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Abstract: Several studies have evaluated PM concentrations in single specific microenvironments
as a measure of exposure in the entire house. In this study, PM10 was monitored at the same time
in three microenvironments (bedroom, living room, and kitchen) from three dwellings located in a
small inland town of the Iberian Peninsula to assess whether exposure varies significantly between
them. Real-time optical instruments and low-volume gravimetric samplers were employed. A multi-
wavelength absorption instrument was used to determine black carbon (BC) concentrations on the
filters. The Multiple-Path Particle Dosimetry Model (MPPD) was applied to evaluate the deposition
of PM10 and BC in the airways of adults. For all dwellings, the highest PM10 concentrations were
recorded in bedrooms (B1 = 22.7 µg m−3; B2 = 19.5 µg m−3; and B3 = 68.1 µg m−3). Houses 1 and 3
did not show significant differences between microenvironments. This did not happen in house 2,
suggesting that ventilation is a determining factor for concentrations. BC originated mainly from
fossil fuel emissions (90%), while biomass burning represented a minor contribution (10%). MPPD
showed that PM10 is predominantly deposited in the head region (≥85% of the total dose), while
BC is mainly deposited in the pulmonary region (14%). Higher doses were estimated for males than
for females.

Keywords: dwellings; microenvironments; PM10; BC; dose; MPPD

1. Introduction

Air pollution has become a growing public health concern, especially in indoor envi-
ronments, where people spend most of their time [1–3]. Scientific evidence has shown that
inhalation of polluted air is associated with increased mortality and morbidity rates [4,5],
reduced lung function [6,7], worsening of cardiorespiratory diseases [8,9], and cancer [10],
even at low doses and short-term exposures. The World Health Organization (WHO) has
estimated that a total of 3.2 million deaths per year worldwide are attributable to exposure
to particulate matter (PM) in domestic environments [11]. PM is classified as a group
1 carcinogen and ranks fifth on the list of global death factors [12,13]. PM is a complex
mixture of solid and liquid particles suspended in the air, varying in shape, aerodynamic
diameter, and chemical composition, depending on the sources or formation processes [14].
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The assessment and management of outdoor air quality are well-documented, with
legally stipulated limit values in European countries. However, indoor air quality is
regulated only in some countries (e.g., Portugal, Finland, Slovenia, and Lithuania). Rapid
urbanisation contributes to changes in the lifestyle and habits of the population, with
residents spending more than 90% of their time indoors, most of which is in homes [15].
Furthermore, indoor PM concentrations and chemical composition can be very distinct from
those observed outdoors [16–18], with higher levels of PM and specific elements reported
for indoor environments [19]. Thus, it is equally or even more important to assess PM
inhalation and deposition in the human respiratory tract in these environments. In general,
indoor PM concentrations are influenced by human activities, including emission sources
such as cooking [20], smoking [21], heating systems [22], and particle resuspension [23], as
well as residential characteristics, such as distance from external sources, orientation and
layout, ventilation rates, air infiltration, and building materials [24–26].

Several studies have documented PM concentrations in specific microenvironments in
dwellings, including living rooms, bedrooms, and kitchens [27–32]. Due to the noise gen-
erated by gravimetric instruments, few studies have evaluated these microenvironments
simultaneously using reference methods. In general, the characterisation of dwellings is
based on a single microenvironment using low-cost and/or photometric devices, which
generate less discomfort for residents. However, the unavailability of a reference method
simultaneous with other devices makes data interpretation difficult, since the aerosol com-
position can be different for each microenvironment. Thus, the present study focuses on
monitoring PM10 concentrations in three different microenvironments (bedroom, living
room, and kitchen) simultaneously, using optical and gravimetric equipment, to assess
whether concentrations measured in one room are representative of exposures in other
spaces of the house. In addition, Multiple-Path Particle Dosimetry (MPPD) was applied to
evaluate the PM10 and BC deposition in the human respiratory tract for each microenviron-
ment. The study can provide important information for directing future research in indoor
microenvironments in dwellings and human health assessments.

2. Materials and Methods
2.1. Monitoring Sites

An indoor monitoring campaign in specific microenvironments (bedroom—B, liv-
ing room—LR, and kitchen—K) was conducted in three naturally ventilated dwellings
(Figure 1) in the city of Bragança. With a population of about 35,000 inhabitants [33], Bra-
gança is located in the northeast of Portugal in a mountainous region (alt. 690 m), with a
temperate climate (Csa) according the Köppen–Geiger classification [34]. The climate of the
region is characterised by high thermal amplitude, with dry and hot summers and frequent
rains in winter [35].
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residence could opportunely write down the activities developed there. Volunteers were 
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Given the annoying noise of the equipment, especially in the bedroom, the three target
homes were selected from among the few residents who volunteered to participate in the
study. The different configurations of each microenvironment are described in Table 1.

Table 1. Characteristics of dwellings and specific microenvironments.

Characteristics
House 1 House 2 House 3

B LR K B LR K B LR K

Location Residential area High-density traffic avenue Apartment building/complex
Orientation Yard Street Street Street Yard Yard Parking Parking Street
Area (m2) 16 30 30 12 20 10 10 40 20
Ventilation settings CDSW * ODSW * ODOW * CDSW * CDCW * CDCW * CDSW * ODOW * ODCW *
Permanent occupants 4 3 4
Daily occupancy (h) 20 14 24
Pets 2 cats No 1 dog
Source of energy for
cooking Gas Gas Gas

Apartment floor 1 1 3

* OD/CD—open doors/closed doors; OW/SW/CW—open windows/semi-open windows/closed windows.

The selected houses were occupied by non-smoker students aged between 25–30 years.
Students in Bragança represent 1/3 of the total population. During the sampling campaign,
a logbook was left in each microenvironment so that the occupants of the residence could
opportunely write down the activities developed there. Volunteers were requested to carry
out activities under normal conditions. It is worth mentioning that, even though no heating
system was used during the monitoring period, house 1 has an open fireplace, which may
affect the ventilation rates of this environment. None of the houses had open spaces, that is,
all microenvironments were individual rooms, communicating with each other through
hallways. The average distance between microenvironments was 7 m.

2.2. Experimental Setup

Sample collection of PM10 took place over 3 weeks in the 2022 spring, from the end of
May to mid-June, covering one week in each dwelling. Continuous monitoring of PM10
was performed with photometric instruments (DustTrak, DRX 8533 and Optical Particle
Size, OPS 3330, both instruments from TSI Inc., Shoreview, MN, USA). Measurements of
CO2 were carried out with WolfSense probes (Gray Wolf®, Roswell, GA, USA, IQ-610).
The real-time monitors were operated with a sampling rate of 1 min and were previously
calibrated by the manufacturers before the monitoring campaign. In addition, before
moving to the next house, the inlet was cleaned, the impactors greased, and the zero check
was performed with a high-efficiency particulate air (HEPA) filter. Simultaneously, the
gravimetric collection of PM10 took place for 24 h and was performed by low-volume
samplers (Echo Tecora, Italy and Leckel LVS6, Germany) at a constant flow rate of 2.3 m3

h−1, equipped with 47 mm pre-weighed PTFE filters (Pall).
The instrumentation set consisted of one photometric and gravimetric instrument

and a CO2 monitor for each microenvironment, following the same configuration in each
dwelling: bedroom—OPS, Tecora, and WolfSense; living room—DustTrak, Leckel, and
WolfSense; and kitchen—DustTrak, Leckel, and WolfSense. CO2 was used to calculate the
air change rate. In all microenvironments, the samplers were positioned at a minimum
distance of 1 m from the walls and at 1.5 m height, which corresponds approximately to
the breathing zone.

2.3. Data Quality Assurance

Photometric instruments can provide a high spatiotemporal resolution capable of
reporting PM in real time [36–38]. However, these instruments can suffer deviations due to
different responses in the measurement of various types of aerosols [39,40]. The calibra-
tion process is essential to ensure accurate measurements under the prevailing ambient
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conditions. Tecora and Leckel samplers are certified by the European Committee for Stan-
dardisation as reference instruments for PM10 measurements according to EN 14907. In
situ comparisons between photometric and gravimetric instruments showed a good re-
producibility for 24 h measurements for each microenvironment: bedroom (r2 = 0.82–0.92;
slope between 0.8 and 1.1 and y-offset between −5.5 and 3); living room (r2 = 0.84–0.99;
slope between 0.7 and 2 and y-offset between −0.21 and −0.04); and kitchen (r2 = 0.83–0.91;
slope between 1.6 and 2.6 and y-offset between −4.1 and 1.8). Therefore, PM10 hourly con-
centrations of DustTrak and OPS instruments were rectified using the equations (Figure S1,
Supplementary Material) obtained from the intercomparison with the reference method.
The values found are in agreement with previous studies, in which it was observed that
the OPS (factory calibrated with density of 1 g cm−3) generally underestimates the con-
centrations in relation to the gravimetric method [41], while DustTraks (factory calibrated
with Arizona Road Dust with a density of 2.65 g cm−3) overestimate by 1.94–2.57 times
filter-based concentrations [39,42,43].

2.4. Air Change Rate

To characterise the ventilation in the microenvironments, air changes per hour (ACH,
h−1) were calculated using the CO2 decay method. Decay or step-down methods can be
used when a space is vacated after occupancy. ACH is typically estimated by analysing
how quickly CO2 concentrations decrease in a room after the source has been stopped.
More details can be found in Hänninen [44] and elsewhere. Previous studies applied the
same methodology in different microenvironments, such as educational buildings [45],
classrooms [46], and a university cafeteria [47].

2.5. Black Carbon Analyses

All PM10 samples obtained from gravimetric measurements were analysed by a Multi-
wavelength Absorption Black Carbon Instrument (MABI, Ansto) to determine the BC
concentrations in the filters. The light absorption was measured through unexposed
filters (Io) and exposed filters (I) at seven wavelengths (405 nm, 465 nm, 525 nm, 639 nm,
870 nm, 940 nm, and 1050 nm), and the BC mass concentrations were determined for each
wavelength following Equation (1):

BC
(
µg m−3

)
=

102.A
ε.V

.ln
[

Io

I

]
=

babs
ε

(1)

The mass absorption coefficient (ε) for each wavelength (Table S1, Supplementary
Material) was estimated using the central wavelength (λ = 639 nm) as a reference with a
value of ε = 6.036 m2 g−1, which was recommended for 47 mm Teflon filters by ANSTO [48]
and Ryś et al. [49]. BC from different sources can vary in light-absorbing ability. Concentration
from biomass burning is mainly associated with the lowest wavelength (405 nm), while fossil
fuel emissions are related to the highest wavelength (1050 nm) [49,50]. This allows for differ-
entiation of biomass burning contributions by subtracting BC405 nm–BC1050 nm concentrations.

2.6. Deposition Dose and Dosimetry in the Human Respiratory Tract

PM10 and BC depositions in the human respiratory tract (HRT) were calculated using
the Multiple-Path Particle Dosimetry model (MPPD, v 3.04). The model can provide the to-
tal and regional deposition fractions (DFs) in the HRT, namely on head (H), tracheobronchial
(TB), and pulmonary (P) regions [51]. DF refers to the proportion of size-segregated par-
ticles that deposit in a specific region compared to the total mass of particles of the same
size that initially enter in the HRT [52]. A constant exposure scenario considering a light
activity (e.g., sitting) was set for adult males and females (25–30 years old). The physiologi-
cal parameters used in the model were obtained from the International Commission on
Radiological Protection (ICRP) [53], and these are given in Table 2. The Yeh-Schum 5-Lobe
model was adopted, representing an asymmetric human lung with multiple paths [54].
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Table 2. Input parameters in the MPPD model.

Parameters
Options/Values

Adult Male Adult Female

A
ir

w
ay

M
or

ph
om

et
ry Species Human

Model Yeh/Schum 5-Lobe
FRC (mL) a 3300 2680

URT volume (mL) a 50 40
Pa

rt
ic

le
Pr

op
er

ti
es

Density (g cm−3) 1

Aspect ratio 1
Diameter (µm) MMAD
Particle distribution Single
MMAD H1 = 5.96, H2 = 4.95, H3 = 7.74
GSD H1 = 2.13, H2 = 3.17, H3 = 2.82

Ex
po

su
re

Sc
en

ar
io

Exposure condition Constant exposure

Aerosol concentration (µg m−3) Mean of PM10
Breathing frequency (min−1) a 12 14
Tidal volume (mL) a 750 464
Inspiratory fraction 0.5 0.5
Breathing scenario Nasal

a Reference [53]; H1 = house 1; H2 = house 2; H3 = house 3; URT—upper respiratory tract; FRC—functional
residual capacity; MMAD—mass median diameter; GSD—geometric standard deviation.

The model default particle density (1 g cm−3) and a shape factor value of 1 were
assumed to run the model. PM10 mass median diameter (MMAD) and geometric standard
deviation (GSD) were calculated for each dwelling using the size-segregated data obtained
from the OPS (16 channels in the range from 0.3 to 10 µm). MMAD and GSD values for BC
were taken as 0.3 µm and 2.92, respectively, based on the study by Hitzenberger et al. [55].
The PM10 and BC total and regional doses were estimated using Equation (2) [56]:

Dose
(
µg min−1

)
= C × DF × VE (2)

where C is the mean concentration of PM10 or BC (µg m−3) for each microenvironment, DF
is the total or regional deposition fraction, and VE is the ventilation per minute (m3 min−1).
The VE values were set to 0.009 m3 min−1 and 0.0065 m3 min−1 for short-term exposure of
males and females, respectively [53].

2.7. Air Mass Trajectories

In the Iberian Peninsula, Saharan dust and wildfire smoke can contribute to increased
PM concentrations [57–60]. To identify possible long-range transport events to the receptor
sites, backward trajectories were calculated using the Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT 4.0) model [61], combined with the location of fire foci
(http://effis.jrc.ec.europa.eu/, accessed on 12 December 2022). In this study, 5-day backward
trajectories were computed for the days with elevated concentrations (>90th percentile),
using the Global Forecast System Reanalysis (0.25◦, global) arriving at 1500 m above ground
level. The 850 hPa pressure level (i.e., 1500 m) was selected as the characteristic height of
the top of the transport layer, which is representative for this region [62].

2.8. Statistical Analyses

All descriptive statistics and tests were performed using SPSS software (IBM Statistics
software v. 24) and MATLAB 2018a (The MathWorks Inc., Natick, MA, USA). PM10
and BC concentrations were tested for normality with the Shapiro–Wilk test. The Mann–
Whitney test was used to evaluate the differences between microenvironments. Pearson’s
correlations were employed to establish linear relationships between gravimetric and
light-scattering measurements. A significance level of 5% was used for all tests (p < 0.05).

http://effis.jrc.ec.europa.eu/


Atmosphere 2023, 14, 1064 6 of 14

3. Results and Discussion
3.1. PM10 Concentrations

From the gravimetric determination of PM10, the indoor daily concentrations of PM10
for all selected microenvironments are shown in Figure 2. High inter-house variations were
observed. Mean concentrations of PM10 in house 3 considering all microenvironments
(51.2 µg m−3) were around 4 and 3 times higher than in house 2 (12.4 µg m−3) and house 1
(17.9 µg m−3), respectively. PM10 levels for each dwelling did not show significant statistical
differences between the monitored microenvironments, except in house 2, for which notable
differences (p < 0.05) were registered. The daily PM10 surpassed the threshold of 50 µg m−3

imposed by the European legislation (Directive 2008/50/EC) on 50% of measurement days
in house 3, whilst no exceedances were observed for houses 1 and 2.
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Figure 2. PM10 24 h mean concentrations and ACH for the whole campaign divided by microenvironments.

The average of the ACH (h−1) calculations for each microenvironment were as follows:
house 1 (B—2.21; LR—2.64; K—3.41), house 2 (B—1.97; LR—1.21; K—1.26), and house 3
(B—2.12; LR—2.84; K—2.42). The information on door/window opening and closing
procedures was recorded by occupants in a logbook. Records suggest that, in house 2,
CDCW (closed doors, closed windows) predominated, which may have contributed to the
lower ACHs and statistical differences between microenvironments. In addition, the living
room of this dwelling was only accessed for a few minutes on three days of the sampling
period, which may explain the low ACH and pollutant concentration values.

The ventilation setting associated with higher daily PM10 concentrations was closed
doors with semi-open windows (CDSW), which was practised in all bedrooms (house 1—
22.7 µg m−3; house 2—17.5 µg m−3; and house 3—68.1 µg m−3). On the other hand, the
lowest PM10 mean concentrations (LR = 6.53 µg m−3; K = 11.7 µg m−3) were recorded in
house 2, for ventilation conditions characterised by CDCW (closed doors and windows).
These results are distinct from those reported by Canha et al. [63], who studied PM10
concentrations for different ventilation configurations in bedrooms, reporting the highest
mean concentrations for CDCW (26.7 µg m−3) and the lowest for ODCW (18.5 µg m−3). The
lower occupancy in the LR and K of house 2 likely contributed to lower PM10 concentrations.
In addition, the ventilation settings (e.g., CDCW) can act as a barrier against infiltration of
air pollutants or migration from another microenvironment. In another study, higher PM10
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concentrations with increasing ACH values were registered because of the infiltration of
outdoor air [30].

The hourly PM10 mean concentrations for the measurement days are shown in Figure 3.
In bedrooms (a, d, and g), PM10 concentrations increased sharply between 8 and 10 a.m.
and 6 and 7 p.m., corresponding to getting up and returning in the late afternoon. Due to
the lower activities registered in the K and LR of the house 2, PM10 concentrations did not
show marked variation throughout the day. On the other hand, PM10 concentrations in the
kitchen of house 1 (c) were linked to frequent cooking activities (9–12 a.m. and 6–9 p.m.).
The living room of the same house presented a very similar pattern (b), probably due to the
migration of cooking fumes from the kitchen and the use of this microenvironment after
meals by the occupants.
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The inspection of the diurnal cycle and the notes in the logbooks referring to the
activities in the bedrooms showed that the highest peaks (house 1 = 55.3 µg m−3 and
house 3 = 339 µg m−3) corresponded to making the beds and the use of aerosol sprays
and incense. Details of the main activities can be seen in Table S2 in the Supplementary
Material. In addition to indoor sources, outdoor contributions to PM levels were notable in
house 3 for all microenvironments. The backward trajectories showed contributions from
the long-range transport of smoke from wildfires located in Zamora (Spain) and dust from
the Sahara (Africa) only for the sampling period in house 3, which is shown in Figure S2 of
the Supplementary Material. Thus, indoor air pollution in house 3 represented a mixture
of indoor sources and long-range transport. Furthermore, in addition to the dominant
mineral matter, anthropogenic constituents such as BC can also represent a significant
aerosol component during dust outbreaks. Different processes can lead to an increase in the
anthropogenic PM load of the dust. Among others, these processes include anthropogenic
emission sources in the proximity of the desert, such as large petrochemical and power
plants, frequent wildfires in the Sub-Saharan region, and interaction between the mineral
particles and anthropogenic emissions during transport [64]. Only on the 1st day (06/12),
no influence of smoke and dust on indoor PM concentrations was observed. On the other
hand, the concentrations recorded on the 5th day (06/15) were the highest, corresponding
to 5.7-, 3.7-, and 3.4-fold increases in PM10 levels compared to those on the first day (06/12)
for the bedroom, living room, and kitchen, respectively. Higher PM10 levels in the bedroom
may be associated with the orientation of the window (opposite to the kitchen and living
room), in addition to common housekeeping activities, which favour dust resuspension in
that microenvironment. Backward trajectories were also calculated for the sampling periods
in houses 1 and 2 and showed no influence of long-range transport of dust or smoke.

In house 2, the morning peak in the bedroom (74.1 µg m−3) can be related to infiltra-
tion from the outdoors of PM from high traffic on the adjacent avenue. In fact, opening
the window took place around 8 a.m., during the period of greatest road congestion [38].
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Abdel-Salam et al. [65] reported stronger correlations between indoor and outdoor PM10
concentrations through frequent opening of ventilation settings, which favours the infiltra-
tion of pollutants from outdoor air into indoor microenvironments.

3.2. Black Carbon Concentrations

BC is emitted directly from combustion sources and is a good indicator of traffic-
related PM pollution [66,67]. Higher percentages of BC in PM10 (between 15% and 22.6%)
were found in house 2. In general, markedly higher concentrations were observed for
BC in the bedrooms (Figure 4) (house 1 = 3.63 µg m−3, house 2 = 2.93 µg m−3, and
house 3 = 5.17 µg m−3), likely due to both indoor activities (candles and incense) and
outdoor sources, including the infiltration of vehicular traffic emissions, given that these
compartments were located on the facade of the buildings facing the main streets.
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the difference in concentrations between the lower (405 nm) and upper wavelengths (1050 nm) to
characterise the contribution of biomass burning.

BCdiff values (black line) higher than 0.5 µg m−3 suggest an impact from biomass
burning combined with other sources, while values close to or less than 0 represent a major
contribution from vehicular emissions [50]. The highest daily values of BCdiff were found
in the bedroom of house 1, likely due to specific indoor sources (candles and incense).
However, BC concentrations in the corresponding days were low (05/29 = 0.83 µg m−3

and 05/30 = 1.01 µg m−3). On the other hand, the highest daily BC value for all microenvi-
ronments (12.1 µg m−3) was recorded in the bedroom of house 1, but no specific activities
were written down in the logbook that allow explaining this concentration, suggesting
infiltration from outdoor pollution from traffic. As expected, house 2 displayed BCdiff
values close to 0 for all microenvironments, confirming the influence of traffic emissions.
Substantial variations in BC concentrations in house 3 were registered. Considering the
entire period, average BC contributions from fossil fuel (BCff) were higher than that from
biomass burning (BCbb) for all houses (house 1: BCff = 90% and BCbb = 10%; house 2:
BCff = 93% and BCbb = 7%; and house 3: BCff = 88% and BCbb = 12%). As mentioned earlier,
the sampling period in this house covered a desert dust intrusion event, which contributed
to increased levels of particulate material and specific chemical constituents [68].

3.3. Deposition Fractions and Dose of PM10 and BC

The PM10 and BC total and regional deposition fractions are shown in Table 3. Total
PM10 deposition fractions ranged from 73% to 86% for males and 69% to 83% for females.
In general, the regional DF of PM10 showed a similar pattern, irrespective of the house:
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H > P > TB. On the other hand, the regional DF for BC presented higher values for the P
region, followed by H and TB. In summary, given that BC is essentially bound to the finest
particles, its deposition is governed by Brownian diffusion, and penetrates deeper into the
airways, while PM10 is mainly deposited in the upper region of the HRT by mechanisms
involving impact and gravitational sedimentation [69,70]. These results are in line with
findings from other authors [38,71,72].

Table 3. Total and regional DF of PM10 and BC.

PM10

Sites Gender Total Head Tracheobronchial Pulmonary

House 1
Male 0.86 0.73 0.04 0.09
Female 0.83 0.69 0.05 0.08

House 2
Male 0.73 0.61 0.03 0.09
Female 0.69 0.57 0.04 0.08

House 3
Male 0.79 0.67 0.03 0.08
Female 0.76 0.64 0.04 0.08

BC

All houses
Male 0.30 0.10 0.06 0.14
Female 0.26 0.08 0.07 0.11

Regardless of gender, total DF was mainly dependent on MMAD and GSD values.
However, the values of the total DF for males were slightly higher than for females, except
for the TB region. The differences in total DFs between genders can be attributed to larger
and heavier lungs, tidal volume, and functional residual capacity for males [73]. Higher
values for males than for females have been also reported in previous studies [74,75].

Doses were estimated for both sexes and the three microenvironments based on
mean PM10 concentrations (Figure 5). The PM10 regional dose showed the largest frac-
tion in the H region: house 1 at 0.07–0.15 µg min−1, house 2 at 0.02–0.11 µg min−1,
and house 3 at 0.17–0.45 µg min−1, representing 86% of the total dose. In compari-
son, the doses for the P region were as follows: house 1 at 0.05–0.08 × 10−1 µg min−1,
house 2 at 0.02–0.05 × 10−1 µg min−1, and house 3 at 0.1–0.2 × 10−1 µg min−1. The
does for the TB region were as follows: house 1 at 0.08–0.18 × 10−1 µg min−1, house 2 at
0.03–0.15 × 10−1 µg min−1, and house 3 at 0.22–0.50 × 10−1 µg min−1. Similar PM10 doses
for the upper region were reported in a previous study, with contributions up to 99% in the
H region [76]. The doses of PM10 followed the trend observed for the DF, with higher values
for males compared to females. Furthermore, regarding the specific microenvironments,
the following order was observed for the dose of PM10: house 3 (B > LR > K) > house 1
(B > K > LR) > house 2 (B > K > LR).

Unlike PM10, BC inhaled in different microenvironments showed the same pattern,
with higher contributions to the P region: house 1 at 1.8–4.6 × 10−3 µg min−1, house 2 at
1.5–3.7 × 10−3 µg min−1, and house 3 at 4.5–6.6 × 10−3 µg min−1. This was followed by
the H region: house 1 at 1.4–3.2 × 10−3 µg min−1, house 2 at 1.2–2.6 × 10−3 µg min−1,
and house 3 at 3.4–4.5 × 10−3 µg min−1. This was then followed by the TB region:
house 1 at 1.0–2.1 × 10−3 µg min−1, house 2 at 0.8–1.7 × 10−3 µg min−1, and house 3 at
2.5–2.9 × 10−3 µg min−1. Doses in the P region accounted for up to 45% of the total doses.
These results highlight the deposition of finer particles, in particular BC, in the pulmonary
region. Several studies have shown increased harm to human health with decreasing
particle sizes [77]. BC deposition in the P region is responsible for severe respiratory
health problems due to the induction of mutagenicity, intracellular oxidative stress, and
inflammatory responses [78,79].
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3.4. Study Limitations

Some limitations to the study carried out can be pointed out, which may partially
influence the interpretations made: (i) lack of monitoring of pollutants outside homes, to
better understand the contribution and infiltration from outdoor sources; (ii) the limited
number of houses covered in the study; (iii) size-segregated PM monitors available only in
the bedrooms (OPS); (iv) calculations of PM10 and BC deposition in the HRT performed
with lung parameters and MMAD and GSD values for BC from the literature and model
calculations only apply to adult males and females (25–30 years old). Hence, future studies
should cover different seasons and simultaneous monitoring inside and outside, including
monitors that provide size-segregated PM and BC concentrations. In addition, more houses
should be considered in other urban areas, with other sources and pollution loads.

4. Conclusions

The monitoring of air pollutants in homes is usually carried out in only one specific
microenvironment. This study demonstrated that the exposure assessment can be biased,
as concentrations can vary from compartment to compartment. The specific ventilation
conditions, together with the different activities by the occupants, were determinant for
the significant differences in PM and BC concentrations. Increasing the air change rate by
opening ventilation settings can improve PM dispersion. However, it can also result in the in-
filtration of certain pollutants from sources other than those present in the microenvironment.

In this study, which covered houses essentially occupied by students, it was found that
the hotspot for exposure to PM10 and BC concentrations is the bedroom microenvironment.
Furthermore, the MPPD model indicated that the highest deposition doses occur in this
hotspot, pointing to higher total deposition fractions of PM10 in the head region, while BC
is mainly deposited in the pulmonary region. It has been observed that finer particles can
penetrate deeper into the HRT, potentially causing adverse health effects, especially for
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males, who inhale higher total doses than females. As future work, a detailed chemical
characterisation of indoor and outdoor pollutants is recommended, including not only
size-segregated particles, but also gases, for a more complete picture of the impact of
domestic activities and specific events on concentrations and exposure.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos14071064/s1. Figure S1. Linear correlation between PM10 concen-
trations obtained from photometric and gravimetric devices for each microenvironment during the
sampling campaign; Table S1. Absorption coefficients (ε) for each wavelength by microenvironment
using λ = 639 nm as baseline; Figure S2. Five-day backward trajectories arriving at house 3 at 6 p.m.
on five different days. Figure S3. Daily profile of CO2 concentrations and activities associated with
each peak.
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