
Consider the notation of Section By , the numbers 37 /min A€ also

given by the cohomology of ds max/min = @max/min + SdfA on D(ds max/min) =
eisf D(dmax/min) = D(dmax/min)~
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Let ¢ be a smooth rapidly decaying function on R with ¢(0) = 1. Then
(A max/min) is of trace class (Section@, and let p, max/min = Tr(qb(As,Inax/mim,.)).
Then the following result follows formally like [36], Proposition 14.3].

Proposition 11.1. We have
k

k
Z(_l)k_r ITnax/min < Z(_l)k_rﬂ‘g,max/min (0 <k< n) ’
r=0 r=0

Xmax/min = Z<_1)T :U’g,max/min :
r=0

For p < po, let U, = U, Us,p, with = running in Crit,e(f). Fix some p; > 0
such that 4p; < po. Let & and § be the Hilbert subspaces of L?Q(M) consisting
of forms essentially supported in M \ U,, and M \ Us,,, respectively. Since

As,ma»x/min = Amax/min +s Hessf + 82 |df|2
on D(As max/min) = D(Amax/min) for all s > 0 by , it follows that there is some
C > 0 so that, if s is large enough,
As,max/min > Amax/min + 082 on &N D(Amax/min) . (101)
Let h be a rel-admissible function on M such that h >0, h=1on U, and h =0
on M\ Us,, (Remark |§| ) Then Ty max/min = As,max/min + hCs?, with domain
D(Amax/min), is self-adjoint in L?Q(M) with a discrete spectrum. Moreover

Ts,max/min Z Amax/rmin + 052 (102)
for s large enough by (101)).
Take some ¢ € Sy such that ¢ > 0, ¢(0) = 1, supp ¢ C [—p1, p1], and @l o0y is

monotone [4, Section 18.2], where é denotes its Fourier transform. Write o(x) =
(2?) for some 1 € S. Using Proposition (), the argument of the first part of
the proof of [36], Lemma 14.6] gives the following.

Lemma 11.2. w(As,max/min) = q/}(T‘s,max/min) on $.

Let I : L?2Q(M) — $ denote the orthogonal projection. According to Sec-
tion |§|7 Y (Ag max/min) s of trace class for all s > 0. Then the self-adjoint operator
(A max/min) I is also of trace class (see e.g. [36, Proposition 8.8]).

Lemma 11.3. Tr(IT9(A; max/min) ) = 0 as s — oo.

Proof. This follows like [4, Lemma 18.3], using (102)), the min-max principle and
Lemma and expressing the trace as sum of eigenvalues. ([l

The following is a direct consequence of Corollary f.

Corollary 11.4. If h is a bounded measurable function on Ry such that h(p) — 1
as p — 0, then Tr(h(p) p(A’ — " as s — 0o.

z,s,max/min,r)) z,max/min

For every z € Crityei(f), let $, C L2Q(M) and $, C L2Q(M?) be the Hilbert
subspaces of differential forms supported in Uy 3,, and U:;;,g oo Tespectively. We have

9. = 9!, because g = ¢, on Us,po = Uy p,- Moreover Ay = A o on differential
forms supported in Uy ,, = U;’po. By using Proposition , the argument of

the first part of the proof of [36, Lemma 14.6] can be adapted to show the following.
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Lemma 11.5. ¢(As,max/min) = ¢(A/w,s,max/min) on 5;8 = 5; fO?" allx € Critrel(f)~

For every z € Critye(f), let II, : L2Q(M) — §, and I, : L2Q(M)) — $/,
denote the orthogonal projections. Since the subspaces $), are orthogonal to each
other, IT:= " I, : L?Q(M) — § :=__ 9, is the orthogonal projection.

Lemma 11.6. Tr(ﬁ A(As max/min,r) ﬁ) =y

max/min @5 § = 00.

Proof. This follows like [4, Lemma 18.3], using Corollary and Lemma
and, for all € Critye(f), considering IT/, as the multiplication operator by the

characteristic function of Uy, 5, . O

Since IT + II = 1, Theorem follows from Proposition , and Lemmas m
and [11.6]
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