A UNIVERSAL RIEMANNIAN FOLIATED SPACE

JESUS A. ALVAREZ LOPEZ, RAMON BARRAL LIJO, AND ALBERTO CANDEL

ABSTRACT. It is proved that the isometry classes of pointed connected complete Riemannian n-manifolds
form a Polish space, M$°(n), with the topology described by the C'* convergence of manifolds. This
space has a canonical partition into sets defined by varying the distinguished point into each manifold.
The locally non-periodic manifolds define an open dense subspace MZ%, (n) C M2 (n), which becomes
a C° foliated space with the restriction of the canonical partition. Its leaves without holonomy form
the subspace M, (n) C M:?lnp(n) defined by the non-periodic manifolds. Moreover the leaves have a
natural Riemannian structure so that Mifl np (n) becomes a Riemannian foliated space, which is universal
among all sequential Riemannian foliated spaces satisfying certain property called covering-determination.
M(:?lnp (n) is used to characterize the realization of complete connected Riemannian manifolds as dense leaves

of covering-determined compact sequential Riemannian foliated spaces.
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1. INTRODUCTION

For any n € N (we adopt the convention that 0 € N), let M,(n) denote the set of isometry classes,
[M, z], of pointed complete connected Riemannian n-manifolds, (M, x). The cardinality of each complete
connected Riemannian n-manifold is less than or equal to the cardinality of the continuum, and therefore it
may be assumed that its underlying set is contained in R. With this assumption, M,(n) is a well defined
set. This set is only interesting for n > 2 because M, (0) = {[{0},0]} and M, (1) = {[R,0],[S*,1]}. The set
M. (n) can be considered as a subset of the Gromov space M, of isometry classes of pointed proper metric
spaces , Chapter 3]. However it is interesting to consider a finer topology on M,(n), taking the
differentiable structure into account. For that purpose, the following notion of C*° convergence was defined
on M, (n).

Key words and phrases. C'°° convergence of Riemannian manifolds; locally non-periodic Riemannian manifolds; Riemannian
foliated space.



Definition 1.1 (See e.g. [33, Chapter 10, Section 3.2]). For each m € N, a sequence [M;, z;] € M. (n) is said
to be C™ convergent to [M, z] € M, (n) if, for each compact domain @ C M containing x, there are pointed
C™*! embeddings ¢; : (2, x) — (M;, ;) for large enough i such that ¢g; — g|q as i — oo with respect to
the C"™ topology [22], Chapter 2]. If [M;, x;] is C™ convergent to [M, z] for all m, then it is said that [M;, x;]
is C* convergent to [M, x].

Here, a domain in M is a connected C*° submanifold, possibly with boundary, of the same dimension as
M.

It is admitted that C°° convergence defines a topology on M, (n) [32]. However we are not aware of any
proof in the literature showing that it satisfies the conditions to describe a topology [28], [17] (see also [26]
and [27] if C* convergence were defined with nets or filters). This is only proved on subspaces defined by
manifolds of equi-bounded geometry, where the C° convergence coincides with convergence in M, [29] (see
also |33, Chapter 10]). The first main theorem of the paper is the following.

Theorem 1.2. The C*° convergence in M, (n) describes a Polish topology.

Recall that a space is called Polish if it is separable and completely metrizable.

The topology given by Theorem will be called the C* topology on M, (n), and the corresponding
space is denoted by MS°(n).

For each complete connected Riemannian n-manifold M, there is a canonical continuous map ¢ : M —
MS°(n) given by v(x) = [M,z], which induces a continuous injective map 7 : Iso(M)\M — MS°(n), where
Iso(M) denotes the isometry group of M. The more explicit notation ¢p; and 7p; may be also used. The
images of the maps ¢; form a natural partition of M2°(n), denoted by F.(n).

A Riemannian manifold, M, is said to be non-periodic if Iso(M) = {idas}, and is said to be locally
non-periodic if each point x € M has a neighborhood U, such that

{h e Tso(M) | h(z) € Uy} = {idar} -

Let M, np(n) and M, 1np(n) be the F,(n)-saturated subsets of M, (n) defined by non-periodic and locally
non-periodic manifolds, respectively. The notation M2, (n) and M9, (n) is used when these sets are
equipped with the restriction of the C* topology. The restrictions of F.(n) to M, ,p(n) and M, 1,p(n) are
respectively denoted by F, ,p(n) and F 1np(n). Note that M, ,p(0) = {[{0}, 0]} and M, 15p(1) = 0.

On the other hand, let M. (n) (respectively, J/\\/E‘joo(n)) be the F,(n)-saturated subspace of M, (n) con-
sisting of classes [M, z] such that M is compact (respectively, open). Observe that, if [V, y] is close enough
to any [M,z] € M5, (n), then N is diffeomorphic to M. Thus M, (n) is open in M.(n), and therefore
MgS,(n) is closed. Hence these are Polish subspaces of M, (n), as well as their intersections with any Polish
subspace. The intersection of MZ?, /O(n) and J\/[‘jf’(l)np(n) is denoted by M%) = /O(n). The restrictions of
Fu(n) to M c/0(n) and M, (1ynp,c/o(n) are denoted by F, . /o(n) and F, (1ynp,c/0(n), respectively. The second
main theorem of the paper is the following.

Theorem 1.3. The following properties hold for n > 2:

() My inp(n) is Polish and dense in M (n).
1) M (1) = (M9, (1), Funp(n)) is a foliated space of dimension n.
(#99) Fs np,o(n) is transitive.
(iv) The foliated space M9, (n) has canonical C*° and Riemannian structures such that ¢ : Iso(M)\M —
t(M) is an isometry for every locally non-periodic, complete, connected Riemannian manifold M.
(v) For any locally non-periodic complete connected Riemannian manifold M, the quotient map M —
Iso(M)\M corresponds to the holonomy covering of the leaf «(M) by T : Iso(M)\M — «(M). In

particular, the set My np(n) is the union of leaves of M2, (n) with trivial holonomy groups.

The following result states a universal property of Mif’lnp(n), which involves certain property called
covering-determination (Definition [12.1)).

Theorem 1.4. Let X be a sequential Riemannian foliated space of dimension n > 2 whose leaves are

complete. Then X is isometric to a saturated subspace of M‘j?lnp(n) if and only if it is covering-determined.
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Recall that a space X is called sequential if a subset A C X is open whenever each convergent sequence
T, — = € Ain X eventually belongs to A. For instance, first countable spaces are sequential. This condition
could be removed by using convergence of nets or filters instead of sequences.

M, (n) is used to prove the following result about realizations of Riemannian manifolds as leaves.
It involves the obvious Riemannian versions of the conditions of being aperiodic or repetitive, which are
standard for tilings or graphs (see e.g. [12L[16[35]), and a weak version of aperiodicity (Definitions [12.4]

and .

Theorem 1.5. The following properties hold for a complete connected Riemannian manifold M of bounded
geometry and dimension n > 2:

(i) M is non-periodic and has a (repetitive) weakly aperiodic connected covering if and only if it is isometric
to a dense leaf of a (minimal) covering-determined compact sequential Riemannian foliated space.

(it) If M is aperiodic (and repetitive), then it is isometric to a dense leaf of a (minimal) covering-determined
compact sequential Riemannian foliated space whose leaves have trivial holonomy groups.

2. PRELIMINARIES

2.1. Foliated spaces. Standard references for foliated spaces are [30], [5, Chapter 11], |6, Part 1] and |13].

Let Z be a space and let U be an open set in R” x Z (n € N), with coordinates (z, z). For m € N, a map
f:U — RP (p € N) is of class C™ if its partial derivatives up to order m with respect to = exist and are
continuous on U. If f is of class C™ for all m, then it is called of class C*°. Let Z’' be another space, and
let h: U — RP x Z' (p € N) be a map of the form h(zx,z) = (hi(x, 2), ha(z)), for maps hy : U — RP and
he : pry(U) — Z’, where pry : R" x Z — Z is the second factor projection. It will be said that h is of class
C™ if hy is of class C™ and hsy is continuous.

For m € NU{oo} and n € N, a foliated structure F of class C™ and dimension dimF = n on a space X is
defined by a collection U = {(U;, ¢;)}, where {U;} is an open covering of X, and each ¢; is a homeomorphism
U; — B; x Z;, for a locally compact Polish space Z; and an open ball B; in R™, such that the coordinate
changes ¢;¢; " : (Ui NU;) — ¢;(U; N U;) are locally C™ maps of the form

007w, 2) = (gij(w, 2), hij (2)) .

These maps h;; will be called the local transverse components of the changes of coordinates. Each (U;, ¢;)
is called a foliated chart, the sets ¢; '(B; x {2}) (2 € Z;) are called plagues, and the collection U is called
a foliated atlas of class C™. Two C™ foliated atlases on X define the same C™ foliated structure if their
union is a C™ foliated atlas. If we consider foliated atlases so that the sets Z; are open in some fixed space,
then JF can be also described as a maximal foliated atlas of class C"™. The term foliated space (of class C™)
is used for X = (X, ). If no reference to the class C™ is indicated, then it is understood that X is a C° (or
topological) foliated space. The concept of C™ foliated space can be extended to the case with boundary in
the obvious way, and the boundary of a C™ foliated space is a C" foliated space without boundary.

The foliated structure of a space X induces a locally Euclidean topology on X, the basic open sets being
the plaques of all foliated charts, which is finer than the original topology. The connected components of
X in this topology are called leaves. Each leaf is a connected C™ n-manifold with the differential structure
canonically induced by &F. The leaf that contains each point z € X is denoted by L,. The leaves of F form a
partition of X that determines the topological foliated structure. The corresponding quotient space, called
leaf space, is denoted by X/F.

The restriction of F to some open subset U C X is the foliated structure F|yy on U defined by the charts
of ¥ whose domains are contained in U. More generally, a subspace Y C X is a C™ foliated subspace when
it is a subspace with a C™ foliated structure G so that, for each y € Y, there is a foliated chart of F defined
on a neighborhood U of y in X, whose restriction to U NY can be considered as a chart of G in the obvious
way; in particular, dim § < dim &. For instance, any saturated subspace is a C"™ foliated subspace.

A map between foliated spaces is said to be a foliated map if it maps leaves to leaves. A foliated map
between C™ foliated spaces is said to be of class C™ if its local representations in terms of foliated charts are
of class C™. A C™ foliated diffeomorphism between C™ foliated spaces is a C™ foliated homeomorphism
between them whose inverse is also a C™ foliated map.
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Any topological space is a foliated space whose leaves are its points. On the other hand, any connected
C™ n-manifold M is a C™ foliated space of dimension n with only one leaf. The C"™ foliated maps M — X
can be considered as C™ maps to the leaves of X, and may be also called C™ leafwise maps. They form a set
denoted by C™(M,F), which can be equipped with the obvious generalization of the (weak) C™ topology.
In particular, for m = 0, we get the subspace C(M,F) C C(M, X) with the compact-open topology. For
instance, C(I,F) (I = [0,1]) is the space of leafwise paths in X.

Many concepts of manifold theory readily extend to foliated spaces. In particular, if F is of class C™ with
m > 1, there is a vector bundle T'F over X whose fiber at each point x € X is the tangent space T, L,.
Observe that TF is a foliated space of class C™~! with leaves TL for leaves L of X. Then we can consider a
C™~! Riemannian structure on T'F, which is called a (leafwise) Riemannian metric on X. This is a section
of the associated bundle over X of positive definite symmetric bilinear forms on the fibers of TF, which is
C™~! as foliated map. In this paper, a Riemannian foliated space is a C* foliated space equipped with
a C*° Riemannian metric, and an isometry between Riemannian foliated spaces is a C*° diffeomorphism
between them whose restrictions to the leaves are isometries; in this case, the Riemannian foliated spaces
are called isomertric.

A foliated space has a “transverse dynamics,” which can be described by using a pseudogroup (see |[18-20]).
A pseudogroup H on a space is a maximal collection of homeomorphisms between open subsets of Z that
contains idz, and is closed by the operations of composition, inversion, restriction to open subsets of their
domains, and combination. This is a generalization of a dynamical system, and all basic dynamical concepts
can be directly generalized to pseudogroups. For instance, we can consider its orbits, and the corresponding
orbit space is denoted by Z/H. It is said that 3 is generated by a subset E when all of its elements can be
obtained from the elements of E by using the pseudogroup operations. Certain equivalence relation between
pseudogroups was introduced [18], |19], and equivalent pseudogroups should be considered to represent the
same dynamics; in particular, they have homeomorphic orbit spaces.

The germ groupoid of H is the topological groupoid of germs of maps in H at all points of their domains,
with the operation induced by the composite of partial maps and the étale topology. Its subspace of units can
be canonically identified with Z. For each x € Z, the group of elements of this groupoid whose source and
range is x is called the germ group of H at x. The germ groups at points in the same orbit are conjugated
in the germ groupoid, and therefore the germ group of each orbit is defined up to isomorphisms. Under
pseudogroup equivalences, corresponding orbits have isomorphic germ groups.

Let U = {U;, ¢;} be a foliated atlas of F, with ¢; : U; — B; x Z;, and let p; = pry ¢; : U; — Z;. The local
transverse components of the corresponding changes of coordinates can be considered as homeomorphisms
between open subsets of Z = | |, Z;, which generate a pseudogroup H. The equivalence class of H depends
only on F, and is called its holonomy pseudogroup. There is a canonical homeomorphism between the leaf
space and the orbit space, X/F — Z/H, given by L — H(p;(z)) if x € LNU;.

The holonomy groups of the leaves are the germ groups of the corresponding H-orbits. The leaves with
trivial holonomy groups are called leaves without holonomy. The union of leaves without holonomy is denoted
by Xo. If X is second countable, then X is a dense G saturated subset of X [11}21].

Given a loop « in a leaf L with base point x, there is a partition 0 = tg < t; < --- <ty = 1 of I and there
are foliated charts (U, ¢4,),- - -, (Ui, ¢i,.) such that a([t;—1,%]) € Uy, for I € {1,...,k}. We can assume
(Ui, #i) = (Uiy, ¢i,) because « is a loop. Let h;, , ; be the local transverse component of each change
of coordinates (;Silgéi_lil defined around p;, ,c(t;—1) and with h;,_, ;,pi,_,@(ti—1) = pi,a(t;). The germ the
composition A, _, 4, -+ Piyip &t Dig () = s, () depends only on F and the class of v in 71 (L, x), obtaining a
surjective homomorphism of 71 (L, x) to the holonomy group of L. This homomorphism defines a connected
covering Lhol of L, which is called its holonomy covering.

Now, let R be an equivalence relation on a topological space X. A subset of X is called (R-) saturated
if it is a union of (R-) equivalence classes. The equivalence relation R is said to be (topologically)transitive
if there is an equivalence class that is dense in X. A subset ¥ C X is called an (R-) minimal set if it
is a minimal element of the family of nonempty saturated closed subsets of X ordered by inclusion; this
is equivalent to the condition that all equivalence classes in Y are dense in Y. In particular, X (or R) is
called minimal when all equivalence classes are dense in X. These concepts apply to foliated spaces with
the equivalence relation whose equivalence classes are the leaves.



2.2. Riemannian geometry. Let M be a Riemannian manifold possibly with boundary or corners (in the
sense of [7], [10]). Connectedness of Riemannian manifolds is not assumed in Sections and [10| because
it is not relevant for the concepts of these sections, but this property is assumed in the rest of the paper:
it is needed in Section [d] and it is implicit in Sections [BHJ] and [TIHI2] because the manifolds are given by
elements of M, (n). The following standard notation will be used. The metric tensor is denoted by g, the
distance function on each of the connected components of M by d, the tangent bundle by « : TM — M,
the GL(n)-principal bundle of tangent frames by 7w : PM — M, the O(n)-principal bundle of orthonormal
tangent frames by m : QM — M, the Levi-Civita connection by V, the curvature by R, the exponential map
by exp : TM — M (if M is complete and OM = @), the open and closed balls of center z € M and radius
r > 0 by B(x,r) and B(z,r), respectively, and the injectivity radius by inj (if 9M = (). The penumbra
around a subset S C M of radius r > 0 is the set Pen(S,r) = {z € M | d(x,S) < r}. If needed, “M” will
be added to all of the above notation as a subindex or superindex. When a family of Riemannian manifolds
M; is considered, we may add the subindex or superindex “i” instead of “M;” to the above notation. A
covering of M is assumed to be equipped with the lift of g.

For m € ZF, let TU™WM = T---TM (m times). We also set T(OM = M. If | < m, T) M is sometimes
identified with a regular submanifold of T(™ M via zero sections, and therefore, for each 2 € M, the notation
x may be also used for the zero elements of T, M, T, TM, etc. When the vector space structure of T, M
is emphasized, its zero element is denoted by 0., or simply by 0, and the image of the zero section of
7 :TM — M is denoted by Z € TM. Let 7: T M — TWM be the vector bundle projection given by
composing the tangent bundle projections; in particular, we have = : T™M — M. Given any C™ map
between Riemannian manifolds, ¢ : M — N, the induced map T M — T("™) N will be denoted by (;Sim)
(or simply ¢, if m =1, ¢, if m =2, and so on).

Banach manifolds are also considered in some parts of the paper, using analogous notation.

The Levi-Civita connection determines a decomposition T2 M = H &V, as direct sum of the horizontal
and vertical subbundles. The Sasaki metric on TM is the unique Riemannian metric ¢(!) so that 3 L V
and the canonical identities H¢ = Te M = V¢ are isometries for every £ € T'M.

Continuing by induction, for m > 2, the Sasaki metric on T M is defined by g™ = (gim=1)1),
The notation d(™) is used for the corresponding distance function on the connected components, and the
corresponding open and closed balls of center & € T(") M and radius 7 > 0 are denoted by B("™) (&, r) and
E(m)(f ,7), respectively. We may add the subindex “M” to this notation if necessary, or the subindex “i”
instead of “M;” when a family of Riemannian manifolds M; is considered. From now on, 7™ M is assumed
to be equipped with ¢(™).

Remark 1. The following properties hold for | < m and 7 : T M — TOM:

(i) g(m)‘T(l)M =g,

(ii) The submanifold TWM c T(™ M is totally geodesic and orthogonal to the fibers of . This follows
easily by induction on m, where the case m = 1 is proved in [36, Corollary of Theorem 13].

(iii) The projection 7 is a Riemannian submersion with totally geodesic fibers. Again, this follows by
induction on m, and the case m = 1 is proved in [36, Theorems 14 and 18].

(iv) For every ¢ € TU™ M, its projection 7(€) is the only point ¢ € TWM that satisfies d™ (€,() =
d™ (&, TOM). To see this, it is enough to prove that 7(£) is the only critical point of the distance
function d(m)(~,§) on TWM. These critical points are just the points ¢ € T M where the shortest
g™)-geodesics v from ¢ to ¢ are orthogonal to T™WAM at ¢. Hence 7 is a geodesic in 7~ 1(¢) by ,
obtaining ¢ = 7 (§).

(v) For all ¢,¢" € TWM, the point ¢’ is the only ¢ € 7= 1(¢’) satisfying d™) (&,¢) = d™ (&, 771(¢)). This
follows like , using instead of .

Let (U;z!,...,2") be a chart of M. The corresponding metric coefficients are denoted by 9i;, and the
Christoffel symbols of the first and second kind are denoted by I';;; and Ffj, respectively. Using the Einstein
notation, recall that

1
=(0igjk + 0;9ik — Orgij) - (1)

I gak = Tijk = 5
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Identify the functions 2%, g;;, I';;, and F with their lifts to TU. We get a chart (U™M); (1), .. l‘(l Yof TM
with UM = TU, x’('l) =z and x?;)” =t for 1 < i < n, where the functions v? give the coordinates of tangent

vectors with respect to the local frame (91, ...,8,) of TU induced by (U;z!,...,2"). The coefficients of the
Sasaki metric g(") with respect to (TU; 2y, - - - xfy) are [36, Eq. (3.5)]:

gzj) =9ij — ga“/rzﬁrguvuvu
1
= Tuv” (2)

gn+zg

€] .
gn+z n+j — gl]
(1)

for 1 <14,j <n. Thus the metric coefficients o4 are given by universal fractional expressions of the functions

gijs Okgij and v* (1 <i,j,k <n).
Using induction again, for m > 2, let (U(™); x%m), .. x(m ™) be the chart of 7™ M induced by the chart

27n. 1

(Utm=1, a:(lmfl) L, 1)) of Tm=V M, and let géﬁ) be the corresponding coefficients of ¢(™).

Lemma 2.1. (i) The coefficients ggg) are given by universal fractional expressions of the coordinates
xa')l, ce
(#) For each p > 0, the partial derivatives up to order m of the coefficients g;; are given by universal linear

expressions of the functions (Jf(ﬁ[&))*ga/@) forn+1 < pu < 2™n, where Jgu U — U™ is the section

x(z;z)" and the partial derivatives up to order m of the coefficients g;;.

of m: U™ — U determined by (J,(JZ)) Ty = PO for n4+1 < v < 2™n, using Kronecker’s delta.

Proof. We proceed by induction on m. For m = 1, ({il) holds by and , and holds by the second and
third equalities of , since 0,95 = I'ijx +ix; by (). For arbitrary m > 2, assuming that ({if) and hold
for the case m — 1, we get both properties for m by applying the above case to (g(m_l))(l) = g(m), O

Let Q C M be a compact domain and m € N. Fix a finite collection of charts of M that covers 2,
U= {(Uyzt,....,2")}, and a family of compact subsets of M with the same index set as U, X = {K,}, such
that Q C U, K, and K, C U, for all a. The corresponding C™ norm of a C™ tensor T on € is defined by

a|I|TK
1Tl cm ou,x =max max Z Z aJ
a zeK,NN 6.’EI
|I|<m J,K

using the standard multi-index notation, where T aK ; are the coefficients of T on U, N {2 with respect to the
frame induced by (Ug;zl,...,27). With this norm, the C™ tensors on ) of a fixed type form a Banach
space. By taking the projective limit as m — oo, we get the Fréchet space of C°° tensors of that type
equipped with the C* topology (see e.g. [22]). Observe that U and X are also qualified to define the norm
I lem .o u,x for any compact subdomain ' C Q. It is well known that || |cm o u % is equivalent to the

norm || ||gm q,q defined by

ITllem 20 = macx max |V'T(@)]

i.e., there is some C' > 1, depending only on M, m, 2, U, K and g, such that
1
Il Il llemaux < llemay <Cll llemaug - (3)

When OM = 0, it is said that M is of bounded geometry if inj,; > 0 and the function |[V™R| is bounded
for all m € N; in particular, M is complete since inj,, > 0. More precisely, given r > 0 and a sequence
Cy, > 0, if inj,, > r and |[V™R| < C,, for all m € N, then (r,Cp,) is called a geometric bound of M. A
family € of Riemannian manifolds without boundary is called of equi-bounded geometry if all of them are of
bounded geometry with a common geometric bound; i.e., their disjoint union is of bounded geometry.

3. QUASI-ISOMETRIES

Let ¢: M — N be a C! map between Riemannian manifolds. Recall that ¢ is called a (\-) quasi-isometry,
or (A\-) quasi-isometric, if there is some A > 1 such that § [£] < [¢.(€)] < A[¢| for every £ € TM. This A is
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called a dilation bound of ¢. The second of the above inequalities, |¢. ()] < A || for all £ € TM, means that
|pi] < As e, |@ug| < Aforall z € M.

Remark 2. (i) Every quasi-isometry is an immersion.
(ii) If |@.]| < A, then ¢ is A-Lipschitz; i.e., dy(od(x), d(y)) < Adp(x,y) for all z,y € M.
(iii) If ¢ : M — N is a A-quasi-isometry, then ¢ is A-bi-Lipschitz; i.e., for all x,y € M,

S dr(2.y) < dn(9(),0(0)) < Nlus (o)

(iv) Let ¢ : N — L be another C! map between Riemannian manifolds. If |¢.| < A and || < p, then
[(¥9)«] < Ap

(v) The composition of a A-quasi-isometry and a p-quasi-isometry is a Au-quasi-isometry.

(vi) The inverse of a A-quasi-isometric diffeomorphism is a A-quasi-isometric diffeomorphism.

Consider the subbundle T<"M = {£ € TM | |¢| <7} C TM for each r > 0. If M has no boundary, then
T<"M is a manifold with boundary, being OT<"M = T"M = {{ € TM | |¢| = r}; otherwise, T<"M is
a manifold with corners. Also, define T(™)<"M by induction on m € Z*, setting TW<"M = T<"M and
T(m)<rpf = PSrp(m=1.r A1 Note that 7(m)-<rp(m’),<rpp — plm+m).<r pr

Definition 3.1. (i) It is said that ¢ : M — N is a (A-) quasi-isometry of order m € N, or a (A-) quasi-
isometric map of order m, if it is C™*! and ¢,(.<m) TSIV TN s a (A\-) quasi-isometry. This
M is called a dilation bound of order m of ¢. The infimum of all dilations bounds of order m is called the
dilation of order m. If ¢ is a quasi-isometry of order m for all m € N, then it is called a quasi-isometry
of order oco.

(ii) A collection ® of maps between Riemannian manifolds is called a family of equi-quasi-isometries of
order m € N if it is a family of quasi-isometries of order m with some common dilation bound of order
m, which is called an equi-dilation bound of order m. If ® is a collection of equi-quasi-isometries of
order m for all m € N, then it is called a family of equi-quasi-isometries of order co.

(iii) A Riemannian manifold M is said to be quasi-isometric with order m to another Riemannian manifold N
when there is a quasi-isometric diffeomorphism of order m, M — N. With more generality, a collection
{M;} of Riemannian manifolds is called equi-quasi-isometric with order m to another collection {N;}
of Riemannian manifolds, with the same index set, when there is a collection of equi-quasi-isometric
diffeomorphisms of order m, {M; — N;}.

Remark 3. (i) The A-quasi-isometries of order 0 are the A-quasi-isometries.
(ii) By Remark7 if ¢ is a A-quasi-isometry of order m > 1, then it is a A-quasi-isometry of order m — 1.
(iii) For integers 0 < m/ < m, if ¢ is a A-quasi-isometry of order m, then ¢>(km) is a A-quasi-isometry of
order m —m/.

To begin with, let us clarify the concept of quasi-isometry of order 1. Consider the splittings 7> M =
HeVand TON =H &V, where H and H' are the horizontal subbundles, and V and V' are the vertical
subbundles. Fix any 2 € M and £ € T,, M, and let 2’ = ¢(z) and &' = ¢.(£). We have the canonical identities

TTM = He ®Ve = T.M & T,M , TegTN =%t &V = TN & TN . (4)

The pull-back Riemannian vector bundle ¢*T'N is endowed with the pull-back V' of the Riemannian con-
nection of N, and let ¢, : TM — ¢*T' N also denote the homomorphism over id,; induced by ¢. Let X be a
C®° tangent vector field on some neighborhood of z in M so that X (z) = &; thus ¢.X is a C* local section
of *T'N around x satisfying (¢« X)(v) = & € (¢*TN), = Ty(yN. Then, for any ¢ € T, M and each O
function f defined on some neighborhood of x, we have

V(0 (fX)) = (Ve (fX)) = f(2) Ve X) + df (C) 98 — f(2) ¢ (Ve X) — df (C) 6:€
= f(2) (VE(9X) = (VX))
in (¢*T'N)y = T N. Therefore A4((®¢§) = V/C(d)*X) —¢.(V¢X) depends only on (®¢, and this expression

defines a continuous section Ay of TM* @ TM* ® ¢*T'N. Observe that X can be chosen so that VX =0,
7



giving A4((®¢&) = V’C(@X ) in this case. Then, from the definitions of tangent map and covariant derivative,
it easily follows that, according to ,
Prxe (€1, C2) = (94(C1), 4 (C2) + Ap(GL ® §)) (5)

for all (1,( € T, M.
Remark 4. If TM were used instead of T<'M in the definition of quasi-isometries of order 1, we would get
Ay = 0, which is too restrictive. On the other hand, it would be weaker to use T'M instead of T<'M.
Lemma 3.2. Suppose that ¢ : M — N is C2. Then the following properties hold for r > 0 and pu,v, K > 0:

(1) If |puse| < p for all £ € TSTM, then || < p and |Ay| < p/r.

(i5) If |¢«| < v and |Ag| < K, then |¢uwe| < V2(v + Kr) for all € € TS"M.

Proof. Assume that |¢..e| < p for all £ € TS"M. We get |¢.| < 1 by Remark [1] I. Furthermore, for all
x € M and &, ¢ € T, M with |£| = r, according to and .

[Ag(C @ &)| < [(942(€), Ag(C ® E))| = |¢**£(C70)| < pl(G0) = pl¢l = % Sl -
Now, suppose that |¢.| < v and |Ayg| < K. Fix all z € M and &,(1,¢ € T, M with |¢] < r, according

0 and 7
|ane (C1, C2)| < D (Co)| + [Px(C2) + Ap(G1 @ )| S v G| +v |Gl + K[ [€]
<v|Gl+v|Gl+ ErlG] < (v+ Kr) (Gl +1¢G)) < V2 + Kr) |G, G)| - O

Lemma 3.3. Suppose that ¢ : M — N is C%. Then the following conditions are equivalent for r > 0:
(i) ¢u:T<"M — TN is a quasi-isometry.
() ¢ is a quasi-isometry and |Ag| is uniformly bounded.

In this case, the constants involved in the above properties are related in the following way:

(a) If p is a dilation bound of ¢ : TSTM — TN, then u is a dilation bound of ¢ and |Ay| < p/r.
(b) If v is a dilation bound of ¢, |Ag| < K, and 0 < k < 1 with vKkr <1, then

V2u o V2
= 2 Kr), ————, ——
a max{\[(y—&— ), 1—-vKrr’ &
is a dilation bound of ¢, : TS"M — TN.
Proof. Assume that . ) holds, and let u be a dilation bound of order 1 of ¢. Then ¢ is a u-quasi-isometry

by Remark (1] l-. This shows ( . ) and (ED by Lemma (3.2 n.
Now, suppose that (il holds and take v, K, k and p like in (]ED For all x € M and &, (3, (2 € T, M with
|€] < r, according to (4] and ,

|Pane (C1, C2)| > 7 (19x(C1)| + [@+(C2) + Ag(CL @ §)]) = (|9« (C1)| + K D« (C2) + Ap(C1 @ E)])

z
> == (00| + (0.2 - 14o(G 2 ) = 5 ( (5 - K |s|) il + 2 al)
> 2= (G- ) a1+ 2 1al) 2 2 al+la) >+ @l
This gives (| . and (]ED by Lemma n. |

For ¢ > 0, let h, : TM — TM be the C* diffeomorphism defined by h.(§) = ¢£. Observe that
he(TS'M) = T<¢M, and the following diagram is commutative:



For each m € Zt, let H(™+1) and V(" +1 denote the horizontal and vertical vector subbundles of 7™+ Af
over TU™ M. Thus, for £ € T™ DM and ¢ € TgT(m_l)M,

T,T M = 4" @ v = Tert YN @ TV M (6)

Lemma 3.4. For all m € 7%, there is an orthogonal vector bundle decomposition, T DM = Pm+1) g
Qm+1)  preserved by hET), such that, for € € T=VDM, ¢ € TgT(m’l)M and ' = h&”)(c), the canonical
identity T.T™M = T T™ M given by (6) induces identities, fPémH) = ‘Pé’,nﬂ) and Qémﬂ) = Qgﬂﬂ),
so that h((:T) : fPém—H) — ﬂ)?,n—H) = fPémH) is the identity, and hf;”) : Q(CmH) — QE.C”—H) = ng—H) 18
multiplication by c.

Proof. The proof is by induction on m. By the definition of connection, h.. preserves the orthogonal

decomposition TG M = H & V. Moreover, for ¢ € TM and ¢’ = ¢, hes : He — Her = He is the identity,

and he. : Ve = V¢ = Ve is multiplication by c. Thus the statement is true in this case with P2 = 3 and

Q@ =,

Now, suppose that m > 2 and the result holds for m —1. For £ € T~V M and ¢ € TgT(m_l)M7 we have
canonical identities (1) (rs1) - -
m+1) _ ap(m+1) _ (m—1) _ plm m

He =V, =TT M=7"o9 ", (7)

obtaining orthogonal decompositions, H™+tD = FHP(") g 3Q(™) and Vit = VPm) ¢ VQ(™)  where

(HP), = fPém) = (VPM): and (HQM), = Qém) = (VQ(™), according to (7). Then the result follows

with P+ = HPM) g VP(M) and Qm+D = HQI™) g VQim)., O

Corollary 3.5. For all m € Z* and c,r > 0, we have h,(:T)(T(m“)*STM) c TmH.Ser N where & =
max{c, 1}, and R D Np s Tm+D AT s g ¢-quasi-isometry, where ¢ = max{c, 1/c}.

Lemma 3.6. For allm € Z*, r,s > 0 and XA > 0, there is some 1 > 0 such that, for any C™+! map between
Riemannian manifolds, ¢ : M — N, if |( ,(km))*5| < X for all € € TS M| then |(¢5<m))*§| < u for all
£ e TM)=s M. Moreover ju can be chosen so that us — 0 as s — 0 for fized m, v and \.

Proof. We proceed by induction on m.

For m = 1, we have |¢..¢| < A for all £ € TS"M. Then |¢.| < A and [A4] < A\/r by Lemma. Using
Lemma , it follows that |g..e| < V2A(1+ s/r) =: p for all £ € T<*M. Note that us — 0 as s — 0 for
fixed r and A in this case.

Now, assume that m > 2 and the result holds for m — 1. For ¢ = r/s and ¢ = min{cr, r}, the diagram

Ty S ey
hi’}”;:“T lh&;"*“ ®)

T(m=1),<tp<spr L) T(m) N
is defined and commutative. By Corollary and Remark , it follows that |(¢§m))*5\ < &2\ for
all ¢ € Tn=DStT<s) where ¢ = max{c,1/c}. Then, by the induction hypothesis applied to the map
¢y : TS*M — TN, there is some p > 0, depending only on m — 1, ¢, s and ¢\, such that \(¢im))*5| < u for
all ¢ € Tm=1.<s7<s\f — T(M).=s M and so that us — 0 as s — 0 for fixed m, t and ¢2\. O

Corollary 3.7. For allm € Z*, r > 0 and A\ > 0, there is some s > 0 such that, for any C™1 map between

Riemannian manifolds, ¢ : M — N, if |( im))*d < A\ for all € € TUSIM | then ¢£m+1)(T(m+1)*SSM) -
Timin.<r

Proof. This is also proved by induction on m. The statement is true for m = 0 because, if |¢.| < A, then
G (T<*M) C TS**N for all s > 0, and therefore it is enough to take s = r/\ in this case.

Now, assume that m > 1 and the result is true for m — 1. By Remark , if |( ,(km))*§| < A for all
€ e T =10 then |(¢>(.<m_1))*§| < X for all £ € T(m=1:<170f. Hence, by the induction hypothesis, for all

r > 0, there is some s > 0, as small as desired, such that ¢im) (T(m)ésM) c TS N_ On the other
9



hand, by Lemma there is some p > 0, depending on m, r, s and A, such that \(d)im))*d < p for all
¢ € T"):=5)M and satisfying pus — 0 as s — 0 for fixed m, 7 and A\. Thus we can choose s, and the
corresponding p, so that us < r. Then

¢£m+1) (T(m+1),§sM) - Tgp,sT(m),ng c T(m-l-l),STN O

Lemma 3.8. For m € Z*, r,s > 0 and A > 1, there is some p > 1 such that, for any C™' map
between Riemannian manifolds, ¢ : M — N, if ¢§m) s TMLSrAr 5 TUMN s o A-quasi-isometry, then
SJ”) cT<5M — TN is a p-quasi-isometry.

Proof. Again, we use induction on m. The case m =1 is a direct consequence of Lemma [3.3

Now, assume that m > 2 and the result holds for m — 1. Consider the notation of the proof of Lemma@
From the commutativity of , and using Corollaryand Remark @, it follows that the lower horizontal
arrow of (8] is a é2\-quasi-isometry. Then, by the induction hypothesis applied to the map ¢, : T<SM — TN,

there is some g > 0, depending only on m — 1, ¢, s and ¢2\, such that qﬁim) s TMhSsp — TN s a p-
quasi-isometry. O

Remark 5. According to Lemma we could use any T(™):<")M instead of T(")<'M to define quasi-
isometries of order m, but the dilation bounds of order m would be different.

Proposition 3.9. (i) For all m € N and \,u > 1, there is some v > 1 such that, if $ : M — N and
¥ : N — L are quasi-isometries of order m, and A\ and pu are respective dilation bounds of order m,
then ¥ ¢ is a v-quasi-isometry of order m.

(i) For all m € N and X\ > 1, there is some u > 1 such that, if ¢ : M — N is a \-quasi-isometric
diffeomorphism of order m, then ¢~ is a p-quasi-isometry of order m.

Proof. Let us prove . By Corollary there is some r > 0, depending on m and A, such that
¢im+1) (T(m-‘rl),STM) C T(m+1)7§1N ,
and therefore (b,(km)(T(m)*STM) c T:<IN_ On the other hand, by Lemma there is some X\ > 1,
depending on m, r and ), such that ¢\™ : T(™:<rpr — TSN ig 4 M-quasi-isometry. So
()™ = g{M ™ L TSy T

is a X u-quasi-isometry by Remark . Thus, by Lemma there is some v > 1, depending on m, r and
N, so that (w¢)£m) TSN — TOW L s a v-quasi-isometry; i.e., ¢ is a v-quasi-isometry of order m.
Now, let us prove (fii). By Corollary there is some r > 0, depending on m and A, such that

(gb*l)ierl)(T(m“)’STN) c T(m+1).<1 7
and therefore (¢=1){"™)(T(™-<TN) ¢ T(™:S1)7. So
<Z5§<m) . ((i)*l)im) (T <7 N) — Tm-<r N
is a A-quasi-isometric diffeomorphism, obtaining that
(07 = ()T TSN — (67 (TSI

is a A-quasi-isometry by Remark. Thus, by Lemma there is some p > 1, depending on m, r and A,
so that (qﬁ’l)&m) TSI 5 TP M s a p-quasi-isometry; i.e., ¢! is a p-quasi-isometry of order m. [

Corollary 3.10. “Being quasi-isometric with order m” is an equivalence relation.

Let M and N be connected Riemannian manifolds. For every m € N U {oco}, consider the weak C™
topology on C™ (M, N) (see [22]). For z € M and ® C C™(M,N), let ®(z) = {p(x) | p € D} C N.

Proposition 3.11. Assume that N is complete. Let xg € M, and let ® C C™F (M, N) be a family of
equi-quasi-isometries of order m € NU {oo}. Then ® is precompact in C™(M,N) if and only if ®(xq) is
bounded in N.
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Proof. The “only if” part follows because the evaluation map C™(M,N) — N, ¢ — ¢(xq), is continuous.

For m € N, the “if” part is proved by induction. For m = 0, the assumption that ® C C1(M, N) is
a family of equi-quasi-isometries implies that ® is equi-continuous by Remark . On the other hand,
®(x) C Peny (®(zo), Ad(x, z9)) for any z € M by Remark 2} (i), where A > 1 is an equi-dilation bound of
®. So ®(x) is precompact in N because ®(xg) is bounded and N is complete. Therefore @ is precompact in
C(M,N) by the Arzela-Ascoli theorem.

Now, take an integer m > 1 and assume that the result holds for m — 1. The map C™(M,N) —
C™YTSM,TN), ¢ — ¢.|p<irs, is an embedding. So it is enough to prove that the image ®, of ®
by this map is precompact in C™~1(T<'M,TN). This holds by the induction hypothesis because ®, C
C™(T<'M,TN) is a family of equi-quasi-isometries of order m — 1 by Remark .

The “if” part for m = oo can be proved as follows. In this case, we have proved that ® is precompact in
CY(M, N) for every | € N. By the continuity of the inclusion maps C!*1(M, N) — C!(M, N), it follows that
® has the same closure ® in C'(M, N) and C'*1(M, N), and the weak C' and C'*! topologies coincide on
®. Therefore ® is the closure of ® in C*°(M, N) too, and the weak C* and C' topologies coincide on ® for
any [ € N. Thus ® is precompact in C*°(M, N). O

4. PARTIAL QUASI-ISOMETRIES
Let M and N be connected complete Riemannian manifolds without boundary.

Definition 4.1. For m € N, a partial map f : M — N is called a C™ local diffeomorphism if dom f
and im f are open in M and N, respectively, and f : dom f — im f is a C™ diffeomorphism. If moreover
f(x) = y for distinguished points, z € dom f and y € im f, then f is said to be pointed, and the notation
f:(M,z) — (N,y) is used. The term local homeomorphism is used in the C? case.

The term “C™ local diffeomorfism” (m > 1) may be also used in the standard sense, referring to any C™
map M — N whose tangent map is an isomorphism at every point of M. The context will always clarify
this ambiguity.

Definition 4.2. For m € N, R > 0 and XA > 1, a C™*! pointed local diffeomorphism ¢: (M, x) — (N, y) is
called an (m, R, \)-pointed local quasi-isometry, or a local quasi-isometry of type (m, R, \), if the restriction

quEm)) - Q) 5 TN is a A-quasi-isometry for some compact domain Q™) ¢ dom gbim) with Bg\ﬁ[n)(x, R) C
Qlm),

Remark 6. (i) Any pointed local quasi-isometry (M, z) — (N, y) of type (m, R, A) is also of type (m’, R', \')
for 0 <m/ <m,0< R < Rand X > X (using Remark [T}(i)).

(ii) For integers 0 < m’ < m, any pointed C™*! local diffeomorphism ¢ : (M, ) ~— (N,y) is a pointed
local quasi-isometry of type (m, R, A) if and only if (;Sim ). (T(m/)M, x) — (T(m/)N, y) is a pointed local
quasi-isometry of type (m —m/, R, \).

(iii) If there is an (m, R, A)-pointed local quasi-isometry (M, x) — (N, y), then, for all R < R and X > A,
there is a C* (m, R', \')-pointed local quasi-isometry (M, z) — (N,y) by [22, Theorem 2.7].

Lemma 4.3. The following properties hold:

(4) If p: (M,x) — (N,y) and ¢ : (N,y) — (L, z) are pointed local quasi-isometries of types (m, R, \) and
(m, AR, X)), respectively, then v o ¢ : (M,x) — (L, z) is an (m, R, \\N')-pointed local quasi-isometry.

(i) If ¢ : (M,z) — (N,y) is an (m, AR, \)-pointed local quasi-isometry, then ¢~ : (N,y) — (M,z) is an
(m, R, \)-pointed local quasi-isometry.

Proof. To prove (fi), it is enough to show that EE\?)(LU,R) C dom(% o ¢)£m) by Remark . For ¢ €
Eg&n)(m‘, R), we have £ € dom ¢ and dg\r,n)(y7 ¢>(km)(§)) < Ad%}l) (z,€) < AR by Remark [2-(ii]), obtaining that
¢ € dom(tp 0 )™ since (0 )™ =™ o ™.

To prove (fi)), it is enough to show that Egy)(y,R) C d)im) (Fg\?)(x,)\R)) by Remark ‘ Let A =
E%’”(y, R)Nim ¢§m), which is open in E%”)(y, R) and contains y. For any ( € A, there is some £ € dom qbim)

so that (bim) (&) = ¢. Then dg&n)(x,f) < Mdn(y,¢) < AR by Remark , obtaining that £ € ESQ”)(J;, AR).
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Thus A = (m)( ( ,AR)) N BEV )( , R), which is closed in E%n)(y,R). Therefore EE\T)(y,R) =AC

§<m)(§§\7;)(:17, AR)) because B§V )( , R) is connected. O

5. THE C'*™° TOPOLOGY ON M, (n)

Definition 5.1. For m € Nand R,r > 0, let Ug', be the set of pairs ([M, z], [N,y]) € M.(n) x M.(n) such
that there is some (m, R, \)-pointed local quasi-isometry (M, z) — (N,y) for some X € [1,e").

The following standard notation is used for a set X and relations U,V C X x X:

T ={lypr)eXxX|(z,y) €U},
VoU={(z,2) € X x X |3y € X sothat (z,y) €U and (y,2) €V }.

Moreover the diagonal of X x X is denoted by A.

Proposition 5.2. The following properties hold for all m,m’ € N and R,S,r,s > 0:

() (Ultg,)~ CUR,.

(i) Upe,, CUR,.N Ug?;, where my = max{m,m’}, Ry = max{R, S} and ro = min{r, s}.

(1)) A CUgR,.
v)

( eRrOURsCURr-i-s

Proof. Properties and are elementary, and ({i) and are consequences of Lemma |
Proposition 5.3. (.o Ug, = A for allm € N.

Proof. We only prove “C” because “D” is obvious. For ([M,z], [N,y]) € Ng,~oUR, there is a sequence of
pointed local quasi-isometries ¢; : (M, x) — (N, y), with corresponding types (m, R;, \;), such that R; 1 oo
and A\; | 1 as i — co. Let us prove that [M,z] = [N, y].

First, we inductively construct a pointed isometric immersion v : (M, x) — (N, y).

The restrictions ¢; : (Bay(x, R1),2) — (N,y) are pointed equi-quasi-isometries of order m (\; is an
equi-dilation bound of order m). By Proposition there is some subsequence ¢y(;,;) whose restriction to
By (x, Ry) converges to some pointed C™ function ¢ : (By(z, R1),2) — (N,y) in the weak C™ topology.
Since \; | 1, it follows that 7 is an isometric immersion.

Now assume that, for some i > 1, there is some subsequence ¢ ; ;) whose restriction to Bas(x, R;)
converges to some pointed isometric immersion ©; : (Ba(x, R;),x) — (N,y). As before, by Proposi-
tion the sequence ¢y (; ;) has some subsequence ¢y (; 11,1y whose restriction to Bas(z, R;11) converges to
some pointed isometric immersion ¥; 1 : (Ba(z, Rit1),2) — (N,y) in the weak C™ topology. Moreover
Yiy1|By (z,r;) = Yi- Thus the maps 1; can be combined to define the desired pointed isometric immersion
b (M) = (N, ),

Now, let us show that ¢ is indeed a pointed isometry, and therefore [M,x] = [N,y], as desired. By
Lemma 7 each inverse ¢; ' : (N,y) ~ (M, z) is an (m, R}, \;)-pointed local quasi-isometry, where
R, = R;/\; T 0. By using Proposition as above, we get a subsequence ¢I;’1(i,l) of each sequence (;5,:(12.’”,
whose restriction to By (y, R;) converges to a pointed isometric immersion ¢} : (Bn(y, R}),y) — (M, z) in
the weak C™ topology, and such that ¢Z/Z+1,z) is also a subsequence of ‘251;/1(2',1)' So Yi 11y (y.R;) = ¥} for all
i, obtaining that the maps ¢, can be combined to define a pointed isometric immersion ¢' : (N,y) — (M, z).
Since the operation of composition is continuous with respect to the weak C™ topology |22} p. 64, Exercise 10],
we get ;) = idpy(y,ry) for all 4, giving ¢1)" = idy. Therefore 1 is injective. Moreover ¢’ is also surjective
because M and N are oomplete. Hence 1)’ is an isometry whose inverse is ). O

By Propositions and ! 3} the sets Ug', form a base of entourages of a separating uniformity on M. (n),
which is called the ormity. It will be proved that the induced topology satisfies the statement of
Theorem -; thus it is called the C* topology, and the corresponding space is denoted by MS°(n). The
notation Cls, and Int., will be used for the closure and interior operators in MS$°(n).
The following lemma will be used.
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Lemma 5.4. For any open U C M2°(n), the map dy : M$°(n) — [0, 00|, defined by
dy([M,z]) = inf{dpy(z,2") | ' € M, [M,2'] €U},
18 upper semicontinuous.
Here, recall that inf ) = oo in R.

Proof. To prove that dy is upper semicontinuous at some [M,z] € M°(n), we can assume that D :=
dy([M,z]) < co. Given any £ > 0, there is some 2’ € By(z, D + ¢) such that [M,2'] € U. Since U is
open, we have Uz’ (M, ") C U for some m € N and R,r > 0 with R > D + ¢ and e"dy(z,2') < D +e.
Given any [N,y] € Uy .(M,x), there is some (m, 2R, A)-pointed local quasi-isometry ¢ : (M,z) — (N, y)
for some A € [1,e"). Take some § > 0 such that A(dy(z,2') + &) < D + ¢, and let o be a smooth curve in
By (z, D +¢) of length < dps(z,2') + 6 from x to 2’. Hence ¢a is a well defined C™*! curve in N from y to
y = ¢(z") of length < A(dp(z,2") + 0) < D + €, obtaining that dy(y,y’) < D + . On the other hand, ¢
is also an (m, R, \)-pointed local quasi-isometry (M, ') ~— (N, y'), showing that [N,y'] € UF, (M,2") C U.
So dy ([N, y]) < D +e. O

6. CONVERGENCE IN THE C'® TOPOLOGY

Lemma 6.1. Let g and g’ be positive definite scalar products on a real vector space V', and let | | and | |'
denote the respective induced norms on the vector space of tensors over V.. The following properties hold:

(4) If A > 1 satisfies x|v|" < |v| < Ao| for allv € V, then |g — /| < A* = A72.

(i) If |g — ¢'| < e for some e €[0,1), then V1 —c|v| < |v| <V1+elv| forallveV.
iii) If X\ > 1 satisfies < |v)! < |v| < Mo|” for allv € V, then 5|w| < |w| < N2|w|" for allw € V* @ V*.
py py

Proof. To prove , take arbitrary vectors v,w € V with |v| = |w| = 1. By polarization,

1
(9= 9w, w) = (Jo+wl® = [v—wl® = o+ w| + v - w]?)

1 2 2 2 2 1 2 2 1
SZ((l—l/)\ ) v+ wl® + (A = 1)jv — w]?) Sl-GFXN-1=M-5.
Interchanging g and ¢’ in these inequalities, it also follows that |(g — ¢')(v,w)| < A% — A72.
Property follows because, for any v € V,
(L= e)l* < of* = [Jo]* = o|?| < oI < Jol* + [Jof* = [v]?]| < (L +e) vl
Let us prove (iii). For all v,w € V ~ {0},
|w(3]’w2‘ < 2 |w(v,w)| < )\2 |w‘ ,
o] |wl |v] |wl
obtaining |w|" < A%|w]|. Interchanging the roles of | | and | |, we also get |w| < A\%|w]’. O

The following coordinate free description of C"™ convergence is a direct consequence of .

Lemma 6.2 (Lessa |29, Lemma 7.1]). For m € N, a sequence [M;,x;] € M.(n) is C™ convergent to
[M,z] € M.(n) if and only if, for every compact domain Q@ C M containing x, there are pointed C™+1
embeddings ¢;: (Q,x) — (M;,x;), for i large enough, such that ||gar — ¢F g, |lem gy — 0 as i — oc.
Definition 6.3. For R,7 >0 and m € N, let D . be the set of pairs ([M, z], [N, y]) € Mi(n) x M.(n) such
that there is some C™*! pointed local diffeomorphism ¢: (M, z) — (N, y) so that ||gym — ¢*gnllem .9 <T
for some compact domain Q C dom ¢ with Bys(x, R) C .

Given a set X, for U C X x X and z € X, let U(z) = {y € Y | (z,y) € U}. In the case of
U C M.(n) x My(n) and [M,z] € M. (n), we simply write U(M, ).

Remark 7. By Lemma a sequence [M;, z;] € M, (n) is C* convergent to [M,z] € M. (n) if and only if
it is eventually in D (M, ) for arbitrary m € N and R, > 0.

Proposition 6.4. (i) For all R,r >0, if 0 <& <min{l —e 2", e*" — 1}, then D}, . C Ug,,..

(i9) For allm € Z%, R,r > 0 and [M,z] € M. (n), there is some € > 0 such that D} (M, z) C Ug',.(M, x).
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Proof. Let us show (). If ([M,z],[N,y]) € D%, then there is a C' pointed local diffeomorphism ¢ :
(M,z) — (N,y) such that g9 := |lgm — ¢*gn|lco.0,9, < € for some compact domain  C dom ¢ with
B (z, R) C Q. Choose some A € [1,e") such that gg < min{l — A72,A2 — 1}. Set g = gas and ¢’ = ¢*gn,
and let | | and | |" denote the respective norms. For £ € T2, we have

S16l < VT zolel < Jef' < VITeolel < Ale]

by Lemma . Thus ¢ is a (0, R, A)-pointed local quasi-isometry, obtaining that ([M,z], [N, y]) € U}%)T.

Let us prove (ii). Take m € Z*, R,r > 0 and [M,z] € M.(n). Let U be a finite collection of charts
of M with domains Uy, and let X = {K,} be a family of compact subsets of M, with the same index set
as U, such that K, C U, for all a, and By(z,R) C Int(K) for K = |J, K,. Let € > 0, to be fixed later.
For any [N,y] € D _(M,x), there is a C™*! pointed local diffeomorphism ¢: (M, x) »— (N,y) so that
lgar — d*gnllem 0,90 < € for some compact domain © C dom ¢ NInt(K) with Bys(x, R) C Q. By continuity,
there is another compact domain ' C dom ¢NInt(K) such that @ C Int(Y) and ||grr — ¢*gn|lcm 0/ g0 < €.

As before, let ¢ = gy and ¢’ = ¢*gn.
With the notation of Section let U(™) be the family of induced charts of 70" M with domains Uém),
let K™ be the family of compact subsets

K™ = {£e T™M | 7(¢) € Ko, d\7(&,7(¢)) < R'} c UM

for some R’ > R, where 7 : T™M — M, and let K™ = |J, K{™. Since EE\T)(x,R) C Int(K(™) and

W(P%)(ZE,R)) = By(x,R) C Q C Int(Q') by Remark ,, there is some compact domain Q™) C

T M such that BJ(\T) (z,R) c QU™ ¢ K™ and n(Q™) c .
Choose the following constants:

some C' > 1 satisfying with U, X, Q" and g;

some C("™) > 1 satisfying with U™ &™) Q0m) and ¢(m).

some § € (0,min{l1 — e=?",¢*" — 1}]; and,

by Lemma [2.1} (i), some ¢’ > 0 such that

lg = gllem i <& = 119" — g™ co qim aem s < 6/C™.
Suppose that € < &’/C. Then

lg—d'llemag <e = llg—¢llemaux <Ce<e
= [lg"™ = g™l co e e gom < 8/CT = 65 == [lg"™ — g™ [l g0 ) gom <6 .

For any A € [1, ") such that 6y < min{1—A"2, A2 —1}, we have $ |¢|(™) < [¢['(™) < X|¢|(™) for all £ € TQU™)
by Lemma , where | |™ and | '™ denote the norms defined by g("™ and ¢’(™), respectively. So ¢ is
an (m, R, A\)-pointed local quasi-isometry (M, z) — (N, y), and therefore [N, y] € Ug:,)(M, x). a

Proposition 6.5. (i) For all R,r >0, if e** —e 2 <r, then Uy . C DY ..
(i4) For allm € ZF, R,r > 0 and [M,z] € M (n), there is some ¢ > 0 such that UE' (M, x) C D (M, z).

Proof. Let us show (). If ([M,z],[N,y]) € Up., then there is a (0, R, \)-pointed local quasi-isometry
¢: (M,z) — (N,y) for some X\ € [1,¢e°). Set g = gas and ¢’ = ¢*gn, and let | | and | |" denote the respective
norms. Thus there is some compact domain € C dom ¢ such that By (z, R) C Q and 5 [¢] < [¢]" < A[¢] for
all £ € TQ). By Lemma , it follows that

lg—9'llcoa,y < N 2<ce ey,
So ([M.z],[N,y]) € Dy,

Let us prove (). Let m € Z*, R,r > 0 and [M,z] € M.(n). Take U, X, K, U™, K™ and K™
like in the proof of Proposition . Let € > 0, to be fixed later. For any [N,y| € Ug' (M, ), there
is an (m, R, A)-pointed local quasi-isometry ¢ : (M,z) — (N,y) for some A € [1,e°). Again, let g = gn
and ¢’ = ¢*gn. Thus there is a compact domain Q") C dom ™ N Int(K(™) so that B](\:[n) (z,R) c Q™)
and §|§|(m) < g < M€ for all € € TQU™ | where | |™) and | '™ denote the norms defined
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by ¢ and ¢’™), respectively. By continuity, given any \ € (A, e°), there is some compact domain
™ < dom ¢{™ N K™ such that Q0™ C Int(/0™) and & [¢|0m) < [¢)/0m) < N [¢](™) for all € € /(™).
By Lemma , it follows that
g™ — g/(m)HCO’Q/(m)’g("L) < N2 N2 g2 o2
There is some compact domain Q C M such that QU™ N M c Q C Int(™). Thus Q ¢ Y™ N M C
K™ A M =K, and
Buy(a,R) =B (z,R)nM c Q"™ nM c Q

by Remark . Take some C' > 1 satisfying with U, X, Q and g, and some C("™) > 1 satisfying
with u<m>7 iK(m), Q™) and g(m). Forp>0andn+1<pu<2Mn, let a,&?};?u U, — Uém) be the section
of each projection 7 : Uém) — U, of the type used in Lemma . Since  C Int(Q'™), there is some
p > 0 so that U,(,TL)(Ka nQ) cC K™ A/ for all @ and . Thus, by Lemma , there is some &’ > 0,
depending on r and p, such that

9™ = g™l o grim agem geom <& = |lg = ¢ llom oux <1/C.
Suppose that e?® —e2¢ < ¢’/C™). Then

—2e — ||g(m) _ g/(m)||C0,Q/(m),u(m),j<(M) < C«(m) (625 _ 6725) < El

= llg—d'llemoux <r/C = llg—gllcmay <7,

showing that [N,y] € Dg’fr)(M, x). O

g™ = g"™ |0 grim gom) < €25 — €

Corollary 6.6. The C™ convergence in M. (n) describes the C*° topology.
Proof. This is a direct consequence of Remark [7] and Propositions [6.4] and O

7. MS°(n) 18 POLISH
Proposition 7.1. M2°(n) is separable.

Proof. The isometry classes of pointed compact Riemannian manifolds form a subspace, M‘joc(n) C M2 (n),
which is dense because, for all [M, z] € M$°(n) and R > 0, the ball Bys(x, R) can be isometrically embedded
in a compact Riemannian manifold.

As a consequence of the finiteness theorems of Cheeger on Riemannian manifolds [9], it follows that
there are countably many diffeomorphism classes of compact C'°° manifolds (see |33, Corollary 37, p. 320]
or |8, Theorem IX.8.1]). Thus there is a countable family € of C*° compact manifolds containing exactly
one representative of every diffeomorphism class.

For every M € @, the set of metrics on M, Met(M), is an open subspace of the space of smooth sections,
C®(M;T*M © T*M), with the C* topology, where “®” denotes the symmetric product. Then, since
C®(M;T*M © T*M) is separable, we can choose a countable dense subset Gy C Met(M). Choose also a
countable dense subset Dy € M.

Clearly, the countable set

{[(M,g),2] | M €C, g€Gn, v€Dun}
is dense in MS<.(n), and therefore it is also dense in M2°(n). O

Remark 8. Observe that the proof of Proposition [7.1 shows that M2%,(n) is dense in M (n).
Proposition 7.2. M(n) is completely metrizable.

Proof. The C*° uniformity on M, (n) is metrizable because it is separating and has a countable base of
entourages [39, Corollary 38.4]. Thus it is enough to check that the C°° uniformity on M, (n) is complete.

Consider an arbitrary Cauchy sequence [M;, x;] in M, (n) with respect to the C° uniformity. We have
to prove that [M;, x;] is convergent in M2°(n). By taking a subsequence if necessary, we can suppose that
([Mi, 23], [Miy1,wi1]) € Ug',. for sequences, m; T oo in N, and R; 1 oo and r; | 0 in R*, such that
Y1 <00, and Riyq > e R; for all i. Let 73 = ijﬂ"j- Consider other sequences R}, R/ 1 oo in RT such
that R} < R} <e " R; and Rj , > e R}.
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For each i, there is some \; € (1,e") and some (m;, R;, \;)-pointed loca} quasi-isometry ¢;: (M;, z;) —
(M;41,%i+1), which can be assumed to be C* by Remark . Then \; := szi Aj < € < oo. For
i < j, the pointed local quasi-isometry ©;; = ¢;_1 - ¢; : (M;, ;) — (M;,x;) is of type (mq, R;/Ai, \i) b

Lemma .

For i,m € N, let

B, = Bi(z;, R;) , B = Bi(z;, R;) , B} = Bi(z;, R) ,
B =B (i R B = B @ ) B = B RY)

A bar will be added to this notation when the corresponding closed balls are considered. We have ¢;(B;) C
B; 11 because R;11 > M\ R;, and ¢(ml)( ;/(ml)) - B;S_T?") - B;S_"fi“) since Rj ; > AR} and by Remark .
Furthermore B} C dom;; and BN (M) = dom 1/)””:1) for i < j because R” < R;/)\;. Therefore ¥i;(B;) C Bj
and (B ")) < B,

The restrictions 1;; : B; — B; form a direct system of spaces, whose direct limit is denoted by M. Let

’L]*

P+ By — M be the induced maps, whose 1mages AZ- := ;(B;), form an exhausting increasing sequence
of subsets of M. All points ¥;(z;) are equal in M and will be denoted by . The space M is connected

because it is the union of the connected subspaces EZ whose intersection contains . By the definition of the
direct limit and since the maps 1;; are open embeddings, it follows that all maps 1); are open embeddings,

and therefore M is a Hausdorff n-manifold. Equip each Ei with the C'°° structure that corresponds to the
C* structure of B; by ;. These C°° structures are compatible one another because the open embeddings
1;; are C*°, and therefore they define a C°° structure on M. Moreover let g; be the Riemannian metric on
each Ei that corresponds to g;|p, via ;.

Take some compact domains, €2; in every M; and ngi) in T70™) M;, such that B, € Q; C Int(ngi)) and
B < @) ¢ B/™); thus Q; ¢ BY by Remark[(H{). Let & = ().

Claim 1. M = U, Q.
This equality holds because, for each i, there is some j so that R; > \;R;, obtaining
¥ij(B;) C Bj(zj,\iR;) C B} C Q;,
and therefore B; = Wi (Bs) C () = fAZj.

Claim 2. For all i, the restrictions g;|qg , with j > 4, form a convergent sequence in the space of C" sections,
Ccmi (ﬁz, Tﬁj‘ ® Tﬁf), with the C" topology, and its limit, §; ~, is positive definite at every point.

Clearly, Claim [2| follows by showing that the restrictions of the metrics g;; := v7;g; to €2;, for j > i, form
a convergent sequence in C™i(Q;; TQF © TQF), and its limit, g; 0, is positive definite at every point. To
begin with, let us show that g;;|o, is a Cauchy sequence with respect to || ||cmi 0, -

We have

1 my my Y my
6 < Rl < el (9)

for all £ € TQZ(-mi), where | \Emi) and | |£;n) are the norms defined by gz(mi) and gi;-ni), respectively. By
Lemma , it follows that

||g(7n7 gz(;nl) CO Q(m1) (ml) < )\ — )\ 2
Then, for k£ > j,
loff" — i oo om0 g = o™ — g o0 (@), g
< ||93(‘mj) gij)HCO Q") g <A —)\ 2 (10)
because

(ml) ml) (m;) // (my) 1(mj) (mj)
Giga () C by (B) € B

(YE 7%
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and g( mg) gj(.}:”) on Q( mi) A B(ml) ) w(m’ (Q m’)) (Remark I. We get

(ml (mz)

||9 ~ ik
by @, and Lemma .

Let U; be a finite collection of charts of M; with domains U, 4, and let X; = {K; ,} be a family of compact
subsets of M;, with the same index set as U;, such that K; , C U, for all a, and E;, C U, Kia = K;.
Thus ©; C K;. With the notation of Section let ugm") be the family of induced charts of 70" M, with
domains Ui(f:i). Like in the proof of Proposition , let fKZ(-mi) be the family of compact subsets

K = {¢e BI) | m(€) € Ky, d™(€,mi(€)) <RV Y UL

for some R}’ > R, where 7 : Bi(mi) — B;. We have Bl{/(m") c U, Kl.(j;“) =: Ki(mi'). Hence QEmT) C Ki(mi).
Choose some C; > 1 satisfying (3) with U;, K;, 2; and g;, and some C(m"') > 1 satisfying with ugm"'),

fK(ml Q( ™) and g™, Forany p>0and n+1 < p < 2™in, let Jz(a‘p)u Uio — Ui(Z”) be the section of

each projection 7 : UZ-(,Z“) — U o of the type used in Lemma . Since Q; C Int(QEmi)), there is some

p > 0 so that 02(7:2“([(@@ N, C KZ(Z‘) N ngi) for all @ and p. Thus, by Lemma , given any € > 0,

there is some ¢ > 0, depending on € and p, such that

g — gm)

) SN2 -7 (11)

€0, QM) glmi j

0.00m0 o) sctmo <0 = 11935 = girllomsiw,x: < e/Ci - (12)
Since A; | 1, we have A2(A2 — A7?) < §5/C™ for j large enough, giving

(mz) (m;

- gzk Z)HCO Q(ml) <m )y < 5/0(m1 - ||g — Gk )‘lcﬂ,sz?mi),u(.mi),jc(,mi) <4

(mi)

19
= ||glj - gikHC’mi,Q,‘,,ui,K,‘, < s/Ci - ||gij - gik”Cmi,Qi,gi <€

by , and . This shows that g;;|q, is a Cauchy sequence in the Banach space C™(Q;; TQF © TQY)
with || [[cmi q,,q,, and therefore it has a limit g; .. For all nonzero £ € T);, we have

gio(§,8) = hmgm(ﬁ §) > —gi(§,€) >

obtaining that g; » is positive definite. This completes the proof of Claim |2 l
According to Claim |2} each §; o is a C™* Riemannian metric on QZ, and, obviously, g;, OO|Q = i 00 for

j > i. Hence the metric tensors g; -, can be comblned to define a C'*° Rlemannlan metrlc gon M by Clalml
Let | |(m’) be the norm defined by g(zz) on TQ ™), By (9) and because | | = limy | |(m7) on TQ(m’)

K]
we get - |£|(m1 < |§\(m1 < i |€l; (ma) for all € € TQ(ml) Thus, by Remark [2 . Q; contains the g; o-ball
of center x; and radius R’/)\; because it contains B/; in particular, M is complete because R,/\; — oo and
every €; is compact. Since g; oo = 97§, it also follows that ™) : Q™) — T(m) ][ is a \-quasi-isometry.
So ¢+ (M;, x;) — (]\7, #) is an (my, R}, \;)-pointed local quasi-isometry, obtaining that ([M;, x;], []\//.7, z]) €
Uy, for any sequence s; | 0 with A; < e*, and therefore [M;, z;] — []/\/.I'\7 Z] as i = oo in M2 (n). O

i
Corollary 7.3. M2(n) is Polish.
Proof. This is the content of Propositions [7.1] and [7.2] together. O

Corollaries [6.6] and [7.3] give Theorem

8. SOME BASIC PROPERTIES OF MY, (n)

For each closed C*° manifold M of dimension > 2, the non-periodic metrics on M form a residual subset
of Met(M) with the C*° topology (3 l, Corollary 3.5], Proposition 1]. Then, since M5, (n) is dense in
MS°(n) (Remark, it follows that MS%,,(n) is dense in M2°(n), and therefore M2, (n) is dense in M2°(n)
too. On the other hand, M9, (n) is G5 in M$°(n) by Lemmas 8.1} H and. 8.3| below, and therefore it is a Polish
subspace [25, Theorem 1.3.11]. This proves Theorem [L.3}(i).
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Lemma 8.1. For every n € Z* and [M, x] € M3, (n), there is some r > 0 such that, if

{h €Iso(M) | h(x) € B(z,r)} = {idy} ,

then there is some neighborhood L of [M,x] in M, (n) so that

{h€lso(L) | h(y) € B(y,r) } = {id}
for all [L,y] € L.

Proof. Suppose that the statement is false. Then there is some convergent sequence, [M;, x;] — [M, z], in
M2®(n) so that, for each i, some h; € Iso(M;) \ {idas,} satisfies h;(z;) € B;(z4,7). Choose any sequence
of compact domains 2, of M such that B(z,2r) C Int(Q,) and d(x,dQ,) — oo as ¢ — oo. For each ¢ and
i large enough, there is some pointed smooth embedding ¢, ; : (g, ) — (M, z;) so that ¢; ;g;: — gla, as
i — 0o with respect to the C* topology. Thus B;(x,2r) C ¢q;(Int(Q)) for i large enough.

Claim 3. If r is small enough, we can assume that there is some ¢ > 0 such that, for i large enough, the
maps h; can be chosen so that d;(z;, h;(z;)) > 0 for some z; € B;(x;, 7).

Given any index i, suppose first that there is some k € Z ~ {0} such that h¥(z;) & B;(z;,7/2). Then
there is some k € Z ~ {0} such that h¥(x;) & B;(z;,7/2) and hf(z;) € B;(xi,7/2) if |¢| < |k|. If k = 1, then
di(xi, hi(x;)) > r/2. If k= —1, then

dz(xz,hl(ajl)) = dz (h;1($1)7$l) Z 7"/2
as well. If |k| > 2, then there is some ¢ € Z such that |[¢|, |k — ¢| < |k|. Hence

Therefore, by using h¥ instead of h;, we can assume that d;(z;, hi(z;)) > r/2 in this case.

Now, suppose that h¥(z;) € B;(z;,7/2) for all k € Z. Consider the non-trivial abelian subgroup 4; =
{hF|keZ} C Iso(M;). Since a(x;) € Bi(z;,r/2) for any a € A;, it follows that A; is compact in the
C* topology by Proposition and thus A; is a non-trivial compact abelian Lie subgroup of Iso(M;).
Let u; be a bi-invariant probability measure on A;, and let f; : A; — M be the mass distribution defined
by fi(a) = a(z;). By the C> convergence ¢; ;g9; — gla,, we can suppose that r is so small that the ball
Bi(zi,2r/3) of M, satisfies the conditions of Proposition for 4 large enough. Then, since f;(A;) C
Bi(z4,7/2) C Bi(wi,2r/3), the center of mass y; = Cy, is defined in B;(z;,2r/3). Moreover y; is a fixed point
of the canonical action of 4, on M |24, Section 2.1]. Since there is a neighborhood of the identity in the
orthogonal group O(n) which contains no non-trivial subgroup (simply because O(n) is a Lie group), it follows
that there is some K > 0 such that, for any non-trivial subgroup A C O(n), there is some a € A and some
v € R™ such that |v| =1 and |a(v) —v| > K. In our setting, the subgroup { a.,, | a € A; } of the orthogonal
group O(T,, M;) = O(n) is non-trivial because M; is connected and A; is non-trivial. Hence there is some
a; € A; and some §; € Ty, M, such that |{;| =1 and |a;«(&;) —&| > K. By the C° convergence Gy.i9i = gla,
we can also assume that r is so small that there exists some C' > 1 such that exp,, : B(0y,,7) — B(y;,r) is
C-quasi-isometric for i large enough. Then, for z; = exp,, (5 &) € Bi(yi,r/3) C Bi(x;, 1), we get

r !
di(zi,ai(zi)) > 30 & — hi ()] > 30

Thus, by using a; instead of h;, we can assume in this case that d;(z;, h;(z;)) > rK/3C. Therefore Claim
follows with ¢ = min{r/2,rK/3C?}.
For each g, we can assume that

B(z,diam(Q,) + ) C Int(Qg41) ,

obtaining

Bi(zi, diam(¢q,i(2¢)) + 1) C Int(Pg+1,i(Qg+1))
for all 7 large enough by the C>° convergence ¢; ;9; — gla,. Then h;,i = ¢;_,}17i hi ¢gi + Qg — M is well
defined for each g and all ¢ large enough because x; € ¢4:(2,) and h;(x;) € Bi(z;,7). On the one hand, from
the C> convergence ¢; ;g9; — glo, and since h;(z;) € Bi(zi,r), we get the C> convergence h;";9 — gla,

and limsup; d(w, hy ;()) < r; in particular, for each g, the maps h; ; are equi-quasi-isometries of order oo.
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Therefore, by Proposition some subsequence ofi him- is C*° convergent to some C* map h;, : Q, — M,
which is an isometric embedding satisfying hy(z) € B(z,7).

For all p > ¢, the restrictions hj,|q, form a sequence of isometric embeddings satisfying h;,(z) € B(x,r).
Then, by Proposition[3.11} there is some sequence of positive integers p(q, k) for each ¢ so that the subsequence
ﬁ;(q’k)mq of hylq, is C°° convergent as k — oo to an isometric embedding hy : Q, — M satisfying h{/(z) €
B(z,7). We can assume that p(q+ 1, k) is a subsequence of p(g, k) for each g, yielding hy |, = hy. So the
maps h; can be combined to define an isometry h: M — M satisfying h(x) € B(z,r).

Now, fix any ¢ and let z,, ; = (b;}(zi) for each p > ¢ and all ¢ large enough. Flgm z; € Bi(x;,7) and the
C> convergence ¢5 ;9; — gla,, it follows that z,; approaches the compact set B(z,r) as i — oo. Then,
for each p > ¢, there is a sequence z,; in B(z,7) so that d(z,z,,;) — 0. Hence, by the C>° convergence

5 iJi — gla, and Claim we get

sup{d(z,h(2)) | z € B(z,r) } = sup{d(z, h;’(z)) | z € B(z,r) }

» 'Opyt

> sup {limpinf d(z,hy,(2)) | z € B(x,r)} > sup {limpinf lirnl_inf d(z 0, (2) | = € B(x,r)}

> lim inf lim inf d(zy,;, hy, ;
p 4 ’ p i

(2p,i)) = lim inf liminf d(z;, ;, by, ; (2, ;) > liminf d;(z;, hi(z)) > 6 .

Py 17p,i
So h # idys, which is a contradiction because h(x) € B(w, ). O

Lemma 8.2. Forn > 2 and each point [M,z] € M2, (n), there is some r > 0 such that, for eache € (0,7),
there is some neighborhood N of [M, x| in MY, (n) so that, if an equivalence class (L) of MY, (n) meets

N at points [L,y] and [L, 2], then either dr(y,z) < e ordp(y,z) > r.

oo
*,Inp

Proof. Since M is locally non-periodic, there is some r > 0 such that
{h€lso(M) | d(z,h(x)) <r}={ida}. (13)

Suppose that the statement is false for this . Then, given any e € (0,r), there are sequences [L;,y;] and
[Li, 2] in M9, (n) converging to [M,x] in M2, (n) such that e < d;(y;,2;) < r for all i.

Take a sequence of compact domains 2, of M such that z € Q, and d(z, 0,) — oo as ¢ — oo. For each
g, there are C*° embeddings ¢q,; : Q; — M; and b, ,; : Q, — M; for i large enough so that ¢4:(z) = v,
q.i(z) = z;, and ®5.:9i,Vq.:9i — gla, as i — oo with respect to the C°° topology. We can also assume that,
for each g,

B(z,diam(Q,) + ) C Int(Qq41) ,
giving
60:(2) C By, diam(6,.:(2,))) C Bz, diam(6g.1 () + 1) C Wt(thgs14(2p41))

for i large enough by the C'>° convergence ¢; ;9:,v; ;9 — gla, and since d;(y;, zi) < r. So hy; == wqulu ¢q
2y = M is well defined for each g and all ¢ large enough. From the C'*° convergence ¢ ;g;, ¢y ;gi — gla,
we also get the C'°° convergence hy ;g — gla,, and moreover

liminf d(z, hyi(z)) > €, limsup d(z, hq,i(z)) <7,

because ¢q ; () = i, ¥q,:(2) = 2z and € < d;(y;, 2;) < 7. Then, like in the proof of Lemma an isometry
h: M — M can be constructed so that ¢ < d(z,h(z)) < r, which contradicts (13). O

Lemma 8.3. Let n € N and r > 0. For any convergent sequence [M;,x;] — [M,x] in M®(n) and each
y € B(x,r), there are points y; € B;(x;, 1) such that [M;,y;] — [M,y] in MS°(n).

Proof. Take a sequence of compact domains Q, of M such that x,y € Q, and d(z,98,) — oo as ¢ — 0.
For each g, there is some index ¢, such that, for each i > 7, there is a C*° embedding ¢4, : Q; — M;
satisfying ¢q,i(z) = x; and ¢} ;9; — gla, as i — oo with respect to the C°° topology. Let ygi = ¢4,i(y)
for all ¢ > i,. Then, for each q and every m € Z*, there is some index iq,, > i, such that d;(z;,vyq:) <7
and ||¢);,igi —9gllem 0,9 < 1/m for all i > iy,,. Moreover we can assume that iy, < igi1,441 for all g.
Now, let y; be any point of B;(x;,r) for i < igg, and let y; = y,; for iqq < ¢ < ig41,4+1. Let us check
that [M;,y;] = [M,y] in M$°(n). Fix any compact domain  of M containing y, and let m € N. We have
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d(y,09,) — oo as ¢ — oo because d(z,9Q,) — oo and d(z,y) < r. So there is some g > m such that
QC Q, forall g > qo. For i > igy 40, let @i = dg.ila if igq < < igt1,g+1 With ¢ > go. Then ¢;(y) = y; and

1
cm Q4.9 < 95,9 — 9llcaa,.e < .

l¢79: — gl
for iqq <@ < ig41,4+1, Obtaining ¢Xg; — gl as i — oo. O

Lemma 8.4. Forn € N, let [M,z] € M*(n), and let N be a neighborhood of [M,x] in MS°(n). Then there
is some § > 0 and some neighborhood £ of [M,z] in M2°(n) such that [L,z] € N for all [L,y] € £ and all
z € Br(y,9).

Proof. There are some m € ZT and € > 0, and a compact domain € of M containing = such that, for all
[L,z] € M(n), if there is some C*° embedding ¢ : @ — L so that ¢(z) = z and ||¢*gr, — gm|lcm.0.90 < E,
then [L,z] € N. Take any compact domain €' of M whose interior contains Q. There is some g > 0
and some neighborhood H of idy; in the group of diffeomorphisms of M with the weak C™ topology
such that, for all h € H and any metric tensor g’ on € satisfying ||¢’ — gar|lcm 0/ g < €0, We have
h(Q) € ' and ||h*¢" — gmllcm 0,90 < €. Moreover there is some ¢’ > 0 such that, for each 2’ € By(z,d’),
there is some h € 3 so that h(z) = 2z’. Let £ be the neighborhood of [M,z] in M$°(n) that consists
of the points [L,y] € M2°(n) such that there is some C° embedding ¢ : ' — L so that ¢(x) = y and
lv*gr, — garllom o g < €0- There is some § > 0 such that By (y,d) C ¢(Q') and v~ (B (y,d)) C By (z,d)
for all [L,y] € £ and ¢ : ' — L as above. Hence 2/ = ~1(z) € By (x,d) for each z € Br(y,9),
and therefore there is some h € H such that h(z) = 2’. Then ¢ := th is defined on Q and satisfies
o(x) = ¢(z') = z. Moreover

199z — grmllom .90 = 1M VgL — grmrllom .9, < €

because || g1 — gmllom.ar gu < €0 and h € H. O

9. CANONICAL BUNDLES OVER MSS, (1)

For each n € N, consider the set of pairs (M, &), where M is a complete connected Riemannian manifold
without boundary of dimension n, and £ € TM. Like in the case of M, (n), we can assume that the underlying
set of each complete connected Riemannian n-manifold is contained in R, obtaining that these pairs (M, ¢)
form a well defined set. Define an equivalence relation on this set by declaring that (M, &) is equivalent to
(N, ¢) if there is an isometric diffeomorphism ¢ : M — N such that ¢.(§) = ¢. The class of a pair (M, ¢)
will be denoted by [M,¢], and the corresponding set of equivalence classes will be denoted by T.(n). If
orthonormal tangent frames are used instead of tangent vectors in the above definition, we get a set denoted
by Q.(n). Let 7y (n) : Tu(n) = Mi(n) and mg,(n) : Qu(n) — M, (n) be the maps defined by 7 ([M,¢&]) =
[M, 73 (8)] and 7([M, f]) = [M, 7 (f)] for [M,€] € Tu(n) and [M, f] € Q.(n); the simpler notation 7 will
be used for 7 () and 7o, () if there is no danger of misunderstanding. For each [M,z] € M.(n), there
are canonical surjections T, M — Wil(n)([M, x]), &€ = [M,¢], and Q. M — ng(n)([M, z)), f — [M, f]. Via
the canonical surjection Q. M — ng(n)([M, z]), the canonical right action of O(n) on Q.M induces a right
action on Waj(n)([M, x]); in this way, we get a canonical action of O(n) on Q.(n) whose orbits are the fibers
of mg, (n). The operation of multiplication by scalars on T;; M also induces an action of R on w;*l(n) ([M, x]).

However the sum operation of T, M may not induce an operation on mil(n)([M ,x]). The following definition
is analogous to Definition [1.1

Definition 9.1. For each m € N, a sequence [M;,&;] € T.(n) (respectively, [M;, fi] € Q.(n)) is said to
be C™ convergent to [M,€] € T.(n) (respectively, [M, f] € Q.(n)) if, with the notation z = = (§) and
x; = mi(x;) (respectively, © = w(f) and x; = m;(f;)), for each compact domain Q& C M containing x, there
are pointed C™*1 embeddings ¢; : (2, z) — (M;, x;) for large enough i such that ¢;.(¢) = & (respectively,
¢ix(f) = fi), and ¢ g; — g|a as i — oo with respect to the C™ topology. If [M;,&;] (vespectively, [M;, fi])
is C™ convergent to [M, &] (respectively, [M, f]) for all m, then it is said that [M;, &;] (respectively, [M;, fi])
is O convergent to [M, €] (respectively, [M, f]).

Theorem 9.2. The C* convergence in T,(n) and Q.(n) describes a Polish topology.
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To prove Theorem we follow the steps of Sections

Definition 9.3. For m € N and R,r > 0, let Vg'. (respectively, Wg',) be the set of pairs ([M,£], [N,(]) €
Te(n) x Tu(n) (respectively, ([M, f],[IN,h]) € Qu(n) x Q.(n)) such that there is some (m, R, \)-pointed local
quasi-isometry ¢ : (M, z) — (N,y) for some A € [1,e") so that ¢.(€) = ¢ (respectively, ¢.(f) = h).

The following proposition is proved like Proposition [5.2

Proposition 9.4. The following properties hold for all m,m’ € N and R, S,r,s > 0:
(7’) ( eTR,T)il c VRTT and (WTR,T)71 c ngfr

e
(i8) Vgoor, C VR, N Vg”; and Wy~ C Wi, N Wg”sl, where my = max{m, m'}, Ry = max{R,S} and
ro = min{r, s}.
(1) A C VR, and ACWg,.

N m m m m m m
(iv) Viltipr 0 Viltiep s C Vilys and Wik p o Wik p CWE .

Proposition 9.5. ﬂR7T>O Vg = A and ﬂR)DO Wg',. = A for all m € N.

Proof. We only prove the first equality because the proof of the second one is analogous. The inclusion
“D” is obvious; thus let us prove “C”. Let ([M,&],[N,(]) € Mg w0 Vi, and let z = my(§) and y =
wn(¢). Then there is a sequence of pointed local quasi-isometries ¢; : (M, x) — (N,y), with corresponding
types (m, R;, \;), such that ¢;.(§) = (, and R; T oo and A\; | 1 as i — oo. According to the proof of
Proposition there is a pointed isometric immersion ¢ : (M, z) — (N, y) so that, for any 7, the restriction
Y By(z, R;) — N is the limit of the restrictions of a subsequence ¢y (; ;) in the weak C™ topology. Hence
w* (5) = linmy ¢k(z,l)*(£) = Ca Obtaining [M7 5] = [Na C] O

By Propositions and the sets VE', (respectively, WET) form a base of entourages of a Hausdorff

uniformity on T.(n) (respectively, Q.(n)), which is also called the C*° wuniformity. The corresponding

topology is also called the C° topology, and the corresponding space is denoted by T¢°(n) (respectively,

Q2 (n)).

Remark 9. (i) The maps 7 : T2 (n) — M$°(n) and 7 : Q°(n) — MS°(n) are uniformly continuous and
open because (7 x 7)(VZ!,) = (7 x 7)(Wg',) = Ug, for all m € N and R,r > 0.

(ii) The canonical right O(n)-action on Q2°(n) is continuous. This follows easily by using that the composite

of maps is continuous in the weak C*° topology [22] p. 64, Exercise 10], and the following property that
can be easily verified: for each [M, f] € Q%°(n) and any neighborhood N of id,; in the space of C*
diffeomorphisms of M with the weak C'° topology, there is a neighborhood O of the identity element
e in O(n) such that, for all @ € O, there is some ¢ € N so that ¢(z) = x and ¢.(f) = h.

Definition 9.6. For R,r > 0 and m € N, let E} (respectively, F'i',) be the set of pairs ([M,¢], [N, (]) €
Te(n) x Ti(n) (respectively, ([M, f],[N,h]) € Q.(n) x Q.(n)) such that, with the notation x = mps(§) and y =
7n(€), there is some C™*! pointed local diffeomorphism ¢: (M, z) — (N, y) so that ¢.(£) = ¢ (respectively,
¢« (f) =h), and ||gn — ¢*gnllcm 0,9, < T for some compact domain Q C dom ¢ with By (z, R) C Q.

Like in the case of relations on M, (n), for V- C T.(n) x Tu(n), W C Q.(n) x Qi(n), [M, €] € T«(n) and
[M, f] € Q.(n), the simpler notation V (M, &) and W (M, f) is used instead of V([M,¢&]) and W ([M, f]).

Remark 10. By (B), a sequence [M;, &;] € To(n) (respectively, [M;, f;] € Q.(n)) is C*° convergent to [M,&] €
T.(n) (respectively, [M, f] € Q.(n)) if and only if it is eventually in ER, (M,&) (respectively, Fg', (M, f))
for arbitrary m € N and R, r > 0.
Proposition 9.7. (i) For R,7 >0, if 0 < e <min{l —e?",e*" —1}, then E}, . C VR and Fp . C Wq,.
(ir) For allm € Z*, R,r > 0 and [M,&] € T.(n) (respectively, [M, f] € P.(n)), there is some € > 0 such
that g (M, &) C VE',.(M, &) (respectively, Fg'.(M,§) C Wg',.(M,¢)).

Proof. Let us show (i) for the case of V3 ., the case of W§, . being analogous. Let ([M,£],[N,¢]) € E}, ., and
let 7 = 757 (€) and y = 7 (¢). Then there is a C* pointed local diffeomorphism ¢ : (M, z) — (N, y) such that
¢+(§) = ¢, and g9 = [[gm — ¢*gnllco.q.g, < € for some compact domain 2 C dom ¢ with By (z, R) C €.
According to the proof of Proposition , ¢ is a (0, R, \)-pointed local quasi-isometry if 1 < A < e” and
g0 < min{l — A72,A\? — 1}, obtaining that ([M,¢&],[N,(]) € V}%T.
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As above, let us prove (i) only for the case of Vg',.(M,§). Take m € Z*, R, > 0 and [M, £], [N, (] € T.(n),
and let z = mps(€) and y = wn(¢). According to the proof of Proposition [6.4 ﬂ. there is some ¢ > 0 such
that, for every C™*! pointed local diffeomorphism ¢: (M, z) — (N,y), if |gar — ¢*gn || om 0,0 < € for some
compact domain  C dom ¢NInt(K) with Bys(z, R) C Q, then ¢ is an (m, R, A)-pointed local quasi-isometry
(M,z) — (N,y) for some A € [1,e"). Therefore [N,(] € VF',.(M,¢§) if [N, (] € ER (M, ). O

Proposition 9.8. (i) For all R,r >0, if €** — e~ <r, then VI%E C EY% R and W]%,s - FIOM.
(i) For allm € Z*, R,r > 0 and [M,€] € T.(n ) (respectively, [M, f] € Q.(n)), there is some € > 0 such
that Vi'. (M, §) C ER (M, §) (respectively, Wg'.(M, f) C Fg'.(Mf)).

Proof. This result follows from the proof of Proposition [6.5]in the same way as Proposition [9.7] follows from
Proposition [6.4} O

As a direct consequence of Remark and Propositions and we get that the C* convergence in
T«(n) and Q. (n) describes the C'*° topology.

Proposition 9.9. T°(n) and Q°(n) are separable

Proof. With the notation of Proposition [7.1] for every M € €, let D), and D, be countable dense subsets
of TM and QM, respectively. Then the countable sets

{{(M.g).{] |IM€C, g€, §€Dy} and {[(M,g),f]|M€C, g&Gu, f€Dy}
are dense in T2°(n) and Q%°(n), respectively. O
Proposition 9.10. T°(n) and Q°(n) are completely metrizable

Proof. Only the case of T¢°(n) is proved, the other case being similar. The C°° uniformity on T2°(n) is
metrizable because it has a countable base of entourages. Thus it is enough to check that this uniformity is
complete.

Consider an arbitrary Cauchy sequence [M;,&;] in T.(n) with respect to the C'*° uniformity, and let
x; = m(&) € M;. We have to prove that [M;,&;] is convergent in T2°(n). By taking a subsequence if
necessary, we can suppose that ([M;,&], [ ,+1,§Z+1]) € VI;:-Lfm for sequences m;, and R; and r; satisfying
the conditions of the proof of Proposition Thus, for each i, there is some A; € (1,e™) and some
(m“RZ,)\ )-pointed local quasi-isometry ¢;: (Mz,xz) — (M1, 2i41), which can be assumed to be C*®

Remark @-. such that ¢, (&) = &+1. Then, with the notatlon of the proof of Proposition we have
wm*(fl) = §J for ¢ < j. Therefore there is some § e T, M so that wz*(gl) = f for all 1, obtalnlng that
([M;, &), [M ,{]) e Uy . for all i according to the proof of Proposition Hence [M;,&;] — [M,§] as

R./Xis
i — 00 in T2 (n).

Propositions and together mean that J¢°(n) and Q$°(n) are Polish, completing the proof of
Theorem [0.21
Let 755, .(n) C T7°(n) and Q%

onp (P Snp(n) € Q2°(n) be the subspaces defined by locally non-periodic manifolds.

Proposition 9.11. (i) The projection m : T29,,(n) — M5, (n) admits the structure of a Riemannian
vector bundle of rank n so that the canonical map T,M — 7 1([M,z]) is a orthogonal isomorphism

for each [M, x| € M35, (n).
(i) The projection m : Q35, (n) — M, (n) admits the structure of a O(n)-principal bundle canonically

isomorphic to the O(n)-principal bundle of orthonormal references of T35, (n).

Proof. Obviously, the canonical O(n)-action on Q%°(n) preserves Q29

2np(n), and the O(n)-orbits in Q29 (n)
are the fibers of 7 : Q39 (n) — M9, (n).

Claim 4. For all [M,z] € M9, (n), the canonical maps T, M — 7 (n)([M z]) and Q.M — 7 ( )([M x])
are bijections.

Let us show the case of the first map in Claim [4] the case of the second one being similar. It was already
pointed out that the canonical map T, M — ﬂ;*l(n)QM ,x]) is surjective, and let us to prove that it is also
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injective. If [M,&] = [M, ¢] for some &,¢ € T, M, then ¢.(§) = ¢ for some ¢ € Iso(M) with ¢(x) = z. But
¢ = idy; because M is locally non-periodic, obtaining £ = (.

Let X be a completely regular space with a right action of a Lie group G, and let G, C G denote the
isotropy subgroup at some point x € X. Recall that a slice at = is a subspace S C X containing x such that
S -G is open in X, and there is a G-equivariant continuous map « : S - G — G, \G with s 1(G,) = S 31}
Definition 2.1.1]. Slnce Q2%,p(n) is completely regular and O(n) is compact, the O(n)-action on Q35 (n)
has a slice § at each point [M, f] € 929, (n) [31, Theorem 2.3.3] (see also [23], [34, Theorems 5.1 and 5.2]
and [5, Theorems 11.3.9 and 11.3.14]). Then © := 7(8) = m(8 - O(n)) is open in M5, (n) by Remark @

Claim 5. m:8 — O is a homeomorphism.

This is the restriction of a continuous map (Remark @. and therefore it is continuous. This map is also
open because, for every open W C 8, the set W-O(n) is open in 929, (n) [31, Corollary of Proposition 2.1.2],
and thus 7(W) = m(W - O(n)) is open in M°(n) (Remark [9}(i)). Obviously, 7 : § — © is surjective, and
let us show that it is also injective. Take [N,pl,[L,q] € 8 such that «([N,p]) = =([N,q]) =: . Thus
there is some a € O(n) so that [L,q] = [N,p] - a. Since the isotropy group at [M, f] is trivial by Claim
there is an O(n)-equivariant continuous map & : 8§ - O(n) — O(n) so that k= 1(e) = 8. It follows that
e = k([L,q)) = k([N,p]-a) = &([N,p]) a = a, obtaining [L,q] = [N, p], which completes the proof of Claim [f]

According to Claim [5 the inverse of m : 8§ — © defines a continuous local section o : © — Q2% (n)
of m: QF lnp(n) — MZ9,,(n). By the existence of continuous local sections, and since the O(n)-action on
Qflnp(n) is continuous and free (Remark El-. ) and Clalm. it easily follows that m: Q29 (n) — M2, (n)
admits the btructure of an O(n)-principal bundle.

By Clalm l 71'7 (n)([M, z]) canonically becomes an orthogonal vector space for each [M, x| € M35, (n),
and we can canonically identify mq-1(,)([M,z]) to the set of linear isometries my (n)([M z]) — R™. The
continuity of the mapping ([M, f], [M,&]) — [M, f]([M,£]) is easy to check. By using this identity, we
get a homeomorphism 6 : m}*l(n)(G) — R™ x © defined by 0([M,&]) = (o([M,x])([M,&]), [M, x]), where
7([M,€]) = [M, z], whose inverse map is given by 0~ (v, [M, z]) = [M, o ([M,z]) "' (v)]. If o’ : © = Q2% (n)
is another local section of 7 : Q3 (n) = M3, (n) defining a map ¢’ : 7~1(©’) — R" x ©’ as above, and
[M,z] € ©N©, then the composite

R" =R x {[M,2]} 2 77!, (M,a]) —2— R" x {[M,a]} =R

is the orthogonal isomorphism o’([M,z]) o o([M,z])~'. Tt follows that 7 : T35, (n) — M, (n), with
these local trivializations, becomes an orthogonal vector bundle of rank n so that the canonical map T, M —
7~ ([M, z]) is a orthogonal isomorphism for all [M, ] € M3, (n). Moreover, by Claim{4} there is a canonical

isomorphism between Q29, (n) and the O(n)-principal bundle of orthonormal frames of T35, (n). O

By the compatibility of exponential maps and isometries, a map exp : T°(n) — M°(n) is well defined by
setting exp([M, €]) = [M, exp,,(€)]. For each [M,z] € M2°(n), the restriction exp : 7~ ([M, x]) — M (n)
may be denoted by expp; 4

Lemma 9.12. Consider convergent sequences [M;, fl] [M, f] and [M;, f]] — [M, f'] in Q°(n) for some
neZr. Letx =n(f), 2’ =x(f"), v; = m(fi) and x}, = m;(f!). Suppose that there is some r > 0 such that
{h €Iso(M) | h(z) € B(z,2r)} = {idm} , (14)

and d(z,z"), d;(z;, ) < r for all i. Then there is some compact domain @ in M whose interior contains
and 2, and there are C>® embeddings ¢; : Q — M; fori large enough so that ¢4 (f) = fi andlim; ¢;.*(f!) = f'
in PM, and lim; ¢} g; = gla with respect to the C* topology.

Proof. Let €, be a sequence of compact domains in M such that
B(z,r) CInt(Q,), Pen(Qy,diam(,)) C Int(Qy41) ;

in particular, 2’ € Int(£2,). By the convergence [M;, f;] — [M, f] and [M;, f]] — [M, f'] in Q2°(n), for each
g, there are C*° embeddings ¢q,i, g, : Q4 — M, for i large enough so that ¢, .. (f) = fi, Vg (f") = [,

and lim; ¢} ;g; = glo, and lim; ¢ ;9; = gla, with respect to the C>° topology; in particular, ¢q(z) = z;
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and 1,i(¢') = x}. We have a} € Bj(xi,7) C Int(¢,,:(Q,)) for i large enough, depending on ¢, and therefore
bq.i(Qq) NYgi(Qy) # (). Hence

¥q,i(g) C Pen;(dq,:(€y), diam(¢g,i(€2y))) C Int(¢g,i(2g+1))

for i large enough, depending on g. It follows that hq; := ¢qj1,i¢q,i is a well defined C* embedding 2, — M.
Observe that lim; b ;g = gla, with respect to the C*° topology. Moreover

limsup d(z, hg,i(z)) = limsup d(z, <;Sq_+11,i¢q,i(a:)) = limsup d; (4, ¥q,i(7))

’L 3

< limsup d; (4, ;) + limsup d; (27, g, (2)) < v +d(2',x) < 2r.

If the statement is not true, then some neighborhood U of f' in PM contains no accumulation point of the
!/

sequence ¢;+117i*(f¢) = ¢;+11,i*wq,i*(f/) = hg,ix(f’) for each ¢. With the arguments of the proof of Lemma
it follows that there is some h € Iso(M) such that d(z, h(z)) < 2r and h.(f") & U, which contradicts (I4). [

10. CENTER OF MASS

The main tool used to prove Theorem 7 is the Riemannian center of mass of a mass distribution
on a Riemannian manifold M [24], |8, Section IX.7]; especially, we will use the continuous dependence of the
center of mass on the mass distribution and the metric tensor.

Recall that a domain Q C M is said to be convex when, for all z,y € Q, there is a unique minimizing
geodesic segment from x to y in M that lies in Q (see e.g. [8, Section IX.6]). For example, sufficiently small
balls are convex. For a fixed convex compact domain € in M, let €(Q) be the set of functions f € C?(Q)
such that the gradient grad f is an outward pointing vector field on 92 and Hess f is positive definite on the
interior Int(€2) of Q. Notice that C(€2) is open in the Banach space C?(£2) with the norm || ||¢2 o 4, and thus
it is a C°° Banach manifold. Moreover C() is preserved by the operations of sum and product by positive

numbers. Any f € C(f2) attains its minimum value at a unique point m(f) € Int(Q2), defining a function
m: C() — Int(N).

Lemma 10.1. m s continuous.

Proof. Consider the map v : €(Q) x Int(Q2) — TQ defined by v(f,z) = grad f(z), and let Z C TQ denote
the image of the zero section. Since the graph of m is equal to v~1(Z), it is enough to prove the following.

Claim 6. v is C' and transverse to Z.

Here, smoothness and transversality refer to v considered as a map between C*° Banach manifolds [1}
p. 45].

Let mg¢ and 7y denote the orthogonal projections of T)Q onto H and V, respectively. Let X! (Q) denote
the Banach space of C'! vector fields over 2 with the norm || ||¢1,q 4, Which is equivalent to the norm || ||;
defined by

X[l = sup { | X (2)| + [VX(2)| [z € Q} .

The gradient map, grad : C?(Q) — X'(Q), is a continuous linear map between Banach spaces, and
therefore it is C°°. The evaluation map, ev : X1(Q) x Q — TQ, is C! because, if X € X}(Q), YV €
TxX'(Q) = X1(Q), z € Q and £ € T,Q, then ev.(Y,§) € TeTQ is easily seen to be determined by the
conditions mgc(ev,(Y,€)) = £ in He = T,Q and 7y (evi(Y,€)) = Y (x) + VeX in Ve = T,Q. Therefore v is
C! because it is the restriction to C(Q) x Int(£2) of the composition

C2(Q) x @ 29X x1) w0 Y TQ.
Fix any f € () and z € Int(Q) with v(f,z) € Z; thus grad f(z) = 0,.
Claim 7. my : v ({05} x T,Q2) — Vo, is an isomorphism.
For any & € T,),
Ty vi(0f,&) = my (grad f)«(§) = Vegrad f
in Vo, = T,Q. Then Claim m follows because the mapping § — V¢ grad f is an automorphism of 7,2 since

Hess f is positive definite at = and Hess f(&,-) = g(Vegrad f,-) on T, M.
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From Claim (7] it follows that v, ({0} x T,Q) is a linear complement to Ho, = To,Z in Tp,T; in
particular, it is closed in Ty, T2 because Ty, T2 is Hausdorff of finite dimension.

Since v, : TfC(Q) x T Q2 — Ty, T is linear and continuous, and Ty, T2 is Hausdorff of finite dimension, we
get that the space (Vi(s.4)) ! (To, Z) is closed and of finite codimension in the Banach space TyC(Q2) x T2,
and therefore it has a closed linear complement in TrC(2) x T, (see e.g. |37, p. 22]), which completes the
proof of Claim [6} O

Remark 11. (i) In the last part of the above proof, the space (v*(f,x)) -t (To, Z) can be described as follows.
Since h + grad h(z) defines a continuous linear map C?(Q) — 1,9, we have v..(Tf€(Q) x {0,}) C Vo,
and v, (h,0,) = grad h(z) in Vo, = T, for any h € C*(Q) = T;C(2), giving

(Vagr)) " (To,Z) = { (h,€) € C*(Q) x To | grad h(x) + Vegrad f =0},

which is obviously closed and of finite codimension in C?(Q2) x T,.
(ii) In Lemma the map m is C™ if the Banach space C™72(Q) is used instead of C?%(Q).

Suppose that the Riemannian manifold M is connected and complete. Let (A, 1) be a probability space,
B a convex open ball of radius r > 0 in M, and f : A — B a measurable map, which is called a mass
distribution on B. Consider the C*° function Py : B — R defined by

Pia) =5 [ de.f(@) (@

Proposition 10.2 (H. Karcher [24] Theorem 1.2)). With the above notation and conditions, the following
properties hold:
(%) grad Py is an outward pointing vector field on the boundary 0B.

(i) If 6 > 0 is an upper bound for the sectional curvatures of M in B, and 2r < 7r/2\/3, then Hess Py is
positive definite on B.

If the hypotheses of Proposition are satisfied, then Py € C(B), and therefore P reaches its minimum
on B at a unique point Cy € B, which is called the center of mass of f. It is known that Cy depends
continuously on f with respect to the supremum distance when (A, p) is fixed |24, Corollary 1.6]; indeed,
the following result follows directly from Lemma [10.1

Corollary 10.3. (i) C; depends continuously on f and the metric tensor of M.
(%) If A is the Borel o-algebra of a metric space, then Cy depends continuously on p in the weak-+ topology.

11. FOLIATED STRUCTURE OF MY, (n)

The goal of this section is to prove Theorem 7.

For any point [M, z] € M9, (n), choose some 7,& > 0 and some neighborhood Ny of [M, z] in M, (n)
satisfying the statement of Lemma with ¢ < r/5. Using [33, Chapter 6, Theorem 3.6], we can assume
that e and Ny are so small that By, (y, ) satisfies the conditions of Proposition [10.2]in L for all [L,y] € No.
Take any continuous function A : M2°(n) — [0, 1] supported in Ny and with A([M, x]) = 1, whose existence
is a simple consequence of the metrizability of M$°(n) (Theorem [1.2). For [L,y] € Np, let wy, denote the

Riemannian density of L, and let Ar, , : L — [0,1] be the function defined by
{)\([L,z]) if dp(y,2) <e

ALy (2
Ly(?) 0 ifdp(y,z) >e,

which is well defined and continuous by Lemma Take another neighborhood N C Ny of [M, z] where

A > 0. For [L,y] € N, we have [, Ap ywr > 0, and set

Then pr , = XL,y wy, is a continuous density defining a probability measure on L, and the identity map

(L, pr,y) — L is a distribution of mass on L satisfying the conditions of Proposition with B (y,€). Thus

its center of mass, Cy, ,, is defined in By (y,¢). Let ¢ : N — M$°(n) be the map given by c([L,y]) = [L, Cr 4].
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Lemma 11.1. If [L,y],[L,y'] € N and dr(y,y') < ¢, then c([L,y]) = c([L, y']).

Proof. Take any point z € L. If [L,z] € Ny or dr(y,2),dr(y',2) > €, then Ap ,(2) = Ap(2) = 0. If
[L, 2] € Ny and dp(y,2) < €, then dr(y’,2z) < 2¢, obtaining d(y',2) < & by Lemma [8.2] since 5 < r, and
therefore Ap ,(2) = A (2) = A([L, 2]). If [L, 2] € Ng and dr(y', z) < e, we similarly get Az ,(2) = A (2).
Thus A, = Az, obtaining €, = Cr ./, and therefore ¢([L,y]) = c([L,y']). O

Lemma 11.2. c is continuous.

Proof. Take any convergent sequence [L;,y;] = [L,y] in N. Let Q be a compact domain in L whose interior
contains B (y,¢). Then there is a C*° embedding ¢; :  — L; for each i large enough so that lim; ¢%g; = g|a
with respect to the C* topology. It follows that lim; ¢} pir, . = prylo with respect to the C° topology
by the continuity of A, and thus this convergence also holds in the space of probability measures on €2 with
the weak-* topology. Since ¢, e L;y:) 1s the center of mass of the mass distribution on Q defined by the
probability measure ¢y, y,, it follows from Corollary that lim; ¢; '(Cz,4) = Cr, in L. Therefore
lim; ¢([L;, yi]) = ¢([L, y]) in MS°(n) because € is arbitrary. O

Let Z = ¢(N), and let N" = Uy jez to(Br(c,€)), which contains N because dp(y,Cr,y) < € for all
[L,y] € N. Also, let ¢ : N' — Z be defined by the condition ¢/([L, z]) = [L, ] if [L,c] € Z and di(c, z) < €.
To prove that ¢’ is well defined, take another point ¢ € L satisfying [L,¢/] € Z and dr(c/,2) < e, and let
us check that [L,c] = [L,c/]. Choose points y,y’ € L such that [L,y],[L,y'] € N, ¢([L,y]) = [L, ] and
([L,y/]) = [L, ). Then

dL(y7y/) < dL(ZJ,C) + dL(Cv Z) + dL(Z7CI) + dL(Clvy/) <4e )
giving dy,(y,y’) < ¢ by Lemma since 5e < r, which implies [L, ¢] = [L, ¢] by Lemma m Furthermore
¢’ is an extension of ¢ because dr(y,Cr,) < € for all [L,y] € N. Note also that ¢([L,c]) = [L,¢] for all
[L,c] € Z.
Lemma 11.3. If[L,z],[L,7'] € N’ and di(z,2") < 2¢, then ¢/([L,z]) = ¢'([L, 2']).

Proof. Let ¢/([L,z]) = [L,c] and ¢'([L, 2']) = [L,c]. Choose points [L,y], [L,y’] € N with ¢([L,y]) = [L, ]
and c([L,y']) = [L c']. Then

dr(y.y') < di(y,c) +drle,z) +dp(z,2") +do(, ) +dr(c,y') <be.
From Lemma and since 5e < r, it follows that [L, ] = [L, ¢]. O
Lemma 11.4. ¢’ is continuous.
Proof. Take any convergent sequence [L;, z;] — [L,z] in N, Let ¢([L;, 2;]) = [Ls,¢;] and ¢/([L, 2]) = [L, ],
and choose points [L;, yi], [L,y] € N so that c([L;, y;]) = [Li, ¢;] and ¢([L,y]) = [L, c]. We have
di(yi, zi) < di(yi,ci) +dileiy z:) < 2e, dp(y,z) <dp(y,c) +dp(e,z) < 2e.
Then, by Lemma there are points y; € B;(z;,2¢) such that lim;[L;,yi] = [L,y] in M (n) as i — oo.
Thus [L;,y!] € N for ¢ large enough, and moreover
diyi,yi) < di(yi, 2i) + di(zi, ;) < de

obtaining d;(y;, y}) < & by Lemma[8.2]since 5¢ < r. By Lemma[11.1] it follows that c([L;, }]) = c([Li, y;]) =
[L;, ¢;] for i large enough, giving lim;[L;, ¢;] = [L, ¢] in M°(n) by Lemma 1.2 O

We can assume that ¢ and N are so small that the following properties hold for all [L,y] € N and
z € Br(y,¢e):
(a) expy, : Br.(0;,6) = Br(z,¢) is a diffeomorphism; and
b) {h€lso(L) | h(z) € B(z,4¢)} = {id.}.
Observe that @ can be assumed by Lemma Notice also that @ and (]E[) hold for all [L, 2] € Z. Let

N ={[L,f] € T=(n) | n([L,€]) € Z, |€] <&} .

Lemma 11.5. exp: N =N isa homeomorphism.
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Proof. This map is obviously surjective; we will prove that it also injective. For ¢ € {1,2}, take points
[L;, &) € N'; thus &; € Tg, L; for some points [L;, ¢;] € Z, and we have exp([L;, &;]) = [Ls, 2] for z; = exp;(&;).
Suppose that [Ly, z1] = [L2, 23], which means that there is a pointed isometry ¢ : (L1, 21) — (L2, 22). Then

expy ¢4 (§1) = ¢ expy(§1) = ¢(21) = 22 = exp,(&2) , (15)
da(¢(c1),ca) < da(9p(c1), 22) + da(22,c2) = di(c1, 21) + da(z2,c2) < 2¢ . (16)
We get
[L1,e1] = /([L1, e1]) = € ([L2, p(c1)]) = [L2, c2]
by Lemma and . So there is an isometry 1t : L1 — Lo such that ¢(c;) = c¢2. Then the isometry
h=1v"1¢: L, — L, satisfies
dl(cl, h(Cl)) = dQ(CQ, ¢(Cl)) < 2¢
by (L6)), obtaining h = id, by (). Hence ¢(c1) = v(c1) = c2, giving ¢.(&1) = & by and (a)) since
& € T,, L;. Therefore exp : N — N is bijective.
The continuity of exp=!: N — N’ is a simple exercise using lemma m O

By Proposition [0.11} (), there is some neighborhood © of [M,z] in M2°(n) and some local trivialization
0 : 771(0) — R" x O of the Riemannian vector bundle 7 : T¢°(n) — M (n); in particular, 6 : 7= ([L,y]) —
R™ x {[L,y]} = R™ is a linear isometry for all [L,y] € ©. More precisely, according to the proof of
Proposition we can suppose that there is a local section o : ©® — Q°(n) of 7 : QX (n) — M(n)
so that 6([L,&]) = (o([L,y])([L, &), [L,y]) if 71(€) =y. We can assume that Z C © by Lemma [8.4] Hence,

by Lemma [I1.5] the composite

—1 ~
NP N %y Brx g

is a homeomorphism ® : N’ — B” x Z, where B? denotes the open ball of radius & centered at the origin in
R™. This shows that F, 1n,(n) is a foliated structure of dimension n on M:ﬁnp(n), completing the proof of
Theorem .

Recall that a Riemannian manifold M (or its metric tensor) is called nowhere locally homogenous if there
is no isometry between distinct open subsets of M. It is easy to see that the proof of [38, Proposition 1] can
be adapted to the case of open manifolds, obtaining the following.

Proposition 11.6. For any C* manifold M, the set of nowhere locally homogenous metrics on M is
residual in Met(M) with the weak and strong C* topologies.

Lemma 11.7. There is a nowhere locally homogenous complete Riemannian manifold M such that «(M) is
dense in M, (n).

Proof. According to the proof of Proposition there is a countable dense set of points [M;, ;] in M:f’lnpjc(n)
(i € N). For each i, take some y; € M; so that d;(x;,y;) = maxyen, di(x;,y). Foralli € Nand j,k € ZT with
1/], l/k < diam Mi, let (Mz‘jk7 Tijk, yijk) be a Ccopy of (Mi, Xy, yi), let 9ijk be the metric of Mz’jk, and let Qijk
be a compact domain in Mj;;;, containing y;;, and with diameter < 1/j. Observe that ﬁijk = M, \Int(Qijk)
is also a compact domain. Take also corresponding mutually disjoint compact domains € i in R™ so that
every bounded subset of R™ only meets a finite number of them. Let M be the C*° connected sum of
R™ with all manifolds Mj;; so that the connected sum with each M;;, only involves perturbations inside
the interiors of €, and €. Let g be any Riemannian metric on M whose restriction to each ﬁijk
equals gi;x, and whose restriction to R™ ~ Uijk Q;jk equals the Euclidean metric. Then g is complete
and (M, g) is dense in MS°(n). With the strong C*° topology, C°(M;TM* ® TM*) is a Baire space
by [22, Theorem 4.4-(b)]. Since Met(M) is open in C®°(M;TM* ©® TM*), and the complete metrics on M
form an open subspace Metcom (M) C Met(M), it follows that Meteom (M) is a Baire space with the strong
C*° topology. Hence, by Proposition there is a nowhere locally homogenous complete metric ¢’ on M
so that ||g — g'||ck,§ijk,g < 1/k for all 4, j and k. Then ¢(M, g') is also dense in M2, (n). O

By Lemma m F i lnp,o(n) is transitive, showing Theorem .
Now, for k € {1,2}, let &5 : N}, — B x Zj, be two homeomorphisms constructed as above with maps

c, N — Zy, exp :N% — Nj and 0y : O — Q(n).
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Lemma 11.8. ®;®; " : & (N] NNE) — &y (N; NNp) is C (in the sense of Section.
Proof. This map has the expression
02®7 ' (v, [L,c]) = (¥(v, [L,¢]), T([L.d]))

where T': ¢ (N NNS) — ¢4, (N} NNY) is the corresponding holonomy transformation, and ¥ : &1 (N; NN}) —
R"™ is defined by

V(v [L,c]) = oa([L, ']) expy) .y expyp g o1([L.c]) 7 (v)

where [L,] = T'([L,¢]). Let [L, f] = o1([L,¢]) and [L, f'] = o2([L,c]). We can take ¢ so that d(c,¢’) <
€1 + €2, and then
U(v,[L,d]) = f" expt exp, f71(v).

To prove that ¥ is C* in the sense of Section fix any (v, [L,c]) € &1(N} NN}), and take ¢/, f and
f" as above. Let V and O be open neighborhoods of v and [L,¢] in R™ and Z;, respectively, such that
V x O C ®; (N} NN,). Take any convergent sequence [L;, ¢;] — [L,c] in O, and define ¢, f; and f/ as before
for each i. Notice that ¥(v,[L,c]) and ¥(v,[L;,¢;]) are defined for all v € V, and let 1,1; : V. — R™ be the
C*> maps given by (v) = ¥(v,[L,c]) and ¢;(v) = ¥(v,[L;,¢;]). We have to prove that lim;¢); = ¢ with
respect to the weak C'°° topology.

Let 2 be any compact domain in L such that By, (c,e1 + 2¢2) C Int(£2), and thus By, (¢, e2) C Int(Q) too.
Since the sections o7 and o9 are continuous, there are C*° embeddings ¢; : Q@ — L; for i large enough so
that ¢ (f) = fi and lim; ¢ g; = glq; in particular, ¢;(c) = ¢;. Hence ¢ € ¢;(Int(Q2)) for ¢ large enough,
and moreover lim; ¢;,'(f]) = f' by and Lemma Observe that ¢ := exp.' exp, is defined on

K2

W = f~Y(V) € Br.p(0.,e1). It follows that ); := bt exp;1 exp,, @i« is also defined on W for i large
enough, and moreover lim; 1[}1 = 1& in the space of C*° maps W — T, L with the weak C'*° topology. So

lim gy, (f) ef ~H = S0 =0
in the space of C*° maps V' — R™ with the weak C*° topology. Then the result follows because
Ot (D haf ™ = o3 (FD) i (051 () ™F = fiduwthidy, S = ] expt expe, f =i O

According to Lemmam F i lnp(n) becomes C*° with the above kind of charts. Thus we can consider the
tangent bundle T'F, 1np(n). For each leaf ((M) of Fy np(n), the canonical homeomorphism 7 : Iso(M)\M —
(M) is a C*° diffeomorphism, and ¢, : T M — Tips 41T« 1np(n) is an isomorphism for each 2 € M. According
to Proposition we get a canonical bijection T, 1np(n) — T29,,(n) defined by . (§) — [M,¢] for
[M, €] € M3, (n) and § € T, M. It is an easy exercise to prove that this bijection is an isomorphism
of vector bundles. So the Riemannian structure on J79,(n) defined in Proposition corresponds to a
Riemannian structure on T'F, 1np(n), which can be easily proved to be C'™° by using the above kind of flow
boxes of F, inp(n). It is elementary that each isomorphism t.y : To M — Tipz,2) T« 1np(n) is an isometry. This
completes the proof of Theorem [L.3}(iv]).

Theorem follows from the following.

Lemma 11.9. The following properties hold for any point [M,z] € M, (n), any path a : I :=[0,1] — M
with a(0) = z, and any neighborhood U of e in C(I,Fy 1np(n)):
(4) If (1) = x then, for each [N,y] € M, (n) close enough to [M,z], there is a path B € U with

*,Inp
B(0) = B(1) = [N, y].
(#9) If (1) # x then there is some path 5 € U with B(0) # B(1).
Proof. Let © be a compact domain in M whose interior contains a(l), let [N,y] € M3, (n), and let
¢ : (2, z) = (N,y) be a pointed C™ embedding with ||gar — ¢*gn|l.cm g, < € for some m € ZT and € > 0.
Let § = tpa € C(I, Fy imp(n)); that is, B(t) = [N, ¢pa(t)] for each t € I. Observe that 5 € U if m and Q are
large enough, and ¢ is small enough (i.e., if [N, y] is close enough to [M, z]). When a(1) = z, we get

B(0) = [N, ¢(z)] = [N,y] = [N, ¢a(1)] = B(1) .
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Suppose now that a(1) # x. Since MS%,,(n) is dense in M9, (), with the above notation, we can choose

[N,y] € MZ%,,(n) as close as desired to [M,z]. Hence v : N — M9, (n) is injective, giving
B(0) = wp(x) # pa(l) = 5(1) . O

12. SATURATED SUBSPACES OF M9, (n)

Let X be a sequential Riemannian foliated space with complete leaves.

Definition 12.1. It is said that X is covering-determined when there is a connected pomted covering (Lm, z)
of (Lg, z) for all z € X such that z; — z in X if and only if [L,,, #;] is C> convergent to [Ly,#]. When this
condition is satisfied with L, = le‘Ol for all z € X, it is said that X is holonomy-determined.

Example 12.2. (i) The Reeb foliation on S® is not covering-determined with any Riemannian metric.
(ii) |29, Example 2.5] is covering-determined but not holonomy-determined.
(iif) M9, (n) is holonomy-determined.

Remark 12. (i) The condition of being covering-determined is hereditary by saturated subspaces.
(ii) The example X of [29, Example 2.5] can be easily realized as a saturated subspace of a Riemannian
foliated space Y where the holonomy coverings of the leaves are isometric to R. Multiplying the leaves by
S1, all holonomy covers of Y x S become isometric to R x S'. The metric on Y x S' can be modified so
that no pair of these holonomy covers are isometric, obtaining a holonomy-determined foliated space,
however X x S! is not holonomy-determined with any metric. So holonomy-determination is not
hereditary by saturated subspaces. N
(iii) If X satisfies the covering-determination with the pointed coverings (L., &) of (L., ) for x € X, then

=y in X if and only if [Zac, I = [Zy, g]; in particular, the leaves of X are non-periodic.
(iv) If X is compact and the mapping « — [L, Z] is injective, then the “if” part of Definition can be
deleted.

Proof of Theorem[I.]} Any saturated subspace of M lnp( n) is covering-determined by Example
and Remark ..

Suppose that X satisfies the covering-determination with the pointed covers (Ly, &) of (Ly,z) for z € X.
Then the map ¢ : X — M9, (n), defined by «(z) = [L.,#], is a C™ foliated embedding whose restrictions
to the leaves are isometries. ]

Remark 13. Like in the above proof, a map ("' : X — M(n) is defined by 2°/(z) = [L2°! #], where
# € LIl is over . This map may not be continuous [29, Example 2.5], but its restriction to X is continuous
by the local Reeb stability theorem, and therefore :"°' is Baire measurable if X is second countable.

Any family € of complete connected Riemannian n-manifolds defines a closed F,(n)-saturated subspace
X := Cleo(Upsee t{M)) € M (n). The obvious C*° version of arguments of [9] (see also [33, Chapter 10,
Sections 3 and 4]) gives the following.

Theorem 12.3. A family C of complete connected Riemannian n-manifolds is of equi-bounded geometry if
and only if the closed subspace of M2°(n) defined by C is compact.

Remark 14. A version of Theorem using the Ricci curvature instead of R can be also proved with the
arguments of [2].

For instance, let M, (n,r, Cy,) C M. (n) denote the subspace defined by the manifolds of bounded geometry
with geometric bound (r,C,,). Each M.(n,r,C,,) is compact by Theorem and the notion of C'*
convergence in M (n, r, Cp,) is equivalent to the convergence in the topology of the Gromov space M, [29], [33]
Chapter 10]. Nonetheless, this is not the case on the whole of M, (n) [4, Section 7.1.4].

Let us study the case of closed subspaces of M2°(n) defined by a single manifold.

Definition 12.4. A complete connected Riemannian manifold M is called:
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(i) aperiodic if, for all m; 1 oo in N, compact domains Q} C §; C M, points z; € Q; and y; € Q;, and C™
pointed embeddings ¢;; : (4, 2;) = (5, 2;) (i < j) and ¢; : (Q}, ;) = (€, y;) such that

lim d(z;, 00)) = 0o, lim |lg = dfigllcme g =lim llg = ¥iglom e =0,
we have
lim max{ d(x,¥;(x)) | x € Q; N B(z;,r) } =0 (17)

for some r > 0; and
(ii) weakly aperiodic if, to get , besides the conditions of 7 it is also required that there is some s > 0
and there are points z; € Q such that ¢;;(2) = z; and d(z;, V(%)) < s.

Lemma 12.5. The following properties hold for any complete connected Riemannian n-manifold M :
(1) M is aperiodic if and only if Cle(c(M)) C M5, ,(n).
(i1) M is weakly aperiodic if and only if Cloo (L(M)) C M2, (n).

*,lnp
Proof. This is a consequence of Propositions and and using also arguments from the proof of
Proposition [5.9] for the “if” parts. O

Definition 12.6. A complete connected Riemannian manifold M is called repetitive if, for every compact
domain 2 in M, and all ¢ > 0 and m € N, there is a family of C"™ embeddings ¢; : & — M such that
U; () is a net in M and ||g — ¢ g|lcm a,q < € for all i.

Here, the term net in M is used for a subset A C M satistying Pen(A, S) = M for some S > 0.

Lemma 12.7. Let M be a complete connected Riemannian n-manifold of bounded geometry. Then M is
repetitive if and only if Cleo (e(M)) is Fi(n)-minimal.

Proof. The “only if” part follows easily from Propositions and

To prove the “if” part, assume that Clo(¢(M)) is Fy(n)-minimal. Let © be a compact domain in M,
and take some m € N and € > 0. Take some x € M and R > 0 such that Q@ C B(z,R). Let U =
Intoo (DR (M, z)). Since Clo (¢(M)) is compact because M is of bounded geometry (Theorem7 there is
some S > 0 such that dy < S on Cloo(¢(M)) by Lemmal[5.4] Hence [M,z;] € U for a net of points z; in M.
Thus there are C™*! pointed local diffeomorphisms ¢;: (M, x) — (M,z;) so that ||g — ¢} g|cm .4 < € for
some compact domain §2; C dom ¢; with B(z, R) C €;; in particular, Q C dom ¢; and ||g — ¢} gllcm a9 <€
for all ¢, and |J; ¢:(Q2) is a net in M, showing that M is repetitive. O

Proof of T heorem. Suppose that M is non-periodic and has a weakly aperiodic connected covering M.
Then Y = Cl(¢(M)) is a compact saturated subspace of M9, (n) by Theorem and Lemma (i),
and M = ISO(M )\M N L(M ) is an isometry. Moreover any sequential covering-determined transitive

compact Riemannian foliated space can be obtained in this way by Theorem If M is also repetitive,
then X is minimal by Lemma completing the proof of .

Asume now that M is aperiodic. Then X = Clo(¢(M)) is a compact F, np(n)-saturated subspace of
Mg°,,(n) by Theorem and Lemma , and moreover ¢ : M — +(M) is an isometry. Furthermore

*,0p

the leaves of X have trivial holonomy groups by Theorem . As before, X is minimal if M is also

repetitive, showing . |
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