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Summary 14 

Air and surfaces of swine farms are two alternative samples to obtain information about the health 15 

status of the herd. The aim of this study was to assess air and surface sampling for the detection of 16 

Porcine Circovirus Type 2 (PCV2) in vaccinated and unvaccinated fattening farms, studying the 17 

relationship between the viral load in these samples with the viremia at herd level. Three swine 18 

fattening batches (one unvaccinated; two vaccinated) were monitored at 10, 12, 14, 16 and 18 19 

weeks old; at each stage, blood, air and different surfaces were sampled and analysed by qPCR. In 20 

all herds, PCV2 was detected in all types of samples. Whenever viremia was detected, PCV2 was 21 

also detected in air and surface samples, even in those cases with a low estimated prevalence (1.6 22 

%); moreover, in two out of the three herds, PCV2 was detected in air and surface samples earlier 23 

than in the blood of the sampled population. In addition, a good correlation between the viremia of 24 

pig population and the PCV2 load in air and surface samples was found in both cases (τ = 0.672 and 25 

0.746 respectively; p < 0.05). These results show that air and surface samples could be useful tools 26 

to monitor PCV2 infection, being suitable for detecting the virus in cases of low prevalence and 27 

even before pigs develop viremia; therefore, these sampling techniques would speed up the 28 

implementation of the required measures to prevent productive and economic losses due to PCV2 29 

infection.  30 
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INTRODUCTION 34 

Surveillance in domestic pigs is important to detect diseases and establish the health status of herds. 35 

Failing to detect diseases may have important sanitary and economic consequences for farms, 36 

leading to endemic and persistent problems and hindering the success of control programmes 37 

(Arruda & Gauger, 2019). This is especially challenging in diseases that can be maintained in a herd 38 

by a small proportion of infected animals. In these cases, detecting the disease can be very laborious 39 

and expensive since it usually requires elevated sample sizes (Kittawornrat et al., 2014; Ramirez et 40 

al., 2012), which may represent several limitations in field conditions. Thus, improving protocols 41 

and techniques that can help farmers to detect diseases more efficiently are still needed.  42 

In the last few years, the swine sector has introduced different sampling methods in order to provide 43 

accurate information of a high number of animals while minimising the investment in time and 44 

money. The detection of pathogens in oral and processing fluids, umbilical cords, skin wipes, air 45 

and farm surfaces are some examples (Garrido-Mantilla et al., 2019; Lopez, Angulo, Zimmerman, 46 

& L Linhares, 2018; Martín-Valls, Hidalgo, Cano, & Mateu, 2018; Neira et al., 2016; Prickett, Kim, 47 

Simer, Yoon, & Zimmerman, 2008). In addition, these methods present the advantage of being non-48 

invasive and some of them, such as oral fluids or processing fluids, have shown a good agreement 49 

with the detection of Influenza A virus, PCV2 and PRRS virus in nasal or serum samples (Nielsen 50 

et al., 2018; Romagosa, Gramer, Joo, & Torremorell, 2012; Vilalta et al., 2018). However, they still 51 

have certain limitations, for example, umbilical cords and processing fluids can only be employed 52 

during the first few days of life; detection in oral fluids, which is based on the natural curiosity of 53 

the pigs to interact with cords (Romagosa et al., 2012), can underestimate the infection level since 54 

sick animals can refuse to interact with their surroundings (Hart, 1988) and, therefore, may not be 55 

included in the sample.  56 

In this context, the detection of pathogens in air samples collected inside farm facilities has been 57 

pointed out as a promising tool for the disease surveillance of swine pathogens such as MRSA, 58 

Influenza A virus and M. hyopneumoniae (Corzo, Culhane, Dee, Morrison, & Torremorell, 2013; 59 

Damte et al., 2014; Friese et al., 2012). Regarding PCV2 detection, only three studies have analysed 60 



air from commercial swine farms (Anderson et al., 2020; Evgrafov et al., 2013; Verreault et al., 61 

2010). Two of them were carried out before vaccines against this virus were available, thus a high 62 

number of infected pigs was to be expected; however, neither of them estimated the prevalence of 63 

the infection. Similarly, in recent years, Anderson et al. (2020) detected PCV2 in air samples from 64 

one fattening farm, although they did not provide any information on the infection level in that herd. 65 

Currently, vaccination is a widespread measure that has led to an important reduction of the 66 

prevalence of PCV2 (Dvorak, Yang, Haley, Sharma, & Murtaugh, 2016), so that a high number of 67 

serum samples are usually necessary to detect the infection. In this new epidemiological context, air 68 

sampling could be a valuable alternative, but it is still necessary to assess the performance of this 69 

technique regarding the infection level within the herd. 70 

On another note, surface sampling has also been used to study pathogens like MRSA or Influenza A 71 

(Espinosa-Gongora et al., 2012; Neira et al., 2016), and has proved useful for monitoring some of 72 

them without compromising animal welfare (Bangerter, Sidler, Perreten, & Overesch, 2016). 73 

Regarding PCV2, the number of cross-sectional studies that have employed surface sampling to 74 

detect it is very reduced (Díaz-Cao et al., 2018; Dvorak, Lilla, Baker, & Murtaugh, 2013; López-75 

Lorenzo et al., 2019), and none of them have monitored the infection over time. 76 

Against this background, the objective of this study was to assess the suitability of air and surface 77 

sampling to monitor the evolution of PCV2 load in vaccinated and unvaccinated fattening farms, 78 

estimating the correlation of viral load in these samples with the PCV2 viremia at herd level.  79 

MATERIALS AND METHODS 80 

Characteristics of the farms and origin of the animals 81 

This study was performed in three commercial swine fattening farms with an all-in/all-out system 82 

(AI-AO), with a complete washing, disinfection and depopulation of at least one week between 83 

batches. All the farms had the same structure, with a central alley and pens to each side. Each pen 84 

housed approximately 15 pigs and consisted of a partially slated floor, a totally solid wall, one pig 85 

hopper and one nipple drinker. The buildings were ventilated by automated lateral windows which 86 



were opened or closed depending on the indoor temperature of the farm, and food and water were 87 

available ad libitum.  88 

Approximately five months before starting this study, an increase of mortality (up to 8 % in the 89 

mortality rate) and an increase of uneven weight at the slaughter age had been observed in the 90 

fattening batches. At the beginning of the trial, samples of inguinal lymph nodes and spleen were 91 

taken from dead pigs and PCV2 compatible lesions (moderate to severe lymphocyte depletion) were 92 

confirmed, also verifying a severe PCV2 amount by immunohistochemical methods. Thus, 93 

according to the established criteria, PCV2-Systemic Disease had been diagnosed at herd level in all 94 

the included farms (Grau-Roma, Fraile, & Segalés, 2011). In addition, it must be pointed out that all 95 

the farms were supplied with nine-week-old piglets by the same farrow to wean farm every two 96 

weeks. This origin herd was negative to PRRS virus and the piglets were only vaccinated against M. 97 

hyopneumoniae at one week of age.  98 

Study design 99 

Three batches (one from each fattening farm) were monitored in this study: one batch of pigs 100 

unvaccinated against PCV2 (Group 0, control; n=360) and two batches vaccinated at 4 weeks of age 101 

with different commercial vaccines (Groups 1 and 2; n=380 and n=490, respectively). Samples of 102 

blood, air and surfaces were taken in these fattening farms when the pigs were 10, 12, 14, 16 and 18 103 

weeks of age.  104 

Blood samples 105 

Blood samples were taken from the jugular vein. The sample size was calculated assuming an 106 

estimated prevalence of 50% and a precision of 11.5% with the package epiDisplay in R (Virasakdi 107 

Chongsuvivatwong, 2018; R Core Team, 2018); as a result, 60 animals in Groups 0 and 1 (5 108 

pigs/pen; 12 different pens) and 65 pigs in Group 2 (5 pigs/pen; 13 different pens) were sampled in 109 

the first visit. In the following visits, the same number of pigs was randomly sampled from the same 110 

pens.  111 

Air samples 112 



In each visit, six air samples (50 L/min for 30 minutes each one) were taken using the air sampler 113 

MD8 Airport (Sartorius AG, Göttingen, Germany) with sterile gelatin filters of 80 mm in diameter 114 

and a pore size of 3 m (Sartorius Stedim Biotech GmbH, Göttingen, Germany). The air sampler 115 

was placed in the central alley at 1/3 (“a” point) and 2/3 (“b” point) of the length of the building. At 116 

each point, samples were taken at three different heights: at the ground level, at the pen railing 117 

height and at a height of two meters. After finishing the sampling, each filter was kept in an 118 

individual package at room temperature until processed. 119 

Surface samples 120 

In each visit, surface samples were taken from five locations: the central alley of the farm, the pen 121 

railing, the pig hopper, the pen wall and the pen floor (the samples from the hopper, the pen wall 122 

and the pen floor were taken from the pens where pigs were sampled). A previously described 123 

swabbing method was used as it has proved useful to detect virus from the environment of livestock 124 

productions (Prieto et al., 2014). The sampling protocol for each surface was performed as indicated 125 

in previous studies (López-Lorenzo et al., 2019) and is briefly described in Table 1. After sample 126 

collection, each swab was kept in an individual tube at room temperature until processed. 127 

Laboratory analysis  128 

All samples (blood, air and surfaces) were processed at the laboratory in the first 24 hours. 129 

Blood samples from the same pen were pooled together (five samples/pool). DNA extraction was 130 

carried out from 200 μl of each pool using a commercial DNA extraction kit (High Pure PCR 131 

Template Preparation Kit, Roche Diagnostics GmbH, Mannheim, Germany) following the 132 

manufacturer’s instructions. The obtained DNA was collected in 100 μl of elution buffer and kept at 133 

-30 ºC until qPCR analysis. 134 

The filters used for air sampling were transferred from their packages to Stomacher bags and 5 ml 135 

of sterile phosphate-buffered saline with 0,05% Tween 20 (PBST, all reagents supplied by Sigma-136 

Aldrich, Missouri, United States) was added to each one to dissolve them. The obtained solution 137 

was homogenized for one minute and left to settle down for 15 minutes. After that, 1 ml of 138 



supernatant from each solution was transferred to a sterile Eppendorf tube and kept at -30ºC until 139 

the DNA extraction was performed.  140 

Surface samples were processed by adding 5 ml of PBST to each tube containing the swab. They 141 

were vortexed for one minute and subsequently left to settle down for 15 minutes. After that, 1 ml 142 

of supernatant from each sample was placed in a sterile Eppendorf tube and kept at -30ºC until the 143 

DNA extraction was performed.  144 

Due to the nature of air and surface samples, a previously recommended serial qPCR analysis which 145 

involves two different DNA extraction protocols was performed in order to avoid PCR inhibition 146 

(Prieto et al., 2017). For the first qPCR, a commercial DNA extraction kit (High Pure PCR 147 

Template Preparation Kit, Roche Diagnostics GmbH, Mannheim, Germany) was used. 148 

Subsequently, qPCR analysis was performed using a commercial kit which targets the ORF2 gene 149 

(EXOone PCV2 oneMIX, EXOPOL S. L., Zaragoza, Spain), following the manufacturer’s 150 

instructions. Negative samples to the first qPCR were re-extracted with a second commercial DNA 151 

extraction kit (Nucleospin® Soil, Macherey-Nagel GmbH & Co KG, Düren, Germany) and 152 

analysed with the same qPCR protocol. The manufacturer’s instructions were followed for both 153 

extraction procedures, using 200 μl of each sample as starting material and collecting the extracted 154 

DNA in 100 μl of elution buffer; in addition, an exogenous internal control (EXOone EXIC, 155 

EXOPOL S.L., Zaragoza, Spain) was added to each sample to identify possible qPCR inhibition. 156 

qPCR positive and negative controls were supplied by the manufacturer and were used in each run. 157 

A sample was considered positive when Ct ≤ 42 for the PCV2 detection channel. In addition, the 158 

positive control was used to calculate the standard curve by preparing serial ten-fold dilutions (5 159 

x105 - 5x101 copies/μl). All qPCR reactions were run in duplicate on an Applied Biosystems ABI 160 

Prism 7500 thermocycler (Thermo Fisher Scientific, Waltham, MA, USA). The amplification 161 

protocol was the one indicated by the manufacturer.  162 

The amount of PCV2 DNA quantified for each sample was expressed as number of copies/m3 of air 163 

and number of copies/swab for air and surface samples respectively.  164 

Data analysis 165 



The individual prevalence of PCV2 was estimated for each stage using a frequentist approach from 166 

the pooled results with the web resource EpiTools (Sergeant, 2018). A method assuming a fixed 167 

pool size and a perfect test was chosen (Cowling, Gardner, & Johnson, 1999).  168 

The proportion of positive blood pools, air samples and surface samples for each group at each 169 

sampling stage was calculated. Subsequently, Kendall’s-tau (τ) was used to determine the 170 

association between the PCV2 load detected by qPCR and the proportion of positives from each 171 

type of sample (blood, air and surfaces), as well as to test the correlation between the PCV2 load 172 

detected in blood pools and the PCV2 load detected in air and surface samples. For the latter case, 173 

the PCV2 load was considered as 0 copies in the negative samples and the correlation was 174 

performed using the mean number of copies of PCV2 in blood pools, air samples and surface 175 

samples for each group and sampling moment. In addition, the correlation was also assessed using 176 

an estimator of τ for zero-inflated data (Pimentel, 2009) (Supporting Information). All statistical 177 

analyses were conducted with the software R (R core Team, 2018). The p value was considered 178 

significant when < 0.05.  179 

RESULTS 180 

Descriptive results 181 

Viremia  182 

The individual estimated prevalence of PCV2 for each group at each age is summarized in Table 2; 183 

briefly, the prevalence throughout the study ranged from 30.11 to 100 % in the Control Group and 184 

from 1.59 to 1.73 % in the vaccinated groups. In the Control Group, all blood pools tested negative 185 

to PCV2 at 10 weeks of age; since then, viremia was detected until the end of the study. The peak of 186 

viremia appeared at 12 weeks of age (11/12 positive blood pools) with the PCV2 load ranging from 187 

7.65 x104 to 2.34 x108 PCV2 copies/ml; from that moment, viremia decreased gradually (Figure 188 

1.A). In Group 1, viremia was firstly detected at 14 weeks of age in 1/12 blood pools (Figure 1.B); 189 

from that moment until the end of the study only 1/12 blood pools was positive in each sampling, 190 

with the PCV2 load ranging from 1.54 x103 to 9.49 x104 PCV2 copies/ml. In Group 2, viremia was 191 



only detected when pigs were 18 weeks old (Figure 1.C.), only 1/13 blood pools tested positive 192 

(4.11 x103 PCV2 copies/ml).  193 

Therefore, PCV2 viremia was detected in the Control Group earlier than in both vaccinated groups 194 

(1 and 2), and the number of positive blood pools was always higher in the Control Group than in 195 

groups 1 and 2. Similarly, at the same age, a higher PCV2 load was found in samples from 196 

unvaccinated pigs than in those from vaccinated animals, with the only exception of some blood 197 

pools at 18 weeks of age.  198 

Air samples 199 

The results of air samples for each group and age are shown in Table 3. Both in the Control Group 200 

and in Group 1, PCV2 DNA was detected in air samples earlier than in blood ones. In the Control 201 

Group, PCV2 was detected in the air at 10 weeks of age (1/6 samples positive). As with blood 202 

samples, the peak of PCV2 load in air also appeared at 12 weeks of age and decreased gradually 203 

since then in this group (Figure 1.A). In Group 1, the first detection was at 12 weeks old, 3/6 air 204 

samples tested positive (one at each height), also concurring with the highest PCV2 load in air 205 

which decreased gradually since then (Figure 1.B). In Group 2, PCV2 was not detected until pigs 206 

were 18 weeks of age, with three positive air samples (one at each height).  207 

Thus, as it occurred with viremia, PCV2 was detected in air samples from the Control Group earlier 208 

than in both vaccinated groups. Moreover, the number of positive air samples was always higher in 209 

the Control Group than in Groups 1 and 2 for all sampling stages, and the samples from the Control 210 

Group showed a higher PCV2 load than those from the vaccinated groups, with the exception of 211 

some samples from Group 2 at 18 weeks of age (Table 3). 212 

Surface samples 213 

The results of surface samples for each group and age are shown in Table 4. In all groups, PCV2 214 

DNA was detected in surface samples earlier than in blood pools. Concretely, in the Control Group, 215 

PCV2 was detected at 10 weeks of age in the central alley and in the pen floor (Figure 1.A). Since 216 

then, all environmental samples tested positive at every sampling stage. In Group 1 the first 217 

detection was at 12 weeks of age in the sample from the central alley; in the following samplings, 218 



PCV2 was detected in all types of surfaces except for the pen railing. Similarly, in Group 2 the virus 219 

was firstly detected at 16 weeks of age in samples from the central alley and the pig hopper; in the 220 

following visit, PCV2 was still detected in the central alley. 221 

Therefore, PCV2 was detected in surface samples from the Control Group earlier than in those from 222 

both vaccinated groups. In addition, the virus was detected in all types of samples from the Control 223 

Group, whereas in Groups 1 and 2, all the samples from the pen railing were negative. Moreover, at 224 

the same age, all the samples from the unvaccinated group contained a higher PCV2 load than those 225 

from the vaccinated groups (Table 4).  226 

Correlation between viremia and PCV2 load in air and surfaces 227 

A positive association between the proportion of positive samples and the PCV2 load was observed 228 

for each type of sample, which means that the detection of more positive samples was associated 229 

with a higher load of virus in them: blood pools (τ = 0.903), air samples (τ = 0.803) and surface 230 

samples (τ = 0.836) with p < 0.001 in all cases. 231 

The mean of the PCV2 load in air samples showed a good correlation with the mean of PCV2 232 

copies in blood pools (τ = 0.672, p = 0.001). In particular, the PCV2 load in air samples taken at the 233 

ground level showed the highest correlation with the mean of viremia (τ = 0.786, p < 0.001), 234 

followed by those taken at the height of the pen railing (τ = 0.762, p < 0.001) and at a height of two 235 

meters (τ = 0.631, p = 0.003). Similarly, the mean of PCV2 copies calculated from all the surface 236 

samples correlated strongly with the mean of PCV2 copies in blood samples (τ = 0.746, p < 0.001). 237 

This correlation was also significant for each type of surface sample with the following τ: central 238 

alley, 0.724; pen railing, 0.710; hopper, 0.810; pen wall, 0.801; and pen floor, 0.659 (p < 0.003 in 239 

all cases). The significance of all the aforementioned associations found with Kendall’s tau was 240 

confirmed by the zero-inflated estimator (p < 0.05). 241 

DISCUSSION 242 

The main finding of this longitudinal study was the earlier detection of PCV2 DNA in air and/or 243 

surface samples than in the conventional method of viremia detection by collecting blood from a 244 

representative number of pigs. Furthermore, whenever viremia was detected, PCV2 DNA was also 245 



found in air and/or surface samples, which suggests that these environmental sampling methods 246 

could be suitable for diagnosis and monitoring of PCV2 infection in swine production. It must be 247 

mentioned that the sampling techniques employed in this study were able to detect PCV2 DNA 248 

when the herd infection prevalence was estimated at 1.59 % (CI 95% 0.00 – 8.55 %), thus 249 

suggesting that these methods could be suitable for farms with low prevalence. 250 

Our results are consistent with those obtained by Garrido-Mantilla et al., (2019), who have 251 

suggested that environmental samples can outperform blood samples from a representative number 252 

of animals as a surveillance tool. In cases of low infection prevalence, the traditional method of 253 

detecting viremia is hindered by the need for a high number of animals, which increases the 254 

workload and the costs, as well as it reduces animal welfare. In the case of PCV2, the primary 255 

replication of the virus in the tonsils may cause a certain level of excretion prior to the development 256 

of viremia (Rosell et al., 1999), a fact that could explain the results of our study, which 257 

demonstrates an earlier detection of the virus in air and surface samples than in conventional 258 

methods. 259 

The good correlation between the viremia at herd level and the PCV2 load in air and surface 260 

samples obtained in this study has also been observed for other viruses such as Influenza A (Neira 261 

et al., 2016). Our results suggest that air and surface samples could also be a useful tool to monitor 262 

PCV2 infection in AI-AO management systems, especially in rearing gilt farms, which have a 263 

similar management to fattening farms. Vaccinating gilts against PCV2 at the appropriate moment 264 

is important to avoid the infection and, as a consequence, the risk of reproductive failure (Oropeza-265 

Moe, Delgado, & Framstad, 2017). This vaccination is a common strategy during the quarantine 266 

period (Segalés, 2015), although in some cases it is performed before the gilts leave the rearing 267 

farm. In fact, checking the gilt’s status regarding PCV2 and bringing forward the vaccination have 268 

already been recommended (Eddicks et al., 2018). Thus, environmental samples could be used to 269 

monitor PCV2 infection in this type of farms and identify the optimal moment for the vaccination in 270 

a simple, cheaper, and non-stressful way.  271 



As it could be expected, both vaccines modified the infection dynamics, delaying the age of PCV2 272 

detection both in blood and environmental samples. However, our results also indicate that the 273 

infection prevalence could increase from the 18th week of age in pigs vaccinated at 4 weeks of age. 274 

This fact has been observed in other studies which detected a stable viremia in vaccinated pigs from 275 

the 18th to the 25th week of life (Feng, Segalés, Fraile, López-Soria, & Sibila, 2016; Haake et al., 276 

2014). This may not have a significant impact in slaughter pigs but may be relevant in gilts, hence 277 

the importance of detecting the infection in this group of animals even when the prevalence is low. 278 

Traditionally, the effectiveness of vaccination has been evaluated regarding the improvement in 279 

productive indexes and the reduction of viremia (Jeong, Park, Choi, & Chae, 2015; Park, Seo, Han, 280 

& Chae, 2014). Environmental samples can also allow this evaluation by measuring the reduction of 281 

viral excretion from vaccinated animals (Prieto et al., 2018). By reducing PCV2 excretion, 282 

vaccination also decreases the spread of the infection in the herd. This fact is supported by our 283 

results, since a lower number of positive samples and lower PCV2 loads were detected in the 284 

vaccinated groups regarding the control group. Accordingly, the time lag of 2-6 weeks in the PCV2 285 

environmental detection in both vaccinated groups regarding the control group is the result not only 286 

of the protection conferred by the vaccines, but also of the decrease in viral excretion that they 287 

cause.  288 

However, several aspects must be considered in the assessment of environmental samples. In the 289 

case of air sampling, it must be mentioned that the PCV2 load depends on the viremia of the herd, 290 

but also on the ventilation of the farm; thus, a higher ventilation could reduce the viral load present 291 

in the air (Corzo et al., 2013). In the three studied farms, ventilation was automatically controlled 292 

depending on the interior temperature; as pigs grow, the ventilation is increased. The peak of PCV2 293 

load in air samples was detected in the Control Group and Group 1 at 12 weeks of age, a stage of 294 

low ventilation which coincides with the peak of viremia in the Control Group. As pigs carried on 295 

growing, the number of positive samples as well as the viremia and the PCV2 load in air samples 296 

decreased, coinciding with the reduction of the infection level but also with the typical increase of 297 

ventilation in the last stages. On the other hand, a decreasing tendency in the viral load was also 298 



observed in surface samples, but this effect was much less pronounced compared to air samples; 299 

this fact seems reasonable, since the decrease of PCV2 in surfaces mainly depends on the reduction 300 

of the viremia and not so much on the ventilation.  301 

As indicated by other authors, the environmental load of PCV2 can be used as an indicator of herd 302 

health (Beach & Meng, 2012). Thereby, air sampling seems a very interesting method since the 303 

whole pig population contributes to the results in a similar way. This implies an advantage of air 304 

sampling over other types of herd samples like oral fluids, which would only represent the pigs of 305 

the sampled pen (Oliver-Ferrando et al., 2016). Taking into account the obtained results, it seems 306 

essential to sample at least two points across the farm on similar size herds; however, on larger 307 

farms more sampling points would probably be necessary. Regarding the height of the sampling 308 

point, this factor did not seem to have an influence on the PCV2 detection in this study, which is 309 

consistent with what has been observed for Salmonella spp. on poultry farms (Adell et al., 2014). 310 

With respect to surface sampling, our results suggest that samples from hoppers, walls and floors of 311 

the pens seem to be the most suitable as surveillance tools, possibly due to their direct contact with 312 

pigs. Nevertheless, more studies are necessary to refine these diagnostic methods since other 313 

variables could be influencing the results.  314 

Finally, the advantages and drawbacks of air and surface sampling must be mentioned. The main 315 

advantage of both methods is that they provide information on the sanitary status of a great number 316 

of animals with only a few samples, which represents a saving in time and costs; moreover, they do 317 

not require specifically trained personnel. In addition, these techniques are also respectful with 318 

animal welfare since both methods are non-invasive. Regarding the disadvantages, these 319 

environmental techniques could be influenced by some farm factors, like the effect of ventilation in 320 

the case of air sampling or that the provided information is limited to particular pens in the case of 321 

surface sampling, as it has been previously commented; for these reasons, further studies that 322 

contribute to identify and to assess these factors are needed. Another issue is that qPCR does not 323 

indicate the viability of viral particles; however PCV2 is a highly resistant virus (Martin, Le Potier, 324 



& Maris, 2008; O’Dea et al., 2008), so its detection by these methods should be interpreted as a risk 325 

of infection.  326 

CONCLUSION 327 

Air and surface sampling are useful tools to monitor infections by PCV2. In this study, a good 328 

correlation between viremia and PCV2 load in air and surface samples has been observed. 329 

Whenever viremia was detected, PCV2 was also detected in air and surface samples. Furthermore, 330 

these sampling techniques enable the detection of PCV2 infection earlier than the conventional 331 

method of sampling a representative number of pigs, which would allow to establish preventive 332 

measures prior to the development of the disease. Therefore, the knowledge generated by this study 333 

may be useful to improve control programmes through the detection of PCV2 by environmental 334 

sampling methods, allowing an improvement in the current diagnostic schemes in terms of 335 

efficiency and animal welfare. 336 
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Table 1. Environmental samples and sampling protocol. 

Central 

alley 

100 steps were taken wearing polyethylene boot covers. Afterwards, both boot 

covers were swabbed as previously indicated in Dee et al. (2002): in zigzag from 

the toe region to the heel. 

Pen railing 1 m of the pen railing was swabbed in zigzag (the same point in all visits). 

Hopper 

Eight different hoppers (the same ones in all visits) were selected and an area of 

25x25 cm was swabbed in each one (Espinosa-Gongora et al., 2012). The hoppers 

were located in the same pens used for sampling the pen wall and the pen floor. 

Pen wall 

Eight different pens (the same ones in all visits) were selected and an area of 

25x25cm, located at the height of the snout in the resting area, was swabbed. The 

same pens were used for sampling the hopper and the pen floor. 

Pen floor 

100 steps were taken wearing polyethylene boot covers. Afterwards, both boot 

covers were swabbed in the same way as for the central alley. The same pens were 

used for sampling the hopper and the pen wall.  

  522 



Table 2. Results of blood pools and individual estimated prevalence of PCV2.  

  Weeks of age 

  10 12 14 16 18 

Group 0 

(control, n=364) 

n. pos / n. 

tot  

0 / 12 11 / 12 12 / 12 12 / 12 10 / 12 

Estimated 

prevalence 

(CI 95%) 

- 

( - ) 

39.16% 

(17.38 – 

70.84) 

100% 

( - ) 

100% 

( - ) 

30.11% 

(13.50 – 

53.88) 

Group 1 

(vaccinated, n=381) 

n. pos./n. 

tot  

0 / 12 0 / 12 1 / 12 1 / 12 1 / 12 

Estimated 

prevalence 

(CI 95%) 

- 

( - ) 

- 

( - ) 

1.73% 

(0.00 – 

9.26%) 

1.73% 

(0.00 – 

9.26%) 

1.73% 

(0.00 – 

9.26%) 

Group 2 

(vaccinated, n=490) 

n. pos./n. 

tot  

0 / 13 0 / 13 0 / 13 0 / 13 1 / 13 

Estimated 

prevalence 

(CI 95%) 

- 

( - ) 

- 

( - ) 

- 

( - ) 

- 

( - ) 

1.59% (0.00 

– 8.55%) 

-: not calculated  523 



Table 3. Results of individual air samples at each moment (PCV2 copies/m3 air). 

 Height 

Sampling 

Point 

Weeks of age 

   10 12 14 16 18 

Group 0 

(control, 

n=364) 

Ground 

level 

a - 9.25 x106 1.10 x105 2.25 x104 - 

b - 2.42 x107 9.43 x105 3.73 x105 3.75 x104 

Pen railing  

a - 3.98 x106 8.38 x104 2.33 x105 1.19 x103 

b - 2.96 x106 3.36 x106 1.60 x106 2.53 x104 

Two 

meters  

a 1.35 x106 1.33 x106 5.34 x104 3.68 x104 - 

b - 1.74 x106 4.81 x106 7.80 x105 5.20 x104 

 

Group 1 

(vaccinated, 

n=381) 

Ground 

level 

a  1.19 x104 - - - 

b - - 6.13x102 - 5.39 x102 

Pen railing  

a - 2.63 x104 6.28 x103 2.04 x103 - 

b - - - - 
- 

Two 

meters  

a - - 1.96 x103 - - 

b - 5.70 x102 1.81 x103 - - 

 

Group 2 

(vaccinated, 

n=490) 

Ground 

level 

a - - - - - 

b - - -  2.55 x104 

Pen railing  

a - - - - - 

b - - - - 5.93 x104 

Two 

meters  

a - - - - - 

b - - - - 5.00 x104 

-: indicates a negative result 

a: 1/3 of the building length 

b: 2/3 of the building length 
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Table 4. Results of individual surface samples at each moment (PCV2 copies/swab). 

 Surface Week age 

  10 12 14 16 18 

Group 0 

(control, 

n=364)  

Central alley 7.45 x105 2.03 x107 7.45 x107 3.75 x107 1.17 x107 

Pen railing - 2.05 x107 2.81 x107 7.36 x105 1.14 x107 

Hopper - 1.94 x107 5.23 x106 5.97 x105 1.35 x105 

Pen wall - 3.65 x106 4.53 x107 7.96 x104 3.42 x105 

Pen floor 1.77 x104 1.84 x108 2.57 x108 7.70 x106 1.20 x107 

       

Group 1 

(vaccinated, 

n=381) 

Central alley - 2.22 x105 1.36 x106 4.08 x105 1.29 x105 

Pen railing - - - - - 

Hopper - - 3.82 x104 1.12 x105 6.04 x103 

Pen wall - - 1.38 x105 1.38 x103 - 

Pen floor - - 3.98 x103 5.13 x103 - 

       

Group 2 

(vaccinated, 

n=490) 

Central alley - - - 2.53 x103 1.18 x105 

Pen railing - - - - - 

Hopper - - - 1.39 x104 - 

Pen wall - - - - - 

Pen floor - - - - - 

-: indicates a negative result 
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Figure legends 526 

Figure 1. Monitoring of PCV2 infection in Group 0 (1.A, Control group), Groups 1 and 2 (1.B 527 

and 1.C, vaccinated groups respectively). For each week, PCV2 loads are shown as Log10 (x + 1) 528 

where x is the mean of PCV2 copies/ml, the mean of PCV2 copies/m3 of air and the mean of PCV2 529 

copies/ swab for blood, air and surface samples respectively. Negative samples computed as 0 in the 530 

number of PCV2 copies. 531 
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