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Abstract. It is proved that the isometry classes of pointed connected complete Riemannian n-manifolds

form a Polish space, M∞∗ (n), with the topology described by the C∞ convergence of manifolds. This
space has a canonical partition into sets defined by varying the distinguished point into each manifold.

The locally non-periodic manifolds define an open dense subspace M∞∗,lnp(n) ⊂ M∞∗ (n), which becomes

a C∞ foliated space with the restriction of the canonical partition. Its leaves without holonomy form

the subspace M∞∗,np(n) ⊂ M∞∗,lnp(n) defined by the non-periodic manifolds. Moreover the leaves have a

natural Riemannian structure so that M∞∗,lnp(n) becomes a Riemannian foliated space, which is universal

among all sequential Riemannian foliated spaces satisfying certain property called covering-determination.

M∞∗,lnp(n) is used to characterize the realization of complete connected Riemannian manifolds as dense leaves

of covering-determined compact sequential Riemannian foliated spaces.
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1. Introduction

For any n ∈ N (we adopt the convention that 0 ∈ N), let M∗(n) denote the set of isometry classes,
[M,x], of pointed complete connected Riemannian n-manifolds, (M,x). The cardinality of each complete
connected Riemannian n-manifold is less than or equal to the cardinality of the continuum, and therefore it
may be assumed that its underlying set is contained in R. With this assumption, M∗(n) is a well defined
set. This set is only interesting for n ≥ 2 because M∗(0) = {[{0}, 0]} and M∗(1) = {[R, 0], [S1, 1]}. The set
M∗(n) can be considered as a subset of the Gromov space M∗ of isometry classes of pointed proper metric
spaces [14], [15, Chapter 3]. However it is interesting to consider a finer topology on M∗(n), taking the
differentiable structure into account. For that purpose, the following notion of C∞ convergence was defined
on M∗(n).

Key words and phrases. C∞ convergence of Riemannian manifolds; locally non-periodic Riemannian manifolds; Riemannian
foliated space.
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Definition 1.1 (See e.g. [33, Chapter 10, Section 3.2]). For each m ∈ N, a sequence [Mi, xi] ∈M∗(n) is said
to be Cm convergent to [M,x] ∈M∗(n) if, for each compact domain Ω ⊂M containing x, there are pointed
Cm+1 embeddings φi : (Ω, x)→ (Mi, xi) for large enough i such that φ∗i gi → g|Ω as i→∞ with respect to
the Cm topology [22, Chapter 2]. If [Mi, xi] is Cm convergent to [M,x] for all m, then it is said that [Mi, xi]
is C∞ convergent to [M,x].

Here, a domain in M is a connected C∞ submanifold, possibly with boundary, of the same dimension as
M .

It is admitted that C∞ convergence defines a topology on M∗(n) [32]. However we are not aware of any
proof in the literature showing that it satisfies the conditions to describe a topology [28], [17] (see also [26]
and [27] if C∞ convergence were defined with nets or filters). This is only proved on subspaces defined by
manifolds of equi-bounded geometry, where the C∞ convergence coincides with convergence in M∗ [29] (see
also [33, Chapter 10]). The first main theorem of the paper is the following.

Theorem 1.2. The C∞ convergence in M∗(n) describes a Polish topology.

Recall that a space is called Polish if it is separable and completely metrizable.
The topology given by Theorem 1.2 will be called the C∞ topology on M∗(n), and the corresponding

space is denoted by M∞∗ (n).
For each complete connected Riemannian n-manifold M , there is a canonical continuous map ι : M →

M∞∗ (n) given by ι(x) = [M,x], which induces a continuous injective map ῑ : Iso(M)\M → M∞∗ (n), where
Iso(M) denotes the isometry group of M . The more explicit notation ιM and ῑM may be also used. The
images of the maps ιM form a natural partition of M∞∗ (n), denoted by F∗(n).

A Riemannian manifold, M , is said to be non-periodic if Iso(M) = {idM}, and is said to be locally
non-periodic if each point x ∈M has a neighborhood Ux such that

{h ∈ Iso(M) | h(x) ∈ Ux} = {idM} .

Let M∗,np(n) and M∗,lnp(n) be the F∗(n)-saturated subsets of M∗(n) defined by non-periodic and locally
non-periodic manifolds, respectively. The notation M∞∗,np(n) and M∞∗,lnp(n) is used when these sets are

equipped with the restriction of the C∞ topology. The restrictions of F∗(n) to M∗,np(n) and M∗,lnp(n) are
respectively denoted by F∗,np(n) and F∗,lnp(n). Note that M∗,np(0) = {[{0}, 0]} and M∗,lnp(1) = ∅.

On the other hand, let M∞∗,c(n) (respectively, M̂∞∗,o(n)) be the F∗(n)-saturated subspace of M̂∗(n) con-
sisting of classes [M,x] such that M is compact (respectively, open). Observe that, if [N, y] is close enough
to any [M,x] ∈ M∞∗,c(n), then N is diffeomorphic to M . Thus M∞∗,c(n) is open in M∗(n), and therefore
M∞∗,o(n) is closed. Hence these are Polish subspaces of M∗(n), as well as their intersections with any Polish
subspace. The intersection of M∞∗,c/o(n) and M∞∗,(l)np(n) is denoted by M∞∗,(l)np,c/o(n). The restrictions of

F∗(n) to M∗,c/o(n) and M∗,(l)np,c/o(n) are denoted by F∗,c/o(n) and F∗,(l)np,c/o(n), respectively. The second
main theorem of the paper is the following.

Theorem 1.3. The following properties hold for n ≥ 2:

(i) M∗,lnp(n) is Polish and dense in M∞∗ (n).
(ii) M∞∗,lnp(n) ≡ (M∞∗,lnp(n),F∗,lnp(n)) is a foliated space of dimension n.

(iii) F∗,lnp,o(n) is transitive.
(iv) The foliated space M∞∗,lnp(n) has canonical C∞ and Riemannian structures such that ῑ : Iso(M)\M →

ι(M) is an isometry for every locally non-periodic, complete, connected Riemannian manifold M .
(v) For any locally non-periodic complete connected Riemannian manifold M , the quotient map M →

Iso(M)\M corresponds to the holonomy covering of the leaf ι(M) by ῑ : Iso(M)\M → ι(M). In
particular, the set M∗,np(n) is the union of leaves of M∞∗,lnp(n) with trivial holonomy groups.

The following result states a universal property of M∞∗,lnp(n), which involves certain property called

covering-determination (Definition 12.1).

Theorem 1.4. Let X be a sequential Riemannian foliated space of dimension n ≥ 2 whose leaves are
complete. Then X is isometric to a saturated subspace of M∞∗,lnp(n) if and only if it is covering-determined.
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Recall that a space X is called sequential if a subset A ⊂ X is open whenever each convergent sequence
xn → x ∈ A in X eventually belongs to A. For instance, first countable spaces are sequential. This condition
could be removed by using convergence of nets or filters instead of sequences.

M∞∗,lnp(n) is used to prove the following result about realizations of Riemannian manifolds as leaves.
It involves the obvious Riemannian versions of the conditions of being aperiodic or repetitive, which are
standard for tilings or graphs (see e.g. [12, 16, 35]), and a weak version of aperiodicity (Definitions 12.4
and 12.6).

Theorem 1.5. The following properties hold for a complete connected Riemannian manifold M of bounded
geometry and dimension n ≥ 2:

(i) M is non-periodic and has a (repetitive) weakly aperiodic connected covering if and only if it is isometric
to a dense leaf of a (minimal) covering-determined compact sequential Riemannian foliated space.

(ii) If M is aperiodic (and repetitive), then it is isometric to a dense leaf of a (minimal) covering-determined
compact sequential Riemannian foliated space whose leaves have trivial holonomy groups.

2. Preliminaries

2.1. Foliated spaces. Standard references for foliated spaces are [30], [5, Chapter 11], [6, Part 1] and [13].
Let Z be a space and let U be an open set in Rn ×Z (n ∈ N), with coordinates (x, z). For m ∈ N, a map

f : U → Rp (p ∈ N) is of class Cm if its partial derivatives up to order m with respect to x exist and are
continuous on U . If f is of class Cm for all m, then it is called of class C∞. Let Z ′ be another space, and
let h : U → Rp × Z ′ (p ∈ N) be a map of the form h(x, z) = (h1(x, z), h2(z)), for maps h1 : U → Rp and
h2 : pr2(U)→ Z ′, where pr2 : Rn × Z → Z is the second factor projection. It will be said that h is of class
Cm if h1 is of class Cm and h2 is continuous.

For m ∈ N∪{∞} and n ∈ N, a foliated structure F of class Cm and dimension dimF = n on a space X is
defined by a collection U = {(Ui, φi)}, where {Ui} is an open covering of X, and each φi is a homeomorphism
Ui → Bi × Zi, for a locally compact Polish space Zi and an open ball Bi in Rn, such that the coordinate
changes φjφ

−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) are locally Cm maps of the form

φjφ
−1
i (x, z) = (gij(x, z), hij(z)) .

These maps hij will be called the local transverse components of the changes of coordinates. Each (Ui, φi)

is called a foliated chart, the sets φ−1
i (Bi × {z}) (z ∈ Zi) are called plaques, and the collection U is called

a foliated atlas of class Cm. Two Cm foliated atlases on X define the same Cm foliated structure if their
union is a Cm foliated atlas. If we consider foliated atlases so that the sets Zi are open in some fixed space,
then F can be also described as a maximal foliated atlas of class Cm. The term foliated space (of class Cm)
is used for X ≡ (X,F). If no reference to the class Cm is indicated, then it is understood that X is a C0 (or
topological) foliated space. The concept of Cm foliated space can be extended to the case with boundary in
the obvious way, and the boundary of a Cm foliated space is a Cm foliated space without boundary.

The foliated structure of a space X induces a locally Euclidean topology on X, the basic open sets being
the plaques of all foliated charts, which is finer than the original topology. The connected components of
X in this topology are called leaves. Each leaf is a connected Cm n-manifold with the differential structure
canonically induced by F. The leaf that contains each point x ∈ X is denoted by Lx. The leaves of F form a
partition of X that determines the topological foliated structure. The corresponding quotient space, called
leaf space, is denoted by X/F.

The restriction of F to some open subset U ⊂ X is the foliated structure F|U on U defined by the charts
of F whose domains are contained in U . More generally, a subspace Y ⊂ X is a Cm foliated subspace when
it is a subspace with a Cm foliated structure G so that, for each y ∈ Y , there is a foliated chart of F defined
on a neighborhood U of y in X, whose restriction to U ∩ Y can be considered as a chart of G in the obvious
way; in particular, dimG ≤ dimF. For instance, any saturated subspace is a Cm foliated subspace.

A map between foliated spaces is said to be a foliated map if it maps leaves to leaves. A foliated map
between Cm foliated spaces is said to be of class Cm if its local representations in terms of foliated charts are
of class Cm. A Cm foliated diffeomorphism between Cm foliated spaces is a Cm foliated homeomorphism
between them whose inverse is also a Cm foliated map.
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Any topological space is a foliated space whose leaves are its points. On the other hand, any connected
Cm n-manifold M is a Cm foliated space of dimension n with only one leaf. The Cm foliated maps M → X
can be considered as Cm maps to the leaves of X, and may be also called Cm leafwise maps. They form a set
denoted by Cm(M,F), which can be equipped with the obvious generalization of the (weak) Cm topology.
In particular, for m = 0, we get the subspace C(M,F) ⊂ C(M,X) with the compact-open topology. For
instance, C(I,F) (I = [0, 1]) is the space of leafwise paths in X.

Many concepts of manifold theory readily extend to foliated spaces. In particular, if F is of class Cm with
m ≥ 1, there is a vector bundle TF over X whose fiber at each point x ∈ X is the tangent space TxLx.
Observe that TF is a foliated space of class Cm−1 with leaves TL for leaves L of X. Then we can consider a
Cm−1 Riemannian structure on TF, which is called a (leafwise) Riemannian metric on X. This is a section
of the associated bundle over X of positive definite symmetric bilinear forms on the fibers of TF, which is
Cm−1 as foliated map. In this paper, a Riemannian foliated space is a C∞ foliated space equipped with
a C∞ Riemannian metric, and an isometry between Riemannian foliated spaces is a C∞ diffeomorphism
between them whose restrictions to the leaves are isometries; in this case, the Riemannian foliated spaces
are called isomertric.

A foliated space has a “transverse dynamics,” which can be described by using a pseudogroup (see [18–20]).
A pseudogroup H on a space is a maximal collection of homeomorphisms between open subsets of Z that
contains idZ , and is closed by the operations of composition, inversion, restriction to open subsets of their
domains, and combination. This is a generalization of a dynamical system, and all basic dynamical concepts
can be directly generalized to pseudogroups. For instance, we can consider its orbits, and the corresponding
orbit space is denoted by Z/H. It is said that H is generated by a subset E when all of its elements can be
obtained from the elements of E by using the pseudogroup operations. Certain equivalence relation between
pseudogroups was introduced [18], [19], and equivalent pseudogroups should be considered to represent the
same dynamics; in particular, they have homeomorphic orbit spaces.

The germ groupoid of H is the topological groupoid of germs of maps in H at all points of their domains,
with the operation induced by the composite of partial maps and the étale topology. Its subspace of units can
be canonically identified with Z. For each x ∈ Z, the group of elements of this groupoid whose source and
range is x is called the germ group of H at x. The germ groups at points in the same orbit are conjugated
in the germ groupoid, and therefore the germ group of each orbit is defined up to isomorphisms. Under
pseudogroup equivalences, corresponding orbits have isomorphic germ groups.

Let U = {Ui, φi} be a foliated atlas of F, with φi : Ui → Bi ×Zi, and let pi = pr2 φi : Ui → Zi. The local
transverse components of the corresponding changes of coordinates can be considered as homeomorphisms
between open subsets of Z =

⊔
i Zi, which generate a pseudogroup H. The equivalence class of H depends

only on F, and is called its holonomy pseudogroup. There is a canonical homeomorphism between the leaf
space and the orbit space, X/F → Z/H, given by L 7→ H(pi(x)) if x ∈ L ∩ Ui.

The holonomy groups of the leaves are the germ groups of the corresponding H-orbits. The leaves with
trivial holonomy groups are called leaves without holonomy. The union of leaves without holonomy is denoted
by X0. If X is second countable, then X0 is a dense Gδ saturated subset of X [11, 21].

Given a loop α in a leaf L with base point x, there is a partition 0 = t0 < t1 < · · · < tk = 1 of I and there
are foliated charts (Ui1 , φi1), . . . , (Uik , φik) such that α([tl−1, tl]) ⊂ Uil for l ∈ {1, . . . , k}. We can assume
(Uik , φik) = (Ui1 , φi1) because α is a loop. Let hil−1,il be the local transverse component of each change

of coordinates φilφ
−1
il−1

defined around pil−1
c(tl−1) and with hil−1,ilpil−1

α(tl−1) = pilα(tl). The germ the

composition hik−1,ik · · ·hi1,i0 at pi0(x) = pik(x) depends only on F and the class of α in π1(L, x), obtaining a
surjective homomorphism of π1(L, x) to the holonomy group of L. This homomorphism defines a connected

covering L̃hol of L, which is called its holonomy covering.
Now, let R be an equivalence relation on a topological space X. A subset of X is called (R-) saturated

if it is a union of (R-) equivalence classes. The equivalence relation R is said to be (topologically)transitive
if there is an equivalence class that is dense in X. A subset Y ⊂ X is called an (R-) minimal set if it
is a minimal element of the family of nonempty saturated closed subsets of X ordered by inclusion; this
is equivalent to the condition that all equivalence classes in Y are dense in Y . In particular, X (or R) is
called minimal when all equivalence classes are dense in X. These concepts apply to foliated spaces with
the equivalence relation whose equivalence classes are the leaves.
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2.2. Riemannian geometry. Let M be a Riemannian manifold possibly with boundary or corners (in the
sense of [7], [10]). Connectedness of Riemannian manifolds is not assumed in Sections 2.2, 3 and 10 because
it is not relevant for the concepts of these sections, but this property is assumed in the rest of the paper:
it is needed in Section 4, and it is implicit in Sections 5–9 and 11–12 because the manifolds are given by
elements of M∗(n). The following standard notation will be used. The metric tensor is denoted by g, the
distance function on each of the connected components of M by d, the tangent bundle by π : TM → M ,
the GL(n)-principal bundle of tangent frames by π : PM → M , the O(n)-principal bundle of orthonormal
tangent frames by π : QM →M , the Levi-Civita connection by ∇, the curvature by R, the exponential map
by exp : TM → M (if M is complete and ∂M = ∅), the open and closed balls of center x ∈ M and radius
r > 0 by B(x, r) and B(x, r), respectively, and the injectivity radius by inj (if ∂M = ∅). The penumbra
around a subset S ⊂ M of radius r > 0 is the set Pen(S, r) = {x ∈ M | d(x, S) < r }. If needed, “M” will
be added to all of the above notation as a subindex or superindex. When a family of Riemannian manifolds
Mi is considered, we may add the subindex or superindex “i” instead of “Mi” to the above notation. A
covering of M is assumed to be equipped with the lift of g.

For m ∈ Z+, let T (m)M = T · · ·TM (m times). We also set T (0)M = M . If l < m, T (l)M is sometimes
identified with a regular submanifold of T (m)M via zero sections, and therefore, for each x ∈M , the notation
x may be also used for the zero elements of TxM , TxTM , etc. When the vector space structure of TxM
is emphasized, its zero element is denoted by 0x, or simply by 0, and the image of the zero section of
π : TM → M is denoted by Z ⊂ TM . Let π : T (m)M → T (l)M be the vector bundle projection given by
composing the tangent bundle projections; in particular, we have π : T (m)M → M . Given any Cm map

between Riemannian manifolds, φ : M → N , the induced map T (m)M → T (m)N will be denoted by φ
(m)
∗

(or simply φ∗ if m = 1, φ∗∗ if m = 2, and so on).
Banach manifolds are also considered in some parts of the paper, using analogous notation.
The Levi-Civita connection determines a decomposition T (2)M = H ⊕ V, as direct sum of the horizontal

and vertical subbundles. The Sasaki metric on TM is the unique Riemannian metric g(1) so that H ⊥ V

and the canonical identities Hξ ≡ TξM ≡ Vξ are isometries for every ξ ∈ TM .

Continuing by induction, for m ≥ 2, the Sasaki metric on T (m)M is defined by g(m) = (g(m−1))(1).
The notation d(m) is used for the corresponding distance function on the connected components, and the
corresponding open and closed balls of center ξ ∈ T (m)M and radius r > 0 are denoted by B(m)(ξ, r) and

B
(m)

(ξ, r), respectively. We may add the subindex “M” to this notation if necessary, or the subindex “i”
instead of “Mi” when a family of Riemannian manifolds Mi is considered. From now on, T (m)M is assumed
to be equipped with g(m).

Remark 1. The following properties hold for l < m and π : T (m)M → T (l)M :

(i) g(m)|T (l)M = g(l).
(ii) The submanifold T (l)M ⊂ T (m)M is totally geodesic and orthogonal to the fibers of π. This follows

easily by induction on m, where the case m = 1 is proved in [36, Corollary of Theorem 13].
(iii) The projection π is a Riemannian submersion with totally geodesic fibers. Again, this follows by

induction on m, and the case m = 1 is proved in [36, Theorems 14 and 18].
(iv) For every ξ ∈ T (m)M , its projection π(ξ) is the only point ζ ∈ T (l)M that satisfies d(m)(ξ, ζ) =

d(m)(ξ, T (l)M). To see this, it is enough to prove that π(ξ) is the only critical point of the distance
function d(m)(·, ξ) on T (l)M . These critical points are just the points ζ ∈ T (l)M where the shortest
g(m)-geodesics γ from ζ to ξ are orthogonal to T (l)M at ζ. Hence γ is a geodesic in π−1(ζ) by (iii),
obtaining ζ = π(ξ).

(v) For all ζ, ζ ′ ∈ T (l)M , the point ζ ′ is the only ξ ∈ π−1(ζ ′) satisfying d(m)(ξ, ζ) = d(m)(ξ, π−1(ζ)). This
follows like (iv), using (ii) instead of (iii).

Let (U ;x1, . . . , xn) be a chart of M . The corresponding metric coefficients are denoted by gij , and the
Christoffel symbols of the first and second kind are denoted by Γijk and Γkij , respectively. Using the Einstein
notation, recall that

Γαijgαk = Γijk =
1

2
(∂igjk + ∂jgik − ∂kgij) . (1)
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Identify the functions xi, gij , Γijk and Γkij with their lifts to TU . We get a chart (U (1);x1
(1), . . . , x

2n
(1)) of TM

with U (1) = TU , xi(1) = xi and xn+i
(1) = vi for 1 ≤ i ≤ n, where the functions vi give the coordinates of tangent

vectors with respect to the local frame (∂1, . . . , ∂n) of TU induced by (U ;x1, . . . , xn). The coefficients of the
Sasaki metric g(1) with respect to (TU ;x1

(1), . . . , x
2n
(1)) are [36, Eq. (3.5)]:

g
(1)
ij = gij − gαγΓαµβΓβανv

µvν

g
(1)
n+i j = Γjµiv

µ

g
(1)
n+i n+j = gij

 (2)

for 1 ≤ i, j ≤ n. Thus the metric coefficients g
(1)
αβ are given by universal fractional expressions of the functions

gij , ∂kgij and vi (1 ≤ i, j, k ≤ n).

Using induction again, for m ≥ 2, let (U (m);x1
(m), . . . , x

2mn
(m) ) be the chart of T (m)M induced by the chart

(U (m−1);x1
(m−1), . . . , x

2m−1n
(m−1) ) of T (m−1)M , and let g

(m)
αβ be the corresponding coefficients of g(m).

Lemma 2.1. (i) The coefficients g
(m)
αβ are given by universal fractional expressions of the coordinates

xn+1
(m) , . . . , x

2mn
(m) and the partial derivatives up to order m of the coefficients gij.

(ii) For each ρ > 0, the partial derivatives up to order m of the coefficients gij are given by universal linear

expressions of the functions (σ
(m)
ρ,µ )∗g

(m)
αβ for n + 1 ≤ µ ≤ 2mn, where σ

(m)
ρ,µ : U → U (m) is the section

of π : U (m) → U determined by (σ
(m)
ρ,µ )∗xν(m) = ρδµν for n+ 1 ≤ ν ≤ 2mn, using Kronecker’s delta.

Proof. We proceed by induction on m. For m = 1, (i) holds by (1) and (2), and (ii) holds by the second and
third equalities of (2), since ∂igjk = Γijk + Γikj by (1). For arbitrary m ≥ 2, assuming that (i) and (ii) hold

for the case m− 1, we get both properties for m by applying the above case to (g(m−1))(1) = g(m). �

Let Ω ⊂ M be a compact domain and m ∈ N. Fix a finite collection of charts of M that covers Ω,
U = {(Ua;x1

a, . . . , x
n
a)}, and a family of compact subsets of M with the same index set as U, K = {Ka}, such

that Ω ⊂
⋃
aKa, and Ka ⊂ Ua for all a. The corresponding Cm norm of a Cm tensor T on Ω is defined by

‖T‖Cm,Ω,U,K = max
a

max
x∈Ka∩Ω

∑
|I|≤m

∑
J,K

∣∣∣∣∣∂|I|TKa,J∂xIa
(x)

∣∣∣∣∣ ,
using the standard multi-index notation, where TKa,J are the coefficients of T on Ua ∩ Ω with respect to the

frame induced by (Ua;x1
a, . . . , x

n
a). With this norm, the Cm tensors on Ω of a fixed type form a Banach

space. By taking the projective limit as m → ∞, we get the Fréchet space of C∞ tensors of that type
equipped with the C∞ topology (see e.g. [22]). Observe that U and K are also qualified to define the norm
‖ ‖Cm,Ω′,U,K for any compact subdomain Ω′ ⊂ Ω. It is well known that ‖ ‖Cm,Ω,U,K is equivalent to the
norm ‖ ‖Cm,Ω,g defined by

‖T‖Cm,Ω,g = max
0≤l≤m

max
x∈Ω
|∇lT (x)| ;

i.e., there is some C ≥ 1, depending only on M , m, Ω, U, K and g, such that

1

C
‖ ‖Cm,Ω,U,K ≤ ‖ ‖Cm,Ω,g ≤ C ‖ ‖Cm,Ω,U,g . (3)

When ∂M = ∅, it is said that M is of bounded geometry if injM > 0 and the function |∇mR| is bounded
for all m ∈ N; in particular, M is complete since injM > 0. More precisely, given r > 0 and a sequence
Cm > 0, if injM ≥ r and |∇mR| ≤ Cm for all m ∈ N, then (r, Cm) is called a geometric bound of M . A
family C of Riemannian manifolds without boundary is called of equi-bounded geometry if all of them are of
bounded geometry with a common geometric bound; i.e., their disjoint union is of bounded geometry.

3. Quasi-isometries

Let φ : M → N be a C1 map between Riemannian manifolds. Recall that φ is called a (λ-) quasi-isometry,
or (λ-) quasi-isometric, if there is some λ ≥ 1 such that 1

λ |ξ| ≤ |φ∗(ξ)| ≤ λ |ξ| for every ξ ∈ TM . This λ is
6



called a dilation bound of φ. The second of the above inequalities, |φ∗(ξ)| ≤ λ |ξ| for all ξ ∈ TM , means that
|φ∗| ≤ λ; i.e., |φ∗x| ≤ λ for all x ∈M .

Remark 2. (i) Every quasi-isometry is an immersion.
(ii) If |φ∗| ≤ λ, then φ is λ-Lipschitz; i.e., dN (φ(x), φ(y)) ≤ λ dM (x, y) for all x, y ∈M .
(iii) If φ : M → N is a λ-quasi-isometry, then φ is λ-bi-Lipschitz; i.e., for all x, y ∈M ,

1

λ
dM (x, y) ≤ dN (φ(x), φ(y)) ≤ λ dM (x, y) .

(iv) Let ψ : N → L be another C1 map between Riemannian manifolds. If |φ∗| ≤ λ and |ψ∗| ≤ µ, then
|(ψφ)∗| ≤ λµ.

(v) The composition of a λ-quasi-isometry and a µ-quasi-isometry is a λµ-quasi-isometry.
(vi) The inverse of a λ-quasi-isometric diffeomorphism is a λ-quasi-isometric diffeomorphism.

Consider the subbundle T≤rM = { ξ ∈ TM | |ξ| ≤ r } ⊂ TM for each r > 0. If M has no boundary, then
T≤rM is a manifold with boundary, being ∂T≤rM = T rM := { ξ ∈ TM | |ξ| = r }; otherwise, T≤rM is
a manifold with corners. Also, define T (m),≤rM by induction on m ∈ Z+, setting T (1),≤rM = T≤rM and
T (m),≤rM = T≤rT (m−1),≤rM . Note that T (m),≤rT (m′),≤rM = T (m+m′),≤rM .

Definition 3.1. (i) It is said that φ : M → N is a (λ-) quasi-isometry of order m ∈ N, or a (λ-) quasi-

isometric map of order m, if it is Cm+1 and φ
(m)
∗ : T (m),≤1M → T (m)N is a (λ-) quasi-isometry. This

λ is called a dilation bound of order m of φ. The infimum of all dilations bounds of order m is called the
dilation of order m. If φ is a quasi-isometry of order m for all m ∈ N, then it is called a quasi-isometry
of order ∞.

(ii) A collection Φ of maps between Riemannian manifolds is called a family of equi-quasi-isometries of
order m ∈ N if it is a family of quasi-isometries of order m with some common dilation bound of order
m, which is called an equi-dilation bound of order m. If Φ is a collection of equi-quasi-isometries of
order m for all m ∈ N, then it is called a family of equi-quasi-isometries of order ∞.

(iii) A Riemannian manifoldM is said to be quasi-isometric with order m to another Riemannian manifoldN
when there is a quasi-isometric diffeomorphism of order m, M → N . With more generality, a collection
{Mi} of Riemannian manifolds is called equi-quasi-isometric with order m to another collection {Ni}
of Riemannian manifolds, with the same index set, when there is a collection of equi-quasi-isometric
diffeomorphisms of order m, {Mi → Ni}.

Remark 3. (i) The λ-quasi-isometries of order 0 are the λ-quasi-isometries.
(ii) By Remark 1-(i), if φ is a λ-quasi-isometry of order m ≥ 1, then it is a λ-quasi-isometry of order m−1.

(iii) For integers 0 ≤ m′ ≤ m, if φ is a λ-quasi-isometry of order m, then φ
(m′)
∗ is a λ-quasi-isometry of

order m−m′.

To begin with, let us clarify the concept of quasi-isometry of order 1. Consider the splittings T (2)M =
H ⊕ V and T (2)N = H′ ⊕ V′, where H and H′ are the horizontal subbundles, and V and V′ are the vertical
subbundles. Fix any x ∈M and ξ ∈ TxM , and let x′ = φ(x) and ξ′ = φ∗(ξ). We have the canonical identities

TξTM = Hξ ⊕ Vξ ≡ TxM ⊕ TxM , Tξ′TN = H′ξ′ ⊕ V′ξ′ ≡ Tx′N ⊕ Tx′N . (4)

The pull-back Riemannian vector bundle φ∗TN is endowed with the pull-back ∇′ of the Riemannian con-
nection of N , and let φ∗ : TM → φ∗TN also denote the homomorphism over idM induced by φ. Let X be a
C∞ tangent vector field on some neighborhood of x in M so that X(x) = ξ; thus φ∗X is a C1 local section
of φ∗TN around x satisfying (φ∗X)(x) = ξ′ ∈ (φ∗TN)x ≡ Tφ(x)N . Then, for any ζ ∈ TxM and each C∞

function f defined on some neighborhood of x, we have

∇′ζ(φ∗(fX))− φ∗(∇ζ(fX)) = f(x)∇′ζ(φ∗X) + df(ζ)φ∗ξ − f(x)φ∗(∇ζX)− df(ζ)φ∗ξ

= f(x) (∇′ζ(φ∗X)− φ∗(∇ζX))

in (φ∗TN)x ≡ Tx′N . Therefore Aφ(ζ⊗ξ) := ∇′ζ(φ∗X)−φ∗(∇ζX) depends only on ζ⊗ξ, and this expression
defines a continuous section Aφ of TM∗ ⊗ TM∗ ⊗ φ∗TN . Observe that X can be chosen so that ∇ζX = 0,
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giving Aφ(ζ⊗ξ) = ∇′ζ(φ∗X) in this case. Then, from the definitions of tangent map and covariant derivative,

it easily follows that, according to (4),

φ∗∗ξ(ζ1, ζ2) ≡ (φ∗(ζ1), φ∗(ζ2) +Aφ(ζ1 ⊗ ξ)) (5)

for all ζ1, ζ2 ∈ TxM .

Remark 4. If TM were used instead of T≤1M in the definition of quasi-isometries of order 1, we would get
Aφ = 0, which is too restrictive. On the other hand, it would be weaker to use T 1M instead of T≤1M .

Lemma 3.2. Suppose that φ : M → N is C2. Then the following properties hold for r > 0 and µ, ν,K ≥ 0:

(i) If |φ∗∗ξ| ≤ µ for all ξ ∈ T≤rM , then |φ∗| ≤ µ and |Aφ| ≤ µ/r.
(ii) If |φ∗| ≤ ν and |Aφ| ≤ K, then |φ∗∗ξ| ≤

√
2(ν +Kr) for all ξ ∈ T≤rM .

Proof. Assume that |φ∗∗ξ| ≤ µ for all ξ ∈ T≤rM . We get |φ∗| ≤ µ by Remark 1-(i). Furthermore, for all
x ∈M and ξ, ζ ∈ TxM with |ξ| = r, according to (4) and (5),

|Aφ(ζ ⊗ ξ)| ≤ |(φ∗x(ζ), Aφ(ζ ⊗ ξ))| = |φ∗∗ξ(ζ, 0)| ≤ µ |(ζ, 0)| = µ |ζ| = µ

r
|ζ| |ξ| .

Now, suppose that |φ∗| ≤ ν and |Aφ| ≤ K. Fix all x ∈ M and ξ, ζ1, ζ2 ∈ TxM with |ξ| ≤ r, according
to (4) and (5),

|φ∗∗ξ(ζ1, ζ2)| ≤ |φ∗(ζ1)|+ |φ∗(ζ2) +Aφ(ζ1 ⊗ ξ)| ≤ ν |ζ1|+ ν |ζ2|+K |ζ1| |ξ|

≤ ν |ζ1|+ ν |ζ2|+Kr |ζ1| ≤ (ν +Kr) (|ζ1|+ |ζ2|) ≤
√

2(ν +Kr) |(ζ1, ζ2)| . �

Lemma 3.3. Suppose that φ : M → N is C2. Then the following conditions are equivalent for r > 0:

(i) φ∗ : T≤rM → TN is a quasi-isometry.
(ii) φ is a quasi-isometry and |Aφ| is uniformly bounded.

In this case, the constants involved in the above properties are related in the following way:

(a) If µ is a dilation bound of φ∗ : T≤rM → TN , then µ is a dilation bound of φ and |Aφ| ≤ µ/r.
(b) If ν is a dilation bound of φ, |Aφ| ≤ K, and 0 < κ < 1 with νKκr < 1, then

µ = max

{
√

2(ν +Kr),

√
2ν

1− νKκr
,

√
2ν

κ

}
is a dilation bound of φ∗ : T≤rM → TN .

Proof. Assume that (i) holds, and let µ be a dilation bound of order 1 of φ. Then φ is a µ-quasi-isometry
by Remark 1-(i). This shows (ii) and (a) by Lemma 3.2-(i).

Now, suppose that (ii) holds, and take ν, K, κ and µ like in (b). For all x ∈M and ξ, ζ1, ζ2 ∈ TxM with
|ξ| ≤ r, according to (4) and (5),

|φ∗∗ξ(ζ1, ζ2)| ≥ 1√
2

(|φ∗(ζ1)|+ |φ∗(ζ2) +Aφ(ζ1 ⊗ ξ)|) ≥
1√
2

(|φ∗(ζ1)|+ κ |φ∗(ζ2) +Aφ(ζ1 ⊗ ξ)|)

≥ 1√
2

(|φ∗(ζ1)|+ κ(|φ∗(ζ2)| − |Aφ(ζ1 ⊗ ξ)|)) ≥
1√
2

((
1

ν
−Kκ |ξ|

)
|ζ1|+

κ

ν
|ζ2|
)

≥ 1√
2

((
1

ν
−Kκr

)
|ζ1|+

κ

ν
|ζ2|
)
≥ 1

µ
(|ζ1|+ |ζ2|) ≥

1

µ
|(ζ1, ζ2)| .

This gives (i) and (b) by Lemma 3.2-(ii). �

For c > 0, let hc : TM → TM be the C∞ diffeomorphism defined by hc(ξ) = cξ. Observe that
hc(T

≤1M) = T≤cM , and the following diagram is commutative:

TM
φ∗−−−−→ TN

hc

y yhc

TM
φ∗−−−−→ TN
8



For each m ∈ Z+, let H(m+1) and V(m+1) denote the horizontal and vertical vector subbundles of T (m+1)M
over T (m)M . Thus, for ξ ∈ T (m−1)M and ζ ∈ TξT (m−1)M ,

TζT
(m)M = H

(m+1)
ζ ⊕ V

(m+1)
ζ ≡ TξT (m−1)M ⊕ TξT (m−1)M . (6)

Lemma 3.4. For all m ∈ Z+, there is an orthogonal vector bundle decomposition, T (m+1)M = P(m+1) ⊕
Q(m+1), preserved by h

(m)
c∗ , such that, for ξ ∈ T (m−1)M , ζ ∈ TξT (m−1)M and ζ ′ = h

(m)
c∗ (ζ), the canonical

identity TζT
(m)M ≡ Tζ′T

(m)M given by (6) induces identities, P
(m+1)
ζ ≡ P

(m+1)
ζ′ and Q

(m+1)
ζ ≡ Q

(m+1)
ζ′ ,

so that h
(m)
c∗ : P

(m+1)
ζ → P

(m+1)
ζ′ ≡ P

(m+1)
ζ is the identity, and h

(m)
c∗ : Q

(m+1)
ζ → Q

(m+1)
ζ′ ≡ Q

(m+1)
ζ is

multiplication by c.

Proof. The proof is by induction on m. By the definition of connection, hc∗ preserves the orthogonal
decomposition T (2)M = H ⊕ V. Moreover, for ζ ∈ TM and ζ ′ = cζ, hc∗ : Hζ → Hζ′ ≡ Hζ is the identity,

and hc∗ : Vζ → Vζ′ ≡ Vζ is multiplication by c. Thus the statement is true in this case with P(2) = H and

Q(2) = V.
Now, suppose that m ≥ 2 and the result holds for m−1. For ξ ∈ T (m−1)M and ζ ∈ TξT (m−1)M , we have

canonical identities
H

(m+1)
ζ ≡ V

(m+1)
ζ ≡ TξT (m−1)M = P

(m)
ξ ⊕ Q

(m)
ξ , (7)

obtaining orthogonal decompositions, H(m+1) = HP(m) ⊕ HQ(m) and V(m+1) = VP(m) ⊕ VQ(m), where

(HP(m))ζ ≡ P
(m)
ξ ≡ (VP(m))ζ and (HQ(m))ζ ≡ Q

(m)
ξ ≡ (VQ(m))ζ according to (7). Then the result follows

with P(m+1) = HP(m) ⊕ VP(m) and Q(m+1) = HQ(m) ⊕ VQ(m). �

Corollary 3.5. For all m ∈ Z+ and c, r > 0, we have h
(m)
c∗ (T (m+1),≤rM) ⊂ T (m+1),≤c̄rM , where c̄ =

max{c, 1}, and h
(m)
c∗ : T (m+1)M → T (m+1)M is a ĉ-quasi-isometry, where ĉ = max{c, 1/c}.

Lemma 3.6. For all m ∈ Z+, r, s > 0 and λ ≥ 0, there is some µ ≥ 0 such that, for any Cm+1 map between

Riemannian manifolds, φ : M → N , if |(φ(m)
∗ )∗ξ| ≤ λ for all ξ ∈ T (m),≤rM , then |(φ(m)

∗ )∗ξ| ≤ µ for all

ξ ∈ T (m),≤sM . Moreover µ can be chosen so that µs→ 0 as s→ 0 for fixed m, r and λ.

Proof. We proceed by induction on m.
For m = 1, we have |φ∗∗ξ| ≤ λ for all ξ ∈ T≤rM . Then |φ∗| ≤ λ and |Aφ| ≤ λ/r by Lemma 3.2-(i). Using

Lemma 3.2-(ii), it follows that |φ∗∗ξ| ≤
√

2λ(1 + s/r) =: µ for all ξ ∈ T≤sM . Note that µs→ 0 as s→ 0 for
fixed r and λ in this case.

Now, assume that m ≥ 2 and the result holds for m− 1. For c = r/s and t = min{cr, r}, the diagram

T (m),≤rM
φ(m)
∗−−−−→ T (m)N

h
(m−1)

1/c∗

x yh(m−1)
c∗

T (m−1),≤tT≤sM
φ(m)
∗−−−−→ T (m)N

(8)

is defined and commutative. By Corollary 3.5 and Remark 2-(iv), it follows that |(φ(m)
∗ )∗ξ| ≤ ĉ2λ for

all ξ ∈ T (m−1),≤tT≤sM , where ĉ = max{c, 1/c}. Then, by the induction hypothesis applied to the map

φ∗ : T≤sM → TN , there is some µ ≥ 0, depending only on m− 1, t, s and ĉ2λ, such that |(φ(m)
∗ )∗ξ| ≤ µ for

all ξ ∈ T (m−1),≤sT≤sM = T (m),≤sM , and so that µs→ 0 as s→ 0 for fixed m, t and ĉ2λ. �

Corollary 3.7. For all m ∈ Z+, r > 0 and λ ≥ 0, there is some s > 0 such that, for any Cm+1 map between

Riemannian manifolds, φ : M → N , if |(φ(m)
∗ )∗ξ| ≤ λ for all ξ ∈ T (m),≤1M , then φ

(m+1)
∗ (T (m+1),≤sM) ⊂

T (m+1),≤rN .

Proof. This is also proved by induction on m. The statement is true for m = 0 because, if |φ∗| ≤ λ, then
φ∗(T

≤sM) ⊂ T≤λsN for all s > 0, and therefore it is enough to take s = r/λ in this case.

Now, assume that m ≥ 1 and the result is true for m − 1. By Remark 1-(i), if |(φ(m)
∗ )∗ξ| ≤ λ for all

ξ ∈ T (m),≤1M , then |(φ(m−1)
∗ )∗ξ| ≤ λ for all ξ ∈ T (m−1),≤1M . Hence, by the induction hypothesis, for all

r > 0, there is some s > 0, as small as desired, such that φ
(m)
∗ (T (m),≤sM) ⊂ T (m),≤rN . On the other
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hand, by Lemma 3.6, there is some µ > 0, depending on m, r, s and λ, such that |(φ(m)
∗ )∗ξ| ≤ µ for all

ξ ∈ T (m),≤sM , and satisfying µs → 0 as s → 0 for fixed m, r and λ. Thus we can choose s, and the
corresponding µ, so that µs ≤ r. Then

φ
(m+1)
∗ (T (m+1),≤sM) ⊂ T≤µsT (m),≤rN ⊂ T (m+1),≤rN . �

Lemma 3.8. For m ∈ Z+, r, s > 0 and λ ≥ 1, there is some µ ≥ 1 such that, for any Cm+1 map

between Riemannian manifolds, φ : M → N , if φ
(m)
∗ : T (m),≤rM → T (m)N is a λ-quasi-isometry, then

φ
(m)
∗ : T≤sM → T (m)N is a µ-quasi-isometry.

Proof. Again, we use induction on m. The case m = 1 is a direct consequence of Lemma 3.3.
Now, assume that m ≥ 2 and the result holds for m−1. Consider the notation of the proof of Lemma 3.6.

From the commutativity of (8), and using Corollary 3.5 and Remark 2-(v), it follows that the lower horizontal
arrow of (8) is a ĉ2λ-quasi-isometry. Then, by the induction hypothesis applied to the map φ∗ : T≤sM → TN ,

there is some µ > 0, depending only on m − 1, t, s and ĉ2λ, such that φ
(m)
∗ : T (m),≤sM → T (m)N is a µ-

quasi-isometry. �

Remark 5. According to Lemma 3.8, we could use any T (m),≤rM instead of T (m),≤1M to define quasi-
isometries of order m, but the dilation bounds of order m would be different.

Proposition 3.9. (i) For all m ∈ N and λ, µ ≥ 1, there is some ν ≥ 1 such that, if φ : M → N and
ψ : N → L are quasi-isometries of order m, and λ and µ are respective dilation bounds of order m,
then ψφ is a ν-quasi-isometry of order m.

(ii) For all m ∈ N and λ ≥ 1, there is some µ ≥ 1 such that, if φ : M → N is a λ-quasi-isometric
diffeomorphism of order m, then φ−1 is a µ-quasi-isometry of order m.

Proof. Let us prove (i). By Corollary 3.7, there is some r > 0, depending on m and λ, such that

φ
(m+1)
∗ (T (m+1),≤rM) ⊂ T (m+1),≤1N ,

and therefore φ
(m)
∗ (T (m),≤rM) ⊂ T (m),≤1N . On the other hand, by Lemma 3.8, there is some λ′ ≥ 1,

depending on m, r and λ, such that φ
(m)
∗ : T (m),≤rM → T (m),≤1N is a λ′-quasi-isometry. So

(ψφ)
(m)
∗ = ψ

(m)
∗ φ

(m)
∗ : T (m),≤rM → T (m)L

is a λ′µ-quasi-isometry by Remark 2-(v). Thus, by Lemma 3.8, there is some ν ≥ 1, depending on m, r and

λ′µ, so that (ψφ)
(m)
∗ : T (m),≤1M → T (m)L is a ν-quasi-isometry; i.e., ψφ is a ν-quasi-isometry of order m.

Now, let us prove (ii). By Corollary 3.7, there is some r > 0, depending on m and λ, such that

(φ−1)
(m+1)
∗ (T (m+1),≤rN) ⊂ T (m+1),≤1M ,

and therefore (φ−1)
(m)
∗ (T (m),≤rN) ⊂ T (m),≤1M . So

φ
(m)
∗ : (φ−1)

(m)
∗ (T (m),≤rN)→ T (m),≤rN

is a λ-quasi-isometric diffeomorphism, obtaining that

(φ−1)
(m)
∗ = (φ

(m)
∗ )−1 : T (m),≤rN → (φ−1)

(m)
∗ (T (m),≤rN)

is a λ-quasi-isometry by Remark 2-(vi). Thus, by Lemma 3.8, there is some µ ≥ 1, depending on m, r and λ,

so that (φ−1)
(m)
∗ : T (m),≤1N → T (m)M is a µ-quasi-isometry; i.e., φ−1 is a µ-quasi-isometry of order m. �

Corollary 3.10. “Being quasi-isometric with order m” is an equivalence relation.

Let M and N be connected Riemannian manifolds. For every m ∈ N ∪ {∞}, consider the weak Cm

topology on Cm(M,N) (see [22]). For x ∈M and Φ ⊂ Cm(M,N), let Φ(x) = {φ(x) | φ ∈ Φ } ⊂ N .

Proposition 3.11. Assume that N is complete. Let x0 ∈ M , and let Φ ⊂ Cm+1(M,N) be a family of
equi-quasi-isometries of order m ∈ N ∪ {∞}. Then Φ is precompact in Cm(M,N) if and only if Φ(x0) is
bounded in N .
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Proof. The “only if” part follows because the evaluation map Cm(M,N)→ N , φ 7→ φ(x0), is continuous.
For m ∈ N, the “if” part is proved by induction. For m = 0, the assumption that Φ ⊂ C1(M,N) is

a family of equi-quasi-isometries implies that Φ is equi-continuous by Remark 2-(iii). On the other hand,
Φ(x) ⊂ PenN (Φ(x0), λ d(x, x0)) for any x ∈ M by Remark 2-(iii), where λ ≥ 1 is an equi-dilation bound of
Φ. So Φ(x) is precompact in N because Φ(x0) is bounded and N is complete. Therefore Φ is precompact in
C(M,N) by the Arzelà-Ascoli theorem.

Now, take an integer m ≥ 1 and assume that the result holds for m − 1. The map Cm(M,N) →
Cm−1(T≤1M,TN), φ 7→ φ∗|T≤1M , is an embedding. So it is enough to prove that the image Φ∗ of Φ
by this map is precompact in Cm−1(T≤1M,TN). This holds by the induction hypothesis because Φ∗ ⊂
Cm(T≤1M,TN) is a family of equi-quasi-isometries of order m− 1 by Remark 3-(iii).

The “if” part for m =∞ can be proved as follows. In this case, we have proved that Φ is precompact in
Cl(M,N) for every l ∈ N. By the continuity of the inclusion maps Cl+1(M,N) ↪→ Cl(M,N), it follows that
Φ has the same closure Φ in Cl(M,N) and Cl+1(M,N), and the weak Cl and Cl+1 topologies coincide on
Φ. Therefore Φ is the closure of Φ in C∞(M,N) too, and the weak C∞ and Cl topologies coincide on Φ for
any l ∈ N. Thus Φ is precompact in C∞(M,N). �

4. Partial quasi-isometries

Let M and N be connected complete Riemannian manifolds without boundary.

Definition 4.1. For m ∈ N, a partial map f : M � N is called a Cm local diffeomorphism if dom f
and im f are open in M and N , respectively, and f : dom f → im f is a Cm diffeomorphism. If moreover
f(x) = y for distinguished points, x ∈ dom f and y ∈ im f , then f is said to be pointed, and the notation
f : (M,x) � (N, y) is used. The term local homeomorphism is used in the C0 case.

The term “Cm local diffeomorfism” (m ≥ 1) may be also used in the standard sense, referring to any Cm

map M → N whose tangent map is an isomorphism at every point of M . The context will always clarify
this ambiguity.

Definition 4.2. For m ∈ N, R > 0 and λ ≥ 1, a Cm+1 pointed local diffeomorphism φ : (M,x) � (N, y) is
called an (m,R, λ)-pointed local quasi-isometry, or a local quasi-isometry of type (m,R, λ), if the restriction

φ
(m)
∗ : Ω(m) → T (m)N is a λ-quasi-isometry for some compact domain Ω(m) ⊂ domφ

(m)
∗ with B

(m)
M (x,R) ⊂

Ω(m).

Remark 6. (i) Any pointed local quasi-isometry (M,x) � (N, y) of type (m,R, λ) is also of type (m′, R′, λ′)
for 0 ≤ m′ ≤ m, 0 < R′ < R and λ′ > λ (using Remark 1-(i)).

(ii) For integers 0 ≤ m′ ≤ m, any pointed Cm+1 local diffeomorphism φ : (M,x) � (N, y) is a pointed

local quasi-isometry of type (m,R, λ) if and only if φ
(m′)
∗ : (T (m′)M,x) � (T (m′)N, y) is a pointed local

quasi-isometry of type (m−m′, R, λ).
(iii) If there is an (m,R, λ)-pointed local quasi-isometry (M,x) � (N, y), then, for all R′ < R and λ′ > λ,

there is a C∞ (m,R′, λ′)-pointed local quasi-isometry (M,x) � (N, y) by [22, Theorem 2.7].

Lemma 4.3. The following properties hold:

(i) If φ : (M,x) � (N, y) and ψ : (N, y) � (L, z) are pointed local quasi-isometries of types (m,R, λ) and
(m,λR, λ′), respectively, then ψ ◦ φ : (M,x) � (L, z) is an (m,R, λλ′)-pointed local quasi-isometry.

(ii) If φ : (M,x) � (N, y) is an (m,λR, λ)-pointed local quasi-isometry, then φ−1 : (N, y) � (M,x) is an
(m,R, λ)-pointed local quasi-isometry.

Proof. To prove (i), it is enough to show that B
(m)

M (x,R) ⊂ dom(ψ ◦ φ)
(m)
∗ by Remark 2-(v). For ξ ∈

B
(m)

M (x,R), we have ξ ∈ domφ and d
(m)
N (y, φ

(m)
∗ (ξ)) ≤ λ d

(m)
M (x, ξ) ≤ λR by Remark 2-(iii), obtaining that

ξ ∈ dom(ψ ◦ φ)
(m)
∗ since (ψ ◦ φ)

(m)
∗ = ψ

(m)
∗ ◦ φ(m)

∗ .

To prove (ii), it is enough to show that B
(m)

N (y,R) ⊂ φ
(m)
∗ (B

(m)

M (x, λR)) by Remark 2-(vi). Let A =

B
(m)

N (y,R)∩ imφ
(m)
∗ , which is open in B

(m)

N (y,R) and contains y. For any ζ ∈ A, there is some ξ ∈ domφ
(m)
∗

so that φ
(m)
∗ (ξ) = ζ. Then d

(m)
M (x, ξ) ≤ λdN (y, ζ) ≤ λR by Remark 2-(iii), obtaining that ξ ∈ B(m)

M (x, λR).
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Thus A = φ
(m)
∗ (B

(m)

M (x, λR)) ∩ B(m)

N (y,R), which is closed in B
(m)

N (y,R). Therefore B
(m)

N (y,R) = A ⊂
φ

(m)
∗ (B

(m)

M (x, λR)) because B
(m)

N (y,R) is connected. �

5. The C∞ topology on M∗(n)

Definition 5.1. For m ∈ N and R, r > 0, let UmR,r be the set of pairs ([M,x], [N, y]) ∈M∗(n)×M∗(n) such

that there is some (m,R, λ)-pointed local quasi-isometry (M,x) � (N, y) for some λ ∈ [1, er).

The following standard notation is used for a set X and relations U, V ⊂ X ×X:

U−1 = { (y, x) ∈ X ×X | (x, y) ∈ U } ,
V ◦ U = { (x, z) ∈ X ×X | ∃y ∈ X so that (x, y) ∈ U and (y, z) ∈ V } .

Moreover the diagonal of X ×X is denoted by ∆.

Proposition 5.2. The following properties hold for all m,m′ ∈ N and R,S, r, s > 0:

(i) (UmerR,r)
−1 ⊂ UmR,r.

(ii) Um0

R0,r0
⊂ UmR,r ∩ Um

′

S,s, where m0 = max{m,m′}, R0 = max{R,S} and r0 = min{r, s}.
(iii) ∆ ⊂ UmR,r.
(iv) UmesR,r ◦ UmR,s ⊂ UmR,r+s.

Proof. Properties (ii) and (iii) are elementary, and (i) and (iv) are consequences of Lemma 4.3. �

Proposition 5.3.
⋂
R,r>0 U

m
R,r = ∆ for all m ∈ N.

Proof. We only prove “⊂” because “⊃” is obvious. For ([M,x], [N, y]) ∈
⋂
R,r>0 U

m
R,r, there is a sequence of

pointed local quasi-isometries φi : (M,x) � (N, y), with corresponding types (m,Ri, λi), such that Ri ↑ ∞
and λi ↓ 1 as i→∞. Let us prove that [M,x] = [N, y].

First, we inductively construct a pointed isometric immersion ψ : (M,x)→ (N, y).
The restrictions φi : (BM (x,R1), x) → (N, y) are pointed equi-quasi-isometries of order m (λ1 is an

equi-dilation bound of order m). By Proposition 3.11, there is some subsequence φk(1,l) whose restriction to
BM (x,R1) converges to some pointed Cm function ψ1 : (BM (x,R1), x) → (N, y) in the weak Cm topology.
Since λi ↓ 1, it follows that ψ1 is an isometric immersion.

Now assume that, for some i ≥ 1, there is some subsequence φk(i,l) whose restriction to BM (x,Ri)
converges to some pointed isometric immersion ψi : (BM (x,Ri), x) → (N, y). As before, by Proposi-
tion 3.11, the sequence φk(i,l) has some subsequence φk(i+1,l) whose restriction to BM (x,Ri+1) converges to
some pointed isometric immersion ψi+1 : (BM (x,Ri+1), x) → (N, y) in the weak Cm topology. Moreover
ψi+1|BM (x,Ri) = ψi. Thus the maps ψi can be combined to define the desired pointed isometric immersion
ψ : (M,x)→ (N, y).

Now, let us show that ψ is indeed a pointed isometry, and therefore [M,x] = [N, y], as desired. By
Lemma 4.3-(ii), each inverse φ−1

i : (N, y) � (M,x) is an (m,R′i, λi)-pointed local quasi-isometry, where

R′i = Ri/λi ↑ ∞. By using Proposition 3.11 as above, we get a subsequence φ−1
k′(i,l) of each sequence φ−1

k(i,l),

whose restriction to BN (y,R′i) converges to a pointed isometric immersion ψ′i : (BN (y,R′i), y) → (M,x) in
the weak Cm topology, and such that φ−1

k′(i+1,l) is also a subsequence of φ−1
k′(i,l). So ψ′i+1|BN (y,R′i)

= ψ′i for all

i, obtaining that the maps ψ′i can be combined to define a pointed isometric immersion ψ′ : (N, y)→ (M,x).
Since the operation of composition is continuous with respect to the weak Cm topology [22, p. 64, Exercise 10],
we get ψiψ

′
i = idBN (y,R′i)

for all i, giving ψψ′ = idN . Therefore ψ′ is injective. Moreover ψ′ is also surjective

because M and N are complete. Hence ψ′ is an isometry whose inverse is ψ. �

By Propositions 5.2 and 5.3, the sets UmR,r form a base of entourages of a separating uniformity on M∗(n),
which is called the C∞ uniformity. It will be proved that the induced topology satisfies the statement of
Theorem 1.2; thus it is called the C∞ topology, and the corresponding space is denoted by M∞∗ (n). The
notation Cl∞ and Int∞ will be used for the closure and interior operators in M∞∗ (n).

The following lemma will be used.
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Lemma 5.4. For any open U ⊂M∞∗ (n), the map dU : M∞∗ (n)→ [0,∞], defined by

dU ([M,x]) = inf{ dM (x, x′) | x′ ∈M, [M,x′] ∈ U } ,
is upper semicontinuous.

Here, recall that inf ∅ =∞ in R.

Proof. To prove that dU is upper semicontinuous at some [M,x] ∈ M∞∗ (n), we can assume that D :=
dU ([M,x]) < ∞. Given any ε > 0, there is some x′ ∈ BM (x,D + ε) such that [M,x′] ∈ U . Since U is
open, we have UmR,r(M,x′) ⊂ U for some m ∈ N and R, r > 0 with R ≥ D + ε and erdM (x, x′) < D + ε.

Given any [N, y] ∈ Um2R,r(M,x), there is some (m, 2R, λ)-pointed local quasi-isometry φ : (M,x) � (N, y)

for some λ ∈ [1, er). Take some δ > 0 such that λ(dM (x, x′) + δ) < D + ε, and let α be a smooth curve in
BM (x,D+ ε) of length < dM (x, x′) + δ from x to x′. Hence φα is a well defined Cm+1 curve in N from y to
y′ := φ(x′) of length < λ(dM (x, x′) + δ) < D + ε, obtaining that dN (y, y′) < D + ε. On the other hand, φ
is also an (m,R, λ)-pointed local quasi-isometry (M,x′) � (N, y′), showing that [N, y′] ∈ UmR,r(M,x′) ⊂ U .

So dU ([N, y]) < D + ε. �

6. Convergence in the C∞ topology

Lemma 6.1. Let g and g′ be positive definite scalar products on a real vector space V , and let | | and | |′
denote the respective induced norms on the vector space of tensors over V . The following properties hold:

(i) If λ ≥ 1 satisfies 1
λ |v|

′ ≤ |v| ≤ λ|v|′ for all v ∈ V , then |g − g′| ≤ λ2 − λ−2.

(ii) If |g − g′| ≤ ε for some ε ∈ [0, 1), then
√

1− ε |v| ≤ |v|′ ≤
√

1 + ε |v| for all v ∈ V .
(iii) If λ ≥ 1 satisfies 1

λ |v|
′ ≤ |v| ≤ λ|v|′ for all v ∈ V , then 1

λ2 |ω|′ ≤ |ω| ≤ λ2|ω|′ for all ω ∈ V ∗ ⊗ V ∗.

Proof. To prove (i), take arbitrary vectors v, w ∈ V with |v| = |w| = 1. By polarization,

(g − g′)(v, w) =
1

4

(
|v + w|2 − |v − w|2 − |v + w|′2 + |v − w|′2

)
≤ 1

4

((
1− 1/λ2

)
|v + w|2 + (λ2 − 1)|v − w|2

)
≤ 1− 1

λ2
+ λ2 − 1 = λ2 − 1

λ2
.

Interchanging g and g′ in these inequalities, it also follows that |(g − g′)(v, w)| ≤ λ2 − λ−2.
Property (ii) follows because, for any v ∈ V ,

(1− ε)|v|2 ≤ |v|2 − ||v|2 − |v|′2| ≤ |v|′2 ≤ |v|2 + ||v|2 − |v|′2| ≤ (1 + ε)|v|2 .
Let us prove (iii). For all v, w ∈ V r {0},

|ω(v, w)|
|v|′ |w|′

≤ λ2 |ω(v, w)|
|v| |w|

≤ λ2 |ω| ,

obtaining |ω|′ ≤ λ2|ω|. Interchanging the roles of | | and | |′, we also get |ω| ≤ λ2|ω|′. �

The following coordinate free description of Cm convergence is a direct consequence of (3).

Lemma 6.2 (Lessa [29, Lemma 7.1]). For m ∈ N, a sequence [Mi, xi] ∈ M∗(n) is Cm convergent to
[M,x] ∈ M∗(n) if and only if, for every compact domain Ω ⊂ M containing x, there are pointed Cm+1

embeddings φi : (Ω, x)→ (Mi, xi), for i large enough, such that ‖gM − φ∗i gMi
‖Cm,Ω,gM → 0 as i→∞.

Definition 6.3. For R, r > 0 and m ∈ N, let Dm
R,r be the set of pairs ([M,x], [N, y]) ∈M∗(n)×M∗(n) such

that there is some Cm+1 pointed local diffeomorphism φ : (M,x) � (N, y) so that ‖gM −φ∗gN‖Cm,Ω,gM < r
for some compact domain Ω ⊂ domφ with BM (x,R) ⊂ Ω.

Given a set X, for U ⊂ X × X and x ∈ X, let U(x) = { y ∈ Y | (x, y) ∈ U }. In the case of
U ⊂M∗(n)×M∗(n) and [M,x] ∈M∗(n), we simply write U(M,x).

Remark 7. By Lemma 6.2, a sequence [Mi, xi] ∈ M∗(n) is C∞ convergent to [M,x] ∈ M∗(n) if and only if
it is eventually in Dm

R,r(M,x) for arbitrary m ∈ N and R, r > 0.

Proposition 6.4. (i) For all R, r > 0, if 0 < ε ≤ min{1− e−2r, e2r − 1}, then D0
R,ε ⊂ U0

R,r.

(ii) For all m ∈ Z+, R, r > 0 and [M,x] ∈M∗(n), there is some ε > 0 such that Dm
R,ε(M,x) ⊂ UmR,r(M,x).
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Proof. Let us show (i). If ([M,x], [N, y]) ∈ D0
R,ε, then there is a C1 pointed local diffeomorphism φ :

(M,x) � (N, y) such that ε0 := ‖gM − φ∗gN‖C0,Ω,gM < ε for some compact domain Ω ⊂ domφ with
BM (x,R) ⊂ Ω. Choose some λ ∈ [1, er) such that ε0 ≤ min{1 − λ−2, λ2 − 1}. Set g = gM and g′ = φ∗gN ,
and let | | and | |′ denote the respective norms. For ξ ∈ TΩ, we have

1

λ
|ξ| ≤

√
1− ε0 |ξ| ≤ |ξ|′ ≤

√
1 + ε0 |ξ| ≤ λ |ξ|

by Lemma 6.1-(ii). Thus φ is a (0, R, λ)-pointed local quasi-isometry, obtaining that ([M,x], [N, y]) ∈ U0
R,r.

Let us prove (ii). Take m ∈ Z+, R, r > 0 and [M,x] ∈ M∗(n). Let U be a finite collection of charts
of M with domains Ua, and let K = {Ka} be a family of compact subsets of M , with the same index set
as U, such that Ka ⊂ Ua for all a, and BM (x,R) ⊂ Int(K) for K =

⋃
aKa. Let ε > 0, to be fixed later.

For any [N, y] ∈ Dm
R,ε(M,x), there is a Cm+1 pointed local diffeomorphism φ : (M,x) � (N, y) so that

‖gM −φ∗gN‖Cm,Ω,gM < ε for some compact domain Ω ⊂ domφ∩ Int(K) with BM (x,R) ⊂ Ω. By continuity,
there is another compact domain Ω′ ⊂ domφ∩ Int(K) such that Ω ⊂ Int(Ω′) and ‖gM −φ∗gN‖Cm,Ω′,gM < ε.
As before, let g = gM and g′ = φ∗gN .

With the notation of Section 2.2, let U(m) be the family of induced charts of T (m)M with domains U
(m)
a ,

let K(m) be the family of compact subsets

K(m)
a = { ξ ∈ T (m)M | π(ξ) ∈ Ka, d

(m)
M (ξ, π(ξ)) ≤ R′ } ⊂ U (m)

a ,

for some R′ > R, where π : T (m)M → M , and let K(m) =
⋃
aK

(m)
a . Since B

(m)

M (x,R) ⊂ Int(K(m)) and

π(B
(m)

M (x,R)) = BM (x,R) ⊂ Ω ⊂ Int(Ω′) by Remark 1-(iv),(v), there is some compact domain Ω(m) ⊂
T (m)M such that B

(m)
M (x,R) ⊂ Ω(m) ⊂ K(m) and π(Ω(m)) ⊂ Ω′.

Choose the following constants:

• some C ≥ 1 satisfying (3) with U, K, Ω′ and g;
• some C(m) ≥ 1 satisfying (3) with U(m), K(m), Ω(m) and g(m);
• some δ ∈ (0,min{1− e−2r, e2r − 1}]; and,
• by Lemma 2.1-(i), some ε′ > 0 such that

‖g − g′‖Cm,Ω′,U,K < ε′ =⇒ ‖g(m) − g′(m)‖C0,Ω(m),U(m),K(m) < δ/C(m) .

Suppose that ε ≤ ε′/C. Then

‖g − g′‖Cm,Ω′,g < ε =⇒ ‖g − g′‖Cm,Ω′,U,K < Cε ≤ ε′

=⇒ ‖g(m) − g′(m)‖C0,Ω(m),U(m),K(m) < δ/C(m) =⇒ δ0 := ‖g(m) − g′(m)‖C0,Ω(m),g(m) < δ .

For any λ ∈ [1, er) such that δ0 ≤ min{1−λ−2, λ2−1}, we have 1
λ |ξ|

(m) ≤ |ξ|′(m) ≤ λ |ξ|(m) for all ξ ∈ TΩ(m)

by Lemma 6.1-(ii), where | |(m) and | |′(m) denote the norms defined by g(m) and g′(m), respectively. So φ is

an (m,R, λ)-pointed local quasi-isometry (M,x) � (N, y), and therefore [N, y] ∈ U (m)
R,r (M,x). �

Proposition 6.5. (i) For all R, r > 0, if e2ε − e−2ε ≤ r, then U0
R,ε ⊂ D0

R,r.

(ii) For all m ∈ Z+, R, r > 0 and [M,x] ∈M∗(n), there is some ε > 0 such that UmR,ε(M,x) ⊂ Dm
R,r(M,x).

Proof. Let us show (i). If ([M,x], [N, y]) ∈ U0
R,ε, then there is a (0, R, λ)-pointed local quasi-isometry

φ : (M,x) � (N, y) for some λ ∈ [1, eε). Set g = gM and g′ = φ∗gN , and let | | and | |′ denote the respective
norms. Thus there is some compact domain Ω ⊂ domφ such that BM (x,R) ⊂ Ω and 1

λ |ξ| ≤ |ξ|
′ ≤ λ |ξ| for

all ξ ∈ TΩ. By Lemma 6.1-(i), it follows that

‖g − g′‖C0,Ω,g ≤ λ2 − λ−2 < e2ε − e−2ε ≤ r .
So ([M,x], [N, y]) ∈ D0

R,r.

Let us prove (ii). Let m ∈ Z+, R, r > 0 and [M,x] ∈ M∗(n). Take U, K, K, U(m), K(m) and K(m)

like in the proof of Proposition 6.4-(ii). Let ε > 0, to be fixed later. For any [N, y] ∈ UmR,ε(M,x), there

is an (m,R, λ)-pointed local quasi-isometry φ : (M,x) � (N, y) for some λ ∈ [1, eε). Again, let g = gM
and g′ = φ∗gN . Thus there is a compact domain Ω(m) ⊂ domφ

(m)
∗ ∩ Int(K(m)) so that B

(m)
M (x,R) ⊂ Ω(m)

and 1
λ |ξ|

(m) ≤ |ξ|′(m) ≤ λ |ξ|(m) for all ξ ∈ TΩ(m), where | |(m) and | |′(m) denote the norms defined
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by g(m) and g′(m), respectively. By continuity, given any λ′ ∈ (λ, eε), there is some compact domain

Ω′(m) ⊂ domφ
(m)
∗ ∩K(m) such that Ω(m) ⊂ Int(Ω′(m)) and 1

λ′ |ξ|
(m) ≤ |ξ|′(m) ≤ λ′ |ξ|(m) for all ξ ∈ Ω′(m).

By Lemma 6.1-(i), it follows that

‖g(m) − g′(m)‖C0,Ω′(m),g(m) ≤ λ′2 − λ′−2 < e2ε − e−2ε .

There is some compact domain Ω ⊂ M such that Ω(m) ∩M ⊂ Ω ⊂ Int(Ω′(m)). Thus Ω ⊂ Ω′(m) ∩M ⊂
K(m) ∩M = K, and

BM (x,R) = B
(m)
M (x,R) ∩M ⊂ Ω(m) ∩M ⊂ Ω

by Remark 1-(ii). Take some C ≥ 1 satisfying (3) with U, K, Ω and g, and some C(m) ≥ 1 satisfying (3)

with U(m), K(m), Ω′(m) and g(m). For ρ > 0 and n + 1 ≤ µ ≤ 2mn, let σ
(m)
a,ρ,µ : Ua → U

(m)
a be the section

of each projection π : U
(m)
a → Ua of the type used in Lemma 2.1-(ii). Since Ω ⊂ Int(Ω′(m)), there is some

ρ > 0 so that σ
(m)
ρ,µ (Ka ∩ Ω) ⊂ K

(m)
a ∩ Ω′(m) for all a and µ. Thus, by Lemma 2.1-(ii), there is some ε′ > 0,

depending on r and ρ, such that

‖g(m) − g′(m)‖C0,Ω′(m),U(m),K(m) < ε′ =⇒ ‖g − g′‖Cm,Ω,U,K < r/C .

Suppose that e2ε − e−2ε ≤ ε′/C(m). Then

‖g(m) − g′(m)‖C0,Ω′(m),g(m) < e2ε − e−2ε =⇒ ‖g(m) − g′(m)‖C0,Ω′(m),U(m),K(m) < C(m)(e2ε − e−2ε) ≤ ε′

=⇒ ‖g − g′‖Cm,Ω,U,K < r/C =⇒ ‖g − g′‖Cm,Ω,g < r ,

showing that [N, y] ∈ D(m)
R,r (M,x). �

Corollary 6.6. The C∞ convergence in M∗(n) describes the C∞ topology.

Proof. This is a direct consequence of Remark 7 and Propositions 6.4 and 6.5. �

7. M∞∗ (n) is Polish

Proposition 7.1. M∞∗ (n) is separable.

Proof. The isometry classes of pointed compact Riemannian manifolds form a subspace, M∞∗,c(n) ⊂M∞∗ (n),
which is dense because, for all [M,x] ∈M∞∗ (n) and R > 0, the ball BM (x,R) can be isometrically embedded
in a compact Riemannian manifold.

As a consequence of the finiteness theorems of Cheeger on Riemannian manifolds [9], it follows that
there are countably many diffeomorphism classes of compact C∞ manifolds (see [33, Corollary 37, p. 320]
or [8, Theorem IX.8.1]). Thus there is a countable family C of C∞ compact manifolds containing exactly
one representative of every diffeomorphism class.

For every M ∈ C, the set of metrics on M , Met(M), is an open subspace of the space of smooth sections,
C∞(M ;T ∗M � T ∗M), with the C∞ topology, where “�” denotes the symmetric product. Then, since
C∞(M ;T ∗M � T ∗M) is separable, we can choose a countable dense subset GM ⊂ Met(M). Choose also a
countable dense subset DM ⊂M .

Clearly, the countable set
{ [(M, g), x] |M ∈ C, g ∈ GM , x ∈ DM }

is dense in M∞∗,c(n), and therefore it is also dense in M∞∗ (n). �

Remark 8. Observe that the proof of Proposition 7.1 shows that M∞∗,c(n) is dense in M∞∗ (n).

Proposition 7.2. M∞∗ (n) is completely metrizable.

Proof. The C∞ uniformity on M∗(n) is metrizable because it is separating and has a countable base of
entourages [39, Corollary 38.4]. Thus it is enough to check that the C∞ uniformity on M∗(n) is complete.

Consider an arbitrary Cauchy sequence [Mi, xi] in M∗(n) with respect to the C∞ uniformity. We have
to prove that [Mi, xi] is convergent in M∞∗ (n). By taking a subsequence if necessary, we can suppose that
([Mi, xi], [Mi+1, xi+1]) ∈ Umi

Ri,ri
for sequences, mi ↑ ∞ in N, and Ri ↑ ∞ and ri ↓ 0 in R+, such that∑

i ri <∞, and Ri+1 ≥ eriRi for all i. Let r̄i =
∑
j≥i rj . Consider other sequences R′i, R

′′
i ↑ ∞ in R+ such

that R′i < R′′i ≤ e−r̄iRi and R′i+1 ≥ eriR′′i .
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For each i, there is some λi ∈ (1, eri) and some (mi, Ri, λi)-pointed local quasi-isometry φi : (Mi, xi) �
(Mi+1, xi+1), which can be assumed to be C∞ by Remark 6-(iii). Then λ̄i :=

∏
j≥i λj < er̄i < ∞. For

i < j, the pointed local quasi-isometry ψij = φj−1 · · ·φi : (Mi, xi) � (Mj , xj) is of type (mi, Ri/λ̄i, λ̄i) by
Lemma 4.3-(i).

For i,m ∈ N, let

Bi = Bi(xi, Ri) , B′i = Bi(xi, R
′
i) , B′′i = Bi(xi, R

′′
i ) ,

B
(m)
i = B

(m)
i (xi, Ri) , B

′(m)
i = B

(m)
i (xi, R

′
i) , B

′′(m)
i = B

(mi)
i (xi, R

′′
i ) .

A bar will be added to this notation when the corresponding closed balls are considered. We have φi(Bi) ⊂
Bi+1 because Ri+1 > λiRi, and φ

(mi)
i∗ (B

′′(mi)

i ) ⊂ B′(mi)
i+1 ⊂ B′(mi+1)

i+1 since R′i+1 > λiR
′′
i and by Remark 1-(i).

Furthermore B′′i ⊂ domψij and B
′′(mi)
i ⊂ domψ

(mi)
ij∗ for i < j because R′′ ≤ Ri/λ̄i. Therefore ψij(Bi) ⊂ Bj

and ψ
(mi)
ij∗ (B

′′(mi)
i ) ⊂ B′(mj)

j .

The restrictions ψij : Bi → Bj form a direct system of spaces, whose direct limit is denoted by M̂ . Let

ψi : Bi → M̂ be the induced maps, whose images, B̂i := ψi(Bi), form an exhausting increasing sequence

of subsets of M̂ . All points ψi(xi) are equal in M̂ , and will be denoted by x̂. The space M̂ is connected

because it is the union of the connected subspaces B̂i whose intersection contains x̂. By the definition of the
direct limit and since the maps ψij are open embeddings, it follows that all maps ψi are open embeddings,

and therefore M̂ is a Hausdorff n-manifold. Equip each B̂i with the C∞ structure that corresponds to the
C∞ structure of Bi by ψi. These C∞ structures are compatible one another because the open embeddings

ψij are C∞, and therefore they define a C∞ structure on M̂ . Moreover let ĝi be the Riemannian metric on

each B̂i that corresponds to gi|Bi via ψi.

Take some compact domains, Ωi in every Mi and Ω
(mi)
i in T (mi)Mi, such that B′i ⊂ Ωi ⊂ Int(Ω

(mi)
i ) and

B
′(mi)
i ⊂ Ω

(mi)
i ⊂ B′′(mi)

i ; thus Ωi ⊂ B′′i by Remark 1-(ii). Let Ω̂i = ψi(Ωi).

Claim 1. M̂ =
⋃
i Ω̂i.

This equality holds because, for each i, there is some j so that R′j > λ̄iRi, obtaining

ψij(Bi) ⊂ Bj(xj , λ̄iRi) ⊂ B′j ⊂ Ωj ,

and therefore B̂i = ψjψij(Bi) ⊂ ψj(Ωj) = Ω̂j .

Claim 2. For all i, the restrictions ĝj |Ω̂i
, with j ≥ i, form a convergent sequence in the space of Cmi sections,

Cmi(Ω̂i;T Ω̂∗i � T Ω̂∗i ), with the Cmi topology, and its limit, ĝi,∞, is positive definite at every point.

Clearly, Claim 2 follows by showing that the restrictions of the metrics gij := ψ∗ijgj to Ωi, for j ≥ i, form
a convergent sequence in Cmi(Ωi;TΩ∗i � TΩ∗i ), and its limit, gi,∞, is positive definite at every point. To
begin with, let us show that gij |Ωi

is a Cauchy sequence with respect to ‖ ‖Cmi ,Ωi,gi .
We have

1

λ̄i
|ξ|(mi)
i ≤ |ξ|(mi)

ij ≤ λ̄i |ξ|(mi)
i (9)

for all ξ ∈ TΩ
(mi)
i , where | |(mi)

i and | |(mi)
ij are the norms defined by g

(mi)
i and g

(mi)
ij , respectively. By

Lemma 6.1-(i), it follows that

‖g(mi)
i − g(mi)

ij ‖
C0,Ω

(mi)

i ,g
(mi)

i

≤ λ̄2
i − λ̄−2

i .

Then, for k ≥ j,

‖g(mi)
ij − g(mi)

ik ‖
C0,Ω

(mi)

i ,g
(mi)

ij

= ‖g(mi)
j − g(mi)

jk ‖C0,ψ
(mi)

ij∗ (Ω
(mi)

i ),g
(mi)

j

≤ ‖g(mj)
j − g(mj)

jk ‖
C0,Ω

(mj)

j ,g
(mj)

j

≤ λ̄2
j − λ̄−2

j (10)

because

ψ
(mi)
ij∗ (Ω

(mi)
i ) ⊂ ψ(mi)

ij∗ (B
′′(mi)
i ) ⊂ B′(mj)

j ⊂ Ω
(mj)
j
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and g
(mj)
jk = g

(mi)
jk on Ω

(mj)
j ∩B(mi)

j ⊃ ψ(mi)
ij∗ (Ω

(mi)
i ) (Remark 1-(i)). We get

‖g(mi)
ij − g(mi)

ik ‖
C0,Ω

(mi)

i ,g
(mi)

i

≤ λ̄2
i (λ̄

2
j − λ̄−2

j ) (11)

by (9), (10) and Lemma 6.1-(iii).
Let Ui be a finite collection of charts of Mi with domains Ui,a, and let Ki = {Ki,a} be a family of compact

subsets of Mi, with the same index set as Ui, such that Ki,a ⊂ Ui,a for all a, and B
′′
i ⊂

⋃
aKi,a =: Ki.

Thus Ωi ⊂ Ki. With the notation of Section 2.2, let U
(mi)
i be the family of induced charts of T (mi)Mi with

domains U
(mi)
i,a . Like in the proof of Proposition 6.4-(ii), let K

(mi)
i be the family of compact subsets

K
(mi)
i,a = { ξ ∈ B(mi)

i | π(ξ) ∈ Ki,a, d
(mi)
i (ξ, πi(ξ)) ≤ R′′′i } ⊂ U

(mi)
i,a ,

for some R′′′i > R′′i , where π : B
(mi)
i → Bi. We have B

′′(mi)
i ⊂

⋃
aK

(mi)
i,a =: K

(mi)
i . Hence Ω

(mi)
i ⊂ K(mi)

i .

Choose some Ci ≥ 1 satisfying (3) with Ui, Ki, Ωi and gi, and some C
(mi)
i ≥ 1 satisfying (3) with U

(mi)
i ,

K
(mi)
i , Ω

(mi)
i and g(mi). For any ρ > 0 and n + 1 ≤ µ ≤ 2min, let σ

(mi)
i,a,ρ,µ : Ui,a → U

(mi)
i,a be the section of

each projection π : U
(mi)
i,a → Ui,a of the type used in Lemma 2.1-(ii). Since Ωi ⊂ Int(Ω

(mi)
i ), there is some

ρ > 0 so that σ
(mi)
i,a,ρ,µ(Ki,a ∩Ωi) ⊂ K(mi)

i,a ∩Ω
(mi)
i for all a and µ. Thus, by Lemma 2.1-(ii), given any ε > 0,

there is some δ > 0, depending on ε and ρ, such that

‖g(mi)
ij − g(mi)

ik ‖
C0,Ω

(mi)

i ,U
(mi)

i ,K
(mi)

i

< δ =⇒ ‖gij − gik‖Cmi ,Ωi,Ui,Ki < ε/Ci . (12)

Since λ̄j ↓ 1, we have λ̄2
i (λ̄

2
j − λ̄

−2
j ) < δ/C

(mi)
i for j large enough, giving

‖g(mi)
ij − g(mi)

ik ‖
C0,Ω

(mi)

i ,g
(mi)

i

< δ/C
(mi)
i =⇒ ‖g(mi)

ij − g(mi)
ik ‖

C0,Ω
(mi)

i ,U
(mi)

i ,K
(mi)

i

< δ

=⇒ ‖gij − gik‖Cmi ,Ωi,Ui,Ki
< ε/Ci =⇒ ‖gij − gik‖Cmi ,Ωi,gi < ε

by (11), (12) and (3). This shows that gij |Ωi is a Cauchy sequence in the Banach space Cmi(Ωi;TΩ∗i �TΩ∗i )
with ‖ ‖Cmi ,Ωi,gi , and therefore it has a limit gi,∞. For all nonzero ξ ∈ TΩi, we have

gi,∞(ξ, ξ) = lim
j
gij(ξ, ξ) ≥

1

λ̄i
gi(ξ, ξ) > 0 ,

obtaining that gi,∞ is positive definite. This completes the proof of Claim 2.

According to Claim 2, each ĝi,∞ is a Cmi Riemannian metric on Ω̂i, and, obviously, ĝj,∞|Ω̂i
= ĝi,∞ for

j > i. Hence the metric tensors ĝi,∞ can be combined to define a C∞ Riemannian metric ĝ on M̂ by Claim 1.

Let | |(mi)
i,∞ be the norm defined by g

(mi)
i,∞ on TΩ

(mi)
i . By (9) and because | |(mi)

i,∞ = limj | |(mi)
ij on TΩ

(mi)
i ,

we get 1
λ̄i
|ξ|(mi)
i ≤ |ξ|(mi)

i,∞ ≤ λ̄i |ξ|(mi)
i for all ξ ∈ TΩ

(mi)
i . Thus, by Remark 2-(iii), Ωi contains the gi,∞-ball

of center xi and radius R′i/λ̄i because it contains B′i; in particular, M̂ is complete because R′i/λ̄i →∞ and

every Ωi is compact. Since gi,∞ = ψ∗i ĝ, it also follows that ψ
(mi)
i∗ : Ω

(mi)
i → T (mi)M̂ is a λ̄i-quasi-isometry.

So ψi : (Mi, xi) � (M̂, x̂) is an (mi, R
′
i, λ̄i)-pointed local quasi-isometry, obtaining that ([Mi, xi], [M̂, x̂]) ∈

Umi

R′i,si
for any sequence si ↓ 0 with λ̄i < esi , and therefore [Mi, xi]→ [M̂, x̂] as i→∞ in M∞∗ (n). �

Corollary 7.3. M∞∗ (n) is Polish.

Proof. This is the content of Propositions 7.1 and 7.2 together. �

Corollaries 6.6 and 7.3 give Theorem 1.2.

8. Some basic properties of M∞∗,lnp(n)

For each closed C∞ manifold M of dimension ≥ 2, the non-periodic metrics on M form a residual subset
of Met(M) with the C∞ topology [3, Corollary 3.5], [38, Proposition 1]. Then, since M∞∗,c(n) is dense in
M∞∗ (n) (Remark 8), it follows that M∞∗,np(n) is dense in M∞∗ (n), and therefore M∞∗,lnp(n) is dense in M∞∗ (n)

too. On the other hand, M∞∗,lnp(n) is Gδ in M∞∗ (n) by Lemmas 8.1 and 8.3 below, and therefore it is a Polish

subspace [25, Theorem I.3.11]. This proves Theorem 1.3-(i).
17



Lemma 8.1. For every n ∈ Z+ and [M,x] ∈M∞∗,lnp(n), there is some r > 0 such that, if

{h ∈ Iso(M) | h(x) ∈ B(x, r) } = {idM} ,
then there is some neighborhood L of [M,x] in M∞∗,lnp(n) so that

{h ∈ Iso(L) | h(y) ∈ B(y, r) } = {idL}
for all [L, y] ∈ L.

Proof. Suppose that the statement is false. Then there is some convergent sequence, [Mi, xi] → [M,x], in
M∞∗ (n) so that, for each i, some hi ∈ Iso(Mi) r {idMi} satisfies hi(xi) ∈ Bi(xi, r). Choose any sequence
of compact domains Ωq of M such that B(x, 2r) ⊂ Int(Ωq) and d(x, ∂Ωq) → ∞ as q → ∞. For each q and
i large enough, there is some pointed smooth embedding φq,i : (Ωq, x) → (Mi, xi) so that φ∗q,igi → g|Ωq

as

i→∞ with respect to the C∞ topology. Thus Bi(xi, 2r) ⊂ φq,i(Int(Ωq)) for i large enough.

Claim 3. If r is small enough, we can assume that there is some δ > 0 such that, for i large enough, the
maps hi can be chosen so that di(zi, hi(zi)) ≥ δ for some zi ∈ Bi(xi, r).

Given any index i, suppose first that there is some k ∈ Z r {0} such that hki (xi) 6∈ Bi(xi, r/2). Then
there is some k ∈ Z r {0} such that hki (xi) 6∈ Bi(xi, r/2) and h`i(xi) ∈ Bi(xi, r/2) if |`| < |k|. If k = 1, then
di(xi, hi(xi)) ≥ r/2. If k = −1, then

di(xi, hi(xi)) = di
(
h−1
i (xi), xi

)
≥ r/2

as well. If |k| ≥ 2, then there is some ` ∈ Z such that |`|, |k − `| < |k|. Hence

di
(
xi, h

k
i (xi)

)
≤ di

(
xi, h

`
i(xi)

)
+ di

(
h`i(xi), h

k
i (xi)

)
= di

(
xi, h

`
i(xi)

)
+ di

(
xi, h

k−`
i (xi)

)
≤ r .

Therefore, by using hki instead of hi, we can assume that di(xi, hi(xi)) ≥ r/2 in this case.
Now, suppose that hki (xi) ∈ Bi(xi, r/2) for all k ∈ Z. Consider the non-trivial abelian subgroup Ai =

{hki | k ∈ Z } ⊂ Iso(Mi). Since a(xi) ∈ Bi(xi, r/2) for any a ∈ Ai, it follows that Ai is compact in the
C∞ topology by Proposition 3.11, and thus Ai is a non-trivial compact abelian Lie subgroup of Iso(Mi).
Let µi be a bi-invariant probability measure on Ai, and let fi : Ai → M be the mass distribution defined
by fi(a) = a(xi). By the C∞ convergence φ∗q,igi → g|Ωq

, we can suppose that r is so small that the ball
Bi(xi, 2r/3) of Mi satisfies the conditions of Proposition 10.2 for i large enough. Then, since fi(Ai) ⊂
Bi(xi, r/2) ⊂ Bi(xi, 2r/3), the center of mass yi = Cfi is defined in Bi(xi, 2r/3). Moreover yi is a fixed point
of the canonical action of Ai on M [24, Section 2.1]. Since there is a neighborhood of the identity in the
orthogonal group O(n) which contains no non-trivial subgroup (simply because O(n) is a Lie group), it follows
that there is some K > 0 such that, for any non-trivial subgroup A ⊂ O(n), there is some a ∈ A and some
v ∈ Rn such that |v| = 1 and |a(v)− v| ≥ K. In our setting, the subgroup { a∗yi | a ∈ Ai } of the orthogonal
group O(TyiMi) ≡ O(n) is non-trivial because Mi is connected and Ai is non-trivial. Hence there is some
ai ∈ Ai and some ξi ∈ TyiMi such that |ξi| = 1 and |ai∗(ξi)−ξi| ≥ K. By the C∞ convergence φ∗q,igi → g|Ωq

,
we can also assume that r is so small that there exists some C ≥ 1 such that expyi : B(0yi , r)→ B(yi, r) is

C-quasi-isometric for i large enough. Then, for zi = expyi(
r
3 ξi) ∈ Bi(yi, r/3) ⊂ Bi(xi, r), we get

di(zi, ai(zi)) ≥
r

3C
|ξi − h′i∗(ξi)| ≥

rK

3C
.

Thus, by using ai instead of hi, we can assume in this case that di(zi, hi(zi)) ≥ rK/3C. Therefore Claim 3
follows with δ = min{r/2, rK/3C}.

For each q, we can assume that

B(x, diam(Ωq) + r) ⊂ Int(Ωq+1) ,

obtaining
Bi(xi,diam(φq,i(Ωq)) + r) ⊂ Int(φq+1,i(Ωq+1))

for all i large enough by the C∞ convergence φ∗q,igi → g|Ωq
. Then h′q,i := φ−1

q+1,i hi φq,i : Ωq → M is well

defined for each q and all i large enough because xi ∈ φq,i(Ωq) and hi(xi) ∈ Bi(xi, r). On the one hand, from

the C∞ convergence φ∗q,igi → g|Ωq and since hi(xi) ∈ Bi(xi, r), we get the C∞ convergence h′∗q,ig → g|Ωq

and lim supi d(x, h′q,i(x)) ≤ r; in particular, for each q, the maps h′q,i are equi-quasi-isometries of order ∞.
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Therefore, by Proposition 3.11, some subsequence of h′q,i is C∞ convergent to some C∞ map h′q : Ωq →M ,

which is an isometric embedding satisfying h′q(x) ∈ B(x, r).

For all p ≥ q, the restrictions h′p|Ωq form a sequence of isometric embeddings satisfying h′p(x) ∈ B(x, r).
Then, by Proposition 3.11, there is some sequence of positive integers p(q, k) for each q so that the subsequence
h′p(q,k)|Ωq

of h′p|Ωq
is C∞ convergent as k →∞ to an isometric embedding h′′q : Ωq → M satisfying h′′q (x) ∈

B(x, r). We can assume that p(q+ 1, k) is a subsequence of p(q, k) for each q, yielding h′′q+1|Ωq
= h′′q . So the

maps h′′q can be combined to define an isometry h : M →M satisfying h(x) ∈ B(x, r).

Now, fix any q and let z′p,i = φ−1
p,i (zi) for each p ≥ q and all i large enough. From zi ∈ Bi(xi, r) and the

C∞ convergence φ∗p,igi → g|Ωp
, it follows that z′p,i approaches the compact set B(x, r) as i → ∞. Then,

for each p ≥ q, there is a sequence zp,i in B(x, r) so that d(zp,i, z
′
p,i) → 0. Hence, by the C∞ convergence

φ∗p,igi → g|Ωp and Claim 3, we get

sup{ d(z, h(z)) | z ∈ B(x, r) } = sup{ d(z, h′′q (z)) | z ∈ B(x, r) }

≥ sup

{
lim inf

p
d(z, h′p(z)) | z ∈ B(x, r)

}
≥ sup

{
lim inf

p
lim inf

i
d(z, h′p,i(z)) | z ∈ B(x, r)

}
≥ lim inf

p
lim inf

i
d(zp,i, h

′
p,i(zp,i)) = lim inf

p
lim inf

i
d(z′p,i, h

′
p,i(z

′
p,i)) ≥ lim inf

i
di(zi, hi(zi)) ≥ δ .

So h 6= idM , which is a contradiction because h(x) ∈ B(x, r). �

Lemma 8.2. For n ≥ 2 and each point [M,x] ∈M∞∗,lnp(n), there is some r > 0 such that, for each ε ∈ (0, r),

there is some neighborhood N of [M,x] in M∞∗,lnp(n) so that, if an equivalence class ι(L) of M∞∗,lnp(n) meets

N at points [L, y] and [L, z], then either dL(y, z) < ε or dL(y, z) > r.

Proof. Since M is locally non-periodic, there is some r > 0 such that

{h ∈ Iso(M) | d(x, h(x)) ≤ r } = {idM} . (13)

Suppose that the statement is false for this r. Then, given any ε ∈ (0, r), there are sequences [Li, yi] and
[Li, zi] in M∞∗,lnp(n) converging to [M,x] in M∞∗,lnp(n) such that ε ≤ di(yi, zi) ≤ r for all i.

Take a sequence of compact domains Ωq of M such that x ∈ Ωq and d(x, ∂Ωq)→∞ as q →∞. For each
q, there are C∞ embeddings φq,i : Ωq → Mi and ψq,i : Ωq → Mi for i large enough so that φq,i(x) = yi,
ψq,i(x) = zi, and φ∗q,igi, ψ

∗
q,igi → g|Ωq

as i→∞ with respect to the C∞ topology. We can also assume that,
for each q,

B(x, diam(Ωq) + r) ⊂ Int(Ωq+1) ,

giving
φq,i(Ωq) ⊂ Bi(yi,diam(φq,i(Ωq))) ⊂ Bi(zi,diam(φq,i(Ωq)) + r) ⊂ Int(ψq+1,i(Ωq+1))

for i large enough by the C∞ convergence φ∗q,igi, ψ
∗
q,igi → g|Ωq

and since di(yi, zi) ≤ r. So hq,i := ψ−1
q+1,i φq :

Ωq → M is well defined for each q and all i large enough. From the C∞ convergence φ∗q,igi, ψ
∗
q,igi → g|Ωq

,
we also get the C∞ convergence h∗q,ig → g|Ωq

, and moreover

lim inf
i

d(x, hq,i(x)) ≥ ε , lim sup
i

d(x, hq,i(x)) ≤ r ,

because φq,i(x) = yi, ψq,i(x) = zi and ε ≤ di(yi, zi) ≤ r. Then, like in the proof of Lemma 8.1, an isometry
h : M →M can be constructed so that ε ≤ d(x, h(x)) ≤ r, which contradicts (13). �

Lemma 8.3. Let n ∈ N and r > 0. For any convergent sequence [Mi, xi] → [M,x] in M∞∗ (n) and each
y ∈ B(x, r), there are points yi ∈ Bi(xi, r) such that [Mi, yi]→ [M,y] in M∞∗ (n).

Proof. Take a sequence of compact domains Ωq of M such that x, y ∈ Ωq and d(x, ∂Ωq) → ∞ as q → ∞.
For each q, there is some index iq such that, for each i ≥ iq there is a C∞ embedding φq,i : Ωq → Mi

satisfying φq,i(x) = xi and φ∗q,igi → g|Ωq
as i → ∞ with respect to the C∞ topology. Let yq,i = φq,i(y)

for all i ≥ iq. Then, for each q and every m ∈ Z+, there is some index iq,m ≥ iq such that di(xi, yq,i) < r
and ‖φ∗q,igi − g‖Cm,Ωq,g < 1/m for all i ≥ iq,m. Moreover we can assume that iq,q < iq+1,q+1 for all q.
Now, let yi be any point of Bi(xi, r) for i < i0,0, and let yi = yq,i for iq,q ≤ i < iq+1,q+1. Let us check
that [Mi, yi] → [M,y] in M∞∗ (n). Fix any compact domain Ω of M containing y, and let m ∈ N. We have

19



d(y, ∂Ωq) → ∞ as q → ∞ because d(x, ∂Ωq) → ∞ and d(x, y) < r. So there is some q0 ≥ m such that
Ω ⊂ Ωq for all q ≥ q0. For i ≥ iq0,q0 , let φi = φq,i|Ω if iq,q ≤ i < iq+1,q+1 with q ≥ q0. Then φi(y) = yi and

‖φ∗i gi − g‖Cm,Ωq,g ≤ ‖φ∗q,igi − g‖Cq,Ωq,g <
1

q

for iq,q ≤ i < iq+1,q+1, obtaining φ∗i gi → g|Ω as i→∞. �

Lemma 8.4. For n ∈ N, let [M,x] ∈M∞∗ (n), and let N be a neighborhood of [M,x] in M∞∗ (n). Then there
is some δ > 0 and some neighborhood L of [M,x] in M∞∗ (n) such that [L, z] ∈ N for all [L, y] ∈ L and all
z ∈ BL(y, δ).

Proof. There are some m ∈ Z+ and ε > 0, and a compact domain Ω of M containing x such that, for all
[L, z] ∈M∞∗ (n), if there is some C∞ embedding φ : Ω→ L so that φ(x) = z and ‖φ∗gL − gM‖Cm,Ω,gM < ε,
then [L, z] ∈ N. Take any compact domain Ω′ of M whose interior contains Ω. There is some ε0 > 0
and some neighborhood H of idM in the group of diffeomorphisms of M with the weak Cm topology
such that, for all h ∈ H and any metric tensor g′ on Ω′ satisfying ‖g′ − gM‖Cm,Ω′,gM < ε0, we have
h(Ω) ⊂ Ω′ and ‖h∗g′ − gM‖Cm,Ω,gM < ε. Moreover there is some δ′ > 0 such that, for each z′ ∈ BM (x, δ′),
there is some h ∈ H so that h(x) = z′. Let L be the neighborhood of [M,x] in M∞∗ (n) that consists
of the points [L, y] ∈ M∞∗ (n) such that there is some C∞ embedding ψ : Ω′ → L so that ψ(x) = y and
‖ψ∗gL− gM‖Cm,Ω′,gM < ε0. There is some δ > 0 such that BL(y, δ) ⊂ ψ(Ω′) and ψ−1(BL(y, δ)) ⊂ BM (x, δ′)
for all [L, y] ∈ L and ψ : Ω′ → L as above. Hence z′ = ψ−1(z) ∈ BM (x, δ′) for each z ∈ BL(y, δ),
and therefore there is some h ∈ H such that h(x) = z′. Then φ := ψh is defined on Ω and satisfies
φ(x) = ψ(z′) = z. Moreover

‖φ∗gL − gM‖Cm,Ω,gM = ‖h∗ψ∗gL − gM‖Cm,Ω,gM < ε

because ‖ψ∗gL − gM‖Cm,Ω′,gM < ε0 and h ∈ H. �

9. Canonical bundles over M∞∗,lnp(n)

For each n ∈ N, consider the set of pairs (M, ξ), where M is a complete connected Riemannian manifold
without boundary of dimension n, and ξ ∈ TM . Like in the case of M∗(n), we can assume that the underlying
set of each complete connected Riemannian n-manifold is contained in R, obtaining that these pairs (M, ξ)
form a well defined set. Define an equivalence relation on this set by declaring that (M, ξ) is equivalent to
(N, ζ) if there is an isometric diffeomorphism φ : M → N such that φ∗(ξ) = ζ. The class of a pair (M, ξ)
will be denoted by [M, ξ], and the corresponding set of equivalence classes will be denoted by T∗(n). If
orthonormal tangent frames are used instead of tangent vectors in the above definition, we get a set denoted
by Q∗(n). Let πT∗(n) : T∗(n) → M∗(n) and πQ∗(n) : Q∗(n) → M∗(n) be the maps defined by π([M, ξ]) =
[M,πM (ξ)] and π([M,f ]) = [M,πM (f)] for [M, ξ] ∈ T∗(n) and [M,f ] ∈ Q∗(n); the simpler notation π will
be used for πT∗(n) and πQ∗(n) if there is no danger of misunderstanding. For each [M,x] ∈ M∗(n), there

are canonical surjections TxM → π−1
T∗(n)([M,x]), ξ 7→ [M, ξ], and QxM → π−1

Q∗(n)([M,x]), f 7→ [M,f ]. Via

the canonical surjection QxM → π−1
Q∗(n)([M,x]), the canonical right action of O(n) on QxM induces a right

action on π−1
Q∗(n)([M,x]); in this way, we get a canonical action of O(n) on Q∗(n) whose orbits are the fibers

of πQ∗(n). The operation of multiplication by scalars on TxM also induces an action of R on π−1
T∗(n)([M,x]).

However the sum operation of TxM may not induce an operation on π−1
T∗(n)([M,x]). The following definition

is analogous to Definition 1.1.

Definition 9.1. For each m ∈ N, a sequence [Mi, ξi] ∈ T∗(n) (respectively, [Mi, fi] ∈ Q∗(n)) is said to
be Cm convergent to [M, ξ] ∈ T∗(n) (respectively, [M,f ] ∈ Q∗(n)) if, with the notation x = π(ξ) and
xi = πi(xi) (respectively, x = π(f) and xi = πi(fi)), for each compact domain Ω ⊂ M containing x, there
are pointed Cm+1 embeddings φi : (Ω, x) → (Mi, xi) for large enough i such that φi∗(ξ) = ξi (respectively,
φi∗(f) = fi), and φ∗i gi → g|Ω as i → ∞ with respect to the Cm topology. If [Mi, ξi] (respectively, [Mi, fi])
is Cm convergent to [M, ξ] (respectively, [M,f ]) for all m, then it is said that [Mi, ξi] (respectively, [Mi, fi])
is C∞ convergent to [M, ξ] (respectively, [M,f ]).

Theorem 9.2. The C∞ convergence in T∗(n) and Q∗(n) describes a Polish topology.
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To prove Theorem 9.2, we follow the steps of Sections 5–7.

Definition 9.3. For m ∈ N and R, r > 0, let V mR,r (respectively, Wm
R,r) be the set of pairs ([M, ξ], [N, ζ]) ∈

T∗(n)× T∗(n) (respectively, ([M,f ], [N,h]) ∈ Q∗(n)×Q∗(n)) such that there is some (m,R, λ)-pointed local
quasi-isometry φ : (M,x) � (N, y) for some λ ∈ [1, er) so that φ∗(ξ) = ζ (respectively, φ∗(f) = h).

The following proposition is proved like Proposition 5.2.

Proposition 9.4. The following properties hold for all m,m′ ∈ N and R,S, r, s > 0:

(i) (V merR,r)
−1 ⊂ V mR,r and (Wm

erR,r)
−1 ⊂Wm

R,r.

(ii) V m0

R0,r0
⊂ V mR,r ∩ V m

′

S,s and Wm0

R0,r0
⊂ Wm

R,r ∩ Wm′

S,s, where m0 = max{m,m′}, R0 = max{R,S} and

r0 = min{r, s}.
(iii) ∆ ⊂ V mR,r and ∆ ⊂Wm

R,r.

(iv) V mer+sR,r ◦ V
m
er+sR,s ⊂ V

m
R,r+s and Wm

er+sR,r ◦W
m
er+sR,s ⊂W

m
R,r+s.

Proposition 9.5.
⋂
R,r>0 V

m
R,r = ∆ and

⋂
R,r>0W

m
R,r = ∆ for all m ∈ N.

Proof. We only prove the first equality because the proof of the second one is analogous. The inclusion
“⊃” is obvious; thus let us prove “⊂”. Let ([M, ξ], [N, ζ]) ∈

⋂
R,r>0 V

m
R,r, and let x = πM (ξ) and y =

πN (ζ). Then there is a sequence of pointed local quasi-isometries φi : (M,x) � (N, y), with corresponding
types (m,Ri, λi), such that φi∗(ξ) = ζ, and Ri ↑ ∞ and λi ↓ 1 as i → ∞. According to the proof of
Proposition 5.3, there is a pointed isometric immersion ψ : (M,x)→ (N, y) so that, for any i, the restriction
ψ : BM (x,Ri)→ N is the limit of the restrictions of a subsequence φk(i,l) in the weak Cm topology. Hence
ψ∗(ξ) = liml φk(i,l)∗(ξ) = ζ, obtaining [M, ξ] = [N, ζ]. �

By Propositions 9.4 and 9.5, the sets V mR,r (respectively, Wm
R,r) form a base of entourages of a Hausdorff

uniformity on T∗(n) (respectively, Q∗(n)), which is also called the C∞ uniformity. The corresponding
topology is also called the C∞ topology, and the corresponding space is denoted by T∞∗ (n) (respectively,
Q∞∗ (n)).

Remark 9. (i) The maps π : T∞∗ (n) → M∞∗ (n) and π : Q∞∗ (n) → M∞∗ (n) are uniformly continuous and
open because (π × π)(V mR,r) = (π × π)(Wm

R,r) = UmR,r for all m ∈ N and R, r > 0.

(ii) The canonical right O(n)-action on Q∞∗ (n) is continuous. This follows easily by using that the composite
of maps is continuous in the weak C∞ topology [22, p. 64, Exercise 10], and the following property that
can be easily verified: for each [M,f ] ∈ Q∞∗ (n) and any neighborhood N of idM in the space of C∞

diffeomorphisms of M with the weak C∞ topology, there is a neighborhood O of the identity element
e in O(n) such that, for all a ∈ O, there is some φ ∈ N so that φ(x) = x and φ∗(f) = h.

Definition 9.6. For R, r > 0 and m ∈ N, let EmR,r (respectively, FmR,r) be the set of pairs ([M, ξ], [N, ζ]) ∈
T∗(n)×T∗(n) (respectively, ([M,f ], [N,h]) ∈ Q∗(n)×Q∗(n)) such that, with the notation x = πM (ξ) and y =
πN (ζ), there is some Cm+1 pointed local diffeomorphism φ : (M,x) � (N, y) so that φ∗(ξ) = ζ (respectively,
φ∗(f) = h), and ‖gM − φ∗gN‖Cm,Ω,gM < r for some compact domain Ω ⊂ domφ with BM (x,R) ⊂ Ω.

Like in the case of relations on M∗(n), for V ⊂ T∗(n) × T∗(n), W ⊂ Q∗(n) × Q∗(n), [M, ξ] ∈ T∗(n) and
[M,f ] ∈ Q∗(n), the simpler notation V (M, ξ) and W (M,f) is used instead of V ([M, ξ]) and W ([M,f ]).

Remark 10. By (3), a sequence [Mi, ξi] ∈ T∗(n) (respectively, [Mi, fi] ∈ Q∗(n)) is C∞ convergent to [M, ξ] ∈
T∗(n) (respectively, [M,f ] ∈ Q∗(n)) if and only if it is eventually in EmR,r(M, ξ) (respectively, FmR,r(M,f))
for arbitrary m ∈ N and R, r > 0.

Proposition 9.7. (i) For R, r > 0, if 0 < ε ≤ min{1− e−2r, e2r−1}, then E0
R,ε ⊂ V 0

R,r and F 0
R,ε ⊂W 0

R,r.

(ii) For all m ∈ Z+, R, r > 0 and [M, ξ] ∈ T∗(n) (respectively, [M,f ] ∈ P∗(n)), there is some ε > 0 such
that EmR,ε(M, ξ) ⊂ V mR,r(M, ξ) (respectively, FmR,ε(M, ξ) ⊂Wm

R,r(M, ξ)).

Proof. Let us show (i) for the case of V 0
R,r, the case of W 0

R,r being analogous. Let ([M, ξ], [N, ζ]) ∈ E0
R,ε, and

let x = πM (ξ) and y = πN (ζ). Then there is a C1 pointed local diffeomorphism φ : (M,x) � (N, y) such that
φ∗(ξ) = ζ, and ε0 := ‖gM − φ∗gN‖C0,Ω,gM < ε for some compact domain Ω ⊂ domφ with BM (x,R) ⊂ Ω.
According to the proof of Proposition 6.4-(i), φ is a (0, R, λ)-pointed local quasi-isometry if 1 ≤ λ < er and
ε0 ≤ min{1− λ−2, λ2 − 1}, obtaining that ([M, ξ], [N, ζ]) ∈ V 0

R,r.
21



As above, let us prove (ii) only for the case of V mR,r(M, ξ). Take m ∈ Z+, R, r > 0 and [M, ξ], [N, ζ] ∈ T∗(n),

and let x = πM (ξ) and y = πN (ζ). According to the proof of Proposition 6.4-(ii), there is some ε > 0 such
that, for every Cm+1 pointed local diffeomorphism φ : (M,x) � (N, y), if ‖gM −φ∗gN‖Cm,Ω,gM < ε for some
compact domain Ω ⊂ domφ∩Int(K) with BM (x,R) ⊂ Ω, then φ is an (m,R, λ)-pointed local quasi-isometry
(M,x) � (N, y) for some λ ∈ [1, er). Therefore [N, ζ] ∈ V mR,r(M, ξ) if [N, ζ] ∈ EmR,ε(M, ξ). �

Proposition 9.8. (i) For all R, r > 0, if e2ε − e−2ε ≤ r, then V 0
R,ε ⊂ E0

R,r and W 0
R,ε ⊂ F 0

R,r.

(ii) For all m ∈ Z+, R, r > 0 and [M, ξ] ∈ T∗(n) (respectively, [M,f ] ∈ Q∗(n)), there is some ε > 0 such
that V mR,ε(M, ξ) ⊂ EmR,r(M, ξ) (respectively, Wm

R,ε(M,f) ⊂ FmR,r(Mf)).

Proof. This result follows from the proof of Proposition 6.5 in the same way as Proposition 9.7 follows from
Proposition 6.4. �

As a direct consequence of Remark 10, and Propositions 9.7 and 9.8, we get that the C∞ convergence in
T∗(n) and Q∗(n) describes the C∞ topology.

Proposition 9.9. T∞∗ (n) and Q∞∗ (n) are separable

Proof. With the notation of Proposition 7.1, for every M ∈ C, let D′M and D′′M be countable dense subsets
of TM and QM , respectively. Then the countable sets

{ [(M, g), ξ] |M ∈ C, g ∈ GM , ξ ∈ D′M } and { [(M, g), f ] |M ∈ C, g ∈ GM , f ∈ D′′M }

are dense in T∞∗ (n) and Q∞∗ (n), respectively. �

Proposition 9.10. T∞∗ (n) and Q∞∗ (n) are completely metrizable

Proof. Only the case of T∞∗ (n) is proved, the other case being similar. The C∞ uniformity on T∞∗ (n) is
metrizable because it has a countable base of entourages. Thus it is enough to check that this uniformity is
complete.

Consider an arbitrary Cauchy sequence [Mi, ξi] in T∗(n) with respect to the C∞ uniformity, and let
xi = πi(ξi) ∈ Mi. We have to prove that [Mi, ξi] is convergent in T∞∗ (n). By taking a subsequence if
necessary, we can suppose that ([Mi, ξi], [Mi+1, ξi+1]) ∈ V mi

Ri,ri
for sequences mi, and Ri and ri satisfying

the conditions of the proof of Proposition 7.2. Thus, for each i, there is some λi ∈ (1, eri) and some
(mi, Ri, λi)-pointed local quasi-isometry φi : (Mi, xi) � (Mi+1, xi+1), which can be assumed to be C∞

(Remark 6-(iii)), such that φi∗(ξi) = ξi+1. Then, with the notation of the proof of Proposition 7.2, we have

ψij∗(ξi) = ξj for i < j. Therefore there is some ξ̂ ∈ Tx̂M̂ so that ψi∗(ξi) = ξ̂ for all i, obtaining that

([Mi, ξi], [M̂, ξ̂]) ∈ Umi

R′i/λ̄i,si
for all i according to the proof of Proposition 7.2. Hence [Mi, ξi] → [M̂, ξ̂] as

i→∞ in T∞∗ (n). �

Propositions 9.9 and 9.10 together mean that T∞∗ (n) and Q∞∗ (n) are Polish, completing the proof of
Theorem 9.2.

Let T∞∗,lnp(n) ⊂ T∞∗ (n) and Q∞∗,lnp(n) ⊂ Q∞∗ (n) be the subspaces defined by locally non-periodic manifolds.

Proposition 9.11. (i) The projection π : T∞∗,lnp(n) → M∞∗,lnp(n) admits the structure of a Riemannian

vector bundle of rank n so that the canonical map TxM → π−1([M,x]) is a orthogonal isomorphism
for each [M,x] ∈M∞∗,lnp(n).

(ii) The projection π : Q∞∗,lnp(n) → M∞∗,lnp(n) admits the structure of a O(n)-principal bundle canonically

isomorphic to the O(n)-principal bundle of orthonormal references of T∞∗,lnp(n).

Proof. Obviously, the canonical O(n)-action on Q∞∗ (n) preserves Q∞∗,lnp(n), and the O(n)-orbits in Q∞∗,lnp(n)

are the fibers of π : Q∞∗,lnp(n)→M∞∗,lnp(n).

Claim 4. For all [M,x] ∈M∞∗,lnp(n), the canonical maps TxM → π−1
T∗(n)([M,x]) and QxM → π−1

Q∗(n)([M,x])

are bijections.

Let us show the case of the first map in Claim 4, the case of the second one being similar. It was already
pointed out that the canonical map TxM → π−1

T∗(n)([M,x]) is surjective, and let us to prove that it is also
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injective. If [M, ξ] = [M, ζ] for some ξ, ζ ∈ TxM , then φ∗(ξ) = ζ for some φ ∈ Iso(M) with φ(x) = x. But
φ = idM because M is locally non-periodic, obtaining ξ = ζ.

Let X be a completely regular space with a right action of a Lie group G, and let Gx ⊂ G denote the
isotropy subgroup at some point x ∈ X. Recall that a slice at x is a subspace S ⊂ X containing x such that
S ·G is open in X, and there is a G-equivariant continuous map κ : S ·G → Gx\G with κ−1(Gx) = S [31,
Definition 2.1.1]. Since Q∞∗,lnp(n) is completely regular and O(n) is compact, the O(n)-action on Q∞∗,lnp(n)

has a slice S at each point [M,f ] ∈ Q∞∗,lnp(n) [31, Theorem 2.3.3] (see also [23], [34, Theorems 5.1 and 5.2]

and [5, Theorems 11.3.9 and 11.3.14]). Then Θ := π(S) = π(S ·O(n)) is open in M∞∗,lnp(n) by Remark 9-(i).

Claim 5. π : S→ Θ is a homeomorphism.

This is the restriction of a continuous map (Remark 9-(i)), and therefore it is continuous. This map is also
open because, for every open W ⊂ S, the set W ·O(n) is open in Q∞∗,lnp(n) [31, Corollary of Proposition 2.1.2],

and thus π(W ) = π(W · O(n)) is open in M∞∗ (n) (Remark 9-(i)). Obviously, π : S → Θ is surjective, and
let us show that it is also injective. Take [N, p], [L, q] ∈ S such that π([N, p]) = π([N, q]) =: x. Thus
there is some a ∈ O(n) so that [L, q] = [N, p] · a. Since the isotropy group at [M,f ] is trivial by Claim 4,
there is an O(n)-equivariant continuous map κ : S · O(n) → O(n) so that κ−1(e) = S. It follows that
e = κ([L, q]) = κ([N, p] ·a) = κ([N, p]) a = a, obtaining [L, q] = [N, p], which completes the proof of Claim 5.

According to Claim 5, the inverse of π : S → Θ defines a continuous local section σ : Θ → Q∞∗,lnp(n)

of π : Q∞∗,lnp(n) → M∞∗,lnp(n). By the existence of continuous local sections, and since the O(n)-action on

Q∞∗,lnp(n) is continuous and free (Remark 9-(ii) and Claim 4), it easily follows that π : Q∞∗,lnp(n)→M∞∗,lnp(n)

admits the structure of an O(n)-principal bundle.
By Claim 4, π−1

T∗(n)([M,x]) canonically becomes an orthogonal vector space for each [M,x] ∈ M∞∗,lnp(n),

and we can canonically identify πQ−1
∗ (n)([M,x]) to the set of linear isometries π−1

T∗(n)([M,x]) → Rn. The

continuity of the mapping ([M,f ], [M, ξ]) 7→ [M,f ]([M, ξ]) is easy to check. By using this identity, we
get a homeomorphism θ : π−1

T∗(n)(Θ) → Rn × Θ defined by θ([M, ξ]) = (σ([M,x])([M, ξ]), [M,x]), where

π([M, ξ]) = [M,x], whose inverse map is given by θ−1(v, [M,x]) = [M,σ([M,x])−1(v)]. If σ′ : Θ′ → Q∞∗,lnp(n)

is another local section of π : Q∞∗,lnp(n) → M∞∗,lnp(n) defining a map θ′ : π−1(Θ′) → Rn × Θ′ as above, and

[M,x] ∈ Θ ∩Θ′, then the composite

Rn ≡ Rn × {[M,x]} θ−1

−−−−→ π−1
T∗(n)([M,x])

θ′−−−−→ Rn × {[M,x]} ≡ Rn

is the orthogonal isomorphism σ′([M,x]) ◦ σ([M,x])−1. It follows that π : T∞∗,lnp(n) → M∞∗,lnp(n), with
these local trivializations, becomes an orthogonal vector bundle of rank n so that the canonical map TxM →
π−1([M,x]) is a orthogonal isomorphism for all [M,x] ∈M∞∗,lnp(n). Moreover, by Claim 4, there is a canonical

isomorphism between Q∞∗,lnp(n) and the O(n)-principal bundle of orthonormal frames of T∞∗,lnp(n). �

By the compatibility of exponential maps and isometries, a map exp : T∞∗ (n)→M∞∗ (n) is well defined by
setting exp([M, ξ]) = [M, expM (ξ)]. For each [M,x] ∈ M∞∗ (n), the restriction exp : π−1([M,x]) → M∞∗ (n)
may be denoted by exp[M,x].

Lemma 9.12. Consider convergent sequences [Mi, fi] → [M,f ] and [Mi, f
′
i ] → [M,f ′] in Q∞∗ (n) for some

n ∈ Z+. Let x = π(f), x′ = π(f ′), xi = πi(fi) and x′i = πi(f
′
i). Suppose that there is some r > 0 such that{

h ∈ Iso(M) | h(x) ∈ B(x, 2r)
}

= {idM} , (14)

and d(x, x′), di(xi, x
′
i) ≤ r for all i. Then there is some compact domain Ω in M whose interior contains x

and x′, and there are C∞ embeddings φi : Ω→Mi for i large enough so that φi∗(f) = fi and limi φ
−1
i∗ (f ′i) = f ′

in PM , and limi φ
∗
i gi = g|Ω with respect to the C∞ topology.

Proof. Let Ωq be a sequence of compact domains in M such that

B(x, r) ⊂ Int(Ωq) , Pen(Ωq,diam(Ωq)) ⊂ Int(Ωq+1) ;

in particular, x′ ∈ Int(Ωq). By the convergence [Mi, fi] → [M,f ] and [Mi, f
′
i ] → [M,f ′] in Q∞∗ (n), for each

q, there are C∞ embeddings φq,i, ψq,i : Ωq → Mi for i large enough so that φq,i∗(f) = fi, ψq,i∗(f
′) = f ′i ,

and limi φ
∗
q,igi = g|Ωq and limi ψ

∗
q,igi = g|Ωq with respect to the C∞ topology; in particular, φq,i(x) = xi
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and ψq,i(x
′) = x′i. We have x′i ∈ Bi(xi, r) ⊂ Int(φq,i(Ωq)) for i large enough, depending on q, and therefore

φq,i(Ωq) ∩ ψq,i(Ωq) 6= ∅. Hence

ψq,i(Ωq) ⊂ Peni(φq,i(Ωq),diam(φq,i(Ωq))) ⊂ Int(φq,i(Ωq+1))

for i large enough, depending on q. It follows that hq,i := φ−1
q+1,iψq,i is a well defined C∞ embedding Ωq →M .

Observe that limi h
∗
q,ig = g|Ωq

with respect to the C∞ topology. Moreover

lim sup
i

d(x, hq,i(x)) = lim sup
i

d(x, φ−1
q+1,iψq,i(x)) = lim sup

i
di(xi, ψq,i(x))

≤ lim sup
i

di(xi, x
′
i) + lim sup

i
di(x

′
i, ψq,i(x)) ≤ r + d(x′, x) ≤ 2r .

If the statement is not true, then some neighborhood U of f ′ in PM contains no accumulation point of the
sequence φ−1

q+1,i∗(f
′
i) = φ−1

q+1,i∗ψq,i∗(f
′) = hq,i∗(f

′) for each q. With the arguments of the proof of Lemma 8.1,

it follows that there is some h ∈ Iso(M) such that d(x, h(x)) ≤ 2r and h∗(f
′) 6∈ U , which contradicts (14). �

10. Center of mass

The main tool used to prove Theorem 1.3-(ii)–(v) is the Riemannian center of mass of a mass distribution
on a Riemannian manifold M [24], [8, Section IX.7]; especially, we will use the continuous dependence of the
center of mass on the mass distribution and the metric tensor.

Recall that a domain Ω ⊂ M is said to be convex when, for all x, y ∈ Ω, there is a unique minimizing
geodesic segment from x to y in M that lies in Ω (see e.g. [8, Section IX.6]). For example, sufficiently small
balls are convex. For a fixed convex compact domain Ω in M , let C(Ω) be the set of functions f ∈ C2(Ω)
such that the gradient grad f is an outward pointing vector field on ∂Ω and Hess f is positive definite on the
interior Int(Ω) of Ω. Notice that C(Ω) is open in the Banach space C2(Ω) with the norm ‖ ‖C2,Ω,g, and thus
it is a C∞ Banach manifold. Moreover C(Ω) is preserved by the operations of sum and product by positive
numbers. Any f ∈ C(Ω) attains its minimum value at a unique point m(f) ∈ Int(Ω), defining a function
m : C(Ω)→ Int(Ω).

Lemma 10.1. m is continuous.

Proof. Consider the map v : C(Ω) × Int(Ω) → TΩ defined by v(f, x) = grad f(x), and let Z ⊂ TΩ denote
the image of the zero section. Since the graph of m is equal to v−1(Z), it is enough to prove the following.

Claim 6. v is C1 and transverse to Z.

Here, smoothness and transversality refer to v considered as a map between C∞ Banach manifolds [1,
p. 45].

Let πH and πV denote the orthogonal projections of T (2)Ω onto H and V, respectively. Let X1(Ω) denote
the Banach space of C1 vector fields over Ω with the norm ‖ ‖C1,Ω,g, which is equivalent to the norm ‖ ‖1
defined by

‖X‖1 = sup { |X(x)|+ |∇X(x)| | x ∈ Ω } .
The gradient map, grad : C2(Ω) → X1(Ω), is a continuous linear map between Banach spaces, and

therefore it is C∞. The evaluation map, ev : X1(Ω) × Ω → TΩ, is C1 because, if X ∈ X1(Ω), Y ∈
TXX1(Ω) ≡ X1(Ω), x ∈ Ω and ξ ∈ TxΩ, then ev∗(Y, ξ) ∈ TξTΩ is easily seen to be determined by the
conditions πH(ev∗(Y, ξ)) ≡ ξ in Hξ ≡ TxΩ and πV(ev∗(Y, ξ)) ≡ Y (x) +∇ξX in Vξ ≡ TxΩ. Therefore v is
C1 because it is the restriction to C(Ω)× Int(Ω) of the composition

C2(Ω)× Ω
grad× idΩ−−−−−−→ X1(Ω)× Ω

ev−−−−→ TΩ .

Fix any f ∈ C(Ω) and x ∈ Int(Ω) with v(f, x) ∈ Z; thus grad f(x) = 0x.

Claim 7. πV : v∗({0f} × TxΩ)→ V0x is an isomorphism.

For any ξ ∈ TxΩ,
πV v∗(0f , ξ) = πV (grad f)∗(ξ) ≡ ∇ξ grad f

in V0x ≡ TxΩ. Then Claim 7 follows because the mapping ξ 7→ ∇ξ grad f is an automorphism of TxΩ since
Hess f is positive definite at x and Hess f(ξ, ·) = g(∇ξ grad f, ·) on TxM .
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From Claim 7, it follows that v∗({0f} × TxΩ) is a linear complement to H0x = T0xZ in T0xTΩ; in
particular, it is closed in T0xTΩ because T0xTΩ is Hausdorff of finite dimension.

Since v∗ : TfC(Ω)×TxΩ→ T0x
TΩ is linear and continuous, and T0x

TΩ is Hausdorff of finite dimension, we

get that the space
(
v∗(f,x)

)−1
(T0x

Z) is closed and of finite codimension in the Banach space TfC(Ω)×TxΩ,
and therefore it has a closed linear complement in TfC(Ω)× TxΩ (see e.g. [37, p. 22]), which completes the
proof of Claim 6. �

Remark 11. (i) In the last part of the above proof, the space
(
v∗(f,x)

)−1
(T0x

Z) can be described as follows.

Since h 7→ gradh(x) defines a continuous linear map C2(Ω)→ TxΩ, we have v∗(TfC(Ω)×{0x}) ⊂ V0x

and v∗(h, 0x) ≡ gradh(x) in V0x ≡ TxΩ for any h ∈ C2(Ω) ≡ TfC(Ω), giving(
v∗(f,x)

)−1
(T0xZ) ≡ { (h, ξ) ∈ C2(Ω)× TxΩ | gradh(x) +∇ξ grad f = 0 } ,

which is obviously closed and of finite codimension in C2(Ω)× TxΩ.
(ii) In Lemma 10.1, the map m is Cm if the Banach space Cm+2(Ω) is used instead of C2(Ω).

Suppose that the Riemannian manifold M is connected and complete. Let (A,µ) be a probability space,
B a convex open ball of radius r > 0 in M , and f : A → B a measurable map, which is called a mass
distribution on B. Consider the C∞ function Pf : B → R defined by

Pf (x) =
1

2

∫
A

d(x, f(a))2 µ(a) .

Proposition 10.2 (H. Karcher [24, Theorem 1.2]). With the above notation and conditions, the following
properties hold:

(i) gradPf is an outward pointing vector field on the boundary ∂B.

(ii) If δ > 0 is an upper bound for the sectional curvatures of M in B, and 2r < π/2
√
δ, then HessPf is

positive definite on B.

If the hypotheses of Proposition 10.2 are satisfied, then Pf ∈ C(B), and therefore Pf reaches its minimum

on B at a unique point Cf ∈ B, which is called the center of mass of f . It is known that Cf depends
continuously on f with respect to the supremum distance when (A,µ) is fixed [24, Corollary 1.6]; indeed,
the following result follows directly from Lemma 10.1.

Corollary 10.3. (i) Cf depends continuously on f and the metric tensor of M .
(ii) If A is the Borel σ-algebra of a metric space, then Cf depends continuously on µ in the weak-∗ topology.

11. Foliated structure of M∞∗,lnp(n)

The goal of this section is to prove Theorem 1.3-(ii)–(v).
For any point [M,x] ∈M∞∗,lnp(n), choose some r, ε > 0 and some neighborhood N0 of [M,x] in M∞∗,lnp(n)

satisfying the statement of Lemma 8.2 with ε ≤ r/5. Using [33, Chapter 6, Theorem 3.6], we can assume
that ε and N0 are so small that BL(y, ε) satisfies the conditions of Proposition 10.2 in L for all [L, y] ∈ N0.
Take any continuous function λ : M∞∗ (n) → [0, 1] supported in N0 and with λ([M,x]) = 1, whose existence
is a simple consequence of the metrizability of M∞∗ (n) (Theorem 1.2). For [L, y] ∈ N0, let ωL denote the
Riemannian density of L, and let λL,y : L→ [0, 1] be the function defined by

λL,y(z) =

{
λ([L, z]) if dL(y, z) ≤ ε
0 if dL(y, z) ≥ ε ,

which is well defined and continuous by Lemma 8.2. Take another neighborhood N ⊂ N0 of [M,x] where
λ > 0. For [L, y] ∈ N, we have

∫
L
λL,y ωL > 0, and set

λ̄L,y =
λL,y∫

L
λL,y ωL

.

Then µL,y = λ̄L,y ωL is a continuous density defining a probability measure on L, and the identity map
(L, µL,y)→ L is a distribution of mass on L satisfying the conditions of Proposition 10.2 with BL(y, ε). Thus
its center of mass, CL,y, is defined in BL(y, ε). Let c : N→M∞∗ (n) be the map given by c([L, y]) = [L,CL,y].
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Lemma 11.1. If [L, y], [L, y′] ∈ N and dL(y, y′) ≤ ε, then c([L, y]) = c([L, y′]).

Proof. Take any point z ∈ L. If [L, z] 6∈ N0 or dL(y, z), dL(y′, z) > ε, then λL,y(z) = λL,y′(z) = 0. If
[L, z] ∈ N0 and dL(y, z) ≤ ε, then dL(y′, z) ≤ 2ε, obtaining dL(y′, z) ≤ ε by Lemma 8.2 since 5ε ≤ r, and
therefore λL,y(z) = λL,y′(z) = λ([L, z]). If [L, z] ∈ N0 and dL(y′, z) ≤ ε, we similarly get λL,y(z) = λL,y′(z).
Thus λL,y = λL,y′ , obtaining CL,y = CL,y′ , and therefore c([L, y]) = c([L, y′]). �

Lemma 11.2. c is continuous.

Proof. Take any convergent sequence [Li, yi]→ [L, y] in N. Let Ω be a compact domain in L whose interior
contains BL(y, ε). Then there is a C∞ embedding φi : Ω→ Li for each i large enough so that limi φ

∗
i gi = g|Ω

with respect to the C∞ topology. It follows that limi φ
∗
iµLi,yi = µL,y|Ω with respect to the C0 topology

by the continuity of λ, and thus this convergence also holds in the space of probability measures on Ω with
the weak-∗ topology. Since φ−1

i (CLi,yi) is the center of mass of the mass distribution on Ω defined by the

probability measure φ∗iµLi,yi , it follows from Corollary 10.3 that limi φ
−1
i (CLi,yi) = CL,y in L. Therefore

limi c([Li, yi]) = c([L, y]) in M∞∗ (n) because Ω is arbitrary. �

Let Z = c(N), and let N′ =
⋃

[L,c]∈Z ιL(BL(c, ε)), which contains N because dM (y,CL,y) < ε for all

[L, y] ∈ N. Also, let c′ : N′ → Z be defined by the condition c′([L, z]) = [L, c] if [L, c] ∈ Z and dL(c, z) < ε.
To prove that c′ is well defined, take another point c′ ∈ L satisfying [L, c′] ∈ Z and dL(c′, z) < ε, and let
us check that [L, c] = [L, c′]. Choose points y, y′ ∈ L such that [L, y], [L, y′] ∈ N, c([L, y]) = [L, c] and
c([L, y′]) = [L, c′]. Then

dL(y, y′) ≤ dL(y, c) + dL(c, z) + dL(z, c′) + dL(c′, y′) < 4ε ,

giving dL(y, y′) ≤ ε by Lemma 8.2 since 5ε ≤ r, which implies [L, c] = [L, c′] by Lemma 11.1. Furthermore
c′ is an extension of c because dL(y,CL,y) < ε for all [L, y] ∈ N. Note also that c′([L, c]) = [L, c] for all
[L, c] ∈ Z.

Lemma 11.3. If [L, z], [L, z′] ∈ N′ and dL(z, z′) ≤ 2ε, then c′([L, z]) = c′([L, z′]).

Proof. Let c′([L, z]) = [L, c] and c′([L, z′]) = [L, c′]. Choose points [L, y], [L, y′] ∈ N with c([L, y]) = [L, c]
and c([L, y′]) = [L, c′]. Then

dL(y, y′) ≤ dL(y, c) + dL(c, z) + dL(z, z′) + dL(z′, c′) + dL(c′, y′) < 5ε .

From Lemma 8.2 and since 5ε ≤ r, it follows that [L, c] = [L, c′]. �

Lemma 11.4. c′ is continuous.

Proof. Take any convergent sequence [Li, zi] → [L, z] in N′. Let c′([Li, zi]) = [Li, ci] and c′([L, z]) = [L, c],
and choose points [Li, yi], [L, y] ∈ N so that c([Li, yi]) = [Li, ci] and c([L, y]) = [L, c]. We have

di(yi, zi) ≤ di(yi, ci) + di(ci, zi) < 2ε , dL(y, z) ≤ dL(y, c) + dL(c, z) < 2ε .

Then, by Lemma 8.3, there are points y′i ∈ Bi(zi, 2ε) such that limi[Li, y
′
i] = [L, y] in M∞∗ (n) as i → ∞.

Thus [Li, y
′
i] ∈ N for i large enough, and moreover

di(yi, y
′
i) ≤ di(yi, zi) + di(zi, y

′
i) < 4ε ,

obtaining di(yi, y
′
i) ≤ ε by Lemma 8.2 since 5ε ≤ r. By Lemma 11.1, it follows that c([Li, y

′
i]) = c([Li, yi]) =

[Li, ci] for i large enough, giving limi[Li, ci] = [L, c] in M∞∗ (n) by Lemma 11.2. �

We can assume that ε and N are so small that the following properties hold for all [L, y] ∈ N and
z ∈ BL(y, ε):

(a) expL : BTzL(0z, ε)→ BL(z, ε) is a diffeomorphism; and
(b)

{
h ∈ Iso(L) | h(z) ∈ B(z, 4ε)

}
= {idL}.

Observe that (b) can be assumed by Lemma 8.1. Notice also that (a) and (b) hold for all [L, z] ∈ Z. Let

N̂′ = { [L, ξ] ∈ T∞∗ (n) | π([L, ξ]) ∈ Z, |ξ| < ε } .

Lemma 11.5. exp : N̂′ → N′ is a homeomorphism.
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Proof. This map is obviously surjective; we will prove that it also injective. For i ∈ {1, 2}, take points

[Li, ξi] ∈ N̂′; thus ξi ∈ TciLi for some points [Li, ci] ∈ Z, and we have exp([Li, ξi]) = [Li, zi] for zi = expi(ξi).
Suppose that [L1, z1] = [L2, z2], which means that there is a pointed isometry φ : (L1, z1)→ (L2, z2). Then

exp2 φ∗(ξ1) = φ exp1(ξ1) = φ(z1) = z2 = exp2(ξ2) , (15)

d2(φ(c1), c2) ≤ d2(φ(c1), z2) + d2(z2, c2) = d1(c1, z1) + d2(z2, c2) < 2ε . (16)

We get

[L1, c1] = c′([L1, c1]) = c′([L2, φ(c1)]) = [L2, c2]

by Lemma 11.3 and (16). So there is an isometry ψ : L1 → L2 such that ψ(c1) = c2. Then the isometry
h = ψ−1φ : L1 → L1 satisfies

d1(c1, h(c1)) = d2(c2, φ(c1)) < 2ε

by (16), obtaining h = idL1
by (a). Hence φ(c1) = ψ(c1) = c2, giving φ∗(ξ1) = ξ2 by (15) and (a) since

ξi ∈ TciLi. Therefore exp : N̂′ → N′ is bijective.

The continuity of exp−1 : N′ → N̂′ is a simple exercise using lemma 11.4. �

By Proposition 9.11-(i), there is some neighborhood Θ of [M,x] in M∞∗ (n) and some local trivialization
θ : π−1(Θ)→ Rn×Θ of the Riemannian vector bundle π : T∞∗ (n)→M∞∗ (n); in particular, θ : π−1([L, y])→
Rn × {[L, y]} ≡ Rn is a linear isometry for all [L, y] ∈ Θ. More precisely, according to the proof of
Proposition 9.11, we can suppose that there is a local section σ : Θ → Q∞∗ (n) of π : Q∞∗ (n) → M∞∗ (n)
so that θ([L, ξ]) = (σ([L, y])([L, ξ]), [L, y]) if πL(ξ) = y. We can assume that Z ⊂ Θ by Lemma 8.4. Hence,
by Lemma 11.5, the composite

N′
exp−1

−−−−→ N̂′
θ−−−−→ Bnε × Z

is a homeomorphism Φ : N′ → Bnε × Z, where Bnε denotes the open ball of radius ε centered at the origin in
Rn. This shows that F∗,lnp(n) is a foliated structure of dimension n on M∞∗,lnp(n), completing the proof of

Theorem 1.3-(ii).
Recall that a Riemannian manifold M (or its metric tensor) is called nowhere locally homogenous if there

is no isometry between distinct open subsets of M . It is easy to see that the proof of [38, Proposition 1] can
be adapted to the case of open manifolds, obtaining the following.

Proposition 11.6. For any C∞ manifold M , the set of nowhere locally homogenous metrics on M is
residual in Met(M) with the weak and strong C∞ topologies.

Lemma 11.7. There is a nowhere locally homogenous complete Riemannian manifold M such that ι(M) is
dense in M∞∗,o(n).

Proof. According to the proof of Proposition 7.1, there is a countable dense set of points [Mi, xi] in M∞∗,lnp,c(n)

(i ∈ N). For each i, take some yi ∈Mi so that di(xi, yi) = maxy∈Mi
di(xi, y). For all i ∈ N and j, k ∈ Z+ with

1/j, 1/k < diamMi, let (Mijk, xijk, yijk) be a copy of (Mi, xi, yi), let gijk be the metric of Mijk, and let Ωijk
be a compact domain in Mijk containing yijk and with diameter < 1/j. Observe that Ω̂ijk := MijkrInt(Ωijk)
is also a compact domain. Take also corresponding mutually disjoint compact domains Ω′ijk in Rn so that
every bounded subset of Rn only meets a finite number of them. Let M be the C∞ connected sum of
Rn with all manifolds Mijk so that the connected sum with each Mijk only involves perturbations inside

the interiors of Ωijk and Ω′ijk. Let g be any Riemannian metric on M whose restriction to each Ω̂ijk
equals gijk, and whose restriction to Rn r

⋃
ijk Ω′ijk equals the Euclidean metric. Then g is complete

and ι(M, g) is dense in M∞∗ (n). With the strong C∞ topology, C∞(M ;TM∗ � TM∗) is a Baire space
by [22, Theorem 4.4-(b)]. Since Met(M) is open in C∞(M ;TM∗ � TM∗), and the complete metrics on M
form an open subspace Metcom(M) ⊂ Met(M), it follows that Metcom(M) is a Baire space with the strong
C∞ topology. Hence, by Proposition 11.6, there is a nowhere locally homogenous complete metric g′ on M
so that ‖g − g′‖Ck,Ω̂ijk,g

< 1/k for all i, j and k. Then ι(M, g′) is also dense in M∞∗,o(n). �

By Lemma 11.7, F∗,lnp,o(n) is transitive, showing Theorem 1.3-(iii).
Now, for k ∈ {1, 2}, let Φk : N′k → Bnεk × Zk be two homeomorphisms constructed as above with maps

c′k : N′k → Zk, exp : N̂′k → N′k and σk : Θk → Q∞∗ (n).
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Lemma 11.8. Φ2Φ−1
1 : Φ1(N′1 ∩N′2)→ Φ1(N′1 ∩N′2) is C∞ (in the sense of Section 2.1).

Proof. This map has the expression

Φ2Φ−1
1 (v, [L, c]) = (Ψ(v, [L, c]),Γ([L, c])) ,

where Γ : c′1(N′1∩N′2)→ c′2(N′1∩N′2) is the corresponding holonomy transformation, and Ψ : Φ1(N′1∩N′2)→
Rn is defined by

Ψ(v, [L, c]) = σ2([L, c′]) exp−1
[L,c′] exp[L,c] σ1([L, c])−1(v) ,

where [L, c′] = Γ([L, c]). Let [L, f ] = σ1([L, c]) and [L, f ′] = σ2([L, c′]). We can take c′ so that d(c, c′) <
ε1 + ε2, and then

Ψ(v, [L, c]) = f ′ exp−1
c′ expc f

−1(v) .

To prove that Ψ is C∞ in the sense of Section 2.1, fix any (v, [L, c]) ∈ Φ1(N′1 ∩ N′2), and take c′, f and
f ′ as above. Let V and O be open neighborhoods of v and [L, c] in Rn and Z1, respectively, such that
V ×O ⊂ Φ1(N′1 ∩N′2). Take any convergent sequence [Li, ci]→ [L, c] in O, and define c′i, fi and f ′i as before
for each i. Notice that Ψ(v, [L, c]) and Ψ(v, [Li, ci]) are defined for all v ∈ V , and let ψ,ψi : V → Rn be the
C∞ maps given by ψ(v) = Ψ(v, [L, c]) and ψi(v) = Ψ(v, [Li, ci]). We have to prove that limi ψi = ψ with
respect to the weak C∞ topology.

Let Ω be any compact domain in L such that BL(c, ε1 + 2ε2) ⊂ Int(Ω), and thus BL(c′, ε2) ⊂ Int(Ω) too.
Since the sections σ1 and σ2 are continuous, there are C∞ embeddings φi : Ω → Li for i large enough so
that φi∗(f) = fi and limi φ

∗
i gi = g|Ω; in particular, φi(c) = ci. Hence c′i ∈ φi(Int(Ω)) for i large enough,

and moreover limi φ
−1
i∗ (f ′i) = f ′ by (b) and Lemma 9.12. Observe that ψ̂ := exp−1

c′ expc is defined on

W = f−1(V ) ⊂ BTcL(0c, ε1). It follows that ψ̂i := φ−1
i∗ exp−1

c′i
expci φi∗ is also defined on W for i large

enough, and moreover limi ψ̂i = ψ̂ in the space of C∞ maps W → Tc′L with the weak C∞ topology. So

lim
i
φ−1
i∗ (f ′i) ψ̂if

−1 = f ′ψ̂f−1 = ψ

in the space of C∞ maps V → Rn with the weak C∞ topology. Then the result follows because

φ−1
i∗ (f ′i) ψ̂if

−1 = φ−1
i∗ (f ′i) ψ̂i (φ−1

i∗ (fi))
−1 = f ′iφi∗ψ̂iφ

−1
i∗ f

−1
i = f ′i exp−1

c′i
expci f

−1
i = ψi . �

According to Lemma 11.8, F∗,lnp(n) becomes C∞ with the above kind of charts. Thus we can consider the
tangent bundle TF∗,lnp(n). For each leaf ι(M) of F∗,lnp(n), the canonical homeomorphism ῑ : Iso(M)\M →
ι(M) is a C∞ diffeomorphism, and ι∗x : TxM → T[M,x]F∗,lnp(n) is an isomorphism for each x ∈M . According
to Proposition 9.11, we get a canonical bijection TF∗,lnp(n) → T∞∗,lnp(n) defined by ι∗x(ξ) 7→ [M, ξ] for

[M, ξ] ∈ M∞∗,lnp(n) and ξ ∈ TxM . It is an easy exercise to prove that this bijection is an isomorphism

of vector bundles. So the Riemannian structure on T∞∗,lnp(n) defined in Proposition 9.11 corresponds to a

Riemannian structure on TF∗,lnp(n), which can be easily proved to be C∞ by using the above kind of flow
boxes of F∗,lnp(n). It is elementary that each isomorphism ι∗x : TxM → T[M,x]F∗,lnp(n) is an isometry. This
completes the proof of Theorem 1.3-(iv).

Theorem 1.3-(v) follows from the following.

Lemma 11.9. The following properties hold for any point [M,x] ∈M∞∗,lnp(n), any path α : I := [0, 1]→M

with α(0) = x, and any neighborhood U of ια in C(I,F∗,lnp(n)):

(i) If α(1) = x then, for each [N, y] ∈ M∞∗,lnp(n) close enough to [M,x], there is a path β ∈ U with

β(0) = β(1) = [N, y].
(ii) If α(1) 6= x then there is some path β ∈ U with β(0) 6= β(1).

Proof. Let Ω be a compact domain in M whose interior contains α(I), let [N, y] ∈ M∞∗,lnp(n), and let

φ : (Ω, x)→ (N, y) be a pointed Cm embedding with ‖gM − φ∗gN‖Ω,Cm,gM < ε for some m ∈ Z+ and ε > 0.
Let β = ιφα ∈ C(I,F∗,lnp(n)); that is, β(t) = [N,φα(t)] for each t ∈ I. Observe that β ∈ U if m and Ω are
large enough, and ε is small enough (i.e., if [N, y] is close enough to [M,x]). When α(1) = x, we get

β(0) = [N,φ(x)] = [N, y] = [N,φα(1)] = β(1) .
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Suppose now that α(1) 6= x. Since M∞∗,np(n) is dense in M∞∗,lnp(n), with the above notation, we can choose

[N, y] ∈M∞∗,np(n) as close as desired to [M,x]. Hence ι : N →M∞∗,lnp(n) is injective, giving

β(0) = ιφ(x) 6= ιφα(1) = β(1) . �

12. Saturated subspaces of M∞∗,lnp(n)

Let X be a sequential Riemannian foliated space with complete leaves.

Definition 12.1. It is said that X is covering-determined when there is a connected pointed covering (L̃x, x̃)

of (Lx, x) for all x ∈ X such that xi → x in X if and only if [L̃xi
, x̃i] is C∞ convergent to [L̃x, x̃]. When this

condition is satisfied with L̃x = L̃hol
x for all x ∈ X, it is said that X is holonomy-determined.

Example 12.2. (i) The Reeb foliation on S3 is not covering-determined with any Riemannian metric.
(ii) [29, Example 2.5] is covering-determined but not holonomy-determined.
(iii) M∞∗,lnp(n) is holonomy-determined.

Remark 12. (i) The condition of being covering-determined is hereditary by saturated subspaces.
(ii) The example X of [29, Example 2.5] can be easily realized as a saturated subspace of a Riemannian

foliated space Y where the holonomy coverings of the leaves are isometric to R. Multiplying the leaves by
S1, all holonomy covers of Y ×S1 become isometric to R×S1. The metric on Y ×S1 can be modified so
that no pair of these holonomy covers are isometric, obtaining a holonomy-determined foliated space,
however X × S1 is not holonomy-determined with any metric. So holonomy-determination is not
hereditary by saturated subspaces.

(iii) If X satisfies the covering-determination with the pointed coverings (L̃x, x̃) of (Lx, x) for x ∈ X, then

x = y in X if and only if [L̃x, x̃] = [L̃y, ỹ]; in particular, the leaves of X are non-periodic.

(iv) If X is compact and the mapping x 7→ [L̃x, x̃] is injective, then the “if” part of Definition 12.1 can be
deleted.

Proof of Theorem 1.4. Any saturated subspace of M∞∗,lnp(n) is covering-determined by Example 12.2-(iii)

and Remark 12-(i).

Suppose that X satisfies the covering-determination with the pointed covers (L̃x, x̃) of (Lx, x) for x ∈ X.

Then the map ι : X → M∞∗,lnp(n), defined by ι(x) = [L̃x, x̃], is a C∞ foliated embedding whose restrictions
to the leaves are isometries. �

Remark 13. Like in the above proof, a map ιhol : X → M∞∗ (n) is defined by ιhol(x) = [L̃hol
x , x̃], where

x̃ ∈ L̃hol
x is over x. This map may not be continuous [29, Example 2.5], but its restriction to X0 is continuous

by the local Reeb stability theorem, and therefore ιhol is Baire measurable if X is second countable.

Any family C of complete connected Riemannian n-manifolds defines a closed F∗(n)-saturated subspace
X := Cl∞(

⋃
M∈C ι(M)) ⊂ M∞∗ (n). The obvious C∞ version of arguments of [9] (see also [33, Chapter 10,

Sections 3 and 4]) gives the following.

Theorem 12.3. A family C of complete connected Riemannian n-manifolds is of equi-bounded geometry if
and only if the closed subspace of M∞∗ (n) defined by C is compact.

Remark 14. A version of Theorem 12.3 using the Ricci curvature instead of R can be also proved with the
arguments of [2].

For instance, let M∗(n, r, Cm) ⊂M∗(n) denote the subspace defined by the manifolds of bounded geometry
with geometric bound (r, Cm). Each M∗(n, r, Cm) is compact by Theorem 12.3, and the notion of C∞

convergence in M∗(n, r, Cm) is equivalent to the convergence in the topology of the Gromov space M∗ [29], [33,
Chapter 10]. Nonetheless, this is not the case on the whole of M∗(n) [4, Section 7.1.4].

Let us study the case of closed subspaces of M∞∗ (n) defined by a single manifold.

Definition 12.4. A complete connected Riemannian manifold M is called:
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(i) aperiodic if, for all mi ↑ ∞ in N, compact domains Ω′i ⊂ Ωi ⊂M , points xi ∈ Ω′i and yi ∈ Ωi, and Cmi

pointed embeddings φij : (Ωi, xi)→ (Ωj , xj) (i ≤ j) and ψi : (Ω′i, xi)→ (Ωi, yi) such that

lim
i
d(xi, ∂Ω′i)) =∞ , lim

i,j
‖g − φ∗ijg‖Cmi ,Ωi,g = lim

i
‖g − ψ∗i g‖Cmi ,Ω′i,g

= 0 ,

we have

lim
i

max{ d(x, ψi(x)) | x ∈ Ω′i ∩B(xi, r) } = 0 (17)

for some r > 0; and
(ii) weakly aperiodic if, to get (17), besides the conditions of (i), it is also required that there is some s > 0

and there are points zi ∈ Ω′i such that φij(zi) = zj and d(zi, ψi(zi)) < s.

Lemma 12.5. The following properties hold for any complete connected Riemannian n-manifold M :

(i) M is aperiodic if and only if Cl∞(ι(M)) ⊂M∞∗,np(n).
(ii) M is weakly aperiodic if and only if Cl∞(ι(M)) ⊂M∞∗,lnp(n).

Proof. This is a consequence of Propositions 5.2, 6.4 and 6.5, and using also arguments from the proof of
Proposition 5.3 for the “if” parts. �

Definition 12.6. A complete connected Riemannian manifold M is called repetitive if, for every compact
domain Ω in M , and all ε > 0 and m ∈ N, there is a family of Cm embeddings φi : Ω → M such that⋃
i φi(Ω) is a net in M and ‖g − φ∗i g‖Cm,Ω,g < ε for all i.

Here, the term net in M is used for a subset A ⊂M satisfying Pen(A,S) = M for some S > 0.

Lemma 12.7. Let M be a complete connected Riemannian n-manifold of bounded geometry. Then M is
repetitive if and only if Cl∞(ι(M)) is F∗(n)-minimal.

Proof. The “only if” part follows easily from Propositions 5.2, 6.4 and 6.5.
To prove the “if” part, assume that Cl∞(ι(M)) is F∗(n)-minimal. Let Ω be a compact domain in M ,

and take some m ∈ N and ε > 0. Take some x ∈ M and R > 0 such that Ω ⊂ B(x,R). Let U =
Int∞(Dm

R,ε(M,x)). Since Cl∞(ι(M)) is compact because M is of bounded geometry (Theorem 12.3), there is

some S > 0 such that dU ≤ S on Cl∞(ι(M)) by Lemma 5.4. Hence [M,xi] ∈ U for a net of points xi in M .
Thus there are Cm+1 pointed local diffeomorphisms φi : (M,x) � (M,xi) so that ‖g − φ∗i g‖Cm,Ωi,g < ε for
some compact domain Ωi ⊂ domφi with B(x,R) ⊂ Ωi; in particular, Ω ⊂ domφi and ‖g − φ∗i g‖Cm,Ω,g < ε
for all i, and

⋃
i φi(Ω) is a net in M , showing that M is repetitive. �

Proof of Theorem 1.5. Suppose that M is non-periodic and has a weakly aperiodic connected covering M̃ .

Then Y = Cl∞(ι(M̃)) is a compact saturated subspace of M∞∗,lnp(n) by Theorem 12.3 and Lemma 12.5-(ii),

and M ≡ Iso(M̃)\M̃ ῑ−→ ι(M̃) is an isometry. Moreover any sequential covering-determined transitive

compact Riemannian foliated space can be obtained in this way by Theorem 1.4. If M̃ is also repetitive,
then X is minimal by Lemma 12.7, completing the proof of (i).

Asume now that M is aperiodic. Then X = Cl∞(ι(M)) is a compact F∗,np(n)-saturated subspace of
M∞∗,np(n) by Theorem 12.3 and Lemma 12.5-(i), and moreover ι : M → ι(M) is an isometry. Furthermore
the leaves of X have trivial holonomy groups by Theorem 1.3-(v). As before, X is minimal if M is also
repetitive, showing (ii). �
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