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problems with delays
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Campus de Elviña, 15071 A Coruña, Spain

Abstract

An important problem in project management is determining ways to distribute

amongst activities the costs that are incurred when a project is delayed because

some activities end later than expected. In this study, we address this problem in

stochastic projects, where the durations of activities are unknown but their cor-

responding probability distributions are known. We propose and characterise an

allocation rule based on the Shapley value, illustrate its behaviour by using exam-

ples, and analyse features of its calculation for large problems.

Keywords. Project management, scheduling, stochastic durations, delay cost, co-

operative game theory, Shapley value.

1 Introduction

Project management is a field within operations research that provides managers

with techniques to select, plan, execute, and monitor projects. An important issue

in project management is time management, which generally call for careful plan-

ning of project activities to meet various project delivery dates, especially the final

delivery date. Normally, a delay in the final delivery date incurs a cost that is often

specified by contract. Sometimes, projects are not developed by one agent but a

group of agents. When there is a delay in one of such joint projects, the manner

of allocating the delay cost amongst the several participating agents may not be

clear. This paper deals with the problem of sharing delay costs in a joint project by

using cooperative game theory. We consider that the study of this problem from

1Corresponding author. E-mail: juan.carlos.goncalves@udc.es.
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the point of view of game theory is very pertinent, since the legal systems of many

countries contemplate the need for those responsible for the delay in the execution

of a contract to compensate those harmed by the damage resulting from such delay.

For example, article 1101 of the Civil Code currently in force in Spain states that

"those who, in the performance of their obligations, incur in malice, negligence or

arrears are subject to compensation for damages caused". However, the regulation

of how such damages are compensated, especially in the case of concurrent fault, is

generally not very developed, so that legal agents may require external assistance

from the academic and scientific world to support their arguments.

In the last few years, several papers have been written proposing and studying

allocation rules for delay costs. Bergantiños and Sánchez (2002) proposed a rule

based on the serial cost-sharing problem. Brânzei et al. (2002) provided two rules

using, respectively, a game theoretical and bankruptcy-based approach. In Castro

et al. (2007), the core of a class of transferable utility cooperative game (in short, a

TU-game) arising from a delay cost-sharing problem was studied. In Bergantiños

et al. (2018), a consistent rule based on the Shapley value was introduced and anal-

ysed. Estévez-Fernández et al. (2007) and Estévez-Fernández (2012) dealt with

some classes of TU-games associated with projects whose activities might have

been delayed or advanced by generating delay costs or acceleration benefits of the

corresponding projects. Curiel (2011) studied situations in which companies can

cooperate in order to decrease the earliest completion time of a project that consists

of several tasks. Cooperative game theory is used to model those situation, and

conditions for the core of the corresponding games are non-empty are derived. In

San Cristóba (2014) a practical example is given of the use of cooperative games to

allocate delay costs between the different activities in a project. Finally, Briand and

Billaut (2011), Briand et al. (2017) and Bergantiños and Lorenzo (2019) adopted a

non-cooperative approach and addressed some strategic aspects in project schedul-

ing where players responsible for activities can choose strategies that affect their

durations. All these papers tackle deterministic scheduling problems with delays. One

such problem is that of a delayed deterministic project. By deterministic project, we

mean a set of activities to be performed with respect to an order of precedence and

a description of their estimated durations; by delayed deterministic project, we mean

a project that has been performed, description of the observed durations of the

activities according to which the project has lasted longer than expected, and cost

function that indicates the delay cost associated with the durations of the activities.

A natural extension of deterministic problems with delays can be found in

stochastic scheduling problems with delays, which we introduce and analyse in this

study. In our extension we deal with stochastic projects, in which activity durations

are described by giving their probability distributions rather than their estimates
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(as is done in the deterministic case). To the best of our knowledge, these prob-

lems have not been treated in literature, although Castro et al. (2014) considered

the problem of allocating slacks in a stochastic PERT network,1 which is a related

but different problem. Tanimoto et al. (2000) introduced a variation of the Shapley

value for stochastic cost games, their model being an alternative to the stochastic

cooperative games in Suijs et al. (1999). These two papers deal with general TU-

games (not with the particular class we are considering in this paper) and, though

they might have some connections with our approach, they are concerned with

the different problem of how to allocate the risk according to the risk acceptance

level for each player in a general cooperative game whose characteristic function is

stochastic. Herroelen and Leus (2005) surveyed literature on project management

under uncertainty. In a stochastic scheduling problem with delays, the manager

has a description of the probability distributions of the random variables mod-

elling the durations of the activities instead of simply their estimated durations.

In most cases, managers have information about random variables—for instance,

their empirical distributions—based on the durations of similar activities in past

projects of the same type.

The remainder of this paper is organised as follows. In Section 2, we motivate

the interest of the stochastic scheduling problems with delays and introduce them

formally; we also discuss the main differences between the deterministic approach,

usually adopted in literature, and our novel stochastic approach. In Section 3, we

propose an allocation rule based on the Shapley value in this context and charac-

terize it using the property of balancedness; basically, this property states that, for

every pair of activities i and j, the effect of the elimination of i on the allocation to j
is equal to the effect of the elimination of j on the allocation to i. We also show that

the Shapley rule in this context satisfies a list of interesting properties and illustrate

its performance by using two examples and a simulation experiment. Finally, Sec-

tion 4 addresses some computational issues related to our rule. In particular, we

illustrate the implementation of the estimation of the Shapley rule through its pseu-

docode, from which it is easy to check that its computational complexity is O(n4)

and, moreover, we show by examples that it is possible to estimate the Shapley

rule for stochastic scheduling problems with delays in an acceptable time, even if

there are hundreds of activities, by using a desktop computer and free software.

1PERT is the acronym of Program Evaluation and Review Technique, a tool used in project manage-
ment, first developed by the United States Navy in the 1950s.
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2 The problem

In this section, we describe the problem with which we deal. We first formally in-

troduce a deterministic scheduling problem with delays mainly following Bergan-

tiños et al. (2018):

Definition 2.1. A deterministic scheduling problem with delays P is a tuple (N,≺, x0, x, C)
where:

• N is the finite non-empty set of activities.

• ≺ is a binary relation over N satisfying asymmetry and transitivity. For every i, j ∈
N, we interpret i ≺ j as “activity j cannot start until activity i has finished".

• x0 ∈ RN is the vector of planned durations. For every i ∈ N, x0
i is a non-negative

real number indicating the planned duration of activity i.

• x ∈ RN is the vector of actual durations. For every i ∈ N, xi is the non-negative
duration of activity i.2

• C : RN → R is the delay cost function. We assume that C is non-decreasing (i.e.,
yi ≤ zi ∀i ∈ N ⇒ C(y) ≤ C(z)),3 and that C(x0) = 0.

We denote by PN the set of deterministic scheduling problems with delays with player set
N, and by P , the set of deterministic scheduling problems with delays.

Note that the first three items of a deterministic scheduling problem with delays

characterise a project. Operational researchers have developed several methodolo-

gies for project management. In particular, the minimum duration of a project

(N,≺, x0), provided that all restrictions imposed by ≺ are satisfied, can be ob-

tained as the solution of a linear programming problem, and thus, can be easily

computed. We denote the minimum duration of (N,≺, x0) by d(N,≺, x0). Alter-

natively, d(N,≺, x0) can be calculated using a project planning methodology like

PERT (see, for instance, Hillier and Lieberman (2001) for details on project plan-

ning). The delay cost function C in Definition 2.1 is rendered in a general way but

typically depends on the minimum duration of the project, i.e., C(y) = c(d(N,≺
, y)) for a non-decreasing function c : R → R with c(d(N,≺, x0)) = 0.

In a deterministic scheduling problem with delays P, the main question to be

answered is how to allocate C(x) amongst the activities in a fair way. This issue has

been taken up, for instance, in Bergantiños et al. (2018); they introduce the Shapley

rule in this context.

Definition 2.2. A rule for deterministic scheduling problems with delays is a map φ on P
that assigns to each P = (N,≺, x0, x, C) ∈ PN a vector φ(P) ∈ RN satisfying:

2In Bergantiños et al. (2018) it is assumed that xi ≥ x0
i for all i ∈ N.

3Bergantiños et al. (2018) does not assume that C is non-decreasing.
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1. Efficiency (EFF). ∑i∈N φi(P) = C(x).

2. Null Delay (ND). φi(P) = 0 when xi = x0
i .

Take a deterministic scheduling problem with delays P ∈ PN . We denote by vP

the TU-game with set of players N given by

vP(S) = C(xS, x0
N\S)

for all S ⊆ N (where xS, x0
N\S denotes the vector in RN whose i-th component is xi

if i ∈ S or x0
i if i ∈ N \ S).

Definition 2.3. The Shapley rule for deterministic scheduling problems with delays Sh is
defined by Sh(P) = Φ(vP), where Φ(vP) denotes the proposal of the Shapley value for vP.

For those unfamiliar with cooperative game theory, a TU-game is a pair (N, v)
where N is a non-empty finite set, and v is a map from 2N to R with v(∅) = 0. We

say that N is the player set of the game and v is the characteristic function of the

game, and we usually identify (N, v) with its characteristic function v. We denote

by GN the set of all TU-games with player set N, and by G the set of all TU-games.

The Shapley value is a map Φ that associates with every TU-game (N, v) a vector

Φ(v) ∈ RN satisfying ∑i∈N Φi(v) = v(N) and providing a fair allocation of v(N)

to the players in N. The explicit formula of the Shapley value for every TU-game

(N, v) and every i ∈ N is given by:

Φi(v) = ∑
S⊆N\i

(|N| − |S| − 1)! |S|!
|N|! (v(S ∪ i)− v(S)).

Since its introduction by Shapley (1953), the Shapley value has proved to be one of

the most important rules in cooperative game theory and has applications in many

practical problems (see, for instance, Flores et al. (2007)).

Bergantiños et al. (2018) showed that the Shapley value has good properties

in this context and provided an axiomatic characterisation of their Shapley rule by

using a consistency property. In this paper, we introduce a generalization of the

model and the Shapley rule described above by assuming that the durations of the

activities are stochastic. Let us first introduce and motivate interest in our model.

Definition 2.4. A stochastic scheduling problem with delays SP is a tuple (N,≺, X0, x, C)
where:

• N is the finite non-empty set of activities.

• ≺ is a binary relation over N satisfying asymmetry and transitivity.

• X0 ∈ RN is a vector of independent random variables. For every i ∈ N, X0
i is a

non-negative random variable describing the duration of activity i.
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• x ∈ RN is the vector of actual non-negative durations.

• C : RN → R is the delay cost function. We assume that C is non-negative and
non-decreasing.

We denote by SPN the set of stochastic scheduling problems with delays with player set
N, and by SP the set of all stochastic scheduling problems with delays.

Like in the deterministic case, the first three items of a stochastic scheduling

problem with delays characterize a stochastic project. The minimum duration of

a stochastic project (N,≺, X0) is a random variable whose distribution is, in gen-

eral, difficult to obtain from a theoretic point of view, but easy to estimate using

simulation techniques. Note that in a stochastic scheduling problem with delays,

the durations are non-negative random variables instead of non-negative numbers.

In general, the duration of an activity can now take any non-negative real value,

and a condition generalising C(x0) = 0 as in Definition 2.1 cannot be stated. In

the stochastic setting, a delay in an activity is unclear. If the actual duration of

an activity is longer than the upper bound of its distribution support, it has thus

been delayed. Moreover, if its duration is in the 99th percentile of the distribution

of its duration, one may think that it has been delayed somewhat. However, what

should we think when its actual duration is in the 56th percentile? In the determin-

istic setting, we can clearly observe when an activity has been delayed. Another

novelty in the stochastic setting is that an activity may somehow be delayed, but

it may also somehow be ahead of schedule (for instance, when its duration is in

the first percentile). In the deterministic setting, by contrast, the case xi < x0
i is

generally discarded. In any case, although we propose our model in general, our

objective is to distribute delay costs when they occur (because P(xi ≥ X0
i ) is large,

at least for some i ∈ N), and in situations in which there should not be delays a

priori, in the sense that P(C(X0) = 0) is large.

In Definitions 2.1 and 2.4 we assume that C is a non-negative function. As it

was remarked in Section 1, some papers consider that activities can be delayed or

advanced and, consequently, there may be delay costs or acceleration benefits. We

do not take such an approach in this article but, if we do (for instance dropping the

non-negativeness of C), the analytical results should not change significantly.

We give next the definition of a rule in this setting. As the meaning of a delay

is not clear, this definition does not contain a kind of null delay property, as in

Definition 2.2.

Definition 2.5. A rule for stochastic scheduling problems with delays is a map ψ on SP
that assigns to each SP = (N,≺, X0, x, C) ∈ SPN a vector ψ(SP) ∈ RN satisfying

∑i∈N ψi(SP) = C(x).
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A first approach to deal with a stochastic scheduling problem with delays is

to build from it an associated deterministic problem. More precisely, for a given

SP = (N,≺, X0, x, C) ∈ SPN , it is natural to associate with it the problem SP =

(N,≺, E(X0), x, C), where E(X0) = (E(X0
i ))i∈N , E(X0

i ) denotes the mathematical

expectation of random variable X0
i . This approach encounters a technical obstacle:

SP is not always a deterministic scheduling problem with delays in the sense of

Definition 2.1 because C(E(X0)) may be different from zero. This obstacle can be

overcome with small adjustments in the definition of an associated deterministic

problem. Besides, in many particular examples, we do not encounter this obsta-

cle. In any case, this approach is not the most appropriate because it does not use

all the relevant information given in the original problem. Let us illustrate this

shortcoming in the following example:

Example 2.1. Consider the stochastic scheduling problem with delays SP = (N,≺, X0, x, C)
given by:

N 1 2

≺ - -

X0 U(0, 10) U(2, 8)

x 7 7

and, for every y ∈ RN ,

C(y) =

{
0 if d(N,≺, y) ≤ 6,
d(N,≺, y)− 6 otherwise.

Note that for all i ∈ N the i-th column displays:

• Activities that precede activity i. In this example, ≺= ∅, i.e., the two activities can
be carried out simultaneously. In general, the row corresponding to ≺ only shows
the immediate precedences, i.e., some elements of ≺, but the entire ≺ can be easily
obtained as the smallest transitive binary relation over N that contains the given
elements of ≺. An illustration of this can be found in Example 3.1.

• The distribution of X0
i . In this case, X0

1 and X0
2 are random variables with a uniform

distribution of U(0, 10) and U(2, 8), respectively.

• xi, the duration of i; in this case, x = (7, 7).

Note that in this example, E(X0
1) = E(X0

2) = 5, and activities 1 and 2 are indistin-
guishable in SP. Hence, the anonymity property satisfied by the Shapley rule for de-
terministic scheduling problems with delays (see Bergantiños et al. (2018)) implies that
Sh(SP) = ( 1

2 , 1
2 ). However, activities 1 and 2 are actually distinguishable in SP because

the expected duration of the project conditioned to x1 = 7 is E(C(7, X0
2)) = 13/12 and the

expected duration of the project conditioned to x2 = 7 is E(C(X0
1 , 7)) = 29/20 > 13/12.
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It seems that a fair rule should take this into account and allocate to activity 2 a larger part
of the delay cost.

In the next section, we provide a rule for stochastic scheduling problems with

delays that overcomes the technical obstacle described above and, more impor-

tantly, the drawback described in Example 2.1.

3 Shapley rule for stochastic scheduling prob-

lems with delays

In this section, we define and study the Shapley rule for stochastic scheduling prob-

lems with delays. Take a stochastic scheduling problem with delays SP ∈ SPN .

We denote by vSP the TU-game with set of players N given by

vSP(S) = E(C(xS, X0
N\S))

for all non-empty S ⊆ N,4

Definition 3.1. The Shapley rule for stochastic scheduling problems with delays SSh is
defined by SSh(SP) = Φ(vSP), where Φ(vSP) denotes the proposal of the Shapley value
for vSP.

This rule inherits many properties of the Shapley value. For instance, it is easy

to check that it satisfies the correspondingly modified versions of the properties

proved in Bergantiños et al. (2018) for the Shapley rule for deterministic scheduling

problems with delays. Let us remember some of those properties.

We start with some notation. Take a finite set N. A permutation of N is a

bijective map π : N → N. Denote by ΠN the set of permutations of N.

Anonimity. A rule for stochastic scheduling problems with delays ψ satisfies

anonimity if for all SP = (N,≺, X0, x, C), all π ∈ ΠN and all i ∈ N, it holds

that

ψi (SP) = ψπ(i) (SPπ)

where SPπ denotes the problem (N,≺π, π(X0), π(x), Cπ) given by:

• For all i, j ∈ N, i ≺π j if and only if π(i) ≺ π(j),

• π(X0) is the vector of random variables whose i-th component is X0
π−1(i),

• π(x) is the vector in RN whose i-th component is xπ−1(i),

• Cπ(π(y)) = C(y) for all y ∈ RN .

4As in all TU-games, we define vSP(∅) = 0.
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Cost additivity. A rule for stochastic scheduling problems with delays ψ satisfies

cost additivity if for all SP = (N,≺, X0, x, C) and all SP′ = (N,≺, X0, x, C′), then

ψi
(
SP + SP′) = ψi (SP) + ψi

(
SP′)

for all i ∈ N, where SP + SP′ = (N,≺, X0, x, C + C′) and (C + C′)(y) = C(y) +
C′(y) for all y ∈ RN .

Monotonicity A rule for stochastic scheduling problems with delays ψ satisfies

monotonicity if for all SP = (N,≺, X0, x, C) and all SP′ = (N,≺, X0, x′, C) such

that xi ≤ x′i and xj = x′j for some i ∈ N and for all j ∈ N \ i, then

ψi (SP) ≤ ψi
(
SP′)

Equal responsability for two. A rule for stochastic scheduling problems with de-

lays ψ satisfies equal responsability for two if for all SP = ({1, 2},≺, X0, x, C), then

ψi (SP) = E(C(xi, X0
j )) +

1
2

(
C(xi, xj)− E(C(xi, X0

j ))− E(C(xj, X0
i ))

)
for all i, j ∈ {1, 2} with i ̸= j.

Scale Invariance. A rule for stochastic scheduling problems with delays ψ satisfies

scale invariance if for all SP = (N,≺, X0, x, C) and all λ ∈ (0, ∞)N , we have

ψ
(

N,≺, X0, x, C
)
= ψ

(
N,≺, λX0, λx, Cλ

)
where Cλ : RN → R is given by Cλ(λy) = C(y) for all y ∈ RN , λX0 = (λiX0

i )i∈N

and λy = (λiyi)i∈N .

Independence of Irrelevant Delays. A rule for stochastic scheduling problems

with delays ψ satisfies independence of irrelevant delays if, for all SP = (N,≺
, X0, x, C) such that

E(C(xS∪i, X0
N\(S∪i))) = E(C(xS, X0

N\S)

for i ∈ N and for all S ⊆ N\i, then ψi (SP) = 0.

Note that the "independence of irrelevant delays" above is a kind of null agent

property, in the sense that an activity i that satisfies the condition of the property

can be seen as a null agent and therefore, according to the property, should receive
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a zero allocation.

The next result states that the Shapley rule for stochastic scheduling problems

with delays satisfies all the properties above. Its proof is very similar to that of

Theorem 2 of Bergantiños et al. (2018) and, therefore, is omitted.5

Theorem 3.1. The Shapley rule for stochastic scheduling problems with delays satisfies
anonimity, cost additivity, monotonicity, equal responsability for two, scale invariance and
independence of irrelevant delays.

Next we focus on a different property of the Shapley value and how to adapt it

to our context: the balancedness property.

A rule for stochastic scheduling problems with delays satisfies the balancedness

property if it treats all pairs of activities in a balanced way, which more precisely

means that for every pair of activities i and j, the effect of the elimination of i on the

allocation to j (according to the rule) is equal to the effect of the elimination of j on

the allocation to i. To write this property formally, consider a stochastic scheduling

problem with delays SP = (N,≺, X0, x, C) ∈ SPN , with |N| ≥ 2, and i ∈ N. Now,

we define the resulting problem if activity i is eliminated SP−i ∈ SPN\i by

SP−i = (N \ i,≺−i, X0
−i, x−i, C−i)

where:

• ≺−i is the restriction of ≺ to N \ i,

• X0
−i is the vector equal to X0 after deleting its i-th component,

• x−i is the vector equal to x after deleting its i-th component, and

• C−i : RN\i → R is given by C−i(y) = E(C(y, X0
i )), for all y ∈ RN\i.

We now formally write the balancedness property.

Balancedness. A rule for stochastic scheduling problems with delays ψ satisfies

the balancedness property when

ψi(SP)− ψi(SP−j) = ψj(SP)− ψj(SP−i)

for all SP ∈ SPN , all finite N, and all i, j ∈ N with i ̸= j.

The following theorem shows that the balancedness property characterises the

Shapley rule.

Theorem 3.2. The Shapley rule is the unique rule for stochastic scheduling problems with
delays that satisfies the balancedness property.

5The proof of Theorem 3.1 is available to readers upon request to the authors.
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Proof. Let us first check that the Shapley rule satisfies the balancedness property.

Take SP = (N,≺, X0, x, C) ∈ SPN and i, j ∈ N with i ̸= j. Then,

SShi(SP)− SShi(SP−j) = Φi(vSP)− Φi(vSP−j), (1)

SShj(SP)− SShj(SP−i) = Φj(vSP)− Φj(vSP−i). (2)

Now, for every k ∈ N, vSP−k is a TU-game with set of players N \ k. For every

non-empty S ⊆ N \ k, 6

vSP−k(S) = EN\(S∪k)(C−k(xS, X0
N\(S∪k)))

= EN\(S∪k)(Ek(C(xS, X0
N\(S∪k), X0

k )))

Now, the independence of the components of X0 implies that

vSP−k(S) = EN\S(C(xS, X0
N\S)) = vSP(S).

Note that for every S ⊆ N \ k, vSP(S) = vSP
−k(S), where vSP

−k ∈ GN\k denotes the

restriction of the TU-game vSP ∈ GN to N \ k. Hence,

vSP−k = vSP
−k for all k ∈ N. (3)

Considering (3) and that Myerson (1980) proved that the Shapley value of a TU-

game satisfies a balancedness property, the equations in (1) and (2) are equal. This

implies that the Shapley rule satisfies the balancedness property.

Suppose now that there exists another rule R ̸= SSh for stochastic scheduling

problems with delays that satisfies the balancedness property. As R ̸= SSh, there

must exist SP = (N,≺, X0, x, C) ∈ SP with R(SP) ̸= SSh(SP). Assume that SP is

minimal, in the sense that: (a) |N| = 1, or (b) |N| ≥ 2 and R(SP−i) = SSh(SP−i)

for every i ∈ N.7 Note that |N| ̸= 1 because otherwise, R(SP) = C(x) = SSh(SP);
hence, |N| ≥ 2. Take i, j ∈ N with i ̸= j. As R and SSh satisfy the balancedness

property, then

Ri(SP)− Rj(SP) = Ri(SP−j)− Rj(SP−i),

SShi(SP)− SShj(SP) = SShi(SP−j)− SShj(SP−i).

Now, considering the minimality of SP,

Ri(SP)− Rj(SP) = SShi(SP)− SShj(SP)

6To facilitate the reading of this proof, when dealing with the mathematical expectation of a random
vector, we explicitly indicate the components of the vector to which the mathematical expectation refers.

7This assumption is without loss of generality because if SP ∈ SPN is not minimal, we can eliminate
one by one the elements of N until we have a minimal SP′ with R(SP′) ̸= SSh(SP′).
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or, equivalently, Ri(SP) − SShi(SP) = A ∈ R, i.e. it does not depend on i. But

then, A = 0 because ∑j∈N Rj(SP) = C(x) = ∑j∈N SSj(SP). This implies that

R(SP) = SSh(SP), and the proof is concluded.

Next we illustrate the performance of the Shapley rule in two examples. Note

first that the Shapley rule behaves in Example 2.1 as desired. For the stochastic

scheduling problem with delays SP, we can easily check that:

• vSP(1) = E(C(7, X0
2)) = 13/12,

• vSP(2) = E(C(X0
1 , 7)) = 29/20,

• vSP(N) = C(7, 7) = 1,

and then, SSh(SP) = (0.31666, 0.68333). Thus, activity 2 receives a larger part of

the delay cost, as it should. Note that in this example, SSh(SP) can be easily exactly

calculated. In general, SSh cannot be exactly calculated, but can be estimated using

simulation techniques. Consider now a new example that is slightly more complex.

Example 3.1. Consider the stochastic scheduling problem with delays SP = (N,≺, X0, x, C)
given by:

N 1 2 3 4 5

≺ - 1 - 1,3 2

X0 t(1,2,3) t(1/2,1,3/2) t(1/4,1/2,9/4) t(3,4,5) exp(1/2)

x 2.5 1.25 2 4.5 3

and, for every y ∈ RN ,

C(y) =

{
0 if d(N,≺, y) ≤ 6.5,
d(N,≺, y)− 6.5 otherwise,

where t(a, b, c) denotes the triangular distribution with parameters a (minimum), b (mode),
and c (maximum), and exp(α) denotes the exponential distribution with parameter α (i.e.,
with mean 1/α). As we remarked in Example 2.1, the table does not give the entire binary
relation ≺ but only the immediate precedences. For instance, because 1 precedes 2, 2 pre-
cedes 5 and ≺ is transitive, then 1 must precede 5; however, the table only indicates that 2
precedes 5. The entire ≺ is easily obtained as the smallest transitive binary relation over N
that contains the given elements of ≺. In this case, the table displays

(1, 2), (1, 4), (3, 4), (2, 5)

and then
≺= {(1, 2), (1, 4), (1, 5), (3, 4), (2, 5)}.
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Figure 1: PERT graph of the project in Example 3.1

In some cases, it is more instructive to give the PERT graph representing the precedences
instead of the precedences and ≺. The PERT graph in this example is given in Figure
1, where, for each arc, we indicate the activity that it represents and the duration of this
activity according to x; the dotted arc corresponds to a fictitious activity, that is needed
to build a graph representing the precedences in this project. Fictitious activities always
have zero duration. It is easy to check that d(N,≺, x) = 7 (remember that the duration
of a project is equal the duration of its longest path in the PERT graph), and then C(x) =
0.5. To allocate this cost amongst the activities in a fair way, note first that E(X0) =

(2, 1, 1, 4, 2), and thus, all activities have a delay with respect to their expected durations.
If we take a naive approach, i.e., if we allocate the delay cost by using the Shapley rule for
SP = (N,≺, E(X0), x, C), we have

Sh(SP) = (0.27083, 0.02083, 0, 0.18750, 0.02083).

At first sight, this is a reasonable allocation of the delay cost. Activities 1 and 4 belong to the
longest path in project (N,≺, x), and thus, receive most of the delay cost. The cost allocated
to activity 1 is greater than that allocated to activity 4 because activity 1 also belongs to
a path with a duration greater than 6.5 (the path 1-2-5 has duration 6.75). Activity 3
only belongs to one path with duration 6.5, and produces no delay cost. Therefore, it pays
0. However, note that this allocation does not consider the probability distributions of the
durations of the activities but only their averages. For instance, the duration of activity 5
follows an exponential distribution, the support for which is [0, ∞). This means that its
duration can be very long, and therefore, can produce a longer delay. However, its duration
is not very long; so, in a sense, activity 5 contributes to a lack of delay in the project.
This is captured by the Shapley rule for stochastic scheduling problems with delays. Using
elementary simulation techniques, vSP can be estimated in a good way and then SSh(SP)
can be calculated; the result is

SSh(SP) = (0.28960, 0.09834, 0.07641, 0.20659,−0.17095).

It should be noted that this allocation differs from Sh(SP) primarily in that activity 5
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receives a kind of reward for not being too late, where this reward is paid by activities 1, 2,
and 4, which last longer than expected and belong to paths whose durations entail a delay
cost.

We now use a small simulation experiment indicating that, on the average, when x is
drawn from X0, the cost allocation provided by SSh causes activity 5 to pay the largest
part of the delay cost. We then realise that SSh tends to allocate the delay cost to activities
1, 4, and 5, but that it is very sensitive to the durations of the activities. We simulated
1,000 times the durations of the activities such that the 1,000 corresponding durations
of the projects were greater than 6.5, i.e. we simulated (xi)i∈{1,...,1000}, each xi

j being an
observation of X0

j , all drawn independently and in such a way that C(xi) > 0. Thus, we
obtained 1,000 stochastic scheduling problems with delays SPi = (N,≺, X0, xi, C) as well
as their 1,000 associated proposals of the Shapley rule SSh(SPi). We then calculated

∑
i∈{1,...,1000}

SSh(SPi)

1000
= (0.12857, 0.06844, 0.06686, 0.10757, 0.93790), (4)

where the average observed cost was 1.30935. Note that (4) showed that, in effect, when
there are positive delay costs in an implementation of the stochastic project SP = (N,≺
, X0) the delay cost function being C, the cost allocation provided by SSh primarily burdens
activity 5. This suggests that the vector of actual durations x that we handle in this example
could be considered atypical because SSh5(SP) < 0. Figure 2 confirms it. It displays the
density estimations of the variables Z1

i (solid line) and Z2
i (dotted line), i ∈ {1, . . . 5}, such

that

• Z1
i is the i-th component of Sh((N,≺, E(X0), X, C)), where X denotes the random

variable corresponding to an observation of X0; and

• Z2
i is the i-th component of SSh((N,≺, X0, X, C)), where X denotes the random

variable corresponding to an observation of X0.

Note that the scales of the five graphics in Figure 2 are different, which is a relevant feature
to interpret them. It is not possible to adjust the scales while maintaining the informative
graphics. It is interesting to note that the variables Z1

i and Z2
i are significantly different

for each i, which strengthens the interest of the rule SSh. Finally, Table 1 displays the
percentage of times that each of the activities (in columns) received non-negative or neg-
ative allocations (in rows) according to Sh and SSh. Again, activity 5 shows the largest
discrepancies between the deterministic and the stochastic scenario, because if its planned
duration equals its mean duration (as we assume occurs in the deterministic scenario) the
marginal contribution of activity 5 to each possible coalition in the corresponding game
cannot be negative, and thus Sh5((N,≺, E(X0), x, C)) ≥ 0 for all x; this does not happen
in the stochastic scenario in which its duration is described by X0

5 and not by E(X0
5).

Example 3.1 raises one controversial property of Sh and SSh: they can propose

14



Figure 2: Density estimations of the variables Z1
i (solid line) and Z2

i (dotted line)
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Sh 1 2 3 4 5
≥ 0 70.5 74.9 100 91.1 100
< 0 29.5 25.1 0.0 8.9 0

SSh 1 2 3 4 5
≥ 0 75.0 85.5 100 95.5 48.3
< 0 25 14.5 0.0 4.5 51.7

Table 1: Positive and negative payments for the Sh rule (left) and SSh rule (right)

negative allocations to some activities. This can be seen as a counter-intuitive fea-

ture, mainly because we are dealing with the issue of how to allocate delay costs

when these occur. However, it must be borne in mind that in the context we are

studying, even if we are only interested in "delay costs", there will inevitably be ac-

tivities whose observed durations contribute positively to the occurrence of such

costs and others whose observed durations contribute negatively and, then, it is

not so counter-intuitive for a rule to propose negative allocations to some activi-

ties. In any case, it is clear that in some scenarios it will be inadmissible to allocate

negative values to some activities even though their participation has contributed

to reducing the final delay of the project and, therefore, its delay cost.

Let us see now what condition concerning non-negativity can we prove for Sh
and how can it be extended to SSh.

Theorem 3.3. (a) Let P = (N,≺, x0, x, C) be a deterministic scheduling problem with
delays. Then, for every i ∈ N,

xi ≥ x0
i ⇒ Shi(N,≺, x0, x, C) ≥ 0.

(b) Let SP = (N,≺, X0, x, C) be a stochastic scheduling problem with delays. Then, for
every i ∈ N,

C(xi, yN\i) ≥ E(C(X0
i , yN\i)) ∀ yN\i ∈ RN\i ⇒ SShi(N,≺, x0, x, C) ≥ 0.

Proof. (a) Take i ∈ N such that xi ≥ x0
i . Since C is non-decreasing then, for all

S ⊆ N\i,

vP(S ∪ i) = C(xi, xS, x0
N\(S∪i)) ≥ C(x0

i , xS, x0
N\(S∪i)) = vP(S).

Hence Shi(P) = Φi(vP) ≥ 0.

(b) Take i ∈ N such that C(xi, yN\i) ≥ E(C(X0
i , yN\i)) for all yN\i ∈ RN\i. The

independence of the components of X0 implies that, for all S ⊆ N\i,

vSP(S ∪ i) = E(C(xi, xS, X0
N\(S∪i))) ≥ EN\(S∪i)(Ei(C(X0

i , xS, X0
N\(S∪i))))

= E(C(X0
i , xS, X0

N\(S∪i))) = vSP(S).

Hence SShi(SP) = Φi(vSP) ≥ 0.
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It may be worth noting that the sufficient condition in subparagraph (b) ex-

tends, in some way, the condition in subparagraph (a). We cannot transfer directly

to the stochastic case condition xi ≥ x0
i because it is not clear how to compare a

real number (xi) with a random variable (X0
i ); on the other hand, xi ≥ E(X0

i ) is

not a sufficient condition for the non-negativity of SSh. However, since C is non-

decreasing, xi ≥ x0
i implies that C(xi, yN\i) ≥ C(x0

i , yN\i). Now, if we replace x0
i

with X0
i and we take the mathematical expectation, we do obtain a sufficient condi-

tion (in view of Theorem 3.3). It is not difficult to check that an alternative sufficient

condition is that xi ≥ z for all real number z in the support of the random variable

X0
i . In words, every condition of the type "xi is sufficiently large in view of the

distribution of X0
i " guarantees the non-negativity of SSh.

4 Computational Analysis

The calculation of the Shapley value has, in general, an exponential complexity.

Although equivalent expressions with polynomial complexity can be used in some

game classes, this is not the case for the class of games with which we are dealing.

Calculating the Shapley value in our context is impossible in practise, even for a

moderate number of activities. For example, if the number of activities is 100, there

are 2100 coalitions in which the characteristic function must be evaluated. However,

in spite of these difficulties, we are still strongly interested in the Shapley value for

its good properties in our particular context as it was discussed in the previous

sections. As an alternative to exact calculation, Castro et al. (2009) proposed an

estimate of the Shapley value in polynomial time using a sampling process.

In addition, to estimate the Shapley rule for stochastic scheduling problems

with delays we also need to calculate vSP(S) = E(C(xS, X0
N\S)), with S ⊆ N. In

some simple cases, these mathematical expectations can be calculated in a simple

way using the properties of order statistics; but in general, we need to use simula-

tions to approximate vSP.

The aims of this section are twofold: First, to illustrate the implementation of

the estimation of the Shapley rule for stochastic scheduling problems with delays

through its pseudocode, from which it is easy to check that the computational com-

plexity of our rule is O(n4); and second, to show by examples that it is possible to

estimate the Shapley rule for stochastic scheduling problems with delays in an ac-

ceptable time, even if there are hundreds of activities, by using a desktop computer

and free software. The error in the two phases of estimation is tracked a posteriori

through the estimation of variance and central limit theorem.

Next we are going to show the pseudocode of our implementation; we do it

routine to routine. The first routine aims to reorder the precedence matrix. If there
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are n activities 1, 2, . . . , n, the binary relation ≺ can be written as an n × n matrix

named precedence in which precedenceij = 1 means that i precedes j. We want to

permute the set of activities in order that if i ≺ j then i < j. Note that this task

can always be carried out and allows for faster calculation. Given a matrix P, we

denote its i-th row by Pi,· and its i-th column by P·,i.

Organise precedence matrix

• Begin

P = precedence, index = NULL

While number of P’s columns > 0

Take all i ∈ n such that ∑n
j=1 Pij = 0

index = (index, i)

P = P\Pi,· and P = P\P·,i

end

precedence = precedenceindex,index

• end

The next routine computes the early times for a deterministic scheduling prob-

lem when the duration of the activities is given by x0. The early time of an activity

is the earliest that this activity can begin.

Early times

• Begin

early.timesi = 0 ∀i ∈ N

Organise precedence matrix

I = {i ∈ n, such that ∑n
j=1 precedenceji ̸= 0}

For i ∈ I

prec = {j ∈ n/precedenceji = 1}
early.timesi = max{x0

prec + early.timesprec}
end

• end

Let us consider a deterministic scheduling problem with delays with delay cost

function, for every y ∈ RN , given by:

C(y) =

{
0 if d(N,≺, y) ≤ δ,

d(N,≺, y)− δ otherwise.
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We obtain an estimation of the Shapley rule in polynomial time. The algorithm

consists of taking m ∈ N permutations of the set of players N with equal proba-

bility (Castro et al., 2009). We denote by ΠN the set of permutations of N. We then

calculate |N| real numbers as follows:

π j ∈ ΠN where π j = (π
j
1, ..., π

j
|N|) and j ∈ {1, ..., m}

x(π j)i = v(Prei(π j) ∪ i)− v(Prei(π j))

where Prei(π j) denotes the set of activities that precede activity i in the permuta-

tion π j, i.e., Prei(π j) = {π
j
1, . . . , π

j
k−1 | i = π

j
k}. So, x(π j) ∈ R|N| is the correspond-

ing marginal contributions vector. Finally, the estimated value of the Shapley value

is:

Ŝhi =
1
m

m

∑
j∈1

x(π j)i

for all i ∈ N.

When we address the stochastic version of the problem, we can use nearly the

identical procedure to that in the deterministic case; but in this new situation, we

also need to estimate the TU-game. For this, we simulate the TU-game m1 ∈ N

times and take the average of these values.

The key part of the next routine is the computation of v(S ∪ i), where S =

Prei(π), given by

E(C(xPrei(π)∪i, X0
N\(Prei(π)∪i))).

We compute d(N,≺, y) as the maximum of the sums of the early times of the activ-

ities and their durations.

Estimation of Shapley rule in the stochastic case

• Begin

Determine m and m1

Cont = 0, Ŝhi = 0, timei = 0 ∀i ∈ N and vj = 0 ∀j ∈ m1

For j ∈ m1

X̂0
j,· = sample(X0)

end

Organise precedence matrix

While cont < m

Take π ∈ ΠN with probability 1
n!

For i ∈ n

For j ∈ m1

Early times of (xPrei(π)∪i, X̂0
j,N\(Prei(π)∪i))
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vj = max{max{early.times + (xPrei(π)∪i, X̂0
j,N\(Prei(π)∪i))} − δ, 0}

end

timei = mean(v)

end

Ŝhπ1 = Ŝhπ1 + time1

Ŝhπi = Ŝhπi + timei − timei−1 ∀i ∈ N\1

cont = cont + 1

end

Ŝh = Ŝh
m

• end

To gain insight into the computation time needed to obtain a solution, we se-

lected five problems8 with a number of activities ranging from 10 to 1,000. We

ran the problems on a PC with a 3.70 GHz Core i7-8700K, and 64 GB of RAM on an

Ubuntu 64-bits. The programming language used was R x64 3.4.4. It is freely avail-

able under the GNU General Public License. To improve performance in terms of

time, we used the packages Rcpp and parallel. The package Rcpp was used to

write in C the function early times and parallel was used to parallelise the estima-

tion of the Shapley value by using six cores of our computer.

Table 2 shows the computation times, in seconds, of the five problems, with

10, 30, 100, 300, and 1,000 activities, respectively (in columns). The TU-game was

approximated using m1 = 1000 simulations, while m = 1000 and 10000 estimates

(in rows) were used for the Shapley rule.

10 30 100 300 1000
1000 18 120 1033 7801 118770

10000 211 1329 11941 80521 1277377

Table 2: Computation times in seconds

Table 2 illustrates that it is possible to estimate the Shapley rule for stochastic

scheduling problems with delays in an acceptable time, even if there are hundreds

of activities, by using a desktop computer and free software.

Table 3 shows an estimation of errors, both in the approximation of the char-

acteristic function and Shapley rule by using m = 1000 and 10000 (in rows). As

8These problems were too large to be included in this paper. They can be downloaded from
http://dm.udc.es/profesores/ignacio/stochasticprojects
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above, the columns display the number of activities of the corresponding prob-

lems. All errors are relative and in percent.9 A significance level of α = 0.05 was

used in these estimates. The error in vSP(S) is different for every S ⊆ N, and

therefore, we display the average of 1,000 coalitions chosen in a random way. In

the Shapley rule, each activity has an error, and the table shows the average of all

activities.

10 30 100 300 1000
vSP 2.18 2.96 4.64 2.28 0.83

1000 12.92 13.49 19.37 27.88 12.92
10000 4.17 4.27 6.13 8.82 4.09

Table 3: Errors for vSP and the Shapley rule

Table 3 illustrates that the estimations of the games vSP are rather good, whereas

the estimations of the Shapley rule are acceptable and improve significantly with

the size of m. In conclusion, we can affirm that a real problem of great dimension

can be solved in a satisfactory way in a reasonable time using our methodology.
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