
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bewley, Tom

Title:
Tree Models for Interpretable Agents

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.
Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•Your contact details
•Bibliographic details for the item, including a URL
•An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bewley, Tom

Title:
Tree Models for Interpretable Agents

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.
Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•Your contact details
•Bibliographic details for the item, including a URL
•An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



Tree Models for Interpretable Agents

By

Tom Bewley

Department of Engineering Mathematics
University of Bristol

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of Doctor of
Philosophy in the Faculty of Engineering.

September 2023

Word count: sixty six thousand and twenty five





Abstract

As progress in AI impacts all sectors of society, the world is destined to see increasingly
complex and numerous autonomous decision-making agents, which act upon their environments
and learn over time. These agents have many practical applications, but also pose risks that
demand ongoing human oversight. The field of AI interpretability builds tools that help
human stakeholders understand the structure and origins of agent behaviour. This aids various
downstream tasks, including verifying whether that behaviour is safe and reliable. In this thesis,
we take several new perspectives on the interpretability problem, developing models that give
insight into how agents respond to the state of their environments and vice versa, how they
learn and change over time, and how this process is guided by the objectives supplied by humans
themselves. While shifting between these perspectives, we maintain a coherence of approach by
basing all of our methods on a theory of abstraction with rule-based models called trees.

We begin this thesis by formalising the tree abstraction framework and investigating its
foundations. We then instantiate concrete examples of tree models for representing the behaviour
of an agent not just in terms of its state-to-action policy, but also via its value function and
state dynamics. We exploit the rule-based tree structures to generate textual explanations
of agent actions over time and propose novel visualisations of behavioural trends across the
environment state space. From this point, we further develop the concept of trees as dynamics
models, using a contrastive objective uncover the changes that occur during agent learning. We
visualise these models with graphs and heatmaps, and show how prototype trajectories can be
identified to summarise an agent’s behaviour at each stage of learning.

In the second half of the thesis, we shift perspective to use trees as reward functions for
training agents themselves, which provides an interpretable grounding for learnt behaviour.
Furthermore, we show how reward trees can be learnt from human feedback, thereby drawing a
connection between interpretability and the literature on human-agent alignment. We establish
the e�cacy of reward tree learning via experiments with synthetic and real human feedback on
four benchmark tasks, then explore its interpretability benefits, showing how it enables detailed
monitoring of an agent’s learning progress. After further refining the reward tree learning
method, we evaluate it in the industrially-motivated use case of aircraft handling and develop a
new interpretability technique that is synergistic with model-based agent architectures.

By blending quantitative and qualitative evaluations across a range of environments, we
aim to show how our methods are broadly applicable and provide complementary insights
that could be combined in a unified interpretability toolkit. We view both our individual tree
models, and our diverse but cohesive research strategy, as meaningful contributions to the
interpretability community. However, much work remains to be done, including completing
thorough user evaluations in real-world domains, developing more scalable and optimal tree
learning algorithms, and extending our methods to systems of multiple interacting agents.

i





Author’s Declaration

I declare that the work in this dissertation was carried out in accordance
with the requirements of the University’s Regulations and Code of Practice
for Research Degree Programmes and that it has not been submitted for
any other academic award. Except where indicated by specific reference in
the text, the work is the candidate’s own work. Work done in collaboration
with, or with the assistance of, others, is indicated as such. Any views
expressed in the dissertation are those of the author.

SIGNED: .. DATE: 21st September 2023

iii





Acknowledgements and Dedication

The e↵ort of forcing oneself through the motivational treacle of PhD research is at once brutally
individual and necessarily collective. Although I am far from the researcher I hope to be one
day, my progress so far has largely been due to the input of others, and for that, I will always
be grateful. As I look back, finally, on the past four years, I have many heartfelt thanks to give.

Firstly, to my supervisors, Prof. Jonathan Lawry and Prof. Arthur Richards, for their
complementary expertise and unwavering support through all the doubts and tangents. To Ben,
Rachel, Ian and Freddy at Thales for o↵ering fresh perspectives, real-world grounding, and
a listening ear. To all the sta↵ and fellow students at the Alan Turing Institute for the most
enjoyable, productive and collaborative year of my PhD and for helping me fall deeper in love
with London. To Paul Harper and the entire Engineering Design family for fostering the most
inspirational undergraduate experience I could have hoped for, which gave me the confidence to
embark on something so di↵erent and scary afterwards. To the communities and organisations
behind the software stack upon which my research code is built (PyTorch, Gymnasium, Weights
& Biases...), as well as the excellent Bristol HPC team. And to splendid-microwave-108,
a particularly plucky soft actor-critic RL agent, who provided 750 rip-roaring behavioural
episodes for my analytical delectation.

A deeper thanks still goes to my kind, ambitious and downright ridiculous friends, whose
protracted bad example reminds me that life is really about capsizing canoes, post-COVID
music, and full-commitment fancy dress. To my parents and brother, who have given unfaltering
love in the face of my objectively silly decision to pursue a postgraduate research degree, and to
whom I feel more connected and indebted with every passing year. And above all, to Tash, my
profoundly special wife, who has been here by my side for every ebb and flow of this existential
log flume. Tash, you make my life better every day. You make me better every day. You make
the world better every day. I have no idea where we’re going, but I know the journey will be
great because we are making it together. So let’s keep making it.

This thesis is dedicated to my grandparents: Doreen and Charlie Bewley, Pamela and Donald
Lloyd-Jones. If life is an MDP, they may well have solved it. It turns out the optimal policy
was simple all along...

v



Table of Contents

Page

List of Figures xi

List of Key Notation xv

1 Introduction 1

1.1 The Need for Interpretable Agents . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Agents and their Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Agent Interpretability Landscape . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Defining Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Challenges of the Agent Context . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Intrinsic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Mechanistic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.5 Behaviourist Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Themes, Gaps and Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Research Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Abstraction with Trees 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Symbols and Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 From Conceptual Spaces to Tree Abstractions . . . . . . . . . . . . . . . . . . . 18

2.3.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Axis-alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Query-E�cient Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Abstractions of Agents and Environments . . . . . . . . . . . . . . . . . . . . . 25

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



TABLE OF CONTENTS

3 Tree Models of Agent Behaviour 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Tree Models of Black Box Policies . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Generic Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Recursive Feature Generation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Tree-Structured Policy Model . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Modelling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Tra�c Simulator Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Tra�c Simulator Environment . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Target Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Recursive Generation of the Maximal Feature Space . . . . . . . . . . . 41

3.3.4 Dataset and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.5 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Evaluation by Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Evaluation by On-policy Divergence . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Evaluation by Mean Time Between Failures . . . . . . . . . . . . . . . . 47

3.4.4 Correlations between Quality Metrics . . . . . . . . . . . . . . . . . . . 48

3.5 Model Interpretation and Explanation . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Tree Diagram Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Factual Local Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Counterfactual Local Explanation . . . . . . . . . . . . . . . . . . . . . 52

3.5.4 Temporal Explanatory Stories . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Pit Stop: Reviewing the Policy Modelling Approach . . . . . . . . . . . . . . . 57

3.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.2 What is Missing in a Policy Model? . . . . . . . . . . . . . . . . . . . . 59

3.7 TripleTree: A Multiattribute Tree Abstraction . . . . . . . . . . . . . . . . . 59

3.7.1 Data Preparation and Model Structure . . . . . . . . . . . . . . . . . . 60

3.7.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Model Interpretation and Explanation . . . . . . . . . . . . . . . . . . . . . . . 67

3.9.1 Multiattribute Visualisation in Feature Space . . . . . . . . . . . . . . . 68

3.9.2 Factual, Counterfactual and Temporal Explanation . . . . . . . . . . . . 69

3.9.3 Hypothetical Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Experiments in a Higher-dimensional Environment . . . . . . . . . . . . . . . . 74

3.10.1 Hyperrectangle Projection for D > 2 . . . . . . . . . . . . . . . . . . . . 75

3.10.2 Hyperrectangle Slicing and Visual Counterfactuals . . . . . . . . . . . . 78

vii



TABLE OF CONTENTS

3.10.3 Hypothetical Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Tree Models of Agent Learning 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Theory of Contrastive Spatiotemporal Abstraction . . . . . . . . . . . . . . . . 85

4.2.1 The Contrastive Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Temporal Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Tree Abstraction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Constrastive State Abstraction (CSA) . . . . . . . . . . . . . . . . . . . 91

4.3.2 Contrastive Spatiotemporal Abstraction (CSTA) . . . . . . . . . . . . . 92

4.3.3 Pseudocode and Subfunction Details . . . . . . . . . . . . . . . . . . . . 94

4.4 Scaling of Jensen-Shannon Divergence with m and n . . . . . . . . . . . . . . . 96

4.4.1 Theoretical Analysis for m . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Theoretical Analysis for n . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.3 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 2D Maze Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 State Abstraction Process . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2 Temporal Abstraction Process . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 Pairwise Window Divergence . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.4 Visitation and Transition Time Series . . . . . . . . . . . . . . . . . . . 104

4.5.5 Transition Graph Comparison . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 LunarLander Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.1 Abstraction Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.2 Visitation Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.3 Transition Graph Comparison . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.4 Window Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.5 Posterior analysis and Counterfactual Review . . . . . . . . . . . . . . . 109

4.7 Comparison of Abstraction Algorithm Variants . . . . . . . . . . . . . . . . . . 111

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Tree Models of Human Preferences 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Preference-based Reward Learning . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Interpretable Reward Learning with Trees . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Trajectory-Level Return Estimation . . . . . . . . . . . . . . . . . . . . 123

viii



TABLE OF CONTENTS

5.3.2 Leaf-level Reward Estimation . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.3 Tree Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.4 Tree Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 O✏ine and Online Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 Trajectory Provenance and Diversity . . . . . . . . . . . . . . . . . . . . 131

5.4.2 Growth Initiation, Stopping and Resumption . . . . . . . . . . . . . . . 131

5.4.3 Optimistic Active Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.4 Scheduling of Online Trajectory and Preference Collection . . . . . . . . 133

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.1 Environments and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.2 Common Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Quantitative Performance: Oracle Preferences . . . . . . . . . . . . . . . . . . . 137

5.6.1 O✏ine Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.2 Online Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Quantitative Performance: Human Preferences . . . . . . . . . . . . . . . . . . 141

5.7.1 O✏ine Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.7.2 Online Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.8 Summary of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.9 Interpretability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.9.1 Failure Case: RoboCar using O✏ine Human Preferences . . . . . . . . . 147

5.9.2 Success Case: 2D Maze using Online Oracle Preferences . . . . . . . . . 149

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 A Use Case for Reward Trees 155

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Aircraft Handling Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Methodological Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3.1 Trajectory-Level Return Estimation . . . . . . . . . . . . . . . . . . . . 160

6.3.2 Tree Growth and Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3.3 Model-based RL Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3.4 Online Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.1 Common Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.2 Online Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.3 Policy-Invariant Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.4 Visual Trajectory Inspection . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

ix



TABLE OF CONTENTS

6.4.6 Comparison to Model-free Reinforcement Learning . . . . . . . . . . . . 174

6.5 Interpretability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.5.1 Tree Structure Appraisal . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.5.2 Leaf-level Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5.3 Trajectory Report Card . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5.4 Preference-based Reward Explanation . . . . . . . . . . . . . . . . . . . 179

6.6 Explaining Model-based Action Selection . . . . . . . . . . . . . . . . . . . . . 180

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Conclusions and Further Work 185

7.1 Review of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2 Practical Uses of Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 Successes of the Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.4 Limitations of the Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography 191

x



List of Figures

Figure Page

1.1 The agent-environment interaction cycle and generic reinforcement learning process. 3

1.2 The three perspectives on agent interpretability. . . . . . . . . . . . . . . . . . . . 7

1.3 The parable of The Blind Men and the Elephant. . . . . . . . . . . . . . . . . . . . 15

2.1 A conceptual space in (RD
,Y) form, and four geometric desiderata for abstractions. 20

2.2 Query-centric abstraction e�ciency in (RD
,Y) form conceptual spaces. . . . . . . . 24

2.3 A conceptual spaces model of agent-environment interaction. . . . . . . . . . . . . 27

3.1 Generic problem setup for interpretable policy modelling. The objective is to minimise

the loss between at and a
0
t 8t 2 {1, . . . , N} while ensuring both the feature function

� and policy model ⇡0 are comprehensible under human scrutiny. . . . . . . . . . . 33

3.2 A state-action dataset as observations in a conceptual space in (�all(S),Y) form,

where �all(S) is the maximal state feature space and the only attribute is the agent’s

action, Y = {A}. Here, A contains five discrete actions, A = (--, -, 0, +, ++), which

match those in our tra�c simulator experiments. Also shown are tree abstractions

at three stages during the modelling procedure: splitting the root, growing to zero

impurity, and pruning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Left: A selection of track topologies for the tra�c environment, with vehicles shown

as coloured rectangles and junctions represented by red circles. Right: Definition of

the six features used by ⇡F, as measured by the blue vehicle. . . . . . . . . . . . . 40

3.4 Curves of validation set accuracy and number of features used across the pruning

sequences for each target policy. The rightmost point in each curve corresponds to

the unpruned tree X . Numbered vertical lines indicate the trees chosen to carry

forward to evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Left: Track topologies. Right: Model accuracy on an unseen test set Dtest. . . . . 46

3.6 Expected divergence from target policy after 1000 timesteps. . . . . . . . . . . . . 46

3.7 Mean time between failures across 100 episodes of up to 1000 timesteps. . . . . . . 46

3.8 Correlations between model rankings on all topologies and quality metrics. . . . . 48

xi



LIST OF FIGURES

3.9 Ground truth tree and learnt tree model (pruning level 5) for the fully-learnable

policy ⇡F. Leaf labels indicate their modal actions as follows: --! �vmax
4 ; -! �vmax

12 ;

0! 0; +! vmax
12 ; ++! vmax

4 . Split thresholds used in rules are rounded to 2 d.p. . . 50

3.10 To find the minimal counterfactual for state s
⇤ and foil action a

0, we start by

identifying the set of leaves satisfying the foil condition X(action=a0) (= {x1, . . . , x5}
here), then find the closest point to f⇤ = �(s⇤) on the boundary of each. We filter

first by the 0-norm of the corresponding � vectors; this removes f(⇤!x1) and f(⇤!x5)

from contention. We then sort by 2-norm (faint green circle), which identifies f(⇤!x4)

as the minimal counterfactual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 Conceptual space representation of TripleTree. . . . . . . . . . . . . . . . . . . . 61

3.12 The 2-dimensional road environment. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Prediction losses for four variants of the road environment, with Rleft, Rright, Rspeed

as stated in the left-hand labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.14 Analysis of worst-case loss across the space of weight vectors for trees of various

sizes. Coloured dots show the identity of the worst loss (blue: action, red: value,

green: derivatives) at the 21 weightings tested. Heatmaps show the magnitude of the

worst loss as a ratio of the loss from a one-leaf tree, linearly interpolated between

test locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.15 Five types of visualisation using TripleTree. . . . . . . . . . . . . . . . . . . . . 68

3.16 Various kinds of rule-based explanation for action and value. . . . . . . . . . . . . 70

3.17 Illustrating the inadequacy of previous methods for counterfactual explanation in

the temporal context, and the proposed MBB-based approach. . . . . . . . . . . . 71

3.18 Hypothetical trajectories in the road environment, and example of a trajectory

overlaid onto action and value visualisations. . . . . . . . . . . . . . . . . . . . . . 74

3.19 Training and validation losses in LunarLander. . . . . . . . . . . . . . . . . . . . . 75

3.20 Hyperrectangle projection process for D = 3. Colours represent the leaf-level sum-

mary statistic to be visualised, such as mean action or value, or observation density.

Notice that the final colour of each rectangular area is an average of the leaf cuboids

above it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.21 Partial dependence plots for the LunarLander policy. . . . . . . . . . . . . . . . . . 77

3.22 Displaying visual counterfactuals for the LunarLander policy on ICE plots. . . . . 78

3.23 Hypothetical trajectories for the LunarLander policy. . . . . . . . . . . . . . . . . . 80

4.1 Application of state abstraction to a k = 3-policy transition dataset. . . . . . . . . 87

4.2 Two state abstraction options and their resultant JSD values. . . . . . . . . . . . . 89

4.3 Two temporal abstraction options and their resultant JSD values. . . . . . . . . . 90

xii



LIST OF FIGURES

4.4 Scaling of JSD with m and n for random trajectories in [0, 1]2 with various velocity

and noise parameters v,�, and when selecting both random axis-aligned splits

(orange) and those that maximise the contrastive abstraction objective (blue). Top

row: scaling with m. Bottom row: scaling with n for the specific values of m shown. 100

4.5 2D Maze environment, learning curve and transition data for 750 learning episodes. 101

4.6 Visualisation of state abstraction process for 2D Maze environment. . . . . . . . . 102

4.7 Visualisation of temporal abstraction process for 2D Maze environment. . . . . . . 103

4.8 Additional results figures for 2D Maze environment. Note: ; = episode termination. 104

4.9 LunarLander, learning curve and transition data for 500 random/learning episodes. 106

4.10 Abstraction results and analysis for LunarLander environment. . . . . . . . . . . . 108

4.11 Posterior analysis of an unsuccessful (crash) landing during the random phase. . . 110

4.12 Posterior analysis of a successful landing late in learning. . . . . . . . . . . . . . . 110

4.13 Distribution of regularised JSD rankings of 24 algorithm variants across 25 regu-

larisation settings for each of three datasets of learning agent transitions. Variants

sorted by median rank across all datasets and regularisation settings (ties broken

by mean rank). Box plot whiskers located at 1.5⇥ IQR below/above lower/upper

quartiles respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.14 Comparison of original and ‘best’ variants across all 75 evaluation cases. First four

columns show normalised di↵erences (i.e. (best�original)/best) in the stated metrics,

with > 0 indicating that ‘best’ improves (regularised) JSD and < 0 being preferable

for m and n. Final column compares runtimes of the two variants; < 1 indicates

that ‘best’ is faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Pairwise trajectory preferences as a directed graph. . . . . . . . . . . . . . . . . . . 121

5.3 The four stages of reward tree learning applied to a toy example of K = 4 preferences

over N = 4 trajectories in a D = 2-feature space (Figure 5.2 duplicated above for

reference). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Flow diagram of online reward tree learning. . . . . . . . . . . . . . . . . . . . . . 131

5.5 Empirical pair sampling probabilities (averaged over 100 repeats) for Kmax = 2000

preferences over Nmax = 100 trajectories, which arrive in batches of size Nbatch = 10.

The preference batch size scheduling (Equation 5.15) and the recency constraint

(Equation 5.16) must be implemented in tandem to correct the earliness bias fully

and achieve uniformity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 The four RL environments used in experiments. . . . . . . . . . . . . . . . . . . . . 134

5.7 Performance in o✏ine setting using oracle preferences; additional plots for 2D Maze.138

5.8 Performance in online setting using oracle preferences; learning timeline for RoboCar.140

5.9 Performance in o✏ine setting using human preferences; additional plots for Pendulum.142

5.10 Performance in online setting using human preferences; results with learning timelines

for 2D Maze and LunarLander. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xiii



LIST OF FIGURES

5.11 Tree diagram and other visualisations for a failure case in RoboCar. . . . . . . . . 149

5.12 Tree diagram and other visualisations for a success case in 2D Maze. . . . . . . . . 151

6.1 State-action space of aircraft handling domain, and diagrams of all three tasks. . 158

6.2 Comparison of old (least squares matrix) and new (NLL gradient) methods of

trajectory-level return estimation for a toy example of Kmax = 1000 noise-free oracle

preferences over Nmax = 100 trajectories with normally distributed ground truth

returns. 20 repeats completed; all results plotted as scatter points. . . . . . . . . . 161

6.3 Time series of metrics for online NN- and tree-based reward learning. . . . . . . . 169

6.4 Policy-invariant evaluation of online NN- and tree-based reward learning. . . . . . 170

6.5 Agent trajectories using the best models by ORR (oracle and random for comparison).172

6.6 Comparative sensitivity analysis of reward learning with NNs and trees. . . . . . . 174

6.7 Comparing the use of PETS and SAC agents on the Follow task. . . . . . . . . . . 175

6.8 Diagram of a reward tree learnt for the Chase task (“r” denotes reward). . . . . . 177

6.9 Alignment of leaf-level reward predictions with ground truth oracle rewards. . . . . 178
6.10 Report card explaining the rewards predicted for a trajectory. . . . . . . . . . . . . 178
6.11 Explaining di↵erences in leaf reward predictions by preference reversal. . . . . . . . 179

6.12 Explaining PETS agent actions with doubly-decomposed reward di↵erences. . . . . 182

xiv



List of Key Notation

st 2 S : The state of an environment at time t, in the state space S.
at 2 A : The action of an agent at time t, in the action space A.

⇡ : S ! �(A) : The agent’s policy function, which specifies a distribution over actions

at to take in each state st.

T : S ⇥A! �(S) : The environment’s dynamics function, which specifies a distribution over

next states st+1 given the current state st and agent action at

R : S ⇥A⇥ S ! R : A reward function, which maps (state, action, next state) transitions to

real-valued rewards.

� : dom! R
D : A feature function, which maps a domain (usually the state space S) to

a D-dimensional real feature space.

d 2 {1, . . . , D} : The index of one feature in a feature space.

f 2 R
D : A feature vector, where fd denotes values of the dth feature.

x ✓ R
D : A subset of a feature space, containing a number of feature vectors.

X = {x1, x2, . . . , xm} : An abstraction of a feature space into m subsets (Note: in a tree ab-

straction, the properties of convexity, partitioning, hierarchy and axis-

alignment hold and the subsets are called leaves).

D : A dataset of observations of an agent behaving in its environment (Note:

the contents of each element varies between chapters).

Dx ✓ D : Given a tree abstraction X , the subset of observations in D whose

corresponding feature vectors belong to leaf x 2 X .

I(Dx) 2 R�0 : A non-negative impurity measure for the observations in leaf x 2 X .

c 2 Cd : A candidate threshold at which to split a leaf along the dth feature, in

the finite set Cd ⇢ R.

x
(d�c) and x

(d<c) : The new leaves that would be created by splitting leaf x at threshold c

along feature d.

Q(x, d, c) 2 R : The quality of the split defined by x, d and c, which may be defined in

terms of the impurities I(Dx), I(Dx(d�c)) and I(D
x(d<c)).

xv





Chapter 1

Introduction

1.1 The Need for Interpretable Agents

In the broadest popular framing, the field of artificial intelligence (AI) aims to construct rational

agents, which pursue objectives by acting upon their environments [218]. In recent years, AI

agents have been built that beat champion game players [231], drive autonomous vehicles [11],

manage complex building control problems [257], predict and a↵ect economic systems [258], and

tackle core challenges in sustainable energy [64]. The present rate of progress is unprecedented

in the history of the field, and shows little sign of slowing. However, a consistent lesson, received

bitterly by some [239], is that this success has been mostly driven not by novel insight into the

algorithms underlying intelligent behaviour, but by equipping agents with generic statistical

models with many tuneable parameters, and leveraging massive datasets and computation to

optimise the parameters for a given objective. This approach is referred to as machine learning.

While the e↵ectiveness of eschewing explicit human priors in favour of tabula rasa learning

is remarkable and humbling, it risks sacrificing something once thought core to AI as a scientific

discipline. As agents and their learning algorithms grow more complex and unconstrained by

human intuition, our ability to understand their internal representations, and explain the origins

of their visible behaviour, is becoming increasingly strained.

One might be tempted to remain undisturbed by this trend as long as impressive performance

breakthroughs continue to occur, but such an attitute would be problematic. This is because

AI agents do not exist in a vacuum, but are rather embedded in a modern society in which

technology has a profound impact on people’s lives. As such, there is a wide range of human

stakeholders with an interest in maintaining oversight over how agents behave and learn. For

example, consider the following user stories [50]:

• As an owner of an AI agent, I want to verify its capabilities and limitations in as-yet-

unseen scenarios, so that I can deploy it with confidence.

• As a user of an AI agent, I want to understand how my actions are influencing its

behaviour, so that I gain some control over the behaviour produced in future.

1



CHAPTER 1. INTRODUCTION

• As a regulator of technology, I want to screen proposed AI agents for pernicious

functionality and biases, so that I can protect the public from harm.

• As an AI practitioner, I want to trace the e↵ects of changes I make to an agent model

and its learning algorithm, so that I can make improvements e�ciently.

• As an AI researcher, I want to develop scientific insight into the mechanisms and

emergent properties of agent learning, so that this can inform future breakthroughs.

Each of the above exists in the context of a wider concern:

• As a person living in a world with ever more complex and numerous AI agents, I want

to know whether their behaviour and learning are aligned with my best interests and

those of my community, so that I maintain an ability to control them.

Motivated by these concrete use cases and overarching ethical imperative, there is growing

interest in research into AI interpretability.1 The ultimate goal of interpretability work is to

equip human stakeholders with robust mental models of the learning and decision-making of

AI agents. The particular way in which this is achieved must be guided by the prior knowledge

of the target human, as well as the downstream application for which they intend to use the

interpretation. As such, a vast array of techniques have been proposed, ranging from constraining

agents to have simple rule-based architectures to post hoc analysis tools that estimate the

causal e↵ects of input conditions on an existing agent’s outputs. While this proliferation of

perspectives may appear disjointed to those who are new to the field, it may also be necessary

given the multifaceted and hard-to-formalise nature of the interpretability problem.

That said, the majority of existing interpretability methods are limited in scope, in that

they focus on agents performing simple, one-step interactions with static datasets to solve

prediction objectives (commonly known as supervised learning). Methods designed to interpret

more general agents, whose interactions with their environments are inherently dynamic, are

often transplanted from the supervised learning context with minimal changes, thereby failing

to capture what makes these agents so challenging to understand in the first place. Relatively

few approaches exist that face this challenge head-on.

This thesis contributes a suite of novel methods to the interpretability toolkit, which

recognises the full complexity of the dynamic interaction between agents, environments and

objectives. From one perspective, the methods are diverse, as each focuses on a di↵erent aspect

1While this is our favoured term in this thesis, others have been coined with similar meanings, including
“explicability”, “legibility”, “transparency”, and most commonly, “explainability” (with the associated “XAI”
acronym denoting explainable AI). Some authors have tried to rigidly define these terms (e.g. [46, 81, 234]), but
others continue to use them more fluidly. We do not wish to take a strong position in this terminological debate,
since none of the terms perfectly capture the scope of the challenge at hand. However, the psychological literature
contains thorough examinations of the nature of explanation, which frequently frame it as a fundamentally local
activity of identifying aspects of a particular context (i.e. environment state) that cause or influence a particular
observed phenomenon (i.e. agent action) [115]. Since human understanding of AI agents could be delivered by
means other than this, such as simplified descriptions and visualisations of global behaviour [193], we find it
beneficial to consider interpretability as the broadest umbrella concept, with explainability as a special case.

2



1.2. AGENTS AND THEIR ENVIRONMENTS

a b

Interaction
history

Reward
function

Policy

Discount
factor

Figure 1.1: The agent-environment interaction cycle and generic reinforcement learning process.

of this interaction. From another perspective, however, the methods are all unified, because

they build upon a common principle of abstraction with hierarchical rule-based models called

trees. This decision to use tree models throughout provides a simple but expressive descriptive

language that scales even to complex, high-dimensional environments, and enables the transfer

of techniques for analysis and visualisation across chapters. Before further motivating this

approach, this introductory chapter surveys prior approaches that have been taken to the agent

interpretability problem. In order to ground this discussion in a standard set of terms, we first

formalise our notion of an agent, which will be used throughout this thesis.

1.2 Agents and their Environments

The general agent paradigm is characterised by sequential interactions with an external envi-

ronment over discrete-time intervals. As its input at time t 2 N0, an agent receives information

about the environment’s state st 2 S and outputs an action at 2 A. The state then evolves

according to a dynamics function T : S ⇥A! �(S),2 which is a conditional distribution over

successor states st+1 2 S given st and at. This cycle repeats as time advances. The environment

may be episodic, meaning that it occasionally terminates and resets in a new state after entering

a particular subset of terminal states and/or after a fixed time horizon t = H . Throughout this

thesis, we assume that the agent acts according to a memoryless policy function ⇡ : S ! �(A),

which specifies a distribution over actions to take in the current state, independently of all

previous ones.3 Figure 1.1 a depicts the agent-environment interaction cycle.

We say that an agent is learning if its policy changes over time. In line with the generic

machine learning paradigm outlined in the previous section, policy updates involve applying an

optimisation algorithm to the parameters of the policy (possibly alongside those of other internal

2The notation �(·) is used throughout this thesis to denote the set of all probability distributions over a set.
3This definition assumes that the agent’s observations uniquely identify the current state at each timestep.

The more general class of partially observed environments is not considered in this work.

3



CHAPTER 1. INTRODUCTION

models) in order to increase the agent’s performance under some objective function. Although

not all of the methods described in this thesis rely on this assumption, the canonical way of

formulating an agent’s objective is via a reward function R : S ⇥A⇥ S ! R, which outputs a

scalar reward rt conditional on the current state st and previous state-action pair (st�1, at�1),

alongside a discount factor � 2 [0, 1], which specifies how the agent should exponentially

discount rewards received further into the future. Given these additional concepts, we can define

the value of each state s 2 S under policy ⇡ as the expected discounted sum of future reward

that an agent would obtain by following ⇡ starting in s. The value function has a recursive

decomposition known as the Bellman expectation equation:

(1.1)

V⇡(s) = E
a⇠⇡(·|s)

E
s0⇠T (·|s,a)


R(s, a, s0) + �


E

a0⇠⇡(·|s0)
E

s00⇠T (·|s0,a0)

⇥
R(s0, a0, s00) + � [. . . ]

⇤��

=
X

a2A
⇡(a|s)

X

s02S
T (s0|s, a)

⇥
R(s, a, s0) + �V⇡(s

0)
⇤
,

where “. . . ” is a placeholder denoting recursion through all future actions and states (i.e.

a
00
, s

000
, a

000
, s

0000
, ...). Together, the tuple (S,A, T, R, �) defines a Markov decision process (MDP).

In an MDP, the agent’s objective is to find a policy ⇡ that maximises the value function

V⇡ in every state. The agent is said to be performing reinforcement learning (RL) if it makes

changes to its policy (1) with the aim of increasing V⇡ and (2) based on the history H of states

and actions generated during past agent-environment interactions, and their associated rewards.

Figure 1.1 b gives a generic picture of the flow of information as an agent learns by RL. A

diverse range of RL algorithms exists, and can be broadly taxonomised as follows:

• Value-based: use variants of the Bellman equation to learn an explicit estimate of the

value function (or more commonly, the value for each state-action pair, known as the

Q-function Q⇡(s, a)) from interaction data. Construct a policy so as to incrementally

improve estimated value, and iterate.

• Policy-based: bypass explicit value estimation, and instead directly optimise a parame-

terised policy function using historic rewards received from the environment.

• Model-based: perform supervised learning on (state, action, next state) transitions to

learn an approximate dynamics model T 0 ⇡ T , and combine this with R and � to forecast

the e↵ect of future actions. Construct an implicit policy by planning over some horizon.

• Hybrid: apply some synergistic combination of the preceding three methods, such as using

value estimates to accelerate and stabilise parameterised policy learning (the actor-critic

method), or using a learnt dynamics model to reduce the sample complexity of long-term

value estimation. Most modern RL algorithms are hybrids to some extent.

Since this thesis does not concern the development of core RL algorithms, and since the

majority of interpretability methods we present are purposefully agnostic to the underlying

agent implementation, we will not go into any further detail on specific RL methods here.

Relevant features of specific algorithms will be discussed as required in later chapters.

4



1.3. THE AGENT INTERPRETABILITY LANDSCAPE

1.3 The Agent Interpretability Landscape

For simple MDP environments with small discrete state spaces, there exist guarantees that

well-written RL algorithms will converge to optimal (i.e. value-maximising) policies [162], and it

may be possible to describe these policies exhaustively in a form that humans can comprehend.

In general, however, the flexibility of the agent paradigm can give rise to very complex learning

problems, unstable optimisation processes, and nontrivial final policies that depend in subtle

ways on the distribution of states encountered during learning. There is little hope of a human

(especially a non-expert) understanding such a system unaided. In this section, we briefly survey

prior e↵orts to render aspects of agents’ behaviour and learning more interpretable, in order

to motivate and situate our own proposals. First, however, we review some basic concepts in

interpretability and describe challenges presented by the dynamic agent context.

1.3.1 Defining Interpretability

While there is a broad consensus that interpretability is an important pillar of AI research,

there is no widely-accepted definition of the term [161]. It may be best understood as a ‘squishy’

problem [237], of the kind more often encountered in the social sciences [177] than engineering

and computing, and for which formal models can only provide approximate surrogates or partial

perspectives. In part, this ‘squishiness’ derives from the contingency of interpretability on

contextual factors, such as the algorithm and objective used by the target AI agent, the prior

knowledge and skills of the human user [229], the specific queries they wish to have answered [233],

and the downstream application to which they wish to put the interpretation [33].

This matrix of contingencies, alongside the lack of broadly-applicable quantitative met-

rics [39], means that evaluating proposed interpretability methods is notoriously hard [74].

Ultimately, the only complete end-to-end evaluation of an interpretability method may be to

run a randomised controlled trial of users with and without access to the method, measuring

success at the downstream application. This has been done in some narrow contexts [197, 198],

but is often impractical. Instead, it is typical to resort to heuristics about what an interpretable

system looks like, and assess proposed methods based on their adherence to these heuristics.

In that vein, it seems likely that interpretability is related to the notion of simplicity. Humans

find systems hard to understand if they deem them to be complicated. Given a complicated

system, such as the dynamic interaction between AI agent, environment and objective, following

this heuristic leads us to consider either modifying the system to enforce simplicity (the so-called

intrinsic perspective on interpretability) or building simpler models that approximate it from

the outside (the post hoc perspective). Of course, this defers the conceptual di�culty onto

defining simplicity, which is no easy feat [18, 205], but further heuristics present themselves.

Notwithstanding the dependency on human users and their expertise, a technical system may be

made (or modelled as) simpler by rendering nonlinear things linear, continuous things discrete,

5



CHAPTER 1. INTRODUCTION

many things few, and interacting things independent. Furthermore, the constituent parts of the

system must be grounded in yet simpler base concepts, which in part means that they can be

expressed as brief statements of natural language. Hence, an ideally interpretable system may

consist of a few discrete entities, interacting in a small number of discrete ways, where both the

‘entities’ and the ‘ways’ correspond to short natural language expressions. To reiterate, in the

context of AI, such an outcome can be achieved either through intrinsic modifications to the

agent, environment or objective themselves, or by post hoc approximate modelling.

These heuristics capture a significant proportion of existing interpretability methods, as well

as our own approach. As outlined in the next chapter, our general strategy is to build simple,

discretised representations of AI agents, grounded in rules expressed in natural language, through

a generic process called tree abstraction. Although we mostly take a post hoc perspective, later

chapters move in an intrinsic direction by using trees as interpretable reward functions for RL.

1.3.2 Challenges of the Agent Context

As discussed above, the bulk of work on AI interpretability focuses on supervised learning

systems. These are characterised by a single function f : I ! �(O) that maps points in an

input space I to (a distribution of) points in an output space O. Most interpretability methods

thus amount to enforcing (intrinsic) or approximating (post hoc) simplicity in that function f .

On the intrinsic side, interventions are made to increase the degree of linearity, discretisation

or decomposability in the internal structure of f [180], or enforce grounding to simple natural

language concepts [147]. Post hoc methods divide into local approximations, which often work

by identifying features of the input space that heavily influence [166, 208] or change [261] a

particular output, and global ones, which construct a simplified, often rule-based, surrogate

model to approximate the original function across many or all inputs [180].

In the dynamic agent context formalised in Section 1.2, far more is at play than a single

function. The closest analogue to f is the agent’s policy ⇡, which maps states to actions, and it

is common to see methods for interpreting f carried over directly. While valuable insight can

be gained from such an approach, that insight is inherently partial. This is because agents do

not act on independent and identically distributed (i.i.d.) inputs, but on environment states

that depend inescapably on their previous actions. This has important consequences for the

types of qualitative phenomena that agent-environment interaction can produce. For instance:

• The behaviour of an agent can only be fully understood at the level of many consecutive

timesteps of states and actions (called trajectories). Emergent features at the trajectory

level cannot readily be predicted from an input-output analysis of single timesteps.

• The performance of an agent is also aggregated over extended trajectories rather than

single actions. In the case of an MDP, performance is measured by the value function,

which is the expected discounted sum of per-timestep rewards.

6



1.3. THE AGENT INTERPRETABILITY LANDSCAPE

Intrinsic Mechanistic Behaviourist

A B

C

D E

F

G H

I

a b c

Figure 1.2: The three perspectives on agent interpretability.

• The learning of an agent, especially by RL, depends on state-action data generated

during its own past interactions with the environment. This results in a cyclic dependency

of future performance on past policies, which makes understanding the dynamics of agent

learning just as important as understanding the final policy.

Each of these phenomena arises from interactions between the agent policy ⇡, environment

dynamics T and objective (e.g. reward function R). Accordingly, an interpretability researcher

is presented with many possible intervention points at which they could enforce or approximate

simplicity. When surveying existing methods, prior review papers have applied a variety of

taxonomies to understand this diversity of possible approaches [98, 175, 199]. In the following

subsections, we continue to emphasise the distinction between intrinsic and post hoc perspectives.

However, we propose to further subdivide post hoc methods into those that focus on the internal

structure of an agent (e.g. its policy model and constituent parameters) and those that focus on

its external behaviour and performance in the environment, and how they play out over time. We

find this distinction to be conceptually valuable, and note a parallel with the division between

the cognitivist and behaviourist paradigms in psychology [43]. This leads to the following

taxonomy of agent interpretability methods:

• Intrinsic: Methods that enforce interpretable structure within the agent itself, so that a

human can inspect and comprehend its functionality directly (see Figure 1.2 a ).

• Mechanistic: Methods that examine an existing agent’s internal mechanisms to derive

human-interpretable insights. As indicated by the “⇡” in Figure 1.2 b , this almost

always requires some simplifying approximations to be made.

• Behaviourist: Methods that examine an existing agent’s external behaviour to derive

human-interpretable insights (also via approximation; see Figure 1.2 c ).

We now follow this taxonomy to briefly survey prior work on agent interpretability, com-

menting upon points of connection to our own proposals.

7



CHAPTER 1. INTRODUCTION

1.3.3 Intrinsic Methods

Intrinsic methods embody a ‘designer’s approach’ to the interpretability problem: constrain the

structure of the agent itself to make it easier for a human to study. The central structure of

concern is the agent’s policy function ⇡ : S ! �(A), which in modern work is often implemented

as a densely connected deep neural network [240]. A natural direction is thus to replace that

network with something simpler and more modular, such as a collection of human-readable

symbolic rules [65], a selection over a finite set of domain-specific behaviour programs [260], or

a closed-form algebraic expression assembled by genetic programming [78, 113].

Of particular relevance to this thesis are the many prior attempts to use tree-structured

policy functions [201, 213, 252]. While we formalise the notion of a tree in the next chapter,

it currently su�ces to say that it is a hierarchical structure of rules expressed over features

of the environment state, which determine which of several predictions (e.g. actions) is made.

As long as the number of rules is not too large, tree-structured policies are generally seen

as interpretable because their local and global functionality can be represented by textual

statements or diagrams. Extensions of the basic model, which allow more complex multi-feature

rules [222], rules with probabilistic outcomes [230], or predictions that have the form of linear

models [163], enable more expressive policies, but arguably hamper interpretability.

Structured policy models usually require a predefined set of interpretable state features to

use in rules or algebraic expressions. [93] develop a pipeline for deriving such features from data,

and [73] use a second tree model to learn a linear transformation of the state space for inputting

to the main policy tree. Other work on interpretable state representations includes relational

RL [79], which describes environments in terms of discrete objects and their interactions, and

various agent models that base their policies on a small number of prototype states [121] which

may be specified manually [140]. For environments whose states are represented as images

(e.g. video games), attention mechanisms have been used to equip agents with a ‘gaze’ that

reveals which visual features are being attended to [267], although there is evidence that this

mechanism picks up on surface-level patterns rather than meaningful game structures [10].

Pretrained language models have also been used to assign textual labels to image observations,

equipping an agent with a compressed and interpretable memory of its past inputs [194].

On the opposite end of the input-output pipeline are methods for agents to produce richer

and more revealing outputs instead of unjustified actions. For example, [134] modify a popular

value-based RL algorithm to predict not a single scalar value for each state-action pair, but a

decomposed value vector, indicating the influence of various reasons for selecting one action over

another. In a similar spirit of decomposition, [269] learn a model that predicts future visitation

to every other state-action pair in the environment, which (via a dot product with a vector

of rewards) recovers the value function. This enables the most influential future events to be

identified as reasons for action. For environments with pass/fail objectives, [54] transform an

agent’s value predictions to correspond to the predicted probability of success, which is deemed

8



1.3. THE AGENT INTERPRETABILITY LANDSCAPE

to be more interpretable by non-expert humans. Hand-crafted natural language templates have

been used to allow an agent to describe the reasoning behind a single action or trends in its

global policy [110, 253, 263]. Finally, models have been proposed for how an agent should modify

its behaviour to make it more transparent about what objective is being pursued [23, 123].

The intrinsic perspective on AI interpretability has vocal supporters [77, 214] and is certainly

a valuable research direction. However, it may be the hardest to advocate for, given the prevailing

trend towards increasingly complex and unspecialised learning agents based on neural networks.

Although some arguments have been made to the contrary [225], it is often observed that

enforcing intrinsic interpretability sacrifices quantitative performance [19]. Since many of the

above methods rely on domain-specific assumptions or knowledge, such as plausible behaviour

programs [260], object-oriented representations [79], representative prototype states [140], or

semantically decomposable reward functions [134], their generality is quite limited. For better

or worse, this limits their appeal to a mainstream AI community with an increasing aversion to

hand-specified priors and constaints [239]. The majority of work in this thesis does not adopt

the intrinsic perspective, and instead constructs post hoc models of existing agents and their

environments based on limited (or no) assumptions about their internal structure.

1.3.4 Mechanistic Methods

In contrast to the intrinsic perspective, work on mechanistic interpretability embodies a ‘natural

scientist’s approach’: taking the internal structure of an agent as given, develop techniques for

probing that structure to gain partial insights into its operation. An example is the analysis of

feature importance (also influence/attribution), which measures the sensitivity of an agent’s

response to each feature of a given environment state, often by applying small perturbations. The

‘response’ can be defined in many ways, including the magnitude of a continuous-valued action

output by the policy [111], the value estimates of di↵erent actions in value-based RL [200], or the

output of a learnt reward function [169, 216]. Some of the most principled feature importance

methods are based on the game-theoretic Shapley value framework [166, 227]. Various ways in

which Shapley values can be used to interpret RL agents are surveyed in [22].

For environments with image observations, the term saliency is used to denote the feature

importance of pixels or image regions, which are often overlaid as heatmaps [125]. The intuitive-

ness of this visualisation format allows it to be animated or extended into 3D to understand

how a policy’s saliency map evolves over the course of a behavioural episode [75] or from one

point in learning to another [100]. However, the interpretation and evaluation of saliency maps

are often highly subjective, so it is advisable to use them with caution [14].

Somewhat similar, and theoretically connected [3, 148], to feature importance analysis is

the literature on counterfactual explanation, which uses an (often learnt) generative model to

perturb state features until an agent’s action changes in a prescribed direction. Most existing

methods work with visual state representations, in which case the counterfactual can be shown

as an image [124, 190]. Counterfactuals are widely favoured on the premise that grounding

9



CHAPTER 1. INTRODUCTION

reasons for an output in an explicit contrast case is natural and human-like [177]. It also tends

to be preferred by recipients in practice [54]. Slightly adjacent to this work are methods that

search for ‘interesting’ or ‘critical’ states that maximise a particular agent output, such as the

estimated value of a target action [215], or the entropy (i.e. uncertainty) of the policy [122].

Both feature importance and counterfactual explanation focus on the input-output behaviour

of an agent or one of its submodules. Other methods go deeper to directly inspect the agent’s

internal representations. For example, work has been done to visualise the features detected

by particular neurons in a value function network [116], or find a low-dimensional embedding

of network activations across many states, enabling the discovery of clusters and prototype

states [272]. For agents with recurrent policy networks for partially observed environments,

several works have visualised the dynamic memory vector and how it correlates with environment

state features over time [112, 129]. The dynamics of this vector are complex and high-dimensional,

leading others to try approximating it as a finite state machine [149].

Each of the above methods provides useful but narrow insight into agent mechanisms. For

this reason, it is common to take a ‘toolbox’ approach to mechanistic interpretability, in which

several methods are combined into a single analysis and visualisation pipeline [116, 129, 168].

A similar combination has also been used to understand reward functions [174]. Perhaps the

most complete example of the toolbox approach is an extended analysis of the AlphaZero agent

as it learns to play chess [172]. This analysis makes heavy use of domain-specific concepts (i.e.

common chess piece layouts), which are tested for presence in the agent’s internal networks.

The mechanistic perspective on AI interpretability captures a diverse body of work [40].

It provides insight into an agent’s low-level operation, without the drawback of performance-

limiting constraints on the agent itself. However, for complex agent architectures, it is hard to

obtain global understanding without many simplifying assumptions. Mechanistic methods are

also often tailored to specific agent or environment types, which limits their breadth. Above all,

and with few exceptions (e.g. [149]), most methods draw directly from the supervised learning

literature, so operate on isolated agent responses to single environment states. Issues of dynamics

are either addressed by repeating a method many times [100] or ignored altogether [190].

Although we revisit the concept of counterfactual explanation, most work in this thesis does not

adopt the mechanistic perspective. Instead, we primarily develop behaviourist models, which

are natively dynamic and agnostic to agent and environment details.

1.3.5 Behaviourist Methods

Behaviourist methods retain the narrative of interpretability as a natural science, but focus on

an agent’s behaviour as realised in the environment, rather than its mechanism or function as an

isolated input-output system. In this sense, the approach is less like cognitive neuroscience, and

more akin to animal ethology [196, 248]. Behaviourist models are based on external observations

of the agent’s interaction with its environment over time, with few assumptions about how its

actions are produced. Some go as far as to treat it as a fully inscrutable black box.

10



1.3. THE AGENT INTERPRETABILITY LANDSCAPE

A popular approach is policy modelling, which uses observations of an original agent to learn

a simpler, more interpretable policy model that replicates its behaviour or performance closely

as possible. Through scrutinising, or even formally verifying [20], the interpretable model, the

aim is to establish appropriate trust and understanding of the original policy. Although policy

modelling has been done using a variety of rule-based architectures [52, 186], trees are by far

the most popular choice. As in the literature on intrinsically interpretable policies, basic tree

models consist of single-feature rules leading to single-action predictions [20], but this can

be extended to probabilistic [51, 251] or nonlinear [71] rules, linear model predictions [97], or

a mixture of multiple ‘expert’ trees [256]. Post hoc tree models have also been proposed for

various other tasks, including inferring the goal being pursued by a black box agent [34] and

classifying safe and unsafe regions of the state space for a given policy [221].

In high-dimensional environments, trajectories of agent behaviour are hard to visualise

directly. For this reason, several works have explored discretising the state space into regions

called abstract states, and summarising trajectory data as a graph of transition probabilities

between them [60, 171, 209, 249]. Abstract states can be defined as areas where the agent’s

action or value function are similar [171, 249], or simply by spatial proximity [60]. In image-based

environments, an abstraction can be found by clustering in a low-dimensional embedding space,

and representing each abstract state by its mean image [209]. [171] provide semantic grounding

for abstract states, thereby easing the interpretation of transition graphs, by constructing

them using user-specified predicates. Although described di↵erently, the aggregated trajectories

approach used in [1] has a similar e↵ect of reducing a large amount of continuous trajectory

data to a graph over discrete representative points.

Instead of building a statistical model of agent behaviour, an alternative way to summarise

it is through a small set of exemplary state-action pairs or trajectories. [7] surveys aspects

of this approach, which include the intelligent selection of examples and the development of

intuitive interfaces for presenting them to a human (short videos are common). Various methods

base their selection criteria on (in)frequency of occurrence [226], diversity relative to other

selected samples [6, 59], or a notion of criticality with respect to future reward [6, 105]. Other

works have used trajectory examples to illustrate the best, worst and most likely outcomes after

a particular state [224] or highlight points of disagreement between two agents’ policies [8]. [66]

seek to identify which of many trajectories encountered during an agent’s learning contributes

most to its current policy. [9] use user-specified logical queries to identify trajectories of interest.

The counterfactual explanation methods in the preceding subsection focus on an agent’s

immediate response to the current state, but other counterfactual problems can be posed that

account for the stochastic and sequential nature of agent-environment interaction [90]. For

example, given an agent trajectory, [250] search for small perturbations to the sequence of

actions taken that would have led to higher reward. At a more global level, both [67] and [184]

learn a minimally-perturbed policy that alters an agent’s total expected reward (or value) by a

11



CHAPTER 1. INTRODUCTION

prescribed amount, and visualise the results with paired trajectory examples. Alternatively, [91]

revisit the standard framing of state perturbation to realise a counterfactual action, but add

a constraint that the new state be reachable from the original one given the environment

dynamics. Finally, [87] consider making targeted modifications to the environment itself until

an agent learns a policy that conforms to a user’s expectations.

Some behaviourist interpretability work fits the label of visual analytics, in that it involves

gathering large amounts of agent-environment interaction data and presenting it in a human-

digestible form via interactive images and plots [2, 68, 112, 173, 179, 223, 262]. The plots tend

to span several spatiotemporal scales, from individual states, through extended trajectories and

clusters of related trajectories, to the entire timeline of agent learning. Given the large amount of

information carried by such visual analytics dashboards, their stated audience tends to be expert

AI practitioners, interested in debugging agents [68] or environment implementations [173].

The behaviourist perspective on AI interpretability is perhaps the most dissimilar to work

in the supervised learning domain. Because it focuses on external behaviour, it is not a route to

fine-grained insight into agents’ internal mechanisms. However, for the same reason, it places

its emphasis at the level in which many human stakeholders are interested, namely what an

agent actually does when deployed in its environment, and the e↵ect that has on the objective

and environment itself. Most behaviourist methods have the advantage of being model-agnostic,

so can be used on existing agents today while being robust to future architectural changes that

may render mechanistic methods impractical or ine↵ective. Since the behaviourist perspective

recognises the complexity of dynamic agent behaviour, the potential diversity of methods is

huge and far from fully explored. This thesis exploits this opportunity. While the first half of

Chapter 3 presents and analyses a model that resembles prior policy modelling work, we soon

diverge from this precedent to capture other dynamic aspects of agent behaviour and learning.

1.4 Themes, Gaps and Opportunities

Based on the above, we identify seven cross-cutting themes in agent interpretability work:

• T1: Simplicity. Some of the simplest, most generic methods are also the most cited (e.g.

value decomposition [134], critical trajectories [6]). This may be because their purpose

and assumptions are clear, and they are easy for others to build upon.

• T2: Examples. Although much interpretability work is concerned with building abstract

statistical models, specific examples (e.g. prototype states [272], influential trajectories [66])

provide useful grounding, especially for non-experts.

• T3: Contrasts. As has been noted before [177], many interpretability methods in-

volve summarising points of di↵erence between alternative cases. This not only includes

counterfactual explanation [90], but other methods too (e.g. policy disagreements [8]).

12



1.4. THEMES, GAPS AND OPPORTUNITIES

• T4: Interactivity. There are calls for AI interpretation to be responsive to specific user

needs and queries [233], and several methods deliver on this (e.g. logic-based trajectory

queries [9], user-expected policies [87], interactive plots [68]).

• T5: Presentation.Many modes of visual or textual presentation have been used to convey

information extracted by interpretability methods. Presentation tangibly a↵ects how

humans receive interpretations, and the wrong choice can cause information overload [197].

• T6: Combination. Because post hoc interpretation is inherently partial and approximate,

it is common to combine complementary methods to gain more holistic insight (e.g.

mechanistic interpretability toolboxes [172], visual analytics dashboards [262]).

• T7: Trees. Most concretely, there is a clear precedent of tree models being used from

both intrinsic and post hoc perspectives. Although this is mostly as policies [252] or

models thereof [20], other uses have been explored (e.g. goal recognition [34]).

We also identify six common gaps and shortcomings of existing approaches, which create

opportunities for novel contributions in our own work:

• G1: Dynamics. Due to their origins in the supervised learning space, many methods

treat agents as isolated input-output systems, ignoring temporal information. Others have

begun to acknowledge and address this issue, but it remains underrepresented.

• G2: Learning. Most methods analyse a single, fixed agent policy (e.g. the final one

produced by RL). Few can represent the changes that occur as an agent learns over time,

which are crucial for understanding the provenance and capabilities of the final policy.

• G3: Generality. It is common for methods to be specialised to certain agent algorithms

(e.g. value-based RL), or certain classes of environment or task. More application-agnostic

methods are more likely to see wide adoption.

• G4: Unification. Existing methods are diverse and disunified. Although this is a product

of healthy exploration, there would be value in unified frameworks for representing multiple

aspects of agents and environments in common language and visualisations.

• G5: Contextualisation. The issue of interpretability is often tackled in isolation, without

considering the context in which it is needed, or how it integrates with other open problems

in AI research, such as teaching agents to reliably satisfy human preferences.

• G6: Application. Methods tend to be deployed on well-behaved benchmarks (e.g. Atari

games, classic control problems). Although this aids understanding and comparison, it is

also beneficial to motivate and evaluate them in more realistic industrial use cases.

13



CHAPTER 1. INTRODUCTION

1.5 Thesis Contributions

This thesis contributes a selection of novel perspectives and models for agent interpretability,

which align with the themes identified in the previous section, while addressing some of the gaps.

Together, they go some way to providing a holistic understanding of an agent’s behaviour, by

focusing in turn on its policy, value function, state dynamics, learning progression and reward

function. At the same time, they maintain methodological coherence, because they are all based

on tree-structured models. This work is organised into the following chapters. Connections to

the existing research themes (T) and gaps (G) are highlighted where relevant:

• Chapter 2 introduces tree models (T7) as a common framework to be used throughout this

thesis (G4), and discusses how they embody desiderata for interpretable representations.

We present trees as a general tool for abstracting any complex system (G3), that can

be constructed in various ways to answer di↵erent queries that a human may have (T4),

and can be visualised either as diagrams or geometric structures (T5).

• Chapter 3 presents two behaviourist tree models of agents with fixed policies. In introducing

the first, which is a basic policy model, we outline the simple and standardised strategy

by which trees are learnt throughout this thesis (T1). After a quantitative evaluation,

we show how the model enables the counterfactual explanation of agent actions (T3),

and the summary of decisions made during an extended behavioural episode (G1). The

second method extends the first by combining additional information (T6) about an

agent’s value function and state dynamics (G1). We propose novel visualisations of the

information contained in this multiattribute tree (T5), and use the model to generate

hypothetical agent trajectories (T2) based on user-specified queries (T4).

• Chapter 4 uses a tree to model how an environment’s state evolves under a given agent

policy (G1), and how this changes as the agent learns over time (G2). It is specifically

optimised to highlight contrasts between di↵erent time points (T3). We visualise this

state transition model in a variety of ways, including with graphs and heatmaps (T5),

and show how prototype trajectories can be identified to summarise an agent’s behaviour

at each stage of learning (T2). This model’s extreme generality means it can be applied

to any learning agent, or even other nonstationary dynamical systems (G3).

• Chapter 5 shifts perspective to explore how trees can provide intrinsic interpretability by

serving as an RL agent’s reward function. Furthermore, we show how reward trees can be

learnt from human feedback (T4), thereby drawing a connection between interpretability

and the literature on human-agent alignment (G5). The e�cacy of reward tree learning is

established via experiments with synthetic and real human feedback on four benchmark

tasks. We then demonstrate interpretability, showing how the use of a reward tree enables

detailed monitoring of an agent’s learning progress (G2), and how visualisations developed

earlier in the thesis can be repurposed for this new tree model (G4).

14



1.5. THESIS CONTRIBUTIONS

• Chapter 6 applies reward tree learning to a realistic aviation use case (G6), finding it

to be competitive with neural networks. The method is refined to simplify preference

collection (T1), unify with existing literature (G4), and grow the tree di↵erently to

improve performance. Because the method is agnostic to the agent algorithm (G3), we are

able to switch to using model-based RL, which accelerates learning. New interpretability

techniques are developed to attribute reward predictions back to individual preferences

(T2) and explain the changes that occur as a model-based agent plans its action (T3).

• Chapter 7 concludes by discussing the strengths, limitations, and potential for combining

(T6), the proposed methods. It also considers some directions for further work.

Taken as a whole, the positioning of this thesis may be best understood through the parable

of The Blind Men and the Elephant, depicted in Figure 1.3.4 In the parable, a group of blind

people attempt to apprehend the form of an elephant by touching its various body parts. Each

gains only partial insight in isolation, but a more complete picture emerges if the individuals

can communicate their respective findings. Given that any method for interpreting AI agents

has inherent limitations and assumptions, a similar integration of approaches is necessary to

provide a holistic understanding. This integration is made easier by expressing all models in a

common language, and this is what we seek to do through our consistent use of trees.

Figure 1.3: The parable of The Blind Men and the Elephant.

4Image from https://commons.wikimedia.org/wiki/File:Blind_monks_examining_an_elephant.jpg.
This parable has been invoked in a prior review of interpretability for supervised learning [234], but we see it as
even more relevant to agents in dynamic environments.

15

https://commons.wikimedia.org/wiki/File:Blind_monks_examining_an_elephant.jpg


CHAPTER 1. INTRODUCTION

1.6 Research Output

The following publications were produced during the course of this PhD:

• Tom Bewley, Jonathan Lawry, and Arthur Richards. “Modelling Agent Policies with

Interpretable Imitation Learning.” Published in Trustworthy AI - Integrating Learning,

Optimization and Reasoning, Springer LNCS, 2021.

– This paper is the basis of the first half of Chapter 3.

• Tom Bewley and Jonathan Lawry. “TripleTree: A Versatile Interpretable Representation

of Black Box Agents and their Environments.” Published at AAAI Conference on Artificial

Intelligence, 2021.

– This paper is the basis of the second half of Chapter 3.

• Tom Bewley, Jonathan Lawry, and Arthur Richards. “Summarising and Comparing

Agent Dynamics with Contrastive Spatiotemporal Abstraction.” Presented at IJCAI

Workshop on Explainable Artificial Intelligence, 2022.

– This paper is the basis of Chapter 4.

• Tom Bewley and Freddy Lecue. “Interpretable Preference-based Reinforcement Learning

with Tree-Structured Reward Functions.” Published at International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), 2022.

– This paper is the basis of Chapter 5.

• Joseph Early⇤,Tom Bewley⇤, Christine Evers, and Sarvapali Ramchurn. “Non-Markovian

Reward Modelling from Trajectory Labels via Interpretable Multiple Instance Learning.”

Published at Conference on Neural Information Processing Systems (NeurIPS), 2022.

– This ⇤joint first-author paper is not discussed in this thesis.

• Tom Bewley, Jonathan Lawry, and Arthur Richards. “Learning Interpretable Models

of Aircraft Handling Behaviour by Reinforcement Learning from Human Feedback.”

Accepted for presentation at AIAA SciTech Conference, 2024.

– This paper is the basis of Chapter 6.

• Scott Jeen and Tom Bewley. “Conservative World Models.” Under review.

– This paper is not discussed in this thesis.

16



Chapter 2

Abstraction with Trees

2.1 Introduction

The aim of AI interpretability work is to communicate information about agent decision-

making, behaviour and learning to humans. In doing so, we must decide upon a representational

framework, or lingua franca, in which to express that communication. In this thesis, we use tree

models as our representational framework. This chapter provides a general discussion of trees,

and introduces mathematical notation which unifies the tree-based methods presented hereafter.

We also seek to justify our a priori judgement that using trees is a promising approach by

showing how they satisfy several desiderata for human-interpretable representations.

For the sake of maximum generality, most of this chapter is presented as a context-agnostic

discussion of tree abstraction, and our motivating application of agents is only revisited at

the end. From the next chapter onwards, all work is firmly grounded in the agent context.

2.2 Symbols and Abstractions

In a recent paper, Kambhampati et al. argue that communicating information between a

human and an artificial agent in terms of the raw data processed by modern machine learning

models (typically high-dimensional numerical tensors representing temporal sequences of states,

actions and rewards) is liable to place an “intolerably high cognitive load” on the human [137].

They advocate for the development of symbolic interfaces through which both agent-to-human

explanations and human-to-agent advice can be exchanged. This proposal to use discrete symbols

as the lingua franca for human-agent interaction is well supported by theories and empirical

findings in cognitive science. Much of human reasoning is conducted in natural language, which

is universally discrete [117], so constraining agent communication to have a symbolic form

may make it easier for the human to find a mapping to and from their native representations.

However, this requires us to address a challenge at the other end of the communication pipeline,

regarding how symbols can be derived from the raw data representations used natively by

17



CHAPTER 2. ABSTRACTION WITH TREES

agents. This ubiquitous data-to-symbol gap-bridging dilemma has a long history in AI research,

and is known as the symbol grounding problem [109].

Our approach to the symbol grounding problem takes inspiration from the work of three

influential figures from AI and cognitive science: Lotfi Zadeh, Douglas Hofstadter and Peter

Gärdenfors. In Zadeh’s fuzzy set theory [271], Hofstadter’s analogy-making framework [118]

and Gärdenfors’ conceptual spaces model [94] alike, symbols are grounded by grouping raw

data instances into larger units based on a measure of similarity, proximity or functionality.

This grouping operation is variously known as coarse-graining, generalisation, categorisation,

granulation, aggregation and abstraction. In this thesis, we adopt the latter term. Abstraction is a

fundamentally lossy process since detailed information about each raw data instance underlying

an abstract symbol is overlooked when statements are made at the symbolic level. However, for

a system that seeks to communicate with computationally-bounded humans, such losses may be

worth the gain in comprehensibility through simplicity. The art and science of abstraction lie in

preserving only the information deemed most important for a given downstream application.

Zadeh, Hofstadter and Gärdenfors all contend that defining informative grounded symbols

through judicious abstraction is central to human intelligence.

In the following sections, we build on these ideas to develop a general theory of abstractions

satisfying various structural and semantic desiderata, and discuss how it can be applied to

data generated by agents interacting with dynamic environments. We adopt the language of

Gärdenfors’ conceptual spaces as our point of departure because Hofstadter’s framework is

less mathematical in its presentation, and Zadeh’s departs in a nontrivial way from our own

methods by focusing on fuzzy abstractions.1

2.3 From Conceptual Spaces to Tree Abstractions

Gärdenfors defines a conceptual space as a collection of quality dimensions which characterise

observations of a system. These dimensions can be grouped into domains, which are subsets

of dimensions that have natural semantics that distinguish them from the others. Canonical

examples of domains include the colour dimensions of hue, saturation and brightness, and the

sound dimensions of pitch and loudness. A conceptual space is thus a collection of one or more

domains. In this thesis, we consider conceptual spaces that have a domain of D real-valued

dimensions, thus forming a real vector space R
D. We refer to this domain as the feature space.

Any other dimensions in the conceptual space are known as attributes Y; their structure will be

revisited later. An example of a conceptual space in (RD
,Y) form is depicted in Figure 2.1 a .

1Zadeh’s symbols are fuzzy objects, which means that their membership functions in the raw data space are
continuous-valued. For reasons of computational and syntactic simplicity, this thesis focuses on crisp abstraction
techniques, in which each raw data instance is either definitely a member of a given abstract symbol, or definitely
not a member. The potential for fuzzy variants of the methods developed is ripe for investigation in future work.

18



2.3. FROM CONCEPTUAL SPACES TO TREE ABSTRACTIONS

2.3.1 Convexity

Gärdenfors hypothesises that humans ground symbols in convex subsets of domains in conceptual

spaces. Here, convexity refers to the property that for any two points in a subset x, all other

points between them also lie in x, where the notion of betweenness is formalised di↵erently

depending on the topological structure of the domain. In the preceding examples, Gärdenfors’

hypothesis implies that the symbol “red” is grounded in a convex subset of the colour domain

and the symbol “screech” is grounded in a convex subset of the sound domain. Let a convex

abstraction be a set of m convex subsets of a domain, X = {x1, x2, . . . , xm}, each of which

grounds a symbolic label. To complete our first example, the set of all colour labels “red”,

“green”, “blue”, . . . is grounded in a convex abstraction of the colour domain.

In a vector feature space with the Euclidean distance metric, the notion of betweenness,

and thus of a convex subset, is well-defined. For two feature vectors f, f0 2 R
D, the set of points

between them are those that lie on the intervening straight line segment, i.e. between(f, f0) =

{cf+ (1� c)f0 : 0  c  1}. A subset x ✓ R
D is thus convex if (and only if) for all pairs f 2 x,

f0 2 x, between(f, f0) ✓ x. Figure 2.1 b shows three subsets of RD, where x1 and x2 are convex,

but x3 is not, and hence {x1, x2, x3} is not a convex abstraction.

2.3.2 Partitioning

Alongside convexity, Gärdenfors considers a second geometric desideratum for human-like

abstractions: that they partition their domain. Using our feature space notation, an abstraction

X is a partition if (and only if) it covers the entire domain without gaps (
S

x2X x = R
D) or

overlaps (
T

x2X x = ;). A partition has the simplifying property that every f 2 R
D belongs to

exactly one x 2 X , and thus there is a unique symbolic label for every possible feature vector.

While it may be questioned whether or not this property holds for natural language (there

may well be gaps and overlaps in the grounding of English words in the visible colour domain),

it is mathematically convenient. A partition also provides a complete model for domain-wide

generalisation since it allows us to define a total function that maps from the continuous domain

of features to the discrete domain of abstract subsets. The methods presented in this thesis rely

on the existence of such a function.

Figure 2.1 c shows a convex partition of RD. A notable result is that to satisfy both the

convexity and partitioning desiderata, the abstraction must consist entirely of polytopes, which

are bounded by hyperplanes [156]. This is because, in a partition, every boundary of a subset

meets the boundary of another subset. If that boundary were outwardly curved for one subset

(e.g. the red dotted line for x3), it would be inwardly curved for the other (in this case, x4),

violating the convexity requirement. Hence, the only possibility is for the boundary to have no

curvature, which is the definition of a hyperplane.2 A hyperplane in R
D is described by a linear

equation of the form b1f1 + b2f2 + · · ·+ bDfD = c.

2A more formal proof of the polytope property is given in Section 3.1 of [156].

19



CHAPTER 2. ABSTRACTION WITH TREES

a

Partitioningc

Curved boundary
breaks convexity

HierarchydConvexityb

Not in 

Axis-alignmente

0.3 0.7

0.4

0.6

TrueFalse

F FT T

TF
Feature space

Attributes

Root

Internal

Leaf

Observation

Figure 2.1: A conceptual space in (RD
,Y) form, and four geometric desiderata for abstractions.

Gärdenfors suggests Voronoi tessellation as an algorithm for generating convex partitions

of real vector domains. Given a prototype point for each of the symbols, f1, . . . , fm 2 R
D (e.g.

in the colour domain, one each for “red”, “green”, “blue”, . . . ), Voronoi tessellation divides

the space into polytopic regions that are closest to each prototype according to Euclidean

distance. In addition to the biological plausibility of prototype theory as a mechanism for

concept acquisition [210], one reason for favouring Voronoi tessellations over general convex

partitions is their memory e�ciency: they are fully defined by ‘only’ mD parameters specifying

the D-dimensional position of each prototype. However, this still scales linearly with D, and

the geometry and arrangement of the resultant high-dimensional polytopes do not follow

straightforwardly from knowledge of the prototypes themselves (each polytope is not a local

function of its own prototype, but of an entire neighbourhood of surroundings ones).

In light of these limitations, we now propose two additional desiderata for human-interpretable

abstractions that go beyond those suggested by Gärdenfors, and lead to the tree abstraction

model adopted in this thesis.

2.3.3 Hierarchy

It is widely accepted that human language and concept understanding is hierarchical, in that

symbolic labels are often associated with special cases or generalisations of other symbolic

labels [24]. Organising data hierarchically allows phenomena to be described and analysed at

varying levels of granularity, from the generalised and simplistic to the specific and detailed. It

thereby enables the management of a tradeo↵ between information preservation and representa-

tional compactness. This tradeo↵ is fundamental for any system that seeks to be intelligible to

humans, and re-emerges several times throughout this thesis. The intuitive notion of hierarchy

can be formalised in many ways. In the following, we present a definition that applies to convex

partitions X of a feature space R
D, which allows us to begin talking about abstractions as

being tree-structured.

Let us say that a convex partition X can be pruned if there exists a pair x, x0 2 X : x 6= x
0

20



2.3. FROM CONCEPTUAL SPACES TO TREE ABSTRACTIONS

such that the union x [ x
0 is itself a convex subset. In this case, there exists a more granular

convex partition X 0 = (X \ {x, x0}) [ {x [ x
0}, which has one fewer subset. Now suppose that

X 0 can also be pruned to create a yet more granular convex partition X 00, and that the ability

to prune persists recursively, such that it is possible to take the union of pairs of convex subsets

until a single set covering the entire space is recovered. As shown in Figure 2.1 d , such a

recursively prunable convex partition can be represented graphically by a tree diagram. For

this reason, we use the term “tree” as a shorthand for “recursively prunable convex partition”.

A tree diagram is valuable for interpretability because it breaks even very complex partitions

down into simple binary relations. Specifically, it denotes pairs of sibling subsets (e.g. x3 and

x5) that can be pruned to form convex parent subsets (e.g. x3 [ x5). x3 and x5 are said to be

the children of x3 [ x5. Note that x3 and x5 have no children themselves, making them leaves

of the tree. At the top of a tree diagram, there is a single root subset with no parent; this

corresponds to the full space R
D. All subsets other than the root and leaves are called internal.

In addition to bottom-up pruning yielding valid convex partitions of RD, the branch of the tree

below any internal subset is itself a valid convex partition of that subset. It is thus possible to

carry out local analysis of regions of the feature space, independently of the rest of the tree

structure. This is especially beneficial for large trees, which may otherwise overwhelm a human

analyst if viewed globally. Since the dual diagrammatic and space partitioning representations

of trees are complementary, we move fluidly between them throughout this thesis.

This definition of trees in terms of their ability to be pruned is bottom-up, in that it starts

by considering the most fine-grained abstraction X . An e�cient way to generate a tree is to

reason in the opposite direction, following a top-down algorithm called binary space partitioning :

first add a single hyperplane to split the feature space into two half-spaces, then recursively

split each half-space by adding hyperplanes in the same manner. At every step during the

execution of this top-down algorithm, the intermediate result is a valid convex partition of

R
D. The algorithm thus implicitly generates a nested collection of abstractions at varying

levels of granularity, not just a single final result. From this perspective, the act of constraining

abstractions to be recursively prunable actually increases their expressive potential, since it

unlocks the additional axis of variable granularity.

2.3.4 Axis-alignment

Recall that our motivation for discussing abstraction is as a mechanism for grounding symbolic

expressions in high-dimensional data spaces. In the case of a hierarchical convex partition of a

feature space, the geometry of the partition itself can be given a symbolic representation: a

collection of hyperplane equations organised into a tree structure. Each equation is associated

with the parent of the two subsets it creates (e.g. the first hyperplane partitioning the entire

space is located at the root). Given a slightly di↵erent interpretation, these hyperplane equations

can be viewed as rules over linear combinations of features, “b1f1 + b2f2 + · · · + bDfD � c”,

21



CHAPTER 2. ABSTRACTION WITH TREES

which determine how feature vectors in R
D are grouped into the di↵erent branches and leaves

of the tree. Whether a rule evaluates to true or false for a given f 2 R
D determines which of

the two possible branches is taken from that point onwards. Furthermore, a unique symbolic

label can be constructed for every subset in the tree by taking the conjunction of the rules at

all of its ancestors. In this way, we obtain a very explicit class of grounded symbols.

However, in the general case, each rule has D + 1 parameters (including the threshold c),

and we must also keep track of the location of that rule in the tree, meaning a tree with m

leaves requires (D + 1 + 1)(m� 1) parameters to specify. This number o↵ers no improvement

over Voronoi tessellation in that it is linear in both D and m, with the parameter count being

larger whenever m > 1 +D/2. This parameter-counting perspective provides one justification

for our final geometric desideratum: constraining all partitioning hyperplanes to be axis-aligned.

In an axis-aligned tree, one of the coe�cients b1, . . . , bD in each hyperplane equation/rule is

equal to one, and the rest are equal to zero. Letting d denote the index of the nonzero coe�cient,

this greatly simplifies the form of the rule to “fd � c”, which tests whether the single split

feature d exceeds a split threshold c. As exemplified by Figure 2.1 e , this simplification makes

it possible to display rules directly on the tree diagram. Each rule is now associated with just

three parameters: the split feature, threshold and location in the tree. Therefore, a tree with m

leaves is fully specified by 3(m� 1) parameters, a count which is strictly smaller than Voronoi

tessellation for D � 3. It is also independent of D, making the interpretability of axis-aligned

trees especially insensitive to the dimensionality of the underlying domain. Furthermore, the

symbolic label for each subset (via ancestor rule conjunction) can be expressed as a conjunction

of intervals with a maximum of D terms, regardless of its depth in the tree. In Figure 2.1 e ,

the label for x2 is “f1 < 0.3 and f2 � 0.4” (the rule “f1 < 0.7” is subsumed by a tighter upper

bound deeper in the tree, so can be dropped), and the label for x3 is “0.3  f1 < 0.7 and

f2 � 0.4” (the two rules for f1 can be grouped into a single interval term).

Parameter counts and symbol lengths are rough proxies for human interpretability, but we

can also justify axis-alignment geometrically. Subsets of RD bounded by axis-aligned hyperplanes

are known as (axis-aligned) hyperrectangles. It is plausible that these are considerably easier

to reason about in high dimensions than general polytopes, both individually and collectively,

since their properties generalise straightforwardly from D = 2 and D = 3 cases encountered

in everyday life (e.g. brick walls, stacked boxes). At all depths in the tree, sibling subsets lie

adjacent to each other along one axis in the feature space, and it is easy to conceptualise a

single feature crossing a threshold to move a point from one subset to another.

The axis-alignment constraint also brings computational benefits. Throughout this thesis,

we exploit the fact that e�cient, well understood algorithms exist for generating and analysing

axis-aligned trees. In prior work on conceptual spaces, hyperrectangles have been used to

enable computationally e�cient concept combinations across domains, but these do not form a

partitioning or hierarchical structure [21].

22



2.4. QUERY-EFFICIENT ABSTRACTIONS

Feature Grounding Caveat: The assertion that axis-aligned trees, and their resultant

symbolic descriptions, are human-interpretable rests on a foundational assumption that the

features comprising R
D are themselves grounded in natural linguistic quantities (e.g. “height”,

“weight”, “speed”, “rotation”, “distance”) or simple combinations thereof. Only then can

structures present in a tree be integrated with a human’s prior symbolic knowledge about the

conceptual space. This is a kind of ‘garbage in, garbage out’ phenomenon; the basic potential

for interpretability is merely preserved, rather than created, by representational constraints

such as axis-alignment.

To recap, the preceding subsections started with a general notion of abstraction in conceptual

spaces and progressively added constraints to reflect the four geometric desiderata of convexity,

partitioning, hierarchy and axis-alignment. While doing so leads to a prima facie reduction

in expressive flexibilility, it increases the likelihood that the resultant abstractions can be

understood and reasoned about by a human due to the reduced parameter count and geometric

simplicity. It also unlocks the axis of variable granularity, enables additional visual and textual

representations in the form of tree diagrams and symbolic rules, and enables computationally

e�cient algorithms for abstraction generation and analysis.

2.4 Query-E�cient Abstractions

The previous section motivates tree abstractions as a tool for bridging the gap between

continuous and symbolic representations of a system, but says little about the ultimate purpose

of abstraction, which in our case is to generate human-interpretable summaries of observations

of that system. In Section 2.2, we noted that given the inherent loss of information induced

by abstraction, good abstractions are those that preserve “only the information deemed most

important for a given downstream application”. To formalise this notion, imagine posing a set of

queries about the system, concerning trends and relationships in our observations of it. Given

an abstraction, we can compress the continuous conceptual space representation into summary

statistics at the level of abstract subsets. We would like these summary statistics to answer our

queries with similar accuracy to an exhaustive analysis of the data.

Revisiting the language of conceptual spaces, we adopt the following definition:

An abstraction of one domain of a conceptual space is e�cient to the extent that

(1) it preserves our ability to answer queries about the other domains via summary statistics,

while (2) having a small number of parameters.3

Hence, for a conceptual space in (RD
,Y) form, an e�cient tree abstraction of the feature space

R
D (1) captures a maximal amount of query-relevant information about the attributes Y in its

3This query-centric definition of abstraction e�ciency is partly inspired by Millidge [178], although we present
a somewhat looser formulation to capture all query types considered in this thesis.

23



CHAPTER 2. ABSTRACTION WITH TREES

a colour

sh
ap

e

Observationb

Colour-efficientc Shape-efficientd Lossye Overparameterisedf

TrueFalse

F FT T

TF

0.4

0.6

0.3 0.7

shape =

Poorly summarised by
leaf-level mean colour (   )

and modal shape (   )

Shape equal
to leaf-level
mode (   )

Colour similar
to leaf-level
mean (   )

Figure 2.2: Query-centric abstraction e�ciency in (RD
,Y) form conceptual spaces.

summary statistics, while (2) having a small number of leaves. Focusing on di↵erent queries and

evaluation metrics leads to many valid notions of e�ciency suitable for di↵erent applications.

Figure 2.2 a shows an (RD
,Y) conceptual space with two features f1, f2 and two attributes

Y = colour⇥ shape. A single observation b is thus a 2D feature vector paired with a coloured

shape. Given a dataset of many such observations, we may want to understand how either the

colour or shape attribute varies across the feature space. In the absence of abstraction, the

only available description of the data is a complete one, i.e. all individual feature vectors and

their coloured shapes. All analytical workload is left to a human interpreter, which presents an

increasing cognitive challenge as the number of observations, or the dimensionality D of the

feature space, grows.

Now consider introducing an abstraction of RD, such as the trees in Figure 2.2 c - f .

We can summarise the attribute information in the dataset by grouping observations by the

leaves that contain them, and performing a statistical averaging operation (e.g. mean for

continuous attributes, mode for discrete attributes) at the leaf level. We can then discard

the raw observations and attempt to answer queries using the much smaller set of leaf-level

summary statistics. The e�ciency of the abstraction with respect to a given query depends on

how representative these summary statistics are of the raw data. In turn, this depends on how

judiciously observations are grouped into leaves.

For example, Figure 2.2 c is an e�cient abstraction with respect to queries about colour

values. Since the observations in each leaf all have similar colours, they are well summarised

by their leaf-level mean. Meanwhile, d is e�cient for shape queries because the observations

in each leaf have a common shape. In fact, d is a lossless abstraction for shape because the

shape of each observation is identical to its leaf-level mode. The tree diagram for abstraction

d is plotted below it, with the unique shape associated with each leaf shown. This diagram

provides a compact symbolic summary of all feature-shape dependencies in the dataset.

Abstractions can be ine�cient for two reasons, exemplified by Figure 2.2 e and f . The

leaves of e have high internal variability in both colour and shape, so an abstraction-based

24



2.5. ABSTRACTIONS OF AGENTS AND ENVIRONMENTS

summary is a poor representation of the data for both query types. Meanwhile, f is a fine-

graining of d , obtained by adding five more axis-aligned hyperplane rules. It is ine�cient

because it adds needless parameters to an abstraction that was already lossless for shape queries.

An e↵ective abstraction algorithm would thus return the tree in the state shown in d , rather

than including the unnecessary rules in f . As alluded to above, the inherent hierarchy of

tree abstractions allows us to use pruning to control the tradeo↵ between summary accuracy

and parameter count for an e�cient compromise. Although there is rarely a single optimal

point on this tradeo↵, pruning should yield a Pareto e�cient tree from which further reducing

parameter count reduces accuracy, and further increasing accuracy increases parameter count.

Crucially, there is no reason in general to expect an e�cient abstraction for one type of

query to be e�cient for another. In Figure 2.2, c is not particularly shape-e�cient, and d

is not particularly colour-e�cient. This underlines the fundamental query-dependence of any

notion of e�ciency, and the need for specialised abstractions.

In the colour and shape examples above, we have assumed simple queries are made about

the value of one attribute. In such cases, the accuracy of a tree-based summary depends on

a measure of spread in that attribute over the observations contained in each leaf, typically

entropy or Gini impurity for a discrete-valued attribute (e.g. shape in Figure 2.2), or variance

for a continuous-valued attribute (e.g. colour) [32]. Optimising trees for such single-attribute

queries corresponds to the canonical problems of classification and regression in supervised

machine learning, which are by far the most common applications of tree abstractions. Although

the sequence of tree-based methods in this thesis begins with a minor departure from standard

classification and regression tree (CART) algorithms, we find that a holistic treatment of the

interpretability problem in the context of dynamic agents and environments involves multi-

attribute queries, and those that are non-local in that they depend on interactions between

leaves rather than independent variability measures. This motivates novel tree abstraction

methods optimised for more sophisticated queries, collectively forming a toolbox of abstract

representations that serve di↵erent downstream applications.

2.5 Abstractions of Agents and Environments

After a departure from the terminology of the previous chapter, we are now ready to integrate

our ideas about interpretable and e�cient abstractions back into the core narrative of this

thesis: building summaries of agent behaviour and learning in dynamic environments.

In [95], Gärdenfors and Warglien propose an extension of conceptual spaces theory to

actions and events, with a view to providing semantic grounding for verbs in natural language.

This so-called two-vector model involves a domain separation into a space of states of some

system s 2 S and a space of actions a 2 A generated by an agent.4 The two domains are

4The original notation uses P for the state space and A for the action space.

25



CHAPTER 2. ABSTRACTION WITH TREES

related by a mapping from actions to forces, which change the state s! s
0 and produce result

vectors (s, s0) 2 S ⇥ S. A sequence of action-induced state changes forms a trajectory in state

space. Gärdenfors and Warglien define abstract generalisations of states as convex subsets

of S, abstract actions as convex subsets of A, and events as convex subsets of the three-way

product space S ⇥A⇥ S (which contains actions and result vectors). Let this product space

be denoted the transition space. Simple verb-noun pairings can be grounded in events in a

transition space. For example, “moving a book” is grounded in a set of actions (such as robot

motor commands) that produce a nonzero result vector in positional dimensions of the the

book’s state space. Gärdenfors and Warglien note that the conceptual space can be furnished

with other dimensions and domains; for consistency with the previous section, let us refer to

these collectively as attributes Y. Among the attributes, they postulate a reward dimension to

account for the motivations of intentional agents.

As the reader may have noticed, this model strongly resembles a Markov decision process, as

formalised in Section 1.2.5 We thus have reason to believe that the interaction between an agent

and its environment can be understood as a conceptual space. Figure 2.3 a depicts a single

observation in such a space, which consists of an agent action a 2 A, an environment state

result vector (s, s0) 2 S ⇥ S, and values for whichever other attributes Y are being measured.

As shown in b , this may include a real-valued reward (red-blue colour scale).

Agent-environment interaction can be a complicated dynamical process, with dependencies

across its various conceptual space domains, and over time as sequences of observations are

made. To enable human interpretation of agent behaviour and learning, some mechanism for

simplifying and summarising these observations is essential. Throughout this thesis, we do

this by building tree abstractions. Rather than talking about the system on an observation-by-

observation basis, we may then analyse the leaves of a tree as meaningful entities in themselves,

within which the agent behaves in predictable ways, and between which it moves in predictable

patterns. First, however, we must wrangle the conceptual space in Figure 2.3 a into the (RD
,Y)

form assumed in Sections 2.3 and 2.4. This is done by a process that we call featurisation:

1. Identify one domain to be the target of abstraction, dom 2 {S,A,S ⇥A⇥ S}.

2. Define a feature function � : dom! R
D that maps points in dom to real vectors.

3. Bundle all other domains into the attributes Y.

Revisiting the Feature Grounding Caveat: Featurisation is the step at which the basic

potential for interpretability is created or destroyed. For an abstraction of an agent-environment

system to be understood by a human, the features produced by � must be aligned with natural

linguistic quantities or simple combinations thereof. In practice, � may not strictly be required:

5The absence of references to this connection suggests that Gärdenfors and Warglien are unaware of it, and
we have yet to find any citing articles that mention it.

26



2.5. ABSTRACTIONS OF AGENTS AND ENVIRONMENTS

b

Featurised action spacec

reward
\ 

re
w

ar
d

Observation

a

Featurised state spaced Featurised transition spacee

Subset =
abstract

state

Subset =
abstract
action

Subset =
eventResult

vector

Trajectory

reward

\ 
re

w
ar

d

g

fData distribution

Figure 2.3: A conceptual spaces model of agent-environment interaction.

benchmark environments for learning agents often expose states and actions as real vectors

by default as this is a convenient form for neural network-based learning architectures (e.g.

the spaces.Box class in Gymnasium [86]). However, even in these cases, there may be value

in transforming the features into a more naturally interpretable form (e.g. moving between

trigonometric and direct representations of robot joint angles). Appropriate featurisation is

important for all methods presented in this thesis. In the next chapter, we explore one possible

way to programmatically generate a large bank of interpretable candidate features, which are

then downselected by a tree induction algorithm.

Figure 2.3 c , d and e show a featurised state space �S(S), action space �A(A) and

transition space �T (S ⇥ A ⇥ S), with a single observation. Slightly refining Gärdenfors and

Warglien’s terms, let us define abstract states as convex subsets of �S(S), abstract actions

as convex subsets of �A(A), and events as convex subsets of �T (S ⇥A⇥ S). Illustrative tree

abstractions of all three spaces are shown.

The e�ciency of an abstraction can only be evaluated relative to a particular distribution of

observational data, an example of which is illustrated by the green shading f in the plots on

the right of Figure 2.3. In the case of a learning agent, this distribution changes over time across

all domains. Also shown is the projection of a single trajectory g into the various (featurised)

domains. It is with reference to potentially changing data distributions and temporally extended

trajectories, not merely a set of independent observations, that a holistic understanding of

learning agent behaviour is gained. For this reason, several methods presented in this thesis

explicitly use temporal information in their definitions of abstraction e�ciency.

27



CHAPTER 2. ABSTRACTION WITH TREES

Continuing the narrative from Section 2.4, abstraction e�ciency also depends on the

particular set of queries we pose about the agent and our observations of it. For example,

e�cient abstract states might be those containing observations with a common action, thus

enabling accurate query-answering about actions taken in di↵erent parts of the state space (“in

this circumstance, what does the agent do?”). Conversely, e�cient abstract actions might be

those correlated with a consistent change of value along one or more dimensions of the state

space, enabling the answering of queries in the opposite direction (“what is the e↵ect when the

agent does this?”). Events might be e�cient if they contain a narrow distribution of reward

values, enabling a summary of the normative information in the system (“when this happens,

how good is it?”). Each type of query only provides partial insight. This implies the need for a

toolbox of abstraction-based representations, as developed in this thesis.

In summary, the important takeaways from this section are as follows:

• The state space S, action space A and other attributes Y of an agent’s interaction with

its environment (e.g. rewards) define a conceptual space.

• A (learning) agent’s interaction history induces a (changing) data distribution in the

conceptual space. A dataset of observations of that history is an ordered sequence of

state-action-next-state tuples (s, a, s0) with associated attribute values.

• An abstract representation of these data can be obtained by wrangling the conceptual

space into (RD
,Y) form via featurisation, defining a tree abstraction of RD, and computing

summary statistics over Y for each leaf.

• The e�ciency of this abstraction depends on the set of queries we pose about the system,

which in turn depends on the downstream application. Di↵erent queries necessitate

di↵erent abstractions.

2.6 Conclusion

This chapter has taken a deep dive into a theory of symbol grounding through abstraction, and

a query-centric definition of abstraction e�ciency, before emerging to connect these ideas back

to our objective of understanding agent behaviour and learning. Although the remainder of this

thesis would have been coherent without this conceptual background, we consider it beneficial

to establish a common grounding.

This view can be justified by existing trends in AI interpretability. While the field has been

historically fragmented, with an ad hoc mixture of methods and evaluation metrics, some of the

most influential works propose generalisable algorithm schemas founded on sound principles

and desiderata. For example, local interpretable model-agnostic explanation (LIME) is a general

technique for understanding the local shape of a predictive function by fitting an interpretable

surrogate model to perturbations of a reference input [208]. The architecture of the surrogate,

28



2.6. CONCLUSION

and the mode of perturbation, can be tailored to the context. The intuitive and theoretical basis

of LIME is shared by its many derivative variants, allowing their position in the interpretability

landscape to be easily identified. In the agent context, interpretation via critical examples is

another powerful general schema. Given some measure of the task-specific importance of a

given state (often derived from the agent’s policy or value function), the aim here is to assemble

a small but diverse set of states [122] or trajectories [6] that summarise the agent’s global

strategy. This approach could be specialised in many ways for a desired application.

Our aim in this chapter has been to present query-e�cient abstraction with trees as another

flexible algorithm schema, whose interpretability credentials can be traced back to cognitive

science. The schema unifies the methods in this thesis with a common mathematical language,

enabling their synergy into a cohesive toolkit, and provides a context in which methods

specialised for other query types could be developed in future.

Trees are seen as a gold standard of machine learning interpretability [180, 219], and have

been employed in various ways to interpret agents (see Section 1.3), but the justification for

their use over other model architectures is often absent or vague. To our knowledge, the only

prior attempts to seriously investigate the foundations of tree interpretability are [235] and [205].

Like us, the author highlights trees’ dual interpretation as both geometric objects consisting of

simple hyperrectangular regions and symbolic objects consisting of hierarchies of rules. Also

mentioned are the ability to describe prediction by a sequence of easy-to-follow binary decisions,

the automatic feature selection e↵ect of axis-alignment, and the potential for local analysis

of tree branches. By discussing these properties within the broader context of the symbol

grounding problem and conceptual spaces theory, we have shown that trees can be understood

as a solution to a set of desiderata for human-interpretable representations of multidimensional

data. We believe this has implications outside the agent context.

In the remaining chapters of this thesis, we build on the theory and notation established in

this chapter to develop a diverse set of tree-based models for agent interpretability.

29





Chapter 3

Tree Models of Agent Behaviour

Based on: “Modelling Agent Policies with Interpretable Imitation Learning”, published in Trustworthy AI

- Integrating Learning, Optimization and Reasoning, Springer LNCS, 2021; and “TripleTree: A Versatile

Interpretable Representation of Black Box Agents and their Environments”, published at 2021 AAAI

Conference on Artificial Intelligence.

3.1 Introduction

In this chapter, we use the language of tree abstractions to construct interpretable models of an

agent executing a stationary (i.e. unchanging) policy in its environment, and explore how these

models provide understanding through prediction, visualisation and rule-based explanation. No

assumption is made about the agent’s provenance; its policy may be a product of RL, optimal

control algorithms, evolution, or explicit manual design. To learn anything about the agent we

must collect data, and in doing so we take a black box perspective [51, 102, 261]. That is, we

adopt the role of a passive spectator of the agent-environment complex, with no access to the

internal structure of either system, but with the ability to directly observe environment states,

agent actions, and instantaneous rewards (all of which are assumed to be externally visible),

and their order of occurrence over time.

Given data collected under these conditions, we present two tree-based models, optimised

for di↵erent kinds of query about the agent’s behaviour. The first focuses exclusively on the

relationship between states and actions, and learns a tree abstraction of the state space that

enables accurate reconstruction of the agent’s policy. After discussing the limitations of such a

policy-only model, we then extend the approach to also capture invariances in the agent’s value

function (expected future reward) and dynamics (state changes between timesteps). In the

process of developing these models, we propose a framework for synthesising an interpretable

feature space for use in tree induction, examine the tree performance/complexity tradeo↵

through pruning, present algorithms for counterfactual explanation of tree-based predictions

and how they change over time, and develop a novel method for visualising a tree’s induced

partition in high-dimensional feature spaces.

31



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

3.2 Tree Models of Black Box Policies

We first consider how trees can be constructed to summarise a black box agent’s policy. This

general strategy is perhaps the one that most naturally springs to mind when the problem of

agent interpretability is first encountered, since it is a direct analogue of surrogate modelling

for supervised learning [180], and at the time this work was completed, it already had some

precedence in the literature [20, 51, 151] (see Section 3.6.1 for more related work). Going beyond

these prior methods, we propose a new way of synthesising a large bank of interpretable features

from the state space by recursive application of a set of elementary operators, which are then

downselected by the tree induction algorithm, and provide a detailed examination of how a

tree model can be used to generate rule-based explanations of the policy’s actions and their

changes over time. Primarily, however, this preliminary study is best viewed as establishing

a point of departure for the sequence of methods presented later in this chapter and thesis,

which find more novel roles for tree abstractions in the e↵ort to render artificial agents more

understandable to humans.

3.2.1 Generic Problem Statement

Let us first describe the problem of interpretable policy modelling in generic terms. We adopt

the perspective of a passive spectator of a black box agent executing a stationary policy in

its environment, with the ability to observe the environment’s state and the action taken

by the agent at each time step. This allows us to record an interaction history of N states

and actions D = {(s1, a1), . . . , (sN , aN )} to use as the basis of model learning. Our objective

is to identify the underlying mapping between states and actions given D. Without loss of

generality, this mapping can be decomposed into a state-to-feature function � : S ! R
D and a

feature-to-action policy ⇡0 : RD ! �(A).1 The decomposition is not restrictive in itself because

it makes no assumptions about �: if ⇡0(�(s)) = �(s) for example, it is possible to reconstruct

any policy exactly. However, we also wish to constrain the search spaces for � and ⇡0 (� and ⇧

respectively) so that they only contain functions that are human-interpretable. This property

must be achieved while minimally sacrificing reconstruction accuracy or tractability of the

modelling problem. The objective can be formulated as an optimisation:

(3.1) argmin
�2�, ⇡02⇧


E

(s,a)2D
E

a0⇠⇡0(·|�(s))
[ `(a, a0) ]

�
, where �,⇧ = “interpretable”,

and ` : A⇥A! R�0 is a pairwise loss function over the environment’s action space. In other

words, we want to reconstruct the state-action mapping as accurately as possible, subject to

the interpretability constraints. The schematic in Figure 3.1 outlines the task at hand.2 We

now present concrete proposals for a � and ⇧ that meet the interpretability requirement.

1We use ⇡0 to denote the learnt policy model; ⇡ is the true policy, which we cannot observe directly.
2Icons from users Freepik and Pixel Perfect at www.flaticon.com.

32

www.flaticon.com


3.2. TREE MODELS OF BLACK BOX POLICIES

Human Model

Environment

Black Box
Policy

Figure 3.1: Generic problem setup for interpretable policy modelling. The objective is to
minimise the loss between at and a

0
t 8t 2 {1, . . . , N} while ensuring both the feature function �

and policy model ⇡0 are comprehensible under human scrutiny.

3.2.2 Recursive Feature Generation

� should permit only human-interpretable features representing the environment state. As per

the Feature Grounding Caveat (Section 2.3.4), the availability of an interpretable feature

space is crucial for the resultant interpretability of any model built on top. This subsection

describes a flexible framework for generating a large number of such features automatically.

We consider features that can be synthesised from the underlying environment state s by

recursively applying a finite set of elementary operators O, each of which has a well-defined

domain and codomain and is taken to be functionally interpretable in itself. Generic examples

might include basic numerical operators such as addition and subtraction, and Boolean operators

such as negation, conjunction and disjunction. Other, more domain-specific, operators may

also be relevant in some cases. In the tra�c simulator experiments described later, O contains

operators to extract a vehicle’s speed and position, find the nearest vehicle and junction ahead

of and behind a position, and subtract one speed or position from another. As will be shown

later, a large and diverse set of features can be generated by recursively combining these simple

primitive operators.

Formally, we say that an operator o 2 O is valid for given input if the range of possible

values for that input is a subset of the domain of the operator (e.g. the interval [0, 1] is a subset

of R, as is R itself). A feature is valid, and thus constructible by the recursive algorithm, if it

comprises entirely of valid operations. To limit the complexity of �, we also specify a limit r on

the depth of recursion. As an illustrative example, suppose O contains three operators:

o1 : S ! [0, 1], o2 : S ! [�1, 1], and o3 : R⇥ R! {1, 2, 3},

and the recursion depth limit is set at r = 2. Here,

f1(s) = o1(s) and f2 = o3(o2(s), o1(s))

are valid features of the state s, but

o3(s) and o1(o2(s))

33



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

are both invalid operator combinations due to input-domain mismatches, and while valid,

o3(o3(o1(s), o2(s)), o1(s))

is not generated because it exceeds the depth limit (it has a depth of 3). Consequently,

�(s) = [f1(s), f2(s)]

is a vector of valid features with dimensionality D = 2, making � a member of the set of

possible feature functions �.

Note the core assumption that lies at the heart of this approach: given a set of canonical

operators whose interpretability is taken as self-evident, valid combinations of those operators

(up to a limited depth) retain that interpretability by virtue of their traceable derivation. With

this formulation, prior domain knowledge is used to design O, which in turn has a shaping e↵ect

on � without requiring the stronger assumption of which precise features to use. We suggest

that this could be a general and scalable route to feature design for interpretable learning

algorithms beyond the realm of policy modelling.

3.2.3 Tree-Structured Policy Model

In further service of the goal of interpretability, the policy space ⇧ should be limited to functions

that are comprehensible to humans while retaining su�cient representational capacity for high

reconstruction fidelity (predictive accuracy with respect to the target policy). In this work, as

throughout this thesis, we achieve this by enforcing a tree structure.

Following the notation introduced in Chapter 2, let X = {x1, x2, . . . , xm} denote the leaves

of a tree over a D-dimensional feature space �(S) = R
D, which in this case has been constructed

by the recursive operator method described above. For each element (s, a) in the dataset of

state-action observations D, the state feature vector �(s) lies within exactly one leaf. We can

thus define Dx as the subset of observations that belong to leaf x:

(3.2) Dx = {(s, a) 2 D : �(s) 2 x}.

Recall that in Section 2.4 we discussed how a tree abstraction allows us to build a compressed

representation of a dataset by computing summary statistics at the leaf level. For the present

purposes, we wish to summarise the distribution of actions taken by the agent in each leaf.

When the action space A is discrete, this categorical distribution can be represented in full:

(3.3) Pr(a|x) = |{(s, a0) 2 Dx : a0 = a}|
|Dx|

, 8a 2 A.

When A is continuous, a sensible choice of parametric summary is the normal distribution:3

(3.4) Pr(a|x) = N (a|µx,�
2
x), where µx = E

(s,a)2Dx

[ a ] and �
2
x = E

(s,a)2Dx

[ (a� µx)
2 ].

3Strictly speaking, this is a density function, but we use the same notation as for discrete actions for simplicity.

34



3.2. TREE MODELS OF BLACK BOX POLICIES

In either case, the leaf-level statistical summaries can be used to define a predictive function

that outputs a distribution over actions given an arbitrary state s 2 S as input. This function

is what we take to be ⇡0, the tree-based model of the agent’s policy ⇡:

(3.5) ⇡
0(a|�(s)) = Pr(a|x), where �(s) 2 x.

Alternatively, a deterministic policy can be constructed by taking the modal (for discrete

A) or mean (for continuous A) value of each leaf-level distribution. For simplicity, we use a

deterministic form when constructing textual policy explanations in Section 3.5.

We now introduce another statistic that will prove crucial for the development of algorithms

for e�cient tree induction. Let the action impurity of a leaf x be the expected action loss

between pairs of observations drawn uniform-randomly from its data subset:

(3.6) IA(Dx) = E
(s,a)2Dx

E
(s0,a0)2Dx

[ `(a, a0) ],

where ` is the pairwise action loss function introduced in Section 3.2.1. Note that for discrete

action spaces, the popular Gini impurity measure is recovered by defining `(a, a0) = 0 if a = a
0,

and `(a, a0) = 1 otherwise. For continuous actions, leaf impurity is commonly quantified in

terms of variance. This equates (up to a scale factor of 1
2) to defining `(a, a0) = (a� a

0)2.4

The policy modelling objective in Equation 3.1 can be expressed in terms of leaf impurity. To

demonstrate this, let us make use of Equations 3.2 and 3.5 to rewrite the objective’s minimand:

(3.7) E
(s,a)2D

E
a0⇠⇡0(·|�(s))

[ `(a, a0) ] =
X

x2X

|Dx|
|D| E

(s,a)2Dx

E
a0⇠Pr(·|x)

[ `(a, a0) ],

From this rewriting, it is clear that reconstruction fidelity depends on the expected deviation

between the actions of observations at each leaf x and samples from the summary distribution

Pr(a|x), with greater weighting given to leaves containing more observations. Notice how this

provides our first concrete example of the notion of data being well summarised by leaf-level

statistics, which is introduced in an abstract sense in Section 2.4. Also notice the structural

similarity to the impurity definition in Equation 3.6, insofar as a loss expectation is taken over

two sampled actions a and a
0. If we can show that this expectation is the same regardless of

whether a0 is sampled from the data subset Dx or from the summary distribution Pr(a|x), then
it would be permissible to further rewrite the minimand as follows:

(3.8) E
(s,a)2D

E
a0⇠⇡0(·|�(s))

[ `(a, a0) ] =
X

x2X

|Dx|
|D| · IA(Dx).

Indeed, the required condition holds for both discrete actions with the Gini impurity measure,

E
(s0,a0)2Dx

[ `(a, a0) ] =
1

|Dx|
X

(s0,a0)2Dx

[ a0 6= a ] =
|Dx|� |{(s0, a0) 2 Dx : a0 = a}|

|Dx|

= 1� Pr(a|x) = 1� E
a0⇠Pr(·|x)

[ a0 = a ] = E
a0⇠Pr(·|x)

[ a0 6= a ] = E
a0⇠Pr(·|x)

[ `(a, a0) ],

4This can be generalised to multidimensional continuous action spaces as the (weighted) Euclidean distance.

35



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

and for continuous actions with normal summaries and the variance impurity measure,

E
(s,a)2Dx

E
(s0,a0)2Dx

[ `(a, a0) ] = E
(s,a)2Dx

E
(s0,a0)2Dx

[ (a� a
0 + µx � µx)

2 ]

= E
(s,a)2Dx

[ (a� µx)
2 ] + E

(s0,a0)2Dx

[ (a0 � µx)
2 ]� 2 E

(s,a)2Dx

[ (a� µx)
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:= 0

E
(s0,a0)2Dx

[ (a0 � µx) ] ]

= 2 E
(s,a)2Dx

[ (a� µx)
2 ] + 0 = 2 E

(s,a)2Dx

[ (a� E
a0⇠Pr(·|x)

[ a0 ])2 ] = E
(s,a)2Dx

E
a0⇠Pr(·|x)

[ (a� a
0)2 ]

= E
(s,a)2Dx

E
a0⇠Pr(·|x)

[ `(a, a0) ],

where the step highlighted in green exploits a well-known relationship between squared deviation

from the mean and squared pairwise di↵erences [274]. The form given in Equation 3.8 is thus

valid in both of these standard cases.

This result implies that to achieve good reconstruction fidelity with respect to the target

policy, we should aim to construct a tree that minimises the weighted sum of action impurity

across its leaves. This insight provides the basis for a tractable learning algorithm.

3.2.4 Modelling Procedure

We combine ideas from the preceding subsection to define the following procedure for optimising

the policy modelling objective in Equation 3.1. The procedure is represented in Figure 3.2,

using a similar style of visualisation to that used in Chapter 2. Firstly, domain knowledge must

be applied to manually define a set of feature-generating operators O, and specify a recursion

depth r. With these factors in place, it is straightforward to enumerate all valid features; doing

so defines a maximal feature space �all(S). Let Dall be the dimensionality of this space. While

the tree model is initially constructed in this maximal space, it will later be possible to discard

any feature that is not used in any rule in the tree, usually resulting in a final feature space

�(S) with much-reduced dimensionality D ⌧ Dall (note that the maximum possible value for

D is m� 1, the total number of rules in the tree).

The process used for learning the tree itself consists of two stages: growth and pruning. The

growth stage follows the standard CART algorithm [32], which iteratively adds partitioning

rules one at a time in a top-down, greedy manner, starting from the root of the tree.

By “greedy”, we mean that the criterion for selecting between candidate partitions considers

only the immediate reduction in loss, rather than the loss of the final (as-yet-unknown) state

of the tree. This is suboptimal but regularly performs well in practice, especially when followed

by a well-designed pruning stage, such as the one described below. Alternative algorithms

exist that look ahead two or more partitioning decisions into the future, but these are far more

computationally expensive, often for little to no reduction in loss [185]. While the problem

of constructing truly optimal trees is NP-complete for most interesting loss functions [152],

ongoing improvements in computing hardware mean that this is now possible for moderate

36



3.2. TREE MODELS OF BLACK BOX POLICIES

++
+

+0

-

--

-

-

-

-00
0

+
++

+

++

-- ---
-
--

-- --

0

++

Observation

++

+

Root partitioninga

+0
-

--

Fully-grown treeb

++
+

+0

-

--

-

-

-

-00
0

+
++

+

++

-- ---
-
--

-- --

++
+

-

+
++

++
++

TrueFalse

F FT T

TF

0.3

0.7

0.4 0.6

modal action =

Pruned subtreec

++
+

+0

-

--

-

-

-

-00
0

+
++

+

++
++

-- ---
-
--

-- --

-

-- 0

+ ++

0.7

Threshold    along feature

T
hr

es
ho

ld
   

 a
lo

ng
 fe

at
ur

e

Maximum quality lower than
for feature 2, so not selected

Zero impurity

Maximal feature space,
generated by recursive

operators

Figure 3.2: A state-action dataset as observations in a conceptual space in (�all(S),Y) form,
where �all(S) is the maximal state feature space and the only attribute is the agent’s action,
Y = {A}. Here, A contains five discrete actions, A = (--, -, 0, +, ++), which match those in
our tra�c simulator experiments. Also shown are tree abstractions at three stages during the
modelling procedure: splitting the root, growing to zero impurity, and pruning.

datasets via mixed-integer programming [25]. We watch progress in this area with great

interest. However, all tree induction algorithms presented in this thesis follow the greedy

paradigm. In part, this is because our focus is on exploring new kinds of abstraction and the

human-agent understanding that they enable, and additionally tackling questions of optimality

would expand the scope beyond a practical level. We also suggest that the simplicity of

greedy algorithms makes them functionally interpretable in themselves, providing a valuable

opportunity to explain the provenance of the trees that they generate.

Top-down tree growth is a recursive process. At each point during this process, there exists

an extant tree with m � 1 leaves X = {x1, . . . , xm}, forming a partition of the maximal feature

space �all(S). One step of growth involves selecting a leaf x 2 X and adding a rule, or from a

geometric perspective, an axis-aligned hyperplane, to split it into two new leaves. Recall from

Section 2.3.4 that a rule has the form “fd � c” where d 2 {1, . . . , Dall} is a split feature and

c 2 R is a split threshold. The new leaves that would be created by any given d, c pair are

(3.9) x
(d�c) = {f 2 x : fd � c} and x

(d<c) = x \ x(d�c)
.

In the greedy growth paradigm, we search for the d, c pair that minimises the loss of the

resultant (m+ 1)-leaf tree, given a dataset of state-action observations D. By Equation 3.8,

this is achieved by minimising the weighted sum of action impurity across all leaves. Crucially,

however, impurity is a local property of each leaf, so the impurity contribution of all other

leaves X \ {x} will remain unchanged regardless of which d, c pair is chosen. The quality (loss

reduction) of a candidate split of x can thus be defined in terms of x, x(d�c) and x
(d<c) only:

(3.10) QA(x, d, c) = |D
x(d�c) | · IA(Dx(d�c)) + |D

x(d<c) | · IA(Dx(d<c))� |Dx| · IA(Dx),

where D
x(d�c) and D

x(d<c) are the subsets of D that belong to the two new leaves.

37



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

The CART algorithm identifies the greedily-optimal d, c pair through exhaustive search. To

make the search over c tractable, we must restrict the options to a finite set of candidate split

thresholds Cd ⇢ R along each feature d. It is common to define Cd as all midpoints between

adjacent unique feature values in the dataset, and we follow that precedent in this work. The

greedy objective when splitting a leaf x is thus the following:

(3.11) argmax
1dDall, c2Cd

h
QA(x, d, c)

i
.

Top-down tree growth begins with an empty tree consisting of a single root. In the geometric

language of space partitioning, this equates to a trivial abstraction of �all(S) with a single subset

X = {x1}, where x1 = �all(S). The first step of growth is thus to split the root. Figure 3.2 a

shows an illustrative example of the search for a greedily-optimal d, c pair for root splitting.

The green curves on the two axes below and to the right represent the quality QA(x1, d, c) of

each possible threshold c along features d = 1 and d = 2 respectively. In this case, the single

highest quality is attained with d = 2, c = 0.7, so this split is chosen.

From this point onwards, the standard CART algorithm proceeds to split leaves recursively

in a depth-first manner until a stopping criterion, such as a maximum depth or impurity

threshold, is met. In the experiments described later, where the action space is discrete, we

let growth continue until every leaf has zero impurity (i.e. all contained observations have the

same action). An example of a tree with zero impurity is shown in Figure 3.2 b .

With zero impurity as the stopping criterion, the fully-grown tree is likely to be very large

for reasonably-sized datasets, which greatly hampers its overall interpretability (it is also liable

to be overfitted and thus generalise poorly to unseen data, especially when the agent’s policy is

stochastic). In the language of Section 2.4, we wish to find a more e�cient tree that achieves

an appropriate compromise between loss and parameter count. At this point, the hierarchical

structure of trees becomes extremely beneficial, because it automatically provides a nested

collection of abstractions to choose from, at varying levels of granularity. This nested collection

is traversed by pruning the fully-grown tree, which involves progressively merging its leaves (or

in diagrammatic terms, removing its branches) to create smaller subtrees. In Figure 3.2, an

example of one possible pruned subtree of b is shown in c . Among the collection of nested

possibilities, we aim to find the subtree that is most e�cient in the sense described below.

For a tree X , a branch is a set of leaves that can be merged to form a single convex subset.

The set of all branches of X can be enumerated as follows:

(3.12) branches(X ) = {X ✓ X : isconvex(root(X))},

where root(X) =
S

x2X x,5 and the isconvex function tests whether a set is convex according

to the definition in Section 2.3.1. The roots of all branches correspond to the nodes in the tree

diagram for X . A pruned subtree of X can now be defined as the roots of a set of branches that

partition X . All possible pruned subtrees can be enumerated as follows:

5Observe that the root of the tree as a whole satisfies this definition, root(X ) =
S

x2X x = �all(S).

38



3.2. TREE MODELS OF BLACK BOX POLICIES

(3.13) pruned(X ) = {{root(X) : X 2 X} : X ✓ branches(X ) ^
[

X2X
X = X ^

\

X2X
X = ;}.

Every member of pruned(X ) is itself a tree.

The objective of the pruning stage of tree induction is to find the most e�cient member of

pruned(X ), where e�ciency is a joint function of loss and parameter count. Since parameter

count scales with the number of leaves in a tree, the natural e�ciency measure for our purposes

is a weighted sum of impurity and leaf count. In this case, the objective of pruning is to find

(3.14) X↵ = argmin
X 02pruned(X )

"
X

x2X 0

|Dx|
|D| · IA(Dx) + ↵|X 0|

#
,

for some weighting parameter ↵ > 0, with ties between multiple optimal subtrees broken by

selecting the smallest. The minimal cost complexity pruning (MCCP) algorithm [32] is able

to solve this problem exactly. MCCP iteratively prunes one branch at a time, selected by the

following greedy criterion:

(3.15) argmin
X2branches(X )

"
|Droot(X)| · IA(Droot(X))�

P
x2X |Dx| · IA(Dx)

|X|� 1

#
.

The iterative nature of MCCP means that it produces a sequence of pruned subtrees

X ,X 0
,X 00

, . . . , {root(X )}, each a subtree of the last, representing a progressive reduction of

X down to its root. The maximum length of this sequence is m� 1. Crucially, although the

criterion in Equation 3.15 is greedy, the pruning sequence is guaranteed to contain the smallest

optimally e�cient subtree X↵ for every ↵ > 0 (the proof of this property is rather involved,

so we refer the reader to Section 10.2 of [32]). Consequently, the number of options worth

considering can be narrowed from the entire nested collection of pruned subtrees to the (at most)

m� 1 members of the pruning sequence. Since the tree size regulariser ↵ is a free parameter,

any tree in the sequence could feasibly be chosen to define the policy model ⇡0, in which case

the final feature set � would simply be the subset of �all that are used at least once in a rule in

that tree. However, in our experiments, we explore the e�ciency tradeo↵ between the model’s

fidelity on one end, and its interpretability (through simplicity) on the other, by selecting and

evaluating several trees from across the pruning sequence.

One major advantage of the procedure described in this subsection is that it e↵ectively

reduces the joint problem of learning � and ⇡0 to an iterative optimisation over impurity and

leaf count. This exploits the fact that the growth and pruning of a tree is an exercise in feature

selection as well as one of model building. Extraneous features that are not helpful for e�ciently

reducing impurity are ignored or pruned and can safely be discarded from the feature space.

They thus have no detrimental e↵ect on the interpretability of the final model. This in turn

means that there is little risk in generating a very large initial feature space �all, with the

primary cost to enlarging it being a (linear) increase in the time complexity of the tree growth

stage. In practice, generating a large and unspecialised feature space may be less challenging

than generating a smaller one containing only relevant features.

39



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

3.3 Tra�c Simulator Experiments

We now demonstrate our approach in a simple tra�c simulator environment, in which a

population of vehicles are each controlled by a common black box policy to navigate around a

track while avoiding collisions. Since the policy is homogeneous across the population, we can

observe the behaviour of each vehicle independently to learn � and ⇡0.

3.3.1 Tra�c Simulator Environment

The central structure of the tra�c environment is a closed loop in 2D space, which self-intersects

at one or more locations called junctions. Vehicles are modelled as rectangles and are constrained

to move around the track longitudinally in a common direction (analogous to ‘slot car’ racing

with a single slot). This environment has an arbitrarily large number of track shape variants,

which we call topologies. All topologies considered in this work are constructed from line

segments and circular arcs; five examples are shown on the left of Figure 3.3.

v

v’v’’

B C D EA

Figure 3.3: Left: A selection of track topologies for the tra�c environment, with vehicles shown
as coloured rectangles and junctions represented by red circles. Right: Definition of the six
features used by ⇡F, as measured by the blue vehicle.

At the start of a simulation episode, the vehicle population I is initialised by placing them

at random points around the track (subject to a minimum-spacing constraint). By default, all

vehicles start with a speed of vmax, which is a fixed global speed limit for the environment. At

time t, the state of the environment includes the position p
i
t of each vehicle i 2 I, which can

be represented by a single real number: pit 2 [0, L] where L is the overall length of the track.

It also includes each vehicle’s speed v
i
t 2 [0, vmax], as well as some representation of the track

topology. For our purposes, we require a record of the total length of the track L, as well as

the set of junctions J . Each j 2 J is associated with a location on the track, pj 2 [0, L], as

well as a twin j
0 2 J , which is the other track location that intersects the first, pj

0 2 [0, L]. For

example, in topology A in Figure 3.3, J has two elements specifying locations on the horizontal

and vertical track sections that intersect to form the single junction.

The discrete action space A consists of an ordered list of acceleration levels, whose values are

symmetric about 0, and include 0 itself to allow a constant speed to be maintained. If at time

t, vehicle i produces an acceleration action a
i
t, the environment responds by deterministically

adjusting i’s speed within the hard limits [0, vmax] for the following timestep, i.e. assigning

v
i

t+1  min{max{vit + a
i
t, 0}, vmax}. In all experiments discussed below, the action space is

A = (�vmax
4 ,�vmax

12 , 0, vmax
12 ,

vmax
4 ) with vmax = 0.1, which is half the body length of a vehicle.

40



3.3. TRAFFIC SIMULATOR EXPERIMENTS

When using tree-based policy models to generate textual explanations later in this chapter, we

represent these actions with symbolic labels (--, -, 0, +, ++).

The environment is capable of detecting collisions between vehicles and terminating the

episode when one occurs. We utilise this functionality during the evaluation of policy models.

3.3.2 Target Policies

We consider two collision-avoiding control policies as the targets of our policy modelling

approach. Both are hand-coded functions, rather than being learnt by some optimisation

process (e.g. RL). Performing this initial evaluation against known target policies is useful, as

it allows us to compare the resultant trees to a known ground truth. It is important to stress

that from the perspective of the modelling procedure, the policies are black boxes, as only their

inputs and outputs are observed.

• The fully-learnable policy (⇡F) is a simple rule set which uses the values of six numerical

features as measured from the perspective of each vehicle. These features include the

vehicle’s absolute speed (v), the distance to the next junction (dJ), the distance to

the nearest vehicle in front (dI), and the speed relative to that vehicle (vI). The final

two features involve looking back along the other section of the track leading into the

next junction, finding the next vehicle that is approaching it, and computing both the

relative speed (vX) and relative distance-to-junction (dX) with respect to that vehicle.

Figure 3.3 (right) depicts the definition of these features geometrically. This policy is

itself implemented as a nested sequence of if-then rules over single features, equivalent to

an axis-aligned tree with 39 leaves.6 It can thus be reconstructed exactly by our method

in principle, provided all six features are included in the maximal feature space �all.

• The partially-learnable policy (⇡P) retains some of the logic from ⇡F, but considers

additional nearby vehicles and selects acceleration actions using a proportional feedback

controller. These changes yield significantly smoother motion, but cannot be precisely

replicated by a tree of finite depth, hence this policy can only be approximately modelled.

3.3.3 Recursive Generation of the Maximal Feature Space

The first step in our modelling approach is to synthesise a large set of state features for use in

tree growth. We use a set of operators O that enables all six features used by the fully-learnable

policy ⇡F to be generated, since this ensures perfect replication of that policy is possible in

principle. These operators are as follows:

• pos : I ! [0, L] or J ! [0, L]. For a vehicle identifier i 2 I or junction identifier j 2 J ,

return the position of that entity on the track.

6A tree diagram representing this policy is shown in Figure 3.9 b .

41



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

• speed : I ! [0, vmax]. For a vehicle i, return its speed.

• fa : I ! I or J ! I. For a vehicle i or junction j, return the next vehicle in front.

• ba : I ! I or J ! I. For a vehicle i or junction j, return the next vehicle behind.

• fj : I ! J . For a vehicle i, return the next junction in front.

• twin : J ! J . For a junction j, return its twin j
0.

• sep : [0, L]2 ! [0, L]. For two track positions p and p
0, compute how far p is in front of p0.

The result is always non-negative since the track is a loop.

• sub : [0, L] ! R or [0, vmax] ! R. For two speeds v and v
0 or two separations sep and

sep
0, subtract the second from the first. The result can be negative.

The scalar values returned by three of these operators (speed, sep, sub) are taken as features;

the remaining operators are used only to produce intermediate variables. The roles of these

operators are best understood by considering how the six features used by ⇡F can be generated

for a given vehicle i 2 I:

v = speed(i);

dJ = sep(pos(fj(i)), pos(i));

dI = sep(pos(fa(i)), pos(i));

vI = sub(speed(i), speed(fa(i)));

vX = sub(speed(i), speed(ba(twin(fj(i))));

dX = sub(sep(pos(twin(fj( i))), pos(ba(twin(fj( i))))), sep(pos(fj(i)), pos(i))).

All six features are generated by applying the operators to a maximum recursion depth of

r = 6, but many additional features are created in the process. With the operators, domains

and codomains as described, a total of 251, 263 unique features are realisable with r = 6 (this

number accounts for the fact that many feature combinations are redundant, e.g. ba(fa( i)) = i).

To make the problem more manageable, we add a handful of additional constraints, including

not applying the same operator twice in a row and always computing separations between

vehicles and junctions (not vice versa), which reduce the number of candidate features to 308.

This defines the maximal feature space �all. The vast majority of features remain irrelevant for

reconstructing the target policies, so a challenging feature selection problem remains.

3.3.4 Dataset and Training

To produce the state-action dataset D for a given target policy, we run that policy with a

population of 11 vehicles on five di↵erent track topologies (specifically those shown in Figure 3.3).

We run for episodes of 100 timesteps before resetting, and move to the next topology only when

each of the five actions in A has been used at least 5000 times across the vehicle population.

42



3.3. TRAFFIC SIMULATOR EXPERIMENTS

Pruning direction Pruning direction

N
um

be
r 

of
 d

ist
in

ct
 fe

at
ur

es
V

al
id

at
io

n 
ac

cu
ra

cy

Number of leaves Number of leaves

Target Policy = Target Policy = 

Figure 3.4: Curves of validation set accuracy and number of features used across the pruning
sequences for each target policy. The rightmost point in each curve corresponds to the unpruned
tree X . Numbered vertical lines indicate the trees chosen to carry forward to evaluation.

The recorded history of environmental states and agent actions is preprocessed by using the

operators to generate the maximal feature vector �all for each vehicle i and storing this alongside

the action produced by the policy for that vehicle. This means that each simulation timestep

yields 11 feature vector-action pairs. We balance the action classes by randomly discarding

data until each a 2 A has the minimum count of 25000 observations (5000 ⇥ 5 topologies).

Therefore, D contains a total of 125000 observations (25000⇥ 5 actions).

During growth and pruning of the tree model, we use a pairwise loss function which

penalises the absolute numerical distance between two actions: `(a, a0) = |a� a
0|. This creates

an impurity measure which is e↵ectively a distance-weighted version of the standard Gini

impurity. Performing growth and pruning as described in Section 3.2.4 yields the sequence of

pruned subtrees X ,X 0
,X 00

, . . . , {root(X )}.

To determine which of these trees to take forward to evaluation, we measure their predictive

accuracy on a validation dataset Dval, of identical size and composition to D. Accuracy is

measured as the proportion of times the action of an observation in Dval matches the modal

action for the leaf that contains it, i.e. E(s,a)2Dval
[ a = argmaxa02A ⇡

0(a0|x) : �(s) 2 x ]. We

also consider the number of leaves and number of distinct features used in rules for each tree

as heuristics for interpretability. Figure 3.4 shows curves for validation accuracy and feature

count as a function of leaf count (which is unique for each tree in the pruning sequence) for

both target policies. For each, we use an intuitive judgement to select five pruning levels in

the sequence (in addition to the unpruned tree) that provide a reasonable spread across the

fidelity-interpretability tradeo↵. These are indicated in the figure by numbered vertical lines.

Level 0 corresponds to the unpruned tree.

43



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

3.3.5 Baselines

To assess the e↵ectiveness of the proposed approach, we compare it to several baselines. Firstly,

we grow and prune a tree using only the six features required by ⇡F (denoted �F), thereby

bypassing the feature generation/selection aspect of the problem. We also train another tree

with a di↵erent set of hand-engineered features (denoted �näıve), chosen to be indicative of what

might be näıvely deemed useful without careful consideration or domain knowledge. These

features are the radius, angle, normal velocity and heading of the two nearest vehicles (using

the controlled vehicle’s egocentric coordinate system), as well as the controlled vehicle’s own

speed v. Such measurements are blind to the locations of junctions and the topology of the

track, so should be expected to yield lower-quality reconstruction. A second class of baselines is

generated by following the full modelling procedure with �all, but using data from only one of

the five track topologies at a time. These baselines assess the capacity of � and ⇡0 to generalise

between topologies, and whether training on multiple topologies is important for preventing

overfitting. For each baseline, we use the single tree with the highest validation accuracy from

the pruning sequence. Table 3.1 summarises the model variants considered in our experiments.

Table 3.1: Experimental model variants. Track topology letters correspond to those in Figure 3.3.
* = per-topology training and multiple pruning levels only used with �all.

Property Variants
Target Policy ⇡F ⇡P

Feature Set �all �F �näıve

Training Topology* All A B C D E
Tree Pruning Level* 0 1 2 3 4 5

3.4 Quantitative Evaluation

Depending on how a policy model is intended to be used, its quality can be measured in various

ways. A model with high predictive accuracy on a static, class-balanced dataset may exhibit

rather di↵erent behaviour to the original agent when deployed as a policy in the underlying task

environment, due to any distributional di↵erences being amplified over time [211]. In addition,

even if that behaviour were similar in most cases, environments tend to include certain critical

states where selecting the optimal action is especially important if the policy is to be safe and

performant. In the tra�c environment, critical states arise in instances of high tra�c density

around junctions, where the risk of a crash is high. In this section, we evaluate tree-structured

tra�c policy models on a range of metrics to capture these various considerations, before

moving on to explore how they may be used to interpret their black box targets in Section 3.5.

3.4.1 Evaluation by Predictive Accuracy

The first and most straightforward metric of policy model quality is its ability to predict the

actions in an unseen test set Dtest. We use a test set with an identical size and composition to

44



3.4. QUANTITATIVE EVALUATION

the training set D. The heat maps in Figure 3.5 show accuracy results for all model variants

and baselines, both separated by test topology and aggregated across the whole test set. A

great deal of information is carried by these visualisations, but the most salient points are:

• For both ⇡F and ⇡P, mean accuracy exceeds 90% for even the smallest pruning levels (i.e.

fewest leaves) and 95% for the second-smallest.

• Accuracy for ⇡P is bounded at around 97.5%, reflecting the fact that this policy is not a

tree so cannot be perfectly modelled by one. As expected, providing �F upfront (bypassing

the feature selection problem) yields somewhat better accuracy, but it is promising to see

that down to pruning level 2, accuracy di↵ers by under 0.25% for both targets.

• Lacking information about junctions, the tree using �näıve is unable to obtain the same

levels of accuracy, demonstrating the importance of choosing the correct set of features

for policy modelling.

• The single-topology training results show that trees generalise well from the larger and

more diverse topologies (especially C), but poorly from the small topology A. This suggests

the latter produces insu�cient diversity of vehicle arrangements to capture all important

aspects of the target policies.

3.4.2 Evaluation by On-policy Divergence

Since agent policies operate in a fundamentally dynamic context, a complementary test of

quality comes by deploying the target policy and tree-based policy to control all vehicles in

two identically-initialised environments and measuring the similarity of the resultant behaviour

over time. Specifically, we do this by measuring how rapidly the environment’s state diverges.

The divergence at each timestep is defined as the absolute di↵erence in cumulative distance

travelled between the two instances of each vehicle, averaged across the population of 11 vehicles.

Completing 100 episodes of 1000 timesteps for each pairing of model variant and test topology,

we find that divergence is approximately linear with time, so obtain a single estimate by fitting

a least squares linear regression model. The values in Figure 3.6 are the regressor’s divergence

predictions for a full 1000-timestep episode. Key results are as follows:

• The maximum possible divergence value is 1000⇥ vmax = 100. Even the worst divergence

results on the most challenging topologies do not come close to this upper bound, indicating

that some consistency of driving behaviour is exhibited by all models.

• As with accuracy, enforcing the correct features �F or incorrect features �näıve tends to

have a large e↵ect on divergence. With ⇡F as the target, models using the full feature set

�all are competitive with using �F down to pruning level 2.

• With ⇡P as the target, the increase in divergence with pruning level is far more gradual

(even nonexistent for some topologies). This result has interesting implications: while this

45



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

Target Policy = Target Policy = 

A CB D E Mean A CB D E Mean

Si
ng

le
-t

op
ol

og
y 

tr
ai

ni
ng A

B

C

D

E

Pr
un

in
g 

le
ve

l w
ith

 

0

1

2

3

4

5

A

B

C

D

E

Figure 3.5: Left: Track topologies. Right: Model accuracy on an unseen test set Dtest.

Target Policy = Target Policy = 

A CB D E Mean A CB D E Mean

Si
ng

le
-t

op
ol

og
y 

tr
ai

ni
ng A

B

C

D

E

Pr
un

in
g 

le
ve

l w
ith

 

0

1

2

3

4

5

Figure 3.6: Expected divergence from target policy after 1000 timesteps.

Target Policy = Target Policy = 

A CB D E Mean A CB D E Mean

Si
ng

le
-t

op
ol

og
y 

tr
ai

ni
ng A

B

C

D

E

Pr
un

in
g 

le
ve

l w
ith

 

0

1

2

3

4

5

Target

Figure 3.7: Mean time between failures across 100 episodes of up to 1000 timesteps.

46



3.4. QUANTITATIVE EVALUATION

policy is impossible for a tree to exactly replicate by design, it may be somewhat easier

to imperfectly model it in a way that preserves similar on-policy behaviour.

• The clear column-wise banding of both matrices in this figure indicates that di↵erences

in the intrinsic di�culty of each topology are as influential as the di↵erences between

models. The longest (and thus least densely-populated) topology D is almost always the

easiest to avoid diverging on, with the best models exhibiting no measurable divergence

at all after 1000 timesteps. Uniformities in the inter-junction distances of this topology

may also play a role.

• Intrinsic topology di↵erences are especially clear in the submatrix for the single-topology

baselines. Here, the on-diagonal elements are no larger than the o↵-diagonal ones, in-

dicating that training on a given topology does not yield any special improvement in

divergence on that topology.

3.4.3 Evaluation by Mean Time Between Failures

The final quality metric considered is the ability of the tree-based policy models to avoid certain

failure conditions when deployed in the environment. We consider two modes of failure here: a

collision between multiple vehicles, and a stall, which we define as three or more vehicles being

stationary for 15 consecutive timesteps,7 thereby inhibiting tra�c flow. We again evaluate using

100 episodes of 1000 timesteps with 11 vehicles. The values in Figure 3.7 are the mean times

between failures (MTBF) by either of the two modes, which are cumulative across episodes

(i.e. three complete episodes plus a failure after 100 timesteps yield an MTBF of 3100). The

maximal value of 100000 is used when zero failures occur; this is a conservative figure since the

policy may have continued for even longer without failing. The target policies ⇡F and ⇡P are

included in this figure for comparison. Key results are as follows:

• While MTBF results broadly correlate with accuracy, this metric shows a more marked

aggregate distinction between ⇡F and ⇡P, and between di↵erent test topologies.

• Nonetheless, there is minimal degradation with pruning down to level 4, with a constant

average of just 1-2 failures for ⇡F, and 3-4 for ⇡P.

• In fact, it appears that intermediate pruning levels fail less often than the largest trees.

While the reason for this is not immediately clear, it may be that having fewer leaves

yields less frequent changes in acceleration and smoother motion.

• In rare cases (e.g. ⇡P pruning level 3, topology A), tree models may even fail less often

than their target policies.

• Providing �F confers no significant benefit over �all, while �näıve and single-topology

training on A are utterly unable to perform and generalise well respectively.

7Except in topology A, which is the smallest and most densely-packed. Here, periods of stop-start motion
are unavoidable, and we register a stall only when all vehicles are stationary for 15 timesteps.

47



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

0.37 0.20 0.22 0.19 0.28

0.50 0.72 0.70 0.60 0.74 0.27

0.45 0.62 0.63 0.60 0.67 0.33 0.79

0.38 0.69 0.66 0.62 0.63 0.13 0.77 0.73

0.40 0.40 0.43 0.42 0.54 0.46 0.54 0.69 0.45

0.41 0.39 0.41 0.33 0.41 0.06 0.41 0.34 0.42 0.23

0.22 0.61 0.61 0.66 0.48 0.05 0.45 0.41 0.50 0.28 0.35

0.25 0.54 0.57 0.65 0.50 0.14 0.50 0.46 0.53 0.35 0.43 0.74

0.24 0.54 0.60 0.64 0.50 0.08 0.50 0.48 0.49 0.45 0.35 0.65 0.64

0.56 0.92

0.45 0.80 0.83

0.70 0.81 0.84 0.72

0.54

0.17 0.34 0.33 0.40 0.43

A B C D E

0.12 0.34 0.44 0.34

A B C D

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A
cc

ur
ac

y
D

iv
er

ge
nc

e
M

T
B
F

Accuracy

0.37 0.43 0.39 0.35 0.42

A B C D E
Divergence MTBF

a

Mean by Metric

Acc. Div. MTBF

Accuracy

Divergence

MTBF

0.72

0.51 0.52

0.45 0.36 0.44

A B C D E

A 0.28

0.32 0.59

0.35 0.65 0.55

0.29 0.63 0.63 0.59

0.35 0.48 0.51 0.47 0.46

B

C

D

E

Mean by Topology
c

b
0.40

0.58

0.59

0.57

0.59

0.22

0.56

0.54

0.53

0.43

0.33

0.45

0.48

0.46

0.35

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A
cc

ur
ac

y
D

iv
er

ge
nc

e
M

T
B
F

d

A Mean by
Row/Col

Figure 3.8: Correlations between model rankings on all topologies and quality metrics.

3.4.4 Correlations between Quality Metrics

We now assess the relationships between the quality of all 26 models (2 target policies ⇥ (6

pruning levels + 7 baselines)) across the various metrics and topologies. Since we already have

evidence that these relationships are nonlinear (e.g. small accuracy changes leading to large

di↵erences in MTBF), we quantify them using Kendall’s ⌧ rank correlation coe�cient [139]

instead of Pearson correlation. This tells us how much a model’s rank (out of 26) on one metric-

topology pair (e.g. accuracy on topology C) correlates with its rank on another metric-topology

pair (e.g. divergence on topology A). Pairwise correlations between all metrics, on all topologies,

are shown as a lower triangular matrix in Figure 3.8 a . All values in this matrix are positive,

with the mean value being 0.47, indicating that knowledge of a model’s accuracy, divergence or

MTBF on one topology provides at least some signal about its e�cacy in other contexts.

To highlight the key trends, we group and average the correlation values by metric b

and topology c . In the first of these aggregated matrices, the accuracy-accuracy correlation

is highest at 0.72, indicating that a model’s accuracy rank on one topology is fairly strongly

predictive of its accuracy on another (this value increases to 0.82 if topology A is excluded).

Moving down the rows, the on-policy metrics of divergence and MTBF are more independent

both of each other, and of their respective values on other topologies. c highlights the single-

junction topology A as an outlier in terms of cross-topology generalisation, with the three most

complex topologies (B, C and D) being somewhat more mutually predictive than when E is also

included. This reinforces that robustly assessing policy models requires diverse evaluation data.

Finally, d shows row/column-wise means of the correlation matrix, of each metric-topology

pair with respect to all others. This shows that high accuracies on topologies C and E are the

best overall indicators of a successful model. The least generally predictive metric is on-policy

48



3.5. MODEL INTERPRETATION AND EXPLANATION

divergence on topology A; merely assessing a model by this metric would tell us very little

about its wider quality. Overall, this correlation exercise serves to highlight how policy models

can (and should) be evaluated from a multitude of perspectives, which interact and correlate in

subtle ways. We can identify no single metric that paints a complete picture.

3.5 Model Interpretation and Explanation

The preceding analysis evaluates our proposed framework for tree-based policy modelling

according to various quantitative metrics, but tells us nothing about the utility of the models

for understanding their target policies. This section discusses various ways in which a tree

can be used to summarise, explain and diagnose target policy behaviour. Favouring depth of

exploration over breadth, we focus exclusively on one model: the most heavily-pruned tree

(level 5) for the fully-learnable policy ⇡F, since it is compact enough to visualise in full for

didactic purposes. This model achieves a mean predictive accuracy of just over 90% on a

class-balanced test set (see Figure 3.5). While this level of accuracy is su�cient to provide

certain kinds of insight, it clearly does not indicate a perfect model. Since we are in the artificial

situation of knowing the true ⇡F exactly, we can discuss the ways in which the model’s rules

and explanations are faithful, and ways in which they are potentially misleading.

3.5.1 Tree Diagram Comparison

As discussed in Chapter 2, a key factor in the interpretability of tree models is the ability to

visualise their rule structures as diagrams. Figure 3.9 shows the tree diagram of the level 5

policy model for ⇡F a , alongside the ground truth tree structure of ⇡F itself b . In both cases,

each leaf of the tree is associated with an action (the modal action, for the learnt tree) and the

hierarchy of rules determines which leaf is reached based on features of the environment state.

If a rule evaluates to true, the right branch below is taken. Otherwise, the left branch is taken.

The diagrams provide a complete description of the target and model policies, which can be

directly compared.

The learnt model has 20 leaves and utilises 11 of the 308 features from �all in its rules.

Among these are all six features used by the target policy. We see this as being a very positive

result, indicating that the tree growth and pruning process is capable of singling out the features

required to faithfully reconstruct a black box policy from a much larger set of alternatives. The

remaining five features include the distance between the vehicle in front and the junction in

front (dJ � dI , rule shown in yellow box), which is a composite of two of the correct features.

Also included is a relatively complicated construction that ultimately just computes �dI (used

in two rules, shown in blue boxes). This feature is a redundant addition because dI is already

present, but since its rules could easily be inverted to eliminate it, its inclusion does not create

problems for interpretation. However, the tree also utilises three more spurious features that are

49



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

vI≥-0.05

dX≥0.00 dX≥-0.00

1 dX≥0.25

dI-dJ≥0.20 dX≥0.75

2 3
?3≥0.75

?1≥0.00 ?2≥1.43

dI≥0.75

v≥0.10

dX≥0.25 -dI≥-0.75

dJ≥1.00 -dI≥-0.50

dX≥0.50

vX≥-0.00

dJ≥1.00

v≥0.05

29 3332

+

-- ++

+ ++
4 5

++
6

-

+ 0 -- -

-

-- +

-

-- ++ 0

-

False True

+

7

8 9

10

11 12

13

14 15

16

20

191817

dJ≥1.

dX≥0. dI≥0.75

dI≥0.75 dX≥0.75

dI≥0.25 v≥0.1

vI≥0.

vI≥-0.05 dI≥0.5

dI≥0.5

3

1

2

4 5

v≥0.05

87

dI≥0.75 dI≥0.75

dI≥0.25 dX≥0.25
9

vI≥0.

vI≥-0.05 dI≥0.5

dI≥0.5

12

10

11

13 14 15

vX≥0.

vX≥-0.05 dX≥0.5

dX≥0.5

18

16

17

19 20

dI≥0.25 v≥0.1

21

vI≥0.

vI≥-0.05 dI≥0.5

dI≥0.5

24

22

23

25 26

v≥0.05

27

28

dI≥0.25 v≥0.1

30

vI≥0.

vI≥-0.05 dI≥0.5

dI≥0.5

31

34 35

v≥0.05

38

36

37

6

39

++

++

++

+

+

+

+ +

+ +

+

0

0

0 0 0

0

0

0

--

---- - -

--

--

--

--

--

--

--

--

--

--

--

False True

Learnt Tree
(pruning level 5)

Ground Truth Tree for b

a

Figure 3.9: Ground truth tree and learnt tree
model (pruning level 5) for the fully-learnable
policy ⇡F. Leaf labels indicate their modal ac-
tions as follows: --! �vmax

4 ; -! �vmax
12 ; 0! 0;

+! vmax
12 ; ++! vmax

4 . Split thresholds used in
rules are rounded to 2 d.p.

significantly di↵erent from those used by the target policy (denoted ?1, ?2 and ?3, rules shown

in orange boxes). The derivations of these features in terms of the canonical operators are:

?1 = sub(speed(fa(i)), speed(ba(fj(i))));

?2 = sub(sep(pos(fj(i)), pos(i)), sep(pos(ba(fj(fa(i)))), pos(fa(i))));

?3 = sub(sep(pos(ba(fj(i))), pos(i)), sep(pos(ba(fj(fa(i)))), pos(fa(i)))).

For example, ?1 can be interpreted as the relative speed between the vehicle in front, fa(i), and

the first vehicle behind the upcoming junction, ba(fj(i)) (note that these might be the same

vehicle, in which case ?1 = 0). One could construct a plausible story for why this might be

useful for a control policy, but to the extent that ?1 influences the tree model’s output, this

reflects correlations in the state-action dataset D rather than truly causal mechanisms within

the target policy. Rules using ?1, ?2 and ?3 may have value for understanding trends in the

agent’s behaviour but must be interpreted with significant caution.

For the six correct features, it is informative to look at the thresholds involved in rules in

the learnt tree. For example, for features measuring relative distances to other vehicles (dI and

dX), the thresholds 0.25, 0.5 and 0.75 appear often, and for the distance-to-junction feature

(dJ), a threshold of 1 is used on both occasions. Inspecting the ground truth tree reveals that

these are precisely the thresholds used when hand-coding the target policy ⇡F. The model has

thus not only selected the correct features, but made use of them in largely the correct ways,

thereby accurately reconstructing some of the internal logic of the target policy. That said,

the order in which rules are combined di↵ers (e.g. the first rule in the ground truth tree tests

whether dJ � 1, but this rule is used further down in the learnt tree). This indicates that the

tree learning process has somewhat imprecisely encoded the circumstances in which each rule

is applied. Such imprecision contributes to the 10% predictive error rate of this policy model.

50



3.5. MODEL INTERPRETATION AND EXPLANATION

3.5.2 Factual Local Explanation

In addition to providing an approximate global overview of how the black box target policy

operates, a tree model can be used to give a symbolic local explanation of an individual action

in terms of the rules applied to produce it, provided the model’s prediction matches the action

actually taken (no meaningful factual explanation exists if the two actions are inconsistent). In

this case, we take the modal action of each leaf as the prediction, which equates to interpreting

the tree as a deterministic policy. The symbolic explanation is constructed via a process of

ancestor rule conjunction, which is first introduced in Section 2.3.4. For example, suppose at a

particular timestep the feature vector for vehicle i ends up at the leaf numbered 1 in Figure 3.9

a . This leaf has two ancestors, whose rules are “vI � �0.05” and “dX � 0” (both evaluate to

false for this leaf), and the modal action is a soft acceleration (+). If this matches the policy’s

true action, the following factual explanation can be o↵ered:

“i’s action is + because vI < �0.05 and dX < 0”,

i.e. the policy chooses to accelerate because the vehicle in front is going at least 0.05 faster

than it, and the first vehicle on the opposite branch into the next junction is currently further

than it from the junction. In informal terms, i ‘seizes the opportunity’ to accelerate into a gap

before the opposite vehicle crosses the junction.

Recall from Section 2.3.4 that if the same feature is tested multiple times along the path

of ancestors, it is only necessary to state the most restrictive condition. For example, an

observation that ends up at leaf 6 can be explained by

“i’s action is ++ because vI < �0.05 and dX � 0.75”,

which omits two other ancestor rules that are subsumed by “dX � 0.75”.

Since in this work, we are in the artificial position of knowing the internal structure of the

target policy ⇡F, it is also possible to identify when such explanations are misleading. The

factual explanation of an observation at leaf 10 is:

“i’s action is + because vI � �0.05 and dX < 0 and ?1 � 0”.

This includes the spurious feature ?1, which is used nowhere in the decision logic of ⇡F but

has nonetheless been identified as informative during the tree growth process because its value

correlates with the policy’s action in the training set. Provided the prediction of + does match

the target policy for this observation, then we can conclude that the model has given the right

answer, but for (at least partially) the wrong reason. This example serves to show how the

non-equality of correlation and causation is especially relevant when it comes to generating

explanations using approximate models [119]. One possible way to make a factual explanation

less causally loaded is by replacing the word “because” with “which is reliably predicted by”.

51



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

3.5.3 Counterfactual Local Explanation

Presented in isolation, factual explanations such as those given above have a somewhat shallow

quality, since they lack any reference to feasible alternatives. When a person asks for an

explanation of an event, they are often implicitly seeking a reason why a di↵erent event,

known as a foil, did not occur instead [160]. In the context of agent decision making, a class-

contrastive counterfactual explanation provides reasons why an agent’s true action a
⇤ di↵ers from

a specified foil action a
0. The tree models used in our approach provide an elegant mechanism

for class-contrastive counterfactual explanation.

Consider a state s
⇤ for which the tree correctly predicts the target policy’s action a

⇤,

i.e. �(s⇤) lies within leaf x⇤ : argmaxa2A⇡
0(a|x⇤) = a

⇤. We may wish for a counterfactual

explanation as to why another action a
0 6= a

⇤ is not taken instead. The first step is to enumerate

all conditions that are su�cient for the foil to be satisfied, which in a tree are the leaves for

which a
0 is the modal action:

(3.16) X(action=a0) = {x 2 X : argmaxa2A⇡
0(a|x) = a

0}.

Any feature vector f0 2
S

x2X(action=a0)
x is a su�cient counterfactual for the foil action a

0.

However, the literature on counterfactual explanations for machine learning places a heavy

emphasis on the principle of minimality : we should provide not just any su�cient counterfactual,

but one that requires the smallest possible change to the original features �(s⇤) [102, 261].

Minimality is best understood with reference to the space partitioning representation of

trees. Recall that the leaves of a tree X are axis-aligned hyperrectangles in the feature space. For

each x 2 X , let lo(x, d) and hi(x, d) be the lower and upper boundaries of the hyperrectangle

along feature d, which are defined by the splits made at its ancestors.8 As a shorthand, let us

denote f⇤ = �(s⇤) to be the feature vector for the original state. The location in x which is

closest to f⇤, denoted by f(⇤!x)
d

, can be defined on a feature-wise basis:

(3.17) f(⇤!x)
d

=

8
><

>:

hi(x, d) if f⇤
d
> hi(x, d),

lo(x, d) if f⇤
d
< lo(x, d),

f⇤
d

otherwise,

8d 2 {1, . . . , D}.

Because leaves are hyperrectangles, this closest-point definition is unambiguously true for any

p-norm. For each x 2 X(action=a0), let �
(⇤!x) = (f(⇤!x) � f⇤) be the vector from f⇤ to f(⇤!x)

Practically speaking, �(⇤!x) describes the smallest changes to the feature values in f⇤ that

would move it from x
⇤ to x. Together, the � vectors provide a set of locally-minimal alternatives

for how the original state could be modified such that the tree would predict the foil action a
0.

We could stop here and return the full set of closest points as a counterfactual explanation.

In some contexts, this may be desirable as a diverse counterfactual set helps to build a more

8One or both of these boundaries will e↵ectively be infinite if none of the ancestors are split along d, but this
creates no problems for counterfactual generation.

52



3.5. MODEL INTERPRETATION AND EXPLANATION

Figure 3.10: To find the minimal counterfactual for state s
⇤ and foil action a

0, we start by
identifying the set of leaves satisfying the foil condition X(action=a0) (= {x1, . . . , x5} here), then
find the closest point to f⇤ = �(s⇤) on the boundary of each. We filter first by the 0-norm of
the corresponding � vectors; this removes f(⇤!x1) and f(⇤!x5) from contention. We then sort by
2-norm (faint green circle), which identifies f(⇤!x4) as the minimal counterfactual.

well-rounded understanding of the policy [183]. In others, however, it may risk overloading a

human with too much information. For this reason, we now propose a simple two-stage method

for selecting the single minimal element of the set {f(⇤!x) : x 2 X(action=a0)} by considering the

corresponding � vectors.

The closest element in the set to f⇤ depends on which norm is applied to the �s, and di↵erent

norms have di↵erent advantages. The 2-norm (Euclidean distance) corresponds to the intuitive

notion of distance in vector spaces, especially those with a physical interpretation, but does not

incentivise sparsity, which would allow us to give a more compact explanation (fewer feature

changes means fewer clauses in the textual output). Conversely, the 0-norm only measures

sparsity, and cannot di↵erentiate between options with the same number of nonzero elements.

The 1-norm (Manhattan distance) o↵ers a popular compromise [183, 261], but we propose a

di↵erent approach, which is summarised in Figure 3.10. We filter first by 0-norm for sparsity,

(3.18) X(action=a0^sparse) = {x : ||�(⇤!x)||0 = min{||�(⇤!x
0)||0 : x0 2 X(action=a0)}},

then by 2-norm to find the minimal counterfactual (ties broken arbitrarily):

(3.19) f0 = f(⇤!x) : ||�(⇤!x)||2 = min{||�(⇤!x
0)||2 : x0 2 X(action=a0^sparse)}.

This two-stage approach enforces a strict priority of the 0-norm over the 2-norm; a counterfactual

is only considered if its � vector is at least as sparse as any of the others. We suggest that

this is desirable behaviour, because any features whose values do not need to change for f⇤ to

be reassigned the foil action can be excluded from the explanation. Prioritising the 0-norm

puts the strongest possible emphasis on compact explanations, while still punishing � vectors

with very large (Euclidean) magnitudes. It also makes it simple, if required, to specify a hard

53



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

threshold on sparsity, allowing us to answer questions of the form “can the foil condition be

realised by changing  n features?”.

Returning to the learnt tree in Figure 3.9 a , consider a feature vector for vehicle i that

ends up at leaf 10, for which the prediction is a soft acceleration (+). We may wish to know why

a hard deceleration (--) is not performed instead. Unlike in factual explanation, the precise

location of the vector within the leaf a↵ects the explanation because it changes the distances to

other leaves. If for this vector, ?2 < 1.43 and dJ < 1, the following counterfactual is minimal:

“i’s action would be -- if dX increased to � 0 (leaf 11)”,

i.e. all else being equal, the policy would have output a hard deceleration if the first vehicle

on the other branch into the next junction were not further than it from the junction. In this

case, this is the only counterfactual with one non-zero feature change. As another example, for

a feature vector at leaf 16 (also subject to dX < 0.75, ?3 < 0.75, v � 0.05) and a foil action

of ++, there are three counterfactuals requiring two features to be changed. If dX <?3 and

(vI + 0.05)2 + (dX � 0.75)2 < (v � 0.05)2 + (?2 � 1.43)2, the one in bold is minimal by 2-norm:

“i’s action would be ++ if

vI decreased to < �0.05 and ?3 increased to � 0.75 (leaf 5)

or vI decreased to < �0.05 and dX increased to � 0.75 (leaf 6)

or v decreased to < 0.05 and ?2 increased to � 1.43 (leaf 18)”,

i.e. i would switch from a soft deceleration to a hard acceleration if the vehicle in front were

going faster than it, and the distance to the next junction were larger.

As mentioned above, factual explanations cannot be generated when the tree’s prediction

is inconsistent with the target policy. With counterfactuals, a trivial modification – setting

the foil to be the target’s true action – allows us to shift the focus to the shortcomings of the

model itself. For example, suppose a feature vector for vehicle i ends up at leaf 9, for which

the prediction is no acceleration (0), but we know from observation that the policy actually

performs a soft deceleration (-). The minimal counterfactual is to move to leaf 7:

“Model would match target if dI decreased to < 0.75”,

or equivalently, if the threshold in the rule separating leaf 7 from leaves 8 and 9 were increased

by the same amount. This result does not automatically tell us where the flaw in the model lies

(perhaps the decision threshold is misplaced and should indeed be moved, or perhaps the model

requires an additional rule), but it does point to parts of the feature space where we might

learn from more experimentation with the target policy. This perspective treats the policy

model not as an end in itself, but as a tool to be used during a wider e↵ort to build intuition,

understanding and trust in the black box policy.

54



3.5. MODEL INTERPRETATION AND EXPLANATION

3.5.4 Temporal Explanatory Stories

Much of the complexity of agent-based problems stems from the fact that they are dynamic,

yet most prior e↵orts to use tree models for policy interpretation operate on a single-timestep

basis [51, 186, 251]. This subsection presents a method for explaining a target policy’s behaviour

over many timesteps, derived from the counterfactual analysis described above.

An explanation of a time period in a dynamical system is, in e↵ect, a story, which should

identify the salient events and their proximal causes. Where the system consists of an agent i

interacting with its environment, a sensible choice for these salient events is the sequence of times

when i changes its action. In the language of tree models, this means moving from one leaf xt at

time t to another leaf xt+1 at time t+1, such that argmaxa2A ⇡
0(a|xt) 6= argmaxa2A ⇡

0(a|xt+1).

As long as the tree is consistent with the target policy in both timesteps, this transition can be

explained by adapting the concept of a minimal counterfactual.

Given the feature vector for the state at time t, denoted by ft, Equation 3.17 can be used

to find f0 = f(t!x
t+1), the closest point inside x

t+1. This indicates the minimal feature value

changes required to move to the new leaf. We suggest that it is also beneficial to explicitly state

the features that must not change through the transition from x
t to x

t+1, since this provides

some background context. These features are those tested along the decision path to x
t+1 which

have values of zero in the di↵erence vector �(t!x
t+1). Consider the following example:

“i’s action changed from + (leaf 8) to 0 (leaf 9)

because v increased to � 0.1,

while vI � �0.05 and dX < 0 and ?1 < 0 and dI � 0.75”,

i.e. the policy stops accelerating because the vehicle has reached a speed of 0.1 (which is the

speed limit vmax), while the conditions on the third line remain constant.

To explain an extended sequence of behaviour, the preceding analysis can be performed

iteratively, omitting any timesteps when the target policy’s action remains constant. We propose

to start the explanatory story with a single factual explanation, then add a counterfactual

whenever the action changes. In cases where the model’s prediction does not match the target,

we deploy the aforementioned method of self-critiquing by using the true action as a foil. These

ideas are all combined in the example below, which seeks to explain why a vehicle i moves from

hard acceleration to hard deceleration over a period of 50 timesteps:

Faster

Closer to
junction

“t = 0: i’s initial action is ++ (leaf 6)

because vI < �0.05 and dX � 0.75.”

Less
faster

Further
from

junction

“t = 8: i’s action changed from ++ to + (leaf 8)

because vI increased to � �0.05 and dX decreased to < 0,

while ?1 < 0 and dI � 0.75 and v < 0.1.”

55



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

Speed limit
reached

“t = 17: i’s action changed from + to 0 (leaf 9)

because v increased to � 0.1,

while vI � �0.05 and dX < 0 and ?1 < 0 and dI � 0.75.”

Gap at
least 0.75

“t = 32: i’s action changed from 0 to - but model still predicts 0 (leaf 9).

Model would match target if dI decreased to < 0.75 (leaf 7).”

Gap less
than 0.75 “t = 39: state moves to leaf 7 so model matches target again.”

Closer to
junction

“t = 50: i’s action changed from - to -- (leaf 17)

because dX increased to � 0.25,

while dI  0.59and ?2 < 1.43.”

This explanatory story tells us that from a starting point of hard acceleration, vehicle i

initially lowers its acceleration (t = 8) because the speed relative to the vehicle in front has

exceeded �0.05 (i.e. the gap between the vehicles is no longer growing significantly), and the

closest vehicle on the opposite branch is now further than it from the junction. i then moves

to a constant speed (t = 17) because the speed limit of 0.1 is reached. After this, the initial

shift to a soft deceleration (t = 32) is not captured by the model, but agreement is recovered 7

timesteps later, and an explanation for the mismatch is provided. The final change to hard

deceleration (t = 50) is explained by the vehicle on the opposite branch moving ahead of i by

at least 0.25 units, requiring i to slow down to let the other vehicle cross the junction first.

Much of this story is aligned with the general functionality programmed into the target

policy, and gives useful insight into its correlative properties. However, it is clear given our

knowledge of the true tree structure of ⇡F (shown in Figure 3.9 b ) that some of the above

explanatory statements are more causally accurate than others. Although most of the decision

thresholds used in the story (e.g. vI = �0.05, dX = 0.75, v = 0.1) are present in the true tree

structure, they are combined in di↵erent ways that may yield di↵erences in the counterfactual

statements produced. More subtly, the preceding counterfactuals state the minimal change

required to move from x
t to x

t+1 (e.g. from leaf 6 to leaf 8), but not the minimal change to

change the tree model’s action prediction (e.g. from ++ to +). They may not be equivalent,

specifically in the case that x
t+1 is adjacent (in the feature space) to leaves with the same

predicted action. As a result, this method as stated is liable to produce overly restrictive,

non-minimal counterfactuals for action change. This issue is revisited in Section 3.9.2, where we

develop a refined method for temporal explanation that generates truly minimal counterfactuals.

9Here the redundant feature �dI has been removed by reinterpreting �dI � 0.5 as dI  0.5.

56



3.6. PIT STOP: REVIEWING THE POLICY MODELLING APPROACH

3.6 Pit Stop: Reviewing the Policy Modelling Approach

3.6.1 Related Work

This chapter began by noting that interpretable policy modelling “naturally springs to mind”

as a strategy for understanding black box agents, and indeed, the use of trees for this purpose

is widespread. An early example is the Cognitive Shadow project [151], in which CART policy

models are learnt from observational data in a simulated air defence command centre. The

target policy is that of a human decision maker, and the main purpose of the model is to

generate interpretable alerts if that person deviates from their historic behaviour. Subsequent

papers by the same authors find that trees achieve superior fidelity to other interpretable models

such as logistic regression and nearest neighbours clustering. More similar to our own work, [47]

use CART to model a hand-coded “exemplary” policy in a driving simulator with various track

topologies. Like us, they use on-policy failure rate as a complementary metric to fidelity, and

observe poor cross-topology generalisation if the training data are not diverse. They propose to

record failure cases in a supplementary dataset for selectively refining the tree structure.

Such iterative learning is also the focus of Viper [20], which uses the DAgger [211] strategy

of retraining the policy model on data from its own on-policy distribution to gradually narrow

the mismatch to the target policy. On each iteration, CART is used to grow a new tree from

scratch on the enlarged dataset.10 Numerous works have built on the Viper algorithm. For

example, [212] complements the data-driven tree learning phase with a sequence of manual

domain-specific rule fixes (e.g. to reduce undesirable oscillations), yielding an interpretable and

high-performing tree policy, and [256] extends Viper with a “gating function” that nonlinearly

partitions the state space into regions where local tree policy models are learnt. This increases

the potential expressivity of the aggregate model.

The latter work is one of many to depart from a basic axis-aligned tree structure with the

aim of increasing fidelity or performance. Other examples are [58], which finds that allowing non-

axis-aligned (oblique) partitions somewhat improves model quality on both metrics at the cost

of significantly more parameters, and [71], which further generalises to nonlinear partitions and

employs bilevel evolutionary optimisation. Yet others replace definite true/false rule outcomes

with probabilistic ones, and refer to the resultant trees as fuzzy [251] or soft [51]. [192] use soft

tree policy models in the medical domain, where they argue that trees are especially natural

because of their pervasiveness in clinical education, and propose a novel recurrence mechanism

to handle partial observability. While soft trees are more expressive in principle, and can be

more easily learnt from streaming observations due to their di↵erentiable parameters, their

probabilistic semantics make interpretation far more di�cult. [73] consider post-processing soft

trees through discretisation, but find that this causes a large drop in fidelity.

10We explored using DAgger in our own experiments but found no further performance improvement. This
may be because our training dataset was su�ciently large and diverse to cover all relevant states.

57



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

[57] perform a detailed comparison of soft and hard (CART) trees for policy modelling

in three benchmark control domains. Like us, they find that the relationship between model

fidelity and performance is highly nonlinear. Furthermore, while soft trees are superior at small

maximum depths, hard trees continue to improve with size while soft trees plateau, even as

their parameter count grows exponentially (this observation is also made in [51]). It is therefore

not clear that the more complex and expensive soft tree learning approach performs better than

CART in general. A similar finding in favour of simple tree algorithms is made in [96], where a

greedy CART-like approach is compared to more expensive mixed-integer programming and

gradient descent methods for policy modelling in robotics domains.11 Somewhat surprisingly, the

greedy trees are often superior, which is attributed to them being able to model the full policy

in a single tree rather than one per discrete action, their ability to be grown to a maximum leaf

count rather than a fixed uniform depth, and their reduced hyperparameter sensitivity. These

comparative studies bolster our own decision to base our algorithms on CART.

We also make the following general observations about tree-based policy modelling:

• Most work takes it as given that a fixed (and interpretable) feature set is available to use

in tree growth, which is not always realistic. An exception is [73], which uses a secondary

soft tree to learn a linear transformation of the state space prior to the main policy model.

Our operator-based feature generation approach is an alternative to this method.

• Evaluations tend to focus primarily on fidelity/performance metrics, to the extent that

demonstrations of the interpretability of the learnt trees are often missing entirely [58] or

rather cursory and unconvincing due to their large size and/or nonlinear partitions [73].

In the preceding sections, as throughout the rest of this thesis, we have attempted to do

equal justice to the quantitative and qualitative evaluation of interpretable models.

• It is common to optimise and evaluate trees for both fidelity and on-policy performance.

Since these metrics are not equivalent, the ultimate purpose of the trees is often unclear:

are they (1) models for understanding black box policies, or (2) standalone white box

policies for deploying in the environment? Our own evaluation is somewhat guilty of this

conflation, but in the context of this thesis, we can be clear that (1) is our aim.

The clear non-equivalence, and common conflation, of model fidelity and on-policy

performance inspired significant further thought on the topic after this work was com-

pleted. This resulted in a discussion paper [26], in which we conclude that interpretable

policy models should be framed either as tools for understanding their black box tar-

gets, or as usable policies in their own right, but not both simultaneously. This echoes

recommendations made in [275] for the neural network rule extraction field.

11In all cases, each leaf is associated with a linear predictive model rather than a summary distribution.

58



3.7. TRIPLETREE: A MULTIATTRIBUTE TREE ABSTRACTION

3.6.2 What is Missing in a Policy Model?

A more basic critique of the policy models proposed so far is that they are fundamentally

incomplete. The approach is the natural analogue of learning an interpretable surrogate of a

supervised learning model [180], but this very analogy risks masking the additional complexities

present in the agent context. Contrary to a supervised learning system, which operates as a

predictive function on i.i.d. data, the notion of an agent is inextricable from the notion of

dynamics. When an agent takes an action in its environment, that alters the state it will observe

as its input on the following timestep. This cycle may continue indefinitely, or until some time

limit or termination condition is reached. Rather than predictive accuracy or error, there is a

far richer concept of dynamic task performance, which is aggregated over time. In order to gain

a holistic understanding of agent behaviour, one must consider the entirety of this dynamic

interaction, but a policy model (tree-structured or otherwise) only provides insight into the agent

as an input-output function at a single timestep.12 Since in many environments, “individual

actions do not have enough impact on their own” to determine long-term outcomes [60], such

single-timestep analysis is inescapably partial.

In the Broad-XAI framework for agent interpretability [61], policy models represent the

shallowest level of analysis, with higher levels requiring that models include intentional infor-

mation related to the agent’s goals, objectives, and beliefs, as well as how its actions change

over time. Rephrasing using the language of queries introduced in Section 2.4, we wish not

only to answer queries of the form “in this circumstance, what does the agent do?”, but also

queries related to intentional and temporal information, such as “how good (in terms of task

performance) is this circumstance?” and “what happens next?”. The focus of the remainder of

this chapter is on building tree-based models of black box agents that do help to answer these

other queries, by expanding the set of summary statistics they contain and optimise for.

3.7 TripleTree: A Multiattribute Tree Abstraction

We now present TripleTree, our second tree-based model, which was conceived to address

the shortcomings of policy-only tree models identified above. We begin with the premise that

the lack of versatility of these models is a product of how observational data are stored in the

tree, and of the algorithm used to grow it, rather than an inherent limitation of the tree-based

abstraction paradigm itself. Far richer and more expressive tree models can be constructed by

making fuller use of the available observational data.

TripleTree is specifically tailored for MDP environments, where agent performance is

measured by a reward function (see Section 1.2). In addition to summarising the actions taken

by the agent in di↵erent subsets of the state space, the model also approximates its state value

12More accurately, it provides no insight when examined in isolation. As we have seen, a policy model can aid
understanding of dynamic behaviour if paired with a simulator or recorded agent trajectory, but its accuracy is
liable to increasingly diverge over longer time horizons.

59



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

function (discounted future reward), as well as the expected change in each state feature between

successive timesteps. It is learnt using a novel variant of the CART algorithm, with a hybrid

impurity measure that trades o↵ the accuracy of all three summaries. After describing the

model and exploring how the impurity tradeo↵ is managed by a weighting hyperparameter, we

demonstrate how TripleTree facilitates practical understanding of black box agents through

prediction, visualisation, rule-based explanation and generation of hypothetical trajectories. As

such, it provides a versatile tool for answering many meaningful queries about agent behaviour.

3.7.1 Data Preparation and Model Structure

As before, we adopt the perspective of a passive spectator of a black box agent executing a

stationary policy in its environment, with the ability to observe environment states and agent ac-

tions over time. We assume that the environment is an MDP, meaning that each timestep is also

associated with an observable real-valued reward, and is potentially episodic, meaning that it may

occasionally terminate and reset at a new initial state. Our observations thus enable us to assem-

ble a chronologically ordered dataset of N 4-tuples, D = {(s1, a1, r1, te1), . . . , (sN , aN , rN , teN )}.
For each t 2 {1, . . . , N}, st 2 S, at 2 A and rt 2 R are the state, action and reward from one

timestep, uniquely indexed by t, and tet 2 {true, false} is a Boolean indicator of whether that

timestep terminates an episode. We further assume that a vector of interpretable state features

�(S) = R
D is readily available, or has been generated or learnt by some prior method.

We will make this assumption for all remaining methods presented in this thesis, but reiterate

that the problem of interpretable feature generation arises frequently in practice. The operator-

based feature generation method from Section 3.2.2 is compatible with all of our tree models.

Before constructing the TripleTree model, we preprocess the dataset D as follows. Firstly,

a Monte Carlo value estimate is computed for each observation using the subsequent rewards:

(3.20) vt =
Pnext te(t)

k=t
�
k�t

rk, where next te(t) = min{k 2 {t, . . . , N} : tek = true},

and � 2 [0, 1] is a discount factor.13 This imbues each observation with richer information about

the agent’s objective: not just the immediate reward, but the discounted sum of its future

reward thereafter, which is the quantity that agents in MDPs work to maximise in expectation.

Secondly, we wish to include information about the dynamics of the environment state. This

can be captured by the time derivatives of state features, which in discrete-time systems are

equal to the change between successive timesteps. For each observation t 2 D, this is defined as:

(3.21) �t =

(
�(st)� �(st�1) if tet = true,

�(st+1)� �(st) otherwise,

i.e. terminal observations use the change since the previous timestep, and all others use the

change to the next one.14 Let D+ = {(s1, a1, v1,�1, te1), . . . , (sN , aN , vN ,�N , teN )} denote
13� is a free parameter, but if the agent uses RL it is sensible to match its internal � value.
14We assume that all episodes have at least two timesteps; otherwise the derivates would be undefined.

60



3.7. TRIPLETREE: A MULTIATTRIBUTE TREE ABSTRACTION

Observation

+

-
-

+

-

+

ValueAction
-+

Derivatives

a

Tree abstractionb

+

+ +
+ +

+

+
+

+

+

+
+

-
- -

-

-
-

- -
-

-

- -
Valued

-+

Actionc

+
-

+

-

- +

+

+

-

-+

-+

Derivativese Transitionsf

9

12

10

8

7

6

4
11

3

2

1 5

Terminal?

Figure 3.11: Conceptual space representation of TripleTree.

the preprocessed dataset, containing value estimates and state feature derivatives in place of

instantaneous rewards. Figure 3.11 a depicts this dataset in a conceptual space visualisation.

Each observation is associated with a state feature vector in �(S), and an action (+ or -), value

estimate (purple-yellow colour scale), derivative vector (arrow) and terminal indicator as its

attributes Y. Note how the derivative vectors can be viewed as connecting each episode of

observations into an unbroken trajectory in �(S).

Following the general narrative of Chapter 2, our approach to understanding this dataset

is to construct a tree-structured abstraction of �(S), such as the one in Figure 3.11 b , that

is e�cient in the sense that it has a small number of leaves, but nonetheless enables us to

accurately answer queries about the attributes Y using leaf-level summary statistics. If we were

solely interested in constructing a policy model, as in the first half of this chapter, the aim would

be to construct leaves containing observations with similar actions, which are well-summarised

by their mean or modal value (represented visually in Figure 3.11 c ). Alternatively, queries

about the agent’s value function would be best answered by leaves with low internal variance

according to this metric (e.g. d ). Thirdly, we might seek a compact representation of the

environment’s dynamics by finding leaves within which the state feature derivative vectors are

similar; the mean vector in each leaf can be visualised as a flow field as shown in e .15 Our key

assertion in this work is that there is no need to choose between these three types of query, and

that a powerful and versatile model results from identifying subsets of �(S) that are similar

from all three perspectives. The tree abstraction in Figure 3.11 is an example of this.

Our approach is thus an extension of the established technique of policy modelling. Alongside

a mean or modal action, each leaf is associated with two additional summary statistics: an

average value (the mean from the leaf’s constituent observations), and an average derivative

vector (the elementwise mean), hence the name TripleTree. The tree is grown using a hybrid

of three corresponding impurity measures. By modifying a weight vector ✓ 2 R
3
+, which sets

the influence of the three measures, it is possible to smoothly trade o↵ between three types of

interpretable abstraction:

15Flow field plots are most meaningful for environments whose dynamics in �(S) are temporally smooth, such
as physical systems with small timestep intervals. This is the case for both environments used in our experiments.

61



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

• ✓ = [1, 0, 0]: A conventional policy model, as described in the first half of this chapter.

• ✓ = [0, 1, 0]: A model of the agent’s value function.

• ✓ = [0, 0, 1]: A model of the environment state dynamics, given the agent’s policy.

Any other weighting gives a hybrid of the three, allowing for multiattribute analysis.

We complete the model by calculating transition probabilities between leaves: the probability

that having been observed at a state in one leaf, the agent will move to another leaf next. These

e↵ectively define a probabilistic finite state machine approximation of the agent-environment

dynamics, and can be estimated by harnessing the temporal ordering of D+. This allows

us to analyse more long-term dynamics than those captured by the state derivatives. Let

leaf(t) = x 2 X : �(st) 2 x be the unique leaf containing the feature vector for observation t.

For each observation, we find the first future observation that belongs to a di↵erent leaf,

(3.22) next di↵(t) = min{k 2 {t+ 1, . . . , N} : leaf(k) 6= leaf(t)},

then obtain the identity of this next leaf,

(3.23) next leaf(t) =

(
; if next te(t) < next di↵(t),

leaf(next di↵(t)) otherwise,

where the special case for next te(t) < next di↵(t) handles episode termination. Next, for each

x 2 X , we identify the timesteps whose predecessors are not themselves in x, i.e. the first in

each sequence of successive observations that belong to that leaf:

(3.24) seq starts(x) = {t 2 {1, . . . , N} : leaf(t) = x ^ (t = 0 _ tet�1 = true _ leaf(t� 1) 6= x)}.

Transition probabilities are estimated at the level of sequences, rather than individual timesteps,

to avoid a double-counting e↵ect. Overloading notation, we then find the subset of these

timesteps whose successor sequences end with a transition to each other leaf (or termination ;):

(3.25) seq starts(x, x0) = {t 2 seq starts(x) : next leaf(t) = x
0}.

Finally, we compute the empirical probability that any given sequence in x ends in a transition

to x
0, and the mean length of such a sequence:

(3.26) Px,x0 =
|seq starts(x, x0)|
|seq starts(x)| ; Lx,x0 =

X

t2seq starts(x,x0)

min{next te(t), next di↵(t)}� t

|seq starts(x, x0)| .

Note that in episodic environments, Px,; and Lx,; are well-defined and meaningful; they are

derived from sequences for which the episode terminates before a transition to another leaf.

Transition probabilities and mean sequence lengths are stored at their respective source leaves

(x here) as further summary statistics alongside the mean/modal actions, values and derivatives.

Figure 3.11 f shows how this transition information can be represented as a directed graph

over the leaves. In this example, the transition probability from leaf 2 to leaf 1 is 1 (i.e. leaf 2 is

always followed by leaf 1) and the mean sequence length for this transition is 2.

62



3.7. TRIPLETREE: A MULTIATTRIBUTE TREE ABSTRACTION

3.7.2 Learning Algorithm

TripleTree models are learnt by extending the CART algorithm outlined in Section 3.2.4. This

extended algorithm trades o↵ the accuracy of the action, value and derivative summary statistics

by encouraging leaves to have low variability in all three attributes across their contained

observations. To achieve this, we compute three measures of the quality of a candidate split of

leaf x at threshold c along feature d:

• Action quality QA(x, d, c): defined exactly as in Equation 3.10.

• Value quality QV (x, d, c): defined equivalently, but using the variance in Monte Carlo

value estimates as the impurity measure:

(3.27) IV (D+
x ) = E

(s,a,v,�,te)2D+
x

E
(s0,a0,v0,�0,te0)2D+

x

[ (v � v
0)2 ],

where D+
x is the subset of observations that belong to leaf x, as per Equation 3.2.

• Derivative quality Q�(x, d, c): defined equivalently, but using an impurity measure I�

that sums the variance in derivatives across all state features:

(3.28) I�(D+
x ) = E

(s,a,v,�,te)2D+
x

E
(s0,a0,v0,�0,te0)2D+

x

[ z>(���0)2 ].

z 2 R
D is a vector of normalisation factors for all derivatives d 2 {1, . . . , D}, which are

defined as the reciprocals of their standard deviations across D+. Normalisation prevents

features with large derivative magnitudes from dominating the impurity calculation. This

weighted-sum-of-variances impurity measure is similar to those used in prior work on

multivariate regression trees [63, 141].

QA, QV and Q� are then aggregated into a hybrid measure of split quality Q⇤. Having ex-

perimented with alternative methods in various environments, we find that a linear combination

provides a good compromise of simplicity, robustness and flexibility:

(3.29) Q⇤(x, d, c) =


QA(x, d, c)

IA(D+)
,
QV (x, d, c)

IV (D+)
,
Q�(x, d, c)

I�(D+)

�>
✓.

✓ 2 R
3
+ is a weight vector, which trades o↵ accurate modelling of the policy, value function

and derivatives. Each quality term is normalised by the respective impurity across the entire

dataset (i.e. at the root of the tree). This brings the three measures onto equivalent scales. As

in CART, the d, c pair that greedily maximises the split quality is chosen, thereby splitting x

into two new leaves.

The description of CART in Section 3.2.4 follows a depth-first growth strategy starting at

the root, and continuing until all leaves have zero impurity. Since the tree now predicts multiple

continuous variables, zero impurity is only likely to be achieved when every observation is

63



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

contained in its own leaf (i.e. |X | ⇡ |D+|). This would lead to both excessive growth runtime

and a uselessly large and overfitted tree. For this reason, for TripleTree the criterion for

terminating tree growth is a limit on the number of leaves |X |, paired with a simple best-first

strategy for selecting which leaf to split at each stage of tree growth (if the depth-first strategy

were retained, it would only ever grow a single branch). Again taking a hybrid view of impurity,

the best current leaf to split, xbest, can be identified as follows:

(3.30) xbest = argmax
x2X

|D+
x |

IA(x, d, c)

IA(D+)
,
IV (x, d, c)

IV (D+)
,
I�(x, d, c)

I�(D+)

�>
✓,

where ✓ is the same as in Equation (3.29). This approach prioritises splitting leaves with high

total impurity, weighted by their number of observations. Although we do not implement pruning

in our experiments, this could be done with a small modification of the MCCP algorithm.

In summary, the key features of TripleTree are:

• Acceptance of the ordered 4-tuple observation dataset D, calculation of value and state

derivatives for each sample, and storage of predicted values of these variables at each leaf.

• A hybrid measure of split quality Q⇤, mediated by a weight vector ✓, which trades o↵ the

tree’s abilities to predict the target agent’s action, value and state derivatives.

• Calculation of Px,x0 and Lx,x0 to encode information about temporal dynamics in terms

of leaf-to-leaf transitions.

• A best-first growth strategy.

3.7.3 Related Work

The TripleTree model can be classified as a multi-task tree [85], which is grown and evaluated

for multiple predictive tasks. Various aspects of this proposal have some precedence in the

literature, but they have never been combined into a unified model. For example, [157] use the

target agent’s value function to locally weight the leaf impurity measure during policy modelling,

in order to prioritise more critical states, while [132] and [163] use trees to approximate the

value function itself as a route to interpretability. The latter model also keeps track of transition

probabilities between tree leaves, similar to our approach. In [133], a tree is grown to minimise

the impurity of environment state derivatives as part of a model-based RL framework, and

in [141] a tree is optimised for sequential prediction by jointly minimising loss on consecutive

timesteps. Other work has looked at approximating a recurrent neural network policy as a finite

state transition model for visualisation and analysis [150]. We know of one work that considers

a hybrid action- and value-based tree impurity measure [222], but the idea is tangential to the

main topic of the paper and its implications are left unconsidered. We are unaware of any prior

work that jointly represents the policy, value function and temporal dynamics of an agent in

one tree model, or considers the benefits of doing so for interpretability.

64



3.8. QUANTITATIVE EVALUATION

3.8 Quantitative Evaluation

We initially validate TripleTree in a simple continuous environment with two state features

and two discrete actions. This can be interpreted as a straight road, down which a vehicle

agent can drive in either direction. The state features �(S) are position pos 2 [0, 3] (increasing

left-to-right) and signed velocity vel 2 [�0.1,+0.1], and the agent’s action is a small positive or

negative acceleration acc 2 {�0.001,+0.001} (we use - and + as shorthand symbols for these

actions). Walls lie at the left and right ends of the road. A collision with either yields a reward

of Rleft and Rright respectively and instantly terminates the simulation episode. The agent also

receives reward in each non-terminal state in proportion to its absolute speed: Rspeed ⇥ |vel|.
Figure 3.12 summarises this information.

Figure 3.12: The 2-dimensional road environment.

For a given Rleft, Rright, Rspeed, discount factor � (we use � = 0.99), and suitable discreti-

sation of the state space (we use a 30⇥ 30 grid) an optimal policy can be found by dynamic

programming (DP). The DP policies for four reward function variants are used as the target

agents in our experiments. For each, we create a dataset D with 104 samples by running

randomly initialised episodes of 100 timesteps, then calculate Monte Carlo value estimates and

state derivatives to yield the preprocessed dataset D+. We then grow a TripleTree of up to

200 leaves on each of the four datasets, with various weightings ✓ that prioritise only action,

value or derivative quality, or prioritise all three equally. Figure 3.13 plots three predictive

losses as a function of leaf count for these trees:

• Action loss: Proportion of observations whose action does not equal the leaf-level mode.

• Value loss: Root mean square (RMS) error between value estimates and leaf-level means.

• Derivative loss: RMS errors between derivatives and leaf-level means, scaled by normal-

isation vector z and summed.

Naturally, di↵erent trees result when di↵erent ✓ vectors are used, and in all cases, the

lowest loss of each type is obtained by exclusively using the corresponding split quality measure.

Crucially, however, using an equal weighting (✓ = [1/3, 1/3, 1/3]; black curves) o↵ers a strong

compromise between the three modes of prediction. For action and derivatives, equal weighting

converges slower than exclusive weighting, but to virtually the same asymptotic loss, with the

greatest disparity for trees with around 50-100 leaves. For value, the gap is more significant. This

65



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

0

1

1e-1 Action
Loss

0

5

1e-3

0

4

1e-4
1.

5,
 0

, 1

0

4

1e-1

2

4
1e-3

0

5

1e-4

0

2

1e-1

0.5

1.5
1e-2

0

5

1e-4

1.
5,

 1
.5

, 1
10

, 1
0,

 -
1

0 200Number of leaves
0

4

1e-1

0

2

1e-1

0

2

1e-4

-1
00

, -
10

0,
 1

Action only (                ) Value only (                )
Derivatives only (                ) Equal weighting (                 )

Value
Loss

Derivative
Loss

Figure 3.13: Prediction losses for four variants of the road environment, with Rleft, Rright, Rspeed

as stated in the left-hand labels.

indicates that there tend to be regions of the feature space in which value varies significantly

but the agent’s action and state derivatives do not (or vice versa), thereby creating a conflict

as to which splits are worth making. This phenomenon is most pronounced for the policy on

the bottom row. Another notable trend is that splitting on derivatives alone does very well

in terms of action loss. This makes perfect sense upon noting that the agent’s action (acc) is

exactly the time derivative of one of the state features (vel) in this environment. Of course,

such a relationship should not be expected to hold in general.

This analysis begs the question: what is the best choice of ✓ for this environment? As in

any multi-objective optimisation problem, there is no universal answer to this question, and

the most appropriate choice of ✓ ultimately depends on the intended application, but if general

versatility is important then it is reasonable to consider minimising the worst of the three

loss types. To investigate worst-case loss behaviour, we grow a TripleTree for each of 21

equally-spaced weighting vectors ✓. For each, we calculate which loss is highest as a ratio of the

loss of a tree with just one leaf, whose summary statistics are just the dataset averages. The

results are shown on simplex plots in Figure 3.14.

66



3.9. MODEL INTERPRETATION AND EXPLANATION

1.
5,

 0
, 1

1.
5,

 1
.5

, 1
10

, 1
0,

 -
1

10 leaves

-1
00

, -
10

0,
 1

20 leaves 50 leaves 100 leaves 200 leaves
1

0

[1,0,0]

[0,1,0][0,0,1]

Figure 3.14: Analysis of worst-case loss across the space of weight vectors for trees of various sizes.
Coloured dots show the identity of the worst loss (blue: action, red: value, green: derivatives)
at the 21 weightings tested. Heatmaps show the magnitude of the worst loss as a ratio of the
loss from a one-leaf tree, linearly interpolated between test locations.

The prevalence of red dots throughout the range of tree sizes shows that value prediction

is weakest across most of the space of weightings. A notable exception is the right-hand

edge of the simplex, where derivative weight is 0 and that loss is accordingly the worst.

The greyscale heatmaps show the magnitude of the worst loss ratio (interpolated using the

LinearTriInterpolator function in the matplotlib Python library), which as a general rule

is lower towards the centre of the simplex, but also towards the right-hand side, where the value

weight is higher. These results point to the conclusion that value should be up-weighted in the

hybrid quality metric if minimising the worst-case loss ratio is important. From looking at the

various heatmaps, we suggest that ✓ = [0.2, 0.6, 0.2] is a good compromise. This weighting is

used for all remaining experiments in the road environment.

3.9 Model Interpretation and Explanation

This section demonstrates some of the ways in which TripleTree can be used to gain both

global and local understanding of agent behaviour. While the equivalent discussion in Section 3.5

was largely focused on the diagrammatic, rule-based representation of trees, here we emphasise

their alternative representation as geometric structures that partition their feature spaces, and

explore how this provides a natural mechanism for visualisation.

67



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

DerivativesValue
3.6

0

3.5

1.5

10

4

0

-100

Deriv. Impurity
7

0

9

0

9

0

3

0

/e-3

Density
1.

5,
 0

, 1
1.

5,
 1

.5
, 1

10
, 1

0,
 -

1
-1

00
, -

10
0,

 1

Action

0 3
-0.1

0.1

-0.001

+0.001

Figure 3.15: Five types of visualisation using TripleTree.

3.9.1 Multiattribute Visualisation in Feature Space

Recall once again that in an axis-aligned tree, each leaf is associated with a hyperrectangle

in the D-dimensional feature space (here derived from the environment’s state space, �(S)),
whose boundaries correspond to the splits made at its ancestors. For D = 2, hyperrectangles

reduce to rectangles, which can be directly shown on axes corresponding to �(S) itself (we

return to the D > 2 case in Section 3.10.1). Each leaf can be coloured according to a summary

statistic including, but not limited to, its action, value or derivative prediction.

Figure 3.15 demonstrates the rich information conveyed by such visualisations in the road

environment. Each row of plots represents a di↵erent policy, and is generated from a single

tree with 200 leaves, grown using the weighting ✓ = [0.2, 0.6, 0.2]. In the first column, leaves are

coloured by their modal action, revealing the global geometry of the four optimal DP policies.

The decision boundaries between positive and negative acceleration have varying complexity;

interesting features include the isolated ‘island’ of positive acceleration in the top policy, which

occurs when a crash with the right wall is unavoidable but positive Rspeed can be obtained by

accelerating in the meantime, and the z-shaped geometry of the bottom policy, which causes the

agent to oscillate around the centre of the road to avoid hitting either wall (reward = �100).
In the second column, colours denote the predicted value, which intuitively reflects the

di↵ering reward structures. In general, low value corresponds to an imminent crash into a

68



3.9. MODEL INTERPRETATION AND EXPLANATION

low-reward wall. Value is high when the agent approaches a high-reward wall and/or has plenty

of room to accumulate positive Rspeed. For the bottom policy, value is high within a boundary

of stability for the oscillatory motion, and low elsewhere.

The plots of predicted derivatives in the third column di↵er from the others. Since this is a

vector quantity, it can be depicted as a flow field with an arrow for each leaf, whose direction

and magnitude reflect the mean change in state between successive timesteps. The system

changes more rapidly at high speeds, hence the longer arrows in these areas. Flow fields provide

an excellent high-level overview of system dynamics, particularly the locations of directional

changes, cycles and regions of constancy.

The fourth column colours leaves by derivative impurity, showing where in �(S) the model’s

derivative predictions have low and high uncertainty. In general, impurity is higher in spatially

larger leaves, which is intuitive as these can contain larger portions of curved trajectories. There

is especially high impurity at the centre of the oscillatory motion of the bottom policy, where

there is a sharp discontinuity in the agent’s direction of motion. Equivalent plots can be created

for action and value impurity.

The final colouring statistic is sample density, computed by dividing the number of ob-

servations contained in each leaf by its ‘volume’ in �(S): the product of boundary lengths,

normalised by each feature’s range across D+. This reveals where the policies spend the most

time: in narrow arcs for the top two, and a tight central patch for the bottom one.

3.9.2 Factual, Counterfactual and Temporal Explanation

The methods for rule-based explanation presented in Sections 3.5.2 to 3.5.4 can be extended

to work with TripleTree, and complemented with visualisations, as shown in Figure 3.16.

Here, a shows a zoomed-in portion of the action visualisation for one of the 200-leaf trees

from the previous section. Suppose that the state feature vector for an observation at time t

is ft = �(st) = [1.26, 0.037]. This vector belongs to a leaf with positive acceleration (+) as its

modal action. The factual explanation, derived from the boundaries of this leaf, is

“Action is + because 1.10  pos < 1.32 and 0.021  vel < 0.045”,

and the minimal counterfactual for the foil action of negative acceleration (-) is f0, i.e.

“Action would be - if vel increased to � 0.045”.

The same TripleTree model allows us to similarly explain value predictions. Since value is

continuous, a counterfactual query could ask why value is less than or greater than a threshold,

rather than defining a precise numerical foil, which is unlikely to be satisfied by any of the leaves.

In Figure 3.16 b , the foil condition v  0.3 leads to the following minimal counterfactual for

the predicted value at ft = �(st) = [1.60,�0.0148]:

“Value would be  0.3 if pos increased to � 2.64 and vel increased to � 0.024”.

69



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

ba

Figure 3.16: Various kinds of rule-based explanation for action and value.

In general, a foil can be defined as any function that returns true or false given a leaf

x 2 X . Let Xfoil = {x 2 X : foil(x) = true} denote the subset of leaves that satisfy a given

foil. This notation unifies the generation of counterfactuals with respect to action, value, and

even derivatives (e.g. the foil may test for a certain component of the mean derivative vector

exceeding a threshold), all of which can be produced using a single TripleTree model.

Furthermore, the general form of the temporal explanation problem introduced in Sec-

tion 3.5.4 arises when for two consecutive timesteps t and t+ 1, the state feature vectors ft

and ft+1 belong to di↵erent leaves xt 6= x
t+1, such that for some foil condition, xt /2 Xfoil and

x
t+1 2 Xfoil. Returning to Figure 3.16 a , we find a simple example of this: the state moves

from a leaf with a modal action of + to one with a modal action of -. Following the method

of Section 3.5.4, a textual explanation of this change could be generated by identifying the

closest point to ft within the leaf containing ft+1, indicated by the cross. However, this feature

space visualisation reveals a weakness of that approach: the explanation would not be minimal,

because the leaf containing ft+1 is surrounded by other leaves that also have the foil action.

Instead, it would seem more natural to use f00 as the basis of the explanation, i.e.

“Action changed from + to - because pos increased to � 1.48”.

Since this di↵ers from the minimal counterfactual when not conditioning on ft+1 (i.e. f0), we

are led to suspect that neither the näıve approach described in Section 3.5.4, nor the standard

counterfactual method from Section 3.5.3, is the best way to do temporal explanation.

To further investigate and formalise this intuition, consider Figure 3.17 a , which echoes

Figure 3.10 presented earlier. Here Xfoil = {x1, . . . , x8}, but every one of f(t!x1), . . . , f(t!x8)

turns out to be a suboptimal counterfactual. Since ft+1 lies in x4, the näıve approach would be

to use f(t!x4), but this does not achieve minimality because there are foil-satisfying points (e.g.

in x5) that are unambiguously (i.e. under any p-norm) closer to ft. According to the standard

method of counterfactual generation from Section 3.5.3, f(t!x1) would be minimal, but it implies

moving in the opposite direction from ft+1 so does not lie on any plausible motion path between

the two feature vectors. f(t!x8) is at least closer to ft+1 than ft is, but there is not an unbroken

path of foil leaves connecting it to ft+1, so it does not represent a su�cient condition for the

70



3.9. MODEL INTERPRETATION AND EXPLANATION

ba

Figure 3.17: Illustrating the inadequacy of previous methods for counterfactual explanation in
the temporal context, and the proposed MBB-based approach.

foil to be realised. More subtly, the same is true for both f(t!x2) and f(t!x7); the yellow shading

highlights regions of �(S) below and to the right of these locations, but which are not inside

any x 2 Xfoil. The existence of these regions means that a textual explanation such as

“Foil became satisfied between t and t+ 1 because feature 1 increased to � f(t!x2)
1 ”

would be misleading, since it is possible to satisfy the stated condition in a location between

ft and ft+1 while not satisfying the foil. All three of f(t!x3), f(t!x5) and f(t!x6) are acceptable

according to this misleadingness criterion, although f(t!x6) can be ruled out for the same reason

as f(t!x4). Of the two remaining options, f(t!x5) is closer to ft by 2-norm (faint green circle), so

it may initially appear that by elimination, this is the best possible counterfactual.

However, an even better solution is possible. We propose that the best counterfactual to use

for temporal explanation, f0, is the location inside
S

x2Xfoil
x which is minimal from ft, subject to

the constraint that the minimum axis-aligned bounding box (MBB) of f0 and ft+1 only intersects

leaves in Xfoil. This constraint ensures that the generated counterfactual explanation is never

misleading in the sense outlined above. Figure 3.17 b shows the optimal counterfactual for

the example shown, for which the textual explanation is

“Foil became satisfied between t and t+ 1 because feature 1 increased to � f01”.

This counterfactual is preferred to the other two options shown in grey (one of which is equivalent

to the previous best guess of f(t!x5)) due to the strict priority of the 0-norm over the 2-norm.

Notice how this MBB-based result is nontrivial: f0 does not lie on the boundary of its containing

leaf (x2), so would never even be considered by the standard method from Section 3.5.3.

Finding such an f0 in practice is also nontrivial, and we have currently only derived a

method for 2D feature spaces, outlined in Algorithm 1. This algorithm returns XMBB, a set of

rectangles tiling the region of �(S) between ft and ft+1 that satisfies the MBB constraint. The

minimal counterfactual equations from Section 3.5.3 are then applied to XMBB instead of the

71



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

underlying foil leaves Xfoil,16 thereby obtaining the optimal counterfactual. In the example in

Figure 3.17 b , XMBB is composed of the three rectangles shown in blue, with dark-to-light

shading according to the order in which they are generated by Algorithm 1.

Algorithm 1 Finding the region of �(S) satisfying the MBB constraint (for D = 2 only)

Inputs: Feature vectors ft and ft+1, tree abstraction X and foil leaves Xfoil

Output: A set of rectangles XMBB tiling the MBB-satisfying region

1: Initialise a ft+1, XMBB  {}
2: while loop not yet broken do
3: b a
4: b1  expand(a,b, 1, 2) . Expand rectangle along first feature axis
5: b2  expand(a,b, 2, 1) . Expand rectangle along second feature axis
6: if b2 = a2 then
7: break . Break if no expansion possible
8: end if
9: XMBB  XMBB [ {rectangle(a,b)} . Store rectangle

10: a2  b2 . Move a along second feature axis
11: end while

12: function expand(a, b, d, d0) . Given a rectangle with opposite corners at (a,b), move
b along feature axis d until the rectangle either meets a
non-foil leaf x 2 X \Xfoil or extends as far as f

t

d

13: l min{ad0 ,bd0}, u max{ad0 ,bd0} . Lower/upper bounds of rectangle along d
0

14: X¬foil  {x 2 X \Xfoil : (lo(x, d0)  u) ^ (hi(x, d0) � l)} . ‘Reachable’ non-foil leaves
15: if ft

d
> ft+1

d
then . Extend in the positive direction

16: return min({lo(x, d) : (x 2 X¬foil) ^ (lo(x, d) � ad)} [ {ft
d
})

17: else . Extend in the negative direction
18: return max({hi(x, d) : (x 2 X¬foil) ^ (hi(x, d)  ad)} [ {ft

d
})

19: end if
20: end function

3.9.3 Hypothetical Trajectories

For each leaf x 2 X , the mean derivative vector and outbound transition probabilities provide

complementary summaries of the agent’s movement through that subset of the state feature

space. These can be combined to generate behavioural trajectories which may never have

occurred in D+, but are nonetheless realistic given the agent’s policy. Such a generative model

could be useful for answering various kinds of hypothetical query about the agent’s expected

behaviour before, after and between states of interest. This subsection considers the problem of

finding such a trajectory between a given initial leaf x0 and a goal leaf xgoal, thereby addressing

queries of the form “starting in x0, is the agent likely to reach xgoal in future, and if so, how?”.

16The placeholder function rectangle in Algorithm 1 creates a representation of each rectangle which can
be fed into these equations in the same way as the leaves themselves.

72



3.9. MODEL INTERPRETATION AND EXPLANATION

As briefly mentioned in Section 3.7.1, the set of all transition probabilities can be represented

as a directed graph over the leaves of the tree. Dijkstra’s graph search algorithm [72] can

therefore be used to find a sequence of leaves X0!goal = (x0, x1, x2, . . . , xgoal) that the agent

moves through with nonzero probability. We define the cost of each transition x! x
0 as the

negative logarithm of the transition probability, � logPx,x0 , and the cost of a full sequence

as the sum of its constituent transitions. If finite-cost sequences exist between x0 and xgoal,

Dijkstra’s algorithm is guaranteed to find the lowest-cost (i.e. highest-probability) one first. If

no such sequences exist, the algorithm returns a null result, which is itself potentially valuable

information about the non-reachability of states (i.e. “the agent cannot reach xgoal from x0”).

A non-null Dijkstra result indicates which leaves the agent is most likely to move through

on a trajectory from x0 to xgoal, but does not tell us how it moves through them. To generate

a realistic trajectory through X0!goal, we solve a constrained optimisation problem to build a

piecewise linear path whose segments are well aligned with the leaves’ mean derivative vectors.

Concretely, we initialise a path node fi 2 �(S) on the hyperrectangle boundary of each leaf

xi 2 X0!goal,17 then perform gradient descent on all node locations to minimise the squared

angle between each path segment fi ! fi+1 and the corresponding leaf’s mean derivative vector,

denoted by di. When calculating angles, feature magnitudes are normalised by z, the vector of

inverse standard deviations across D+. The unconstrained update to each fi is proportional to

the partial derivative of the sum of squared angles for the segments before and after:18

(3.31)
@

@fi

h⇣
cos�1 (finorm � fi�1

norm)
>di�1

norm

||finorm � fi�1
norm|| ||di�1

norm||

⌘2
+
⇣
cos�1 (fi+1

norm � finorm)
>di

norm

||fi+1
norm � finorm|| ||di

norm||

⌘2i
,

where finorm = fi � z and di

norm = di � z (� is the Hadamard product). Instead of applying the

update directly, we constrain each node to stay on its respective boundary, and always ‘visible’

from the previous node (i.e. it never moves to the far side of the boundary). We find that the

optimisation usually converges to yield smooth and realistic trajectories, but is rather expensive

and vulnerable to local minima. Further technical refinements would certainly be possible.

Figure 3.18 a - d depicts four trajectories generated by this Dijkstra-then-align method

from the 200-leaf TripleTrees. Derivative arrows from nearby leaves indicate that the

trajectories align well with the agent’s true motion in each region of the feature space, which is

locally parabolic due to the underlying constant-acceleration dynamics. Notice that because

both the initial and final path nodes are subject to the alignment optimisation, their locations

indicate where specifically inside x0 and xgoal the agent is most likely to begin and end its

trajectory, given the local derivative information.

Further insight can be gained by combining hypothetical trajectories with other information

contained in the TripleTree model, such as leaf-level action and value predictions, as shown

in Figure 3.18 e and f . These indicate how we should expect the agent’s action and value

17Let xk�1 = xgoal, where k = |X0!goal|.
18The first and second terms are excluded for the first and last path nodes respectively.

73



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

1.5, 0, 1 1.5, 1.5, 1 10, 10, -1 -100, -100, 1

0 3
-0.1

0.1

a c db

3.5

1.5

-0.001

+0.001

e f

Figure 3.18: Hypothetical trajectories
in the road environment, and example
of a trajectory overlaid onto action and
value visualisations.

function to change over time as it follows a trajectory from x0 to xgoal. The action visualisation

is especially informative, as it reveals that the agent is expected to change its action just once,

when it crosses the threshold pos = 0.9. We can thus give a compact textual summary of the

hypothetical trajectory:

“From x0, the agent reaches xgoal by taking action - until pos = 0.9, then switching to action +”.

This is a good example of the explanatory versatility of the TripleTree model.

3.10 Experiments in a Higher-dimensional Environment

We now deploy TripleTree in a more complex environment: LunarLanderContinuous-v2

from the Gymnasium library [86]. The objective is to guide an aerial craft to a gentle landing on

a landing pad surrounded by uneven terrain. The state is represented by an 8-dimensional feature

vector �(s) = [posx, posy, velx, vely, , vel , cl, cr], which are respectively the horizontal and

vertical position and velocity, orientation, and angular velocity of the landing craft, and binary

flags as to whether its left and right legs contact the ground. The action space A = [�1, 1]2 is

bounded and 2D. The first component is the throttle for the lander’s main engine (�1 is o↵) and

the second is a left-right side engine (0 is o↵). The reward function includes terms to promote

smooth flight (by penalising high velocities and linear/angular accelerations), disincentivise

fuel burn and reward leg-to-ground contact. There are also one-o↵ rewards of +100 if the

craft successfully lands on the pad, and �100 if it crashes or drifts out-of-bounds (|posx| � 1).

Episodes terminate if a landing, crash or out-of-bounds event occurs, or after 400 timesteps.

The black box target policy in this environment is that of a soft actor-critic (SAC) [107]

RL agent from Baselines Zoo [203], the highest-performing one on that repository. Using a

74



3.10. EXPERIMENTS IN A HIGHER-DIMENSIONAL ENVIRONMENT

1e-4

Number of leaves

1e-3 Action Value Derivatives1e-1

Training
Validation

450450450

Figure 3.19: Training and validation losses in LunarLander.

dataset of 105 observations of this policy, we grow a TripleTree of up to 1000 leaves with

✓ = [1, 1, 1].19 Figure 3.19 shows how the three losses vary during growth on both the training

set and a validation set of the same size. In this more complex environment, the prediction

problem is harder (particularly, it seems, for derivatives) and losses do not reduce to near zero,

but as we shall see, the model still captures enough of the statistical properties of the system to

deliver significant insight. Rather than implementing a pruning stage, we manually identify the

point at which the validation losses plateau, leading us to select the 450-leaf tree for evaluation.

3.10.1 Hyperrectangle Projection for D > 2

Our analysis in the road environment benefited from the ability to visualise trees as rectangular

partitions of the feature space, and colour each leaf according to one of its summary statistics.

However, with an 8D feature space, it is nontrivial to create such visualisations; an assumption

must be made about how to represent the high-dimensional partition on the 2D plane. Inspired

by a prior taxonomy of geometric operations for transforming multidimensional “space-time

cubes” into 2D data visualisations [16], we propose two ways forward: projection and slicing. In

the former, leaf hyperrectangles are projected onto a plane defined by two chosen feature axes.

Where multiple projections overlap, a marginal value for the colouring statistic is computed as

a population-weighted average. This creates a partial dependence plot (PDP) of the statistic

over the two features. PDPs are popular tools in the AI interpretability literature [180].

Suppose that the two features chosen for projection are d and d
0, and we wish to create a

visualisation with axis limits [l, h] along d and [l0, h0] along d
0. Let Bd denote the sorted sequence

of hyperrectangle boundaries in the tree within the limits along d:

(3.32) Bd =
⇣
b 2

[

x2X
{max{lo(x, d), l},min{hi(x, d), h}}

⌘
, s.t. Bd

i > Bd

i�1, 8i 2 {2..|Bd|},

and Bd
0
denote the equivalent for d0. The planar region [l, h]⇥ [l0, h0] can be tiled by a (|Bd|�1)⇥

(|Bd
0 |� 1) grid of rectangles, each of which is constructed from pairs of consecutive boundaries

from Bd and Bd
0
. Steps a and b in Figure 3.20 illustrate this reasoning.

19Since the action space has two continuous dimensions on the same [�1, 1] scale, we use Euclidean distance
as the action loss function `. This a↵ects the definition of action impurity (Equation 3.6).

75



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

b c d e fa g

Figure 3.20: Hyperrectangle projection process for D = 3. Colours represent the leaf-level
summary statistic to be visualised, such as mean action or value, or observation density. Notice
that the final colour of each rectangular area is an average of the leaf cuboids above it.

Now imagine simultaneously extruding one of these rectangular areas along each of the

D�2 orthogonal feature axes. The volume swept (which we call a core) is itself a D-dimensional

hyperrectangle which intersects at least one of the hyperrectangular leaves. For each i 2
{2..|Bd|}, j 2 {2..|Bd

0 |}, the set of intersected leaves can be identified as

(3.33) Xi,j =
n
x 2 X : (lo(x, d)Bd

i ) ^ (hi(x, d)�Bd

i�1) ^ (lo(x, d0)Bd
0

j ) ^ (hi(x, d0)�Bd
0

j�1)
o
.

Steps c and d in Figure 3.20 show the process of extruding a rectangle from the d-d0 plane

and identifying intersections. In this case, the core intersects three leaves: x1, x2 and x3.

Precisely how we proceed from this point depends on which summary statistic is being

visualised. For the sake of brevity, we assume a real-valued statistic, denoted generically by zx

for each x 2 X .20 For each rectangle in the d-d0 plane, identified by boundary indices i and j as

above, we e↵ectively marginalise out the D � 2 orthogonal dimensions by taking a weighted

mean of the statistic values from the intersected leaves Xi,j . The weight for each leaf x 2 Xi,j ,

is jointly determined by the number of observations it contains from the dataset, |D+
x |, and the

degree to which its hyperrectangle overlaps with the core. Concretely, the projected summary

statistic for rectangle i, j is defined as

(3.34) zi,j =

P
x2Xi,j

wi,j,x · zx
P

x2Xi,j
wi,j,x

, where wi,j,x = |D+
x | ·

Bd

i
� Bd

i�1

hi(x, d)� lo(x, d)
·

Bd
0

j
� Bd

0
j�1

hi(x, d0)� lo(x, d0)
.

Due to the way in which the rectangular tiling of the d-d0 plane is defined, the core must contain

exactly zero boundaries along either d or d
0, so both fractions in the formula for wi,j,x are

always  1. This part of the process is illustrated by steps e and f of Figure 3.20, and step

g shows the result of repeating for all remaining rectangles on the plane, thereby creating the

PDP visualisation. The key assumption behind this core-and-average approach to projection is

20This applies to the projection of value and univariate continuous action predictions, as well as each of the
three impurities. For derivative vectors or multivariate continuous actions, the averaging can be performed on
an elementwise basis. For discrete actions, we cannot take a weighted mean so instead propose to add up the
per-action counts for overlapping leaves, weighted by their overlap proportions, and then visualise the modal
action for each rectangle. For density visualisations, the population factor |D+

x | in Equation 3.34 is replaced by
the leaf’s ‘volume’ in �(S), as defined in Section 3.9.1. As an implementation detail, we find that it is best to use
a logarithmic colour map for density plots, since this statistic can vary over many orders of magnitude.

76



3.10. EXPERIMENTS IN A HIGHER-DIMENSIONAL ENVIRONMENT

Figure 3.21: Partial dependence plots for the LunarLander policy.

that observations are close to uniformly distributed within leaf hyperrectangles, so that each

wi,j,x is an unbiased estimate of the number of observations from x within the core, and each

zx is an unbiased estimate of the summary statistic for those observations.

Figure 3.21 shows PDPs generated from the 450-leaf tree for the LunarLander SAC policy.

The upper row of plots are in the posx-posy plane (landing zone shown in red). From a , we

learn that the agent tends to fire the main engine less at high altitudes, allowing the lander to

freefall. This is sensible given the penalty the reward function places on fuel burn. The density

plot e indicates that the agent spends most time in a central column above the landing zone,

and on the ground where the policy makes slow positional corrections. The value and derivatives

plots c and d reveal that despite the environment being symmetric, the agent obtains higher

value when landing from the left, and takes a less curved route when doing so. This suggests an

asymmetric bias in the policy, which will have emerged at some point during its training process.

The side engine plot b has weaker trends, but the dark band around posy = 1 (indicating the

engine tends to fire to the left) may partly explain the wider landing approaches on the right.

Moving to the second row of Figure 3.21, a PDP for action in the posy-vely plane f shows

hard thresholds in main engine activation at vely ⇡ 0 and posy ⇡ 1, suggesting that the policy’s

use of this engine is close to binary, and heavily correlated with these key thresholds in vertical

position and speed. The derivative plot in the same plane g indicates a C-shaped vertical

velocity profile, consistent with a soft and controlled landing after freefall. In the  -vel plane,

we see that the side engine h fires in an intuitive way to maintain stability: to the left when

the lander is rotated anticlockwise, and vice versa (note that the red dot indicates the origin).

In the same plane, the PDP of value i is highest when vel ⇡ 0, showing that slow changes

in angle tend to preempt better performance, and the derivative plot j shows that the lander

has pendulum-like rotational dynamics, aside from several leaves (purple) where vel jumps.

These jumps are likely caused by rapid changes in side engine activation.

77



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

-0.3 0.4
-1.2

0.8 120

-70

0 1.6
-1.2

1.3 1.0

-0.3

-1 0.8
-1.2

1.3 -0.3

-1.0

Action (side), foilAction (main), foila Value, foil cb

Figure 3.22: Displaying visual counterfactuals for the LunarLander policy on ICE plots.

3.10.2 Hyperrectangle Slicing and Visual Counterfactuals

We now discuss the slicing visualisation method, which is complementary to projection. Here,

we again choose two features to visualise over, d and d
0. For each remaining feature d

00 2
{1, . . . , D} \ {d, d0}, we specify a single threshold, denoted by sliced00 . The set of thresholds

defines the o↵set of an axis-aligned hyperplanar cross-section through �(S), which intersects a

subset of the leaves. Here we do not have to handle overlaps, and can display the rectangular

cross-sections of the intersected leaves directly. This creates an individual conditional expectation

(ICE) plot, which is also well established in the interpretability literature [180].

The slicing process is more straightforward than projection. We simply need to identify the

subset of leaves intersected by the slicing hyperplane:

(3.35) Xslice =
T

d002{1,...,D}\{d,d0}

n
x 2 X : (lower(x, d00)  sliced00)^(upper(x, d00) � sliced00)

o
.

Each x 2 Xslice is then visualised as a rectangle with boundaries at lower(x, d), upper(x, d),

lower(x, d0) and upper(x, d0), and coloured according to a chosen summary statistic.21

One use of ICE plots is to help illustrate counterfactual explanations for which the initial

feature vector ft and minimal counterfactual f0 di↵er in  2 features. Here, a slicing hyperplane

can be defined by the values of the unchanged features. Examples for the LunarLander policy

are shown in Figure 3.22. In each case, the foil is specified in the subplot heading, and the

slicing hyperplane below that. These plots not only display the minimal state change required

to realise the foil condition, but reveal some of the surrounding feature space. This gives an

indication of the counterfactual’s robustness to perturbations, as well as other (non-minimal)

counterfactuals that would also realise the foil condition. The fact that such visualisations are

21Although we have presented projection and slicing as two distinct visualisation methods, in reality it is
possible to smoothly transition between the two. Starting from the projection method as described, we achieve
this by permitting the core extrusion along feature d00 to be limited between two thresholds mind00 and maxd00 .
This allows us to visualise projections from only those leaves within a hyperrectangular subset of �(S) rather
than the entire space. With this formulation, it is easy to see that slicing results from the limiting case where
mind00 = maxd00 = sliced00 , for all d

00 2 {1, . . . , D} \ {d, d0}.

78



3.10. EXPERIMENTS IN A HIGHER-DIMENSIONAL ENVIRONMENT

only possible when counterfactuals use  2 features is another justification for prioritising the

sparsity-oriented 0-norm over the 2-norm in our definition of minimality.

To briefly discuss each case in Figure 3.22, a considers a state where the lander is mid-height

and left of centre (see rendered image to the right). The foil asks why the main engine is not

strongly activated (� 0.9). We find that the engine would be activated in this way if the lander

were lower to the ground (posy  0.54) and rotating slightly anticlockwise (vel  �0.11). In
the scenario studied in b , we find that the side engine would be fired strongly to the left

( �0.9) if the lander were rotating anticlockwise from a level angle. Finally, the state in c

has high predicted value, but the counterfactual suggests that value would be far lower (i.e. the

lander would be expected to land less successfully) if it were moving right-to-left from the other

side of the centreline (posx = 0). This local example is another signal of the policy’s asymmetry.

3.10.3 Hypothetical Trajectories

Hypothetical trajectories can also be generated in this environment. Although the derivative

alignment optimisation can be done in the full 8D feature space, the trajectories can only

be visualised over two features at a time. Figure 3.23 contains some examples. Rather than

showing a single trajectory between two leaves, we display all possible trajectories between leaves

contained within a start zone ⇢ �(S) (blue/orange) and a goal zone ⇢ �(S) (red), demonstrating

the distribution of possible paths taken by the agent. Practically, this set of trajectories is

obtained by performing a multi-source, multi-destination Dijkstra search between the two sets of

leaves X0 = {x 2 X : (x\ start zone) = x} and Xgoal = {x 2 X : (x\ goal zone) = x}. Popular
Dijkstra implementations are capable of doing this e�ciently (we use the networkx Python

library). This provides a powerful generalisation of the single start/goal leaf case presented

earlier, enabling us to query hypothetical trajectories between manually specified start and goal

conditions that do not directly correspond to the boundaries of individual leaves.22

In Figure 3.23, The opacity of each trajectory is proportional to its likelihood according to

the leaf transition probabilities. a clarifies the prior observation that approaches from the

right side (orange, c.f. blue) are wider and more curved, and shows that they occasionally miss

the landing zone (thick red line) altogether. Thereafter, the lander must activate its side engine

to ‘shu✏e’ along the ground into position; a major source of lost value. Similarly, b confirms

that the lander’s vertical velocity profile tends to be C-shaped, reaching its maximum around

posy = 0.9 before decreasing approximately linearly. The final plot c provides the most novel

insight. If rotated anticlockwise (  �0.5), the lander’s return to a stable, neutral orientation

is direct and overdamped. From clockwise ( � 0.5), trajectories back to neutrality tend to

22There is a connection between our general formulations of hypothetical trajectories and counterfactual
explanation. In the former, we are given two sets of leaves X0 and Xgoal and search for the ‘best’ (i.e. most
dynamically realistic) multi-segment linear path between them. In the latter, we are given a single point and a
set of leaves Xfoil and search for the ‘best’ (i.e. minimal) single-segment linear path between them. This hints at
the potential for a unifying formalism.

79



CHAPTER 3. TREE MODELS OF AGENT BEHAVIOUR

1.0

0.1

-1.1 -0.1-0.5

1.0

0.1
-0.3 0.40.0 0.5-0.5

-0.4

0.4

ca b

Figure 3.23: Hypothetical trajectories for the LunarLander policy.

overshoot; a classic indicator of a poorly-tuned controller. This is further evidence that despite

attaining higher expected reward than all others in the Baselines Zoo repository, the SAC policy

exhibits chronic asymmetries that may cause problems in deployment.

Finally, we note that the ASQ-IT framework [9], which was published after the work in

this chapter, is quite similar to our method of querying agent trajectories based on start and

goal conditions. In that work, the conditions are specified in linear temporal logic, and can be

complemented by constraints on how the agent is allowed to move between the start and goal.

The key point of di↵erence is that ASQ-IT searches through a dataset of real agent trajectories

rather than synthesising novel ones using a learnt transition model.

3.11 Conclusion

In this chapter, we have used the language of tree abstractions to build interpretable models of

agents based on observations of their behaviour. We initially considered policy-only models,

which have precedence in the existing literature. We contributed a novel method for pro-

grammatically generating interpretable features, explored tree-based techniques for producing

textual explanations, and adapted these techniques to explain changes in agent actions over

an extended trajectory. We also examined the relationships between di↵erent measures of the

performance or accuracy of a policy-only model across di↵erent evaluation environments (track

topologies). We then proposed TripleTree, a multiattribute tree abstraction that combines

policy information with summaries of an agent’s value function and state dynamics, providing a

more holistic view of its behaviour. In exploring the potential of the TripleTree model across

two evaluation environments, we developed novel methods for visualisation and hypothetical

trajectory generation based on user-specified queries. The models and experiments in this

chapter have several limitations, which create opportunities for further work:

• The operator-based feature generation method was conceived and evaluated in the tra�c

simulator environment, but we hypothesise that it is applicable in a wide range of domains.

It would be valuable to try implementing it in other contexts. As an end goal, we can

envisage a flexible interactive interface for allowing users to specify interpretable base

80



3.11. CONCLUSION

features, operators, and constraints on their combination, and visualise how the inclusion

or exclusion of di↵erent features a↵ects the growth of a tree model.

• Our policy trees were grown and pruned for the task of accurate action prediction via

the CART algorithm, but then evaluated on a range of other metrics such as on-policy

performance and MTBF, which we showed to be imperfectly correlated. Further work

could develop more sophisticated split criteria that directly optimise these other metrics.

• TripleTree combines its various leaf impurity measures by simple summation, weighted

by a constant vector ✓ 2 R
3
+. Although we found this to be satisfactory, other options

could be worth exploring, such as allowing the weighting to vary across di↵erent regions

of the state feature space according to a user’s interest.

• As part of our examination of temporal explanations, we developed a general criterion

for minimal, non-misleading explanations based on the MBB constraint, but only de-

vised a practical algorithm for 2D feature spaces. An e�cient generalisation to higher

dimensionalities would be valuable.

• Our implementation of TripleTree collects statistics on an agent’s transition dynamics

between leaves of the tree, which enables hypothetical trajectory generation, but this

functionality is somewhat peripheral and the tree is not grown or pruned with these

statistics in mind. In the next chapter, we develop a much more principled tree-based

model for summarising an agent’s transition dynamics.

• Both models in this chapter provide insight into an agent’s behaviour under a single,

fixed policy, but do not capture how that behaviour changes as the agent learns over time.

This is also a major focus of the next chapter.

81





Chapter 4

Tree Models of Agent Learning

Based on: “Summarising and Comparing Agent Dynamics with Contrastive Spatiotemporal Abstraction”,

presented at 2022 IJCAI Workshop on Explainable Artificial Intelligence.

4.1 Introduction

In the preceding chapter, we developed tree abstractions that summarise and explain a single

agent’s fixed distribution of behaviour based on observational data. Depending on the application

and intended audience of the model, such insight may be su�cient. However, a fundamental

characteristic of many contemporary artificial agents is their ability to learn from experience,

altering their action-selection policy, and thus the behaviour distribution we observe. When

such changes occur, any existing model of the agent becomes an obsolete and misleading

representation of the current or future behaviour. Moreover, stakeholders seeking insight into

the mechanisms of learning, particularly researchers, engineers, and auditors, may be interested

in comprehending the nature, causes, timings, and co-occurrence of the changes themselves.

Evidence of an agent’s learning trends may be more informative than just its current policy,

particularly from the standpoint of safety validation and iterative design. For example, knowing

that unsafe or ine�cient behaviours have been explored and rejected provides some confidence

that the agent will avoid making the same mistakes in future. Additionally, there is evidence

that RL agents in particular exhibit “Aha!” moments, similar to those experienced by human

learners, where internal representations rapidly transform to improve task performance [41].

Understanding how and when such moments arise would be a critical component of a functional

theory of how agents learn in practice across environments and tasks, that extends beyond

the idealised cases covered by formal proofs. We have already seen evidence of the potential

value of understanding an agent’s learning process in Section 3.10, where our analysis revealed

an asymmetry in a baseline LunarLander policy. If we had information on when and how this

asymmetry emerged as the soft actor-critic RL agent was learning, we might be able to find

ways to prevent or correct it during subsequent training runs.

83



CHAPTER 4. TREE MODELS OF AGENT LEARNING

In a 2021 position paper [108], Hammer et al. argue that the problem of summarising and

explaining the incremental changes during a machine learning process is heavily underexplored.

They identify several sub-problems, such as (1) finding interpretable and flexible representations

of change, (2) quantifying the magnitude of changes in a computationally e�cient manner, and

(3) determining when and how frequently changes should be recorded, which is e↵ectively an

issue of change point detection [5]. In this chapter, we address all three sub-problems:

1. For our interpretable representation, we retain our thesis-wide focus on tree abstractions,

learnt from observational data. As ever, there is a question of which summary statistics

to compute and store in the tree. This a↵ects the kinds of change that can be represented.

While it would be reasonable to develop abstract models of the temporal changes in an

agent’s value function or action-selection policy, we reflect that some of the most interesting

and novel parts of the preceding chapter involved analysing an agent’s state dynamics. For

this reason, the core of the model presented in this chapter is an abstract representation of

agent dynamics at each point in time as a set of transition probabilities between the leaves

of the tree (here referred to as abstract states). Since no action or reward information is

required to build this model, it is by some distance the most context-agnostic one in this

thesis, with potential applications outside of agent interpretability.

2. To quantify how the agent changes, we adopt an information-theoretic divergence measure

between the probabilities of transitioning from one abstract state to another at di↵erent

points in time. In turn, we use this measure as an objective to maximise when constructing

the abstraction itself. The e↵ect of using this objective is that the abstract transition

model selectively highlights significant changes in behaviour in a highly compressed form.1

3. The same divergence measure can be used to address the sub-problem of change point

detection. Instead of modelling agent dynamics separately at every time point (which,

among other issues, would likely overwhelm a human observer), we partition the agent’s

learning history into a reduced number of contiguous time windows in such a way that

the inter-window transition divergence is maximised. The practical algorithm for this

temporal abstraction stage is structurally very similar to that used for state abstraction.

As the resultant abstractions are explicitly optimised to highlight di↵erences, they enable us

to take a contrastive perspective on explaining the agent’s learning process, by identifying large

or salient di↵erences in the transition probabilities of two or more time windows. Such contrastive

explanations are favoured in both the psychological [115, 160, 254] and computational [176]

literature, where they are argued to be natural and human-like.

1There is an interesting duality between this approach and a prior e↵ort to encourage agents to exhibit
diverse behaviour by maximising the mutual information between a ‘skill indicator’ and distributions over state
visitation [83]. In that work, new policies are learnt to maximise dynamical diversity in a given state space. In
contrast, we learn a new (abstract) state space that maximises the measured diversity of given policies.

84



4.2. THEORY OF CONTRASTIVE SPATIOTEMPORAL ABSTRACTION

After introducing our proposed theory of contrastive spatiotemporal abstraction in generic

terms, we describe a practical tree-based algorithm for real vector state spaces. We deploy it to

summarise the nonstationary dynamics of RL agents in two continuous control environments

(maze navigation and lunar landing) with the aid of tree diagrams, transition graph visualisa-

tions, prototype trajectories and inter-window counterfactuals. We then introduce a series of

modifications to the tree growth and pruning stages of our learning algorithm and explore their

implications for performance and computational e�ciency.

4.1.1 Related Work

Existing work on summarising agent change is limited. The few prior examples include dis-

playing nonstationary behavioural data directly via a visual analytics dashboard [262] and

using representative state-action pairs to summarise a policy at various key moments during

learning [59]. The Disagreements algorithm [8] and its extensions [76, 92] take an explicitly

contrastive perspective, synthesising exemplar trajectories over which di↵erent policies’ actions

di↵er, but only works in the case of two policies, and provides only local examples rather than

a global model of disagreement or change. In [187], an active querying scheme is proposed for

finding and representing temporal changes in classical planning algorithms. While abstract

transition models have been used to summarise agent behaviour before [60, 171, 249, 272], we

believe that our work is the first to handle multiple or nonstationary policies, and to develop

principled theories and algorithms based on the notion of contrastive explanation.

4.2 Theory of Contrastive Spatiotemporal Abstraction

Consider a learning agent whose action-selection policy evolves over a sequence of k update steps

⇧ = (⇡1, . . . ,⇡k), where ⇡i : S ! �(A), 8i 2 {1, . . . , k}. When deployed in the environment,

each of these policies induces a particular distribution of behaviour. This can be formalised

as a Markov chain over the state space with conditional transition probabilities Pi(s0|s) =
P

a2A ⇡i(a|s)T (s0|s, a), 8s 2 S, 8s0 2 S, where T : S ⇥ A ! �(S) is the environment’s

(unchanging) dynamics function. The policy updates therefore implicitly generate a sequence

of such Markov chains P = (P1, . . . , Pk). Suppose we do not have direct access to P, but can

observe the history of interactions performed by the agent during its learning. We thereby

assemble a transition dataset D comprising elements of the form (i, s, s0), where i is the index

of the current policy (which is incremented by 1 every time an update is made) and s, s
0 is a

pair of successive states sampled from its induced Markov chain.2

2Technically, our theoretical framework assumes that observed transitions are independent, which is not true
for sequential observations of a Markovian system. This issue is mitigated by observing many independently-
initialised episodes in an episodic environment, or by running each policy until it attains its stationary distribution
in a non-episodic environment. In the episodic environments used in our experiments, we constrain the learning
agents to only perform updates between, rather than within, episodes, thereby guaranteeing that the observed
transitions from each policy are independent of the dynamics of all previous ones.

85



CHAPTER 4. TREE MODELS OF AGENT LEARNING

Notice that unlike the methods presented in the previous chapter, assembling the transition

dataset does not require access to the agent’s actions, or the outputs of the environment’s

reward function, if one exists. This means the abstraction theory and algorithms that follow

can in principle be applied to any sequence of Markovian dynamical systems with a common

state space. We discuss the implications of this extreme context-agnosticism in Section 4.8.

An example of a small transition dataset D for k = 3 policies is shown in Figure 4.1 a . Our

goal in this chapter is to use D to model the major dynamical changes that occur throughout

the agent’s learning process. To do so, we propose to give the transition data a more compact,

interpretable representation through the use of abstraction. Following the notation used in

previous chapters, let an abstraction of the state space be a set X = {x1, . . . , xm}, whose m

elements (here called abstract states) partition S, i.e.
S

x2X x = S and
T

x2X x = ;. Figure 4.1

b shows a possible m = 3-state abstraction with the transition data overlaid. Note that we

have drawn abstract states with arbitrary geometries because the theory in this section does

not rely on the axis-aligned partition constraint used in our practical tree methods.

Given such an abstraction, we can summarise the transition data D via a k ⇥m⇥m array

of abstract transition counts NX , as shown in Figure 4.1 c . For each policy i 2 {1, . . . , k} and

pair of states x 2 X , x
0 2 X , the transition count from x to x

0 is defined as

(4.1) N
X
i,x,x0 = |{(j, s, s0) 2 D : (j = i) ^ (s 2 x) ^ (s0 2 x

0)}|.

Let N
X
i

be the k ⇥ k matrix of transition counts for policy i. Normalising N
X
i

by its

grand sum yields an empirical joint distribution over abstract transitions JX
i
, and separately

normalising each row gives a conditional distribution P
X
i
. JX

2 and P
X
2 are shown in Figure 4.1

d . The latter is of particular interest as it defines a Markov chain over the abstract states

X . Abstract Markov chains can be visualised as transition graphs, as shown in Figure 4.1 e .

Such visualisations have been used in several prior works to provide simplified summaries of

agent dynamics in high-dimensional environments [171, 249]. We hypothesise that provided

we always remain aware of the epistemic relationship between P
X
i

and Pi (i.e. the former is a

compressed model of the latter, estimated from limited data) and if X is carefully constructed,

comparative analysis of the abstract Markov chains can provide meaningful and accurate insight

into the agent’s changing dynamics. For instance, we can apply established methods to analyse

properties such as convergence, stability and cycles in the abstract state space, which may not

be possible or tractable in the original state space S.
What do we mean by the term “carefully constructed” in the preceding paragraph? Clearly,

there is a tradeo↵ around the number of abstract states m, with the extrema X = {S}
() m = 1) and X = {s : s 2 S} () m = |S|) respectively providing a degenerate model or zero

interpretability gain. But beyond this, we can reasonably expect some m-sized state abstractions

to be more e↵ective than others at capturing salient features of the underlying dynamics. We

investigate this hypothesis by postulating an objective for constructing X .

86



4.2. THEORY OF CONTRASTIVE SPATIOTEMPORAL ABSTRACTION

0.67

0.5 0.5 0

0 0.33

0.330.330.33

State abstractionb

Abstract transition graphse

2

2

1

0

0 0 0

0

0

Abstract transition countsc

1

2

1

0

1 1 1

1

0

1

1

2

1

0 1 1

0

0

0.25

0.13 0.13 0

0 0.13

0.130.130.13

Abstract transition probabilitiesd

Transition dataa

32

1 1

2 3

1

2 3

0.5

0.5
0.67 0.33

0.33

0.33

0.33

0.67

0.331

0.33

0.67

0.5

0.5
0.5

0.5

Figure 4.1: Application of state abstraction to a k = 3-policy transition dataset.

4.2.1 The Contrastive Objective

According to several influential theories [115, 160, 254], human-like explanations of observed

phenomena are constructed by searching for simple points of contrast with alternative cases.

This in turn implies that a common representation of multiple phenomena has explanatory

value to the extent that it preserves information about their mutual di↵erences, while ignoring

irrelevant details. This selective emphasis on contrasts has been adopted as a recommendation for

machine learning interpretability work [177] and underlies the previously-cited Disagreements

algorithm for pairwise policy comparison [8].

Motivated by this precedent, we propose a new definition of abstraction e�ciency (recall

Section 2.4 as the origin of this term). In the present context, we say that an abstraction

X is e�cient to the extent that it maximises our ability to discriminate between policies

i 2 {1, . . . , k} based on the abstract state transition probabilities they generate, while being as

compact as possible (small m). Such abstractions would be optimised for queries of the form

“which policy is most likely to have produced this abstract transition x! x
0?” To perform such

discrimination e↵ectively, X must consist of abstract states that are visited and transitioned

between with di↵erent probabilities by the di↵erent policies.

To formalise this definition, let us consider the sequence of abstract transition models,

defined by the joint probabilities JX
1 , . . . , J

X
k
, as generative distributions from which transitions

can be sampled.3 Applying Bayes’ rule, the posterior probability of a policy i given a transition

3It is important to develop our theory based on joint, rather than conditional, transition probabilities because
it ensures that the divergence measures that follow are always well-defined. If a policy i never visits a particular
abstract state x, PX

i,x,x0 cannot be computed for any x0, but JX
i,x,x0 can be unproblematically defined as zero.

87



CHAPTER 4. TREE MODELS OF AGENT LEARNING

x, x
0 sampled from its abstract model is

(4.2) Pr(i|x, x0) =
⇢iJ

X
i,x,x0

P
k

j=1 ⇢jJ
X
j,x,x0

.

The vector ⇢ 2 [0, 1]k,
P

k

i=1 ⇢i = 1 is a prior weighting over policies, which may be manually

specified or derived from data (e.g. in proportion to the number of observations in D). Taking

the prior-weighted expectation of the log posterior over all policies and transitions, we obtain:

(4.3) E
i,x,x0

⇥
log Pr(i|x, x0)

⇤
=

kX

i=1

⇢i

X

x2X

X

x02X
J
X
i,x,x0

"
log

⇢iJ
X
i,x,x0

P
k

j=1 ⇢jJ
X
j,x,x0

#

=
kX

i=1

⇢i log⇢i

⇠⇠⇠⇠⇠⇠⇠⇠:= 1X

x2X

X

x02X
J
X
i,x,x0 +

kX

i=1

⇢i

X

x2X

X

x02X
J
X
i,x,x0 log JX

i,x,x0

�
X

x2X

X

x02X

⇣ kX

i=1

⇢iJ
X
i,x,x0

⌘
log
⇣ kX

j=1

⇢jJ
X
j,x,x0

⌘

= �H(⇢)�
kX

i=1

⇢iH(JX
i ) +H

⇣ kX

i=1

⇢iJ
X
i

⌘
= JSD(JX |⇢)�H(⇢).

H is entropy, and JSD denotes the multi-distribution generalisation of the Jensen-Shannon

divergence [158], which is equivalent to the mutual information between the prior-weighted

mixture distribution
P

k

i=1 ⇢iJ
X
i

and the policy index i. Intuitively, Equation 4.3 tells us that

policy discrimination is facilitated by an abstraction that yields abstract transition probabilities

J
X
1 , . . . , J

X
k

which are as di↵erent as possible, and also by minimising H(⇢), although this

second term is not relevant here since we take ⇢ to be fixed. As we will verify in our experiments,

discrimination is practically facilitated by placing the boundaries of abstract states at points of

divergence between the policies, thus disentangling their transitions.

We therefore propose the following contrastive abstraction objective. Given a set of state

abstractions X constructible by some well-defined algorithm, the objective is

(4.4) argmax
X2X

h
E

i,x,x0
log Pr(i|x, x0)� ↵(m� 1)

i
= argmax

X2X

h
JSD(JX |⇢)� ↵(m� 1)

i
.

Here, H(⇢) is ignored because it is independent of X , and the second term (weighted by ↵ > 0)

is a regulariser to incentivise compact abstractions. This term ensures the objective is not

maximised by the trivial solution X = {s : s 2 S}. It uses m� 1 rather than m, because this

sets the value of the objective for the degenerate one-state abstraction S = {S} to zero. In

expectation, the JSD term increases monotonically but sublinearly with m (see Section 4.4 for

a theoretical analysis and empirical demonstration), and ↵(m� 1) is evidently linear, so we

should expect their di↵erence to be maximised at an intermediate abstraction size determined

by ↵ (larger ↵ favours smaller m).

Figure 4.2 shows two options (A and B) for an m = 2-state abstraction given transition data

from k = 2 policies. Option A is a superior state abstraction according to Equation 4.4. With a

88



4.2. THEORY OF CONTRASTIVE SPATIOTEMPORAL ABSTRACTION

State abstraction

0.33

0 0.33

0.33

Joint abstract
transition

probabilities

Transition data

O
pt

io
n 

A
O

pt
io

n 
B

0.5

0 0.17

0.33

Jensen-Shannon divergence

0.33 0

0.33 0.33

0.5

0 0.17

0.33

Figure 4.2: Two state abstraction options and their resultant JSD values.

uniform prior ⇢ = [0.5, 0.5], it gives a JSD of 0.231, compared with exactly zero for option B,

while incurring the same regularisation penalty because m = 2 is constant. Intuitively, option

A preserves the critical di↵erence between the policies: ⇡1 crosses the abstract state boundary

from left-to-right (x1 ! x2) while ⇡2 crosses from right-to-left (x2 ! x1). In contrast, option B

fails to preserve a di↵erence: the top-to-bottom dynamics of the two policies are identical.

4.2.2 Temporal Abstraction

The preceding discussion concerns a sequence of k policies ⇧ = (⇡1, . . . ,⇡k) and their induced

Markov chains P = (P1, . . . , Pk), whose dynamics are to be summarised via contrastive

abstraction. Recall that for our purposes, the generative origin of this policy sequence is a

contiguous process of agent learning. Since modern learning algorithms typically run for many

steps and update their policies with high frequency, a likely consequence is that the number

of individual policies k is large, and the transition dataset D contains only a small number of

observations of each Pi. Therefore, regardless of our choice of state abstraction X , the result

will be an array of joint probabilities JX that is not only large (hampering interpretability) but

also sparse, meaning the estimated abstract Markov chains will have such high variance as to

be practically useless as summary models of P.

However, for many practical learning agents, policy changes are incremental and gradual,

so it is reasonable to assume approximate stationarity over short timescales. We therefore

propose to reduce both the size and the sparsity of J
X by applying a layer of temporal

abstraction, which approximates the dynamics as piecewise constant within n ⌧ k disjoint

and exhaustive time windows W = {⌧1, . . . , ⌧n}. Each ⌧w is parameterised by lower and upper

bounds lw, uw, and the following constraints hold: l1 = 1; un = k+1; lw < uw, 8w 2 {1, . . . , n};
uw = lw+1, 8w 2 {1, . . . , n� 1}. These can be used to aggregate J

X along its first axis to form

89



CHAPTER 4. TREE MODELS OF AGENT LEARNING

0.11

0.29

0.12

0.16

0 0.15 0.12

0.01

0.04

0.13

0.2

0 0.18

0.32 0

0.1

0.07

0

0.1

0.18

0 0.2

0.27 0

0.15

0.08

0.02

0.154

0.128

0.076 0.106

0.214 0.094

0.074

0.108

0.046

0.202

0.06

0.202 0

0.084 0.226

0

0.14

0.086

0.113

0.18

0 0.177

0.293 0.003

0.123

0.09

0.02

0.193

0.067

0.21 0

0.077 0.223

0

0.143

0.087

Window 1 (option B)

Window 2 (option B)

Window 1 (option A)

Window 2 (option A)

0.22

0.06

0.2 0

0.1 0.23

0

0.12

0.07

0.21

0.04

0.18 0

0.09 0.23

0

0.15

0.1

0.20

0.08

0.23 0

0.06 0.21

0

0.13

0.09

0.19

0.06

0.2 0

0.09 0.22

0

0.16

0.08

0.19

0.06

0.2 0

0.08 0.24

0

0.14

0.09

Figure 4.3: Two temporal abstraction options and their resultant JSD values.

a smaller and less sparse n⇥m⇥m array J
X ,W , where 8w 2 {1, . . . , n}, x 2 X , x

0 2 X ,

(4.5) J
X ,W
w,x,x0 =

1

⇢W
w

uw�1X

i=lw

⇢iJ
X
i,x,x0 ,

and ⇢W
w =

P
uw�1
i=lw

⇢i aggregates the elements of the prior vector for each window. By varying

both n and the window boundaries in W, we obtain di↵erent sequences of spatiotemporally

abstracted transition probabilities, even if X remains constant. For example, Figure 4.3 shows

two options (A and B) for aggregating abstract transition probabilities from a k = 8-policy

sequence into n = 2 windows, and the results of applying Equation 4.5 (with uniform ⇢).

As with X , a question arises as to why one set of windows W should be chosen over another.

Intuitively, a temporal abstraction is informative for contrastive analysis if it contains windows

of behaviour which are internally consistent, but between which there are significant di↵erences.

We suggest that the desired property can be achieved using an identical objective to that

of the previous section: maximising the Jensen-Shannon divergence between joint transition

distributions, but now of the windows rather than the individual policies. As always, we wish to

incentivise compact abstractions (small n), so add another regularisation term to the objective:

(4.6) argmax
X2X, W2W

h
JSD(JX ,W |⇢W)� ↵(m� 1)� �(n� 1)

i
,

where W is the set of all possible window-based abstractions, and � > 0 is a hyperparameter.

Theoretical and empirical results again indicate that JSD is sublinear in n (see Section 4.4). As

with m, this means that the objective will be maximised at a finite value of n determined by �.

In the example shown in Figure 4.3, option B is a superior temporal abstraction according

to Equation 4.6. It gives an inter-window JSD of 0.311, compared with 0.120 for option A,

while having the same regularisation penalty because m = 3 and n = 2 are constant.

90



4.3. TREE ABSTRACTION ALGORITHMS

4.3 Tree Abstraction Algorithms

We now present practical algorithms for contrastive abstraction of transition data D produced

by a learning agent. In doing so, we specialise from the general framing of the preceding section

to the specific context studied in this thesis, by assuming that the state space can be represented

by vectors of interpretable real-valued features �(S) = R
D. We can therefore adopt our favoured

approach of axis-aligned tree abstraction, opening the door to e�cient learning algorithms, and

yielding hyperrectangular abstract states (i.e. leaves of the tree) whose simple geometry aids

interpretability.4

As in the CART-based algorithms used in the previous chapter, the central idea of our

approach is to recursively partition �(S) with axis-aligned hyperplanes according to a greedy

selection criterion. The top-down partitioning approach imposes a structural bias towards

compact abstractions and means the algorithms need only consider solutions up to some

acceptable maximum size. The core algorithm, designed to optimise the objective in Equation 4.4

given an arbitrary sequence of k policies, is referred to as contrastive state abstraction (CSA).

The extension for aggregating incremental policy learning into a reduced number of time windows

is contrastive spatiotemporal abstraction CSTA, which first calls CSA before running an

algorithmically-similar temporal partitioning loop to find windows that maximise Equation 4.6.

In this section, we provide a high-level overview of the algorithms, followed by annotated

pseudocode and further technical details.

The two-stage strategy described below was used to produce the main results in Sections 4.5

and 4.6. In more recent work presented in Section 4.7, we compare this approach to a large

number of alternatives in terms of their performance on the objective in Equation 4.6. We find

that several of the more sophisticated strategies outperform this one across a range of datasets.

We describe only the two-stage approach here for the sake of simplicity and faithfulness to

our main results, and defer discussion of the possible improvements to Section 4.7.

4.3.1 Constrastive State Abstraction (CSA)

Suppose that we have an existing tree-structured state abstraction X , consisting of m hyper-

rectangles in the state feature space �(S) = R
D, and have precomputed the joint abstract

transition probabilities JX by Equation 4.1 and normalisation.

Now consider splitting an abstract state x 2 X into two by placing a hyperplane at a

threshold c 2 R along feature d 2 {1, . . . , D}, exactly as in CART. All transitions in D
into, out of and within the abstract state will be redistributed between the two new abstract

states, x
(d�c) and x

(d<c), in a way that conserves their overall sum. For example, for an

4As a technical note, for any � : S ! R
D, a partition of �(S) is isomorphic to a partition of S. This is

because any set x ✓ S maps to a unique set x� ✓ �(S) = {�(s) : s 2 x}, and vice versa, i.e. x = {s : �(s) 2 x�}.
In a slight abuse of notation permitted by this isomorphism, we switch to using the term “abstract state” and
the symbol “x” to refer to subsets of �(S) from this point onwards.

91



CHAPTER 4. TREE MODELS OF AGENT LEARNING

observation (i, s, s0) 2 D where both �(s) 2 x and �(s0) 2 x, the new transition may be either

x
(d�c) ! x

(d�c), x(d�c) ! x
(d<c), x(d<c) ! x

(d�c) or x(d<c) ! x
(d<c) depending on where the

two feature vectors �(s) and �(s0) fall relative to the partitioning hyperplane. These updated

transitions can be represented by an enlarged array of joint transition probabilities with shape

k ⇥ (m+ 1)⇥ (m+ 1), denoted by J
X!(x,d,c), which can be computed e�ciently since (in the

general case) most of its values are unchanged from J
X .

This operation of splitting an abstract state in two increases the e�ciency of the abstraction

according to the objective in Equation 4.4 by an amount equal to the increase in JSD (which is

guaranteed to be non-negative), minus the regularisation parameter ↵:

(4.7) QCSA(x, d, c) = JSD(JX!(x,d,c)|⇢)� JSD(JX |⇢)� ↵.

As in all top-down greedy tree induction methods, the CSA algorithm is initialised with one

abstract state covering the entire feature space, X = {�(S)}. It then proceeds to recursively

partition the space into ever-smaller hyperrectangles (thereby growing the tree), at each step

selecting x, d and c to greedily maximise Equation 4.7, i.e.

(4.8) argmax
x2X , 1dD, c2Cd

h
QCSA(x, d, c)

i
.

Following the notation of Section 3.2.4, Cd is a finite set of candidate split thresholds along

feature d, defined either manually or using the data (e.g. all midpoints between adjacent unique

feature values in D). As in TripleTree, we grow the tree best-first (i.e. selecting the best x to

split at each step) instead of the standard depth-first approach of CART. This is especially

important in this context because, unlike standard impurity measures, JSD is not a local

statistic of each leaf/abstract state; it depends on all other abstract states that are transitioned

from and to. This non-locality property means that myopically splitting down one branch of

the tree at a time is likely to yield a highly suboptimal abstraction, so we must take the more

expensive approach of re-evaluating every possible split at each growth step.

The stopping criterion for terminating growth is when all possible QCSA values are  0,

which occurs earlier for larger values of the hyperparameter ↵. This means we can control

the e�ciency tradeo↵ between JSD and abstraction size by varying ↵. This is an alternative

to implementing a pruning stage, which we found to provide no additional benefit in our

preliminary experiments. However, some of the more sophisticated strategies considered in

Section 4.7 do implement pruning in a manner that our results suggest is beneficial.

4.3.2 Contrastive Spatiotemporal Abstraction (CSTA)

Combined spatiotemporal abstraction brings additional complexity because JSD values (and

their changes when new splits are added) are jointly dependent on the extant abstract states

and time windows in a way that cannot be disentangled. One way to simplify this challenge is

to employ a greedy two-stage algorithm.

92



4.3. TREE ABSTRACTION ALGORITHMS

The first step is to define an initial set of windows Winit, which should be chosen to reduce

the sparsity of JX ,Winit to an acceptable level and allow the algorithm to run e�ciently (note

that runtime increases with |Winit|). We initially hypothesise that it should otherwise have

as many windows as possible to avoid excessive smoothing of the nonstationary dynamics

(Section 4.7 revisits this hypothesis). If sparsity and runtime are not major issues, the ‘null’

window set Wnull = {[1  i < 2], . . . , [k  i < k + 1]} can be used. This initial temporal

abstraction is applied to the dataset, e↵ectively replacing the policy index i in each observation

(i, s, s0) 2 D with its corresponding window index w : lw  i < uw. CSA is then called as a

subroutine, yielding a state abstraction X that maximises the JSD between the initial windows,

rather than the full policy sequence.

We then discard Winit and run a secondary stage of temporal partitioning to find another

set of windows W that maximise JSD, while holding state abstraction X constant.5 This

is also a recursive procedure. Given an existing W consisting of n windows, the window-

aggregated abstract transition probabilities JX ,W can be computed by Equation 4.5. Splitting

the w 2 {1, . . . , n}th window at a location i 2 {lw + 1, . . . , uw � 1} creates two new windows

with respective lower and upper boundaries at lw, i and i, uw respectively. Reallocating the

transitions in D according to the new windows in which they fall yields an enlarged transition

probability array with shape (n+ 1)⇥m⇥m, denoted by J
X ,W!(w,i). Again, the majority of

elements in this array are copied from J
X ,W , so it can be computed e�ciently.

Initiating with one window covering the entire policy sequence, W = {[1  i < k + 1]},
CSTA iteratively adds windows by splitting, at each step selecting w and i to greedily maximise

the abstraction e�ciency according to Equation 4.6, i.e.

(4.9) argmax
1wn, i2Ctemporal

h
QCSTA(w, i)

i
,

where

(4.10) QCSTA(w, i) = JSD(JX ,W!(w,i)|⇢W!(w,i))� JSD(JX ,W |⇢W)� �,

and Ctemporal is a finite set of candidate temporal split thresholds. In our implementation, we

exclude from Ctemporal any threshold that would violate a manually specified minimum window

width ". The algorithm terminates as soon as either this condition leaves no valid thresholds,

or all possible QCSTA values are  0, the latter of which occurs earlier for larger values of �.

Notice that the CSTA algorithm e↵ectively employs the same greedy growth process twice to

produce two tree structures, one representing the state abstraction X , whose leaves are abstract

states, and one representing the temporal abstraction W, whose leaves are time windows. We

have thus far avoided, and will continue to avoid, the “leaf” terminology in this chapter to

avoid ambiguity between these two cases.

5If Winit is a fine-graining of W (i.e. 8w 2 Winit, 9w0 2 W : (lw � lw0) ^ (uw  uw0)), the final JSD is
guaranteed to be upper-bounded by the value obtained after the state abstraction stage.

93



CHAPTER 4. TREE MODELS OF AGENT LEARNING

4.3.3 Pseudocode and Subfunction Details

Algorithm 2 contains pseudocode for CSTA. The CSA algorithm, which excludes the temporal

abstraction stage, is recovered by setting Winit = Wnull and running lines 1-10 only.

Algorithm 2 Two-stage contrastive spatiotemporal abstraction for continuous spaces.

Inputs: Data D, feature function �, prior ⇢, hyperparameters (Winit,↵,�, ", C, Ctemporal)
Output: State abstraction X , temporal abstraction W

. Initial data structures required for state abstraction
1: Initialise X = oneState(�), JX ,Winit = jointProbs(D,�,X ,Winit,⇢)
2: while loop not yet broken do . State abstraction stage

. Try partitioning each extant abstract state at each valid split threshold
3: for x 2 X , 1  d  dim(�), c 2 valid(Cd, x) do

. Create expanded joint probability array for the split defined by x, d and c

4: J
X!(x,d,c),Winit = splitStateProbs(JX ,Winit , x, d, c)

5: Compute QCSA(x, d, c) as in Equation 4.7 . Change in ↵-regularised objective
6: end for
7: x

⇤
, d

⇤
, c

⇤ = argmaxx,d,c Q
CSA(x, d, c) . Identify greedy split

8: if QCSA(x⇤, d⇤, c⇤)  0: break . Break if greedy objective change is non-positive
. Implement selected split by updating both X and J

X ,Winit

9: X = splitState(X , x
⇤
, d

⇤
, c

⇤), JX ,Winit = J
X!(x⇤

,d
⇤
,c

⇤),Winit

10: end while

. Initial data structures required for temporal abstraction
11: Initialise W = oneWindow(D), JX ,W = jointProbs(D,�,X ,W,⇢)
12: while loop not yet broken do . Temporal abstraction stage

. Try partitioning each extant time window at each valid split threshold
13: for 1  w  |W|, i 2 valid(Ctemporal, w, ") do

. Create expanded joint probability array for the split defined by w and i

14: J
X ,W!(w,i) = splitWindowProbs(JX ,W

, w, i,⇢)
15: Compute QCSTA(w, i) as in Equation 4.10 . Change in �-regularised objective
16: end for
17: w

⇤
, i

⇤ = argmaxw,i Q
CSTA(w, i) . Identify greedy split

18: if QCSTA(w⇤
, i

⇤)  0: break . Break if greedy objective change is non-positive
. Implement selected split by updating both W and J

X ,W

19: W = splitWindow(W, w
⇤
, i

⇤), JX ,W = J
X ,W!(w⇤

,i
⇤)

20: end while

Subfunctions of this algorithm operate as follows:

• oneState (line 1): Return the unit set {((�1,1), . . . , (�1,1))}, whose element is a

D-tuple of identical tuples (�1,1), where D = dim(�) (see below). This creates a single

abstract state covering the entire feature space �(S).

• jointProbs (lines 1 and 11): Given a dataset D and a state abstraction X , use Equa-

tion 4.1 to compute NX then normalise along the second/third dimensions to obtain joint

94



4.3. TREE ABSTRACTION ALGORITHMS

probabilities JX . Then, given an n-window temporal abstraction W , and a k-dimensional

prior vector ⇢, use Equation 4.5 to compute an n⇥m⇥m array which aggregates the

values in J
X along the first dimension.

• dim (line 3): Return D, the dimensionality of the feature space.

• valid (lines 3 and 13): Given a set of split points and either an abstract state x or time

window w, return only those split points that lie within the bounds of x or w (along

feature d in the former case). In the latter case, also exclude those that lie less than a

value of " away from either bound.

• splitStateProbs (line 4): Given an n⇥m⇥m joint probability array J
X ,Winit , return

an expanded n⇥ (m+ 1)⇥ (m+ 1) array in which the outgoing (respectively, incoming)

probabilities for abstract state x are redistributed between pairs of entries on the second

(third) array dimension, according to whether the feature vector for the start state �(s)

(end state �(s0)) of each contained transition (i, s, s0) 2 Dx lies before or after the split

point c along feature d. All other probabilities are unchanged. In our implementation, we

speed up this subfunction by maintaining a temporary expanded array for each x, d pair,

which is updated incrementally during a sweep over sorted split points c.

• splitState (line 9): Given a state abstraction X , return a copy with the tuple for

abstract state x, denoted by ((lx,1, ux,1), . . . , (lx,D, ux,D)), removed. It is replaced by two

new tuples which are copies of the removed one except for their dth elements, which

become (lx,d, c) and (c, ux,d) respectively.

• oneWindow (line 11): Return the unit set {(l1, u1)}, where l1 = 1, u1 = k + 1, and k is

the number of policies represented in D. This creates a single time window covering the

entire policy sequence.

• splitWindowProbs (line 14): Given an n⇥m⇥m joint probability array J
X ,W , return

an expanded (n + 1) ⇥m ⇥m array in which the probabilities for time window w are

redistributed between pairs of entries on the first array dimension, according to whether

the policy index j of each contained transition (j, s, s0) 2 D : lw  j  uw lies before

or after the temporal split point i. The redistribution is also weighted by the prior ⇢.

All other probabilities are unchanged. Our implementation of this function also uses

incrementally updated temporary arrays to improve speed.

• splitWindow (line 19): Given a temporal abstraction W , return a copy with the tuple

for time window w removed and replaced by new two tuples (lw, i), (i, uw).

95



CHAPTER 4. TREE MODELS OF AGENT LEARNING

4.4 Scaling of Jensen-Shannon Divergence with m and n

In this section, we seek to gain some understanding of the expected behaviour of the Jensen-

Shannon divergence as we vary both the number of abstract states m and the number of time

windows n. We do this by both theoretical and empirical means.

The analysis in this section is not a prerequisite for understanding the main experiments

in Sections 4.5 and 4.6. The reader may wish to skip ahead to those sections for a general

empirical validation of our method, before returning here for deeper theoretical understanding.

4.4.1 Theoretical Analysis for m

For reference, the form of the Jensen-Shannon divergence given in Equation 4.3 is

JSD(JX |⇢) = �
kX

i=1

⇢iH(JX
i ) +H

⇣ kX

i=1

⇢iJ
X
i

⌘
,

which can be expanded as follows:

JSD(JX |⇢) =
X

xp2X

X

xq2X
zp,q,

where zp,q =
⇣ kX

i=1

⇢iJi,xp,xq
log Ji,xp,xq

⌘
�
⇣ kX

i=1

⇢iJi,xp,xq

⌘
log
⇣ kX

i=1

⇢iJi,xp,xq

⌘
.

Consider the scaling of JSD withm under a binary split operation, which involves partitioning

one abstract state x0 2 X into two new ones x1 and x2. This analysis is of interest because

our practical tree-based CSA algorithm employs a binary splitting approach. The following

conservation equations apply to the abstract transition probabilities of each policy i 2 {1, . . . , k}:

Ji,x0,xp
= Ji,x1,xp

+ Ji,x2,xp
, 8xp 2 X� (Transitions out of x0 are conserved);

Ji,xp,x0 = Ji,xp,x1 + Ji,xp,x2 , 8xp 2 X� (Transitions into x0 are conserved);

Ji,x0,x0 = Ji,x1,x1 + Ji,x1,x2 + Ji,x2,x1 + Ji,x2,x2 (Transitions within x0 are conserved),

where X� = X \ {x0}, and we have omitted the superscripted X from J
X
·,·,· to reduce visual

clutter. All other transition probabilities (i.e. between the members of X�) remain unchanged.

Let �JSD denote the di↵erence between the JSD values before and after this split is made.

Most terms of this di↵erence cancel, and we are left with

�JSD =
X

xp2X�

⇣
zp,1 + z1,p + zp,2 + z2,p � zp,0 � z0,p

⌘
+ z1,1 + z1,2 + z2,1 + z2,2 � z0,0.

A general analysis of �JSD is not straightforward, so here we only consider the special case

of k = 2 policies with prior weighting ⇢1 = ⇢2 =
1
2 . As a lower bound, if the underlying state

transition probabilities in S are identical for policies 1 and 2, it is easy to show that all terms

cancel and �JSD = 0. More interestingly, we can upper bound the JSD di↵erence by considering

96



4.4. SCALING OF JENSEN-SHANNON DIVERGENCE WITH m AND n

the ‘perfect splitting’ case when policies 1 and 2 have the same inbound and outbound transition

probabilities for x0 (i.e. J1,xp,x0 = J2,xp,x0 and J1,x0,xp
= J2,x0,xp

, 8xp 2 X� [ {x0}), but policy
1 only visits x1 and policy 2 only visits x2. This leads to the following simplification of the

terms zp,1 + zp,2 � zp,0 for each xp 2 X�:

zp,1 + zp,2 = 2
⇣1
2
J·,xp,x0 log J·,xp,x0 �

1

2
J·,xp,x0 log

1

2
J·,xp,x0

⌘
;

zp,0 =
2

2
J·,xp,x0 log J·,xp,x0 �

2

2
J·,xp,x0 log

2

2
J·,xp,x0 = 0;

zp,1 + zp,2 � zp,0 = J·,xp,x0 log
⇠⇠⇠⇠J·,xp,x0

1
2⇠⇠⇠⇠J·,xp,x0

� 0 = J·,xp,x0 log 2,

where the subscripted placeholder “·” indicates that this joint probability is the same for

both policies. An equivalent simplification can be derived for z1,p + z2,p � z0,p, and also for

z1,1 + z2,2 � z0,0. We also know that z1,2 = z2,1 = 0, because (by assumption) neither of the two

policies ever visits both x1 and x2. Substituting back into the equation for �JSD gives

�JSD = log 2
X

xp2X�

⇣
J·,xp,x0 + J·,x0,xp

⌘
+ J·,x0,x0 = log 2

⇣
M·,x0 +

X

xp2X�

J·,xp,x0

⌘
,

where M·,x0 =
P

xp2X J·,x0,xp
is the marginal visitation probability for x0, obtained by summing

over all joint outbound transition probabilities. This quantity is the same for both policies.

What can we say about the behaviour of �JSD in expectation? For any policy i,
P

x2X Mi,x =

1, so if x0 was selected for splitting with uniform random probability, Ex0 [M·,x0 ] =
1
m

(where

m is the number of abstract states before the split is made). We can also bring the expectation

of the second term inside the sum:

Ex0 [�JSD] = log 2
⇣
Ex0 [M·,x0 ] +

X

xp2X�

Ex0 [J·,xp,x0 ]
⌘
= log 2

⇣ 1

m
+
X

xp2X�

Ex0 [J·,xp,x0 ]
⌘
.

We cannot say much more about the second term in general, aside from that it will depend

on the amount of ‘inertia’ in the Markov chain for each policy: the proportion of timesteps in

which it remains in the same abstract state as opposed to transitioning elsewhere. If inertia is

very high, the first term of our expression for Ex0 [�JSD] will dominate, in which case

Ex0 [�JSD] =
log 2

m
=) E[JSD] = log 2 logm,

since d

dy
(a log y) = a

y
. This result suggests that in the high-inertia context, JSD is approximately

logarithmic in m. Finally, as a looser upper bound, we can say for certain that J·,xp,x0 M·,xp
,

so Ex0 [J·,xp,x0 ]  1
m
, 8xp 2 X�. Therefore,

Ex0 [�JSD]  log 2
⇣ 1

m
+
X

xp2X�

1

m

⌘
= log 2

⇣

�
��1
m

+
m� �1
m

⌘
= log 2 =) E[JSD]  m log 2.

since d

dy
(ay) = a. In this (extremely generous) upper bound case, JSD is linear in m. As this

case will be realised very rarely in practice, it is reasonable to say that the scaling will almost

always be sublinear, and more tentatively, that it is approximately logarithmic.

97



CHAPTER 4. TREE MODELS OF AGENT LEARNING

4.4.2 Theoretical Analysis for n

A more general analysis is possible for n. When temporal abstraction is applied to aggregate

data from k sequentially ordered policies into n time windows, the Jensen-Shannon divergence

between those windows is given by

JSD(JX ,W |⇢W) =

 
nX

w=1

⇢W
w

X

x2X

X

x02X
J
X ,W
w,x,x0 log J

X ,W
w,x,x0

!

�
 
X

x2X

X

x02X

⇣ nX

w=1

⇢W
w J

X ,W
w,x,x0

⌘
log
⇣ nX

v=1

⇢W
v J

X ,W
w,x,x0

⌘!
.

Consider splitting one time window w0 2 {1, . . . , n} into two new ones w1 and w2, as is

done in our practical CSTA algorithm. Under such a binary split operation, the following

conservation equations hold for all x 2 X , x
0 2 X :

⇢w0
= ⇢w1

+ ⇢w2
(Sum of prior weights are conserved);

⇢w0
Jw0,x,x

0 = ⇢w1
Jw1,x,x

0 + ⇢w2
Jw2,x,x

0 (Joint probabilities are prior-weighted average),

where the superscripted X and W are omitted from both ⇢W and J
X ,W
·,·,· to reduce visual clutter.

Again taking �JSD to be the di↵erence between the JSD values before and after the split,

all of the second term (of the form given above), and most components of the first term, cancel

out. We are left with

�JSD =
X

x2X

X

x02X

⇣
⇢w1

Jw1,x,x
0 log Jw1,x,x

0 + ⇢w2
Jw2,x,x

0 log Jw2,x,x
0 � ⇢w0

Jw0,x,x
0 log Jw0,x,x

0

⌘
.

Applying the conservation equations and multiplying and dividing by ⇢w0
, we can rewrite as

�JSD = ⇢w0

X

x2X

X

x02X

⇣⇢w1

⇢w0

Jw1,x,x
0 log Jw1,x,x

0 +
⇢w2

⇢w0

Jw2,x,x
0 log Jw2,x,x

0

�
⇣⇢w1

⇢w0

Jw1,x,x
0 +

⇢w2

⇢w0

Jw2,x,x
0

⌘
log
⇣⇢w1

⇢w0

Jw1,x,x
0 +

⇢w2

⇢w0

Jw2,x,x
0

⌘⌘
.

By inspection, everything aside from the leading ⇢w0
exactly matches the definition of the

JSD itself, calculated pairwise between windows w1 and w2, and using renormalised weights:

�JSD = ⇢w0
JSD

⇣ h
Jw1 , Jw2

i ���
h⇢w1

⇢w0

,
⇢w2

⇢w0

i ⌘
.

�JSD is lower-bounded by zero in the case when w1 and w2 have identical transition

probabilities in X (since pairwise JSD will be zero). As an upper bound, we again consider

a ‘perfect splitting’ case where the two new windows have no abstract state transitions in

common (i.e. Jw1,x,x
0 > 0 =) Jw2,x,x

0 = 0 and Jw2,x,x
0 > 0 =) Jw1,x,x

0 = 0, 8x 2 X , x
0 2 X ),

98



4.4. SCALING OF JENSEN-SHANNON DIVERGENCE WITH m AND n

and equal prior weighting ⇢w1
= ⇢w2

=
⇢
w0
2 . Returning to the expanded form of �JSD and

substituting in these relations, we obtain

�JSD = ⇢w0

X

x2X

X

x02X

⇣1
2
Jw1_w2,x,x

0 log Jw1_w2,x,x
0 �
⇣1
2
Jw1_w2,x,x

0

⌘
log
⇣1
2
Jw1_w2,x,x

0

⌘⌘

=
⇢w0

2

X

x2X

X

x02X
Jw1_w2,x,x

0 log ⇠⇠⇠⇠⇠⇠
Jw1_w2,x,x

0

1
2⇠⇠⇠⇠⇠⇠
Jw1_w2,x,x

0
=

⇢w0
log 2

2 ⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:2X

x2X

X

x02X
Jw1_w2,x,x

0 = ⇢w0
log 2,

where the subscript “w1 _ w2” stands for either w1 or w2; whichever of the two has nonzero

transition probability for each x, x
0 pair (it is never both). In the final line above, the double

sum cancels to 2 because for each of the two windows, the sum of joint probabilities is 1.

Finally, we know that
P

n

w=1 ⇢w = 1, so if we assume that w0 was selected uniform-randomly,

Ew0 [⇢w0
] = 1

n
(where n is the number of policies before the split is made). Therefore,

Ex0 [�JSD] =
log 2

n
=) E[JSD] = log 2 log n,

since d

dy
(a log y) = a

y
. We can thus conclude from this upper-bound analysis that JSD is reliably

sublinear in n.

4.4.3 Empirical Validation

As a simple empirical validation of the preceding results, we generate datasets of k = 100

random trajectories of length H = 100 in the 2D region S = [0, 1]2 according to a Gaussian

random walk model, parameterised by i 2 {1, . . . , k}:

si,0 ⇠ uniform(S); si,t = min(max(si,t�1 + ⌘, 0), 1), 8t 2 {1, . . . , H � 1},

where ⌘ ⇠ N
 h

v sin(3⇡i2k ) v cos(3⇡i2k )
i
,

"
� 0

0 �

#!
.

In each trajectory, Gaussian noise with standard deviation � is added to a mean velocity vector

with magnitude v, which is gradually rotated through 270� over the sequence i 2 {1, . . . , k}.
Hence, each trajectory is a sample from a di↵erent Markov chain, with ones close together in

the sequence tending to be more similar than those far apart. We generate four datasets with

various values of v and �.

For each dataset, we perform top-down tree abstraction of the region up to a maximum

size m = 100 and measure the resultant JSD. For some values of m, we then go on to perform

temporal abstraction up to a maximum of n = 100 windows. To select the next split to make at

each point, we use both a random strategy and the CSTA algorithm presented in Section 4.3.2,

which greedily maximises the JSD gain on each step. As Figure 4.4 shows, the scaling of JSD is

consistently sublinear in both m and n, which matches our theoretical predictions. It is also

always higher when the CSTA algorithm is used, compared with random splitting. Note that

these datasets have an extremely simple dynamical structure; the advantage of principled split

selection using CSTA is likely to be far greater in practical applications.

99



CHAPTER 4. TREE MODELS OF AGENT LEARNING
JS

D
JS

D

1 100

0
2

1 100

0
0.

75

1 100

0
2

101 10 100

0
2

1 100

0
1.

5

1 100

0
2

1 10 100

0
2

1 100

0
2

1 100

0
0.

75

1 10 100

0
2

1 100

0
2

1 100

0
0.

5

: CSTA
: Random

Figure 4.4: Scaling of JSD with m and n for random trajectories in [0, 1]2 with various velocity
and noise parameters v,�, and when selecting both random axis-aligned splits (orange) and
those that maximise the contrastive abstraction objective (blue). Top row: scaling with m.
Bottom row: scaling with n for the specific values of m shown.

4.5 2D Maze Experiment

In the following two sections, we apply our method to construct interpretable contrastive

summaries of the learning of RL agents in two episodic environments6 with real vector state

representations �(S) = R
D.

First, we consider a simple continuous navigation task, which is depicted in Figure 4.5 a .

The state features are the agent’s horizontal and vertical positions in a bounded 2D arena,

posx, posy 2 [0, 10]2. The objective is to move to a goal region (posx � 8 ^ posy � 7, shown in

green) without entering a penalty region (posx � 8 ^ 3  posy < 7, shown in red), and while

navigating around a pair of horizontal walls at posy = 3 and posy = 7, which block transverse

motion. At the start of an episode, the agent is initialised in a random position (but never

in the goal or penalty regions). At each timestep, the agent’s action specifies its horizontal

and vertical velocities velx, vely 2 [�0.25, 0.25]2, which are clipped if the resultant motion

vector would intersect a wall or external arena boundary. The agent is given a reward of +100

for entering the goal region, and �100 for entering the penalty region. The episode is also

terminated immediately if either the goal or penalty region is entered, or after 200 timesteps.

We train a soft actor-critic (SAC) [107] RL agent to solve this task.7 In a minor departure

from convention, we modify the SAC algorithm to perform policy updates on the final timestep

of each episode only, thereby guaranteeing that the policy (and thus, the induced Markov chain)

is stationary within each episode. This allows us to avoid the theoretical complication of the

policy index i changing midway through an episode, thereby making the observed transitions

from policy ⇡i dependent on the dynamics of the previous policy ⇡i�1.

6As in TripleTree, we can handle episodic endings by adding a ‘pseudo-state’ ; which is transitioned to
when an episode terminates. This requires a very minor modification of the equations given up to this point.

7Agent hyperparameters are as follows. We use a discount factor of � = 0.99, an entropy regularisation
coe�cient of ↵ = 0.2, a replay bu↵er capacity of 20000 samples and a minibatch size of 64. All networks (policy
and value functions) have two hidden layers of 256 units each and are trained by backpropagation using the
Adam optimiser [142]. The learning rate is 1e�4 for the policy network and 1e�3 for the value network, and
lagging target network parameters are updated by Polyak averaging with an interpolation factor of 0.995.

100



4.5. 2D MAZE EXPERIMENT

E
pi

so
de

nu
m

be
r

750

1

ca

+
10

0
-1

00

−
50 1 750

10
0

Pe
r-

ep
iso

de
 r

ew
ar

d
Episode number

b

Note: mean reward over
20-episode sliding window

Figure 4.5: 2D Maze environment, learning curve and transition data for 750 learning episodes.

Figure 4.5 b shows the agent’s learning curve, which is a 20-episode moving average of the

reward obtained as it makes k = 750 once-per-episode policy updates. By the end of learning,

it is consistently able to reach the goal and attain the maximum reward of 100. In c , we plot

all transition data generated by the agent during its learning, coloured by episode/policy index,

which shows how the policy converges to a ‘zigzag’ behaviour that moves to the goal while

avoiding both the walls and the penalty region. Collectively, these transitions form the dataset

D that we use to learn a contrastive spatiotemporal abstraction.

4.5.1 State Abstraction Process

We begin by setting Winit = Wnull (i.e. initially allocating every episode to a separate window),

the prior ⇢ to be proportional to the length of each episode (so that episodes that are terminated

early do not have an outsized impact on calculated transition probabilities) and the candidate

split thresholds C at uniform intervals of 0.1 along both posx and posy. We then commence the

state abstraction process, which is visualised in Figure 4.6.

The two subplots a and b show the JSD that would result for every candidate threshold

along posx and posy respectively for the abstract state that is chosen for splitting at each

step. The split is made at the threshold that maximises JSD. For instance, the blue curves

correspond to the very first split decision after the tree is initialised with a single leaf. A sharp

peak is visible at posy = 3.0 (solid curve in b ), and no equivalently high peak exists along posx

(dashed curve in a ), so posy = 3.0 is selected as the split threshold. Curves for the second split

are shown in orange. In this case, posx = 3.3 is selected. Subsequent splits are guaranteed to

increase JSD (notice how the curves are stacked along the JSD axis), but the incremental gain

from each successive split tends to diminish as predicted by our analysis in Section 4.4.1. This

is also visible in the plot of JSD as a function of abstraction size m, shown in c , which has a

similar profile to those in Figure 4.4. With the regularisation hyperparameter set to ↵ = 0.05,

the objective in Equation 4.4 (JSD minus regularisation) is maximised when m = 12, and the

abstraction process terminates. The resultant set of rectangular abstract states is shown in d ,

with boundaries coloured to match the corresponding JSD curves.

101



CHAPTER 4. TREE MODELS OF AGENT LEARNING

JSD
1.5

1.0

0.5

0.0
0 10 Number of abstract states (m) 121

1.5

1.0

0.5

0.0

Abstraction terminates
at maximum0

10

First split at

0.0 0.5 1.0 1.5

1

10 12
5 9

3

116

47

2

Abstract state 11:

Second split
(          
selected)

First split
(         selected)

8

 split threshold

 sp
lit

 th
re

sh
ol

d

a

b

c

d

Figure 4.6: Visualisation of state abstraction process for 2D Maze environment.

To reflect on this process, we can see that our algorithm makes its first and third splits at

posy = 3 and posy = 7 respectively, which align exactly with the locations of the two horizontal

walls. The sharp peaks in JSD around these locations, visible in subplot b , suggest that this

is no coincidence, and that the changing ability of the agent to pass each wall (i.e. transition

across these abstract state boundaries) is a major source of divergence among the sequence of

policies exhibited by the agent during its learning. Other splits have similarly intuitive origins,

with abstract states 6 and 8 respectively covering a critical junction at the upper wall where the

agent has to learn a sharp right turn (taking it to abstract state 4), and part of the upper arena

boundary along which the agent learns to ‘slide’ to the goal in the latter stages of learning.

These observations provide evidence that the JSD-based split criterion can identify dynamically

important thresholds in the state feature space.

4.5.2 Temporal Abstraction Process

As outlined in Section 4.3.2, we then discard Winit and perform temporal abstraction while

holding the state abstraction fixed. We use the exhaustive set {2, . . . , 750} as the candidate

split thresholds Ctemporal and " = 25 as the minimum window width. The temporal abstraction

process is visualised in Figure 4.7. As above, the lowest (blue) curve in subplot a shows the

JSD that would result from placing the first split at each possible temporal threshold. In this

case, it is maximised at episode/policy index i = 397, so a split is made at this point to partition

the learning sequence into two windows. Subsequent splits are again guaranteed to increase JSD

(note stacking of curves), but gains tend to diminish as predicted by the theory in Section 4.4.1.

Subplot b shows that with our choice of regularisation hyperparameter � = 0.01, the objective

102



4.5. 2D MAZE EXPERIMENT

21 3 4 5 6 7 8 9 100.0

Abstraction terminates
at maximum

First split at i = 397 Window 3: 60 <= i < 138 

Temporal split threshold1 750 Number of windows (n) 101

0.1

0.2

0.0

0.1

0.2

JS
D a

b

3 4 5 6 7 8 9 10
1 60 138 500 750

10
0

Pe
r-

ep
iso

de
 r

ew
ar

d

21
Episode number 

c

−
50

Figure 4.7: Visualisation of temporal abstraction process for 2D Maze environment.

in Equation 4.6 is maximised at n = 10 time windows, and the process terminates at this point.

We have seen how contrastive state abstraction can find critical locations in the state space

around which the agent’s dynamics vary significantly during learning, namely the walls in the

maze. As an analogous validation of the temporal abstraction, c overlays the 10 time windows

onto the agent’s learning curve (copied from Figure 4.5 b ). Notice the alignment between the

window boundaries and various jumps and directional changes in reward. This provides good

evidence that the JSD-based split criterion is e↵ective for partitioning learning into periods of

similar behaviour. The alignment of windows with learning progress also imbues them with

additional semantics. For example, window 2 can be understood as “a period of temporary

worse-than-initial performance” (the reason for which is identified in Section 4.5.4) and the

final window 10 as “the agent’s behaviour once learning has converged”. However, some window

boundaries (e.g. between 3 and 4) do not correspond to reward change points. Such boundaries

reflect changes in agent dynamics that do not alter the net probability of entering the goal or

penalty regions, but may still be important for understanding learning trends.

4.5.3 Pairwise Window Divergence

Although our abstraction approach computes (and maximises) overall JSD among the entire

set of windows, it can also be computed pairwise, yielding the matrix in Figure 4.8 a . This

matrix provides a reward-independent representation of the nonstationary dynamics, which

103



CHAPTER 4. TREE MODELS OF AGENT LEARNING

e

 

Window 3:
episodes 60-137

1

2
3

4

5

6

7

9
10

11

12

8

Window 10:
episodes 500-750

1

2
3

4

5

6

7

9
10

11

12

8

b

1 10

1
2

3
4

5
6

7
8

9
10

.11 .09 .09 .10 .14 .06 .14 .24 .18
.06 .13 .11 .18 .09 .10 .22 .29
.04 .08 .11 .04 .07 .19 .20
.08 .04 .06 .12 .23 .20
.15 .07 .10 .17 .20
.12 .21 .32 .26
.05 .19 .20
.10 .19
.13

Other window

W
in

do
w

Pa
ir

w
ise

 JS
D

0.
32

0

c

dMarginal abstract state visitation

Outbound from abstract state 6

0
1

1 2
3 457

8
9 1011

6
12

Pr
ob

ab
ili

ty

Win. 1

0
1

N
o 

da
ta

Pr
ob

ab
ili

ty

4
11

3 2

7

2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10
1 60 138 500 750

21
Episode number 

a 10
0

Pe
r-

ep
iso

de
 r

ew
ar

d
−

50

Figure 4.8: Additional results figures for 2D Maze environment. Note: ; = episode termination.

is complementary to the learning curve and can be used to identify trends and outliers for

follow-up investigation. The complexity of practical reinforcement learning is evident here:

although the window pairs that are furthest apart in time tend to be the most divergent, this

trend is far from monotonic, and neighbouring windows can be highly dissimilar (e.g. 5 and

6), suggesting rapid dynamical changes. A notable result is the dark banding for the final

two windows 9 and 10, indicating that both are dissimilar to all earlier windows. Recall from

Figure 4.7 that the first step of temporal abstraction was to partition these two windows o↵

from the rest by splitting at episode 397. This finding reinforces that this time point was

especially critical to the agent’s convergence to high-reward behaviour. It also suggests that (as

in standard tree induction) the order in which the CSTA algorithm makes splits carries valuable

information about similarities. Another outlier is window 6, which has a visually unusual JSD

pattern compared with those on either side. We uncover the origin of this anomaly below.

4.5.4 Visitation and Transition Time Series

The stacked bar charts in Figure 4.8 b and c provide more explicit insight into the changing

dynamics across all time windows. In b , the bar heights reflect the marginal visitation

probability to each abstract state in each window, and in c , they represent the conditional

outbound probabilities from abstract state 6 only, excluding self-transitions from 6! 6. Note

104



4.5. 2D MAZE EXPERIMENT

that window 2 is labelled “No data” because the agent never visits abstract state 6 in that

period. In these visualisations, we can again see the non-monotonicity of the RL process, as

probabilities increase and decrease repeatedly over time. Trends that occur during the agent’s

learning include the following:

• Marginal abstract state visitation is initially rather uniform but eventually skews towards

abstract state 4 (which contains the goal) and away from 2, 7 and 9 (which lie outside of

the zigzag path that marks the most e�cient route to the goal). Visits to state 3 (which

must be traversed to reach the goal) remain largely unchanged throughout learning.

• Temporary learning aberrations include two ‘waves’ of visitation to state 1, in which the

agent fails to exit the bottom-left corner. The peaks of these waves occur in window 2

(which may explain the markedly lower reward than window 1) and window 8.

• From window 8 onwards, the outbound 6! 4 transition comes to dominate the conditional

probabilities. It appears that this time threshold is when the agent learns to reliably turn

right past the upper wall rather than continue straight or turn back.

• The 6 ! 11 transition briefly spikes in window 6, and as a result, the agent becomes

far more likely to get stuck below the wall in state 11. This explains why window 6 is

identified as anomalous in the pairwise JSD matrix.

4.5.5 Transition Graph Comparison

We examine the abstract state dynamics of windows 3 and 10 in detail using the transition graphs

in Figure 4.8 d and e , where node and edge opacities scale with abstract state visitation

and joint transition probabilities respectively. They provide further contrastive insight:

• The sparser and less symmetric graph for window 10 indicates a general trend towards

less random and more goal-directed behaviour.

• Transitions providing progress to the goal (e.g. 3! 6) become more common, while those

leading to corners or dead-ends (e.g. 9! 5) occur less frequently.

• Abstract state 2 sees both a decrease in visitation and a focusing of outbound transitions

to abstract state 6 only. The agent has no incentive to visit this abstract state as it does

lie on the e�cient zigzag path, but on the rare occasions that it does (due to policy

stochasticity), it tends to transition back onto the path.

• Inbound transitions to abstract state 1 disappear entirely. In window 10, the agent only

visits the state if initialised there at the start of an episode.

105



CHAPTER 4. TREE MODELS OF AGENT LEARNING

E
pi

so
de

nu
m

be
r

500

1

ca

−
31

0

1 500

16
0

Pe
r-

ep
iso

de
 r

ew
ar

d

Episode number

b

Random phase

(c.c.w. positive)

Figure 4.9: LunarLander, learning curve and transition data for 500 random/learning episodes.

4.6 LunarLander Experiment

The preceding results validate that contrastive spatiotemporal abstraction enables insight into

the dynamics of agent learning beyond that provided by simple performance metrics such as a

learning curve, which would otherwise require an exhaustive review of transition data. However,

in the simple maze domain, this insight is somewhat tautological (i.e. “the agent reaches the goal

by moving to the goal”). For this reason, we now consider a more high-dimensional environment

where direct visualisation of the state abstraction geometry is impossible.

Echoing the previous chapter, we turn to LunarLander to provide this more challenging

evaluation. Recall that in this environment, shown in Figure 4.9 a , the agent controls two

engines to land an aerial craft on a pad, with ±100 reward for landing/crashing, and shaping

reward promoting smooth flight. For further details, refer back to Section 3.10. We train a SAC

RL agent to solve this task, using the same training setup as in the 2D Maze experiment aside

from a minor adjustment of hyperparameters.8 However, we first force the agent to execute

250 episodes of random behaviour before enabling the SAC algorithm for a further 250 (so

k = 500). This enables a sense-check of the temporal abstraction, which is described below.

Figure 4.9 b shows that the initial random policy receives strongly negative reward.

Performance increases rapidly as soon as learning is enabled, eventually converging to a positive

reward of ⇡ 150. The transition data plot c (in posx, posy coordinates) shows how the lander’s

descent becomes more controlled over time, narrowing to a stable landing envelope.

4.6.1 Abstraction Structure

Running the CSTA algorithm9 yields m = 12 abstract states, which are displayed as a tree

diagram in Figure 4.10 a . The inherent symmetry of the environment is reflected in splits

along the horizontal position feature posx, with the first very close to the centreline (thereby

partitioning the space into left and right halves) and others near ±0.1 and ±0.2 (note that

8Specifically, we reduce the learning rate for policy and value network updates to 5e�5 and 5e�4 respectively,
and reduce the target network Polyak interpolation factor to 0.99.

9Hyperparameter values: prior ⇢ proportional to episode lengths; Winit = Wnull; ↵ = 0.05; � = 0.01; " = 15;
Cd defined as percentiles of data along each feature d; Ctemporal defined as exhaustive set {2, . . . , 500}.

106



4.6. LUNARLANDER EXPERIMENT

the landing pad extends to ±0.2). 8 out of 11 splits concern the agent’s horizontal dynamics

(including velocity velx), which suggests that most temporal contrasts occur along this direction.

Vertical dynamics are largely gravity-driven, so it makes sense that they remain more invariant

over learning. Exceptions are the splits along posy to create abstract states 2 and 5, which

correspond to being low and central (i.e. correct landing) on the right and left respectively. The

tree’s rule structure allows us to find simple correspondences of this form for all 12 abstract

states, which are colour-coded in a semantic key b . Although some manual e↵ort and domain

knowledge is required to construct this key, it provides an additional layer of abstraction that

simplifies the discussion of high-level dynamics and trends. The assignment of shorthand natural

language labels to abstract states is similar to work by McCalmone et al. [171], who enable this

by performing state abstraction using Boolean classifiers based on user-specified predicates.

The temporal abstraction stage yields n = 6 time windows, which are shown overlaid

onto the agent’s learning curve in c . All splits are made after the random phase (i.e. during

learning) and before the agent converges to a stable reward of around 150 per episode. This

passes the aforementioned sense-check, and aligns with our theoretical understanding: JSD is

maximised by splitting at times when transition probabilities are changing, and splitting a

window containing unchanging (random) behaviour should give zero JSD gain in expectation.

As in the 2D Maze experiment, the final window begins at the point where the learning curve

becomes horizontal, so that it e↵ectively represents the agent’s behaviour at convergence.

4.6.2 Visitation Time Series

Figure 4.10 d shows the agent’s abstract state visitation over time, which we can interpret

by referring to the semantic key. In the random phase (window 1) the majority of time is

spent “drifting out” from the centre (states 3, 4) but this is rapidly unlearnt. Visits to the two

“landing” states 2 and 5 increase near-monotonically, while others oscillate in prevalence before

convergence. The two “wide” states 1 and 9 settle to approximately equal visitation (indicating

a kind of symmetry) after reaching a higher peak in window 4.

4.6.3 Transition Graph Comparison

A richer narrative emerges from the transition graphs for all six windows in Figure 4.10 e . For

the sake of brevity, we focus on states in the left half of the state space, enclosed in dotted lines.

The trends are complex and nonlinear, as expected from a stochastic learning agent, but can be

interpreted with the aid of the tree diagram and semantic key. Our annotations tell the story

of over-rotated leftward motion in state 3 giving way to a slower leftward drift 10 ! 7 ! 1,

punctuated by a brief abandonment of left-side approaches, and finally a convergence to landing

state 5 with a preference for arced approaches via states 1 and 7. For more details on these trends,

refer to the annotations themselves. We reflect again that such insight would typically require

a laborious review of the learning history, but is made accessible by contrastive abstraction.

107



CHAPTER 4. TREE MODELS OF AGENT LEARNING

Temporary bias to left-side 
approaches, angle stabilisation

learnt so 3 almost disappears, high
entropy transition pattern between 1,7,10,11,12 

with net leftward drift 10→7→1  

Generally tends towards
moving rapidly left with

counterclockwise over-rotation
(3), landing state 5 never reached

Bias switched to right-side
approaches: visits to 1,7,10,12
reduce (possible 'over-reaction'

 to avoid leftward drift?)

Ep.
298

10
71

23

45

67
8

9

10

11

12
1

Win. 2: 256-299 

Ep.
81

10

3

1

23
4

5

7

8

9
10 11

12
6

Win. 1: 1-255 

Ep.
310

11

1

2

3
4

5

6

7
8

9

10

11

12 11

8

Win. 3: 300-314

b

intermediate

Semantic
key: drift out

left right
landing
central wide

a

10
11

1 7 5

3 12

2

8
6

9

4

TrueFalse
T

T
T T

T
T

T
T

T

T

F

F

F F

F

F F

F

F

F

  

Left-right bias resolved,
return to leftward drift 10→7→1, 
but now showing signs of reaching 5

from both top (11) and right (2)

1↔7 balance equalised as agent learns to
return to centre, increased transitions to 5

from both left (7) and top (11)
and lateral 2↔5 transfer 

More 'arced' approach:
increased 1↔7 transfer, 

5 reached more from left (7)
and less from right (2)

Ep.
331

1
2

3
4

5
6

7
8

9
10

11
12

10
7

1

Win. 4: 315-360

Ep.
376

1

2

3 4

5

6
7

8

9
10

11
12

11

5 2

Win. 5: 361-400

Ep.
500

1

2

3

4
5

6
7

8

9

10
11

12

10
7

1

7 5

Win. 6: 401-500

e
f

0
1

Pr
ob

ab
ili

ty

1 23

4

5
7 8

910

11

6

12
Marginal abstract state visitationd

Win. 1 2 3 4 5 6−
31

0
16

0
Pe

r-
ep

iso
de

 r
ew

ar
d

3 4 5 621

Random phase

Episode number 5001

c

Figure 4.10: Abstraction results and analysis for LunarLander environment.

108



4.6. LUNARLANDER EXPERIMENT

4.6.4 Window Prototypes

The preceding interpretation of transition graphs is reinforced by visualising a prototype episode

f for each window w. We define this as the one that is most representative of the window’s

aggregated dynamics under the log-likelihood of conditional transition probabilities:

(4.11) prototype(w) = argmaxlwi<uw


1

H i

P
H

i�1
t=0 logPX ,W

w,xi,t,xi,t+1

�
,

where H
i is the length of the ith episode, and xi,t is the abstract state containing the state

feature vector for the tth timestep of that episode. The prototypes generally agree well with

the transition graph annotations for each window, with the one for window 1 providing a clear

example of the uncontrolled leftward drift, and those for windows 5 and 6 illustrating the

change from directly vertical landing approaches to ‘arced’ ones.

Summarising agent policies using prototypical exemplar trajectories is a popular approach,

as embodied by the Highlights [6] and contrastive Disagreements [8] frameworks. It is

notable that we obtain this mechanism for prototype generation ‘for free’ as a by-product of

building an abstract transition model. Also note that the log-likelihood objective is the same as

that used in the Dijkstra search method in Section 3.9.3, although here it is being employed to

search over actual agent trajectories rather than synthesise hypothetical ones.

4.6.5 Posterior analysis and Counterfactual Review

A similar calculation allows us to incrementally assess the representativeness of an ongoing

episode with respect to each window as time progresses, and develop a mechanism for counter-

factual review of critical transitions. Given a sequence of abstract state transitions xt ! xt+1

for an episode (which need not be in the dataset used for learning the abstraction), this analysis

involves calculating the log posterior over the conditional transition distribution,

(4.12) representativeness(w, t) =

"
log⇢W

w +
t�1X

t0=0

logPX ,W
w,x

t0 ,xt0+1

#
8w 2W,

t 2 {1, . . . , H},

where H is the episode length. Plotting these values as a time series indicates how representative

the episode is of each window’s dynamics and how this representativeness evolves over time.

To perform a counterfactual review of critical transitions in the episode, we identify al-

ternative abstract states that would have significantly altered the posterior if they had been

transitioned to at a particular timestep. This provides a notion of locally relevant contrasts

between windows, which are grounded in the events of a particular episode. This local analysis

is complementary to the more globally oriented discussion of window contrasts in previous

sections, and may be helpful for understanding how an agent’s learning changes how it behaves

in specific contexts of interest.

For example, a crash landing episode from window 1 is shown in Figure 4.11 a . The time

series of posteriors for each window b (with the value for the true window 1 subtracted as a

109



CHAPTER 4. TREE MODELS OF AGENT LEARNING

baseline) shows that the 6! 4 transition at t = 48 eliminates the possibility of this episode

being from any of windows 3, 4 or 5. Windows 2 and 6 remain in contention until the crash

terminates the episode at t = 66, but the latter is ruled out by the final 4 ! ; transition

(i.e. the agent never terminates in abstract state 4 near the end of learning) This leaves only

windows 1 and 2, with the true one 1 being more probable (recall the left-side bias in window

2, annotated in Figure 4.10, which makes this right-side episode less representative). The

baselined log posterior for window 3 is maximised at t = 47 (just before the 8! 6 transition).

A counterfactual review of this transition gives further insight. The outbound conditional

probability plot c indicates that if the agent had instead transitioned to states 10 or 11 (both

of which are in the left half of the state space), or terminated in state 8, the posterior for

the true window 1 would have dropped to zero, because no such transitions occur in that

window. Therefore, the presence of the transition from 8 to 6 (c.f. 10, 11 or ;) is the single most

important indicator that this episode came from window 1.

62 3 4 12
10 11

Timestep

Win. 1
Win. 5

Win. 4

Win. 3

Win. 2

Win. 6
...had transitioned 8→10, 8→11,

or terminated in 8, probability of true 
window 1 would have dropped to zero 

Win. 3
Win. 1
Outbound transitions from 8

Probability0 1

If instead of transitioning 8→6...

8

8
4

6

Episode
52

(win. 1)

4

6
6

4
4

−
10

0
0

25
B

as
el

in
ed

 lo
g 

po
st

er
io

r

9 66470 5325
8 4 8 6 6 64 4

Maximum at t=47

4
48

a

c

b

Figure 4.11: Posterior analysis of an unsuccessful (crash) landing during the random phase.

Figure 4.12 a depicts a successful landing. The posterior time series b shows that

transitioning 10! 7 rules out window 3 as early as t = 13. Up to t = 164, the most probable

window is 2 (likely due to the left-side bias in this period), but this is eliminated by the

final transition 12 ! 5, leaving the true window 6 as the winner for the remainder of the

episode. A counterfactual review b indicates that if the agent had instead transitioned to

state 11, it would still be representative of window 2 while eliminating window 6. Concretely: a

locally-relevant contrast between the two windows is the agent’s ability to touch down on the

landing pad (abstract state 5) instead of stay hovering (abstract state 11).

10

7

1

7 12
5

Episode
481

(win. 6)

a

...had transitioned 12→11,
probability of true window 6
would have dropped to zero 

If instead of transitioning 12→5...

Win. 6
Win. 2
Outbound transitions from 12

Probability0 1

1 3
45 7 10

11

c

Timestep

B
as

el
in

ed
 lo

g 
po

st
er

io
r

16498 34314213

−
25

0
10

0

Win. 1 Win. 5

Win. 4

Win. 3

Win. 2

0

Win. 6

7 1 7 12 5

Maximum at t=164
Maximum at t=98 

33
10

b

0

Figure 4.12: Posterior analysis of a successful landing late in learning.

Recent work by Alshehri et al. [4] describes a near-identical technique for incrementally

assessing the representativeness of a trajectory with respect to the optimal policies for di↵erent

reward functions. To our knowledge, our own proposal was developed and published earlier.

110



4.7. COMPARISON OF ABSTRACTION ALGORITHM VARIANTS

4.7 Comparison of Abstraction Algorithm Variants

The preceding abstraction results were produced by the two-stage CSTA algorithm presented

in Section 4.3. While this approach is straightforward to describe, implement and debug, it is

reasonable to suspect that we could improve both performance on the contrastive abstraction

objective (Equation 4.6), and computational e�ciency, through well-targeted modifications.

For this reason, we now conduct an extensive performance comparison of multiple variants of

the original algorithm. The first axis of variation determines the sequence with which the two

abstractions X and W are grown, as well as the possible introduction of pruning:

• Grow sequential: The original sequencing, i.e. first grow the state abstraction X with

fixed windows Winit then grow the temporal abstraction W while holding X fixed.

• Grow both: Interleave the growth processes of X and W by evaluating possible splits of

both abstract states and time windows at every step. Winit is now only required for the

very first step of the algorithm; the first temporal split is reselected from scratch as soon

as the first state split has been made.

• Grow both then prune: Interleave X and W growth as above, but instead of using ↵

and � regularisation to determine stopping, always grow to fixed maximum sizes. (|X | = 50

and |W| = 50 are used below). Then move to a pruning stage, which greedily removes

splits from both X and W to increase regularised JSD, stopping when no single operation

produces an increase. This makes the algorithm similar to CART (Section 3.2.4).

• Simultaneous: Further increase the degree of interleaving by removing the distinction

between growth and pruning stages. At every step, evaluate all possible splits and

all possible pruning operations of both X and W, and select the one that maximises

regularised JSD. This makes it possible for the two abstractions to iteratively grow and

shrink in a non-monotonic manner until a local maximum is reached.

We also vary some secondary parameters of the algorithm:

• Exhaustiveness: During growth, whether to consider splitting all extant abstract states

and/or windows, or only the one containing the most observations from the dataset.

(Rationale: non-exhaustiveness greatly reduces runtime, especially for larger abstractions.

If performance is similar, this e�ciency gain could make the change worthwhile.)

• Choice of Winit: As well as Winit = Wnull, we also consider the opposite extreme of just

two initial windows, partitioned at the median episode number.

• Pair-only pruning: During pruning, whether to evaluate all possible pruning operations

(as in MCCP) or only those that remove two ‘sibling’ abstract states/windows at a time.

Excluding invalid combinations, the product of these variables yields a total of 24 variants

of the CSTA algorithm, including the original one. We deploy these on three datasets of

learning agent transitions: the 2D Maze and LunarLander datasets considered above, as well

one for a D4PG RL agent on the benchmark CartPole pole-balancing task, obtained from the

111



CHAPTER 4. TREE MODELS OF AGENT LEARNING

RL Unplugged repository [103]. For each dataset, we explore how the variants perform under

di↵erent regularisation conditions by varying both ↵ and � within {1e�4
, 2e�4

, 5e�4
, 1e�3

, 2e�3}
(for the 2D Maze dataset) or {2e�4

, 5e�4
, 1e�3

, 2e�3
, 5e�3} (for the other two datasets). This

yields 3 (datasets) ⇥5 (↵ values) ⇥5 (� values) = 75 evaluation cases, and for each of these we

rank the 24 algorithm variants from best to worst by the regularised JSD of their resultant

abstractions. Evaluating in terms of ranks enables a robust like-for-like comparison across all

regularisation conditions, between which the absolute magnitudes of JSD values vary. The

results are summarised in box plots in Figure 4.13.

The original variant, labelled as a , is reliably outperformed by several alternatives. Although

its rank tends to be higher on CartPole than the other two datasets, there are still 10 variants

that produce stronger results on average. This confirms our suspicion that a two-stage growth

strategy, excluding pruning, is not the best possible algorithm for contrastive spatiotemporal

abstraction. From the ranking of the 24 variants, we can discern several trends. For example,

all else being equal, exhaustive split evaluation during growth is always beneficial. While the

non-exhaustive approach is a potentially attractive shortcut from a runtime perspective, these

results indicate that this may not be worth the performance impact. Adding a pruning capability

is usually beneficial: in all but one case, variants using the ‘simultaneous’ strategy outperform

the equivalent variants using the ‘grow both’ strategy. Simultaneous growth and pruning is

also usually better than the two-stage ‘grow both then prune’, and for the two exceptions,

the overall ranking di↵erence is small. For the higher performing variants, using Winit = Wnull

outperforms starting with a single temporal split at the median episode. However, the trend

becomes muddier (or even reverses) for the less successful variants. Another more complex

trend is that pair-only pruning makes no di↵erence for the ‘simultaneous’ strategy, while for

‘grow both then prune’, it appears highly beneficial.

The overall best-performing variant, labelled as b , consists of simultaneous (exhaustive)

growth and pruning, starting with Winit = Wnull. It achieves the highest rank in 27/75 = 36%

of evaluation cases and a top-six rank in 57/75 = 76% of them. In Figure 4.14, we compare

this ‘best’ variant to the original one across various metrics on all evaluation cases. Column a

reports the normalised di↵erence in the primary metric of regularised JSD. The ‘best’ variant

outperforms the original on all but 5/75 = 6.7% of cases (orange borders), all of which are

on the CartPole dataset. The degree of improvement varies markedly between datasets (it is

highest for 2D Maze) and across regularisation conditions. Specifically, it appears that the

improvement is higher for larger values of ↵ and �, which is to say that the ‘best’ variant o↵ers

a greater performance advantage when there is a stronger regularisation towards more compact

spatial and temporal abstractions.

Columns b , c and d break the regularised JSD metric into its three components of

JSD, abstract state count m and window count n. Importantly, these plots reveal that (except

for some LunarLander cases), the improvement in overall performance is not due to the ‘best’

112



4.7. COMPARISON OF ABSTRACTION ALGORITHM VARIANTS

Best

Se
qu

en
ci

ng

Worst

2D Maze LunarLander CartPolePr
un

e 
pa

irs
0
1

N/A

1

1
1
0

1
N/A

1

0
1

N/A

1
0

N/A

N/A

N/A
0

N/A

0

0
0

N/A

Simultaneous
Simultaneous

Grow both

Grow both then prune

Grow both then prune
Simultaneous
Simultaneous

Grow both then prune
Grow both

Grow both then prune

Simultaneous
Simultaneous

Grow both

Simultaneous
Simultaneous

Grow both

Grow sequential

Grow sequential
Grow both then prune

Grow sequential

Grow both then prune

Grow both then prune
Grow both then prune

Grow sequential

Ex
ha

us
tiv

e

1
1
1

0

1
1
1

1
1

0

0
0

0

0
0
0

1

1
1
0

1

0
0
0

Null
Null
Null

Null

Null
Med
Med

Med
Med

Med

Null
Null

Med

Med
Med
Null

Med

Null
Null
Med

Med

Null

Null
Med

b

a

Figure 4.13: Distribution of regularised JSD rankings of 24 algorithm variants across 25
regularisation settings for each of three datasets of learning agent transitions. Variants sorted
by median rank across all datasets and regularisation settings (ties broken by mean rank). Box
plot whiskers located at 1.5⇥ IQR below/above lower/upper quartiles respectively.

Runtime ratio

0.06 0.14 0.24 0.44 0.65

0.11 0.18 0.36 0.63 0.89

0.14 0.23 0.56 0.91 1.21

0.20 0.43 0.86 1.23 1.54

0.24 0.56 1.08 1.40 1.68

0.26 0.39 0.49 0.56 0.67

0.25 0.40 0.49 0.55 0.63

0.23 0.38 0.47 0.53 0.58

0.36 0.50 0.58 0.64 0.72

0.50 0.68 0.78 0.87 1.00

-0.05 -0.07 -0.13 -0.08 -0.10

-0.07 -0.07 -0.13 -0.11 -0.20

-0.05 -0.04 -0.04 -0.12 -0.13

-0.09 -0.17 -0.04 -0.11 -0.36

-0.14 -0.14 -0.11 -0.43 -0.38

-0.07 -0.10 -0.25 -0.19 -0.27

-0.09 -0.20 -0.41 -0.45 -0.25

-0.10 -0.20 -0.67 -0.46 -0.26

-0.28 -0.26 -0.47 -0.21 -0.24

-0.42 -0.50 -0.18 -0.12 -0.13

-0.10 -0.11 0.02 -0.00 0.08

-0.15 0.01 0.04 0.05 0.15

-0.12 -0.03 0.06 0.13 0.15

-0.05 0.06 0.12 0.16 0.08

-0.06 0.09 0.06 0.15 0.14

-0.09 -0.12 -0.20 -0.24 -0.44

-0.05 -0.10 -0.16 -0.22 -0.38

-0.07 -0.14 -0.14 -0.23 -0.33

-0.09 -0.20 -0.09 -0.20 -0.71

-0.33 -0.33 -0.33 -0.60 -1.00

-0.35 -0.43 -0.72 -0.92 -1.50

-0.42 -0.61 -0.95 -1.31 -1.47

-0.33 -0.50 -1.40 -1.40 -1.67

-0.55 -0.70 -1.43 -1.43 -1.83

-0.71 -1.00 -1.00 -1.00 -1.40

-0.68 -0.91 -0.83 -0.91 -1.00

-0.56 -0.47 -0.56 -0.67 -0.67

-0.31 -0.42 -0.42 -0.31 -0.42

-0.33 -0.33 -0.33 -0.33 -0.50

-0.33 -0.33 -0.33 -0.33 -0.33

-0.11 -0.19 -0.33 -0.22 -0.17

-0.38 -0.21 -0.27 -0.25 -0.40

-0.33 -0.15 -0.18 -0.25 -0.20

-0.27 -0.27 -0.18 -0.12 -0.50

-0.07 -0.20 0.00 -0.80 -0.50

0.00 -0.06 -0.19 -0.09 -0.17

-0.02 -0.13 -0.38 -0.50 -0.17

-0.04 -0.11 -0.70 -0.57 -0.20

-0.24 -0.22 -0.60 -0.33 -0.50

-0.34 -0.53 -0.30 -0.33 -0.25

-0.27 -0.55 -0.25 -0.60 -0.25

-0.47 -0.36 -0.50 -0.40 0.00

-0.71 -0.62 -0.33 -0.20 0.00

-0.44 -0.33 -0.14 -0.25 -0.33

-0.54 -0.25 -0.60 -0.25 -0.33

Normalised differences

0.66 0.74 0.38 0.26 0.19

1.13 0.92 0.67 0.56 0.45

1.50 1.07 0.97 0.83 0.83

1.48 1.24 1.34 1.12 0.80

1.75 1.35 1.38 0.98 0.85

0.03 0.02 0.02 0.01 0.01

0.15 0.11 0.08 0.07 0.07

0.40 0.29 0.38 0.26 0.23

0.89 0.66 0.59 0.48 0.40

1.32 1.23 0.85 0.79 0.71

0.12 0.10 0.05 0.03 0.03

0.25 0.11 0.06 0.14 0.14

0.45 0.33 0.14 0.21 0.12

0.65 0.50 0.32 0.23 0.21

0.98 0.61 0.52 0.46 0.36

2D
 M

az
e

L
un

ar
L

an
de

r
C

ar
tP

ol
e

-0.02 0.00 0.02 0.08 0.12

-0.03 0.00 -0.02 0.04 0.07

0.00 0.04 0.07 0.05 0.10

-0.02 -0.05 0.06 0.04 0.09

0.03 0.07 0.08 0.05 0.24

Increasing

Increasing

Num. abstract states (    ) Num. time windows (    )
a b c d e

Figure 4.14: Comparison of original and ‘best’ variants across all 75 evaluation cases. First four
columns show normalised di↵erences (i.e. (best � original)/best) in the stated metrics, with
> 0 indicating that ‘best’ improves (regularised) JSD and < 0 being preferable for m and n.
Final column compares runtimes of the two variants; < 1 indicates that ‘best’ is faster.

113



CHAPTER 4. TREE MODELS OF AGENT LEARNING

variant finding abstractions with higher JSD, but rather due to these abstractions being smaller

(in both m and n) than those found by the original variant. In fact, across all 75 evaluation

cases, the ‘best’ variant always yields smaller abstractions for the same regularisation values.

In explaining this result, it is di�cult to disentangle the combination of changes between the

two algorithm variants, but the addition of a pruning capability is likely to be significant.

Finally, column e compares the wall-clock runtime (on an Apple M2 MacBook Air) of

the two variants on all evaluation cases. The ‘best’ variant is faster in 63/75 = 84% of them.

The magnitudes are also significant here: the ‘best’ variant is 100⇥ faster in the best case

but only 1.75⇥ slower in the worst case. The most extreme di↵erential occurs when the state

abstraction regularisation ↵ is low. In these cases, the first stage of the original algorithm is

required to grow the state abstraction to a large size m, all while keeping the maximal set of

windows Winit = Wnull. Since the size of the transition probability array is linear in the number

of windows n, this array becomes very large towards the end of the growth stage, which in

turn makes the calculation of JSD values very expensive. By growing the two abstractions

simultaneously and providing a facility for pruning, the maximum size of data structure that

must be held in memory, and used in calculations, is reduced.

In the aggregate, these findings support the general superiority of the ‘best’ algorithm

variant over the original one. Furthermore, we suggest that moving to an interleaved strategy

of simultaneous growth and pruning of both X and W makes the algorithm more amenable to

online learning from streaming data, because the single stage can be run continually without

termination. Implementing and evaluating such an online algorithm would be a valuable direction

for future work. Further refinement of the algorithm could yield additional improvements, not

least because all variants considered here retain the greedy growth paradigm, without any

lookahead to the long-term e↵ect of adding or removing splits.

4.8 Conclusion

In this chapter, we have presented a theory of contrastive spatiotemporal abstraction, which

aggregates transition data to generate an interpretable summary of the change points within

an agent’s learning process, and developed practical tree-based algorithms for learning such

a model. Through experiments with data generated by RL agents in two continuous control

environments, we showed how the model reveals the nature and timing of salient dynamic

events, such as an agent becoming stuck at, then learning to avoid, an obstacle, or developing

and mitigating asymmetries in a landing policy. This information could be conveyed through

visualisations such as heatmaps and transition graphs, and via prototype trajectories suggested

by the model’s internal statistics. We then examined several variants of the core learning

algorithm, leading to an improved proposal that is both faster and more performant on the

contrastive objective. This change-oriented approach taken in this chapter o↵ers complementary

114



4.8. CONCLUSION

insight to the fixed-policy methods in the previous chapter, and may be especially useful for AI

practitioners interested in understanding, debugging and stabilising proposed agent learning

algorithms. The models and experiments in this chapter have several limitations, which create

opportunities for further work:

• Our experiments worked with fixed datasets covering an agent’s learning process from

start to end. However, practitioners may be interested in real-time monitoring of changes

as they occur, via spatial and temporal abstractions that adapt as new transition data

arrive. As noted above, we suspect that adopting a simultaneous growth and pruning

strategy would make our algorithms more amenable to learning from streaming data.

• Aside from the choice of Winit, which is later discarded, abstract states and windows are

learnt from scratch to maximise the contrastive objective. It may sometimes be desirable

to allow a user to ‘seed’ the abstraction with state regions of interest, such as goals and

obstacles, or time thresholds when important changes are known to have occurred.

• Somewhat related to the above, information about an agent’s actions or rewards could be

stored and used to guide the abstraction process, creating a multiattribute model similar

to TripleTree. It would be important to evaluate whether the result is more or less

interpretable than a simpler model based on state information only.

• The theory in Section 4.2 is not predicated on using axis-aligned tree models, so there is

scope to develop algorithms that learn abstract states with other geometries. This may

improve performance on the contrastive objective, although we maintain that there are

strong interpretability arguments for the current model architecture (see Chapter 2).

• In the Disagreements paper [8], the authors evaluate how their method helps human

users to answer questions about qualitative policy di↵erences. It would be valuable to

perform a similar user evaluation of our method, baselining against Disagreements.

Finally, it is worth reiterating the extreme context-agnosticism of the contrastive abstraction

approach. While it was conceived and evaluated in the context of agents that learn over time,

it is equally applicable to sequences of policies ordered in any other manner, such as by a

performance measure or agent hyperparameter, or (if the temporal abstraction stage is omitted)

not ordered at all. The latter case would enable the contrastive analysis of policies that optimise

for di↵erent objectives, or that are known to originate from di↵erent sources such as ‘cautious’

and ‘risk-taking’ agents. Furthermore, because the model does not require action information, it

can be applied outside of the agent context to any sequence of Markovian stochastic processes

with a common state space, whose transitions can be externally measured. For example, it

would be interesting to try using contrastive abstraction to understand changes in time series

of weather patterns, medical biomarkers or activity in financial markets.

115





Chapter 5

Tree Models of Human Preferences

Based on: “Interpretable Preference-based Reinforcement Learning with Tree-Structured Reward Func-

tions”, published at 2022 International Conference on Autonomous Agents and Multiagent Systems.

5.1 Introduction

In previous chapters, we have used tree-based abstraction as a post hoc tool for deriving

human-interpretable summaries of an agent’s behaviour and learning. For the following two

chapters, we shift perspective to use tree models as a medium through which a human can

influence the direction of agent learning itself. Although a human could be brought into the

agent learning loop in various ways, we cast our method within the popular formalism of

reward learning from evaluative feedback [44, 155, 191]. Specifically, we query the human for

their preferences over possible agent trajectories for a given task of interest. Then, we learn a

tree that predicts preferences for unseen trajectories, which works by assigning scalar reward

values to hyperrectangular subsets of a state-action feature space. This tree is then used as a

reward function for training the agent to solve the task via RL. Through an iterative process

of reward-seeking trajectory generation, preference collection and tree refinement, we aim to

converge to both a reward tree that accurately reflects the human’s preferences and an agent

policy that satisfies those preferences. Crucially, we also obtain a mechanism for describing and

explaining the agent’s learning and actions, which are grounded in the obtained preferences via

the tree’s rule structure. Framed this way, a reward tree is no longer just a tool for post hoc

interpretation, but a medium through which a human and an agent can understand each other.

In this chapter, we describe our reward tree learning approach. We then quantitively evaluate

it on four benchmark control tasks using real and synthetic human feedback in both o✏ine

and online learning settings. E↵ective and sample-e�cient learning of reward trees is observed

in each of these contexts, alongside some informative failure cases. We then show how the

interpretability properties can be leveraged to explore and debug the learnt trees and the

resultant agent policies. First, however, we take a step back to motivate the general strategy of

reward learning, and the importance of interpretability in this context.

117



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

5.1.1 Motivation

For an RL agent to reliably achieve a goal or desired behaviour for its human designers, owners,

operators or customers, its reward function must give a robust numerical representation of that

objective. Such a reward function can be extremely challenging to find because human goals

and preferences are often tacit, uncertain, hard to formalise or even inconsistent (both within

and between individuals). Any mistakes in the reward function are liable to cause undesirable

and unsafe agent behaviour. This is known as the reward alignment problem. As RL algorithms

are deployed in increasingly complex domains, the design of aligned reward functions may

become “both more important and more di�cult” [70]. The prevailing reliance on manual

trial-and-error reward design, which already presents challenges to real-world deployment [155]

and hampers the use of RL by non-experts [265], is likely to prove inadequate in the face

of vastly more capable agents which can exploit any specification errors to produce highly

unexpected outcomes [29, 195]. In a recent survey of manual reward designs for autonomous

driving, almost all failed basic ‘sanity checks’ by having missing or redundant features, or failing

to distinguish the true objective from heuristic shaping reward for guiding learning [143].

One way to move beyond manual reward design is to reframe RL as an inherently human-

in-the-loop problem [244], in which the agent learns its reward function by interacting with a

human rather than assuming a fixed objective beforehand [217]. In this vein, methods have

been developed for learning rewards from preference feedback provided by the human [155],

who is assumed to have a tacit understanding of the desired agent behaviour, and to be capable

of recognising a high-quality example when they see it, but is unable to give a precise formal

specification. The preference feedback may consist of demonstrations of correct actions [189],

or scalar evaluations [146], approval labels [101], corrections [17] or rankings [44] of candidate

behaviours proposed by the agent. Reward learning methods show technical promise and have

gained visibility due to their e�cacy for fine-tuning language models such as InstructGPT [191]

and its successors. However, an oft-unquestioned aspect of the approach creates a roadblock

to more widespread application: reward learning typically uses complex, black box model

architectures such as neural networks [44], which resist human scrutiny and interpretation, even

by those on whose preferences the models are based.

For advocates of interpretability, this is a problematic state of a↵airs. Performing RL with

a learnt reward function yields a policy whose performance depends not only on the expected

reward under that reward function, but also on the alignment of the reward to the human’s true

preferences. Without explicit knowledge of this ground truth, it is hard to define quantitative

metrics for the latter, which instead becomes a subjective, multi-faceted judgement, requiring

the human to develop an intuitive understanding of the reward function and its e↵ect on agent

learning. If that reward function has been learnt by an uninterpretable black box model, this

becomes very challenging. Concerns have been raised about the safety and accountability risks

of opaque learning algorithms [214], but an inability to even interpret the objective that an

118



5.1. INTRODUCTION

Agent StatesReward
function

 Latent
preferences

Environment

Actions

Rewards Agent StatesReward
function Environment

Actions

Rewards

Human Feedback

Interpret-
ation

a b

Figure 5.1: In the typical RL formulation a , the reward function represents a manual attempt
to codify a human objective. As such, it is liable to su↵er from misalignment. In reward learning
b , the human is brought into the learning loop to provide feedback on the agent’s behaviour.
Prior approaches use this feedback to learn a reward function with a black box neural network
architecture. By instead using an interpretable tree architecture, we enable the human to
intuitively verify the reward learning process and potentially improve their future feedback.

agent is optimising makes it yet harder to understand the causal origins of learnt behaviour

and its alignment with human preferences. Black box reward learning could also be seen as

a missed scientific opportunity. A learnt reward function is a tantalising object of study for

interpretability research because it is simultaneously (1) an explanatory model of revealed

human preferences, (2) a normative model of agent behaviour, and (3) a causal link between

the two. Finally, for the human engaged in the reward learning process itself, having the ability

to interpret a reward model as it is being learnt may help them to provide more targeted and

informative feedback in future, thereby establishing a virtuous cycle to improve alignment.

For these reasons, there would be significant value in a method that could learn intrinsically

interpretable reward functions from human preference feedback. This chapter proposes and

evaluates such a method, which makes use of the language of tree abstractions developed

throughout this thesis. Figure 5.1 compares this proposal for interpretable reward learning to

the typical RL formulation using a fixed, manually specified reward function.

5.1.2 Related Work

The growing popularity of reward learning has been accompanied by a convergence of model

architectures towards powerful but uninterpretable neural networks, which are used in both

seminal works [44] and state-of-the-art baselines [154]. However, the importance of interpretabil-

ity in human-in-the-loop RL has been emphasised in surveys [13, 155], and reward learning and

reward explanation have been framed as equally vital components of an interactive alignment

process [84]. This fits within the broader framework of explanatory interactive learning, which

to date has been explored primarily in the supervised learning context [245].

Some early e↵orts have been made to improve human understanding of reward functions

and their e↵ects on action selection. While this area is “less developed” than other sub-fields of

agent interpretability [98], a distinction has emerged between intrinsic and post hoc approaches.

119



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

Proposals for intrinsically interpretable reward functions include those that decompose into

semantic components [134], explicitly depend on human-taught features [28], combine a simple

linear model with an easily visualised ‘criticality’ weighting [273], or optimise for sparsity by

giving zero reward in most states [69]. Post hoc approaches include the application of feature

importance analysis [216], counterfactual probing [174], or simplifying transformations [130] to

existing reward functions learnt by black box architectures such as neural networks. In [169], a

human is asked to provide feedback on the appropriateness of a learnt reward function’s feature

importance values, which in turn is used to refine the reward function itself. To our knowledge,

this latter work is the closest existing integration of reward learning and explanation. In the

intrinsic/post hoc taxonomy, our proposal of reward tree learning is an intrinsic approach, as

the rule-based tree structure is inherently readable by humans.

Tree models have found various uses in human-in-the-loop agent learning pipelines, including

to learn environment abstractions from human demonstrations [49] and model expert judgements

for naval air defence [151]. In [242], a di↵erentiable tree is distilled from natural language to

serve as a warm-start RL policy, and in [212], a tree policy is extracted from a trained RL

agent before being manually edited to improve performance (note how these two strategies

mirror one another). While evolutionary tree algorithms have been used to learn dense intrinsic

rewards from sparse environment ones [228], our proposal is the first to learn and use reward

trees without any ground truth reward signal, and the first to do so from human feedback.

5.2 Preference-based Reward Learning

Various human feedback signals have been used for reward learning [17, 101, 131, 146, 189].

We adopt the pairwise preference-based approach [44], in which the human is presented with

pairs of agent trajectories (sequences of state, action, and next state transitions) and identifies

which they prefer as a solution to a given task of interest. A reward function is learnt to

reconstruct the pattern of preferences by assigning high rewards to transitions in commonly-

preferred trajectories and low rewards to those in less-preferred trajectories. This approach is

popular [37, 154, 220, 266] and has a firm psychological basis. Experimental results indicate

that humans find it easier to make relative (c.f. absolute) quality judgements [138, 264] and

exhibit lower variance when doing so [106]. This may be because it avoids the need to maintain

an absolute scale in working memory, which is liable to induce bias as it shifts over time [82].

Providing preferences also incurs less cognitive burden than manual demonstrations of desired

behaviour [126] and may enable more fine-grained distinctions [27].

To formalise preference-based reward learning, we assume that the human observes a

trajectory ⇠i as a sequence (fi1, ..., f
i

Hi), where fit = �(si
t�1, a

i

t�1, s
i
t) 2 R

D represents a single

transition as a D-dimensional feature vector. We take the feature function � as given and

assume that all features are individually interpretable. As discussed throughout this thesis,

120



5.2. PREFERENCE-BASED REWARD LEARNING

A dataset of pairwise preferences over 
trajectories can be visualised as a 
directed graph, where nodes are 
trajectories and edges are preferences. 

Each trajectory is a sequence of 
vectors in feature space. In turn, each 
vector represents the (state, action, 
next state) transition that occurs at a 
particular timestep   .

Each edge points to
preferred trajectory

Feature vector for timestep   of    :

Figure 5.2: Pairwise trajectory preferences as a directed graph.

realistic applications necessitate careful thought about how these features are manually defined

or learnt (e.g. via the operator-based feature generation method from Section 3.2.2). Notice that,

unlike all prior methods in this thesis, features are now functions of complete (state, action,

next state) transitions rather than individual states. This is for the sake of maximum generality;

reward functions are defined at the transition level (see Section 1.2), so this formulation ensures

that all possible rewards can in principle be represented and learnt.

Assume that there exists a set of N trajectories, ⌅ = {⇠i}N
i=1, whose provenance is discussed

in later sections. Preference-based reward learning begins by consulting the human to obtain

K  N(N � 1)/2 pairwise preference labels, L = {(i, j)}K
k=1, each of which indicates that the

jth trajectory is preferred to the ith as a solution to a given task of interest (denoted by ⇠j � ⇠i).
Figure 5.2 shows how the preference dataset (⌅,L) can be understood as a directed graph.

To learn a reward function from this dataset, we must assume a generative model for

the preference labels. With a few notable exceptions (e.g. [80]), the existing literature is very

consistent on this point [44, 154, 155], and uses the following set of assumptions:

• The human produces labels according to a latent ground truth reward function R, which

represents their tacit understanding of the task they want the agent to complete.

• The reward function is defined over the single-transition feature space and produces real

scalar outputs, i.e. R : RD ! R.

• The perceived quality of trajectory ⇠i is determined by its cumulative ground truth reward

(or return) G(⇠i|R) =
P

H
i

t=1R(fit).

• Given two trajectories ⇠i and ⇠j , the human tends to prefer the one with higher return.

• However, the human is liable to make occasional mistakes in their judgement. Mistakes

are more likely for trajectory pairs whose returns are more similar.

These assumptions create the following model for the probability of a preference ⇠j � ⇠i:

(5.1) Pr(⇠j � ⇠i|R) = f(G(⇠j |R)�G(⇠i|R)),

where f : R! [0, 1] is a non-decreasing link function with f(z) + f(�z) = 1. The link function

encodes how the probability of a mistake is assumed to vary with the di↵erence in return.

121



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

Given a preference dataset (⌅,L), the generative model in Equation 5.1, and a choice of link

function, the objective of reward learning is to approximate the latent reward function R within

some learnable function class R. This can be formulated as a problem of loss minimisation over

predictions of the preferences L:

(5.2) argmin
R2R

h X

(i,j)2L

`(Pr(⇠j � ⇠i|R))
i
,

where ` : [0, 1]! R�0 is a loss function.

Many methodological variants result from di↵erent choices of link function f and loss

function `. The popular Bradley-Terry preference model [30] uses the logistic function as f ,

which is mathematically and computationally simple, but another valid option is the normal

cumulative distribution function, which is favoured by Thurstone’s Case V model [246]. For

`, the negative log-likelihood loss is most common [44, 154], but Wirth et al. [266] also use a

discrete 0-1 loss which considers only the directions of predicted preferences rather than their

strengths.

Having used an appropriate optimisation scheme to find a reward function R that (approxi-

mately) minimises the chosen preference loss, an agent can use this function to learn a policy

by RL. In practice, reward learning and policy learning can be performed in an iterative online

manner, with the agent using its latest policy to generate new trajectories to add to ⌅, the

human providing new preferences as those trajectories arrive, and the reward function being

updated accordingly. Our approach to online reward learning is described in Section 5.4.

5.3 Interpretable Reward Learning with Trees

The choice of reward function class R is a critical issue. In early prior work, R was often

the class of linear models R(f) = w>f [220], which are easy to interpret but have limited

expressiveness, so cannot scale to complex tasks. More recently, it has been common to use deep

neural networks [44] (or multi-network ensembles thereof), which are far more powerful while

remaining tractably learnable by gradient-based methods. However, the complex, multilayered

architecture of a neural network resists human scrutiny and interpretation. This motivates

exploring an alternative function class that compromises between these two extremes. As

hierarchies of simple, interpretable local rules that nonetheless have the theoretical capacity for

universal function approximation [170], the axis-aligned tree models studied in this thesis are

well-positioned to provide such a compromise.

In this section, we describe our proposal for a tree-structured reward learning model, which

we refer to as a reward tree, and outline the core algorithm followed to learn this model from a

dataset of pairwise trajectory preferences. Since the discrete split decisions that parameterise an

axis-aligned tree are non-di↵erentiable, no tractable gradient-based method exists for optimising

a loss function of the form given in Equation 5.2 end-to-end. For this reason, we approximate the

122



5.3. INTERPRETABLE REWARD LEARNING WITH TREES

global loss minimisation problem by a sequence of local ones, following a multi-stage learning

method with a proxy objective for each stage.

The four stages outlined below, and summarised visually in Figure 5.3, were developed

through an iterative process involving several alternative directions, which are signposted where

relevant. This approach is computationally e�cient, easy to implement, and yields reward

functions that are significantly more robust to small data changes than several alternatives

that were tried. However, we make no claim of optimality. In the next chapter, we will identify

several changes to this method that improve the performance of reward tree learning when

applied to a complex industrially-motivated use case.

5.3.1 Trajectory-Level Return Estimation

This first stage of our method considers the N trajectories in ⌅ as atomic units, and uses the

set of preference labels to construct a vector of return estimates g 2 R
N , which should be

higher for more preferred trajectories. The generic form of the proxy objective for this stage is:

(5.3) argmin
g2RN

h X

(i,j)2L

`(Pr(⇠j � ⇠i|g))
i
, where Pr(⇠j � ⇠i|g) = f(gj � gi).

This is a vanilla preference-based ranking problem of the kind routinely faced in AI, psychology

and economics, and admits a standard solution. Our method is based on the least squares

proposal of Mosteller [182], for which the loss function is `(p) = (f�1(1� ")� f
�1(p))2 with

" 2 (0, 0.5). We also define f(z) = �(z), the normal cumulative distribution function, thereby

adopting Thurstone’s Case V model [246]. These choices specialise Equation 5.3 as follows:

(5.4) argmin
g2RN

h X

(i,j)2L

(��1(1� ")� (gj � gi))
2
i
.

This loss function incentivises each preferred trajectory ⇠j to have a return that exceeds that of

the non-preferred trajectory ⇠i by a positive amount equal to ��1(1� "). This corresponds to
the preference ⇠j � ⇠i being predicted with probability 1� " under Thurstone’s model (note

that " cannot be 0 because ��1(1) is undefined). Throughout this chapter, we use " = 0.1,

which is tantamount to assuming that the human makes a mistake in their preference labelling

10% of the time. Although this is arbitrary, an equivalent assumption is made in [44].

An exact solution to Equation 5.4 can be found via a matrix method proposed by Morrissey

and Gulliksen [104]. This method involves constructing a matrix A 2 {�1, 0, 1}K⇥N as follows.

Iterating through the preference labels L in an arbitrary order, let (i, j) be the k 2 {1, . . . ,K}th
element obtained. The kth row of A is defined to have �1 in the ith column, 1 in the jth

column, and 0 everywhere else. A can be used to express Equation 5.4 in matrix form:

(5.5) argmin
g2RN

h
k(��1(1� ")1K)�Agk22

i
,

123



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

where 1K is the K ⇥ 1 vector of 1s. This is the standard form of a least squares problem, so

has the following exact solution via the Moore-Penrose pseudoinverse:

(5.6) g = ��1(1� ")(A>
A)�1

A
>1K .

As a toy example of this process, the values of A and g corresponding to the preferences in

Figure 5.3 a are given below (note that 1.282 = ��1(1� ") for " = 0.1):

A =

2

66664

�1 1 0 0

1 0 �1 0

0 1 �1 0

0 0 �1 1

3

77775
=) g = 1.282(A>

A)�1
A

>1K =

2

66664

g1 = �0.107
g2 = 0.748

g3 = �0.961
g4 = 0.320

3

77775
.

Observe that ⇠2 obtains the highest return estimate since it has two favourable preferences,

while the three unfavourable preferences for ⇠3 result in it receiving the lowest estimate. Also

note that the final e↵ect of " is merely to scale the return estimates by a constant factor while

leaving their ordering and relative spacing unchanged. Our choice of " = 0.1 is thus entirely

arbitrary and has no significant downstream e↵ects.

5.3.2 Leaf-level Reward Estimation

The vector g estimates the returns of all trajectories in ⌅, but the ultimate aim of reward

learning is to decompose these into sums of rewards for the constituent transitions, then

generalise to make reward predictions for unseen data (e.g. new trajectories executed by an RL

agent). The core novelty of our method lies in doing this using a tree model over the feature

space R
D, of the kind explored throughout this thesis.

For didactic purposes, let us initially assume that such a tree exists. We will return to how

it is constructed in the next subsection. Recall that in our notation, a tree X = {x1, x2, . . . , xm}
is a partition of RD into hyperrectangular subsets called leaves, where the partition structure

is defined by a hierarchy of axis-aligned hyperplanes. The purpose of this second stage of our

method is to associate each leaf x 2 X with a real-valued summary statistic, reward(x) 2 R,

which will be returned as the predicted reward for any transition (s, a, s0) whose feature vector

f = �(s, a, s0) is contained in x. This is achieved by identifying the subset of trajectories in ⌅

that pass through x (i.e. that include at least one feature vector contained in this leaf) and

aggregating the corresponding return estimates from g into a single number.

Concretely, we define reward(x) as an expectation over g, weighted by the proportion of

transitions from each trajectory whose feature vectors are contained in x:

(5.7) reward(x) = Ĥ E
(i,t)2Dx

h gi
H i

i
, where Dx =

(
(i, t) : fit 2 x,

8i 2 {1, . . . , N}
8t 2 {1, . . . , H i}

)
,

and Ĥ =
P

N

i=1
H

i

N
is the mean trajectory length in ⌅. This definition assigns higher reward to

leaves that contain more transitions from trajectories with high gi values, which in turn are

124



5.3. INTERPRETABLE REWARD LEARNING WITH TREES

First partition fully separates highest return trajectory      from lowest return one    

mapping

Given an existing tree 
structure and trajectories 
with estimated returns, we 
define the reward for each 
leaf as a weighted average of 
the returns of the trajectories 
that visit that leaf.

Naive assumption: all transitions in trajectory
contribute equally to return (i.e. uniform colour)

Reward estimation for highlighted leaf:

Growing a tree recursively 
partitions the feature space 
into an increasing number of 
leaves. By basing our split 
criterion on the variance of 
returns in each leaf, we 
prioritise separating high- 
and low-return trajectories.

Pure leaf
containing a

single
trajectory

After growing to a maximum 
size, a final pruning stage 
removes partitions again to 
minimise a preference loss, 
with an added regularisation 
term to penalise large trees. 
This yields a reduced tree for 
use as a reward function.

Most important partitions for preference prediction are retained

Final leaf-level reward estimate

Before doing anything in the 
feature space, we first use 
the classic Thurstone Case V 
preference model to estimate 
an overall return value for 
each trajectory in the dataset 
based on its preferences.

Two favourable preferences;
highest estimated return

Three unfavourable
preferences; lowest
estimated return

Preferred to      but not to      ; intermediate estimated return

A dataset of pairwise preferences over 
trajectories can be visualised as a 
directed graph, where nodes are 
trajectories and edges are preferences. 

Each trajectory is a sequence of 
vectors in feature space. In turn, each 
vector represents the (state, action, 
next state) transition that occurs at a 
particular timestep   .

Each edge points to
preferred trajectory

Feature vector for timestep   of    :

b

c

a

d

-0.748

-0
.1

54

0.
62

6
Figure 5.3: The four stages of reward tree learning applied to a toy example of K = 4 preferences
over N = 4 trajectories in a D = 2-feature space (Figure 5.2 duplicated above for reference).

those more commonly preferred in the preference dataset. While this approach of treating every

transition as an equal contributor to its trajectory’s return is ostensibly näıve, we find that it

enables an e↵ective, robust and tractable reward learning algorithm. It minimises the number

of free parameters in subsequent learning stages (thereby permitting fast implementation) and

provides an intuitive interpretation of predicted reward that is traceable back to a gi value and

set of transitions for each ⇠i 2 ⌅.

To continue the toy example, Figure 5.3 b shows how 4, 2 and 3 transitions from ⇠
1, ⇠3

and ⇠4 are averaged over to yield the reward estimate for one of five leaves in a tree, indicated

by the orange shading. Assuming that all trajectories contain the same number of transitions

so the factor Ĥ/H
i in Equation 5.7 cancels, the specific numerical calculation is as follows:

reward(x) =
4⇥�0.107 + 2⇥�0.961 + 3⇥ 0.320

4 + 2 + 3
= �0.154.

Before converging on this time-weighted averaging approach to estimating leaf rewards, we

125



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

assessed the viability of two other methods, which we briefly discuss now:

• Least squares: We first tried formulating a second least squares problem (i.e. in addition

to the one used for return estimation) to find leaf-level rewards. This involved solving

for the m⇥ 1 vector r = (C>
C)�1

C
>g, where C is the N ⇥m matrix of counts of the

timesteps each trajectory spends in each leaf. We found that this approach tended to

give brittle and poorly regularised results, with extremely high or low reward magnitudes

assigned to leaves that were only visited by especially high- or low-return trajectories (even

if this was just for a single timestep) and near-zero reward for many others. Time-weighted

reward assignment makes such extreme values far less likely.

• TrueSkill: We also tried bypassing the estimation of trajectory-level returns g entirely,

and instead deriving leaf-level rewards directly from the preference data. For this, we

used the Microsoft TrueSkill algorithm [114], originally developed to assign skill scores to

individual video game players based on team-level match results. It is grounded in the

equations of Thurstone’s preference model. In our appropriation of TrueSkill, the ‘players’

were the leaves of the tree, ‘skill scores’ were reward values, ‘teams’ were trajectories,

‘match results’ were pairwise preference labels, and the algorithm’s partial play feature

was harnessed to weight each leaf x’s contribution to a trajectory ⇠
i by the number

of timesteps spent in it. The mapping of features of the algorithm into our problem

context was thus remarkably direct, and we found that it produced plausible and robust

reward estimates for a fixed set of leaves. Crucially, however, the algorithm could not

readily be adapted to handle the splitting or pruning of leaves, which are described in

Sections 5.3.3 and 5.3.4 and e↵ectively change the number of players in a team. The only

way of implementing this functionality would be to run the full algorithm from scratch

whenever a change is made, which would induce a prohibitive runtime on the order of

seconds for each split threshold considered during tree growth. This unfortunately meant

that TrueSkill was impractical for our purposes. Nonetheless, we suggest that TrueSkill

could form a valuable component of a future reward learning framework.

5.3.3 Tree Growth

The preceding two stages describe the translation from a trajectory-level preference dataset

to leaf-level reward estimates for a fixed tree structure, but do not discuss how that structure

arises. The latter issue is crucial because it determines how e↵ective the reward tree will be

as a predictor of the preferences. As in all methods in this thesis, reward trees are generated

by a combination of growth and pruning operations. Recall that given a tree X , one step

of growth involves splitting a leaf x 2 X with a hyperplane at a threshold c 2 R along the

d 2 {1, ..., D}th feature, thereby creating two new leaves x(d�c) and x
(d<c). Recursive splitting

creates an increasingly fine partition of RD. Figure 5.3 c shows an example of a reward tree

with 23 leaves. Leaf-level reward estimates are indicated by the shading.

126



5.3. INTERPRETABLE REWARD LEARNING WITH TREES

The proxy objective for the growth stage takes the form of a greedy split criterion for

selecting the next split decision at each step. In this chapter, we define the quality of a candidate

split x, d, c as follows:

(5.8) QG(x, d, c) = |D
x(d�c) | · IG(Dx(d�c)) + |D

x(d<c) | · IG(Dx(d<c))� |Dx| · IG(Dx),

where IG(D) = Ĥ
2

E
(i,t)2D

E
(j,t0)2D

h ⇣ gi
H i
�

gj
Hj

⌘2 i
.

Here, Dx and Ĥ are defined as per Equation 5.7, and D
x(d�c) and D

x(d<c) denote the transitions

belonging to the two new leaves. QG therefore measures the population-weighted reduction

in a per-leaf impurity measure, namely the variance in the (trajectory length-normalised) gi
values of contained transitions. This value is high when the split separates transitions from

trajectories with very di↵erent normalised return estimates into di↵erent leaves. It is maximised

when it creates ‘pure’ leaves containing transitions from one trajectory only (or those with

identical normalised returns). Therefore, this criterion corresponds to the proxy objective of

predicting the return of a trajectory given the leaves that it visits. One of the pure leaves in

Figure 5.3 c is indicated by an annotation.

In line with prior methods in this thesis, our reward tree growth algorithm identifies the

greedily-optimal x, d, c triplet through an exhaustive search over candidate split thresholds:

(5.9) argmax
x2X , 1dD, c2Cd

h
QG(x, d, c)

i
.

We define Cd as all midpoints between adjacent unique feature values occurring in ⌅.

As the reader may have noticed, this variance-based split criterion is functionally equivalent

to the one used in classical regression tree learning with CART (Section 3.2.4). Therefore, we

can perform reward tree growth using a virtually unmodified, and highly optimised, regression

tree implementation. However, it is important to note that the criterion is only indirectly

aligned with the overall reward learning objective of preference loss minimisation (Equation 5.2).

In the next chapter, we show that switching to a more direct criterion consistently improves

reward learning and RL agent performance in a challenging evaluation domain.

The conditions under which reward tree growth is initiated and terminated within the

broader reward learning process are described in Section 5.4. For the present moment, it su�ces

to say that at the very start of the process, the tree is initialised with a single leaf covering the

entire feature space, X = {RD}, and growth is succeeded by a pruning stage once either no

impurity reduction can be realised by any single split or a tree size limit |X | = Mmax is reached.

5.3.4 Tree Pruning

Pruning reduces the size of the tree by removing some of its splits. In the context of reward

learning, this can be beneficial for both performance ([247] find that limiting model capacity

127



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

can improve generalisation in preference-based reward learning) and human comprehension (in

the language of [130], pruning is a form of “processing for interpretability”).

Before describing the pruning process, it is helpful to explicitly state the reward function

RX : RD ! R induced by a given reward tree structure X :

(5.10) RX (f) = reward(leaf(f)), where leaf(f) = x 2 X : f 2 x.

The generic preference loss from Equation 5.2 can therefore be reformulated as follows:

(5.11)
X

(i,j)2L

`(Pr(⇠j � ⇠i|RX )) =
X

(i,j)2L

`(f(
P

H
j

t=1 reward(leaf(f
j

t
))�

P
H

i

t=1 reward(leaf(f
i

t)))

=
X

(i,j)2L

`(f(
P

x2X reward(x)⇥ (|{fj
t
2 ⇠j : fj

t
2 x}|� |{fit 2 ⇠i : fit 2 x}|))).

Given the monotonicity constraint on f , the predicted probability of each preference in L
therefore increases with the positive di↵erence between the number of transitions from the

preferred trajectory ⇠j and non-preferred trajectory ⇠i in leaves with large positive rewards,

and vice versa for negative rewards. In the pruning stage, we adopt a proxy objective that is

directly aligned with minimising the loss of these predictions.

Recall that given a tree X , one pruning operation merges two leaves into one by removing the

hyperplane that partitions them. Echoing the MCCP process from Section 3.2.4, let X denote

the sequence of nested subtrees induced by pruning the fully-grown tree from the preceding

stage recursively back to its root, at each step removing the single hyperplane that greedily

minimises the next subtree’s preference loss according to Equation 5.11. After completing this

recursive pruning process, we select the X ⇤ 2 X that minimises the sum of the preference loss

and a regularisation term that encourages small trees:

(5.12) X ⇤ = argmin
X 02X

h X

(i,j)2L

`(Pr(⇠j � ⇠i|RX 0)) + ↵|X 0|
i
,

where ↵ � 0 is a regularisation coe�cient. In this stage, we use the same loss and link functions

as in the return estimation stage, namely `(p) = (f�1(1 � ") � f
�1(p))2 with " = 0.1, and

f(z) = �(z/Ĥ), corresponding to Thurstone’s Case V model. The rescaling by 1/Ĥ is required

to bring values onto the scale of a standard normal distribution.

In the example in Figure 5.3 d , pruning yields a final tree X ⇤ with three leaves, whose

leaf-level reward estimates (via Equation 5.7) are overlaid. The preference loss for this tree can

be calculated as follows:

��1(Pr(⇠2 � ⇠1|RX ⇤)) = 1
10(�0.748⇥ (0�2) +�0.154⇥ (0�8) + 0.626⇥ (10�0)) = 0.898;

��1(Pr(⇠1 � ⇠3|RX ⇤)) = 1
10(�0.748⇥ (2�6) +�0.154⇥ (8�4) + 0.626⇥ (0�0)) = 0.237;

��1(Pr(⇠2 � ⇠3|RX ⇤)) = 1
10(�0.748⇥ (0�6) +�0.154⇥ (0�4) + 0.626⇥ (10�0)) = 1.136;

��1(Pr(⇠4 � ⇠3|RX ⇤)) = 1
10(�0.748⇥ (0�6) +�0.154⇥ (6�4) + 0.626⇥ (4�0)) = 0.668;

loss = (1.282� 0.898)2 + (1.282� 0.237)2 + (1.282� 1.136)2 + (1.282� 0.668)2 = 1.635.

128



5.4. OFFLINE AND ONLINE LEARNING ALGORITHMS

This compares to a best-case loss of k(1.282⇥ 1K)�Agk22 = 0.547 for a tree whose leaves are

all pure (which would have to be large, yielding a high regularisation penalty), and a worst-case

of 4(1.282)2 = 6.569 for a tree with a single leaf predicting uniform reward everywhere.1 The

model predicts every preference in the dataset with a probability greater than 0.5. ⇠2 � ⇠3 and

⇠
1 � ⇠3 receive the highest and lowest probabilities of �(1.136) = 0.872 and �(0.237) = 0.594

respectively; this ordering is appropriate because ⇠2 is also preferred to ⇠1.

The pruned tree X ⇤ is returned as the final output of the four-stage process and the

associated RX ⇤ can be used as a reward function for training an agent by RL. To the extent

that the model is a reliable predictor of human preferences over unseen trajectories, the agent

is incentivised to learn a behavioural policy that is aligned with those preferences.

5.4 O✏ine and Online Learning Algorithms

Thus far, we have yet to discuss the origins of the trajectories ⌅, the strategy by which trajectory

pairs are sampled for human preference labelling, or how reward tree learning is practically

integrated with the learning of a policy by RL. This section addresses each of these issues.

Reward tree learning can be instantiated in two data settings: o✏ine and online. In the

o✏ine setting, the underlying trajectory set ⌅ remains fixed (having been generated by some

prior exploration process), but the label set L expands as the human is consulted for their

preferences using an optimistic active sampling scheme. The final reward tree can then be used

to train an RL agent after the fact. In the online setting, reward learning and RL are performed

concurrently. Both ⌅ and L are assembled from scratch, with the former being progressively

augmented with new trajectories generated by the RL agent itself as it learns a policy in

real-time. This can be viewed as another layer of active sampling, as it tends to bias ⌅ towards

trajectories that the agent believes to satisfy the human’s preferences at each point in learning.

In both settings, reward tree learning is entirely agnostic to the internal representations and

algorithms used by the agent, making it compatible with any RL approach [155]. We leverage

this fact in the next chapter, when we switch to an entirely di↵erent RL algorithm to that used

in the following experiments.

Algorithms 3 and 4 (overleaf) summarise the processes of o✏ine and online reward tree

learning. The di↵erences between the two algorithms are highlighted in the latter through red

text (for removals) and green text (for additions). In addition, Figure 5.4 shows a flow diagram

of the online setting, which indicates the various nested loops of operations that occur.

1To explain these calculations, in a pure tree, every leaf would be assigned a reward equal to the return
estimate for the unique trajectory that visits it, with no averaging over trajectories needed. In turn, the preference
probabilities predicted by the tree would be identical to those from using the return estimates themselves, i.e.
�(Ag). In a tree with a single leaf, there can be no di↵erences in per-leaf transition counts between trajectories,
yielding a prediction of ��1(p) = 0 for any preference p.

129



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

Algorithm 3 O✏ine reward tree learning using a fixed trajectory set.

Inputs: Trajectory set ⌅, link function f , loss function `, preference budget Kmax, optimism weight �,
tree update frequency Ktree, tree size limit Mmax, regularisation coe�cient ↵
Output: Final reward tree X ⇤ (and corresponding reward function RX⇤)

1: Initialise empty preference set L = ;, uniform optimistic returns G� = 1, single-leaf tree X = {RD}
2: while |L| < Kmax do
3: Generate sampling matrix W

o↵ using G� and constraints (Equation 5.14)
4: Sample trajectory pair (⇠i, ⇠j) according to W

o↵ and present to human
5: Obtain preference (i, j) or (j, i) and append to L
6: if |L| % Ktree = 0 then
7: Use f and ` to compute trajectory return estimates g from L (Section 5.3.1)
8: Grow tree X using variance-based split criterion until size limit Mmax reached (Section 5.3.3)
9: Generate pruning sequence and select X ⇤ to minimise ↵-regularised ` (Section 5.3.4)

10: Update optimistic return G�(⇠i|RX⇤) for each ⇠i 2 ⌅ (Equation 5.13)
11: end if
12: end while

Algorithm 4 Online reward tree learning with trajectories generated by an RL agent.

Inputs: Trajectory set ⌅, link function f , loss function `, preference budget Kmax, optimism weight �,
tree update frequency Ktree, tree size limit Mmax, regularisation coe�cient ↵, RL algorithm RlAlgo,
trajectory budget Nmax, preference batch frequency Nbatch, number of convergence episodes Nconv

Output: Final reward tree X ⇤ (and corresponding reward function RX⇤), final agent policy ⇡

1: Initialise empty trajectory set ⌅ = ;, empty preference set L = ;, uniform optimistic returns G� = 1,
single-leaf tree X = {RD}, agent policy ⇡, Kprev = 0, Kbatch = 0

2: while |L| < Kmax do
3: if |⌅| � 2 then
4: Generate sampling matrix W

on using G� and constraints (Equation 5.16)
5: Sample trajectory pair (⇠i, ⇠j) according to W

on and present to human
6: Obtain preference (i, j) or (j, i) and append to L
7: end if
8: if |L| � 1 and |L| % Ktree = 0 then
9: Use f and ` to compute trajectory return estimates g from L (Section 5.3.1)

10: Grow tree X using variance-based split criterion until size limit Mmax reached (Section 5.3.3)
11: Generate pruning sequence and select X ⇤ to minimise ↵-regularised ` (Section 5.3.4)
12: Update optimistic return G�(⇠i|RX⇤) for each ⇠i 2 ⌅ (Equation 5.13)
13: end if
14: if |L|�Kprev = Kbatch then
15: Run RlAlgo(⇡, RX⇤) for Nbatch episodes, yielding new trajectories ⌅batch and updated ⇡
16: Store new trajectories, ⌅ ⌅ [ ⌅batch

17: Compute optimistic return G�(⇠i|RX⇤) (= 1 if |L| < Ktree) for each ⇠i 2 ⌅batch

18: Update Kprev = |L| and Kbatch according to schedule (Equation 5.15)
19: end if
20: end while
21: Continue to run RlAlgo(⇡, RX⇤) for Nconv episodes, yielding final policy ⇡

Both algorithms initiate the tree with a single leaf before collecting a total of Kmax

preferences, pausing every Ktree steps to update the tree on all preferences collected so far via

the stages in Section 5.3. The pruned tree X ⇤ is then used to make optimistic return predictions

for all trajectories, which bias the probability of each pair being sampled for future preference

130



5.4. OFFLINE AND ONLINE LEARNING ALGORITHMS

Generate sampling matrix Sample trajectory pair

Query human for preferenceStore new preference

Repeat Kmax times

Every Ktree iterations

Estimate trajectory returns Populate tree

Repeat until 1 leaf Repeat until Mmax leaves

Update policy by RL

Advance environment state

Compute reward using tree

Repeat Nbatch times

Every Kbatch iterations

Compute optimistic return using tree

Update optimistic returns using tree

Select action using policy

Repeat until termination

Store new trajectory

Update Kbatch according to schedule

Generate candidate partitions

Select optimal tree from pruning sequence

Implement greedily-optimal partition

Evaluate impurity reduction for each

Generate candidate pruning operations

Evaluate preference loss for each

Implement greedily-optimal pruning op.

Figure 5.4: Flow diagram of online reward tree learning.

labelling. The critical di↵erence in the online setting is the introduction of an RL agent into the

learning loop, which updates its policy ⇡ to optimise for the latest RX ⇤ at each step, and uses

that policy to generate trajectories which are appended to ⌅. The rate at which new trajectories

are added is scheduled to make the number of preferences obtained for each trajectory more

uniform. After Kmax preferences have been collected over Nmax trajectories, the reward tree is

frozen in its final state, and the RL algorithm is run for another Nconv episodes to allow the

policy to converge. We now clarify some important aspects of the algorithms in further detail.

5.4.1 Trajectory Provenance and Diversity

In the o✏ine context, successful reward learning relies on access to diverse trajectories with

both low and high ground truth returns, so their di↵erences can be discovered. One way to

achieve this could be to generate ⌅ via a reward-free exploration scheme such as DIAYN [83] or

ProtoRL [268]. In the online context, the requirement for diversity remains, but the conditions

for its achievement are more complex. Ultimately, we require a mix of low and high returns,

but the early stages of RL agent training are far more likely to yield the former. The critical

condition is whether su�cient early diversity exists for some trajectories to be marginally

preferred to others. This establishes a starting point from which the agent can bootstrap to

gradually explore and gather preferences on improved behaviours. It is thus vital to use an RL

algorithm that promotes exploration early in learning.

5.4.2 Growth Initiation, Stopping and Resumption

Every time Ktree new preferences are added in both o✏ine and online settings, the four stages

in Section 5.3 are followed to update the trajectory-level return estimates then grow and prune

the tree. At the very start of the reward learning process, the tree is initiated with a single leaf

and grown from there. In subsequent updates, growth begins from the current state of the tree,

131



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

as returned by the previous update, and continues until either there are Mmax leaves or none of

the candidate splits reduce impurity. This is immediately followed by the pruning stage. At any

given point in the process, a subset of the trajectories in ⌅ may have received zero preference

labels, so have no well-defined return estimate. In practice, each update iteration only makes

use of the subset of trajectories with at least one preference, denoted by ⌅�1 =
S

(i,j)2L{⇠i, ⇠j}.

5.4.3 Optimistic Active Sampling

Intelligent selection of trajectory pairs for preference labelling can make reward learning more

e�cient [241]. Inspired by the bandit literature [38], we adopt an upper confidence bound

strategy, which samples trajectory pairs according to optimistic estimates of their summed

return under the current reward tree. To compute an optimistic return for each trajectory

⇠
i 2 ⌅, we increase each leaf’s reward prediction by the square root of its impurity:

(5.13) G�(⇠
i|RX ⇤) =

XH
i

t=1
reward�(leaf(f

i

t)), where reward�(x) = reward(x) + �

q
IG(Dx),

and � � 0 is an optimism weighting coe�cient. This has the e↵ect of up-weighting trajectories

that pass through leaves containing other trajectories with a wide spread of return estimates,

which in turn implies high uncertainty in the leaf-level rewards. We then populate a strictly

lower triangular N ⇥N weighting matrix W as follows 8i 2 {1, . . . , N}, 8j 2 {1, . . . , i� 1}:
(5.14)

W
o↵
i,j =

(
0 if ((i, j)2L _ (j, i)2L) _ (⌅�1 6=; ^ {⇠i, ⇠j}\⌅�1=;),
G�(⇠i|RX ⇤) +G�(⇠j |RX ⇤) + � otherwise,

where the ‘zeroing’ conditions prevent sampling a pair twice and ensure that one of each

sampled pair is in ⌅�1.2 The o↵set � is calibrated so that the minimum element not matching

a zeroing condition is set to 0.3 In the o✏ine setting, a trajectory pair ⇠i, ⇠i is then sampled for

preference labelling by normalising W
o↵ by its grand sum and treating the result as a probability

distribution. A small modification is made for the online setting (see next subsection).

This strategy prioritises trajectories with uncertain return predictions, for which further

preference labels will likely be most helpful in reducing uncertainty. Additionally, the optimism

induces a bias towards identifying and correcting cases where trajectory return is overestimated,

ultimately yielding a conservative reward function that counteracts the well-known overestima-

tion bias in many RL methods [89]. Finally, biasing the preference dataset towards promising

trajectories leads the reward tree to prioritise distinguishing between high and very high return

behaviour (rather than low and very low), which reduces the risk of an RL agent trained on

that reward stagnating at mediocre performance with no incentive to improve.

2The latter condition ensures that the graph representing the preference dataset is always connected. This is
necessary for the least squares solution in Equation 5.6 to be unique; see Proposition 3.1 of [55].

3Unless this is also the maximum element, in which case it is o↵set to an arbitrary positive value.

132



5.4. OFFLINE AND ONLINE LEARNING ALGORITHMS

Scheduled,
no recency constraint

Not scheduled,
recency constraint

Scheduled,
recency constraint

Not scheduled,
no recency constraint

1
10

0

1 100

T
ra

je
ct

or
y 

i p
os

iti
on

in
 g

en
er

at
io

n 
or

de
r

Trajectory j position
in generation order

Sa
m

pl
in

g 
pr

ob
ab

ili
ty

1
0

Figure 5.5: Empirical pair sampling probabilities (averaged over 100 repeats) for Kmax = 2000
preferences over Nmax = 100 trajectories, which arrive in batches of size Nbatch = 10. The
preference batch size scheduling (Equation 5.15) and the recency constraint (Equation 5.16)
must be implemented in tandem to correct the earliness bias fully and achieve uniformity.

5.4.4 Scheduling of Online Trajectory and Preference Collection

In the online setting, ⌅ monotonically expands with new trajectories over time. If preferences are

obtained at a constant rate, trajectory pairs that appear earlier are more likely to be sampled,

creating an earliness bias in the preference dataset.4 By expending most of the preference budget

on (likely low-quality) trajectories early in the agent’s learning, we forego the opportunity to

compare more medium- and high-quality trajectories from later in learning, and thus to learn

the finer distinctions required for the agent to find a near-optimal policy. We correct for this

bias by collecting an increasing-sized batch of preferences each time Nbatch new trajectories are

added. At each step, the size of the next batch increases monotonically as

(5.15) Kbatch = round

✓
(Kmax � |L|) pairs(|⌅|)� pairs(|⌅|�Nbatch)

pairs(Nmax)� pairs(|⌅|�Nbatch)

◆
,

where pairs(n) = n(n � 1) is the number of pairs that can be sampled from a population of

n trajectories. Additionally, the un-normalised sampling probability matrix W
on is defined

similarly to W
o↵, except with an extra zeroing condition which ensures that at least one of

every sampled pair comes from the most recent batch of trajectories:

(5.16) W
on
i,j =

(
0 if (i  |⌅|�Nbatch) ^ (j  |⌅|�Nbatch),

W
o↵
i,j

otherwise,

As Figure 5.5 shows, both modifications are required to ensure uniform sampling probability

across all pairs in a population of sequentially generated trajectories. In preliminary experiments,

we found that scheduling preference collection in this way improves the performance of converged

agent policies across the evaluation domains used in this chapter.

4In a constant schedule, Kmax/Nmax preferences are obtained each time a trajectory is added to ⌅. Let ⇠i

and ⇠j be the ith and jth trajectories added. Ignoring the e↵ect of optimistic sampling and the zeroing conditions
that prevent duplicates and ensure connectivity, the expected number of times ⇠i, ⇠j is sampled is

NmaxX

n=max{i,j}

Kmax/Nmax

pairs(n)
=

Kmax

Nmax

NmaxX

n=max{i,j}

1
n2 � n

=
Kmax

Nmax

Nmax � (max{i, j}� 1)
Nmax(max{i, j}� 1)

/ Nmax

max{i, j}� 1
� 1,

which decreases as max{i, j} increases. Hence, earlier trajectory pairs obtain a higher density of preferences.

133



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

Pendulum 2D Maze RoboCarLunarLander

Agent

Penalty region

Goal region

Walls

Landing padUneven terrain

Craft

Target
angle

Torque

Pendulum

Goal

Initial car location

Obstacles

Front wheels
(drive + steer)

Rear
wheels

(drive only)

Figure 5.6: The four RL environments used in experiments.

5.5 Experimental Setup

We evaluate reward tree learning in four RL environments under various learning conditions

covering both o✏ine and online settings. The results in Section 5.7 use preferences collected

from real human experimental participants. First, however, Section 5.6 uses preferences provided

by synthetic oracles, which act in error-free accordance with hand-coded ground truth reward

functions. This combined oracle- and human-based approach allows us to compare how our

method performs with and without any possible sources of human error, bias and variability,

which inevitably make the learning problem more challenging. This section describes the four

environments and their associated tasks, features and ground truth reward functions, as well as

common parameters that are held constant across all experiments.

5.5.1 Environments and Tasks

Figure 5.6 contains annotated visualisations of the four environments. All are equipped with

natural sets of task-relevant features, which are exposed as part of their native implementation

(in Python), and have episodes of a fixed length H, without early termination conditions.

Pendulum A built-in component of the Gymnasium library [86] and a classic feedback control

problem. The task is to swing a randomly initialised inverted pendulum upright and hold it

there for as long as possible up to a time limit of H = 200. The D = 4 transition features

�(st�1, at�1, st) = [cos(✓t), sin(✓t), ✓̇t, at�1] are the cosine and sine of the pendulum’s angle from

upright ✓t and its angular velocity ✓̇t, as well as the agent’s latest action at�1 2 [�1, 1], which
is a torque on the rotational joint. The ground truth reward function used in Gymnasium is

(5.17) R(�(st�1, at�1, st)) = �(✓2t + 0.1✓̇2t + 0.001a2t�1).

LunarLander Another built-in Gymnasium environment, as used in earlier chapters. The

D = 18 transition features consist of all eight features from each of the two successive states, as

well as the two action dimensions specifying main and side engine activations: �(st�1, at�1, st) =

[ posxt�1, pos
y
t�1, vel

x
t�1, vel

y
t�1, t�1, vel

 
t�1, c

l
t�1, c

r
t�1, a

m
t�1, a

s
t�1, pos

x
t , pos

y
t , vel

x
t , vel

y
t , t, vel

 
t , c

l
t, c

r
t ]

(see Section 3.10 to recap state feature definitions). The task is to land the craft gently on a

134



5.5. EXPERIMENTAL SETUP

landing pad. For most timesteps, the ground truth reward function returns

(5.18) R(�(st�1, at�1, st)) = potentialt � potentialt�1 � 0.3amt�1 � 0.03ast�1, where

potentialt = �100
✓q

(posx
t
)2 + (posy

t
)2 +

q
(velx

t
)2 + (vely

t
)2 + | t|

◆
+ 10(clt + c

r

t ).

In addition, a one-o↵ reward of +100 is given if the craft successfully lands on the pad, and �100
is given if it crashes or drifts out-of-bounds (|posxt | � 1). To convert LunarLander into a fixed-

length episodic task, we disable a default condition that terminates the episode immediately

after a landing, crash or out-of-bounds event, and instead use a constant time limit of H = 300.

2D Maze A modified, fixed-length version of the continuous navigation environment from

Chapter 4, in which the task is to escape or avoid a penalty region and move to a goal

region while navigating around a pair of impassable walls. The time limit is T = 200. The

D = 4 transition features �(st�1, at�1, st) = [posxt , pos
y

t
, a

x
t , a

y

t
] are the agent’s bounded position

pos
x
t , pos

y

t
2 [0, 10]2 and latest action a

x

t�1, a
y

t�1 2 [�0.25, 0.25]2, which directly specifies its

velocity (prior to clipping at walls and maze boundaries). The ground truth reward function is

(5.19) R(�(st�1, at�1, st)) = [ posxt � 8 ^ pos
y

t
� 8 ]� [ posxt  3 ],

where [ · ] is Iverson bracket notation for the indicator function.

RoboCar A custom environment created using the PyBullet physics simulator [53], in

which the task is to drive a four-wheeled car to a green goal object while avoiding four black

obstacles. The time limit is T = 200. The D = 11 transition features �(st�1, at�1, st) =

[posxt , pos
y

t
, cos(✓t), sin(✓t), velxt , vel

y

t
, distt, ✓t, c

o
t , a

th

t�1, a
st

t�1] are the coordinates of the car’s cen-

troid pos
x
t , pos

y

t
, the cosine and sine of its orientation ✓t, its velocity components velxt , vel

y

t
, the

distance and bearing in radians to the goal distt, ✓t (✓t = 0 when facing the goal), a binary indica-

tor of contact with an obstacle cot , and the two dimensions of its latest action. These are a throttle

a
th

t�1 demand and steering angle a
st

t�1, which are applied subject to limits and a simple model of

drag and mechanical resistance. The car is initialised at [posx0 , pos
y

0, ✓, vel
x

0 , vel
y

0 ] = [0, 0, 0, 0, 0]

and the obstacles are always the same, but the goal location is randomised on each episode.

The ground truth reward function is

(5.20) R(�(st�1, at�1, st)) = �0.05distt � 0.1cot + [ distt  2 ],

where the final term (Iverson notation) adds +1 if the car is within a radius of 2 from the goal.

Note that of the four environments, only LunarLander has a ground truth reward function that

depends on the predecessor state of each transition st�1 (to compute potentialt�1). To ensure

that the ground truth can be reconstructed exactly in principle, we provide features of st�1 to

the reward tree learning algorithm, but do not do the same for the other three environments.

135



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

5.5.2 Common Parameters

Preference budget Since our o✏ine human experiment involves approximately 60 partici-

pants, each of whom provides 10 preference labels per environment, we use a preference budget

of Kmax = 600 for all other experiments. This enables a direct comparison of our algorithm’s

performance across environments and experiment types. It also reflects a reasonable demand

on human labour (on the order of 1 hour, assuming ⇡ 10 labels per minute).

Growth and pruning parameters We use a maximum tree size of Mmax = 100 to terminate

growth and a regularisation parameter of ↵ = 0.01 during pruning. The final reward structure is

sometimes quite sensitive to the latter, which could easily have been tuned for each environment

and experimental context. For the sake of simplicity and to avoid cherry-picking, we identify

this single value as one that provides good performance across all four environments.

Additional parameters During optimistic sampling of trajectory pairs for preference la-

belling, we use � = 2. Our least squares loss calculations use " = 0.1, which is equivalent to

assuming a 10% preference error rate.

RL algorithm All RL agents trained in our experiments use the soft actor-critic (SAC)

algorithm [107], which uses explicit entropy maximisation to promote exploratory policies

(thereby addressing Section 5.4.1). We use a constant discount factor of � = 0.99, learning

rates of 1e�4 and 1e�3 for the policy and value networks respectively, an entropy regularisation

coe�cient of 0.2, and an interpolation factor of 0.99 for Polyak averaging of the target networks.

All networks have two hidden layers of 256 units and ReLU activations. The replay bu↵er

capacity, minibatch size and total number of training episodes were independently selected for

each environment after an informal search and held constant across all experiments:

Pendulum LunarLander 2D Maze RoboCar
Replay bu↵er capacity 5000 20000 20000 40000

Minibatch size 32 64 128 64
Total training episodes (Ntotal) 200 200 400 1000

Note that for the online experiments, Ntotal = Nmax +Nconv because agent training consists of

a phase of online trajectory/preference gathering and reward tree modification (up to Nmax)

followed by training to convergence on the frozen final reward tree (another Nconv episodes).

Repeated experimental runs In all experiments other than the most labour-intensive

online study with human preferences, we repeat five independent runs of RL agent training for

each environment and report mean, minimum and maximum performance in the learning curve

plots (Figures 5.7-5.10). In the o✏ine setting, all repeats use the same learnt reward tree, so

the variation reflects the stochasticity of the RL process only. In the online setting, a reward

tree is constructed from scratch using trajectories generated during each agent’s training. Since

this process naturally di↵ers between runs, it is an additional source of variation compared

with the o✏ine experiments.

136



5.6. QUANTITATIVE PERFORMANCE: ORACLE PREFERENCES

5.6 Quantitative Performance: Oracle Preferences

This section presents results from our experiments using synthetic oracle preferences with respect

to the ground truth reward functions given in Section 5.5.1. Given a trajectory pair, an oracle

always prefers the one with higher ground truth return, making no mistakes and breaking ties

uniform-randomly. The use of oracles is widespread in reward learning research [44, 101, 159, 207]

as it enables scalable systematic comparison, with the ability to quantify performance (and

in our case, appraise learnt tree structures) in terms of the reconstruction of a known ground

truth. In particular, we can evaluate an RL agent trained using a learnt reward tree by its

return under the ground truth reward function, and baseline this against the return of an

agent trained directly on the ground truth itself. The performance gap indicates the degree of

misalignment accrued during the preference-based learning process.

Given the highly idealised operation of the oracles, the results in this section are far from a

complete guarantee of our method’s e�cacy for realistic human-in-the-loop applications. Rather,

they serve to establish the basic correctness and stability of reward tree learning from error-free

data, before considering real human preferences in the next section.

5.6.1 O✏ine Setting

We first evaluate oracle-based reward tree learning in the o✏ine setting. For each of the four

evaluation tasks, we begin by training an agent via conventional RL on the ground truth reward

function. We call this the pilot agent. The pilot serves a dual role as (1) a performance baseline

for agents trained with learnt reward trees and (2) a generator of the o✏ine trajectory set

⌅. Specifically, we define ⌅ as the set of all trajectories executed by the pilot agent during

its training. While this use of pilot trajectories would be impractical for realistic applications

where the ground truth is unknown, it is a convenient way of ensuring that ⌅ contains a diverse

spread from low-return trajectories (from early in training) to high-return ones (from late in

training). We consult the oracle to obtain Kmax = 600 preferences over the pilot trajectories,

pausing every Ktree = 60 steps to update the reward tree and optimistic return estimates G�.

We then perform five independent RL training runs using the final reward tree.

Figure 5.7 shows learning curves (time series of return per episode) for these RL agents

according to both the reward tree itself a and the ground truth reward function b (mean

and min-max range across five repeats shown). The consistent monotonicity and low variance of

the former indicate that reward trees give rise to intrinsically stable agent learning on all tasks,

while the latter confirm that performance on the extrinsic measure of ground truth return also

improves. This shows that the reward trees are at least somewhat aligned. To quantify this,

b also shows the learning curves of the pilot agents (purple). For Pendulum and RoboCar,

the asymptotic returns of agents using the reward trees are indistinguishable from those of the

pilots, and training progression even seems to be somewhat more stable and monotonic. Aligned

reward tree learning has thus been successfully achieved in these cases. For LunarLander and

137



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

0 200Episode number−
20

0
10

0
L

ea
rn

t

0 200−
30

0
10

0
T

ru
e

Episode number 0 400

−
50

15
0

T
ru

e

Episode number

0 400Episode number−
50

L
ea

rn
t

50

0 200Episode number−
10

0
50

L
ea

rn
t

0 200Episode number

T
ru

e
−

12
50

−
25

0

Pilot agent

0 1000Episode number−
10

0
50

T
ru

e

Episode number0 1000−
10

0
50

L
ea

rn
t

T
im

es
te

p
H

=
20

0
1

10
0 0

10Number of leaves
1 10 1000.

25

Optimum: 9 leaves

1.
5

Pr
ef

er
en

ce
 lo

ss

Note: log-log scale

True return−200 200

L
ea

rn
t r

et
ur

n
−

15
0

15
0 Online agent

trajectories

0 10

0
10

1

3
4

5

6

-0
.6

1
0.

45
R

ew
ar

d

2

9

87

Goal region:
true reward = +1

Penalty region:
true reward = -1

2D Maze RoboCarPendulum Lunar
Lander

a

Pilot trajectories (    )

b

c d e f

Figure 5.7: Performance in o✏ine setting using oracle preferences; additional plots for 2D Maze.

2D Maze, there is a small performance gap, indicating that alignment is good but imperfect.

Additional plots for 2D Maze provide further insight. c plots the preference loss across

the tree pruning sequence of the final update step, showing that the (↵-regularised) loss is

minimised by a tree with 9 leaves. Hence, this is chosen as the final tree. d assesses alignment

by relating the ground truth and tree-predicted returns of all pilot trajectories ⌅, as well as

those generated online during follow-up agent training. In both cases, there is a clear positive

correlation, although the relationship for the latter is noisier. In particular, there is a tendency

to overpredict the returns of the online trajectories compared with the pilot ones.

To diagnose this issue, e uses the projection method from Section 3.10.1 to visualise

the geometry of the 9 leaves of the final tree as coloured rectangles over the two positional

features posx, posy, with leaf-level reward as the colouring statistic. In general, the leaves are

arranged isomorphically to the maze layout, with negative reward in the penalty region and

positive reward around the goal. Several leaf boundaries are aligned almost exactly with the

two maze walls. However, one source of misalignment is that high-reward leaf 8 is too large in

the vertical direction. f plots the final 10 trajectories of all five RL training runs, showing

that this misalignment leads to policies that sometimes terminate just below the true goal. We

suspect that leaf 8 has not been split further because the pilot dataset contains few examples

of trajectories that pass through the below-goal region without then reaching the goal.

138



5.6. QUANTITATIVE PERFORMANCE: ORACLE PREFERENCES

5.6.2 Online Setting

We now deploy our algorithm in an online setting, populating ⌅ with trajectories generated by

an RL agent as it is trained on the continually updated reward tree in real-time. After Nmax

trajectories and Kmax = 600 oracle preferences are gathered, the reward tree is frozen, and the

agent continues to train on this fixed objective for Nconv more episodes to allow its policy to

converge. We tune Nmax and Nconv for each environment as follows:

Pendulum LunarLander 2D Maze RoboCar
Nmax 100 100 100 200
Nconv 100 100 300 800

In all cases, we use Nbatch = 10, schedule Kbatch as per Equation 5.15, and set Ktree = Kbatch

(i.e. one tree update per batch of trajectories collected). The entire online learning process is

repeated five times for each environment.

The learning curves of tree-predicted return in Figure 5.8 a indicate that stable and

convergent agent training is achieved in all cases, even as the reward trees are modified over

time by the discrete operations of growth and pruning. Technically, this makes the RL problem

nonstationary, but it appears that the SAC agents can handle this without significant issues.

The ground truth learning curves b show that asymptotic performance is similar to the

oracle-based o✏ine setting (red curves), with the agents’ mean return at the end of learning

being slightly higher for 2D Maze, slightly lower for LunarLander and RoboCar, and virtually

identical for Pendulum. This suggests that online reward tree learning is no more inherently

challenging than learning from diverse o✏ine trajectories. However, learning in the online

context tends to exhibit slower performance improvements in the early stages, most notably for

Pendulum. This makes sense because the tree may not have yet converged to a well-aligned

state, meaning early learning is in a partially misaligned direction. As more preferences are

gathered over the early trajectories, this error is gradually corrected.

We further examine one of the five RoboCar runs via a hybrid visualisation that we call

a learning timeline c . With Nmax = 200 and Nbatch = 10, we run a total of 20 preference-

gathering batches, over which the cumulative number of preference labels |L| increases to 600

according to the Kbatch schedule. The heatmap shows how the ↵-regularised preference loss

varies as a function of leaf count across the pruning sequence during each post-batch tree update.

The overlaid white curve indicates the size of the optimal tree selected from this sequence (i.e.

the one that minimises the regularised loss). As the tree is grown and pruned using an increasing

number of preferences, the global pattern is that (1) a very low preference loss becomes harder

to achieve and (2) the optimal number of leaves starts small before increasing to a maximum,

then remains somewhat below that maximum thereafter, with large changes becoming less

frequent. We observe this trend consistently across runs and environments.

Pausing to inspect the tree at three checkpoints during learning, we find that the positive

correlation between ground truth and tree-predicted return d becomes less noisy over time,

139



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

Episode number0 200−
30

0
10

0
T

ru
e

Episode number0 200
−

50
20

0
L

ea
rn

t

Episode number0 400

−
50

15
0

T
ru

e

Episode number0 400

0
15

0
L

ea
rn

t

0 1000Episode number−
50

15
0

L
ea

rn
t

0 1000

T
ru

e
−

10
0

50

Episode numberEpisode number0 200

−
12

50
−

25
0

T
ru

e

0 200Episode number

0
20

0
L

ea
rn

t

Pilot agent

Offline oracle

10 200

2
20

Episode number

N
um

be
r 

of
 le

av
es

Cumulative number of preference labels

R
eg

ul
ar

ise
d 

pr
ef

er
en

ce
 lo

ss
0.

6
0.

0

1 5 12 22 35 51 70 92 117 145 177 212 250 291 335 382 432 485 541 600

50 100

Episode 50: 17 leaves Episode 100: 16 leaves

-1.5 1.5Reward

−150 50

−
20

0
20

0

True
return

−
3.

14
3.

14

L
ea

rn
t r

et
ur

n

−150 50

−
20

0
20

0

−
3.

14
3.

14

−150 50

−
20

0
20

0

−
3.

14
3.

14

Episode 200: 14 leaves

2D Maze RoboCarPendulum Lunar
Lander

b

c

d e

0 2020 202 0 202

a

−50

Figure 5.8: Performance in online setting using oracle preferences; learning timeline for RoboCar.

although a knee point emerges around a true return of �50. We hypothesise that this may

be due to the indicator term in the ground truth reward function (Equation 5.20), which

introduces a sharp nonlinearity that is smoothed out by our averaging approach to leaf reward

estimation. Leaf projection plots for the three checkpoints e show that the tree converges to a

structure that positively rewards both proximity to the goal (small dist) and facing towards

it (✓ ⇡ 0), doing so in an almost-symmetric manner. Again comparing to the ground truth in

Equation 5.20, we note that the negative relationship to distance is correct. However, the critical

threshold at dist = 2 is most closely replicated by the earliest checkpoint before being less

accurately modelled thereafter. Additionally, the ground truth has no explicit dependence on ✓.

The fact that the tree has learnt to reward ✓ ⇡ 0 is likely a result of correlations in the training

data: trajectories where the car reaches the goal will also involve facing towards it. Although

technically a misalignment, this di↵erence may not necessarily harm agent performance, as it

could provide beneficial shaping that makes goal-reaching more likely.

140



5.7. QUANTITATIVE PERFORMANCE: HUMAN PREFERENCES

5.7 Quantitative Performance: Human Preferences

This section presents results using real human preferences collected from experimental partici-

pants. In order to retain a basis for quantitative evaluation, we brief participants with textual

task descriptions which summarise the ground truth reward functions in Section 5.5.1 and

request that they provide preference feedback on that basis. This means that the success of the

end-to-end learning process can still be assessed in terms of agent performance on the ground

truth reward. However, unlike the idealised oracles, humans may su↵er from misinterpretation

of the task description and may make random mistakes in their preference labelling, both

of which make the reward learning problem more challenging. Unless otherwise stated, the

hyperparameter values used in this section are the same as in our oracle experiments.

5.7.1 O✏ine Setting

Using the same set of pilot trajectories as in Section 5.6.1, we build a web-hosted survey to

gather pairwise preference labels from human experimental participants.5 As shown in Figure 5.9

a , the survey interface contains a textual summary of the current task under consideration,

infinitely looping videos of the current trajectory pair (animated versions of the images in

Figure 5.6) and an input field for giving preferences on a 0-10 scale. Although our algorithm

interprets labels as binary (first trajectory preferred for 0-4, second preferred for 6-10, uniform

random preference for 5), we use this more fine-grained numerical scale to assess participants’

calibration to ground truth return di↵erences (see below). Each participant is given 10 trajectory

pairs to evaluate for each of the four tasks. Since the survey is run asynchronously with many

participants, it would have been technically complex to perform tree updates on the back-end

throughout the (7 day) survey period. For this reason, we wait until all responses are gathered

before doing a single round of tree growth and pruning.6 Five independent RL training runs

are then performed using the resultant reward tree for each task.

We recruit participants via a non-selective call for participation across our personal and

academic networks, as well as on a public forum for sharing research surveys. The call yields

62 respondents, and thus a total preference dataset size of Kmax = 62 ⇥ 10 = 620 for each

task (very similar to the 600 used in oracle experiments). As shown in Figure 5.9 b , the

participants have a wide variety of experience levels with RL and AI more generally; almost

half have no experience whatsoever. As additional background, we ask participants to indicate

their expectations of the likelihood of our method succeeding, both before and after completing

the survey c , and to rank the tasks by their perceived di�culty of giving helpful feedback d .

5The study design received ethics approval from the University of Bristol research ethics board (approval
code: 0243). The survey page itself can be found at https://forms.gle/cZ39tsiEr2fq8N7A6.

6Since Algorithm 3 initiates with uniform optimistic return estimates, the result is that pairs are sampled
uniform-randomly throughout the survey. This somewhat reduces the comparability of these results to those from
the o✏ine oracle experiment, where Ktree = 60. We may have attained better performance in this experiment if
periodic updates were possible, as it would have enabled the optimistic sampling method to work as designed.

141

https://forms.gle/cZ39tsiEr2fq8N7A6


CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

j

None
RL (expert)

AI (expert)

RL
(some)

AI (some)

27

12
5

5

13

Relevant expertise
Definite Yes
Likely

No Idea
It Depends

Unlikely

Definite No

B
ef

or
e

After

2 1

5 3

1 11 11 1

1 20 2

4

D
ef

in
ite

 Y
es

L
ik

el
y

N
o 

Id
ea

It
 D

ep
en

ds

U
nl

ik
el

y
D

ef
in

ite
 N

oc

Success expectations Perceived difficulty

Easiest Hardest

LunarLander

FoodLava

RoboCar

Pendulum 29 6 8 10

11 26 8 8

4 9 18 22

9 12 19 13

T
ru

e 
re

tu
rn

 d
iff

er
en

ce

Expertise = None AI (some)

−
10

00
0

10
00

RL (some) AI (expert)

5 6 7 8 9 10−
10

00
0

10
00

Given rating
5 = equal,
10 = most
different

RL (expert)

5 6 7 8 9 10−
10

00
0

10
00

a

b

c d

e

Note: log-log scale

1 10 100

0.
4

0.
9

Pr
ef

er
en

ce
 lo

ss Optimum: 7 leaves

Number of leaves True return−1750 −250

−
13

0
10

0
L

ea
rn

t r
et

ur
n

Online agent
trajectories

Pilot trajectories (    )

R
ew

ar
d

1.
6

−
0.

2

−0.5 0.5

-0
.7

0
0.

74

0 200Episode number−
15

0
15

0
L

ea
rn

t

0 200Episode number−
30

0
10

0
T

ru
e

Pilot agent

Offline oracle

10
−

10 -0
.5

7
0.

61

Episode number0 1000−
30

30
L

ea
rn

t

Episode number0 1000−
10

0
50

T
ru

e

0

20

1
−

1

−8 8

-0
.6

1
0.

47

Episode number0 200

−
50

50
L

ea
rn

t

0 200Episode number−
12

50
−

25
0

T
ru

e

-1
.2

9
0.

5510
0 0

10

0 400Episode number

−
50

10
0

L
ea

rn
t

Episode number

−
50

15
0

T
ru

e

0 400

2D Maze RoboCarPendulum Lunar
Lander

f g

h

m

i

l

(ang. vel.)

k

Figure 5.9: Performance in o✏ine setting using human preferences; additional plots for Pendulum.

142



5.7. QUANTITATIVE PERFORMANCE: HUMAN PREFERENCES

Interestingly, this ranking predicts the success of our method in this setting, since for

Pendulum and LunarLander, we achieve asymptotic ground truth return e equal to, or only

slightly below, the oracle results. This means that despite the potential error sources of task

misinterpretation and preference noise (as well as possible inconsistencies between participants),

reward trees are learnt that incentivise aligned RL policy learning. This is a positive result

for the viability of reward tree learning in real-world contexts. The leaf projection plots f

and g provide insight into the learnt tree structures. In Pendulum, high reward is only given

only the pole is close to upright with small angular velocity, indicating that participants tend

to be very stringent in their interpretation of ‘upright pole-balancing’. In LunarLander, high

reward is given in a narrow column above the landing pad, reflecting participants’ preference

for landing trajectories that do not deviate too far from the midline. The final 10 trajectories

from all five RL runs are overlaid, confirming that the agents learn to seek out high-reward

leaves and consequently solve the respective pole-balancing and landing tasks.

We are unable to achieve aligned learning in 2D Maze and RoboCar, although in the former,

the outcome is not as catastrophic as the learning curve suggests. As shown in the leaf/trajectory

plot h , the agent learns to solve most of the maze but is not incentivised to proceed to the goal

because the highest-reward leaf covers the entire upper third. This, we hypothesise, is evidence

of a causal confusion problem [247]: within the pilot dataset, almost all trajectories that reach

the upper third then go on to the goal, so the participants’ somewhat imprecise trajectory-level

preferences are unable to communicate that the latter step is necessary for high return. Another

contributing factor may be that participants struggle to avoid mentally extending trajectories

that come close to, without actually reaching, the goal, and thus do not su�ciently penalise

‘not-quite goal reaching’ behaviour with their preferences (this phenomenon is discussed and

modelled in [145]). The poor result in RoboCar can also be attributed to causal confusion, and

we investigate this as part of an interpretability analysis in Section 5.9.

For Pendulum, we include the preference loss curve i , showing the optimal pruned tree

size of 7 leaves. We also plot the alignment between true and predicted returns for pilot and

online trajectories j . This curve has a knee in the upwards direction, which may be because

the ground truth reward (Equation 5.17) is a smooth quadratic function while the tree only

gives high reward in the small localised region visible in the inset plot k (this reasoning is

the inverse of that given for Figure 5.8 d ). This suggests that, relative to the ground truth,

the participants may be too stringent in their interpretation of the balancing task, although

this does not harm agent performance. Finally, we show box plots of the agreement between

provided preference labels (inverted for values of 0-4) and ground truth return di↵erences l .

Preferences from participants of all expertise levels generally align with return, as they are

above the dotted line. Although the trend becomes slightly more pronounced for more certain

labels (closer to 10), this is far from clear-cut, suggesting that numerical preference strengths

are a less reliable signal than their binary directions. There is also a slight indication that those

with RL and AI expertise exhibit somewhat lower variance than non-experts.

143



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

5.7.2 Online Setting

Finally, we perform online reward tree learning using preferences provided by a single human

participant (the author of this thesis). To do this, we implement a graphical user interface to

collect preference labels over trajectories generated by an RL agent running locally on the same

machine. Mirroring the survey used in the o✏ine human experiment, the interface presents

trajectory pairs side-by-side as infinitely looping videos. Due to the labour-intensiveness of this

experiment, we focus on two environments: 2D Maze and LunarLander.

Both cases reveal the risk of prematurely freezing the reward tree structure. We initially

use Nmax = 100, as in the oracle-based experiments. Figure 5.10 a (dotted lines) shows that

the agents quickly converge to high return according to the learnt reward functions, but b

shows that after episode Nmax, this leads to a steady worsening of performance according to the

ground truth reward. This indicates that the reward structure has been frozen in a state that is

only partly aligned, such that further optimisation hinders, rather than helps, true performance.

This phenomenon is well understood and is known as reward hacking [126, 232]. Leaf projection

plots of the final trees for these runs show that for 2D Maze c , the maximum positive-reward

leaf is located around the goal region, but is ‘loosely’ targeted as it exceeds the true bounds of

the goal. The overlaid final trajectories show that the agent learns to seek out this high reward

but sometimes stops short of the goal itself. For LunarLander d , a similarly ‘loose’ reward

function is learnt that gives high reward for a vertical position close to zero, regardless of the

vertical velocity. The trajectory overlay shows that this reward function leads the agent to

maintain high negative velocity as it approaches the ground, which is recognised as a crash

landing by the ground truth reward function.

Since this phenomenon does not arise in the online oracle experiments, it is likely due

to a complicating feature of real human preference data. We hypothesise that humans may

adopt a nonstationary feedback strategy, which initially gives a favourable preference to any

trajectory that tends in a promising direction (i.e. towards the goal for 2D Maze, towards the

ground for LunarLander), even if the route there is imprecise, ine�cient or even unsafe as in

the LunarLander crash landings. Later, as the agent’s policy begins to improve, they adapt

their strategy to be more stringent about details in order to fine-tune the behaviour. There is

significant prior evidence of human feedback being a moving target in this way [144]. In our case,

freezing the reward trees at Nmax = 100 may be too early, giving the human insu�cient time

to shift to the fine-tuning regime. We note that the interpretability of reward trees, specifically

the ability to visualise their leaf geometry directly, was crucial in diagnosing this issue.

With the above hypothesis in mind, we complete a second run in each environment using

the same Kmax but a higher value of Nmax (300 for 2D Maze, 190 for LunarLander), thereby

distributing the preference budget over a larger fraction of the agent’s training, and providing

more time for the human’s feedback strategy to shift. We find that this resolves the reward

hacking problem. In each second run, ground truth return b almost matches the pilot agent

144



5.7. QUANTITATIVE PERFORMANCE: HUMAN PREFERENCES

Cumulative number of preference labels

Cumulative number of preference labels

−1.0 0.2

0
1.

6

10 190

2
20

0 200Episode number

0
20

0
L

ea
rn

t

0 200Episode number−
30

0
10

0
T

ru
e

Learning timeline (Run #2)

-0
.8

6
0.

891.
6

0

−1.0 0.2

-0
.2

5
0.

581.
6

0

−1.0 0.2

N
um

er
 o

f l
ea

ve
s

R
eg

ul
ar

ise
d 

pr
ef

er
en

ce
 lo

ss
0.

75
0.

0

Lunar
Lander 2 7 15 27 42 60 82 107 135 167 202 240 282 327 375 427 482 540 600

Episode 30: 4 leaves

L
ea

rn
t r

et
ur

n

Episode 100: 16 leaves

-0.25 0.58
Reward

Episode 190: 12 leaves

−
20

0
20

0

−1.0 0.2

0
1.

6

−
20

0
20

0

30 Episode number 100

−1.0 0.2

0
1.

6

−
25

0
25

0

−350 50True return −350 50

−350 50

Run #2

Run #1

10 300

2
20

0 400Episode number

0
20

0
L

ea
rn

t

Learning timeline (Run #2)

0 400Episode number

−
50

15
0

T
ru

e

Pilot agent

-0
.9

7
1.

2510
0 0

10

-1
.0

2
0.

8010
0 0

10

Episode number

N
um

be
r 

of
 le

av
es

R
eg

ul
ar

ise
d 

pr
ef

er
en

ce
 lo

ss
0.

8
0.

0

60056152348663 451417384353323294267241216193171150131113968167544333241 11 17

60 180

0 10

0
10

Episode 60: 17 leaves

True return

L
ea

rn
t r

et
ur

n

−200 200

−
20

0
40

0

0 10

0
10

−200 200

−
20

0
20

0
Episode 180: 10 leaves

-1.02 0.80
Reward

−200 200

−
20

0
20

0

Episode 300: 9 leaves

0 10

0
10

Run #2

Run #1

2D Maze

Run #1: Run #2:

Run #1: Run #2:

a

b

c

d

e

f

g

h i

Figure 5.10: Performance in online setting using human preferences; results with learning
timelines for 2D Maze and LunarLander.

145



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

from the o✏ine oracle experiment, with no sign of a performance dropo↵. For 2D Maze, the leaf

projection plot e reveals a much smaller area of maximum reward that does not exceed the

bounds of the goal region and thus incentivises the agent to enter it reliably. For LunarLander

f , we obtain a very di↵erent reward structure to the first run, which gives positive reward for

maintaining slow vertical velocity and negative reward for exceeding a velocity threshold of

�0.55, rather than merely rewarding reaching the ground. As the overlaid trajectories show,

this incentivises the agent to gradually decelerate as its height decreases, resulting in softer

landings that are not registered as crashes by the ground truth reward function.

For both environments, we show a learning timeline for the second run g . As in the oracle

experiments, we see the trend of tree size increasing to a maximum before stabilising at a

lower value. The checkpoints also show the relationship between the true and learnt return

becoming less noisy over time h and three intermediate leaf geometries that emerge during

training i . Notably, for LunarLander, the tree at the earliest of the three checkpoints (episode

30) is similar to the final result of the first run, in that it gives high reward for reaching the

ground, regardless of the vertical velocity. This suggests that the human’s velocity-agnostic

early feedback strategy is consistent across training runs but evolves away given su�cient time.

5.8 Summary of Key Findings

• With no exceptions, training SAC RL agents using reward trees gives rise to stable,

convergent policy learning. This remains true even as the tree is continually regrown and

pruned using online preferences, making the agent’s objective nonstationary.

• Using several hundred instances of oracle preferences based on ground truth reward

functions, our algorithm can reconstruct those reward functions su�ciently well to train

agents whose performance nearly matches that of agents with direct ground truth access.

• In most cases, the aggregated preferences of 62 human participants (o✏ine), as well those

of a single participant (online), yield learnt reward trees that are similarly well-aligned to

the ground truth. This is despite participants having no direct knowledge of the ground

truth, instead relying on their intuitive understanding of textual task descriptions.

• In the o✏ine setting, dataset biases can lead to causal confusion, where learnt reward

trees incentivise transitions that commonly appear alongside high-reward behaviours, as

well as the behaviours themselves. Careful rebalancing of training data, or moving to an

online learning setup, may help to mitigate this problem.

• When learning from real human preferences in the online setting, the main failure mode

is reward hacking due to freezing the reward tree prematurely in a ‘loosely’ aligned state

reflecting the human’s temporary early feedback strategy. Increasing Nmax gives more

time for the human to shift to a fine-tuning strategy.

146



5.9. INTERPRETABILITY ANALYSIS

5.9 Interpretability Analysis

The analyses of leaf projection plots and learning timelines in Sections 5.6 and 5.7, which

provide insight into the learnt reward functions and their e↵ect on RL agent behaviour, are an

initial hint at the interpretability benefits of using tree-structured models for reward learning.

They have enabled us to diagnose the sources of misalignment in some cases, verify success in

others, and generally build an understanding of how our algorithm operates. In this section,

we make the interpretability of reward trees our primary focus and present a selection of

other visualisations and analyses that are made possible by their adoption. Favouring depth

over breadth, we narrow our scope to two specific reward learning runs from the preceding

experiments: one failure case and one success case.

5.9.1 Failure Case: RoboCar using O✏ine Human Preferences

This reward tree was learnt from the aggregated preferences of the 62 survey participants. As is

visible in Figure 5.9 m , it leads to policies that sometimes reach the goal as desired, but other

times make no progress towards the goal and appear to seek only to maintain a vertical position

close to zero. We can diagnose this misalignment by examining the reward tree diagram, shown

in Figure 5.11 a , where leaves are coloured by their reward predictions.

Here, the features used for splitting are vertical position pos
y, distance to goal dist, and

bearing to goal in radians ✓. The mostly-symmetric treatment of posy and ✓ about zero is itself

correct because the environment has inherent symmetry in these dimensions. The first two

splits also appear well-aligned, creating a leaf with maximum reward for achieving dist < 1.16

(leaf 1) and a smaller positive reward for dist < 5.84 (leaf 2). However, the remaining splits

are problematic, creating leaves that penalise moving out of the region pos
y 2 [�1.64, 1.68)

and, otherwise, reward a bearing outside of ✓ 2 [�2.15, 2.18) (i.e. facing away from the goal).

To understand this, consider the design of the environment. In each episode, the goal position

is randomised, but the car is initialised at posy = 0 and facing to the right, making it easier

to reach the goal when it is also to the right. Hence, many goal-reaching trajectories in the

pilot dataset (especially those from early in the pilot’s learning) show the car driving directly

forward, rarely exiting a narrow corridor around pos
y = 0. The splits to penalise large absolute

pos
y are thus an example of causal confusion, in which behaviour correlating with a high-reward

outcome is mistaken for deserving high reward in itself, and would likely not appear if the

environment were di↵erently initialised or the dataset better balanced.

We can give a similar, if subtler, causal confusion interpretation of the ✓-based splits. Of

these, the first two splits create positive-reward leaves for ✓ � 2.18 or ✓ < �2.15 and negative

reward otherwise. An agent is thus rewarded for facing away from its goal, which is heavily

misaligned. The near-exact symmetry of these two splits implies that they are also due to

a reliable feature of the environment rather than a statistical fluke, and our diagnosis is as

147



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

follows. In RoboCar, the agent must learn to navigate the car around four obstacles to reach

the goal. In the pilot dataset, many successful goal-reaching trajectories feature the car initially

moving away from the goal to bypass an obstacle. As a result, many transitions in trajectories

with favourable human preferences fall outside of the ✓ 2 [�2.15, 2.18) region. Meanwhile,

many non-preferred trajectories involve the car driving directly at the goal and becoming stuck

against an obstacle for many timesteps in a row. Thus, if the car is both far from the goal (i.e.

dist � 5.84) and facing towards it (✓ 2 [�2.15, 2.18)), it is statistically more likely that this

transition is a member of a low-return trajectory than a high-return one. The opposite is true

for timesteps spent facing away from the goal. This leads our algorithm to fall foul of causal

confusion by creating a tree that rewards facing away from the goal, a circumstance which

merely correlates with high true return (in the pilot dataset) rather actively than driving it.

An aligned solution to this problem would be to split on the obstacle contact indicator feature

c
o instead, creating a leaf that penalises collisions directly. It is not entirely clear why this option

is not taken, but it may be that the human survey participants are not su�ciently consistent

in their treatment of obstacle contact in their responses. Moving to an online learning setup

may help to reduce the likelihood of such confusion persisting, as it provides an opportunity for

the human(s) to reactively penalise early examples of behaviour that resulted from it. We are

unable to meaningfully diagnose the final asymmetric split at ✓ = �0.676, which suggests that

this is likely due to a random statistical imbalance in the pilot dataset.

The heatmaps b , c and d provide fine-grained insight into the e↵ect of the misaligned

reward tree on the learning dynamics of one of the five RL training runs. b represents the

number of timesteps spent in each leaf over the 1000-episode training history. Scaling this

matrix by leaf rewards, we obtain c , which gives per-episode return from each leaf, and can

be understood as a decomposed learning curve. Summing c column-wise gives d , the total

return for each episode, which equates to a conventional learning curve. From these, we find that

the agent quickly (by episode 50) learns to avoid negative-reward leaves 3 and 8, inducing an

early bias towards exiting the pos
y 2 [�1.64, 1.68) corridor. With this bias in place, exploration

is curtailed, and the agent largely settles into the moderate positive rewards of leaves 4 and 7.

Although there is a gradual increase in visitation to leaf 1 (the one corresponding to reaching

the goal) in the first half of training, the agent never completely prioritises this leaf, with

visitation peaking around episode 700 before dropping o↵ again. In e , we harness the tree’s

rule-based structure to construct textual report cards for two episodes near the end of training

(950 and 975), which use rules to describe the subsets of feature space that are visited. While

both are in the top 10% of episodes by performance on the learnt reward, the former is aligned

(obtaining positive reward from leaves 1 and 2) while the latter is not (staying entirely in leaf 6,

thereby driving straight ahead despite the goal being behind it).

In summary, this subsection shows how the rule-based structure of a reward tree, and

the implicit reward decomposition that it induces, allow us to identify both the causes of

148



5.9. INTERPRETABILITY ANALYSIS

Leaf 1: reward = 0.613

False True

Leaf 2: reward = 0.0467

Leaf 8: reward = -0.565

Leaf 3: reward = -0.458

Leaf 7: reward = 0.254

Leaf 4: reward = 0.149

Leaf 5: reward = -0.41 Leaf 6: reward = -0.0497

Episode 950: total return = 62.7

- Leaf
- Leaf
- Leaf

104 timesteps ( dist < 1.16 )
39 timesteps ( 1.16 <= dist < 5.84 )
57 timesteps ( dist >= 5.84,
-1.64 <= posy < 1.68, -0.676 <= β < 2.18 )

1
2
6

Episode 975: total return = 50.9

- Leaf 200 timesteps ( dist >= 5.84,
-1.64 <= posy < 1.68, β >= 2.18 )

7

a

d

e

975
Episode number

1
2

L
ea

f n
um

be
r

3
4

5
6

7
8

Timesteps spent in each leaf 0 H = 200

9500 50 700

Total return (sum over leaves) -100 71
1

2
L

ea
f n

um
be

r
3

4
5

6
7

8

-82 82Return per leaf (timesteps    reward)

b

c

Leaf reward

Figure 5.11: Tree diagram and other visualisations for a failure case in RoboCar.

misalignment and their e↵ects on individual episodes and long-term learning trends. In the

particular case analysed, correlations in the o✏ine dataset create a causal confusion e↵ect,

leading the reward tree to perversely incentivise keeping the car in a horizontal corridor, and

even driving away from the goal location. It is important to note that traditional reward

learning models, including neural networks, are susceptible to causal confusion [247], but their

uninterpretable structures may make this harder to identify. Hence, even in failure, reward tree

learning can o↵er significant benefits for verification and validation.

5.9.2 Success Case: 2D Maze using Online Oracle Preferences

In this run (randomly selected from the five repeats), we achieve aligned reward and policy

learning. For the first Nmax = 100 episodes, a batch of preference labels is obtained at intervals

of Nbatch = 10, and the tree structure is updated by growth and pruning. Hence, 10 updates

are performed in total. Figure 5.12 a depicts the net changes resulting from each update using

both leaf projection plots and a directed graph of the split/prune dependencies between leaves

from update to update. Note that the graph does not represent all split and prune operations

made within each update step, but rather the aggregate change between the tree structures

before and after the update. These plots reveal key events in the iterative learning of the reward

tree, which may be of value to model developers and other technical experts.

149



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

Such events include the pruning of four leaves in update 4, which indicates that these leaves

are no longer su�ciently beneficial for preference loss reduction to outweigh the increased

regularisation penalty. This pruning step removes a misaligned leaf, which had given high

reward for entering the top-left corner of the maze, and may have negatively impacted agent

learning if left unpruned. Also of note is the corrective splitting, pruning, and re-splitting (at a

di↵erent threshold) of a leaf between updates 8 and 10, yielding the final maximum-reward

leaf 9 whose hyperrectangle boundaries (horizontal position pos
x � 7.95, vertical position

pos
y � 8.06) line up almost exactly with the goal region (posx � 8, posy � 8). This example

demonstrates how gathering more preferences enables more accurate reconstruction of a ground

truth reward function, and how iterative tree updates can undo and correct previous split

decisions to improve alignment. In update 6, the tree structure is left entirely unchanged (i.e.

the optimal pruned tree is identical to the one from which growth is started). However, the

reward assigned to each leaf is updated to reflect the latest set of trajectory return estimates.

From update 2 onwards, leaf 1 (posx < 7.95, posy < 3.83, which covers most of the penalty

region) is persistent, being neither split nor pruned. However, its reward estimate is continually

refined as preference labels arrive, a process visualised in b . For each update, every trajectory

⇠
i that has been labelled so far (of which there are more for later updates) is shown as a

black horizontal line, whose vertical position corresponds to its trajectory-level return estimate

gi and whose length is proportional to the time spent in leaf 1. The leaf reward estimation

method described in Section 5.3.2 e↵ectively computes a length-weighted average over these

line positions, and the results for all updates are overlaid. The shaded area corresponds to the

square root of the leaf’s impurity at each update, which is also the standard deviation of the

reward estimate itself. Overall, the reward remains relatively stable over time, even as new

trajectories arrive, and new preferences change the estimated returns of existing ones. This

indicates that for this particular leaf, relatively few preferences are required to obtain a good

reward estimate. That said, the period between updates 2 and 10 sees a slight increase in the

estimate, and a gradual reduction in the impurity, as more trajectory pairs are labelled.

c depicts the diagram of the frozen 9-leaf tree used for the final Nconv = 300 training

episodes, and d shows the timesteps spent in each leaf throughout this period. As of episode

100, roughly equal time is spent in leaf 2 (medium reward; covers most of the upper part of the

maze) and leaf 9 (high reward; corresponds almost exactly to the goal region). However, the

latter comes to dominate around episode 250, indicating that from this point onwards, the agent

consistently and rapidly solves the maze navigation problem. The occasional failures near the

end of learning occur when the agent spends an unusual amount of time in leaf 1 (highlighted

as e ). This is likely due to it becoming stuck underneath the lower wall of the maze. Note

that this visualisation provides similar insight to the marginal abstract state visitation plots in

Chapter 4 (e.g. Figure 4.8 b ), but has additional semantics because of how reward tree leaves

directly determine the reward that the agent receives.

150



5.9. INTERPRETABILITY ANALYSIS

d

Leaf 1: reward = -0.764 Leaf 2: reward = 0.13

Leaf 5: reward = -0.378

Leaf 3: reward = -0.976

Leaf 4: reward = -0.541 Leaf 6: reward = -0.44 Leaf 7: reward = 0.535 Leaf 8: reward = 0.848 Leaf 9: reward = 1.10

False True

Episode number 400100

1
2

L
ea

f n
um

be
r

3
4

5
6

7
8

9

Timesteps spent in each leaf 0 H = 200

250

e

Update 1 Update 2 Update 3 Update 4 Update 5 Update 6 Update 7 Update 8 Update 9 Update 10 

Split leaf 1 at posx = 7.95 

8
1

2
3

4
5

6
7

9
10

-1
.1

2
1.

30

No splits/prunes madePrune leaves 2-5 Split, prune then re-split same leaf

L
ea

f 1
 r

ew
ar

d 
es

tim
at

e

00 H=200 H 0 0 0 0 0 0 0
−1.6
−1.2
−0.8
−0.4

0.0
0.4
0.8

Goal

+
/–

L
ea

f n
um

be
r

T
ra

je
ct

or
y 

re
tu

rn
 e

st
im

at
es

Timesteps spent in leaf 1

a

b

c

R
ew

ar
d

H H H H H H H

an
d

sq
rt

 (l
ea

f 1
 im

pu
ri

ty
)

Figure 5.12: Tree diagram and other visualisations for a success case in 2D Maze.

In summary, while the preceding subsection explored the value of reward tree interpretability

for diagnosing failures, this subsection shows how it helps us to verify success by monitoring

the temporal interactions between agent and reward learning. The two novel visualisations a

and b deliver interpretability not merely of the final tree structure, but also of the algorithmic

process by which it is generated, and of the changes in agent behaviour that it induces. An

extension of this analysis would be to attribute changes in tree structure, such as those depicted

in a , to the arrival of individual preferences. This may highlight when preferences are especially

influential or inconsistent. When learning from real human preferences, it may provide a route

to understanding temporal changes in the human’s feedback strategy, of the kind discussed in

Section 5.7.2. In the next chapter, we propose a preliminary method for measuring the influence

of individual preferences on reward tree predictions.

151



CHAPTER 5. TREE MODELS OF HUMAN PREFERENCES

5.10 Conclusion

In this chapter, we have taken a perspective on agent interpretability that di↵ers from earlier

chapters. We began by noting the growing interest in the reward alignment problem, the

popularity of human-in-the-loop approaches to tackling it, and the lack of prior emphasis

on interpretability in this area. From this starting point, we proposed to use trees to learn

reward functions from human preference feedback. These reward trees provide an interpretable

bridge between human preferences and agent behaviour, enabling each to be described and

explained in terms of the other. Building on the notational and algorithmic tools established in

earlier chapters, we described a novel method that learns a reward tree from preferences and

(subsequently or concurrently) trains an RL agent with the tree as its objective. In experiments

with real and synthetic human preference data, we demonstrated successful learning of compact

and well-aligned reward trees across four environments, alongside informative and actionable

failure cases due to causal confusion in the o✏ine setting and premature reward freezing (paired

with human nonstationarity) in the online setting. We then showed the value of interpretability

for exploring and debugging the learnt reward structure. The models and experiments in this

chapter have several limitations, which create opportunities for further work:

• Our current method learns only from pairwise trajectory preferences, which are popular

in the literature, but it would be valuable to generalise it to multiple kinds of feedback

signal such as manual demonstrations, state- or trajectory-level approval labels, or local

action corrections. We suspect that implementing this multimodality is tractable because

all such feedback modes can be given a common mathematical formalism [131].

• Our human experiments assessed the method’s ability to learn from real user preferences

but did not ‘close the loop’ to see how those same users would interpret and evaluate the

resultant reward trees. In particular, it would be informative to see if non-experts could

identify flaws and omissions in reward tree structures, and correct them through targeted

(potentially multimodal) feedback.

• Although promising results have been obtained, the current reward tree growth and

pruning stages could likely be refined to improve performance. In the next chapter, we

adopt a new split criterion that directly works to minimise the preference loss.

• While our experiments considered various environments and tasks, they were all relatively

simple benchmarks. It is important to assess the scalability of reward tree learning to

more complex, high-dimensional problems. This is also a focus of the next chapter.

Finally, we wish to highlight the work of Kalra and Brown [135, 136], which explicitly builds

on our own to learn di↵erentiable reward trees from trajectory preferences. These models use

general (i.e. non-axis-aligned) hyperplane rules with ‘soft’ activation functions that route inputs

down all branches of the tree with nonzero probability. As a result, they are more expressive

152



5.10. CONCLUSION

than our reward trees and may require less feature engineering to achieve good performance.

Early results are promising. However, di↵erentiable trees require a fixed number of leaves

to be specified a priori rather than adapting in size via growth and pruning. Their complex

parameter structure and probabilistic prediction mechanism also make them significantly harder

to interpret. Since di↵erent use cases have di↵erent priorities in the tradeo↵ between performance

and interpretability, this proposal for a semi-interpretable model is welcome.

153





Chapter 6

A Use Case for Reward Trees

Based on: “Learning Interpretable Models of Aircraft Handling Behaviour by Reinforcement Learning

from Human Feedback”, accepted for presentation at 2024 AIAA SciTech Conference.

6.1 Introduction

The preceding chapter established the basic e�cacy of preference-based reward tree learning

in simple environments, including popular benchmarks. In this chapter, we apply the method

to a more challenging, industrially-motivated use case in the aviation domain. In the process,

we make methodological changes which improve performance, and develop a more extensive

pipeline for quantitative and qualitative evaluation. We also explore additional directions for

exploiting the interpretability of the reward tree architecture. As a result, this chapter makes a

number of contributions beyond those of the preceding one:

• The identification of a realistic pathway for interpretable reward learning to address a

concrete industrial need. While this specific use case happens to be in the aviation domain,

we suspect that it is representative of a more general class of cross-industry applications.

• Several targeted changes to bring our method more in line with prior reward learning work

and improve learning outcomes. In particular, we find that adopting a novel split criterion

during tree growth significantly improves quantitative and qualitative performance.

• The integration of reward tree learning with a model-based RL agent, which greatly

accelerates learning and enables a mechanism for explaining action selection that is

synergistic with the reward tree architecture.

• A more thorough evaluation pipeline, involving a range of performance metrics that can

be compared across tasks, a qualitative review of learnt behaviours, and a sensitivity

analysis with respect to data availability and biased or noisy preferences. Throughout,

the performance of reward trees is baselined against the de facto standard approach of

reward learning using neural networks.

155



CHAPTER 6. A USE CASE FOR REWARD TREES

• In light of this evaluation, positive empirical evidence that reward learning can be done

e↵ectively using interpretable tree models, even in complex, high-dimensional continuous

environments. Trees are found to be broadly competitive with neural networks on both

quantitative metrics and qualitative assessments, and exhibit equal or better robustness

to limited or corrupted preference data.

• A further exploration of interpretability methods, including a novel way of combining

reward trees and model-based RL to explain agent action selection.

The suite of evaluations in this chapter require a large quantity of preference data for

several tasks in our simulated aviation domain. Since collecting such data from real pilots

and aviation experts would be costly and logistically complex, all experiments use synthetic

preferences with respect to nominal oracle evaluator functions of varying complexity. As noted

in the previous chapter, using oracles as a proxy for human evaluators is popular because it

enables the definition of ground truth performance metrics. However, emulating a human with

an oracle that responds with perfect rationality is unrealistic [153]. It is for this reason that

we move beyond the approach of the previous chapter to examine the performance impacts

of noisy and myopic oracles in the sensitivity analysis. Nonetheless, an evaluation with real

human experts is an important direction for future work.

6.2 Aircraft Handling Use Case

6.2.1 Motivation

Pilots of fast jet aircraft require exceptional handling abilities, acquired over years of advanced

training. There would be significant practical value in a method capable of distilling the skills,

knowledge and preferences of pilots and other domain experts into a software model that

captures realistic handling behaviour. The scalability of such a model would make it useful for

strategic planning exercises, training, and development and testing of other software systems.

This would enable greater return from the scarce resource of human piloting expertise.

This vision is bottlenecked by the practical challenge of accurately eliciting the desired

knowledge for codification into an automated system [56]. As in many contexts requiring intuitive

decision-making and rapid motor control, the preferences of experts about what constitutes safe

and e↵ective aircraft handling behaviour are in large part tacit, and thus defy direct scrutiny

or exact verbal description [236]. Put simply: experts know good handling when they see it,

but cannot always express why in formal or linguistic terms. Even in cases where preferences

do appear to be explicit (e.g. industry-standard heuristics with a rule-like form), it is debatable

whether these simple generalisations should always be adopted when implicit expertise may

suggest otherwise. Such contradictions are especially likely to arise in rare and dangerous edge

cases, and blind adoption of the presumed explicit knowledge into the objective function of

an automated system risks inducing a paradigmatic example of misalignment. An explicit

156



6.2. AIRCRAFT HANDLING USE CASE

knowledge elicitation strategy would also likely be time-intensive, as would any approach relying

on expert demonstration. This motivates a learning-based approach to infer the structure of

implicit expert preferences from a sparser data source.

In light of the importance of transparency for safety-critical aviation applications [35, 214],

it is crucial that any such approach learns an interpretable model of the expert knowledge, to

facilitate trust and verification. As we argued in the previous chapter, neglecting interpretability

would be problematic for any realistic application of learning from humans, and this is especially

true in an industry with such a justifiably strong culture of safety. Under current working

practices and regulatory frameworks, an uninterpretable black box model, such as a deep neural

network, would stand a poor chance of widespread adoption.

Consider how preference-based reward tree learning can provide a possible solution to the

preceding brief. Assuming the online context, we use an artificial RL agent to generate a dataset

of simulated fast jet flight trajectories, then consult an expert to obtain pairwise preferences

over those trajectories, indicating which is preferred as a solution to a given task of interest

(e.g. turning to follow another aircraft, or landing on a runway). We then use our multi-stage

learning algorithm to construct an interpretable explanatory model of the gathered preferences

in the form of a rule-based tree structure. In turn, the tree is used as a reward function to train

the agent to generate higher-quality trajectories, and the process is iterated to convergence.

The end result is two distinct outputs that could form valuable components of future planning,

training and development software:

1. A reward tree, which captures tacit expert preferences over fast jet handling behaviours

in a human-readable form. The tree may be used for consistent automated scoring of

flight trajectories executed by human or artificial pilots in a way that is aligned with the

judgement that the original expert would have made, alongside an explanatory rationale

that can be used to justify, verify and improve handling behaviour.

2. An RL agent capable of executing high-quality handling with respect to the objective

specified by the reward tree, for use in simulation (e.g. as a demonstrator for pilot training).

Driven by this strong motivation, this chapter uses fast jet handling as a representative case

study for how reward tree learning may be used to address a concrete industrial need.

Prior work has seen widespread adoption of RL for aviation [15, 164, 206]. It has been used

to learn landing [243] and aerobatics [48] behaviours for fixed-wing aircraft, as an alternative or

supplement to learning from costly human demonstrations [36, 181]. Other work has retained

a focus on learning from and with humans, using RL to predict pilot interactions in an

airspace [270], implement shared autonomy for single aircraft control [259], and simulate student

learning dynamics in pilot training [255]. As in most other contexts, aviation applications of RL

have typically required rewards to be heuristically (thus potentially erroneously) defined rather

than flexibly learnt, and lack interpretability of the underlying model. Our approach is a novel

integration of humans into the RL process that is both e↵ective and intrinsically interpretable.

157



CHAPTER 6. A USE CASE FOR REWARD TREES

6.2.2 Implementation

To formalise the fast jet handling problem in a way that is compatible with RL and reward

learning, we consider a simple set piece setup, in which the piloting agent is given a short time

window (i.e. an episode) to manoeuvre its aircraft (the ego jet, EJ) in a particular manner

relative to a second reference jet (RJ) whose motion, if any, is considered part of the environment

dynamics. The state space S contains the positions, attitudes, velocities and accelerations

of both EJ and RJ, and the action space A consists of pitch, roll, yaw and thrust demands

for EJ only. The EJ dynamics function integrates these demands with a simplified physics

engine, including gravity and air resistance. RJ dynamics, as well as the conditions of episode

initialisation and termination, vary between tasks as described below.

This set piece formulation strikes a balance between simplicity and generality; many realistic

scenarios faced by a fast jet pilot involve interaction with a single other airborne entity. It

provides scope to define many alternative tasks given the same state and action spaces and

largely unchanged dynamics. In this work, we consider the three tasks shown in Figure 6.1:

• Follow: RJ follows a linear horizontal flight path at a constant velocity, which is oriented

opposite to the initial velocity of EJ. The task is to turn onto and then maintain the

flight path up to the episode time limit of 20 timesteps (⇡ 20 seconds, as timesteps are at

approximately 1Hz). This constitutes a very simple form of formation flight.

• Chase: RJ follows an erratic trajectory generated by random control inputs, and the

task is to chase it, maintaining a target distance and line of sight, without taking EJ

below a safe altitude. Episodes terminate after 20 timesteps.

• Land: The task is to execute a safe approach towards landing on a runway, where RJ

represents the ideal landing position (central, zero altitude, slight upward pitch). EJ is

initialised at a random altitude, pitch, roll and o↵set, such that landing may be challenging

but always physically possible. An episode terminates if EJ passes RJ along the axis of

the runway, or after 25 timesteps otherwise.

Ego Jet Action: pitch,
roll, yaw, thrust
demands for EJ

RJ

EJ

Follow

RJ

EJ

Chase RJ

EJ

Land

Reference Jet

State: pose
information
for both
EJ and RJ

Proceeds
along linear
flight path

Task: turn
onto same
flight path
and match

speed

Represents
a target
touchdown
pose Task: execute a

stable approach
path, ending at

 target pose

Flies
subject to
random
control
input

Task: stay
close to RJ

with line
of sight;

keep safe
altitude

Figure 6.1: State-action space of aircraft handling domain, and diagrams of all three tasks.

The central thesis of the present work is that there exists no unambiguous model of good

aircraft handling behaviour for such tasks. For instance, experts may agree that the Chase

task involves a tradeo↵ between speed of response and smoothness of flight, but may also have

158



6.3. METHODOLOGICAL IMPROVEMENTS

nebulous and divergent definitions of these properties and their relative importance. However,

to quantitatively evaluate our method, we retain the artificial construct of synthetic oracles

based on ground truth reward functions, as proxies for real human evaluators. The oracles refer

to their reward functions when providing evaluative preference feedback to our reward learning

method, as described in the previous chapter. The precise nature of the oracle reward functions

is somewhat arbitrary, and those given below are among many equally plausible alternatives,

but we dedicated several hours of development time to ensuring they incentivise reasonable

behaviour upon visual inspection. The di�culty and subjectivity of such a manual reward

design process is precisely why reward learning (ultimately from real human preferences) is

a compelling proposition. The oracles are all defined using a common set of transition-wise

features �(st�1, at�1, st) = R
D, which are enumerated and described in Table 6.1 (overleaf):

• Follow: The oracle prioritises closing the distance between EJ and RJ, and matching

their upward axes:

Rfollow = �(dist+ 0.05⇥ closing speed+ 10⇥ up error).

• Chase: The oracle prioritises keeping RJ at a distance of 20 and within EJ’s line of sight,

while keeping EJ oriented upright. It also has a large penalty for dropping below a safe

altitude of 50 (recall that [ · ] is Iverson bracket notation for the indicator function):

Rchase = �(abs(dist� 20) + 10⇥ los error+ 5⇥ abs roll+ 100⇥ [ alt < 50 ]).

• Land: The oracle for this task is the most complex, including terms that incentivise

continual descent, penalise g-force and engine thrust, and punish EJ for contacting the

ground before the runway [ alt < 0.6 ]:

Rland = �(0.05⇥ abs lr offset+ 0.05⇥ alt+ hdg error+ abs roll

+0.5⇥ pitch error+ 0.25⇥ (yaw rate+ roll rate+ pitch rate) + 0.1⇥ g force

+0.025⇥ thrust+ 0.05⇥ delta thrust+ [ delta dist hor > 0 ]

+2⇥ [ delta alt > 0 ] + [ abs lr offset > 10 ] + 10⇥ [ alt < 0.6 ]).

6.3 Methodological Improvements

At the point of conception of this use case, our method for reward tree learning was identical

to that described in the previous chapter. However, over the course of this work, several

methodological changes have been found to either increase performance on the aircraft handling

tasks, improve computational e�ciency or bring our model into closer alignment with mainstream

reward learning frameworks. The fact that the incentive to improve our method arose once we

started to explore this use case illustrates one benefit of investigating larger scale problems in

addition to typical benchmarks. This section describes and justifies the changes. Any aspects of

the original method that are not revisited in this section have been left unchanged.

159



CHAPTER 6. A USE CASE FOR REWARD TREES

Table 6.1: Features used by oracles and reward learning models. Apart from those with “delta”
or “rate”, all features are computed over the latter of the two states in each transition, st.

dist Euclidean distance between EJ and RJ
closing speed Closing speed between EJ and RJ (negative = moving closer)

alt Altitude of EJ
alt error Di↵erence in altitude between EJ and RJ (negative = EJ is lower)

delta alt error Change in alt error between st�1 and st

dist hor Euclidean distance between EJ and RJ in horizontal plane
delta dist hor Change in dist hor between st�1 and st (negative = moving closer)
pitch error Absolute di↵erence in pitch angle between EJ and RJ

delta pitch error Change in pitch error between st�1 and st

abs roll Absolute roll angle of EJ
roll error Absolute di↵erence in roll angle between EJ and RJ

delta roll error Change in roll error between st�1 and st

hdg error Absolute di↵erence in heading angle between EJ and RJ
delta hdg error Change in hdg error between st�1 and st

fwd error Angle between 3D vectors indicating forward axes of EJ and RJ
delta fwd error Change in fwd error between st�1 and st

up error Angle between 3D vectors indicating upward axes of EJ and RJ
delta up error Change in up error between st�1 and st

right error Angle between 3D vectors indicating rightward axes of EJ and RJ
delta right error Change in right error between st�1 and st

los error Angle between forward axis of EJ and vector from EJ to RJ
(measures whether RJ is in EJ’s line of sight)

delta los error Change in los error between st�1 and st

abs lr offset Magnitude of projection of vector from EJ to RJ onto RJ’s rightward axis
(measures left-right o↵set between the two aircraft in RJ’s reference frame)

speed Airspeed of EJ
g force Instantaneous g-force experienced by EJ

pitch rate Absolute change of EJ pitch between st�1 and st

roll rate Absolute change of EJ roll between st�1 and st

yaw rate Absolute change of EJ yaw between st�1 and st

thrust Instantaneous thrust output by EJ engines
delta thrust Absolute change in thrust between st�1 and st

6.3.1 Trajectory-Level Return Estimation

In the previous chapter, we define the proxy objective for this stage as:

(6.1) argmin
g2RN

h X

(i,j)2L

`(Pr(⇠j � ⇠i|g))
i
, where Pr(⇠j � ⇠i|g) = f(gj � gi).

We then go on to adopt Thurstone’s Case V preference model f(z) = �(z) and Mosteller’s

least squares loss `(p) = (f�1(1� ")� f
�1(p))2. Although this loss function enables an exact

solution via matrix inversion, early experiments in the aircraft handling environment found

that it introduces a ‘squashing’ bias to the return estimates of the most and least preferred

trajectories in a preference dataset (i.e. those with the most extreme ground truth returns,

assuming noise-free preferences). The bias may be especially strong in this environment, where

extremely poor trajectories (e.g. crash landings) are possible. A toy example of this phenomenon

160



6.3. METHODOLOGICAL IMPROVEMENTS

Least squares matrix method

Ground truth return

R
et

ur
n 

es
tim

at
e

a

NLL gradient method

Ground truth return

R
et

ur
n 

es
tim

at
e

b

Figure 6.2: Comparison of old (least squares matrix) and new (NLL gradient) methods of
trajectory-level return estimation for a toy example of Kmax = 1000 noise-free oracle preferences
over Nmax = 100 trajectories with normally distributed ground truth returns. 20 repeats
completed; all results plotted as scatter points.

is visible in the sigmoidal profile of Figure 6.2 a .

Recall that the least squares loss encourages each preference in the dataset to be predicted

with probability 1�" (= 0.9, with " = 0.1). This can be perverse because it penalises probabilities

higher than this value, even between trajectory pairs whose ground truth returns lie on opposite

ends of the distribution in the dataset. As a result, the estimates for such extreme trajectories

tend to be pulled closer towards the mean than they are on the ground truth.

The above leads us to hypothesise that the squashing bias can be mitigated by a loss function

that (unlike the least squares loss) is monotonically non-increasing in predicted preference

probabilities. A natural choice for this is the negative log-likelihood `(p) = � log(p). No exact

matrix method exists for this loss, but it can be approximately minimised by gradient-based

optimisation (we use the Adam optimiser [142]). As shown by the example in Figure 6.2 b ,

switching to this loss function and optimisation method leads to both reduced sigmoidal

squashing and a narrower local spread in the return estimates, in this case yielding an increase

in the coe�cient of determination from 0.898 to 0.949. In light of this reduction in both bias

and variance, we adopt this method for trajectory return estimation throughout this chapter.

Additionally, we switch from the Thurstone link function f(z) = �(z) to the Bradley-Terry

model [30], which uses the logistic function f(z) = 1/(1 + exp(�z)). Aside from being faster to

compute (� is a special function, requiring complex numerical approximation), this change has

a minimal e↵ect as the two models usually give near-identical results [128]. Our main reason

for adopting it is theoretical consistency with prior work, which almost exclusively uses both

the Bradley-Terry model and the negative log-likelihood loss [44, 126, 154].

Finally, we post-process the vector of return estimates g to have unit standard deviation

and a consistent sign (i.e. all values are either non-negative or non-positive). The downstream

e↵ect is for leaf-level reward estimates to have magnitudes on the order of 1, with the same

consistency of sign. This has no impact on predicted preference orderings, which are invariant

to positive a�ne transformations of this kind. However, we find it brings two distinct benefits:

• Preventing perverse incentives for RL agents trained with reward trees to terminate or

elongate episodes in tasks with termination conditions (negative rewards on non-terminal

161



CHAPTER 6. A USE CASE FOR REWARD TREES

transitions incentivise termination, while positive rewards incentivise elongation).

• Simplifying the manual interpretation of tradeo↵s between rewards from di↵erent leaves

of a tree (understanding the relative impacts of “more of a negative reward” and “less of

a positive reward” requires the awkward mental juggling of negatives).

For the aircraft handling task with a termination condition (Land), we use negative rewards

(max = 0 constraint) to disincentivise episode elongation, because termination is generally

indicative of success. For the fixed-length tasks (Follow and Chase), we default to using positive

rewards (min = 0 constraint). Although this is arbitrary, our experience is that positive rewards

make for more intuitive interpretation of reward tree structures. We stress that this is anecdotal;

the relative interpretability of di↵erently-signed rewards is worthy of deeper investigation.

6.3.2 Tree Growth and Pruning

Recall that all tree growth methods in this thesis make use of some split quality criterion, which

is greedily maximised with respect to the leaf to be split x 2 X , the feature d 2 {1, . . . D} and

the threshold c 2 R. In the previous chapter, we based our criterion on the variance in the

return estimates of trajectories that pass through each leaf (see Equation 5.8), thereby making

the reward tree growth stage functionally equivalent to CART. While very fast to compute,

this criterion is only loosely aligned with the ultimate objective of reward learning, which is to

learn a good predictive model of human preferences. For this reason, it seems intuitive that

performance could be improved by adopting the more direct criterion of greedily minimising a

preference loss over the dataset, and this indeed turns out to be the case.

Resurrecting a piece of notation from Section 4.3.1, let X ! (x, d, c) denote the enlarged

tree that would result from adding the split parameterised by x, d and c to an extant tree X .

A split criterion based on direct preference loss reduction can be expressed as follows:

(6.2) argmin
x2X , 1dD, c2Cd

h X

(i,j)2L

`(Pr(⇠j � ⇠i|RX!(x,d,c)))� `(Pr(⇠j � ⇠i|RX ))
i
,

where (as per in Equation 5.11) the loss for each preference can be decomposed as

`(Pr(⇠j � ⇠i|RX )) = `(f(
P

x2X reward(x)⇥ (|{fj
t
2 ⇠j : fj

t
2 x}|� |{fit 2 ⇠i : fit 2 x}|))).

We first tried implementing this criterion with the negative log-likelihood loss `(p) = � log(p)

and the Bradley-Terry model f(z) = 1/(1+exp(�z)), which are used in our improved trajectory

return estimation method as well as most prior work, but found this to be very computationally

costly and prone to overfitting. Instead, we follow Wirth et al. [266] in adopting a discrete 0-1

loss, which considers only the directions of predicted preferences rather than their strengths:

(6.3) `0-1(p) = [ p < 0.5 ], or equivalently, `0-1(f(z)) = [ z < 0 ].

Note that we use the subscript to di↵erentiate this loss as a special case, and that the

latter equation holds because link functions f are always non-decreasing, with a constraint

162



6.3. METHODOLOGICAL IMPROVEMENTS

f(z) + f(�z) = 1, so that f(0) = 0.5. As a result, the `0-1 loss is invariant to the choice of f ,

so we can bypass using one entirely (which reduces computational overhead). Instead, we can

write the loss for a pairwise trajectory preference ⇠j � ⇠i as follows:

(6.4) `0-1(Pr(⇠
j � ⇠i|RX )) = [ (

P
x2X returndi↵(x, i, j)) < 0 ],

where returndi↵(x, i, j) = reward(x)⇥ (|{fj
t
2 ⇠j : fj

t
2 x}|� |{fit 2 ⇠i : fit 2 x}|) is shorthand for

the di↵erence in return that ⇠i and ⇠j obtain from leaf x. If the sum of these di↵erences across

the tree is negative, the loss for the preference is 1. Otherwise, the loss is 0. When evaluating

the splitting of a leaf x into two new leaves x(d�c) and x
(d<c), the `0-1 loss of the enlarged tree

X ! (x, d, c) for this preference is

(6.5) `0-1(Pr(⇠
j � ⇠i|RX!(x,d,c))) = [ (

P
x02X!(x,d,c) returndi↵(x

0
, i, j)) < 0 ]

= [ (returndi↵(x(d�c)
, i, j) + returndi↵(x(d<c)

, i, j) < �(
P

x02X\{x} returndi↵(x
0
, i, j)) ].

Therefore, the split can flip the loss from 1 to 0 in cases when the (positive) returndi↵ across

the two new leaves exceeds the (negative) returndi↵ from the rest of the tree. By Equation 6.2,

the split that will be chosen during greedy tree growth is the one that maximises the number

of these 1! 0 flips, minus the number of undesirable 0! 1 flips, across all preferences in the

dataset. Ties between multiple greedy-optimal splits are broken uniform-randomly.

We have developed a parallelised, just-in-time compiled implementation of this split evalua-

tion calculation, thereby making it usable in practice. Although it remains more computationally

costly than the variance-based criterion, it is nonetheless a moderate part of the overall cost of

online reward learning. As in the previous chapter, we grow reward trees by recursive splitting

until either no loss reduction can be achieved by any single split or a tree size limit |X | = Mmax

is reached. We then move to a pruning stage, which is identical to that outlined in Section 5.3.4,

except that we continue to use the `0-1 loss instead of the least squares loss. In Section 6.4, we

show that switching to using `0-1 as the basis for tree growth and pruning consistency improves

the performance of reward trees and RL agents trained using them.

6.3.3 Model-based RL Agents

Online reward learning methods are generally agnostic to the algorithm used for policy learning,

and this modularity is hailed as an advantage over other human-agent feedback paradigms [155].

In line with most recent work [44, 154], our experiments in the previous chapter use a model-free

RL algorithm, specifically soft actor-critic (SAC) [107]. SAC is widely seen as a strong baseline

RL technique for continuous control, and is e↵ective at ensuring exploratory policies due to its

explicit entropy maximisation. However, some reward learning methods instead use model-based

RL agents that leverage learnt dynamics models and planning [165, 204, 207].

Model-based RL is attractive in the reward learning context because it separates the

predictive and normative aspects of decision-making. Since (assuming no changes to the

163



CHAPTER 6. A USE CASE FOR REWARD TREES

environment) dynamics remain stationary during online reward learning, the amount of re-

learning required is reduced and along with it, the risk of pitfalls such as manipulation [12]

and premature convergence. Additionally, given appropriate pre-training, model-based methods

are often able to learn from far fewer environment interactions than model-free alternatives.

This is especially important in contexts with a human-in-the-loop, whose time is e↵ectively

wasted if they need to wait for long periods of ‘dead time’ between successive preference queries.

The dynamics of the aircraft handling environment are generally smooth, in that the state

(aircraft positions, velocities, orientations, etc.) evolves gradually as a continuous function of

the previous state and action. This property makes it easier to learn a good dynamics model.

For these reasons, the experiments in this chapter use a model-based RL algorithm called

PETS [45]. PETS selects actions by decision-time planning through a learnt dynamics model

T
0 : S ⇥ A ! �(S) up to a horizon Hp. At a given point in online reward learning, let X ⇤

denote the current reward tree after pruning. With the agent in state s 2 S, planning searches

for a sequence of Hp future actions that maximise expected return under X ⇤:

(6.6) argmax
(a0,...,aHp�1)2AHp

ET 0

hXHp

t=1
�
t�1

RX ⇤(�(st�1, at�1, st))
i
, where s0 = s, st+1 ⇠ T

0(·|st, at),

� 2 [0, 1] is a discount factor, and � is the feature function that maps (state, action, next state)

transitions into D-dimensional feature vectors. The first action a = a0 is executed, and then

the agent re-plans on the next timestep. In practice, T 0 is an ensemble of probabilistic neural

networks trained to minimise prediction error on an exploratory dataset, and the expectation

over T 0 is replaced by a sample estimate. The optimisation is approximated by the iterative

cross-entropy method, whereby candidate action sequences are sampled from an independent

Gaussian whose parameters are updated towards the highest-return sequences from the previous

iteration. For more details on the PETS algorithm, we refer the reader to the original paper [45].

In the aircraft handling domain, we find that switching from SAC to PETS reduces

environment interaction during reward learning by orders of magnitude, and cuts wall-clock

runtime, for the same asymptotic performance. A demonstration of this trend on the Follow

task is given in Section 6.4.6. In addition, the switch from SAC to PETS has implications for

how trajectory pairs can be sampled for preference labelling, as described below.

6.3.4 Online Learning Setup

With a model-free RL algorithm such as SAC, policy learning is gradual. It depends on gradient-

based updates to both a policy network and a separate value network, as well as auxiliary

target networks which are updated in a lagging way. As a result, when a reward tree that a

SAC agent uses as its objective is updated on a new batch of preferences, it takes some time

for that change to ‘filter through’ to the policy itself. In contrast, model-based algorithms such

as PETS plan afresh on every timestep, so are able to immediately exploit the latest reward

tree as soon as it is updated. This means that each online trajectory generated by a PETS

164



6.3. METHODOLOGICAL IMPROVEMENTS

agent can be assumed to be near-optimal1 for the current tree.

This di↵erence permits a simplified method of trajectory sampling for querying human (or

oracle) preferences. Suppose that the PETS agent has just generated the ith trajectory, ⇠i,

which is appended to the existing set ⌅. In place of the optimistic sampling scheme described in

Section 5.4.3 (which adds computational overhead by re-evaluating the return of each trajectory

in ⌅ after every tree update), we simply ask the human/oracle to compare ⇠i itself to Kbatch

uniform-randomly sampled trajectories from ⌅. Because ⇠i will be near-optimal for the current

reward tree, this approach of always including it in every preference query acts as a simple form

of optimistic sampling to correct reward overestimation. This method is also justified by recent

analysis by Hu et al. [120], which finds that near on-policy preference queries using the latest

agent behaviour leads to reward models that are maximally useful for continued policy learning.

As a further simplification, we find that scheduling preference collection into increasing-sized

batches (as per Section 5.4.4) no longer confers a benefit when learning with PETS agents in

the aircraft handling environment. Instead, we use uniform batch sizes. Since, as discussed,

PETS agent trajectories immediately optimise for the latest reward tree with no lag, the benefit

of obtaining preferences early outweighs the benefit of deferring them until some initial policy

improvement has occurred. In the notation of the previous chapter, our simplified method

collects a fixed Kbatch = Kmax/Nmax preferences every time a single new trajectory is generated

(i.e. Nbatch = 1), then immediately updates the reward tree (i.e. Ktree = Kbatch).

In a final change to the online learning setup, we find that our original method of resuming

growth from the current state of the tree in each successive update causes lock-in to poor

initial split selections in the aircraft handling environment. Instead, we re-grow a reward tree

from scratch on each update. The rule structure nonetheless tends to stabilise as the enlarging

preference dataset becomes increasingly similar for later updates. Early experiments indicated

that the lock-in problem is mitigated by this change, resulting in more sustained improvements

in preference loss and agent performance. Since more splits are evaluated and made per update

step, computation time is increased. However, when typical post-pruning tree size |X ⇤| (⇡ 20

in our experiments) is small compared with Mmax (= 100), this increase is marginal, and

contributes only a few percentage points to overall runtime.

We did not encounter lock-in in the simpler environments of the previous chapter, and

suspect that the greater diversity of possible behaviour in large state spaces creates more risk

of causal confusion and very misaligned early splits. Since the growth resumption method is

faster (and enables the kind of traceability explored in Figure 5.12), but from-scratch growth

may improve performance, the best choice may be case-specific. We speculate that something

akin to the simultaneous growth and pruning strategy developed for the CSTA algorithm in

Section 4.7 could improve resumption performance, although we are yet to verify this.

1The degree of optimality depends on the error in the learnt dynamics model T 0 (which is very low in our
aircraft handling experiments), as well how successfully the iterative planning algorithm converges. Planning for
more iterations, and with more candidate action sequences per iteration, enables a closer approach to optimality.

165



CHAPTER 6. A USE CASE FOR REWARD TREES

6.4 Experiments and Results

In this section, we combine quantitative and qualitative evaluations to assess the performance of

our refined reward tree learning method on the aircraft handling tasks, specifically in comparison

to the standard approach of using neural networks (henceforth, NNs). We also assess the benefit

of switching from variance-based to `0-1-based split selection during tree growth, and from

model-free to model-based RL agents. In place of costly human-in-the-loop evaluation with real

aviation experts, all experiments use synthetic oracle preferences with respect to the ground

truth reward functions given in Section 6.2.2. However, the sensitivity analysis in Section 6.4.5

aims to improve the realism of the evaluation by examining the performance impacts of noisy

and myopic oracles and a restricted data budget.

6.4.1 Common Parameters

Tree learning parameters In all cases, trajectory return estimation uses the Adam optimiser

with a learning rate of 0.1, �1 = 0.9 and �2 = 0.999. Optimisation stops when the mean negative

log-likelihood changes by less than 1e�5 between successive gradient steps. As mentioned in

Section 6.3.1, we enforce negative rewards (max = 0 constraint) for the Land task, and positive

rewards (min = 0 constraint) for Follow and Chase. We use a maximum tree size of Mmax = 100

to terminate tree growth and a regularisation parameter of ↵ = 0.005 during pruning.

PETS RL algorithm We learn a dynamics model T 0 using an ensemble of five feedforward

neural networks, each with four hidden layers of 200 hidden units and ReLU activations.

State vectors are pre-normalised by applying a hand-specified scale factor to each dimension.

Decision-time planning operates over a time horizon of Hp = 10 and consists of 10 iterations

of the cross-entropy method. Each iteration samples 20 candidate action sequences from an

independent Gaussian, of which the top five in terms of return are identified as ‘elites’, then

updates the sampling Gaussian towards the elites with a learning rate of 0.5. In all experiments,

we use � = 1, meaning no temporal discounting is applied during planning.

Dynamics pre-training In our experiments, we find that the particular dynamics of the

aircraft handling environment permit us to pre-train T
0 on random o✏ine data, and accurately

generalise to states encountered during online reward learning. This means we perform no

further updates to the model while reward learning is ongoing. As well as improving wall-clock

speed, this avoids complexity and convergence issues arising from having two interacting learning

processes (note that simultaneous learning is completely unavoidable with model-free RL). To

pre-train, we collect 1e5 transitions by rolling out a uniform random policy, then update each

of the five networks on 1e5 independently sampled mini-batches of 256 transitions, using the

mean squared error loss over normalised next-state predictions.

Neural network reward learning baseline We baseline our reward tree models against

the de facto standard approach of reward learning using a NN, with preference losses computed

166



6.4. EXPERIMENTS AND RESULTS

as negative log-likelihoods under the Bradley-Terry model. In constructing this baseline, we

retain as much of the overall learning pipeline as possible, so that only the model architecture

varies. The result is that we replace the four-stage tree update process with the following:

1: for b 2 {1, ..., B} do
2: Lmini-batch = a mini-batch of Kmini-batch preference labels sampled uniformly from L
3: Initialise loss sum = 0
4: for (i, j) 2 Lmini-batch do

5: Predict trajectory returns gi =
P

H
i

t=1RNN(f
i

t) and gj =
P

H
j

t=1RNN(f
j

t
)

6: Compute negative log-likelihood � log(1/(1 + exp(gi � gj))) and add to loss sum
7: end for
8: Backpropagate gradient of loss sum through RNN and update parameters
9: end for

10: rall = reward predictions RNN(f) for all feature vectors f in the trajectory set ⌅
11: Scale network outputs by 1/std(rall)
12: Shift network outputs by �min(rall) or �max(rall), depending on desired reward sign

RNN : RD ! R denotes the NN reward model, and lines 10-12 replicate the standard deviation

and sign normalisation applied in Section 6.3.1. Preference collection is performed identically

and the same PETS agent implementation is used, except that rewards are provided by RNN

instead of a tree. We follow the popular PEBBLE baseline [154] in implementing RNN as a

three-layer network with 256 hidden units each and leaky ReLU activations, and performing the

update on line 8 using the Adam optimiser with a learning rate of 3e�4. On each update, we

sample B = 100 mini-batches of size Kmini-batch = 32 and take one gradient step per mini-batch.

6.4.2 Online Performance Evaluation

In our main experiments, we use ideal, error-free oracles, which always prefer trajectories

with higher ground truth returns. We evaluate online reward learning using trees with the `0-1

split criterion, comparing to the previous chapter’s variance-based criterion, as well as the NN

baseline. For each of the three aircraft handling tasks, we collect Kmax = 1000 preferences over

Nmax = 200 online trajectories generated by a PETS agent, and run 10 repeats.

As a headline statistic, we define the oracle regret ratio (ORR) as the median drop in

ground truth oracle return of PETS agents deployed for 100 episodes using each fully-trained

reward model compared with directly using the ground truth reward, taken as a fraction of

the drop to a uniform random policy (lower is better). This gives a normalised measure of the

alignment of each reward model with the ground truth, which is comparable across tasks with

di↵erent intrinsic di�culty levels. Below are the median (top) and minimum (bottom) ORR

values across the 10 repeats for each task-model pairing:

Follow Chase Land
NN Tree (0-1) Tree (var) NN Tree (0-1) Tree (var) NN Tree (0-1) Tree (var)
0.000 0.120 0.284 �0.030 0.040 0.126 0.014 0.050 0.062
�0.010 0.057 0.158 �0.051 �0.011 0.065 �0.030 0.011 0.010

167



CHAPTER 6. A USE CASE FOR REWARD TREES

In these results, we observe that:

• All models yield agent performance that is far closer to the oracle (ORR = 0) than

random (ORR = 1), in most cases just a few percentage points below the oracle;

• NNs outperform trees by a small but variable amount;

• `0-1 splitting consistently outperforms the variance-based method;

• both NN and tree models sometimes exceed the direct use of the oracle (negative ORR).

The latter, counter-intuitive, phenomenon has been observed elsewhere in the reward learning

literature [37, 80, 202]. It may be due to the learnt reward being better shaped than the ground

truth [188], making it easier for the PETS planner to converge to near-optimal action sequences.

Figure 6.3 expands these results with more metrics, revealing temporal learning trends not

captured by headline ORR values. Metrics are plotted as time series over the 200 learning

episodes (sliding-window medians and interquartile ranges (IQRs) across repeats). In the top

row a , the ORR of online trajectories shows how agent performance converges over time. For

Follow, there is a gap between the models, with `0-1 splitting visibly aiding performance over

variance-based splitting, and potentially enabling somewhat faster early learning than the NNs,

although it converges to a higher asymptote. The learning curves for Chase and Land are much

more homogeneous, and the NNs reach only slightly lower asymptotes, with overlapping IQRs.

The majority of runs converge to their final performance well within the 200 episode learning

period; this learning speed is made possible by the use of model-based PETS agents.

The second row of plots b shows how the discrete preference loss `0-1 of each reward

model changes over time. The loss tends to increase as the growing preference dataset presents

a harder prediction problem, though the shapes of all curves suggest convergence. Random

preference prediction gives `0-1 = 0.5 in expectation, and all models remain far below this value

even on the largest (final) preference datasets. For Follow and Land, the trees that directly split

on `0-1 actually achieve lower loss than the NNs; they more accurately predict the direction of

preferences in the dataset. This is an encouraging result, indicating that our models perform

well on the metric for which they are directly optimised, but the fact that this does not translate

into lower ORR indicates that the problems of learning a good policy and replicating a given

preference dataset are not perfectly correlated. This subtle point has been made before [159].

A potentially important factor in these experiments is that the oracle reward for Follow is

a linear function, while the others contain progressively more terms and discontinuities (see

Section 6.2.2). A trend suggested by these results is thus that the performance gap between

NNs and reward trees (on both ORR and `0-1 metrics) reduces as the ground truth reward

becomes more complex and nonlinear. Although further experiments would be needed to test

this hypothesis thoroughly, it is backed up by results on other metrics in the next subsection.

For the reward tree models, the bottom row of plots c shows how the number of leaves

changes over time. There is notable consistency in these trends between the repeated runs.

168



6.4. EXPERIMENTS AND RESULTS

0
0.

5
1a

O
nl

in
e 

O
R

R
0-

1 
pr

ef
er

en
ce

 lo
ss

N
um

be
r 

of
 le

av
es

10
20

10
20

10
20

0
0.

05
0.

1
0.

15

0
0.

05
0.

1
0.

15

0
0.

05
0.

1
0.

15

0
0.

5
1

0
0.

2
0.

4

Follow LandChase

b

c

Episode number1 200 Episode number1 200 Episode number1 200

NN
Tree (0-1)
Tree (var)

Figure 6.3: Time series of metrics for online NN- and tree-based reward learning.

While the variance-based trees tend to grow rapidly initially before stabilising or shrinking

(echoing the trend identified in the previous chapter), the `0-1 trees enlarge more conservatively,

suggesting this method is less liable to overfit to small preference datasets. This may be a major

factor in the improved performance of the new split criterion. Trees of a readily interpretable

size (⇡ 20 leaves) are produced for all tasks. While this is encouraging, it is possible that

performance could be improved by independently tuning the size regulariser ↵ per task.

6.4.3 Policy-Invariant Evaluation

Gleave et al. [99] recently highlighted the importance of comparing and evaluating learnt

reward models in a policy-invariant manner, by using a common evaluation dataset rather than

on-policy data generated by agents optimising for each model. This enables a truly like-for-like

comparison, unbiased by the particular distribution of states that each model incentivises.

Ideally, the o✏ine evaluation data should have high coverage (i.e. high-entropy state distribution,

both high- and low-quality trajectories), in order to characterise the reward models’ outputs

across a spectrum of plausible policies. We report such a comparison in Figure 6.4, for which

the evaluation datasets are generated by PETS agents using the oracle reward functions, with

added action randomisation to increase coverage.2

2Specifically, we deploy PETS using the oracle reward, but randomise its hyperparameters (number of
planning iterations 2 {1, . . . , 50}, number of action sequence samples 2 {4, . . . , 50}) on every episode. In all

169



CHAPTER 6. A USE CASE FOR REWARD TREES

0
0.

5
1

0
0.

25
0.

5
0.

75
1

0.
25

0.
5

0.
75

1

0
0.

5
1

0.
2

0.
6

1

0
0.

5
1

NN
Tree (0-1)
Tree (var)R

ew
ar

d 
co

rr
el

at
io

n
R

an
k 

co
rr

el
at

io
n

Fi
na

l r
an

k 
em

be
dd

in
g

Follow LandChase

Oracle ORR
10

Episode number1 200 Episode number1 200 Episode number1 200

a

b

c

Figure 6.4: Policy-invariant evaluation of online NN- and tree-based reward learning.

In the top row a , we measure the Pearson correlation of each model’s reward predictions

on the policy-invariant dataset with those of its respective oracle at each point in learning.

This indicates each model’s ability to generalise to unseen transitions that are not included

in the preference dataset. For Follow, the NN models achieve near-perfect correlation, but

more interestingly, the gap between variance-based and `0-1-based splitting is very large. This

indicates that our novel split criterion can create reward trees that generalise far more e↵ectively

to unseen predictions (with far lower variance across repeated runs). `0-1 splitting maintains a

strong advantage on the Chase task, and in fact matches the NN models. For Land, the gap

between all three models is smallest, and the benefit of `0-1 splitting is less conclusive.

In the middle row b , we use each reward model to predict the return of each trajectory in

the policy-invariant dataset, rank these returns from lowest to highest, then relate this to the

true ranking according to the oracle using Kendall’s ⌧ rank correlation coe�cient [139]. Because

this measure is defined in terms of pairwise comparisons, it indicates the e↵ectiveness of each

model for predicting randomly sampled oracle preferences over the (unseen) policy-invariant

trajectories. The curves subtly di↵er from those in a , indicating that it is possible to reconstruct

trajectory preferences to a given accuracy with varying fidelity at the individual reward level.

cases, we take the top 25% of action sequences as elites. This randomisation results in trajectories that are
sometimes near-optimal with respect to the oracle, sometimes moderate in quality, and sometimes barely better
than random. For all three tasks, we generate a dataset of 200 evaluation trajectories in this manner.

170



6.4. EXPERIMENTS AND RESULTS

However, the common overall trend persists: `0-1-based trees outperform variance-based ones,

with NNs sometimes improving again by a smaller margin, and sometimes bringing no added

benefit. Moving left-to-right across the tasks, the gap between models reduces from both sides;

NN performance worsens while variance-based trees improve. This reinforces the suggestion in

the preceding subsection that the NN-tree gap narrows for more complex and nonlinear tasks.

The bottom row c presents a novel form of reward visualisation. Given some measure

of similarity between reward functions, such as those considered in the first two rows, we can

compute a matrix of pairwise similarities between any number of such functions (computational

cost permitting). We can then produce a 2D embedding of the functions by applying multidi-

mensional scaling (MDS). Visualising this embedding as a scatter plot enables the discovery of

salient patterns and trends in the set of functions. In the plots shown, we use trajectory rank

correlation on the policy-invariant datasets as the similarity measure, and the SMACOF MDS

algorithm [62], to embed all (3 ⇥ 10 =) 30 model repeats and the oracle for each task. This

gives an impression of the models’ similarity not just to the oracle, but to each other.

Aside from the Follow NNs, which form a tight cluster near the oracle (providing further

evidence that it has been reconstructed near-perfectly), the distribution for each model indicates

roughly equal consistency between repeats. This suggests that NNs and reward trees have

similar levels of robustness to changes in the precise content of the trajectory preference dataset.

The overlap of convex hulls suggests that the rankings produced by all models are broadly

similar for Land, but more distinct for Chase. Shading points by ORR reveals that while models

further from the oracle tend to induce worse-performing policies, the trend is not monotonic.

This reinforces the point made above that the problems of learning a good policy and exactly

replicating the ground truth reward are not identical.

Populating such embedding plots more densely, perhaps by varying model hyperparameters,

could provide a means of mapping the space of learnable reward functions and its relationship

to policy performance. It would also be straightforward to compute similarity values for the

same model repeat at multiple checkpoints during learning. This would yield a trajectory in the

2D embedding space, which could aid the assessment of the stability and convergence properties

of online learning with di↵erent models and hyperparameter values.

6.4.4 Visual Trajectory Inspection

While useful for benchmarking, quantitative metrics provide little insight into the behaviours

incentivised by each reward model. They would also mostly be undefined when learning from

real humans since the ground truth reward is unknown. We therefore complement them with a

visual analysis of induced agent behaviour. Figure 6.5 plots 500 trajectories of PETS agents

using the best repeat by ORR for each task-model combination, across a range of features as

well as time (see Table 6.1 for a reminder of feature definitions). Each trajectory is coloured

on a red-blue scale according to its ORR. Dashed black curves indicate the single trajectory

171



CHAPTER 6. A USE CASE FOR REWARD TREES

O
ra

cl
e

T
re

e 
(v

ar
)

R
an

do
m

T
re

e 
(0

-1
)

N
N

g h

b
50

35
0

al
t

los error0 Timestep1 20

20
15

0
di

st

Follow Chase Land

j

dc

i

0 200

0
30

al
t

dist hor

-1
.4

0
1.

55

roll

pi
tc

h

-

0,0

ORR
0 1

0 353-3
1

31

dist

cl
os

in
g 

sp
ee

d

1 20

0
up

 e
rr

or

Timestep

0,0

Highest return
according
to oracle

e f

a

Highest return
according
to model

Figure 6.5: Agent trajectories using the best models by ORR (oracle and random for comparison).

with the highest predicted return according to each model. We also show trajectories for PETS

agents with direct oracle access, which serve as the benchmark behaviour that we aim to match

via reward learning, and for random policies, which perform very poorly on all three tasks.

In general, all models are far closer to the oracles than random, with few examples of

obviously unstable handling behaviour or task failure (highlighted in red, due to colouring by

ORR). While the NNs induce trajectories that are almost indistinguishable from the oracles,

`0-1-based reward trees lag not far behind. Variance-based trees create more anomalies.

Successes of the `0-1 trees include the execution of Follow with a single banked turn before

straightening up, as shown by the up error time series a , where up error = 0 is level flight.

Interestingly, both this tree and the NN reward model appear to favour a somewhat earlier turn

than the oracle (i.e. peak shifted to the left on this plot). Indeed, the trajectories for the `0-1 tree

are almost imperceptibly di↵erent from those of the NN, despite their quantitative performance

(e.g. ORR) di↵ering. This underlines the importance of joint quantitative-qualitative evaluation.

b shows that for Chase, the `0-1 tree has clearly learnt the most safety-critical aspect of

the task, which is to keep the agent above the altitude threshold alt < 50, below which the

oracle reward is strongly negative. The threshold is violated in only eight of 500 trajectories

172



6.4. EXPERIMENTS AND RESULTS

(1.6%). Further evidence that this altitude threshold has been learnt correctly is presented in

Section 6.5. For Land, the `0-1 tree replicates the oracle in producing a gradual reduction in

alt ( c ) while usually keeping pitch close to 0 ( d ). However, the spread of roll values is

somewhat wider, suggesting that the tree is insu�ciently penalising deviations from level flight.

In marked contrast to the above, the agent using the variance-based tree for Follow sometimes

fails to reach the target position ( e ; red trajectories), and also does not reliably straighten

up to reduce up error ( f ). For Chase, the altitude threshold does not appear to have been

learnt precisely, and lower-altitude trajectories often fail to close the distance to RJ ( g and

h ; red trajectories). For Land, the variance-based tree gives a later and less smooth descent

( i ), and less consistent pitch control ( j ), than the NN or `0-1-based tree, although all models

produce a somewhat higher altitude profile than the oracle. Overall, it is clear that the benefit

of switching from variance-based to `0-1-based split selection manifests not only in quantitative

metrics, but also in qualitative behavioural improvements.

6.4.5 Sensitivity Analysis

It is important to consider how performance degrades with reduced or corrupted data. We thus

evaluate the e↵ect of varying the number of preferences Kmax (with fixed Nmax = 200) and

trajectories Nmax (with fixed Kmax = 1000) on reward learning with NNs and `0-1-based trees.

We also create more human-like preference data via two modes of oracle “irrationality” proposed

by Lee et al. [153]. The first is noise, which we introduce by generating oracle preferences using

variants of the Bradley-Terry model that are calibrated to give a desired error rate on the

policy-invariant datasets.3 This adheres to an assumption of classic human preference models,

namely that preference mistakes are more likely for trajectory pairs whose returns are more

similar (see Section 5.2). The second is a myopic recency bias, whereby the oracles exponentially

discount earlier timesteps (by a factor � < 1) when computing trajectory returns. There is

evidence that humans commonly exhibit such a bias when retrospectively evaluating episodic

experiences [88]. We run five repeats for all cases, and report the medians and IQRs of two

performance metrics: the ORR of PETS agents deployed using the final reward models (lower

is better) and trajectory rank correlation on the policy-invariant datasets (closer to 1 is better).

As Figure 6.6 shows, both NN and tree models exhibit good robustness with respect to all

four varied parameters. Although NNs remain superior in most cases, the gap varies, and is

often reduced compared to the base cases (bold labels). Another general observation is that

the trends for trees are somewhat smoother than for NNs, with fewer sharp jumps and fewer

instances of very high spread across the five repeats. This potentially indicates that reward

trees behave in a more consistent way under non-ideal learning conditions.

3In particular, for two trajectories ⇠i and ⇠j , a noisy Bradley-Terry oracle for ground truth reward R prefers
the latter with probability 1/(1 + exp(�(G(⇠i|R)�G(⇠j |R)))) for some � > 0. For each task, � is calibrated by
gradient descent to achieve each of the desired error rates (0.1, 0.2, 0.3, 0.4, 0.45) across 1000 randomly sampled
preferences over the respective policy-invariant trajectories. Higher error rates require higher values of �.

173



CHAPTER 6. A USE CASE FOR REWARD TREES
O

ra
cl

e
m

yo
pi

a
(  

   
)

ChaseFollow

Pr
ef

er
en

ce
bu

dg
et

(  
   

   
  )

T
ra

je
ct

or
y

bu
dg

et
( 

   
   

  )
NN

Tree (0-1)
Land

1000
2000
4000

500
250

200
400
800

100
50

0.98

0.2
0.3
0.4

0

0.95
0.9
0.8

0.1

0.45

O
ra

cl
e

er
ro

r 
ra

te
(v

ia
   

)

1

ORR

0 0.5 1

Rank correlation

0 0.5 1 0 0.5 10 0.5 1 0 0.5 1 0 0.5 1

Average NN-Tree Gap

NN
better

-0.25 0 0.25 -0.25 0 0.25

ORR ORR ORR

Tree
better

Tree
better

NN
better

a
Rank correlation Rank correlation Rank correlation

Figure 6.6: Comparative sensitivity analysis of reward learning with NNs and trees.

The sensitivity to preference and trajectory budgets is low, with little improvement for

Kmax > 1000 and Nmax > 200, and no catastrophic drop even with 25% of the data as the base

case. In several contexts (Kmax study for Follow and Chase, Nmax study for Chase and Land)

the performance dropo↵ on both metrics seems to be somewhat more gradual for reward trees

than for NNs, to the extent that trees sometimes perform better under the most restricted

budgets. This suggests that reward trees can make e↵ective use of small preference datasets,

and may be less liable to overfit to them than other model classes.

For all tasks, the oracle error rate can increase to around 20% before large drops in

performance are observed. Trees in particular remain virtually una↵ected by an oracle myopia

factor as low as � = 0.9, but exhibit more of a dropo↵ once this reaches 0.8. The Land task

appears to be somewhat more sensitive than the others to both modes of oracle irrationality.

In the right column, labelled as a , we summarise these results by taking the di↵erence

between the NN and tree metrics, and averaging across the three tasks. In all cases aside from

rank correlation with error-prone oracles, the NN-tree gap tends to become more favourable to

the trees as the varied parameter becomes more challenging (top-to-bottom). This sensitivity

analysis thus indicates that reward trees are at least as robust to di�cult learning scenarios as

NNs, and may even be slightly more so. This is a promising result for the transferability of

reward tree learning to limited and imperfect datasets of real human preferences.

6.4.6 Comparison to Model-free Reinforcement Learning

This subsection justifies the switch to model-based PETS agents for the experiments in this

chapter, through direct comparison to model-free SAC agents. To summarise, a consistently

observed benefit of model-based RL is its sample e�ciency, and we find that this trend holds in

our context. Running our reward learning pipeline unchanged except for the use of SAC agents

174



6.4. EXPERIMENTS AND RESULTS

PETS (200 episodes)

O
nl

in
e 

O
R

R

NN
Tree (var)
Tree (0-1)

SAC (200 episodes) SAC (1k episodes) SAC (10k episodes) SAC (50k episodes)

W
al

l-
cl

oc
k 

tim
e

(m
in

ut
es

)

Episode 1 200

20
0

40
0

1

20
0

40
0

1000 1

20
0

40
0

10000 1

20
0

40
0

500001 200

20
0

40
0

Episode Episode Episode Episode

0
0.

5
1

0
0.

5
1

0
0.

5
1

0
0.

5
1

0
0.

5
1

Figure 6.7: Comparing the use of PETS and SAC agents on the Follow task.

for policy learning, we find that over two orders of magnitude more environment interaction is

required to achieve equivalent performance in terms of ORR. In turn, this increases runtime by

10-20⇥, thereby outweighing the higher per-timestep computational cost of PETS over SAC.

Figure 6.7 shows these results in detail. The PETS results are taken directly from Figure 6.3.

For SAC we retain the default preference budget of Kmax = 1000, but for longer runs add

episode trajectories to ⌅ at a reduced frequency so that Nmax = 200 (e.g. for 50000 episodes,

only 1 in 250 episodes are added to the dataset; the rest are skipped). All SAC agents use

policy and value networks with two 256-unit hidden layers each, learning rates of 1e�4 and

1e�3 for the policy and value updates with the Adam optimiser, a discount factor of � = 0.99,

and an interpolation factor of 0.99 for Polyak averaging of the target networks. Updates use

mini-batches of 32 transitions sampled uniformly from a rolling replay bu↵er of capacity 5e4.

Initially running SAC for a total of 200 episodes, matching our PETS experiments, gives the

model-free learning algorithm insu�cient time to achieve good performance in terms of ORR (a

higher learning rate leads SAC to become unstable). We then progressively increase the length

of SAC runs until performance matches the use of PETS, and find that this requires around

50000 episodes, an increase of 250 times.4 In terms of wall-clock runtime (on a single NVIDIA

Tesla P100 GPU), running reward learning with SAC for 1000 episodes is roughly equivalent to

200 episodes using PETS (25-60 minutes, depending on the reward model architecture). For

50000 episodes, this time increases to 9 hours. This brings a practical disadvantage: if reward

learning were done using human preferences instead of an oracle, that person would have to

dedicate more than a full working day to the exercise, most of which would be ‘dead time’

waiting for several minutes between each successive preference batch.

Note that the PETS wall-clock times quoted here exclude the time to pre-train the dynamics

models. Although this is not how sample complexity is typically measured in model-based RL,

we argue that it is appropriate for the reward learning context, where the key factor is the period

4It is noteworthy that the variance-based tree model seems to perform best in the short-runtime regime
but worst in the long-runtime regime. We have not assessed whether this holds in other tasks, but such an
investigation would be worthwhile.

175



CHAPTER 6. A USE CASE FOR REWARD TREES

for which a human would be required to be in-the-loop. Front-loading the sample complexity

and wall-clock time onto the dynamics learning phase (which need not be human-supervised in

the same way) further reduces ‘dead time’ as described above. In addition, the same dynamics

model may be reusable for multiple runs of reward learning with di↵erent human evaluators

(assuming no major distributional shift), meaning the e↵ective sample complexity of each run is

reduced yet further [165]. Regardless, pre-training in the aircraft handling domain takes around

30 minutes, which remains low compared with the 9 hours for high-performing SAC agents.

6.5 Interpretability Analysis

The central finding of the preceding section is that reward learning with `0-1-based trees can

be competitive with NNs on the aircraft handling tasks, but not quite as performant overall.

We now return to the motivating advantage of using a reward tree, which may tip practical

tradeo↵s in its favour: the ability to interpret the learnt structure, analyse how it arises from

the underlying dataset of preferences, and trace how it influences agent behaviour. In this

section, we present a series of visualisations and analyses, which are complementary to those in

Section 5.9 of the preceding chapter. As in similar sections elsewhere in this thesis, we favour

depth over breadth, so focus exclusively on the single best tree by ORR on the Chase task.

6.5.1 Tree Structure Appraisal

This reward tree has 17 leaves, as shown in Figure 6.8. This diagram also shows an aggregate

reward for each subtree, which is computed via the same process of timestep-weighted averaging

as used to assign leaf rewards. This makes it easier to interpret the e↵ect of each split on reward

predictions. The ground truth reward used by the oracle, reprinted below for convenience, uses

four features, all of which are used in the tree in ways that are broadly aligned (e.g. lower los

error leads to leaves/subtrees with higher reward). This indicates that the `0-1-based split

criterion has been e↵ective at selecting the task-relevant features from the list in Table 6.1.

By inspection, it is clear that the model has learnt the crucial threshold alt < 50, correctly

assigning low reward when it is crossed (leaves 1 and 7). This explains why we observe rare

violations of the altitude threshold in Figure 6.5. However, it has not learnt the ideal distance

to the reference jet (RJ), dist = 20, with 43.3 being the lowest value used in any of the rules.

This could be because the underlying preference dataset lacks su�cient preferences to make

this distinction. Running the learning algorithm for longer, or adopting a more sophisticated

active querying scheme, may aid the discovery of such subtleties.

Other features besides those used by the oracle are present in the tree, indicating some

causal confusion of the kind observed several times in the previous chapter. However, in this

case it is less clear that the inclusion of these features is detrimental to agent performance, as

they could plausibly provide beneficial shaping (e.g. penalising positive closing speed, which

176



6.5. INTERPRETABILITY ANALYSIS

Aggregate reward
for subtree

Predicted reward
0 4.45

Oracle reward:
14: r = 1.70 15: r = 2.21

8: r = 2.78 9: r = 2.45 10: r = 3.20 11: r = 2.37 13: r = 3.92

4: r = 3.16 5: r = 2.47
r = 2.37

12: r = 2.76

2: r = 3.35 3: r = 3.18 6: r = 2.92

7: r = 0.763 16: r = 1.76 17: r = 0.78

1: r = 0.937

False True
r = 3.12 r = 2.15

r = 3.17 r = 2.31 r = 1.72

r = 3.04r = 3.22 r = 2.34

r = 3.14 r = 2.47 r = 2.22

r = 2.72 r = 2.21

r = 2.21

Figure 6.8: Diagram of a reward tree learnt for the Chase task (“r” denotes reward).

indicates increasing distance to RJ). That may indeed be the case for this model, since its

headline ORR figure is actually slightly negative.

6.5.2 Leaf-level Alignment

The decomposition of a reward tree into a discrete set of leaves allows us to evaluate alignment

at the individual leaf level. Figure 6.9 plots the tree’s predicted reward against the oracle

reward for all timesteps in the online PETS-generated trajectory dataset (correlation = 0.903).

Each leaf’s predictions lie along a horizontal line. Most leaves, including 1 and 2, can be

considered well-aligned on this dataset because their oracle reward distributions are tightly

concentrated around low and high averages respectively (note that the absolute scale is irrelevant

because rewards can be scaled without a↵ecting behaviour). Leaf 16 has a wider oracle reward

distribution with several negative outliers, indicating that it may be a source of misalignment.

An optimal tree may split this leaf further, perhaps using the alt < 50 threshold.

In general, alignment appears to be better for leaves with higher reward, likely because

the online dataset contains relatively few very poor trajectories. This is arguably desirable; a

limited capacity tree may be more useful for policy learning if it can distinguish good and very

good behaviour, as opposed to poor and very poor. The one anomaly is leaf 13, which contains

just a single timestep from ⇠
77. This trajectory is the eighth best in the dataset by oracle return,

but this leaf assigns that credit to a state that seemingly does not merit it, as the distance to

RJ is so high (dist > 73). This may be an example of suboptimal reward learning, but the

fact that its origin can be precisely pinpointed is a testament to the value of interpretability.

177



CHAPTER 6. A USE CASE FOR REWARD TREES

Leaf 13: r = 3.92

Leaf 2: r = 3.35

Leaf 16: r = 1.76

Leaf 1: r = 0.937

, t = 2

-300 -200 -100 0

1
4

Oracle reward

Pr
ed

ic
te

d 
re

w
ar

d

Figure 6.9: Alignment of leaf-level reward predictions with ground truth oracle rewards.

Leaf 16
Leaf 15

Leaf 11

Leaf 61
4

Pr
ed

ic
te

d 
re

w
ar

d

Timestep1 20

Oracle reward
(rescaled)

T
im

estep

a b

Figure 6.10: Report card explaining the rewards predicted for a trajectory.

6.5.3 Trajectory Report Card

Section 5.9.1 introduced the concept of a reward report card, which decomposes the tree-

predicted return for a trajectory based on the leaves that are visited, and states the relevant

rules. In the aircraft handling context, a report card may be of value to various end users,

including a trainee pilot whose own behaviour is being evaluated by the reward tree, and who

requires actionable insight into how their score can be improved. Here we present an extension

to this method that describes not only which leaves are visited, but when the visits occur.

Figure 6.10 considers ⇠191 from the online trajectory dataset, a rare case that violates the

altitude threshold. The time series of reward a shows that the 20 timesteps are distributed

between leaves 16, 15, 11 and 7. Rescaled oracle rewards are overlaid in teal, and show that the

model’s predictions are well-aligned. The report card itself translates this visualisation into a

textual form b , which is similar to a nested program. Read top-to-bottom, and accounting for

indentation, the program indicates which rules of the tree are active at each timestep and the

e↵ect this has on predicted reward. The first line, and the relative indentation of all others,

immediately tells us the entire trajectory is spent with a dist of at least 43.3 between the ego

and reference jets. This trajectory starts fairly positively, with reward gradually increasing over

the first 16 timesteps as dist is reduced to between 43.3 and 73, but then falls dramatically

when the alt < 50 threshold is crossed for the final four timesteps.

Note that this report card conveys equivalent information to the temporal explanatory

stories from Section 3.5.4 but emphasises the commonalities between successive timesteps rather

than the changes. The relative usefulness of the two techniques is likely to be context-specific.

178



6.5. INTERPRETABILITY ANALYSIS

0 43.3 95.4 150
0

35
0

50
73

1

2 4 5 6

3

and

Trajectory return
estimate

0 89

False True

r = 2.15

r = 2.31

3: r = 0.763
r = 2.34

1: r = 0.937

r = 3.12

2: r = 3.17

5: r =2.224: r =2.47

6: r =1.72

a b c

d

Most influential
preference

LeastOriginal
graph

Leaf 2

Leaf 1

0.
93

7
3.

17
L

ea
f r

ew
ar

d
es

tim
at

e

e 3.
11

1.
10

G
ap

 =
 2

.0
1

G
ap

 =
 2

.2
3

Figure 6.11: Explaining di↵erences in leaf reward predictions by preference reversal.

6.5.4 Preference-based Reward Explanation

We now demonstrate how our entire preference-to-reward learning pipeline, not only the final

structure of a reward tree, can be viewed as interpretable, because it provides a mechanism for

attributing reward predictions back to individual preferences in the dataset. For the sake of

didactic simplicity, we focus on a pruned subtree of the full reward tree, shown in Figure 6.11 a .

Because this subtree splits only on dist and alt, we can directly visualise its induced feature

space partition b . The 200 online trajectories are overlaid, coloured by their return estimates.

Zooming into leaf 1, which covers cases where the altitude threshold is violated, c shows that

it contains a total of 30 timesteps across four trajectories. By Equation 5.7, the low reward for

this leaf results from a weighted average of the return estimates for these four trajectories, which

in turn (by Equation 5.3) are computed by minimising a predictive loss over the preferences

that have been obtained over those trajectories. We can use this inverse reasoning to answer

an explanatory query: “why has this leaf been assigned a lower reward than its sibling (leaf 2

of the subtree)?” Or in more grounded terms: “in states where dist < 43.3, why has the tree

learnt to give lower reward when alt < 50.2?” We seek an answer that identifies individual

preferences that influence the two leaves’ reward predictions.

Recall from Section 5.2 that a trajectory preference dataset can be understood as a directed

graph with edges pointing to preferred trajectories. One route to answering the preceding

question is to filter this graph for preferences that directly compare a trajectory that visits leaf

179



CHAPTER 6. A USE CASE FOR REWARD TREES

1 to a trajectory that visits leaf 2. d shows that 49 such comparisons exist, and in all cases,

the preference (given by the oracle) is in favour of the trajectory in leaf 2. Each of these 49

preferences contributes some amount to the di↵erence in reward predictions, but some may

be of special interest. For example, we may highlight trajectories that appear twice (e.g. ⇠28

is preferred to both ⇠
18 and ⇠

48), or trajectories with low overall return estimates that are

nonetheless preferred to one in leaf 1 (e.g. ⇠43 � ⇠21 or ⇠56 � ⇠47). However, a more principled

way to identify the most influential preferences is to selectively reverse each of the 49 preferences

in d (e.g. ⇠28 � ⇠
18 becomes ⇠28 � ⇠

18), re-run the trajectory return estimation stage each

time, and measure the change in reward (via Equation 5.7) that is given to both leaves.

The results of this preference reversal analysis are plotted in e . The red and blue lines

respectively indicate the leaf 1 and 2 rewards that result from each of the 49 modified preference

graphs, ordered left-to-right from the preference whose reversal has the least e↵ect on reducing

the gap between rewards (⇠72 � ⇠48) to the one whose e↵ect is greatest (⇠89 � ⇠18). No single

preference reversal is enough to reduce the gap by a large amount, but this analysis provides a

basis for singling out ⇠89 � ⇠18 as the most influential one. Its reversal closes the gap from 2.23 to

2.01; a 9.85% reduction. Therefore, an incomplete but maximally informative single-preference

answer to the explanatory query can be expressed as follows:

“In states where dist < 43.3, the tree gives lower reward when alt < 50.2

because the oracle prefers ⇠89 to ⇠18 (accounts for 9.85% of the gap).”

This basic method for explaining preference-based reward could be extended in various

ways. For instance, it does not consider the group e↵ect of reversing several preferences at

a time, which could be handled by adopting the Shapley value framework [166, 227]. It also

ignores the second-order e↵ects of reversing preferences other than the 49 ‘direct’ ones between

trajectories that visit leaves 1 and 2, although this may yield less intuitive explanations.

6.6 Explaining Model-based Action Selection

In this final section, we outline a method that exploits a powerful synergy between reward

trees and model-based PETS agents. It is unique within this thesis in providing truly intrinsic

interpretability with respect to the inner workings of a particular agent model, as opposed to a

post hoc, model-agnostic, approximation of behaviour.

Recall from Section 6.3.3 that a PETS agent uses iterative planning to select its action

a in state s. On each iteration, a set of Hp-step candidate action sequences is sampled from

an independent Gaussian. Each action sequence is passed through a learnt dynamics model

T
0, which predicts a corresponding sequence of Hp future states after s. All predicted (state,

action, next state) transitions are passed to the reward function, and the resultant rewards are

summed (via a discount factor �) to estimate the Hp-step return. The action sequences that

produce the highest returns are identified as ‘elites’ and the mean and variance of the sampling

180



6.6. EXPLAINING MODEL-BASED ACTION SELECTION

Gaussian are updated to more closely match the elite distribution. Over many iterations, this

process should converge to a narrow sampling distribution that generates high-return action

sequences, from which only the first action is sampled as the action to execute a.

This multi-step planning process, which involves the explicit consideration of counterfactual

actions, provides fertile ground for interpretability methods. In combination with reward trees,

the potential for explanatory decomposition is even greater. To understand this, consider how a

reward tree processes all transitions predicted by T
0 for a particular action sequence to yield the

Hp-step return (assume, as in all experiments in this chapter, that the discount factor � = 1).

There are four simple steps: apply the feature function � to obtain the feature vector for each

transition, count the number of feature vectors that lie within each leaf, multiply the count by

that leaf’s reward, and sum over the tree. Hence, the sole factor that determines the return

of an action sequence (and thus its chance of being included in the elite set) is the number of

visits to each leaf that it induces. Averaging across all action sequences in each iteration of

planning, we should expect later iterations to contain more visits to high-reward leaves and

fewer visits to low-reward leaves, with the changing distribution of leaf visitation providing

insight into the factors that influence the agent’s final choice of action.

In Figure 6.12, this is indeed what we observe. Here, a PETS agent is deployed on the Chase

task using the 17-leaf reward tree from the preceding section. a visualises the environment state

in which the agent is planning its next action, and b shows how the sampling distribution for

that action (i.e. the first in the Hp = 10-step sequence) converges over 50 planning iterations.5

In the state shown, EJ is separated from RJ by dist = 40, and although its altitude is higher

than RJ, it is below the safe threshold of alt = 50. The action distribution converges towards

pitching sharply upwards, with a slight rightwards roll. We wish to exploit the decompositional

structure of the reward tree to understand why the agent converges to this action. As a starting

point, c shows how the distribution of leaf visitation changes over the planning iterations. The

prediction made in the previous paragraph is realised: the dominant shift is from low-reward

leaves 1 and 7 to medium/high-reward leaves 8 and 9. Visits to leaves 11 and 15 temporarily

increase in intermediate planning iterations, but die back down.

Although intermediate dynamics such as those of leaves 11 and 15 may be important for

detailed debugging, a simple way to understand the net e↵ect of planning is to compare the

first iteration (where the action sampling distribution is very wide, generating uninformed

random behaviour) to the last (where the distribution has converged to the final up-and-right

turn). Figure 6.12 d and e focus on these first and last iterations, using stacked bar charts

to give a ‘doubly-decomposed’ representation of the average return of each. The first level of

decomposition is by planning timestep: the thick black lines show the expected reward for each

of the Hp = 10 steps into the future. The second level of decomposition is by leaf: the heights

of the coloured rectangles reflect the contribution of each leaf to the per-timestep reward.

5This scatter plot shows only two of the four action dimensions: roll and pitch. The other two action
dimensions (yaw and thrust) also converge but are less important for understanding this particular case.

181



CHAPTER 6. A USE CASE FOR REWARD TREES

Sm
al

l c
on

tr
ib

ut
io

ns
 fr

om
 le

av
es

 1
1 

an
d 

15

RJ

EJ

Expected timesteps in each leaf 0 6.80

1 50Planning iteration

1
3

5
7

9
11

13
15

17
Le

af
 n

um
be

r

3.45

6.13
0.03

0.10

0.13
0.02
0.12

0.02

0.02

2.95
5.77
1.20

0.05

0.02

c
a

Roll demand

Pi
tc

h 
de

m
an

d

RightLeft

D
ow

n
U

p 50
1

Pl
an

ni
ng

 it
er

at
io

n

b First action convergence
1 10Planning timestep

1
1 1 1 1 1 1 1 1 1

7
7 7 7 7 7 7 7 7 7

0
2.

78
Ex

pe
ct

ed
 re

w
ar

d

1 10Planning timestep

0
2.

78

7 7 7

8

8 8 8

8 8
8

8

9 9
9 9

1 10Planning timestep-0
.9

2
0

2.
78

7

8 8 8

8 8
8 8

8

9 9
9 9

1 7 1 1 1 1 1

1 1 1

7 1 7 7 7 7 7

7 7

Ex
pe

ct
ed

 re
w

ar
d

di
ff

er
en

ce

d e

f

EJ

RJ

Leaf reward

Small contributions

Small contributions from leaves 8, 11 and 14-17

Figure 6.12: Explaining PETS agent actions with doubly-decomposed reward di↵erences.

When the sources of expected return can be decomposed in this way, Juozapaitis et al. [134]

coin the term reward di↵erence explanation (RDX) to denote taking the di↵erence between the

returns of two alternative cases by component-wise subtraction, and using this to give reasons

why an agent prefers one over the other.6 The final subplot f shows a visual RDX between the

first and last planning iterations. The visualisation has the form of a force plot [167],7 in which

the thick black line represents the overall di↵erence in reward for each timestep. Leaves with

positive contributions for that timestep ‘push the line up’ from below, and those with negative

contributions ‘push it down’ from above. Since (due to the sign normalisation in Section 6.3.1)

all leaves in this tree have positive reward, and leaf visitation probabilities in each timestep

must sum to 1, a gain in reward from one leaf is always associated with a loss in reward from

another. This means that every timestep has at least one leaf on each side of the black line.

The RDX force plot e↵ectively answers the explanatory query “why is the average return

of the final planning iteration higher than the first planning iteration?”, or in more grounded

6In [134], the two cases are alternative next actions to take in a particular state, and predictions are made
by a decomposed state-action value (Q) network rather than explicit planning. Other work has used a similar
approach to analyse tradeo↵s between di↵erent planning outcomes [31, 238]. Separately, [224] use temporal
decomposition to compare best- and worst-case realisations of a stochastic dynamics function. None of these
prior works considers doubly-decomposed reward di↵erences by both reward source (i.e. leaf) and timestep.

7The term “force plot” is not used in [167], but is in the open source code at https://github.com/shap/shap.

182

https://github.com/shap/shap


6.7. CONCLUSION

terms, “why does the agent prefer to make an up-and-right turn rather than some other random

action sequence?” It can be interpreted as follows. Reading left-to-right, we find that timesteps

1 to 3 are not major drivers of the preference. Although the final iteration obtains slightly more

reward from leaf 7 (below the line) and slightly less from leaf 1 (above the line), these changes

balance out to have a small (in fact, slightly negative) net e↵ect. Instead, the key advantage of

the up-and-right turn is realised from timestep 4 onwards, from which the agent predicts it will

obtain greatly increased reward from (initially) leaf 8 and (later on) leaf 9, instead of remaining

in either leaf 1 or 7. Referring back to the tree diagram in Figure 6.8, the key factor that

di↵erentiates leaves 8 and 9 from 1 and 7 is that they are above the critical alt = 50 threshold.

In short: the agent chooses to pitch sharply upwards (and slightly rightwards) because in four

timesteps’ time, this will mean it no longer violates the safe altitude threshold.

This method of exploiting the reward tree structure to analyse and explain a PETS agent’s

planning process incurs very little computational overhead, since it uses data (sampled actions,

predicted future states and rewards) that are generated by default as a by-product of planning.

The explanations it produces, based on expected future visitation to each leaf of the tree, are

contingent on outputs of the agent’s learnt dynamics model T 0, and thus may reflect a somewhat

inaccurate picture of the true e↵ect of agent actions on environment states. Although this

possible lack of faithfulness to the real dynamics may initially seem problematic, it is important

to note that expected visitation probabilities are a faithful depiction of what the agent believes

will happen in the future, and thus of the causal mechanism that actually drives the planning

process. This is, in fact, what we want to understand when we ask why a given action is selected.

This distinction between explanations that are ‘true to the model’ (i.e. the agent’s beliefs) and

‘true to the data’ (i.e. the real dynamics) is an important issue in interpretability research [42].

6.7 Conclusion

In this chapter, we have applied reward tree learning to the industrially-motivated use case of fast

jet aircraft handling. Through extensive experiments with oracle preferences for several tasks,

we showed that reward trees with around 20 leaves can achieve quantitative and qualitative

performance close to that of standard NN-based approaches. We obtained evidence that the

NN-tree gap reduces as the ground truth reward becomes more nonlinear and remains stable or

reduces further in the presence of limited or corrupted data. To achieve these positive results,

we made several methodological changes, including adopting an improved tree splitting criterion

and using model-based agents for policy learning. We also explored several new interpretability

directions, including one that directly exploits the planning process of a model-based agent

to explain how a reward tree influences action selection. The models and experiments in this

chapter have several limitations, which create opportunities for further work:

• While reward trees enabled competent policy learning on all tasks, and our new split

criterion delivered a clear benefit, the performance of NN-based models was somewhat

183



CHAPTER 6. A USE CASE FOR REWARD TREES

better overall. Part of this gap may be due to inherent limits on the expressiveness of

reasonably-sized trees, but the rest may be closed by further algorithmic improvements.

• The aircraft handling tasks were more complex and high-dimensional than those in the

previous chapter, but simple compared with the challenges faced by real pilots. It would

be interesting to extend the method to handle much longer-horizon tasks (e.g. a search

and rescue mission) by combining local reward trees learnt for elementary subtasks. The

reward machines formalism [127] may be a good way of specifying the conditions under

which an agent should switch from one reward tree to another.

• A central assumption of reward learning is that manual reward specification is unreliable

because human preferences are tacit. However, this may be overly pessimistic in domains

with highly-trained experts like aviation. We believe that the rule-based structure of

reward trees naturally lends itself to a hybrid approach of partial manual specification

and partial feedback-driven learning. Implementing this would be a natural next step.

• The experiments in this chapter used synthetic oracle preferences to enable scalable

quantitative evaluation. We examined the performance impacts of preference noise and

myopia, but this was an imperfect proxy for experiments with real aviation experts. Such

experiments would be needed to fully understand the method’s practical e�cacy.

On the latter point, experiments with real experts would likely reveal that their preferences

di↵er to some extent. While it would be easy to combine their preference data to learn an

average reward tree, an alternative would be to learn an individual reward tree for each expert,

and then leverage the intrinsic interpretability of these models to identify points of agreement

and disagreement. This suggests an as-yet-unexplored application of reward tree learning: as a

mediator for discussing and resolving divergent human preferences.

184



Chapter 7

Conclusions and Further Work

7.1 Review of Contributions

As AI agents play an increasing role in the modern world and their learning-based algorithms

become increasingly complex, interpretability methods are essential for ensuring that their

behaviour is safe, reliable and aligned with human preferences. While a growing number of

techniques exist, not all are suitable for understanding the full complexity of the dynamic

interaction between agents, environments and objectives. In this thesis, we have attempted to

take a holistic perspective on the agent interpretability challenge through a strategy of ‘unified

diversity’. Our approach was unified because we maintained a common language of abstraction

with tree-based models. However, it was also diverse because we focused on various aspects of

agents, including their actions, dynamics, learning and objectives.

After introducing the agent interpretability problem in Chapter 1, we formalised the tree

abstraction approach in Chapter 2 and investigated its foundations. Chapter 3 proposed tree

models for understanding the behaviour of an agent not just in terms of its state-to-action

policy, but also via its value function and dynamics. Chapter 4 further developed the concept

of trees as dynamics models, using a contrastive objective to learn models of the changes that

occur during agent learning. Chapter 5 switched perspective to use trees as models of human

preferences over agent behaviour, which in turn could be used by agents to learn policies that

are both aligned and interpretable. Chapter 6 further refined this method and evaluated it in

an industrially-motivated use case. Alongside the models themselves, we have contributed a

range of transferable tools for visualisation and generating textual explanations.

7.2 Practical Uses of Proposed Models

In Section 1.1, we introduced six user stories to illustrate why various stakeholders require

agents to be interpretable. In the following, we briefly consider how our models might assist

these stakeholders, highlighting how they could be combined in complementary ways.

185



CHAPTER 7. CONCLUSIONS AND FURTHER WORK

• As an owner of an AI agent, I want to verify its capabilities and limitations in as-yet-

unseen scenarios, so that I can deploy it with confidence.

– Suppose that a startup has built a robot vacuum cleaner. They have data on its

behaviour in many test rooms and wish to know if it is ready for use in customers’

homes. They could use the test data to grow a TripleTree model. Through

projected hyperrectangle plots of the robot’s policy and value function, they could

establish trends in the robot’s actions and performance across environment states.

They could also use hypothetical trajectories to assess the robot’s ability to move

between certain start and goal conditions (e.g. from under a kitchen table to its

charging station) and the most likely routes to get there. In this way, they could

establish features of customer homes that pose challenges to the current design.

• As a user of an AI agent, I want to understand how my actions are influencing its

behaviour, so that I gain some control over the behaviour produced in future.

– Future medical professionals may collaborate with automated agents during treat-

ment planning. As non-experts in AI, doctors and nurses might best understand

such an agent’s recommendations through textual explanations. By learning a tree-

structured model to approximate the agent’s policy, it would be possible to explain

actions factually and counterfactually in natural language and construct temporal

explanations of entire treatment plans. By expressing preferences over alternative

plans, the medics could contribute to improving the agent itself via reward tree

learning, with reward predictions always being traceable back to individual preference

labels. If the agent used explicit model-based planning, it could even explain its

actions directly in terms of the influence of di↵erent reward tree leaves.

• As a regulator of technology, I want to screen proposed AI agents for pernicious

functionality and biases, so that I can protect the public from harm.

– Consider a financial regulator tasked with approving or blocking an RL-based

algorithmic trading agent. Rather than requiring the firm that developed the agent

to release all their sensitive data, the regulator may request that the agent’s learning

history be summarised in a sequence of abstract transition models via our CSTA

algorithm. This would allow them to review the behaviours explored during learning.

They could then determine if the agent has gained su�cient experience of, and

robustness to, adverse market events, and has unlearnt any unsafe behaviours. The

agent may have been guided by feedback from expert human traders. If this was done

using reward tree learning, the firm could also release the sequence of reward trees

used throughout the learning process. This would help the regulator to ascertain not

only which behaviours occurred during learning, but why they occurred.

186



7.2. PRACTICAL USES OF PROPOSED MODELS

• As an AI practitioner, I want to trace the e↵ects of changes I make to an agent model

and its learning algorithm, so that I can make improvements e�ciently.

– This practitioner may be training an agent for a challenging exploration problem,

such as mapping deep sea caves in an AUV. Once again, the CSTA method could

be valuable. It could reveal if learning leads the agent to become stuck in certain

types of state, and even how this varies between training runs with di↵erent agent

hyperparameters. For moments in training when rapid changes occur, the practitioner

may wish to load up a checkpointed policy and learn a tree model to approximate

it. Consulting the diagram of this tree could provide further insight into what, if

anything, might be going wrong, including whether the agent responds in unintuitive

ways to features of the environment. This may inspire changes to the agent’s internal

structure or how it represents the environment state.

• As an AI researcher, I want to develop scientific insight into the mechanisms and

emergent properties of agent learning, so that this can inform future breakthroughs.

– Suppose this researcher is using a video game benchmark to understand the capa-

bilities of a state-of-the-art RL agent. All of our models could be brought to bear

on this e↵ort, and experts would be well-equipped to integrate them in informative

ways. Multiattribute visualisations of a TripleTree model, and transition graphs

produced by CSTA, could help to reveal both global trends and local sensitivities in

the agent’s policy, value function and state dynamics. The researcher could compare

these results to models learnt from the gameplay data of humans of varying levels of

expertise. This could establish where the RL agent exhibits human-like strategies

and deficiencies, and where its behaviour is genuinely novel.

• As a person living in a world with ever more complex and numerous AI agents, I want

to know whether their behaviour and learning are aligned with my best interests and

those of my community, so that I maintain an ability to control them.

– Consider a future driverless family car. Each family member can be assigned a

unique reward tree, learnt from their feedback on alternative driving styles, which

influences the car’s objective (and thus its behaviour) when they are a passenger.

Perhaps one child strongly dislikes speed bumps and prioritises going gently across

them, while one parent prefers to take scenic routes over rushing to their destination.

Each person can trust that journeys will align with their preferences because the car

can verbally justify its driving decisions in terms of their personalised rule structure.

When the whole family is in the car, a compromise driving style may be sought

by comparing their individual trees, retaining points of agreement, and asking for

clarification on points of disagreement.

187



CHAPTER 7. CONCLUSIONS AND FURTHER WORK

7.3 Successes of the Overall Approach

In Sections 1.4 (T1) and 2.6, we discussed how impactful interpretability work often proposes

simple, generic algorithm schemas based on clear assumptions and principles. By motivating

the flexible strategy of tree abstraction and following it throughout, we have attempted to do

the same. Framing tree abstraction in generic terms allowed us to think beyond how it has been

used before. In particular, we are aware of no prior examples of trees that jointly represent agent

actions, value functions and state dynamics, no prior examples of trees optimised to reveal

change points in agent learning, and no prior examples of trees used in reward learning. All of this

work was novel while being grounded in a model class familiar to the interpretability community,

and using well-understood algorithms for tree growth and pruning. The common language

of trees has enabled the transfer of analysis techniques across chapters (e.g. counterfactuals,

hyperrectangle projection plots, leaf visitation heatmaps), implying that the various methods

could be readily combined into a unified software package. They could also be integrated more

directly. In the spirit of TripleTree, it would be fairly simple to develop a hybrid model

providing all of the functionality of the individual models by combining their split criteria. For

some application contexts, this may be preferable to multiple specialist models.

7.4 Limitations of the Overall Approach

As discussed in Section 1.3.1, interpretability is hard to define, but many methods follow

the heuristic of enforcing or approximating simplicity. In this thesis, we arrived at the tree

abstraction approach by defining simplicity via the principle of abstraction, the desiderata of

convexity, partitioning, hierarchy and axis-alignment, and the property of query-dependent

e�ciency. In doing so, we left many equally valid routes unexplored and accepted an unavoidable

path dependence that constrained our thinking around all concrete methods and analyses. If we

had instead opted to use linear models or näıve Bayes classifiers as our common representation,

we would have doubtless had very di↵erent insights and results.

On several occasions, we have alluded to di↵erentiable trees that can be learnt by gradient-

based methods by sacrificing axis-alignment. These models are popular in the agent inter-

pretability literature (e.g. [51, 135, 192, 230, 242]), They can be better integrated with machine

learning hardware and software than the more classical approach of searching over discrete

splits. They can also model a larger class of functions, so they would probably outperform our

current methods on quantitative metrics. We have not explored di↵erentiable trees because we

believe (based on a continual review of existing work) that they induce a significant reduction

in interpretability. However, it is plausible that they provide a more scalable long-term solution

for interpreting agents, especially if they could be reliably simplified through techniques such

as sparsity regularisation. Our methods could be adapted to use di↵erentiable trees with few

conceptual changes, but there is also space in the literature for both model classes to flourish.

188



7.5. FURTHER WORK

7.5 Further Work

In addition to the concrete further work directions identified in each chapter-specific conclusion

(Sections 3.11, 4.8, 5.10 and 6.7), we can envisage several larger research programmes to build

on the ideas explored in this thesis. Each of these could form a PhD topic in itself.

User Evaluation We have combined quantitative metrics and careful qualitative interpre-

tation to evaluate our proposed methods. However, as noted in Section 1.3.1, the value of an

interpretability method can only be fully assessed through experiments with real human users.

Work in this direction would require the development of user interfaces for customising and vi-

sualising the models. We would be especially interested in assessing whether the interpretability

of reward tree learning helps users to provide better feedback and ultimately improve alignment.

Interpretable Feature Generation From the caveat in Section 2.3.4 onwards, we have

acknowledged the need for tree models to use basic features that are individually interpretable

(i.e. grounded in natural language concepts). The fact that these are not always readily available

could be the main limiting factor to our methods’ adoption. While the operator-based approach

in Section 3.2.2 provides a starting point, more work must be done to develop scalable feature

generation methods for arbitrary environments, including those with image-based observations.

Optimal and Online Algorithms Throughout this thesis, we have used greedy tree growth

algorithms, which optimise over one split at a time rather than an entire tree. The quantitative

performance of the models (and thus their e�ciency as summaries of agents and environments)

may be enhanced by using globally optimal tree induction algorithms [25]. Also, aside from in

Chapter 5, all algorithms grow trees from scratch on fixed datasets. Many future applications

of interpretability could involve monitoring agents in real-time, so extending all methods to

better handle online streaming data would be beneficial.

Additional Models There is scope for much more work to develop variants on the theme of

tree abstraction for agent interpretability, including those that take an intrinsic or mechanistic

perspective (see Section 1.3.2 for definitions). Examples may include:

• Model-based agents with trees as their dynamics models, expressible as transition graphs.

• Mechanistic tree models of the internal activations of an agent’s policy network.

• Tree abstractions of an agent’s action space to understand when and why certain types of

action are taken.

Multiagent Applications As AI becomes more prevalent in society, increasingly many

systems will involve dynamic interactions between multiple agents (and multiple humans).

We see multiagent systems as the next great frontier of interpretability research. It would be

valuable to explore how tree abstraction could contribute to this e↵ort.

189





Bibliography

[1] S. Agarwal, C. Herrmann, G. Wallner, and F. Beck, Visualizing ai playtesting

data of 2d side-scrolling games, in 2020 IEEE Conference on Games (CoG), 2020,

pp. 572–575.

[2] S. Agarwal, G. Wallner, and F. Beck, Bombalytics: Visualization of competition

and collaboration strategies of players in a bomb laying game, Computer Graphics

Forum, 39 (2020), pp. 89–100.

[3] E. Albini, S. Sharma, S. Mishra, D. Dervovic, and D. Magazzeni, On the

connection between game-theoretic feature attributions and counterfactual explanations,

in Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2023.

[4] A. Alshehri, T. Miller, and M. Vered, Explainable goal recognition: A framework

based on weight of evidence, arXiv preprint arXiv:2303.05622, (2023).

[5] S. Aminikhanghahi and D. J. Cook, A survey of methods for time series change point

detection, Knowledge and information systems, 51 (2017), pp. 339–367.

[6] D. Amir and O. Amir, Highlights: Summarizing agent behavior to people, in Proceedings

of the 17th International Conference on Autonomous Agents and MultiAgent Systems,

2018.

[7] O. Amir, F. Doshi-Velez, and D. Sarne, Summarizing agent strategies, Autonomous

Agents and Multi-Agent Systems, 33 (2019), p. 628–644.

[8] Y. Amitai and O. Amir, “I Don’t Think So”: Summarizing Policy Disagreements for

Agent Comparison, in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 36, 2022, pp. 5269–5276.

[9] Y. Amitai, G. Avni, and O. Amir, Asq-it: Interactive explanations for reinforcement-

learning agents, arXiv preprint arXiv:2301.09941, (2023).

[10] R. M. Annasamy and K. Sycara, Towards better interpretability in deep q-networks,

in Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019, pp. 4561–

4569.

191



BIBLIOGRAPHY

[11] S. Aradi, Survey of deep reinforcement learning for motion planning of autonomous

vehicles, IEEE Transactions on Intelligent Transportation Systems, 23 (2020), pp. 740–

759.

[12] S. Armstrong, J. Leike, L. Orseau, and S. Legg, Pitfalls of learning a reward

function online, in Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence, IJCAI-20, 2020.

[13] C. Arzate Cruz and T. Igarashi, A survey on interactive reinforcement learning:

Design principles and open challenges, in Proceedings of the 2020 ACM Designing

Interactive Systems Conference, 2020, pp. 1195–1209.

[14] A. Atrey, K. Clary, and D. Jensen, Exploratory not explanatory: Counterfactual

analysis of saliency maps for deep reinforcement learning, in International Conference

on Learning Representations, 2020.

[15] A. T. Azar, A. Koubaa, N. Ali Mohamed, H. A. Ibrahim, Z. F. Ibrahim,

M. Kazim, A. Ammar, B. Benjdira, A. M. Khamis, I. A. Hameed, et al.,

Drone deep reinforcement learning: A review, Electronics, 10 (2021), p. 999.

[16] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale,

A review of temporal data visualizations based on space-time cube operations, in

Eurographics conference on visualization, 2014.

[17] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan, Learning robot

objectives from physical human interaction, in Conference on Robot Learning, PMLR,

2017, pp. 217–226.

[18] A. Baker, Simplicity, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, ed.,

Metaphysics Research Lab, Stanford University, Summer 2022 ed., 2022.

[19] G. Baryannis, S. Dani, and G. Antoniou, Predicting supply chain risks using machine

learning: The trade-o↵ between performance and interpretability, Future Generation

Computer Systems, 101 (2019), pp. 993–1004.

[20] O. Bastani, Y. Pu, and A. Solar-Lezama, Verifiable reinforcement learning via

policy extraction, Advances in Neural Information Processing Systems, 31 (2018).

[21] L. Bechberger and K.-U. Kühnberger, A thorough formalization of conceptual

spaces, in Joint German/Austrian Conference on Artificial Intelligence (Künstliche

Intelligenz), Springer, 2017, pp. 58–71.

[22] D. Beechey, T. M. Smith, and Ö. Şimşek, Explaining reinforcement learning with shap-

ley values, in International Conference on Machine Learning, PMLR, 2023, pp. 2003–

2014.

192



BIBLIOGRAPHY

[23] M. Belkaid, Explanation through behavior: a human-inspired framework for explainable

robotics, in ICRA2023 Workshop on Explainable Robotics, 2023.

[24] M. K. Bergman, Hierarchy in knowledge systems, Knowledge Organization, 49 (2022),

pp. 40–66. Also available in ISKO Encyclopedia of Knowledge Organization, eds.

Birger Hjørland and Claudio Gnoli, https://www.isko.org/cyclo/hierarchy.

[25] D. Bertsimas and J. Dunn, Optimal classification trees, Machine Learning, 106 (2017),

pp. 1039–1082.

[26] T. Bewley, Am I Building a White Box Agent or Interpreting a Black Box Agent?,

arXiv preprint arXiv:2007.01187, (2020).

[27] E. Bıyık, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh,

Learning reward functions from diverse sources of human feedback: Optimally integrat-

ing demonstrations and preferences, The International Journal of Robotics Research,

41 (2022), pp. 45–67.

[28] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, Inducing structure in reward

learning by learning features, The International Journal of Robotics Research, 41

(2022), pp. 497–518.

[29] S. Booth, J. Shah, S. Niekum, P. Stone, and A. Allievi, The perils of trial-

and-error reward design: misdesign through overfitting and invalid task specifications,

2023.

[30] R. A. Bradley and M. E. Terry, Rank analysis of incomplete block designs: I. the

method of paired comparisons, Biometrika, 39 (1952), pp. 324–345.

[31] M. Brandao, G. Canal, S. Krivić, and D. Magazzeni, Towards providing explana-

tions for robot motion planning, in 2021 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2021, pp. 3927–3933.

[32] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regression

trees. Wadsworth & Brooks, Cole Statistics/Probability Series, (1984).

[33] A. Brennen, What do people really want when they say they want” explainable ai?” we

asked 60 stakeholders., in Extended Abstracts of the 2020 CHI Conference on Human

Factors in Computing Systems, 2020, pp. 1–7.

[34] C. Brewitt, B. Gyevnar, S. Garcin, and S. V. Albrecht, Grit: Fast, interpretable,

and verifiable goal recognition with learned decision trees for autonomous driving, in

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2021), 2021.

193



BIBLIOGRAPHY

[35] S. L. Brunton, J. Nathan Kutz, K. Manohar, A. Y. Aravkin, K. Morgansen,

J. Klemisch, N. Goebel, J. Buttrick, J. Poskin, A. W. Blom-Schieber,

et al., Data-driven aerospace engineering: reframing the industry with machine

learning, AIAA Journal, 59 (2021), pp. 2820–2847.

[36] S. Cao, X. Wang, R. Zhang, H. Yu, and L. Shen, From demonstration to flight:

Realization of autonomous aerobatic maneuvers for fast, miniature fixed-wing uavs,

IEEE Robotics and Automation Letters, 7 (2022), pp. 5771–5778.

[37] Z. Cao, K. Wong, and C.-T. Lin, Weak human preference supervision for deep

reinforcement learning, IEEE Transactions on Neural Networks and Learning Systems,

32 (2021), pp. 5369–5378.

[38] A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, and P. Auer, Upper-

confidence-bound algorithms for active learning in multi-armed bandits, in International

Conference on Algorithmic Learning Theory, Springer, 2011, pp. 189–203.

[39] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, Machine learning interpretabil-

ity: A survey on methods and metrics, Electronics, 8 (2019), p. 832.

[40] S. Casper, T. Rauker, A. Ho, and D. Hadfield-Menell, Sok: Toward transparent

AI: A survey on interpreting the inner structures of deep neural networks, in First

IEEE Conference on Secure and Trustworthy Machine Learning, 2023.

[41] V. Charisi, N. D́ıaz-Rodŕıguez, B. Mawhin, and L. Merino, On children’s explo-

ration, aha! moments and explanations in model building for self-regulated problem-

solving, in IJCAI-ECAI workshop on AI evaluation beyond metrics, 2022.

[42] H. Chen, J. D. Janizek, S. Lundberg, and S.-I. Lee, True to the model or true to

the data?, arXiv preprint arXiv:2006.16234, (2020).

[43] N. Chomsky, A review of BF Skinner’s Verbal Behavior, Language, 35 (1959), pp. 26–58.

[44] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,

Deep reinforcement learning from human preferences, Advances in Neural Information

Processing Systems, 30 (2017).

[45] K. Chua, R. Calandra, R. McAllister, and S. Levine, Deep reinforcement

learning in a handful of trials using probabilistic dynamics models, Advances in Neural

Information Processing Systems, 31 (2018).

[46] G. Ciatto, M. I. Schumacher, A. Omicini, and D. Calvaresi, Agent-based explana-

tions in ai: Towards an abstract framework, in International Workshop on Explainable,

Transparent Autonomous Agents and Multi-Agent Systems, Springer, 2020, pp. 3–20.

194



BIBLIOGRAPHY

[47] P. Cichosz and  L. Pawe lczak, Imitation learning of car driving skills with decision

trees and random forests, International Journal of Applied Mathematics and Computer

Science, 24 (2014), pp. 579–597.

[48] S. G. Clarke and I. Hwang, Deep reinforcement learning control for aerobatic maneu-

vering of agile fixed-wing aircraft, in AIAA Scitech 2020 Forum, 2020, p. 0136.

[49] L. C. Cobo, C. L. Isbell Jr, and A. L. Thomaz, Automatic task decomposition and

state abstraction from demonstration, Georgia Institute of Technology, 2012.

[50] M. Cohn, User stories applied: For agile software development, Addison-Wesley Profes-

sional, 2004.

[51] Y. Coppens, K. Efthymiadis, T. Lenaerts, and A. Nowé, Distilling deep reinforce-

ment learning policies in soft decision trees, in IJCAI/ECAI Workshop on Explainable

Artificial Intelligence, 2019.

[52] Y. Coppens, D. Steckelmacher, C. M. Jonker, and A. Nowé, Synthesising

reinforcement learning policies through set-valued inductive rule learning, in Trustwor-

thy AI - Integrating Learning, Optimization and Reasoning, Cham, 2021, Springer

International Publishing, pp. 163–179.

[53] E. Coumans and Y. Bai, Pybullet, a python module for physics simulation for games,

robotics and machine learning.

http://pybullet.org, 2016–2021.

[54] F. Cruz, C. Young, R. Dazeley, and P. Vamplew, Evaluating Human-like Ex-

planations for Robot Actions in Reinforcement Learning Scenarios, in International

Conference on Intelligent Robots and Systems (IROS), 2022.

[55] L. Csató, A graph interpretation of the least squares ranking method, Social Choice and

Welfare, 44 (2015), pp. 51–69.

[56] J. Cullen and A. Bryman, The knowledge acquisition bottleneck: time for reassessment?,

Expert Systems, 5 (1988), pp. 216–225.

[57] N. Dahlin, K. C. Kalagarla, N. Naik, R. Jain, and P. Nuzzo, Design-

ing interpretable approximations to deep reinforcement learning, arXiv preprint

arXiv:2010.14785, (2020).

[58] Y. Dai, Q. Chen, J. Zhang, X. Wang, Y. Chen, T. Gao, P. Xu, S. Chen, S. Liao,

H. Jiang, et al., Enhanced oblique decision tree enabled policy extraction for deep

reinforcement learning in power system emergency control, Electric Power Systems

Research, 209 (2022), p. 107932.

195

http://pybullet.org


BIBLIOGRAPHY

[59] G. Dao, I. Mishra, and M. Lee, Deep reinforcement learning monitor for snapshot

recording, in 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), IEEE, 2018, pp. 591–598.

[60] O. Davoodi and M. Komeili, Feature-based interpretable reinforcement learning based

on state-transition models, in 2021 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), IEEE, 2021, pp. 301–308.

[61] R. Dazeley, P. Vamplew, and F. Cruz, Explainable reinforcement learning for

broad-xai: a conceptual framework and survey, Neural Computing and Applications,

(2023), pp. 1–24.

[62] J. De Leeuw and P. Mair, Multidimensional scaling using majorization: Smacof in r,

Journal of statistical software, 31 (2009), pp. 1–30.

[63] G. De’Ath, Multivariate regression trees: a new technique for modeling species–

environment relationships, Ecology, 83 (2002), pp. 1105–1117.

[64] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,

T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas, et al., Magnetic

control of tokamak plasmas through deep reinforcement learning, Nature, 602 (2022),

pp. 414–419.

[65] Q. Delfosse, H. Shindo, D. Dhami, and K. Kersting, Interpretable and ex-

plainable logical policies via neurally guided symbolic abstraction, arXiv preprint

arXiv:2306.01439, (2023).

[66] S. V. Deshmukh, A. Dasgupta, B. Krishnamurthy, N. Jiang, C. Agarwal,

G. Theocharous, and J. Subramanian, Explaining RL decisions with trajectories,

in The Eleventh International Conference on Learning Representations, 2023.

[67] S. V. Deshmukh, S. R, S. Vijay, J. Subramanian, and C. Agarwal, Counterfactual

explanation policies in rl, in ICML Workshop on Counterfactuals in Minds and

Machines, 2023.

[68] S. Deshpande, B. Eysenbach, and J. Schneider, Interactive visualization for debug-

ging rl, arXiv preprint arXiv:2008.07331, (2020).

[69] R. Devidze, G. Radanovic, P. Kamalaruban, and A. Singla, Explicable reward

design for reinforcement learning agents, Advances in Neural Information Processing

Systems, 34 (2021), pp. 20118–20131.

[70] D. Dewey, Reinforcement learning and the reward engineering principle, in 2014 AAAI

Spring Symposium Series, 2014.

196



BIBLIOGRAPHY

[71] Y. Dhebar, K. Deb, S. Nageshrao, L. Zhu, and D. Filev, Interpretable-ai policies

using evolutionary nonlinear decision trees for discrete action systems, arXiv preprint

arXiv:2009.09521, (2020).

[72] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische mathe-

matik, 1 (1959), pp. 269–271.

[73] Z. Ding, P. Hernandez-Leal, G. W. Ding, C. Li, and R. Huang, Cdt: Cascading

decision trees for explainable reinforcement learning, arXiv preprint arXiv:2011.07553,

(2020).

[74] F. Doshi-Velez and B. Kim, Towards a rigorous science of interpretable machine

learning, arXiv preprint arXiv:1702.08608, (2017).

[75] N. Douglas, D. Yim, B. Kartal, P. Hernandez-Leal, F. Maurer, and M. E.

Taylor, Towers of saliency: A reinforcement learning visualization using immersive

environments, in Proceedings of the 2019 ACM International Conference on Interactive

Surfaces and Spaces, 2019, pp. 339–342.

[76] P. Du, S. Murthy, and K. Driggs-Campbell, Conveying autonomous robot capa-

bilities through contrasting behaviour summaries, arXiv preprint arXiv:2304.00367,

(2023).

[77] J. W. Dunn, Optimal trees for prediction and prescription, PhD thesis, Massachusetts

Institute of Technology, 2018.

[78] R. Dutta, Q. Wang, A. Singh, D. Kumarjiguda, L. Xiaoli, and S. Jayavelu,

S-reinforce: A neuro-symbolic policy gradient approach for interpretable reinforcement

learning, arXiv preprint arXiv:2305.07367, (2023).

[79] S. Džeroski, L. D. Raedt, and H. Blockeel, Relational reinforcement learning, in

International Conference on Inductive Logic Programming, Springer, 1998, pp. 11–22.

[80] J. Early, T. Bewley, C. Evers, and S. Ramchurn, Non-markovian reward modelling

from trajectory labels via interpretable multiple instance learning, Advances in Neural

Information Processing Systems, 35 (2022), pp. 27652–27663.

[81] A. Erasmus, T. D. Brunet, and E. Fisher, What is interpretability?, Philosophy &

Technology, (2020), pp. 1–30.

[82] B. Eric, N. Freitas, and A. Ghosh, Active Preference Learning with Discrete Choice

Data, Advances in Neural Information Processing Systems, 20 (2007).

197



BIBLIOGRAPHY

[83] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, Diversity is all you need:

Learning skills without a reward function, in International Conference on Learning

Representations, 2019.

[84] J. f, Transparent value alignment, in Companion of the 2023 ACM/IEEE International

Conference on Human-Robot Interaction, 2023, pp. 557–560.

[85] J. B. Faddoul, B. Chidlovskii, R. Gilleron, and F. Torre, Learning multiple

tasks with boosted decision trees, in Machine Learning and Knowledge Discovery in

Databases: European Conference, ECML PKDD 2012, Bristol, UK, September 24-28,

2012. Proceedings, Part I 23, Springer, 2012, pp. 681–696.

[86] Farama Foundation, Gymnasium.

https://github.com/Farama-Foundation/Gymnasium, 2023.

[87] M. Finkelstein, N. S. levy, L. Liu, Y. Kolumbus, D. C. Parkes, J. Rosenschein,

and S. Keren, Explainable reinforcement learning via model transforms, in Advances

in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and

K. Cho, eds., 2022.

[88] B. L. Fredrickson and D. Kahneman, Duration neglect in retrospective evaluations

of a↵ective episodes., Journal of personality and social psychology, 65 (1993), p. 45.

[89] S. Fujimoto, H. Hoof, and D. Meger, Addressing function approximation error in

actor-critic methods, in International Conference on Machine Learning, PMLR, 2018,

pp. 1587–1596.

[90] J. Gajcin and I. Dusparic, Counterfactual explanations for reinforcement learning,

arXiv preprint arXiv:2210.11846, (2022).

[91] , Raccer: Towards reachable and certain counterfactual explanations for reinforcement

learning, arXiv preprint arXiv:2303.04475, (2023).

[92] J. Gajcin, R. Nair, T. Pedapati, R. Marinescu, E. Daly, and I. Dusparic,

Contrastive explanations for comparing preferences of reinforcement learning agents,

in AAAI Workshop on Interactive Machine Learning, 2022.

[93] O. Gallitz, O. De Candido, M. Botsch, and W. Utschick, Interpretable feature

generation using deep neural networks and its application to lane change detection,

in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019,

pp. 3405–3411.

[94] P. Gärdenfors, Conceptual spaces: The geometry of thought, MIT press, 2004.

198

https://github.com/Farama-Foundation/Gymnasium


BIBLIOGRAPHY

[95] P. Gärdenfors and M. Warglien, Using conceptual spaces to model actions and

events, Journal of semantics, 29 (2012), pp. 487–519.

[96] V. B. Gjærum, I. Strümke, J. Løver, T. Miller, and A. M. Lekkas, Model

tree methods for explaining deep reinforcement learning agents in real-time robotic

applications, Neurocomputing, 515 (2023), pp. 133–144.

[97] V. B. Gjærum, I. Strümke, O. A. Alsos, and A. M. Lekkas, Explaining a

deep reinforcement learning docking agent using linear model trees with user adapted

visualization, Journal of Marine Science and Engineering, 9 (2021).

[98] C. Glanois, P. Weng, M. Zimmer, D. Li, T. Yang, J. Hao, and W. Liu, A survey

on interpretable reinforcement learning, arXiv preprint arXiv:2112.13112, (2021).

[99] A. Gleave, M. D. Dennis, S. Legg, S. Russell, and J. Leike, Quantifying di↵erences

in reward functions, in International Conference on Learning Representations, 2021.

[100] S. Greydanus, A. Koul, J. Dodge, and A. Fern, Visualizing and understanding atari

agents, in International Conference on Machine Learning, PMLR, 2018, pp. 1792–1801.

[101] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz, Policy

shaping: Integrating human feedback with reinforcement learning, Advances in neural

information processing systems, 26 (2013).

[102] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, and

F. Turini, Factual and counterfactual explanations for black box decision making,

IEEE Intelligent Systems, (2019).

[103] C. Gulcehre, Z. Wang, A. Novikov, T. Paine, S. Gómez, K. Zolna, R. Agarwal,

J. S. Merel, D. J. Mankowitz, C. Paduraru, et al., Rl unplugged: A suite

of benchmarks for o✏ine reinforcement learning, Advances in Neural Information

Processing Systems, 33 (2020), pp. 7248–7259.

[104] H. Gulliksen, A least squares solution for paired comparisons with incomplete data,

Psychometrika, 21 (1956), pp. 125–134.

[105] W. Guo, X. Wu, U. Khan, and X. Xing, EDGE: Explaining Deep Reinforcement

Learning Policies, Advances in Neural Information Processing Systems, 34 (2021).

[106] Y. Guo, P. Tian, J. Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. F.

Chiang, D. Erdogmus, J. G. Dy, and S. Ioannidis, Experimental design under

the bradley-terry model., in IJCAI, 2018, pp. 2198–2204.

199



BIBLIOGRAPHY

[107] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: O↵-policy

maximum entropy deep reinforcement learning with a stochastic actor, in International

Conference on Machine Learning, PMLR, 2018, pp. 1861–1870.

[108] B. Hammer and E. Hüllermeier, Interpretable machine learning: On the problem

of explaining model change, in Proceedings of Workshop Computational Intelligence,

vol. 25, 2021, p. 1.

[109] S. Harnad, The symbol grounding problem, Physica D: Nonlinear Phenomena, 42 (1990),

pp. 335–346.

[110] B. Hayes and J. A. Shah, Improving robot controller transparency through autonomous

policy explanation, in Proceedings of the 2017 ACM/IEEE international conference

on human-robot interaction, 2017, pp. 303–312.

[111] L. He, N. Aouf, and B. Song, Explainable deep reinforcement learning for uav

autonomous path planning, Aerospace science and technology, 118 (2021), p. 107052.

[112] W. He, T.-Y. Lee, J. van Baar, K. Wittenburg, and H.-W. Shen, Dynamic-

sexplorer: Visual analytics for robot control tasks involving dynamics and lstm-based

control policies, in 2020 IEEE Pacific Visualization Symposium (PacificVis), IEEE,

2020, pp. 36–45.

[113] D. Hein, S. Udluft, and T. A. Runkler, Interpretable policies for reinforcement

learning by genetic programming, Engineering Applications of Artificial Intelligence,

76 (2018), pp. 158–169.

[114] R. Herbrich, T. Minka, and T. Graepel, Trueskill: A bayesian skill rating system,

in Proceedings of the 19th international conference on neural information processing

systems, 2006, pp. 569–576.

[115] G. Hesslow, The problem of causal selection, Contemporary science and natural expla-

nation: Commonsense conceptions of causality, (1988), pp. 11–32.

[116] J. Hilton, N. Cammarata, S. Carter, G. Goh, and C. Olah, Understanding rl

vision, Distill, 5 (2020), p. e29.

[117] C. F. Hockett and C. D. Hockett, The origin of speech, Scientific American, 203

(1960), pp. 88–97.

[118] D. R. Hofstadter and E. Sander, Surfaces and essences: Analogy as the fuel and

fire of thinking, Basic books, 2013.

200



BIBLIOGRAPHY

[119] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Müller, Causability

and explainability of artificial intelligence in medicine, Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 9 (2019), p. e1312.

[120] X. Hu, J. Li, X. Zhan, Q.-S. Jia, and Y.-Q. Zhang, Query-policy misalignment in

preference-based reinforcement learning, arXiv preprint arXiv:2305.17400, (2023).

[121] J. Huang, P. P. Angelov, and C. Yin, Interpretable policies for reinforcement learning

by empirical fuzzy sets, Engineering Applications of Artificial Intelligence, 91 (2020),

p. 103559.

[122] S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan, Establishing appropriate

trust via critical states, in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), IEEE, 2018, pp. 3929–3936.

[123] S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan, Enabling robots to commu-

nicate their objectives, Autonomous Robots, 43 (2019), pp. 309–326.

[124] T. Huber, M. Demmler, S. Mertes, M. L. Olson, and E. André, Ganterfactual-rl:

Understanding reinforcement learning agents’ strategies through visual counterfactual

explanations, in Proceedings of the 2023 International Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’23, Richland, SC, 2023, International

Foundation for Autonomous Agents and Multiagent Systems, p. 1097–1106.

[125] T. Huber, D. Schiller, and E. André, Enhancing explainability of deep reinforcement

learning through selective layer-wise relevance propagation, in Joint German/Austrian

Conference on Artificial Intelligence (Künstliche Intelligenz), Springer, 2019, pp. 188–

202.

[126] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei, Reward

learning from human preferences and demonstrations in atari, in Advances in Neural

Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, eds., vol. 31, 2018.

[127] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, Using reward

machines for high-level task specification and decomposition in reinforcement learning,

in International Conference on Machine Learning, PMLR, 2018, pp. 2107–2116.

[128] J. E. Jackson and M. Fleckenstein, An evaluation of some statistical techniques

used in the analysis of paired comparison data, Biometrics, 13 (1957), pp. 51–64.

[129] T. Jaunet, R. Vuillemot, and C. Wolf, Drlviz: Understanding decisions and memory

in deep reinforcement learning, in Computer Graphics Forum, vol. 39, Wiley Online

Library, 2020, pp. 49–61.

201



BIBLIOGRAPHY

[130] E. Jenner and A. Gleave, Preprocessing reward functions for interpretability, arXiv

preprint arXiv:2203.13553, (2022).

[131] H. J. Jeon, S. Milli, and A. Dragan, Reward-rational (implicit) choice: A unifying

formalism for reward learning, Advances in Neural Information Processing Systems,

33 (2020), pp. 4415–4426.

[132] A. Jhunjhunwala, J. Lee, S. Sedwards, V. Abdelzad, and K. Czarnecki,

Improved policy extraction via online q-value distillation, in 2020 International Joint

Conference on Neural Networks (IJCNN), IEEE, 2020, pp. 1–8.

[133] W.-C. Jiang, K.-S. Hwang, and J.-L. Lin, An experience replay method based on

tree structure for reinforcement learning, IEEE Transactions on Emerging Topics in

Computing, 9 (2019), pp. 972–982.

[134] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez, Explain-

able reinforcement learning via reward decomposition, in IJCAI/ECAI Workshop on

Explainable Artificial Intelligence, 2019.

[135] A. Kalra and D. S. Brown, Interpretable reward learning via di↵erentiable decision

trees, in NeurIPS ML Safety Workshop, 2022.

[136] , Can di↵erentiable decision trees learn interpretable reward functions?, arXiv preprint

arXiv:2306.13004, (2023).

[137] S. Kambhampati, S. Sreedharan, M. Verma, Y. Zha, and L. Guan, Symbols

as a lingua franca for bridging human-ai chasm for explainable and advisable ai

systems, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,

2022, pp. 12262–12267.

[138] M. Kendall, Rank Correlation Methods; Gri�n, C., Ed, 1975.

[139] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), pp. 81–93.

[140] E. M. Kenny, M. Tucker, and J. Shah, Towards interpretable deep reinforcement

learning with human-friendly prototypes, in The Eleventh International Conference on

Learning Representations, 2022.

[141] T. Kim, Y. Yue, S. Taylor, and I. Matthews, A decision tree framework for

spatiotemporal sequence prediction, in Proceedings of the 21th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, 2015, pp. 577–586.

[142] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980, (2014).

202



BIBLIOGRAPHY

[143] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, Reward (mis)

design for autonomous driving, Artificial Intelligence, 316 (2023), p. 103829.

[144] W. B. Knox, I. R. Fasel, and P. Stone, Design principles for creating human-shapable

agents., in AAAI Spring Symposium: Agents that Learn from Human Teachers, 2009,

pp. 79–86.

[145] W. B. Knox, S. Hatgis-Kessell, S. Booth, S. Niekum, P. Stone, and A. Al-

lievi, Models of human preference for learning reward functions, arXiv preprint

arXiv:2206.02231, (2022).

[146] W. B. Knox and P. Stone, Tamer: Training an agent manually via evaluative rein-

forcement, in 2008 7th IEEE international conference on development and learning,

IEEE, 2008, pp. 292–297.

[147] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and

P. Liang, Concept bottleneck models, in International conference on machine learning,

PMLR, 2020, pp. 5338–5348.

[148] R. Kommiya Mothilal, D. Mahajan, C. Tan, and A. Sharma, Towards unifying

feature attribution and counterfactual explanations: Di↵erent means to the same end,

in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 2021,

pp. 652–663.

[149] A. Koul, A. Fern, and S. Greydanus, Learning finite state representations of

recurrent policy networks, in International Conference on Learning Representations,

2019.

[150] A. Koul, S. Greydanus, and A. Fern, Learning finite state representations of

recurrent policy networks, arXiv preprint arXiv:1811.12530, (2018).

[151] D. Lafond, S. Tremblay, and S. Banbury, Cognitive shadow: A policy capturing tool

to support naturalistic decision making, in 2013 IEEE International Multi-Disciplinary

Conference on Cognitive Methods in Situation Awareness and Decision Support

(CogSIMA), IEEE, 2013, pp. 139–142.

[152] H. Laurent and R. L. Rivest, Constructing optimal binary decision trees is np-

complete, Information processing letters, 5 (1976), pp. 15–17.

[153] K. Lee, L. Smith, A. Dragan, and P. Abbeel, B-pref: Benchmarking preference-

based reinforcement learning, Advances in Neural Information Processing Systems, 35

(2021).

203



BIBLIOGRAPHY

[154] K. Lee, L. M. Smith, and P. Abbeel, Pebble: Feedback-e�cient interactive reinforce-

ment learning via relabeling experience and unsupervised pre-training, in International

Conference on Machine Learning, PMLR, 2021, pp. 6152–6163.

[155] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg, Scal-

able agent alignment via reward modeling: a research direction, arXiv preprint

arXiv:1811.07871, (2018).

[156] E. León, Spaces of convex n-partitions, PhD thesis, Freie Universität Berlin Berlin, 2015.

[157] Z.-H. Li, Y. Yu, Y. Chen, K. Chen, Z. Hu, and C. Fan, Neural-to-tree policy

distillation with policy improvement criterion, arXiv preprint arXiv:2108.06898, (2021).

[158] J. Lin, Divergence measures based on the shannon entropy, IEEE Transactions on

Information theory, 37 (1991), pp. 145–151.

[159] D. Lindner, M. Turchetta, S. Tschiatschek, K. Ciosek, and A. Krause,

Information directed reward learning for reinforcement learning, Advances in Neural

Information Processing Systems, 34 (2021), pp. 3850–3862.

[160] P. Lipton, Contrastive explanation, Royal Institute of Philosophy Supplements, 27

(1990), pp. 247–266.

[161] Z. C. Lipton, The mythos of model interpretability, Queue, 16 (2018), pp. 31–57.

[162] M. L. Littman and C. Szepesvári, A generalized reinforcement-learning model:

Convergence and applications, in ICML, vol. 96, 1996, pp. 310–318.

[163] G. Liu, O. Schulte, W. Zhu, and Q. Li, Toward interpretable deep reinforcement

learning with linear model u-trees, in Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, Springer, 2018, pp. 414–429.

[164] H. Liu, B. Kiumarsi, Y. Kartal, A. T. Koru, H. Modares, and F. L. Lewis,

Reinforcement learning applications in unmanned vehicle control: A comprehensive

overview, Unmanned Systems, (2022), pp. 1–10.

[165] Y. Liu, G. Datta, E. Novoseller, and D. S. Brown, E�cient preference-based

reinforcement learning using learned dynamics models, in NeurIPS workshop on Human

in the Loop Learning, 2022.

[166] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,

Advances in neural information processing systems, 30 (2017).

204



BIBLIOGRAPHY

[167] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams,

D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, et al., Explainable

machine-learning predictions for the prevention of hypoxaemia during surgery, Nature

biomedical engineering, 2 (2018), pp. 749–760.

[168] J. Luo, S. Green, P. Feghali, G. Legrady, and C. K. Koç, Visual diagnostics

for deep reinforcement learning policy development, arXiv preprint arXiv:1809.06781,

(2018).

[169] S. Mahmud, S. Saisubramanian, and S. Zilberstein, Reveale: Reward verification

and learning using explanations, in AAAI Workshop on Arti�cial Intelligence Safety,

2023.

[170] Mathonline, The Simple Function Approximation Theorem.

http://mathonline.wikidot.com/the-simple-function-approximation-theorem.

[171] J. McCalmon, T. Le, S. Alqahtani, and D. Lee, Caps: Comprehensible abstract

policy summaries for explaining reinforcement learning agents, in Proceedings of the

21st International Conference on Autonomous Agents and Multiagent Systems, 2022,

pp. 889–897.

[172] T. McGrath, A. Kapishnikov, N. Tomašev, A. Pearce, M. Wattenberg, D. Has-

sabis, B. Kim, U. Paquet, and V. Kramnik, Acquisition of chess knowledge in alp-

hazero, Proceedings of the National Academy of Sciences, 119 (2022), p. e2206625119.

[173] S. McGregor, H. Buckingham, T. G. Dietterich, R. Houtman, C. Montgomery,

and R. Metoyer, Interactive visualization for testing markov decision processes:

Mdpvis, Journal of Visual Languages & Computing, 39 (2017), pp. 93–106.

Special Issue on Programming and Modelling Tools.

[174] E. J. Michaud, A. Gleave, and S. Russell, Understanding learned reward functions,

arXiv preprint arXiv:2012.05862, (2020).

[175] S. Milani, N. Topin, M. Veloso, and F. Fang, Explainable reinforcement learning:

A survey and comparative review, ACM Comput. Surv., (2023).

[176] T. Miller, Contrastive explanation: A structural-model approach, arXiv preprint

arXiv:1811.03163, (2018).

[177] , Explanation in artificial intelligence: Insights from the social sciences, Artificial

Intelligence, 267 (2019), pp. 1–38.

[178] B. Millidge, Towards a mathematical theory of abstraction, arXiv preprint

arXiv:2106.01826, (2021).

205

http://mathonline.wikidot.com/the-simple-function-approximation-theorem


BIBLIOGRAPHY

[179] A. Mishra, U. Soni, J. Huang, and C. Bryan, Why? why not? when? visual ex-

planations of agent behaviour in reinforcement learning, in 2022 IEEE 15th Pacific

Visualization Symposium (PacificVis), IEEE, 2022, pp. 111–120.

[180] C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box Models

Explainable, 2018.

[181] E. F. Morales and C. Sammut, Learning to fly by combining reinforcement learning

with behavioural cloning, in Proceedings of the twenty-first international conference

on Machine learning, 2004, p. 76.

[182] F. Mosteller, Remarks on the method of paired comparisons: I. the least squares

solution assuming equal standard deviations and equal correlations, Psychometrika, 16

(1951), pp. 3–9.

[183] R. K. Mothilal, A. Sharma, and C. Tan, Explaining machine learning classifiers

through diverse counterfactual explanations, in Proceedings of the 2020 conference on

fairness, accountability, and transparency, 2020, pp. 607–617.

[184] M. Movin, G. D. Junior, J. Hollmén, and P. Papapetrou, Explaining black box

reinforcement learning agents through counterfactual policies, in Advances in Intelligent

Data Analysis XXI, Cham, 2023, Springer Nature Switzerland, pp. 314–326.

[185] S. Murthy and S. Salzberg, Lookahead and pathology in decision tree induction, in

IJCAI, Citeseer, 1995, pp. 1025–1033.

[186] S. Nageshrao, B. Costa, and D. Filev, Interpretable approximation of a deep

reinforcement learning agent as a set of if-then rules, in 2019 18th IEEE International

Conference On Machine Learning And Applications (ICMLA), IEEE, 2019, pp. 216–

221.

[187] R. K. Nayyar, P. Verma, and S. Srivastava, Di↵erential assessment of black-box ai

agents, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022,

pp. 9868–9876.

[188] A. Y. Ng, D. Harada, and S. Russell, Policy invariance under reward transformations:

Theory and application to reward shaping, in Icml, vol. 99, Citeseer, 1999, pp. 278–287.

[189] A. Y. Ng, S. Russell, et al., Algorithms for inverse reinforcement learning., in Icml,

vol. 1, 2000, p. 2.

[190] M. L. Olson, R. Khanna, L. Neal, F. Li, and W.-K. Wong, Counterfactual state

explanations for reinforcement learning agents via generative deep learning, Artificial

Intelligence, 295 (2021), p. 103455.

206



BIBLIOGRAPHY

[191] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, et al., Training language models to follow

instructions with human feedback, Advances in Neural Information Processing Systems,

35 (2022), pp. 27730–27744.

[192] A. Pace, A. Chan, and M. van der Schaar, Poetree: Interpretable policy learning

with adaptive decision trees, in International Conference on Learning Representations,

2022.

[193] A. Páez, The pragmatic turn in explainable artificial intelligence (xai), Minds and

Machines, 29 (2019), pp. 441–459.

[194] F. Paischer, T. Adler, M. Hofmarcher, and S. Hochreiter, Semantic helm: An

interpretable memory for reinforcement learning, arXiv preprint arXiv:2306.09312,

(2023).

[195] A. Pan, K. Bhatia, and J. Steinhardt, The e↵ects of reward misspecification:

Mapping and mitigating misaligned models, in International Conference on Learning

Representations, 2022.

[196] T. D. Pereira, J. W. Shaevitz, and M. Murthy, Quantifying behavior to understand

the brain, Nature neuroscience, 23 (2020), pp. 1537–1549.

[197] B. D. Pierson, D. Arendt, J. Miller, and M. E. Taylor, Comparing explanations

in RL, Neural Computing and Applications, (2023), pp. 1–12.

[198] D. Pruthi, R. Bansal, B. Dhingra, L. B. Soares, M. Collins, Z. C. Lipton,

G. Neubig, and W. W. Cohen, Evaluating explanations: How much do explanations

from the teacher aid students?, Transactions of the Association for Computational

Linguistics, 10 (2022), pp. 359–375.

[199] E. Puiutta and E. Veith, Explainable reinforcement learning: A survey, in International

cross-domain conference for machine learning and knowledge extraction, Springer,

2020, pp. 77–95.

[200] N. Puri, S. Verma, P. Gupta, D. Kayastha, S. Deshmukh, B. Krishnamurthy,

and S. Singh, Explain your move: Understanding agent actions using specific and

relevant feature attribution, arXiv preprint arXiv:1912.12191, (2019).

[201] L. D. Pyeatt, Reinforcement learning with decision trees., in 21 st IASTED International

Multi-Conference on Applied Informatics, 2003, pp. 26–31.

[202] J. Qian, P. Weng, and C. Tan, Learning rewards to optimize global performance

metrics in deep reinforcement learning, in Proceedings of the 2023 International

Conference on Autonomous Agents and Multiagent Systems, 2023, pp. 1951–1960.

207



BIBLIOGRAPHY

[203] A. Raffin, Rl baselines zoo.

https://github.com/araffin/rl-baselines-zoo, 2018.

[204] M. Rahtz, V. Varma, R. Kumar, Z. Kenton, S. Legg, and J. Leike, Safe deep rl

in 3d environments using human feedback, arXiv preprint arXiv:2201.08102, (2022).

[205] T. Räz, Ml interpretability: Simple isn’t easy, arXiv preprint arXiv:2211.13617, (2022).

[206] P. Razzaghi, A. Tabrizian, W. Guo, S. Chen, A. Taye, E. Thompson, A. Bre-

geon, A. Baheri, and P. Wei, A survey on reinforcement learning in aviation

applications, arXiv preprint arXiv:2211.02147, (2022).

[207] S. Reddy, A. Dragan, S. Levine, S. Legg, and J. Leike, Learning human objectives

by evaluating hypothetical behavior, in International Conference on Machine Learning,

PMLR, 2020, pp. 8020–8029.

[208] M. T. Ribeiro, S. Singh, and C. Guestrin, ” why should i trust you?” explaining the

predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[209] M. Ribeiro Furtado de Mendonça, A. Ziviani, and A. da Motta Salles Bar-

reto, Abstract state transition graphs for model-based reinforcement learning, in 2018

7th Brazilian Conference on Intelligent Systems (BRACIS), 2018, pp. 115–120.

[210] E. H. Rosch, Natural categories, Cognitive psychology, 4 (1973), pp. 328–350.

[211] S. Ross, G. Gordon, and D. Bagnell, A reduction of imitation learning and structured

prediction to no-regret online learning, in Proceedings of the fourteenth international

conference on artificial intelligence and statistics, 2011, pp. 627–635.

[212] A. M. Roth, J. Liang, and D. Manocha, Xai-n: Sensor-based robot navigation using

expert policies and decision trees, in 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), IEEE, 2021, pp. 2053–2060.

[213] A. M. Roth, N. Topin, P. Jamshidi, and M. Veloso, Conservative q-improvement:

Reinforcement learning for an interpretable decision-tree policy, arXiv preprint

arXiv:1907.01180, (2019).

[214] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and

use interpretable models instead, Nature Machine Intelligence, 1 (2019), pp. 206–215.

[215] C. Rupprecht, C. Ibrahim, and C. J. Pal, Finding and visualizing weaknesses of deep

reinforcement learning agents, in International Conference on Learning Representations,

2020.

208

https://github.com/araffin/rl-baselines-zoo


BIBLIOGRAPHY

[216] J. Russell and E. Santos, Explaining reward functions in Markov decision processes,

in The Thirty-Second International Flairs Conference, 2019.

[217] S. Russell, Human compatible: Artificial intelligence and the problem of control, Penguin,

2019.

[218] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall

Press, USA, 3rd ed., 2009.

[219] S. Rüping, Learning Interpretable Models, PhD thesis, TU Dortmund, 2006.

[220] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, Active preference-based

learning of reward functions, in Proceedings of Robotics: Science and Systems (RSS),

2017.

[221] S. Sadraddini, S. Shen, and O. Bastani, Polytopic trees for verification of learning-

based controllers, in Numerical Software Verification, M. Zamani and D. Zu↵erey, eds.,

Cham, 2019, Springer International Publishing, pp. 110–127.

[222] H. B. Saghezchi and M. Asadpour, Multivariate decision tree function approxima-

tion for reinforcement learning, in International Conference on Neural Information

Processing, Springer, 2010, pp. 687–694.

[223] E. Saldanha, B. Praggastis, T. Billow, and D. L. Arendt, ReLVis: Visual

Analytics for Situational Awareness During Reinforcement Learning Experimentation,

in EuroVis 2019 - Short Papers, J. Johansson, F. Sadlo, and G. E. Marai, eds., The

Eurographics Association, 2019.

[224] L. Saulières, M. C. Cooper, and F. D. de Saint Cyr, Reinforcement learning

explained via reinforcement learning: Towards explainable policies through predictive

explanation, in 15th International Conference on Agents and Artificial Intelligence

(ICAART 2023), 2023, pp. à–parâıtre.

[225] L. Semenova, C. Rudin, and R. Parr, On the existence of simpler machine learning

models, in Proceedings of the 2022 ACM Conference on Fairness, Accountability, and

Transparency, 2022, pp. 1827–1858.

[226] P. Sequeira and M. Gervasio, Interestingness elements for explainable reinforcement

learning: Understanding agents’ capabilities and limitations, arXiv:1912.09007, (2019).

[227] L. S. Shapley et al., A value for n-person games, (1953).

[228] H. U. Sheikh, S. Khadka, S. Miret, S. Majumdar, and M. Phielipp, Learning

intrinsic symbolic rewards in reinforcement learning, in 2022 International Joint

Conference on Neural Networks (IJCNN), IEEE, 2022, pp. 1–8.

209



BIBLIOGRAPHY

[229] M. Shvo, T. Q. Klassen, and S. A. McIlraith, Towards the role of theory of

mind in explanation, in Explainable, Transparent Autonomous Agents and Multi-

Agent Systems: Second International Workshop, EXTRAAMAS 2020, Auckland, New

Zealand, May 9–13, 2020, Revised Selected Papers 2, Springer, 2020, pp. 75–93.

[230] A. Silva, M. Gombolay, T. Killian, I. Jimenez, and S.-H. Son, Optimization

methods for interpretable di↵erentiable decision trees applied to reinforcement learning,

in Proceedings of the Twenty Third International Conference on Artificial Intelligence

and Statistics, vol. 108, PMLR, 26–28 Aug 2020, pp. 1855–1865.

[231] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., A general reinforcement

learning algorithm that masters chess, shogi, and go through self-play, Science, 362

(2018), pp. 1140–1144.

[232] J. M. V. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger, Defining

and characterizing reward gaming, in Advances in Neural Information Processing

Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, eds., 2022.

[233] K. Sokol and P. Flach, One explanation does not fit all: The promise of interactive

explanations for machine learning transparency, KI-Künstliche Intelligenz, 34 (2020),

pp. 235–250.

[234] , Explainability is in the mind of the beholder: Establishing the foundations of

explainable artificial intelligence, arXiv preprint arXiv:2112.14466, (2021).

[235] K. Sokol and P. A. Flach, Towards faithful and meaningful interpretable representa-

tions, CoRR, abs/2008.07007 (2020).

[236] R. J. Sternberg and J. A. Horvath, Tacit knowledge in professional practice:

Researcher and practitioner perspectives, Psychology Press, 1999.

[237] R. E. Strauch, “squishy” problems and quantitative methods, Policy Sciences, 6 (1975),

pp. 175–184.

[238] R. Sukkerd, R. Simmons, and D. Garlan, Tradeo↵-focused contrastive explanation

for MDP planning, in 2020 29th IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN), IEEE, 2020, pp. 1041–1048.

[239] R. Sutton, The bitter lesson, Incomplete Ideas (blog), 13 (2019).

[240] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, MIT press,

2018.

210



BIBLIOGRAPHY

[241] A. Talati, D. Sadigh, et al., Aprel: A library for active preference-based reward

learning algorithms, arXiv preprint arXiv:2108.07259, (2021).

[242] P. Tambwekar, A. Silva, N. Gopalan, and M. Gombolay, Specifying and inter-

preting reinforcement learning policies through simulatable machine learning, arXiv

preprint arXiv:2101.07140, (2021).

[243] C. Tang and Y.-C. Lai, Deep reinforcement learning automatic landing control of

fixed-wing aircraft using deep deterministic policy gradient, in 2020 International

Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2020, pp. 1–9.

[244] M. E. Taylor, Reinforcement learning requires human-in-the-loop framing and ap-

proaches.

[245] S. Teso and K. Kersting, Explanatory interactive machine learning, in Proceedings of

the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 2019, pp. 239–245.

[246] L. L. Thurstone, A law of comparative judgment., Psychological review, 34 (1927),

p. 273.

[247] J. Tien, J. Z.-Y. He, Z. Erickson, A. Dragan, and D. S. Brown, Causal confusion

and reward misidentification in preference-based reward learning, in The Eleventh

International Conference on Learning Representations, 2023.

[248] N. Tinbergen, On aims and methods of ethology, Zeitschrift für tierpsychologie, 20

(1963), pp. 410–433.

[249] N. Topin and M. Veloso, Generation of policy-level explanations for reinforcement

learning, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,

2019, pp. 2514–2521.

[250] S. Tsirtsis, A. De, and M. G. Rodriguez, Counterfactual explanations in sequential

decision making under uncertainty, in Advances in Neural Information Processing

Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds., 2021.

[251] O. Turnbull, J. Lawry, M. Lowenberg, and A. Richards, A cloned linguistic

decision tree controller for real-time path planning in hostile environments, Fuzzy Sets

and Systems, 293 (2016), pp. 1–29.

[252] W. T. Uther and M. M. Veloso, Tree based discretization for continuous state space

reinforcement learning, in AAAI/IAAI, 1998, pp. 769–774.

[253] J. van der Waa, J. van Diggelen, K. v. d. Bosch, and M. Neerincx, Con-

trastive explanations for reinforcement learning in terms of expected consequences, in

IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2018.

211



BIBLIOGRAPHY

[254] B. Van Fraassen, The pragmatic theory of explanation, Theories of Explanation, 8

(1988), pp. 135–155.

[255] J. van Oijen, G. Poppinga, O. Brouwer, A. Aliko, and J. J. Roessingh, Towards

modeling the learning process of aviators using deep reinforcement learning, in 2017

IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE,

2017, pp. 3439–3444.

[256] M. Vasic, A. Petrovic, K. Wang, M. Nikolic, R. Singh, and S. Khurshid, Moët:

Interpretable and verifiable reinforcement learning via mixture of expert trees, arXiv

preprint arXiv:1906.06717, (2019).

[257] J. R. Vázquez-Canteli and Z. Nagy, Reinforcement learning for demand response:

A review of algorithms and modeling techniques, Applied energy, 235 (2019), pp. 1072–

1089.

[258] M. Veloso, T. Balch, D. Borrajo, P. Reddy, and S. Shah, Artificial intelligence

research in finance: discussion and examples, Oxford Review of Economic Policy, 37

(2021), pp. 564–584.

[259] K. V. Vemuru, S. D. Harbour, and J. D. Clark, Reinforcement learning in aviation,

either unmanned or manned, with an injection of ai, in 20th International Symposium

on Aviation Psychology, 2019, p. 492.

[260] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, Programmatically

interpretable reinforcement learning, in International Conference on Machine Learning,

PMLR, 2018, pp. 5045–5054.

[261] S. Wachter, B. Mittelstadt, and C. Russell, Counterfactual explanations without

opening the black box: Automated decisions and the GDPR, Harv. JL & Tech., 31

(2017), p. 841.

[262] J. Wang, L. Gou, H.-W. Shen, and H. Yang, Dqnviz: A visual analytics approach

to understand deep q-networks, IEEE transactions on visualization and computer

graphics, 25 (2018), pp. 288–298.

[263] N. Wang, D. V. Pynadath, and S. G. Hill, The impact of pomdp-generated ex-

planations on trust and performance in human-robot teams, in Proceedings of the

2016 international conference on autonomous agents & multiagent systems, 2016,

pp. 997–1005.

[264] N. Wilde, A. Blidaru, S. L. Smith, and D. Kulić, Improving user specifications

for robot behavior through active preference learning: Framework and evaluation, The

International Journal of Robotics Research, 39 (2020), pp. 651–667.

212



BIBLIOGRAPHY

[265] C. Wirth, R. Akrour, G. Neumann, J. Fürnkranz, et al., A survey of preference-

based reinforcement learning methods, Journal of Machine Learning Research, 18

(2017), pp. 1–46.

[266] C. Wirth, J. Fürnkranz, and G. Neumann, Model-free preference-based reinforcement

learning, in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[267] Z. Yang, S. Bai, L. Zhang, and P. H. Torr, Learn to interpret atari agents, arXiv

preprint arXiv:1812.11276, (2018).

[268] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, Reinforcement learning with

prototypical representations, in International Conference on Machine Learning, PMLR,

2021, pp. 11920–11931.

[269] H. Yau, C. Russell, and S. Hadfield, What did you think would happen? explaining

agent behaviour through intended outcomes, Advances in Neural Information Processing

Systems, 33 (2020), pp. 18375–18386.

[270] Y. Yildiz, A. Agogino, and G. Brat, Predicting pilot behavior in medium-scale

scenarios using game theory and reinforcement learning, Journal of Guidance, Control,

and Dynamics, 37 (2014), pp. 1335–1343.

[271] L. A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in

human reasoning and fuzzy logic, Fuzzy sets and systems, 90 (1997), pp. 111–127.

[272] T. Zahavy, N. Ben-Zrihem, and S. Mannor, Graying the black box: Understanding

dqns, in International conference on machine learning, PMLR, 2016, pp. 1899–1908.

[273] G. Zhang and H. Kashima, Learning state importance for preference-based reinforce-

ment learning, Machine Learning, (2023), pp. 1–17.

[274] Y. Zhang, H. Wu, and L. Cheng, Some new deformation formulas about variance and

covariance, in 2012 Proceedings of International Conference on Modelling, Identification

and Control, IEEE, 2012, pp. 987–992.

[275] Z.-H. Zhou, Rule extraction: Using neural networks or for neural networks?, Journal of

Computer Science and Technology, 19 (2004), pp. 249–253.

213




	List of Figures
	List of Key Notation
	Introduction
	The Need for Interpretable Agents
	Agents and their Environments
	The Agent Interpretability Landscape
	Defining Interpretability
	Challenges of the Agent Context
	Intrinsic Methods
	Mechanistic Methods
	Behaviourist Methods

	Themes, Gaps and Opportunities
	Thesis Contributions
	Research Output

	Abstraction with Trees
	Introduction
	Symbols and Abstractions
	From Conceptual Spaces to Tree Abstractions
	Convexity
	Partitioning
	Hierarchy
	Axis-alignment

	Query-Efficient Abstractions
	Abstractions of Agents and Environments
	Conclusion

	Tree Models of Agent Behaviour
	Introduction
	Tree Models of Black Box Policies
	Generic Problem Statement
	Recursive Feature Generation
	Tree-Structured Policy Model
	Modelling Procedure

	Traffic Simulator Experiments
	Traffic Simulator Environment
	Target Policies
	Recursive Generation of the Maximal Feature Space
	Dataset and Training
	Baselines

	Quantitative Evaluation
	Evaluation by Predictive Accuracy
	Evaluation by On-policy Divergence
	Evaluation by Mean Time Between Failures
	Correlations between Quality Metrics

	Model Interpretation and Explanation
	Tree Diagram Comparison
	Factual Local Explanation
	Counterfactual Local Explanation
	Temporal Explanatory Stories

	Pit Stop: Reviewing the Policy Modelling Approach
	Related Work
	What is Missing in a Policy Model?

	TripleTree: A Multiattribute Tree Abstraction
	Data Preparation and Model Structure
	Learning Algorithm
	Related Work

	Quantitative Evaluation
	Model Interpretation and Explanation
	Multiattribute Visualisation in Feature Space
	Factual, Counterfactual and Temporal Explanation
	Hypothetical Trajectories

	Experiments in a Higher-dimensional Environment
	Hyperrectangle Projection for D>2
	Hyperrectangle Slicing and Visual Counterfactuals
	Hypothetical Trajectories

	Conclusion

	Tree Models of Agent Learning
	Introduction
	Related Work

	Theory of Contrastive Spatiotemporal Abstraction
	The Contrastive Objective
	Temporal Abstraction

	Tree Abstraction Algorithms
	Constrastive State Abstraction (CSA)
	Contrastive Spatiotemporal Abstraction (CSTA)
	Pseudocode and Subfunction Details

	Scaling of Jensen-Shannon Divergence with m and n
	Theoretical Analysis for m
	Theoretical Analysis for n
	Empirical Validation

	2D Maze Experiment
	State Abstraction Process
	Temporal Abstraction Process
	Pairwise Window Divergence
	Visitation and Transition Time Series
	Transition Graph Comparison

	LunarLander Experiment
	Abstraction Structure
	Visitation Time Series
	Transition Graph Comparison
	Window Prototypes
	Posterior analysis and Counterfactual Review

	Comparison of Abstraction Algorithm Variants
	Conclusion

	Tree Models of Human Preferences 
	Introduction
	Motivation
	Related Work

	Preference-based Reward Learning
	Interpretable Reward Learning with Trees
	Trajectory-Level Return Estimation
	Leaf-level Reward Estimation
	Tree Growth
	Tree Pruning

	Offline and Online Learning Algorithms
	Trajectory Provenance and Diversity
	Growth Initiation, Stopping and Resumption
	Optimistic Active Sampling
	Scheduling of Online Trajectory and Preference Collection

	Experimental Setup
	Environments and Tasks
	Common Parameters

	Quantitative Performance: Oracle Preferences
	Offline Setting
	Online Setting

	Quantitative Performance: Human Preferences
	Offline Setting
	Online Setting

	Summary of Key Findings
	Interpretability Analysis
	Failure Case: RoboCar using Offline Human Preferences
	Success Case: 2D Maze using Online Oracle Preferences

	Conclusion

	A Use Case for Reward Trees
	Introduction
	Aircraft Handling Use Case
	Motivation
	Implementation

	Methodological Improvements
	Trajectory-Level Return Estimation
	Tree Growth and Pruning
	Model-based RL Agents
	Online Learning Setup

	Experiments and Results
	Common Parameters
	Online Performance Evaluation
	Policy-Invariant Evaluation
	Visual Trajectory Inspection
	Sensitivity Analysis
	Comparison to Model-free Reinforcement Learning

	Interpretability Analysis
	Tree Structure Appraisal
	Leaf-level Alignment
	Trajectory Report Card
	Preference-based Reward Explanation

	Explaining Model-based Action Selection
	Conclusion

	Conclusions and Further Work
	Review of Contributions
	Practical Uses of Proposed Models
	Successes of the Overall Approach
	Limitations of the Overall Approach
	Further Work

	Bibliography



