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Abstract

This paper deals with the mathematical and numerical analysis of a nonlinear 2D transient magnetic model
when the source data are given in terms of the voltage drop excitations in conductors and the remanent
magnetic flux for permanent magnets. The formulation consists of a distributed nonlinear magnetostatic
model with time appearing as a parameter, and a circuit equation linking currents and voltage drops. This
last equation is used to express the problem as an implicit ODE system whose operator involves the resolution
of the distributed model. The model is spatially discretized using a finite element method and an implicit
Euler scheme is employed for time discretization. We perform the mathematical analysis of the problem at
both the continuous and discrete levels and obtain an error estimate that is illustrated with some numerical
results.
Keywords: Transient magnetic, Nonlinear partial differential equation, Finite element approximation,
Voltage drops

1. Introduction

The objective of this paper is the mathematical and numerical analysis of a nonlinear transient magnetic
model defined in a two-dimensional domain, with sources given in terms of the potential drops in conductors
and the remanent fluxes of permanent magnets. This model arises, for instance, in the simulation of electric
machines and, in particular, of permanent magnet synchronous motors (PMSM). In this kind of devices,
the magnetic core is usually laminated orthogonally to the direction of the currents traversing the coils.
Moreover, eddy current losses are often neglected in permanent magnets, so that these regions are modelled
as non-conducting; eventually, a posteriori formulas could be used to estimate such losses (see, for instance,
[17, 21]).

Both of the above simplifications allow us to build a 2D transient magnetic model in a cross section of
the device, the stator coils being the only conducting part. These coils are generally composed by stranded
wires carrying a uniformly distributed current density. The mathematical model used to simulate these
conductors strongly depends on the kind of the imposed source; see, for instance, [5]. Indeed, if the source
data are given in terms of the current traversing the wires, the problem reduces to solving a nonlinear
magnetostatic problem at each time step, and thus time appears as a parameter. However, in the case
where the potential drops are given, the distributed magnetostatic model has to be coupled with a circuit
equation linking currents and voltage drops. In this paper, we focus on this last case because the model
offers challenges from a mathematical and numerical point of view, as detailed below.
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Here, we give a first step towards the analysis of the genuine physical problem, as we do not consider
the motion of the machine, what would lead to a much more difficult problem; see, for instance, [8] for a
case incorporating also induction effects. Our mathematical model will be obtained from the low-frequency
approximation of Maxwell equations, without taking any eddy current effects into consideration. Therefore,
we will deal with an integro-differential problem coupling an elliptic partial differential equation, written
in terms of the magnetic vector potential, with the circuit equations relating currents and voltage drops in
stranded conductors. The partial differential equations are nonlinear due to the presence of ferromagnetic
materials in the cores which usually have a strongly nonlinear magnetic behavior.

In the literature, we can find several references dealing with the analysis of low-frequency electromagnetic
models coupled with circuit equations. For example, in [15], the authors study the well-posedness of a three-
dimensional field/circuit nonlinear problem in the presence of eddy currents and provide error estimates
for time discretization. In [11], the authors deal with a 3D field/circuit linear model, focusing only on the
continuous formulation. Alternatively, field/circuit models also fit in the framework of differential algebraic
systems of equations (DAE), usually when using finite integration techniques for the spatial discretization;
see, for instance, [4, 3]. Finally, we also highlight the results presented in [10], where we can find a study of
some classes of differential algebraic systems of equations in an abstract framework, in particular covering
the case of systems of DAE coupled with partial differential equations (PDE). However, we deal with a
system of elliptic partial differential equations coupled with a vector ordinary differential equation in terms
of time that is not covered by the previous results.

As discussed above, we focus on a model that does not consider eddy current effects. Firstly, we obtain
an integro-differential problem arising from the coupling of the Maxwell system of equations with the circuit
equations relating currents and voltage drops in stranded conductors. To perform its mathematical anal-
ysis, it is written as a nonlinear system of implicit ordinary differential equations in terms of the currents
traversing the coils, which are functions of time. The operator defining this system expresses the so-called
flux linkages per unit length in the coils in terms of the currents traversing them, via the resolution of
some 2D magnetostatics problems. The properties of this operator are deduced directly from results already
existing in the literature (specifically, those appearing in [14]). To perform the numerical approximation of
the continuous problem we propose an Euler-implicit scheme for the ODE, combined with a finite element
method for the approximation of the involved distributed operator. Some convergence results are obtained
for this numerical scheme. However, for the numerical implementation, we use the alternative approach
proposed in [5] which consists in eliminating the unknown currents from the system by means of the circuit
equations. This idea is also exploited in the theoretical analysis of the eddy current model performed in
[11]. As a consequence, we need to prove an equivalence result between the implemented scheme and the
discrete problem theoretically analysed.

The paper is organized as follows. In Section 2 we present the 2D nonlinear transient magnetic model
in a cross-section transversal to the device, written in terms of the magnetic vector potential; moreover, we
express the problem as a system of implicit ODE, and perform its mathematical analysis in the continuous
case. In Section 3 we introduce the finite element discretization of the magnetostatics problem involved in the
definition of the ODE operator. In Section 4 we propose an implicit Euler scheme for the discretization of the
system of ODE and prove an error estimate for its solution. In Section 5, we show some numerical results for
a test with analytical solution to illustrate the obtained convergence results. Finally, in appendix Appendix
A we prove the equivalence between the analysed problem and the implemented one; appendix Appendix
B contains the analytical expression of the magnetic vector potential corresponding to the analytical test
used for the numerical results.

2. Mathematical Analysis of the Continuous Problem

In this section we state a 2D transient magnetic problem that arises in the mathematical modeling of
laminated magnetic media, with sources given in terms of the potential drops per unit length in conductors
and the remanent fluxes in permanent magnets. A similar model, without permanent magnets, has been
studied in [5] from a computational point of view. Here, we will also present and analyze the continuous
formulation.
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Figure 1: Illustration of the subdomains.

2.1. A two-dimensional transient magnetic model
Let us assume that the current density sources J have non-null component only in the z space direction

and that this component does not depend on z, i.e., J = Jzez, with Jz = Jz(x, y, t). We also assume
that the geometry and the magnetic field H are invariant along the z−direction, and that all materials
are magnetically isotropic. In this case, under an appropriate decay of fields at infinity (see [16]), the
magnetic field H, and then the magnetic induction B, have only components on the xy−plane and both
are independent of z.

Since we are interested in using a finite element method for the numerical solution, we will restrict
ourselves to a bounded domain. Thus, let us consider a 2D convex bounded domain Ω, with Lipschitz
continuous boundary, containing a cross-section transversal to the device. For a given current density
J ∈ L2(Ω)3, we seek H ∈ H(curl,Ω) and B ∈ H(div,Ω) such that:

curlH = J in Ω, (2.1)
divB = 0 in Ω, (2.2)
B · n = 0 on ∂Ω, (2.3)

where the boundary condition means there is no magnetic flux through the boundary. This model is
completed below with the constitutive law relating the magnetic field to the flux density.

Let us assume that Ω is composed of the following open subsets (see fig. 1)

• a magnetically linear subdomain Ω0,

• non-magnetic connected conductors Ωn, n = 1, . . . , Nc,

• a permanent magnet region Ωpm and

• a nonlinear ferromagnetic core Ωnl.

We further assume that the boundaries of the conductors, ∂Ωn, n = 1, . . . , Nc, are mutually disjoint
and do not touch the boundary of Ω, and also that the same is true for the boundaries of the connected
components of the permanent magnet region. We notice that all parts of the domain are non-conducting
except for the non-magnetic conductors, which support the current density J . Moreover, we will use the
notation Ωc := ∪Nc

n=1Ωn and U := {Ω0,Ωc,Ωpm,Ωnl}.
In this framework, vector fields H and B are linked by the constitutive relations:

H = ν0B in Ω0 ∪ Ωc,

H = νpmB − νpmB
r in Ωpm,

H = ν̃(|B|)B in Ωnl,
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where ν0 is the vacuum magnetic reluctivity, Br is the remanent flux density in the permanent magnets
and νpm : Ωpm −→ R+ is the magnetic reluctivity in the permanent magnets. In principle, both the
magnetically linear subdomain and the nonlinear core subdomain may have several parts with different
magnetic reluctivities. However, for the sake of simplicity, we have assumed there is only one for each of
these two subdomains and that the magnetic reluctivity of the linear one is that of the vacuum, ν0. We
assume that Br has only components on the xy−plane and both are independent of the z−coordinate and
that νpm ∈ L∞(Ωpm), also being uniformly bounded from below by a positive constant. Furthermore, we
define the global magnetic reluctivity function ν : Ω× R+

0 −→ R+ as

ν(x; s) :=

 ν0 if x ∈ Ω0 ∪ Ωc,
νpm(x) if x ∈ Ωpm,
ν̃(s) if x ∈ Ωnl.

Let us make the following assumptions on the nonlinear reluctivity ν̃ : R+
0 −→ R+,

∃ ν1, ν2 > 0 : ν1 ≤ ν̃(s) ≤ ν2 a.e. in R+
0 , (2.4)

∃Mν̃ > 0 : |ν̃(p)p− ν̃(q)q| ≤Mν̃ |p− q| ∀ p, q ∈ R+
0 , (2.5)

∃αν̃ > 0 : (ν̃(p)p− ν̃(q)q)(p− q) ≥ αν̃ |p− q|2 ∀ p, q ∈ R+
0 . (2.6)

We notice that the above assumptions on the reluctivity can be derived from the natural properties of the
physical BH-curves corresponding to nonlinear magnetic materials (see [12, Chapter 2]).

Finally, we will suppose that all conductors are stranded, which makes it possible to assume that the
current density is uniform and given by

Jz,n(t) =
in(t)

meas(Ωn)
, n = 1, . . . , Nc,

where in(t) denotes the total current across Ωn at time t. Actually, for each conductor, the source can be
given in terms of either the current or the potential drop per unit length in the z-direction, and we will
focus on the latter alternative.

In order to solve the described two-dimensional model, it is convenient to introduce a magnetic vector
potential because it leads to solving a scalar problem instead of a vector one. Since B is divergence-free,
there exists a so-called magnetic vector potential A such that B = curlA. Under the assumptions above,
we can choose a magnetic vector potential that does not depend on z and does not have either x or y
components, i.e., A = A(x, y, t)ez (see, for instance, [7]).

Next, we will see how to include the potential drops per unit length as sources of our formulation. For
the sake of simplicity, we will assume that the electric conductivity σ is constant for all conductors, but
otherwise the development below can be applied with no significant change (see [5]). Let us denote by E
the electric field. From Faraday’s law in the conducting domain,

∂B

∂t
+ curlE = 0 in Ωc,

the invariance under translation in the z-direction hypothesis and the axial direction of the currents, we
deduce that there exist Nc scalar potentials vn, n = 1, . . . , Nc, unique up to a constant, such that

∂A

∂t
+E = −grad vn in Ωn × R, n = 1, . . . , Nc.

Taking into account the assumptions on J and Ohm’s law, J = σE, we deduce that E in conductors has
non-null component only in the z space direction which is spatially constant in each Ωn, n = 1, . . . , Nc.
Moreover, since A = Aez, we have −grad vn = −∂vn

∂z
ez in each Ωn, n = 1, . . . , Nc. As a consequence, the
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above equation reduces to

∂A

∂t
+ Ez = −cn(t) in Ωn, n = 1, . . . , Nc, (2.7)

where cn(t) := −∂vn
∂z

(t) is the potential drop per unit length in direction z in conductor Ωn, n = 1, . . . , Nc.
Multiplying eq. (2.7) by the electric conductivity, integrating on each Ωn, n = 1, . . . , Nc, and taking Ohm’s
law into account we deduce

d

dt

∫
Ωn

σA(x, y, t) dxdy + in(t) = −cn(t)σmeas(Ωn), n = 1, . . . , Nc.

Thus, if voltage drops are given in conductors, then the problem to be solved is the following:

Problem 1. Given c(t) ∈ RNc , Br(x, y) and a vector of initial currents i0 ∈ RNc , find A(x, y; t) and
i(t) ∈ RNc for every t ∈ [0, T ] satisfying i(0) = i0,

− div(ν0gradA) = 0 in Ω0, (2.8)

− div(ν0gradA) =
in(t)

meas(Ωn)
in Ωn, n = 1, . . . , Nc, (2.9)

− div(νpmgradA) = − div
(
νpm (Br)

⊥
)

in Ωpm, (2.10)

− div(ν̃(|gradA|)gradA) = 0 in Ωnl, (2.11)

[ν(·; |gradA|)gradA · n]Γ =

{
νpm (Br)

⊥ · npm,
0,

if Γ ⊂ ∂Ωpm,
otherwise, (2.12)

A = 0 on ∂Ω, (2.13)

and, for every t ∈ (0, T ],

d

dt

∫
Ωn

σA(x, y, t)dxdy + in(t) = −cn(t)σmeas(Ωn), n = 1, . . . , Nc. (2.14)

In the above equations, [ · ]Γ denotes the jump across any interface Γ, (Br)
⊥

:= −Br
yex + Br

xey, n is
a unit normal vector to interface Γ and npm is a unit normal vector to ∂Ωpm pointing outside Ωpm. We
observe that eqs. (2.8) to (2.11) follow from eq. (2.1) and that boundary condition (2.13) implies eq. (2.3).

Remark 2. Notice that the jump discontinuity in eq. (2.12) follows from the transmission condition
[H × n]Γ = 0, which, at the same time, follows directly from the regularity of H, as long as there are
no surface currents on Γ.

The variational formulation associated to eddy currents problem eqs. (2.8) to (2.13) can be obtained
using classical techniques, resulting in

Problem 3. Given c(t) ∈ C([0, T ])Nc , i0 ∈ RNc and Br ∈ L2 (Ωpm)
3, find A(t) ∈ H1

0(Ω) for every t ∈ [0, T ]
and i(t) ∈ C0,1([0, T ])Nc satisfying i(0) = i0,∫

Ω

ν(x; |gradA(x, t)|)gradA(x, t) · gradW (x)

=

Nc∑
n=1

∫
Ωn

in(t)

meas(Ωn)
W (x) +

∫
Ωpm

νpm(x) (B
r)

⊥
(x) · gradW (x),
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for every W ∈ H1
0(Ω) and t ∈ [0, T ], and

d

dt

∫
Ωn

σA(t) + in(t) = −cn(t)σmeas(Ωn), n = 1, . . . , Nc in (0, T ].

In the next section, we will write Problem 3 as a nonlinear implicit system of ordinary differential
equations in order to prove that it is well-posed.

2.2. Transient magnetic problem as a system of ODE
Let F : RNc −→ RNc be the nonlinear operator defined as

F (i ) :=

(∫
Ω1

σA, . . . ,

∫
ΩNc

σA

)T

∈ RNc ,

with A the solution of the nonlinear magnetostatics problem:

Problem 4. Given i ∈ RNc and Br ∈ L2 (Ωpm)
3, find A ∈ H1

0(Ω) such that∫
Ω

ν(x; |gradA(x)|)gradA(x) · gradW (x)

=

Nc∑
n=1

∫
Ωn

in
meas(Ωn)

W (x) +

∫
Ωpm

νpm(x) (B
r)

⊥
(x) · gradW (x),

for every W ∈ H1
0(Ω).

Let us notice that the integrals characterising the components of F are related to the so-called flux
linkages per unit length since the latter are defined, for conductor Ωn, n = 1, . . . , Nc, as

1

σmeas(Ωn)

∫
Ωn

σA.

Moreover, we notice that we are using the following notation convention: we denote vector fields with
uppercase bold letters, vectors in Rn with lowercase bold letters and vector operators with calligraphic bold
letters.

Theorem 5. Problem 4 has a unique solution.

Proof. The proof of this theorem follows directly from the results presented in [14]. Indeed, let B : H1
0(Ω) −→

H−1(Ω) be the operator defined by

⟨B(A),W ⟩ =
∫
Ω

ν(·; |gradA|)gradA · gradW

for every W ∈ H1
0(Ω). Under conditions (2.4) to (2.6), operator B is strongly monotone and Lipschitz

continuous, with constants

α = C−2
PF min

{
ν0, ν

1
pm, αν̃

}
and M = max

{
ν0, ||νpm||L∞(Ωpm), 3Mν̃

}
,

respectively, CPF being the Poincaré-Friedrichs inequality constant (see [12]).
Concerning the right-hand side, since functions in

meas(Ωn)
χΩn

belong to L2(Ω) for n = 1, . . . , Nc, (χK being
the indicator function of set K), and Br ∈ L2 (Ωpm)

3, then the operator associated to the right-hand side
is in H−1(Ω).
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From this theorem, we deduce that operator F is well defined and therefore we can rewrite Problem 3
as

Problem 6. Given c(t) ∈ C([0, T ])Nc and i0 ∈ RNc , find i(t) ∈ C0,1([0, T ])Nc such that i(0) = i0 and

d

dt
F (i(t)) + i(t) = − (c1(t)σmeas(Ω1), . . . , cNc(t)σmeas(ΩNc))

T in (0, T ].

Remark 7. We notice that, due to the definition of operator F , it is obvious that Problems 3 and 6 are
equivalent.

Theorem 8. Operator F is strongly monotone and globally Lipschitz continuous in RNc with respective
constants CSM and CL to be defined below.

Proof. Let i 1, i 2 ∈ RNc be given and A1, A2 ∈ H1
0(Ω) be the associated solutions to Problem 4, respectively.

Then, Fn

(
ij
)
=
∫
Ωn
σAj for j = 1, 2 and n = 1, . . . , Nc.

Let us consider the inner product in RNc defined as follows

k1 ∗ k2 :=

Nc∑
n=1

k1nk
2
n

σmeas(Ωn)
,

with ∥ · ∥∗ the associated norm.
First, we will prove that F is strongly monotone:

⟨B(A1)− B(A2), A1 −A2⟩ =
Nc∑
n=1

∫
Ωn

i1n − i2n
meas(Ωn)

(A1 −A2) =
(
i 1 − i 2

)
∗
(
F
(
i 1
)
−F

(
i 2
))
.

Since B is strongly monotone with constant α,

α||A1 −A2||2H1(Ω) ≤ ⟨B(A1)− B(A2), A1 −A2⟩ =
(
i 1 − i 2

)
∗
(
F
(
i 1
)
−F

(
i 2
))
. (2.15)

Now, taking W ∈ H1
0(Ω) such that∫

Ωn

σW = i1n − i2n, n = 1, . . . , Nc, and ||W ||H1(Ω) ≤ C
∥∥i 1 − i 2

∥∥
∗ (2.16)

for some C > 0 independent of i 1, i 2, we get

⟨B(A1)− B(A2),W ⟩ =
Nc∑
n=1

∫
Ωn

i1n − i2n
meas(Ωn)

W =
∥∥i 1 − i 2

∥∥2
∗ .

Thus, taking into account that B is Lipschitz continuous,∥∥i 1 − i 2
∥∥2
∗ ≤M ||A1 −A2||H1(Ω)||W ||H1(Ω) ≤MC||A1 −A2||H1(Ω)

∥∥i 1 − i 2
∥∥
∗ .

Replacing in eq. (2.15) we get

α

M2C2

∥∥i 1 − i 2
∥∥2
∗ ≤ α||A1 −A2||2H1(Ω) ≤

(
i 1 − i 2

)
∗
(
F
(
i 1
)
−F

(
i 2
))
,

and then F is a strongly monotone operator globally in RNc in the || · ||∗-norm with constant α/M2C2. We
define CSM the corresponding constant in the usual norm.
We notice that we can take W ∈ H1

0(Ω) verifying eq. (2.16). Indeed, let Ω̃ := Ω \ Ωc, Cn :=
i1n−i2n

meas(Ωn)
,
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n = 1, . . . , Nc, and gn ∈ H1/2(∂Ωn) with gn(x) = Cn for every x ∈ ∂Ωn, n = 1, . . . , Nc. Then,∫
Ωn

σCn = i1n − i2n.

Moreover, let us consider the following Dirichlet problem:
Given gn ∈ H1/2(∂Ωn), n = 1, . . . , Nc, find W̃ ∈ H1

0(Ω̃) such that

−∆W̃ = 0 in Ω̃,

W̃ = gn on ∂Ωn, n = 1, . . . , Nc.

This problem is well-defined and

||W̃ ||H1(Ω̃) ≤ C
∥∥i 1 − i 2

∥∥
∗ ,

with C independent of i 1, i 2. We can define W ∈ H1
0(Ω) by

W :=

{
W̃ in Ω̃,
Cn in Ωn, n = 1, . . . , Nc.

Now, we will show that F is Lipschitz continuous. Indeed, since(∫
Ωn

σ(A1 −A2)

)2

≤ σ2||A1 −A2||2L1(Ωn)
≤ σ2 meas(Ωn)||A1 −A2||2L2(Ωn)2

≤ σ2 meas(Ωn)||A1 −A2||2H1(Ωn)
,

then, for every n = 1, . . . , Nc,

∥∥F (i 1)−F
(
i 2
)∥∥

∗ ≤

(
Nc∑
n=1

σ||A1 −A2||2H1(Ωn)

)1/2

≤ C1||A1 −A2||H1(Ω).

Finally, since

||A1 −A2||2H1(Ω) ≤
1

α

(
i 1 − i 2

)
∗
(
F
(
i 1
)
−F

(
i 2
))

≤ 1

α

∥∥i 1 − i 2
∥∥
∗

∥∥F (i 1)−F
(
i 2
)∥∥

∗ ≤ C1

α

∥∥i 1 − i 2
∥∥
∗ ||A1 −A2||H1(Ω),

we conclude that ∥∥F (i 1)−F
(
i 2
)∥∥

∗ ≤ C2
1

α
||i 1 − i 2||∗,

and therefore F is Lipschitz continuous globally in RNc in the || · ||∗-norm with constant C2
1/α. We define

CL the corresponding constant in the usual norm.

From the last theorem, applying a result by E. H. Zarantonello (see [19], Theorem 25.B), we deduce that

Corollary 9. F is invertible and its inverse F−1 is Lipschitz continuous with Lipschitz constant equal to
1

CSM
.

This result allows us to rewrite Problem 6 in the following way:
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Problem 10. Given c(t) ∈ C([0, T ])Nc and i0 ∈ RNc , find i(t) ∈ C0,1([0, T ])Nc such that i(0) = i0 and

d

dt
ℓ(t) +F−1 (ℓ(t)) = − (c1(t)σmeas(Ω1), . . . , cNc

(t)σmeas(ΩNc
))

T in (0, T ],

with ℓ(t) = F (i(t)) for every t ∈ [0, T ].

Remark 11. Problems 6 and 10 can be defined with lower regularity assumptions on the source data c(t).
For instance, if c(t) is Lebesgue-measurable in [0, T ] and |c(t)| is bounded by a Lebesgue integrable function,
both problems have a unique absolutely continuous solution, i(t) ∈ AC([0, T ]), fulfilling the differential
equation almost everywhere in [0, T ]. Furthermore, most of the results presented in this paper can also be
proved under these assumptions.

Theorem 12. Problem 6 has a unique solution i(t) ∈ C0,1([0, T ])Nc such that

∥i(t)∥ ≤ ∥i0∥+
T

CSM

(
∥i0∥+ σ max

n=1,...,Nc

{meas(Ωn)} ∥c∥L2(0,T )

)
eT/CSM

for every t ∈ [0, T ].

Proof. Since F−1 is globally Lipschitz continuous in RNc , from Theorem 2.15 in [2] we conclude that
Problem 10 has a unique solution i = F−1 (ℓ), with ℓ ∈ C1([0, T ])Nc . Therefore, Problem 6 has a unique
solution i ∈ C0,1([0, T ])Nc .
Moreover, integrating the equation appearing in Problem 10 in (0, t),

ℓ(t)− ℓ(0) = −
∫ t

0

(
F−1 (ℓ(s)) + (c1(s)σmeas(Ω1), . . . , cNc(s)σmeas(ΩNc))

T
)
ds

for every t ∈ [0, T ]. Thus,

∥ℓ(t)− ℓ(0)∥ ≤
∫ t

0

∥∥F−1 (ℓ(s))
∥∥ ds+ ∫ t

0

∥∥(c1(s)σmeas(Ω1), . . . , cNc(s)σmeas(ΩNc))
T
∥∥ ds

≤
∫ t

0

∥∥F−1 (ℓ(s))−F−1 (ℓ(0))
∥∥ ds+ T

(
σ max

n=1,...,Nc

{meas(Ωn)} ∥c∥L2(0,T ) + ∥i0∥
)

≤
∫ t

0

1

CSM
∥ℓ(s)− ℓ(0)∥ ds+ T

(
σ max

n=1,...,Nc

{meas(Ωn)} ∥c∥L2(0,T ) + ∥i0∥
)
.

Then, taking Gronwall’s inequality into account (see, for instance, [13], Lemma 1.4.1),

∥ℓ(t)− ℓ(0)∥ ≤ T

(
σ max

n=1,...,Nc

{meas(Ωn)} ∥c∥L2(0,T ) + ∥i0∥
)
eT/CSM .

Now, since i(t) = F−1 (ℓ(t)),

∥i(t)∥ − ∥i0∥ ≤ ∥i(t)− i0∥ =
∥∥F−1 (ℓ(t))−F−1 (ℓ(0))

∥∥ ≤ 1

CSM
∥ℓ(t)− ℓ(0)∥

≤ T

CSM

(
σ max

n=1,...,Nc

{meas(Ωn)} ∥c∥L2(0,T ) + ∥i0∥
)
eT/CSM .
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3. Discretization of the ODE Operator

In this section we introduce an operator Fh that will be constructed as an approximation of the ODE
operator F . This new operator Fh will be used in the next sections to introduce a numerical scheme.

To this end, in the sequel we will assume that Ω along with the connected components of its subdomains
U ∈ U are Lipschitz polygons (we recall that U = {Ω0,Ωc,Ωpm,Ωnl}). Moreover, we consider regular
triangular meshes Th of Ω such that each element T ∈ Th is contained in the closure of one of its subdomains
(h stands, as usual, for the corresponding mesh-size). Therefore, Th(U) :=

{
T ∈ Th : T ⊂ U

}
are meshes of

U , for any U ∈ U.
Moreover, let Lh(Ω) be the space of standard piecewise linear finite elements on Th:

Lh(Ω) :=
{
ψh ∈ H1(Ω) : ψh|T ∈ P1(T ) ∀T ∈ Th

}
,

and L0
h(Ω) the subespace

L0
h(Ω) := {ψh ∈ Lh(Ω) : ψh|∂Ω = 0} .

Let us define the nonlinear operator Fh : RNc −→ RNc given by

Fh (i ) :=

(∫
Ω1

σAh, . . . ,

∫
ΩNc

σAh

)T

∈ RNc ,

with Ah being the solution of the discrete nonlinear magnetostatics problem:
Problem 13. Given i ∈ RNc and Br ∈ L2 (Ωpm)

3, find Ah ∈ L0
h(Ω) such that∫

Ω

ν(x; |gradAh|)gradAh · gradWh =

Nc∑
n=1

∫
Ωn

in
meas(Ωn)

Wh +

∫
Ωpm

νpm (Br)
⊥ · gradWh,

for every Wh ∈ L0
h(Ω).

Remark 14. Since L0
h(Ω) ⊂ H1

0(Ω) for every h > 0, Problem 13 has a unique solution and then operator
Fh is well-defined in RNc .
Theorem 15. Operator Fh is strongly monotone and Lipschitz continuous globally in RNc and uniformly
for h > 0. Then, Fh is invertible and its inverse F−1

h is Lipschitz continuous globally in RNc for every
h > 0, with Lipschitz constant independent of h.
Proof. Let i 1, i 2 ∈ RNc be given and A1

h, A
2
h ∈ L0

h(Ω) be the associated solutions to Problem 13, respectively.
Then, Fh,n

(
ij
)
=
∫
Ωn
σAj

h for j = 1, 2 and n = 1, . . . , Nc. In order to prove the desired properties of Fh,
the same steps as in Theorem 8 can be followed, replacing fields A1, A2 ∈ H1

0(Ω) with A1
h, A

2
h ∈ L0

h(Ω).
Moreover, it can be shown that we can take Wh ∈ L0

h(Ω) such that∫
Ωn

σWh = I1n − I2n, n = 1, . . . , Nc, and ||Wh||H1(Ω) ≤ C
∥∥i 1 − i 2

∥∥
∗ ,

with C > 0 independent of h. For this purpose, we can use the well-posed weak problem:

Given gn ∈ H1/2(∂Ωn), n = 1, . . . , Nc, find W̃h ∈ Lh(Ω̃) such that W̃h|∂Ωn = gn, n = 1, . . . , Nc,
W̃h|∂Ω = 0 and ∫

Ω̃

grad W̃h · gradVh = 0

for every Vh ∈ L0
h(Ω̃).
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instead of the continuous one and define

Wh :=

{
W̃h in Ω̃,
Cn in Ωn, n = 1, . . . , Nc.

By applying Zarantonello’s theorem cited above, we deduce from last theorem that Fh is invertible and that
its inverse F−1

h is Lipschitz continuous with Lipschitz constant independent of h > 0.

Then, we can define the semidiscrete versions of Problems 6 and 10 in the following way:

Problem 16. Given c(t) ∈ C([0, T ])Nc and i0 ∈ RNc , find ih(t) ∈ C0,1([0, T ])Nc such that ih(0) = i0 and

d

dt
Fh (ih(t)) + ih(t) = − (c1(t)σmeas(Ω1), . . . , cNc

(t)σmeas(ΩNc
))

T in (0, T ].

Problem 17. Given c(t) ∈ C([0, T ])Nc and i0 ∈ RNc , find ih(t) ∈ C0,1([0, T ])Nc such that ih(0) = i0 and

d

dt
ℓh(t) +F−1

h (ℓh(t)) = − (c1(t)σmeas(Ω1), . . . , cNc(t)σmeas(ΩNc))
T in (0, T ],

with ℓh(t) = Fh (ih(t)) for every t ∈ [0, T ].

Theorem 18. Let A(t) ∈ H1
0(Ω) and Ah(t) ∈ L0

h(Ω) be the solutions to Problems 4 and 13, respectively,
with data i(t). If i and ih are the solutions to Problems 6 and 16, then,

∥i− ih∥L2(0,T )Nc ≤ C
(
||A−Ah||L2(0,T ; L2(∪Nc

n=1Ωn)) + T ||A(0)−Ah(0)||L2(∪Nc
n=1Ωn)

)
. (3.1)

Proof. Subtracting Problems 6 and 16 we obtain
d

dt
(F (i )−Fh(ih)) + (i(t)− ih(t)) = 0,

(i(0)− ih(0)) = 0.

Now, integrating in time in (0, t) for t ∈ (0, T ], and multiplying by (i(t)− ih(t)), we deduce

⟨F (i(t))−Fh (ih(t)) , i(t)− ih(t)⟩+
〈∫ t

0

(i(s)− ih(s)) ds, i(t)− ih(t)

〉
= ⟨F (i0)−Fh (i0) , i(t)− ih(t)⟩ , (3.2)

for every t ∈ [0, T ]. We notice that the second term in the left-hand side of eq. (3.2) satisfies〈∫ t

0

(i(s)− ih(s)) ds, i(t)− ih(t)

〉
=

1

2

d

dt

∥∥∥∥∫ t

0

(i(s)− ih(s)) ds

∥∥∥∥2 .
Hence, if we add and subtract the term Fh (i(t)) in the first term of the left-hand side of eq. (3.2), we get

1

2

d

dt

∥∥∥∥∫ t

0

(i(s)− ih(s)) ds

∥∥∥∥2 + ⟨Fh (i(t))−Fh (ih(t)) , i(t)− ih(t)⟩

= −⟨F (i(t))−Fh (i(t)) , i(t)− ih(t)⟩+ ⟨F (i0)−Fh (i0) , i(t)− ih(t)⟩ , (3.3)
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for every t ∈ [0, T ]. Integrating eq. (3.3) in [0, T ],

1

2

∥∥∥∥∥
∫ T

0

(i(t)− ih(t)) dt

∥∥∥∥∥
2

+

∫ T

0

⟨Fh (i(t))−Fh (ih(t)) , i(t)− ih(t)⟩ dt

= −
∫ T

0

⟨F (i(t))−Fh (i(t)) , i(t)− ih(t)⟩ dt+
∫ T

0

⟨F (i0)−Fh (i0) , i(t)− ih(t)⟩ dt. (3.4)

Moreover, since Fh is a strongly monotone operator globally in RNc (and uniformly in [0, T ]),

∥i− ih∥2L2(0,T )Nc ≤ C

∫ T

0

⟨Fh (i(t))−Fh (ih(t)) , i(t)− ih(t)⟩ dt.

Thus, from eq. (3.4) we get

∥i− ih∥2L2(0,T )Nc ≤ C ∥i− ih∥L2(0,T )Nc

(
∥F (i )−Fh (i )∥L2(0,T ) + T ∥F (i0)−Fh (i0)∥

)
. (3.5)

Then, taking into account the definitions of F and Fh, we have

∥F (i(t))−Fh (i(t))∥ ≤ C ∥A(t)−Ah(t)∥L2(∪Nc
n=1Ωn) , (3.6)

with C > 0 independent of h > 0, and finally

∥i− ih∥L2(0,T )Nc ≤ C
(
∥A−Ah∥L2(0,T ; L2(∪Nc

n=1Ωn)) + T ∥A(0)−Ah(0)∥L2(∪Nc
n=1Ωn)

)
.

Remark 19. We notice that the error estimate obtained in Theorem 18 means that the convergence order of
the solution to Problem 16 to the one of Problem 6 in L2(0, T )Nc is going to be determined by the spatial error
made when approximating Problem 4 by Problem 13 in the L2

(
∪Nc
n=1Ωn

)
-norm. In Section 5, we will see that

the numerical results seem to suggest that the optimal convergence order is O(h2). However, to the authors’
knowledge, this can only be theoretically obtained under quite strong regularity assumptions (see [1, 18]).
Therefore, we have chosen to work with a more reasonable hypothesis, leading to a suboptimal error estimate
for ∥i− ih∥L2(0,T )Nc . In particular, we will bound the expressions in eq. (3.6) with the H1

(
∪Nc
n=1Ωn

)
-norm

of the difference between the continuous and the discrete magnetic vector potentials.

Consequently, we are going to give a sufficient condition that will allow us to express the error estimate
in terms of the problem data.

Assumption 1. Let A(t) ∈ H1
0(Ω) and Ah(t) ∈ L0

h(Ω) be the solutions to Problems 4 and 13, respectively,
with data i(t). Let us assume there exists ε ∈ (0, 1] such that A(t)|U ∈ H1+ε(U) and

||A(t)||H1+ε(U) ≤ C
(
∥i(t)∥+ ||Br||L2(Ωpm)3

)
for every U ∈ U, where C > 0 depends only on Ω.

Corollary 20. Under Assumption 1, if i and ih are the solutions to Problems 6 and 16, then,

∥i− ih∥L2(0,T )Nc ≤ Chε
(
||Br||L2(Ωpm)3 + ∥i0∥+ ∥c∥L2(0,T )Nc

)
, (3.7)

with C > 0 independent of h.
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Proof. Notice that, under Assumption 1, following [20] we have

||A(t)−Ah(t)||H1(Ω) ≤ Chε
∑
U∈U

||A(t)||H1+ε(U),

with A(t) ∈ H1
0(Ω) and Ah(t) ∈ L0

h(Ω) being the solutions to Problems 4 and 13 with data i(t), respectively,
and C a constant independent of h.
Therefore, taking into account Theorem 12, we have the following approximation result:

||A(t)−Ah(t)||L2(∪Nc
n=1Ωn) ≤ C||A(t)−Ah(t)||H1(∪Nc

n=1Ωn)

≤ Chε
(
∥i(t)∥+ ||Br||L2(Ωpm)3

)
≤ Chε

(
∥i0∥+ ||Br||L2(Ωpm)3 + ∥c∥L2(0,T )Nc

)
,

with C > 0 independent of h > 0. Thus, using eq. (3.1), we conclude

∥i− ih∥L2(0,T )Nc ≤ Chε
(
||Br||L2(Ωpm)3 + ∥i0∥+ ∥c∥L2(0,T )Nc

)
.

Remark 21. For the sake of simplicity, in order to avoid dealing with variational crimes, we have assumed
the subdomains to be Lipschitz polygons. However, the theoretical results from [20] that we employ to prove
the error estimate hold under more general assumptions (in particular, in the case of fig. 1).

4. Numerical Analysis of a Fully Discrete Problem

In this section we propose a numerical scheme to approximate the solution to Problem 6. Let us consider
a uniform partition {tm := m∆t,m = 0, . . . ,M} of [0, T ] with step size ∆t := T

M . Then, the fully-discrete
version of Problem 6 reads as follows:

Problem 22. Given c(t) ∈ C([0, T ])Nc and i0 ∈ RNc , find imh ∈ RNc , m = 0, . . . ,M , such that i 0h = i0 and

Fh (i
m
h ) + ∆t imh = Fh

(
im−1
h

)
−∆t (c1(tm)σmeas(Ω1), . . . , cNc

(tm)σmeas(ΩNc
))T,m = 1, . . . ,M, (4.1)

being Fh the nonlinear operator defined in Section 3.

4.1. Well-Posedness of the Fully Discrete Problem
In order to prove the following theorem we will make use again of Zarantonello’s theorem.

Theorem 23. Problem 22 has a unique solution.

Proof. Let us define the nonlinear operators Gh,∆t : RNc −→ RNc ,

Gh,∆t (k) := Fh (k) + ∆tk, h,∆t > 0.

Since Fh is strongly monotone and Lipschitz continuous globally in RNc with constants CSM and CL,
respectively, we deduce that Gh,∆t are strongly monotone and Lipschitz continuous globally in RNc with
constants (CSM +∆t) and (CL +∆t), respectively. Therefore, proceeding by induction over m, and using
again the theorem by Zarantonello cited in Section 2, we conclude the proof.
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4.2. Error Estimate
For any function f ∈ C([0, T ])Nc , let us define f∆t the piecewise constant approximation of f

f∆t(t) :=

{
f(0) for t = 0,
f(tm) for t ∈ (tm−1, tm], m = 1, . . . ,M.

Remark 24. If f ∈ C0,1([0, T ]) with Lipschitz constant Lf , then

∥f − f∆t∥
2
L2(0,T )Nc =

M∑
m=1

∫ tm

tm−1

∥f(t)− f(tm)∥2 dt ≤
L2
fT

3
∆t2.

We have the following result:

Theorem 25. Under Assumption 1, if c(t) ∈ C0,1([0, T ])Nc then the solutions to Problems 6 and 22, i(t)
and {imh }Mm=0, respectively, satisfy(

M∑
m=1

∆t ∥i(tm)− imh ∥2
)1/2

≤ C
(
∆t (Li + Lc) + hε

(
∥i0∥2 + ||Br||2L2(Ωpm)3 + ∥c∥2L2(0,T )Nc

))
, (4.2)

with Li and Lc the Lipschitz constants of mappings i and c, respectively, and C > 0 is independent of ∆t.

Proof. Let us denote g : [0, T ] −→ RNc , the mapping

g(t) := − (c1(t)σmeas(Ω1), . . . , cNc
(t)σmeas(ΩNc

))
T
.

Firstly, integrating the equation appearing in Problem 6 between 0 and tk, summing up equations eq. (4.1)
for m = 1, . . . , k, and subtracting them we obtain

F (i(tk))−Fh

(
i kh

)
−∆t

k∑
m=1

imh = F (i0)−Fh (i0)−
∫ tk

0

i(t) dt+

∫ tk

0

g(t)− g∆t(t) dt.

Adding and subtracting the term
∫ tk
0

i∆t(t) dt in the above expression, multiplying it by
(
i(tk)− i kh

)
and

taking the strong monotonicity of Fh into account, we have

CSM

∥∥∥i(tk)− i kh

∥∥∥2 +∆t

〈
k∑

m=1

i(tm)− imh , i(tk)− i kh

〉
≤ −

〈
F (i(tk))−Fh (i(tk)) , i(tk)− i kh

〉
+
〈
F (i0)−Fh (i0) , i(tk)− i kh

〉
+

〈∫ tk

0

i∆t(t)− i(t) dt, i(tk)− i kh

〉
+

〈∫ tk

0

g(t)− g∆t(t) dt, i(tk)− i kh

〉
.

14



Multiplying the above expression by ∆t and summing up for k = 1, . . . , ℓ, we get

CSM

ℓ∑
k=1

∆t
∥∥∥i(tk)− i kh

∥∥∥2 + (∆t)2
ℓ∑

k=1

〈
k∑

m=1

(i(tm)− imh ) , i(tk)− i kh

〉

≤ −∆t

ℓ∑
k=1

〈
F (i(tk))−Fh (i(tk)) , i(tk)− i kh

〉
+∆t

ℓ∑
k=1

〈
F (i0)−Fh (i0) , i(tk)− i kh

〉
+∆t

ℓ∑
k=1

〈∫ tk

0

i∆t(t)− i(t) dt, i(tk)− i kh

〉
+∆t

ℓ∑
k=1

〈∫ tk

0

g(t)− g∆t(t) dt, i(tk)− i kh

〉
(4.3)

for every ℓ = 1, . . . ,M . Now, we are going to discuss every term in eq. (4.3) separately. Firstly, concerning
the second term on the left-hand side, taking into account that 2⟨p, p − q⟩ = ||p||2 + ||p − q||2 − ||q||2 and
writing

i(tk)− i kh =

k∑
m=1

(i(tm)− imh )−
k−1∑
m=1

(i(tm)− imh ) , (4.4)

we get

(∆t)2
ℓ∑

k=1

〈
k∑

m=1

(i(tm)− imh ) , i(tk)− i kh

〉

=
1

2

ℓ∑
k=1


∥∥∥∥∥∆t

k∑
m=1

(i(tm)− imh )

∥∥∥∥∥
2

+
∥∥∥∆t (i(tk)− i kh

)∥∥∥2 − ∥∥∥∥∥∆t
k−1∑
m=1

(i(tm)− imh )

∥∥∥∥∥
2


=
1

2


ℓ∑

k=1

∥∥∥∆t (i(tk)− i kh

)∥∥∥2 + ∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2


≥ 1

2

∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

. (4.5)

On the other hand, concerning the first term on the right-hand side of eq. (4.3) and using Young’s inequality
for each k = 1, . . . , ℓ, we obtain

∆t

ℓ∑
k=1

〈
F (i(tk))−Fh (i(tk)) , i(tk)− i kh

〉
≤

ℓ∑
k=1

∆t
ε1
2
∥F (i(tk))−Fh (i(tk))∥2 +

ℓ∑
k=1

∆t
1

2ε1

∥∥∥i(tk)− i kh

∥∥∥2 ,
for every ε1 > 0. Following the same argument as in Section 3, from Assumption 1 we conclude that

∆t

ℓ∑
k=1

〈
F (i(tk))−Fh (i(tk)) , i(tk)− i kh

〉
≤ 1

2ε1

ℓ∑
k=1

∆t
∥∥∥i(tk)− i kh

∥∥∥2 + Ch2εT
ε1
2

(
∥i0∥2 + ||Br||2L2(Ωpm)3 + ∥g ∥2L2(0,T )Nc

)
. (4.6)
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Similarly, for the second term on the right-hand side of eq. (4.3) we have

∆t

ℓ∑
k=1

〈
F (i0)−Fh (i0) , i(tk)− i kh

〉

≤ ε2
2
∥F (i0)−Fh (i0)∥2 +

1

2ε2

∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

≤ Ch2ε
ε2
2

(
∥i0∥2 + ||Br||2L2(Ωpm)3

)
+

1

2ε2

∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

. (4.7)

Moreover, regarding the third term on the right-hand side of eq. (4.3), writing again eq. (4.4) and using
summation by parts, we obtain

∆t

ℓ∑
k=1

〈∫ tk

0

i∆t(t)− i(t) dt, i(tk)− i kh

〉

=

〈∫ tℓ

0

i∆t(t)− i(t) dt,∆t

ℓ∑
k=1

(
i(tk)− i kh

)〉
−

ℓ−1∑
k=1

〈∫ tk+1

tk

i∆t(t)− i(t) dt,∆t

k∑
m=1

(i(tm)− imh )

〉
.

(4.8)

Using Young’s inequality in the first term of eq. (4.8), we deduce〈∫ tℓ

0

i∆t(t)− i(t) dt,∆t

ℓ∑
k=1

(
i(tk)− i kh

)〉

≤ ε3
2

∥∥∥∥∫ tℓ

0

i∆t(t)− i(t) dt

∥∥∥∥2 + 1

2ε3

∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

≤ ε3T

2
∥i∆t − i ∥2L2(0,T )Nc +

1

2ε3

∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

,

for every ε3 > 0. Concerning the second term in eq. (4.8), we have

ℓ−1∑
k=1

〈∫ tk+1

tk

i∆t(t)− i(t) dt,∆t

k∑
m=1

(i(tm)− imh )

〉

≤
ℓ−1∑
k=1

∥i∆t − i ∥L2(tk,tk+1)Nc

√
∆t

∥∥∥∥∥∆t
k∑

m=1

(i(tm)− imh )

∥∥∥∥∥
≤

ℓ−1∑
k=1

β1
2

∥i∆t − i ∥2L2(tk,tk+1)Nc +∆t

ℓ−1∑
k=1

1

2β1

∥∥∥∥∥∆t
k∑

m=1

(i(tm)− imh )

∥∥∥∥∥
2

≤ β1
2

∥i∆t − i ∥2L2(0,T )Nc +∆t

ℓ−1∑
k=1

1

2β1

∥∥∥∥∥∆t
k∑

m=1

(i(tm)− imh )

∥∥∥∥∥
2

, (4.9)

for every β1 > 0. Finally, we can bound analogously the fourth term on the right-hand side of eq. (4.3),
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obtaining

∆t

ℓ∑
k=1

〈∫ tk

0

g(t)− g∆t(t) dt, i(tk)− i kh

〉
≤
(
ε4T + β2

2

)
∥g − g∆t∥

2
L2(0,T )Nc

+
1

2ε4

∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

+∆t

ℓ−1∑
k=1

1

2β2

∥∥∥∥∥∆t
k∑

m=1

(i(tm)− imh )

∥∥∥∥∥
2

, (4.10)

for every ε4, β2 > 0. Using eqs. (4.5) to (4.10) in eq. (4.3) and rearranging the terms appropriately, we
conclude

(
CSM − 1

2ε1

) ℓ∑
k=1

∆t
∥∥∥i(tk)− i kh

∥∥∥2 + (1

2
− 1

2ε2
− 1

2ε3
− 1

2ε4

)∥∥∥∥∥∆t
ℓ∑

k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

≤ ε3T + β1
2

∥i∆t − i ∥2L2(0,T )Nc +
ε4T + β2

2
∥g − g∆t∥

2
L2(0,T )Nc

+ h2ε
(
C1ε2 + C2Tε1

2

)(
∥i0∥2 + ||Br||2L2(Ωpm)3

)
+ h2ε

C2ε1T

2
∥g ∥2L2(0,T )Nc +∆t

(
1

2β1
+

1

2β2

) ℓ−1∑
k=1

∥∥∥∥∥∆t
k∑

m=1

(i(tm)− imh )

∥∥∥∥∥
2

,

for every ε1, ε2, ε3, ε4, β1, β2 > 0 and ℓ = 1, . . . ,M . Thus, taking ε1 > 1
2CSM

> 0, ε2 = ε3 = ε4 =
3ε1

(1−CSM )ε1+1 > 0 and β1 = β2 = 2ε1
2CSMε1−1 > 0,

ℓ∑
k=1

∆t
∥∥∥(i(tk)− i kh

)∥∥∥2 + ∥∥∥∥∥∆t
ℓ∑

k=1

i(tk)− i kh

∥∥∥∥∥
2

≤ C
(
∥i∆t − i ∥2L2(0,T )Nc + ∥g − g∆t∥

2
L2(0,T )Nc

)
+ Ch2ε

(
∥i0∥2 + ||Br||2L2(Ωpm)3 + ∥g ∥2L2(0,T )Nc

)
+∆t

ℓ−1∑
k=1

∥∥∥∥∥∆t
k∑

m=1

(
i(tk)− i kh

)∥∥∥∥∥
2

.

Now, using the discrete Gronwall inequality (see Lemma 1.4.2 in [13]), we conclude

M∑
k=1

∆t
∥∥∥i(tk)− i kh

∥∥∥2 ≤
M∑
k=1

∆t
∥∥∥i(tk)− i kh

∥∥∥2 + ∥∥∥∥∥∆t
M∑
k=1

(
i(tk)− i kh

)∥∥∥∥∥
2

≤ C
(
∥i∆t − i ∥2L2(0,T )Nc + ∥g − g∆t∥

2
L2(0,T )Nc + h2ε

(
∥i0∥2 + ||Br||2L2(Ωpm)3 + ∥g ∥2L2(0,T )Nc

))
.

5. Numerical Results

In this section we report some numerical results obtained from a Fortran code that solves a problem
equivalent to Problem 22, allowing us to confirm the convergence result stated in Theorem 25. This equiv-
alence is proved in appendix Appendix A. At each time step, the nonlinearity is solved by means of the
fixed-point algorithm proposed in [5]. To this end, we have solved an academic problem built from the
analytical test presented in [6] for a linear case. In our setting, we consider sources given in terms of time-
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Figure 2: Sketch of the domain Ω (left). Coarsest mesh (right).

dependent voltage drops per unit length and replace the linear material with a permanent magnet and a
nonlinear core.

In fig. 2-left we show the problem domain Ω that includes the cross sections of two coaxial copper wires,
Ω1 and Ω2, separated by a permanent magnet, Ωpm, and a ferromagnetic core, Ωnl. We assume that the
core and the magnet are non-conducting, and that the copper domains carry a uniformly distributed current
density, i.e., they are stranded conductors.

Let us consider a cylindrical coordinate system (ρ, θ, z), with eρ, eθ and ez the corresponding local
orthonormal basis. We assume that the z axis is orthogonal to the domain at point O. To apply the 2D
transient magnetic model analysed in this paper, we suppose that the current density of the sources is
uniform in each of them and orthogonal to the computational domain. More precisely,

J = Jz(ρ, t)ez =



i(t)

πR2
1

ez in (0, R1)× [0, T ],

0 in (R1, R3)× [0, T ],

− i(t)

π(R2
4 −R2

3)
ez in (R3, R4)× [0, T ].

In this case, if the magnetic constitutive law in the permanent magnet is of the form H = νpmB − νpmB
r

with a remanent flux Br = Breθ, Br ∈ R, then all fields are independent of the azimuthal variable and the
solution to the magnetostatics problem eqs. (2.1) to (2.3) is

H = Hθ(ρ, t)eθ =



ρ i(t)

2πR2
1

eθ in (0, R1)× [0, T ],

i(t)

2πρ
eθ in (R1, R3)× [0, T ],

i(t)

(
1

2πρ
+

(R2
3 − ρ2)

2π(R2
4 −R2

3)ρ

)
eθ in (R3, R4)× [0, T ].
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In the ferromagnetic core, we will consider the nonlinear constitutive magnetic law given by

Bθ = µ0Hθ +
2Js
π

atan

(
π(µr − 1)µ0Hθ

2Js

)
. (5.1)

We notice that, from Corollary 2.2 in [12], it can be seen that the corresponding nonlinear reluctivity function
satisfies eqs. (2.4) to (2.6).

Following the same arguments as in [5], and using the notation γ := (µr−1)µ0

4Js
, the expression of the

solution to the magnetostatics problem (2.8)–(2.13) can be obtained by integrating Bθ in space (see ap-
pendix Appendix B). In particular, it can be seen that the magnetic vector potential vanishes at R4 for
every t ∈ [0, T ]. This property allows us to have a conductor, Ω2, that touches the boundary of the whole
domain. Indeed, if we had considered a domain Ω0 representing the air surrounding the device, the solution
A would be identically zero there.

Moreover, the expression of the potential drops per unit length in Ω1 and Ω2 can also be analytically
computed using eq. (2.7), obtaining

c1(t) =
i′(t)

8πν0
− i′(t)

2πν0

{
ln

(
R2

R1

)
+

ν0
νpm

ln

(
R3

R2

)
+

R2
4

R2
4 −R2

3

ln

(
R4

R3

)}

− Jsγi
′(t)

π
ln

(
γ2i(t)2 +R2

2

γ2i(t)2 +R2
1

)
− i(t)

σπR2
1

,

c2(t) =
i′(t)

π(R2
4 −R2

3)
2ν0

{
R2

3R
2
4

2
ln

(
R4

R3

)
− R4

4 −R4
3

8

}
+

i(t)

σπ(R2
4 −R2

3)
.

For the numerical computations, we have used the geometrical data R1 = 0.5 m, R2 = 0.75 m, R3 = 1
m and R4 = 1.25 m. Moreover, the copper coils electrical conductivity σ is equal to 5.7 × 107 (Ohm
m)−1 and the magnetic reluctivity of the vacuum ν0 = 1

4π × 107 H−1 m; the material of the permanent
magnet is characterised by νpm = 0.95ν0 and the remanent flux density Br = Breθ by Br = 1.3 T.
Moreover, we have considered µ0 = 1

ν0
, µr = 5000 and Js = 1.75 T in the nonlinear material law of the

ferromagnetic core. The considered source in the coils is the potential drop per unit length obtained for a
current i(t) = 3000 cos(2πft) A with a frequency f = 50 Hz. Finally, the initial currents in the conductors
are i0,1 = 3000 A and i0,2 = −3000 A, respectively. These initial conditions allow us to obtain the steady
state current i(t) from the beginning of the simulation.

We solve the problem in a source cycle (that is, in the time interval [0, T ] = [0, 0.02] seconds) with
several successively refined meshes and time steps, starting from the mesh shown in fig. 2-right and a step
size ∆t = T

40 . We have computed the errors by comparing the numerical solutions with the analytical one
given by i(t) =

(
i(t),−i(t)

)T. Specifically, we have computed the relative error for currents {imh }Mm=1 in
the L2(0, T )-norm, that is,

E∆t
h :=

(∑M
m=1 ∆t |i(tm)− imh |2

)1/2
(∑M

m=1 ∆t |i(tm)|2
)1/2 .

Table 1 shows these relative errors at different levels of discretization. We notice that, when we take a
time step small enough, an O(h2) error decay can be observed (see last row in table 1). On the other hand,
considering a mesh size small enough allows us to show the expected convergence order in time O(∆t) (see
single-framed values in the last column in table 1). We notice that the continuous solution is such that
A(t)|Ωn

∈ H2(Ωn), n = 1, 2, for every t ∈ [0, T ]. Thus, the corresponding part of the convergence order
proved in Theorem 25 is O(h), which is less than the one numerically obtained. The improvement of this
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h h
2

h
4

h
8

h
16

∆t 0.1138 0.0806 0.0774 0.0772 0.0771

∆t
2 0.0895 0.0438 0.0390 0.0388 0.0388

∆t
4 0.0831 0.0279 0.0199 0.0195 0.0195

∆t
8 0.0815 0.0222 0.0105 0.0098 0.0098

∆t
16 0.0812 0.0206 0.0062 0.0050 0.0049

∆t
32 0.0811 0.0201 0.0045 0.0027 0.0025

∆t
64 0.0811 0.0200 0.0040 0.0016 0.0012

∆t
128 0.0811 0.0200 0.0039 0.0012 0.0006

∆t
256 0.0811 0.0200 0.0038 0.0011 0.0004

∆t
512 0.0811 0.0200 0.0038 0.0011 0.0003

Table 1: Relative errors E∆t
h .

order is due to the fact that the norm used in eq. (3.6) is || · ||H1(∪Nc
n=1Ωn)

, while the L2
(
∪Nc
n=1Ωn

)
-norm

could have been used. In the L2
(
∪Nc
n=1Ωn

)
-norm, the magnetostatics problem converges with order O(h2)

for this particular example.
Once the convergence order is checked, we illustrate in one single figure the simultaneous dependence

on h and ∆t of the error for current i in the L2(0, T )-norm by choosing initial coarse values for both
discretization step-sizes and, for each successively refined mesh, we take the value of ∆t proportional to h2
(see the double-framed values in table 1). fig. 3 shows a log-log plot of the corresponding relative errors E∆t

h

versus the number of degrees of freedom (d.o.f.). The slope of the curve shows again the convergence order
O(h2 +∆t).

Appendix A. An Equivalence Result between Two Fully Discrete Schemes

In Section 4, we analysed the numerical convergence for Problem 22. However, following [5], we have
implemented a different numerical scheme for the same problem. In this section, we will prove the equivalence
between the two discretizations.
Let us consider the following discrete problem, which is the one used for the implementation:

Problem 26. Given c(t) ∈ C([0, T ])Nc , i 0 ∈ RNc and Br ∈ L2 (Ωpm)
3, find Am

h ∈ L0
h(Ω), m = 1, . . . ,M ,
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h versus d.o.f. (log-log scale); ∆t = Ch2.

such that

∫
Ω

ν(·; |gradAm
h |)gradAm

h · gradWh +
1

∆t

Nc∑
n=1

∫
Ωn

(∫
Ωn

σAm
h

)
1

meas(Ωn)
Wh

=
1

∆t

Nc∑
n=1

∫
Ωn

(∫
Ωn

σAm−1
h

)
1

meas(Ωn)
Wh −

Nc∑
n=1

∫
Ωn

σcn(tm)Wh +

∫
Ωpm

νpm (Br)
⊥ · gradWh,

for every Wh ∈ L0
h(Ω), with A0

h ∈ L0
h(Ω) the solution to the weak formulation∫

Ω

ν(·; |gradA0
h|)gradA0

h · gradWh =

Nc∑
n=1

∫
Ωn

i0,n
meas(Ωn)

Wh +

∫
Ωpm

νpm (Br)
⊥ · gradWh,

for every Wh ∈ L0
h(Ω).

Theorem 27. Let imh ∈ RNc , m = 0, . . . ,M , be the solution to Problem 22 and Am
h ∈ L0

h(Ω), m = 1, . . . ,M ,
defined as the solution to Problem 13. Then, Am

h ∈ L0
h(Ω), m = 1, . . . ,M , are a solution to Problem 26.

Proof. Since Problem 13 has a unique solution, we deduce that

Fh,n (i
m
h ) =

∫
Ωn

σAm
h , n = 1, . . . , Nc, m = 1, . . . ,M.

Furthermore, since imh , m = 0, . . . ,M , is the solution to Problem 22,

imh,n = − 1

∆t
Fh,n (i

m
h ) +

1

∆t
Fh,n

(
im−1
h

)
− cn(tm)σmeas(Ωn)

= − 1

∆t

∫
Ωn

σAm
h +

1

∆t

∫
Ωn

σAm−1
h − cn(tm)σmeas(Ωn)

for n = 1, . . . , Nc, m = 1, . . . ,M . Replacing these expressions in Problem 13 we conclude that Am
h ∈ L0

h(Ω),
m = 1, . . . ,M , are a solution to Problem 26.

Theorem 28. Let Am
h ∈ L0

h(Ω), m = 1, . . . ,M , be a solution to Problem 26. Let us define i 0h := i0 and
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imh ∈ RNc , m = 1, . . . ,M , such that

imh,n := − 1

∆t

∫
Ωn

σAm
h +

1

∆t

∫
Ωn

σAm−1
h − cn(tm)σmeas(Ωn), (A.1)

n = 1, . . . , Nc. Then, imh , m = 0, . . . ,M , are the solution to Problem 22.
Proof. Let Ãm

h ∈ L0
h(Ω), m = 0, . . . ,M , be the solution to Problem 13 with the currents defined in eq. (A.1).

In particular, Ã0
h = A0

h. Furthermore, taking the definitions of imh , m = 0, . . . ,M , into account, fields
Ãm

h ∈ L0
h(Ω), m = 1, . . . ,M , are also the solutions to the following problems:

∫
Ω

ν(·; |grad Ãm
h |)grad Ãm

h · gradWh +
1

∆t

Nc∑
n=1

∫
Ωn

(∫
Ωn

σAm
h

)
1

meas(Ωn)
Wh

=
1

∆t

Nc∑
n=1

∫
Ωn

(∫
Ωn

σAm−1
h

)
1

meas(Ωn)
Wh −

Nc∑
n=1

∫
Ωn

σcn(tm)Wh +

∫
Ωpm

νpm (Br)
⊥ · gradWh,

for every Wh ∈ L0
h(Ω). By subtracting to the above equalities those in Problem 26, we deduce that∫
Ω

(
ν(·; |grad Ãm

h |)grad Ãm
h − ν(·; |gradAm

h |)gradAm
h

)
· gradWh = 0

for every Wh ∈ L0
h(Ω), m = 1, . . . ,M . Since L0

h(Ω) ⊂ H1
0(Ω), we can rewrite the last equality in the following

way: 〈
B
(
Ãm

h

)
− B(Am

h ),Wh

〉
= 0

for every Wh ∈ L0
h(Ω), m = 1, . . . ,M . In particular, taking Wh = Ãm

h −Am
h , and since operator B is strongly

monotone, we obtain

0 =
〈
B
(
Ãm

h

)
− B(Am

h ), Ãm
h −Am

h

〉
≥M

∥∥∥Ãm
h −Am

h

∥∥∥2
H1(Ω)

,

and therefore Ãm
h = Am

h for m = 1, . . . ,M .
Finally, taking the definition of Fh into account, we have,

Fh,n (i
m
h ) =

∫
Ωn

σÃm
h =

∫
Ωn

σAm
h , n = 1, . . . , Nc, m = 1, . . . ,M,

and then

Fh (i
m
h ) + ∆t imh = Fh

(
im−1
h

)
− (c1(tm)σmeas(Ω1), . . . , cNc

(tm)σmeas(ΩNc
))

T
,

m = 1, . . . ,M . Hence imh are the solution to Problem 22.

Remark 29. In Theorems 27 and 28, we have seen that given a solution to Problem 26 we can compute
the corresponding solution to Problem 22, and vice versa. Moreover, from the proof of the last theorem it
can be deduced that Problem 26 has a unique solution. Indeed, given two solutions Am,1

h , Am,2
h ∈ L0

h(Ω),
m = 1, . . . ,M , to Problem 26, let im,1

h , im,2
h ∈ RNc , m = 0, . . . ,M , be the corresponding solutions to

Problem 22, built as indicated in Theorem 28. Moreover, let Ãm,1
h , Ãm,2

h ∈ L0
h(Ω), m = 1, . . . ,M , be the

solutions to Problem 13 corresponding to these currents. In the above proof, we have seen that Ãm,1
h = Am,1

h

and Ãm,2
h = Am,2

h . Therefore, since Problem 22 is well-posed, im,1
h = im,2

h , m = 1, . . . ,M . Consequently,
Ãm,1

h = Ãm,2
h , and thus Am,1

h = Am,2
h , m = 1, . . . ,M .
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Appendix B. Analytical Expression of the Solution to the Numerical Example

In this appendix we state the analytical expression of the solution to the magnetostatics problem ap-
pearing in Section 5, obtained from the magnetic flux density given in eq. (5.1):

In (0, R1)× [0, T ],

A(ρ, t) =
I(t)

2πν0

{
− ρ2

2R2
1

+ ln

(
R2

R1

)
+

ν0
νpm

ln

(
R3

R2

)
+

R2
4

R2
4 −R2

3

ln

(
R4

R3

)}

+
2Js
π

{
R2atan

(
γI(t)

R2

)
−R1atan

(
γI(t)

R1

)
+
γI(t)

2
ln

(
γ2I(t)2 +R2

2

γ2I(t)2 +R2
1

)}
+Br(R3 −R2).

In (R1, R2)× [0, T ],

A(ρ, t) =
I(t)

2πν0

{
−1

2
+ ln

(
R2

ρ

)
+

ν0
νpm

ln

(
R3

R2

)
+

R2
4

R2
4 −R2

3

ln

(
R4

R3

)}

+
2Js
π

{
R2atan

(
γI(t)

R2

)
− ρ atan

(
γI(t)

ρ

)
+
γI(t)

2
ln

(
γ2I(t)2 +R2

2

γ2I(t)2 + ρ2

)}
+Br(R3 −R2).

In (R2, R3)× [0, T ],

A(ρ, t) =
I(t)

2πν0

{
−1

2
+

ν0
νpm

ln

(
R3

ρ

)
+

R2
4

R2
4 −R2

3

ln

(
R4

R3

)}
+Br(R3 − ρ).

In (R3, R4)× [0, T ],

A(ρ, t) =
I(t)

2πν0

{
ρ2 −R2

4

2(R2
4 −R2

3)
+

R2
4

R2
4 −R2

3

ln

(
R4

ρ

)}
.
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