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Abstract

Clinical imaging modalities are a mainstay of modern disease management, but the full utili-

zation of imaging-based data remains elusive. Aortic disease is defined by anatomic scalars

quantifying aortic size, even though aortic disease progression initiates complex shape

changes. We present an imaging-based geometric descriptor, inspired by fundamental

ideas from topology and soft-matter physics that captures dynamic shape evolution. The

aorta is reduced to a two-dimensional mathematical surface in space whose geometry is

fully characterized by the local principal curvatures. Disease causes deviation from the

smooth bent cylindrical shape of normal aortas, leading to a family of highly heterogeneous

surfaces of varying shapes and sizes. To deconvolute changes in shape from size, the

shape is characterized using integrated Gaussian curvature or total curvature. The fluctua-

tion in total curvature (δK) across aortic surfaces captures heterogeneous morphologic evo-

lution by characterizing local shape changes. We discover that aortic morphology evolves

with a power-law defined behavior with rapidly increasing δK forming the hallmark of aortic

disease. Divergent δK is seen for highly diseased aortas indicative of impending topologic

catastrophe or aortic rupture. We also show that aortic size (surface area or enclosed aortic

volume) scales as a generalized cylinder for all shapes. Classification accuracy for predict-

ing aortic disease state (normal, diseased with successful surgery, and diseased with failed

surgical outcomes) is 92.8±1.7%. The analysis of δK can be applied on any three-dimen-

sional geometric structure and thus may be extended to other clinical problems of character-

izing disease through captured anatomic changes.
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Author summary

For decades, aortic dissections have proven among the most difficult aortic pathologies to

classify. The aorta is the largest blood vessel in the human body. An aortic dissection is the

appearance of an internal blister within the aortic wall. The predominant method of diag-

nosing an aortic dissection is with cross-sectional x-ray imaging like computed tomogra-

phy or CT scans. The morphologic evolution of aortic dissections has been difficult to

quantify. The pressing clinical need to better define the morphology both in terms of size

and shape of aortic dissections using CT derived imaging data is based on the high rate of

failure in current surgical methods of dissection repair. Current methods are largely based

on a dimensional reduction of the aortic geometry from its native two-dimensional sur-

face in three-dimensional space to a one-dimensional space-curve. We develop a robust

method using differential geometry to define each aorta using its full surface geometry.

Each aorta is now uniquely represented as a point in a two-dimensional shape-size feature

space. This space can be used to in general follow aortic morphology from normal devel-

opment (growth) to severe pathology. Moreover, we successfully use it to identify patients

who had failed aortic surgeries.

Introduction

Imaging modalities such as computed tomography (CT) provide sophisticated three-dimen-

sional representations of the human body and are ubiquitously relied upon in clinical practice

[1–4]. At its core, imaging captures anatomic changes that are linked to underlying pathologic

processes. Anatomy is the spatial organization of tissues in space. As such, geometry is the nat-

ural mathematical framework to quantitate anatomy. Geometric approaches have widely been

used to characterize and classify multiple diseases including pulmonary nodules [1], liver cir-

rhosis [2], and thyroid masses [3, 4]. In all of these examples, the physician’s human eye

defines the hallmark of disease by the appearance of nodularity or spiculation. Even the pro-

cess of aging or healing often leads to the appearance of undulations or wrinkles, which is a

departure from the baseline smooth geometry of healthy skin [5]. These examples highlight

the ubiquitous classification of anatomic objects based upon the surfaces that define their

boundaries. These surfaces are easily appreciated when the anatomy is directly visualized with

gross inspection (such as skin or with dissection in the operating room). They also appear as

level sets in cross-sectional imaging, most often x-ray based tomography, because of the intrin-

sic difference in x-ray absorption and scattering of various tissues. The problem of disease pro-

gression mathematically becomes the transformation of a smooth surface into a rough surface,

with the appearance of multiple new length scales.

Quantifying what the human eye so easily discerns has proven challenging. Recent work

has sought to translate successes from deep learning (DL) to utilize imaging for disease diagno-

sis and clinical planning [6, 7]. Challenges in the availability of high-quality data [8, 9], the lack

of reproducibility and generalizability [9, 10], the disconnect between technical accuracy and

clinical efficacy [11, 12], and interpretability of inherently “black-box” DL models have made

the application of DL in medicine particularly fraught [13, 14]. Sophisticated approaches har-

nessing the machinery of Riemannian geometry have been successful in certain neuroanatomy

problems [15]; however, they are limited to tissues with well-defined internal landmarks allow-

ing for global coordinate systems, e.g. Talairach space or MNI coordinate system in brain

imaging [16], which do not exist for cardiovascular tissues.
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We take a fundamentally mathematical approach to developing imaging-based geometric

descriptors of disease evolution in clinically meaningful systems. We focus on the challenging

problem of classification in aortic dissections. The aorta is the largest blood vessel in the

human body. It functions as a conduit carrying blood from the left ventricle of the heart to

provide blood flow to the head, arms, abdominal organs, and legs [17, 18]. Mechanically, the

aorta is akin to a pressurized distensible cylindrical shell; aortic pathologies are mechanical in

nature, with aortic rupture leading to near-certain death. Aortic dissections are partial tears in

the aortic wall. Mechanically, dissections are cracks that do not penetrate through the entire

aortic thickness; rather, they propagate between the different concentric layers making up the

aortic wall generating aortic blisters (medically termed the false lumen). Dr. Michael DeBakey,

the pioneer of aortic dissection surgery, famously described diseased thoracic aortas as ‘tortur-

ous’, ‘globular’, ‘U-shaped’, ‘dilated’, and ‘idiosyncratically varying’ [19]. These qualitative

descriptors underpin the complex changes in shape that accompany aortic disease and its mor-

phologic evolution. The current standard of care for type B aortic dissection (TBAD) is

anchored on the concept of preventing “dangerous” shape changes, such as aneurysmal degen-

eration, which contribute to worse outcomes [17, 18]. Thus, the concept of shape and pathol-

ogy are well-accepted clinically; however, accurate quantification of these changes is limited.

Thoracic aortic stabilization by placement of a fabric-covered stent into the diseased thoracic

aorta, clinically termed Thoracic Endovascular Aortic Repair (TEVAR), is the preferred mod-

ern surgical approach to TBAD [17, 18].

Since the 1950’s and DeBakey’s initial work, the ubiquitous anatomic classifier clinically

used to trigger aortic surgery has been maximum aortic diameter (2Rm, where Rm is the maxi-

mum radius) [17, 18], yet clinicians have long appreciated that size by itself is an inadequate

descriptor of aortic anatomy [17, 20–22] and have resorted to qualitative descriptors of aortic

morphologic evolution. The urgent need for a richer description of aortic anatomy has been

highlighted by several clinical trials using TEVAR, which showed that using size alone to trig-

ger intervention did not improve mortality [23–26]. The cardiovascular surgical community

realizes that better identification of patients who would benefit from TEVAR is needed to shift

the post-intervention mortality curve in the positive direction [25–28]. Identifying anatomic

parameters that impact the ability of an aorta to remodel [29] is instrumental in guiding

therapy.

Geometry and mechanics have driven the use of maximum diameter as a singular scalar

descriptor of aortic stability and, therefore, the dominant trigger of intervention. Geometri-

cally, since aortas are generalized bent cylinders, the cylinder’s radius naturally appears as a

principal length scale describing the geometry. Since diseased aortas expand non-uniformly in

the radial direction as a function of axial distance (or distance along the aortic centerline), the

gradient of aortic radius along the centerline is maximized near the largest diameter. Clinically,

largely for the ease of application, the gradient has been replaced by simply measuring the

maximum diameter and assuming a uniform ‘normal’ aortic radius. This assumption is

fraught with problems because normal aortic diameters, while being uniform for any given

individual, show a broad distribution in the general population [30]. The problem is further

complicated by the fact that uniform aortic growth (*0.5 mm/year) occurs with aging [31].

Lacking appropriate normalization, the maximum diameter is only a descriptor of geometry in

comparison to population means.

Standard biomechanics literature asserts that stability of dilated aortas is dominated by the

Law of Laplace, where the stress (σ) is a simple linear function of internal pressure (P), aortic

thickness (h), and maximum diameter (2Rm): σ = P � Rm/h. By Laplace, larger aortas will have

linearly proportional larger stresses. Since aortic mechanical stability is a fracture problem,

once the wall stress supersedes a critical stress, the aorta will crack. Given the distribution of
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Rm values in the population, hRmi + δRm* 1.25±0.5cm, and the fact that Rm is not constant

with time, @thRmi = 0.5mm/year, the calculation of a broadly applicable critical stress becomes

nearly impossible. Furthermore, the mathematical derivation of Laplace’s law assumes homo-

geneous isotropic shells of uniform thickness, which is not true even for non-diseased aortas

[32]. More advanced mechanical failure analysis of aortic aneurysms and dissections utilizes

finite element approaches (FEA); however, these ultimately lack the simple relationships

between geometry (derived from clinical imaging data) and stress contained in Laplace’s law.

As such, their wide clinical application has been limited [33, 34]. Nearly all clinical data gath-

ered about aortas is imaging-based geometric information. The herculean efforts to translate

intricate mechanical stability models using FEA to clinical practice largely failed due to lack of

interpretability and understanding of these models by practicing physicians. This failure

should be heeded when developing sophisticated AI-based deep-learning models, which take

raw CT scan data as inputs; the challenge of interpreting such ‘black-box’ models in medical

applications is well known [13, 14].

We derive and validate a mathematical descriptor of aortic shape; a single variable that

scales appropriately with DeBakey’s famous qualitative descriptors of aortic shapes [19, 20]. As

D’Arcy Thompson wrote a century ago: “In a very large part of morphology, our essential task

lies in the comparison of related forms rather than in the precise definition of each” [35]. The

problem of morphogenesis is deeply linked to the stability of self-reproducing structures; Rene

Thom postulated that any morphological process is divided into islands of determinism, domi-

nated by morphogenic fields whose precise mathematical form is defined by topologic homeo-

morphisms, separated by regions of instability and indeterminacy [36]. Topology is now a

fundamental tool in the classification of rapidly changing shapes and structures in develop-

mental biology, where anatomic descriptions are translated into topological language allowing

the quantification of purely geometric transformations in growing tissues [37–39]. The gener-

alization of a tissue or body into sets of smooth, closed, orientable surfaces (i.e. membrane sys-

tems) makes them topological objects [36, 39]. Local topological surgeries, cutting or gluing,

lead to global topological changes in biological forms through regions of topological catastro-

phes [36, 38, 39]. We apply such methods to the study and generalization of aortic morphogen-

esis throughout the life-cycle of an aorta (see Fig 1).

We work with aortic surfaces derived from cross-sectional imaging such as CT scans from

both normal patients and patients with aortic dissections at various stages of disease. Fig 1 out-

lines the problem of defining a continuous geometric parameter space that can smoothly

evolve from a normal pediatric aorta to the most diseased aortic dissection. Visual inspection

of the objects in Fig 1 easily leads to a qualitative description of their anatomy: the aortas grow

left to right with an initial rapid change followed by a more subtle increase in size (scale), a

trend that reverses when surface shape is considered. The rapidly growing aortas are self-simi-

lar concerning their shape (bent cylinders with the toroidal aortic arch followed by the cylin-

drical descending thoracic aorta); a shape symmetry-breaking transition occurs as the aorta

further moves towards the right. We follow this transition by projecting the CT-derived anat-

omy of 302 aortas, distributed from normal to diseased states, into a novel geometric space

spanned by orthogonal axes for shape and size defined using the shape operator and total cur-

vature of the aortic surface. The local geometry of the aortic surface is defined by its principal

curvatures, k1 and k2. Specific measures of aortic shape in the literature have focused on func-

tions of mean (κm = (k1 + k2)/2) or Gaussian (κg = k1k2) curvature [40, 41], cross-sectional

deviations [42], and calculations on centerline reductions of the aortic surface [21, 43, 44]. A

mathematically robust and reproducible definition of aortic shape does not exist despite these

efforts because of spatial over-reduction and convolution of shape and size information. Cen-

terline calculations lose information when the aortic surface deforms heterogeneously [45],
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and κg, the dominant shape function, proves itself an ill-defined shape measure because it con-

volutes shape and size changes [45]. We solve this problem by using the Gauss-Bonnet Theo-

rem and the total curvature, K =∬AκgdA, as the primary measure of shape. We prove that all

aortic shapes are homeomorphic to T2; as such, all aortas, no matter how deformed, remain

generalized bent cylinders. Using simulated shapes with evolving surface roughness, we show

that κg and K hold the same shape information, provided overall changes in size are small.

Topology preservation is by far not the norm in biologically growing surfaces that are non-

conservative and can locally add mass or remove mass without the constraint of elastic defor-

mations or linkage to some global manifold. The existence of a homeomorphism implies that

as aortas deform through normal growth or pathology, every increase in K in some region

must be balanced by a proportional decrease somewhere else on the aortic surface. Therefore,

the distribution of K across the aortic surface holds information about shape. This allows us to

classify shape by studying the statistical properties of these distributions. Since hKi is constant,

the variance of K captures the balance of positive and negative curvature regions across the

surface: δK = hK2i − hKi2. δK captures the heterogeneous morphologic evolution by character-

izing local shape changes. We hypothesize and demonstrate that this novel shape measure cor-

relates with aortic disease evolution and can be used to characterize treatment response for

aortic dissections when appropriately coupled with a size metric.

Methods

Clinical data cohort

We analyzed a cohort of 302 computed tomography angiography (CTA) scans from 2009 to

2020. The non-pathologic cohort included 171 scans from 93 patients. The diseased cohort

included 131 scans (SI Demographic Information), representative of two pathologies: TBAD

(124 scans) and thoracic aortic aneurysms (7 scans). Three patient subgroups are derived from

the main cohort to analyze geometric predictors of outcomes following TEVAR: a control

cohort, a failed TEVAR cohort, and a successful TEVAR cohort. The control cohort consists of

171 scans of non-pathologic aortas (SI Demographic Information). Failed repair is defined as

reintervention or type 1A (proximal seal zone) endoleak in the follow-up period (using the

most recent patient data available).

A balanced cohort of 18 patients with desired TEVAR outcomes and 18 patients with failed

outcomes is analyzed. Patients all met the inclusion criteria of having both a pre-operative and

post-operative CTA. A total of 45 scans (18 pre-operative, 27 post-operative) are included for

Fig 1. Morphologic evolution of aortic shapes. Eight representative aortas along the normal-to-diseased axis (left to right): a

3-year-old child, healthy adults, and type B aortic dissection (TBAD) patients at varying degrees of aneurysmal degeneration. Two

clinical regimes exist: shape preserving growth and growth with shape changes.

https://doi.org/10.1371/journal.pcbi.1011815.g001
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the desired outcomes group and 51 scans (18 pre-operative, 33 post-operative) are included

for the failed outcomes group. Therefore, all outcomes analyses in this paper utilized a total of

267 scans (171 normal, 45 with desired outcomes, and 51 with failed outcomes). Outcomes are

defined by the presence or lack of need for secondary surgical intervention more than 30 days

from index TEVAR. Given the retrospective nature of this data cohort, all decisions to reinter-

vene were made by the primary surgeon. Most common reasons for reintervention post-

TEVAR were continued false lumen (FL) expansion and type 1A leak. Demographic, disease,

and imaging information for this group is summarized in SI Demographic Information.

Computed tomography images were obtained via the Human Imaging Research Office

(HIRO) at the University of Chicago Medicine, an institutional imaging research core that

provided HIPPA-compliant, deidentified DICOM data for patients requested for this study. A

variety of scanners were used to collect radiographic information. All data collection and anal-

ysis is performed in accordance with the guidelines established by the Declaration of Helsinki

and under institutional review board approval (IRB20–0653 and IRB21–0299).

Meshing algorithm and geometric parameterization

Three-dimensional aortic models are created from CTA image data using a custom workflow

in Simpleware ScanIP (S-2021.06-SP1, Synopsys, Mountain View, CA). Aortic geometry is

extracted from scans using a five-step algorithm which includes 1. segmentation, 2. noise

reduction, 3. smoothing, 4. isolation of the segmentation outer surface, and 5. surface meshing.

A representative schematic of the process is shown in Fig 2, and more information on the pro-

cess can be found in SI Aortic Segmentation and Post-Processing from CTA Imaging. A trian-

gular mesh for the outer surface is generated for each smoothed segmentation in ScanIP for

analysis in Matlab (2021b, Mathworks, Natick, MA). A total of 15 meshed surfaces are gener-

ated for each segmentation (sampling 5 mesh densities and 3 smoothing variations), allowing

for control of process-derived variance in surface curvature calculations.

Once a meshed geometry is created for each aorta, the Rusinkiewicz algorithm is used to

calculate the per-vertex shape operator Si ¼
k1i 0

0 k2i

#"

, where k1i and k2i are the per-vertex

principal curvatures. Briefly, the algorithm calculates the per-vertex shape operator as a

weighted average of the shape operators of immediately adjacent faces. The per-face tensors

are computed using a finite-difference approximation defined in terms of the directional

derivative of the surface normal [46] (see SI Calculation of the Shape Operator for more

details). Therefore, each vertex in the mesh is accompanied by a first principal curvature and

second principal curvature that approximate the local shape at the intersection of neighboring

faces. SI Artifact Removal outlines the artifact removal process that was implemented.

Size and shape characterization

Size. Fig 3 shows our computational workflow for calculating aortic shape and size fea-

tures. Aortic size is parameterized using the centerline length L and aortic radius ℓ. While L is

singular for each aorta, ℓ is a distribution, especially in diseased aortas with heterogeneous

shapes, and therefore a family of radii. Multiple measured values can be used to represent this

distribution to characterize aortic size: mean aortic radius (hRi), median aortic radius ( ~R2 ),

and maximum aortic diameter 2Rm. ℓ can also be calculated directly from surface curvatures.

The mean Frobenious norm of the per-vertex shape operator Si, Ci ¼
1

2
ðk2

1i þ k2
2iÞ, is the per-

vertex Casorati curvature [47–49]. Averaging over the entire aorta gives the mean Casorati
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curvature,

hC1=2i ¼
1

AT

Xk

j¼1

hC1=2

j iAj ð1Þ

where hC1=2

j i ¼
1

p

Xp

i¼1

ffiffiffiffiffi
Ci

p
is the per-partition mean, k is the number of partitions, Aj is the area

of a partition, and p the number of vertices within each partition. The need for dividing the

surface into k smaller partitions is not necessary to obtain accurate mean Casorati curvatures;

however as explained below, it becomes necessary when performing shape calculations. We

keep it here from an implementation consistency standpoint because Ci is calculated from

principal curvatures. The inverse mean Casorati curvature hC1/2 i−1 is a measure of aortic size

along the direction of greatest curvature, which is the aortic radius. Lastly, higher-order func-

tions of size such as total aortic area, AT, and aortic volume, V, are calculated directly from the

surface segmentations. Total aortic area is also calculated from the sum of per-element areas:

AT ¼
Pg

i¼1
ai, where g is the total number of triangular mesh elements on a given aortic sur-

face. It is important to note that only hC1/2i−1 allows for a measure of aortic size using only

information contained in Si; all other size measures necessitate additional information.

Shape. The size-independent parameterization of shape is obtained through an effective

mapping of normals on the external aortic surface S to the unit sphere S2. Operationally, we

do not directly perform the Gauss mapping. Instead, we calculate the total curvature over local

Fig 2. Image Processing Workflow. Aortas are segmented from CTA imaging scans of the chest, followed by

smoothing of the segmentation, isolation of the segmentation outer surface, and triangular surface meshing. The noise

reduction procedure encompasses the smoothing and meshing steps, in which multiple smoothing parameters and

mesh density variations generate multiple plausible surface meshes representing the segmentation.

https://doi.org/10.1371/journal.pcbi.1011815.g002
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regions (partitions) of the aortic surface with area Aj, which by the local Gauss-Bonnet theo-

rem is the holonomy angle of the circumnavigated area, a topologic quantity [47]. In our anal-

ysis, given geometrically highly heterogenous shapes, a meshed surface is employed and the

per-vertex Gaussian curvature is extrinsically calculated from the shape operator:

kgi ¼ jSij ¼ k1ik2i. The area elements are intrinsic to the surface and
RR

AdA ¼
Pp

i¼1
ai ¼ Aj;

however, since a generic triangular mesh is used, no information about the surface metric

exists. Knowledge of the metric would be needed to carry out the integration of per-vertex

Gaussian curvature explicitly. Our computational approach therefore relies on splitting the

integration into a product Kj � Aj�kgj, where �kgj ¼
1

p

Pp
i¼1
kgi. To bring the mean Gaussian cur-

vature within a partition outside the integral, κgi must vary weakly within Aj. Clearly, this vari-

ance is minimized when Aj = ai. As shown in SI Sensitivity to Partition Size, calculating K at

this scale holds little information about overall aortic shape. To understand the necessity of

sub-dividing the aortic surfaces into partitions where aj< Aj< AT, the scale space nature of

the problem needs to be explored and appreciated. Since the per-vertex Gaussian curvature is

calculated on a mesh with an average element spacing proportional to the CT scan resolution

(� Oð0:5Þmm); this value assumes the mesh-imposed inner scale. However, as is appreciated

by examining the evolution in Fig 1, the change in aortic shape, the increasing ‘bumpiness’, is

occurring on a much larger length scale. Visual inspection of the shapes shows this scale to be

on the order of the aortic radius or ℓ. The mesh-imposed inner scale is*ℓ/1000. As discussed

Fig 3. Multi-Scale Surface Curvature Calculations. By mapping the aortic surface to the unit sphere (Gauss map) [45], we have an

independent measure of shape. The per-vertex shape operator Si is calculated using the Rusinkiewicz algorithm [46]. To minimize

noise, the aorta is divided into multiple partitions with area Aj. The local integrated Gaussian curvature Kj is calculated as the

product of each partition area and mean Gaussian curvature, �kgj. Kj is equivalent to the signed partition area ~Aj mapped out by the

normals projected onto the unit sphere. We define aortic shape by studying the statistics of the distributions of Kj. hKi and δK are the

first and second distribution moments that define aortic shape geometry, respectively.

https://doi.org/10.1371/journal.pcbi.1011815.g003
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in SI Aortic Segmentation and Post-Processing from CTA Imaging, the mesh resolution was

set by the inherent resolution of the CT data and by the need of a finely enough spaced compu-

tational mesh to calculate discrete derivatives of surface normals. However, from an aortic

shape classification standpoint, using the mesh-imposed inner scale runs the risk of imposing

a large amount of “spurious resolution” or “false detail”, commonly seen with scale space prob-

lems when an inappropriately small inner scale is selected [47]. We impose ℓ as the inner-scale

by sub-dividing the aortic surface into k area partitions via a Voronoi decomposition using the

k-means algorithm, in which k = AT/ℓ2 (see Fig 4 which shows that k is independent of how ℓ
is measured and relatively constant with respect to ℓ). For subsequent analysis, ‘ ¼ ~R2 (indicat-

ing the median R2, where R2 = 1/k2i is calculated per-vertex from Si). We use the k-means+

+ algorithm to find initial centroid seeds, and the k-means algorithm is performed with a max-

imum of 10000 iterations. SI Sensitivity to Partition Size shows how k can vary by a factor of

10 and does not impact the results discussed in the following sections. Lastly, SI Jensen-Shan-

non Divergence of Within-Partition Gaussian Curvature outlines our use of the Jensen-Shan-

non Divergence to check that at this inner-scale Gaussian curvatures still show acceptably

small variance, allowing us to bring the mean Gaussian curvature within a partition out of the

area integral and replace the area integral with the sum of mesh element areas.

Having partitioned the aortic surface into k partitions of size *ℓ2, the per partition total

curvature

Kj ¼
Xq

m¼1

am
1

p

Xp

i¼1

kgi

 !

¼ Aj�kgj ð2Þ

Fig 4. Number of Surface Partitions Imposed by the Inner Scale ℓ. Data for 302 aortas, including non-pathologic

(black circles), pathologic with failed TEVAR (light gray circles), and pathologic with successful TEVAR (dark gray

circles) aortas are plotted. The linear scaling can be used to define Aj* ℓ2, which sets the number of partitions k used

in the Gauss map calculations. The various linear fits are taken for different definitions of size: maximum aortic

diameter (2Rm, red dashed line), mean radius (hRi, black solid line), median radius ( ~R2 , black dotted line), and mean

inverse linearized aortic Casorati curvature (hC1/2i−1, black dashed line) are equivalent. Dimensionally scaled, aortic

area (
ffiffiffiffiffiffi
AT

p
, red dotted line) and volume (V1/3, red solid line) are also linear when plotted against ℓ = 2Rm. In this case,

the fits are normalized by the pre-factors obtained from their fitting to the maximum dimeter (Fig 5). The normalized

data is shown to demonstrate that k is independent of the specific size measure used to set the inner scale ℓ.

https://doi.org/10.1371/journal.pcbi.1011815.g004
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is calculated. To characterize the entire aorta, the sum of per partition total curvatures (a topo-

logic invariant)

P
K ¼

Xk

j¼1

Kj ð3Þ

and the fluctuations in total curvature (a normalized measure of shape) across the entire mani-

fold surface are calculated:

dK ¼
1

AT

Xk

j¼1

K2

j Aj �
1

AT

Xk

j¼1

KjAj

 !2

ð4Þ

The mean Gaussian curvature

hkgi ¼
1

AT

Xk

j¼1

hkgj
iAj ð5Þ

and the fluctuation in Gaussian curvature of the manifold

dkg ¼
1

AT

Xk

j¼1

k2

gj
Aj �

1

AT

Xk

j¼1

kgj
Aj

 !2

ð6Þ

are also calculated.

Statistics. Each aorta contains k partitions. All calculations are performed for each of the

15 meshed models per aorta. Of note, the k-means partitioning is independently performed

for each mesh. An average value for hC1/2i, ∑K, δK, hκgi, and δκg is computed for the 15

meshes, such that each scan becomes represented by a single value that aggregates the variation

from the smoothing and meshing algorithms. To quantify variability from the partitioning

procedure itself, the entire process (partitioning, partition-level curvature calculations, mani-

fold-level curvature calculation, and averaging between meshes) is repeated 10 times to obtain

10 replicates of each value per aorta. The mean of these replicates is reported and a sensitivity

analysis is performed in SI Sensitivity to Partition Size. The error bars in all data plotted in the

two-dimensional feature space represent ±1 standard deviation to quantify the variability in

the results from the partitioning replicates.

Aortic feature space classification using machine learning

The classification accuracy of different shape and size metrics in determining aortic disease

states (normal aortas, successful TEVAR, and failed TEVAR) is calculated using the means of

the distributions, the mean of the means of the distributions, and a logistic regression classifi-

cation. The distribution mean-based methods model is reflective of current clinical practice, in

which clinicians are most cognizant of the characteristics of a “typical” patient in each group

(the mean) and are less aware of the variation within each group (the standard deviation). The

first model defines each threshold t as the mean value of the parameter for the two neighboring

distributions. After these boundaries are defined, each scan is assigned a “predicted” classifica-

tion according to its geometric characteristic, and the accuracy of the predictions is computed.

The second model defines each threshold as the mean value of the means of the two neighbor-

ing distributions.

A multinomial logistic regression with 1000 random permutations of train-test splits with a

50% training and 50% testing distribution is used for the third model. Logistic regression is a

PLOS COMPUTATIONAL BIOLOGY Geometry and morphology of aortic dissections

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011815 February 2, 2024 10 / 27

https://doi.org/10.1371/journal.pcbi.1011815


classification method that models p(X) = Pr(Y = 1|X), the probability that some response vari-

able Y takes on a specific value of 1 (a binary classification) based on the input data X, using

the logistic function: pðXÞ ¼ eb0þb1X

1þeb0þb1X . The parameters β0 and β1 are estimated from training

data using the maximum likelihood method. The accuracy of this model in predicting binary

outcome Y is determined by subdividing the dataset into a training set and a testing set, fitting

β0 and β1 using the training set, and computing the error rate between model predictions and

data for the testing set.

As the classification problem is between three classes—non-pathologic aortas, diseased aor-

tas with desired outcomes following TEVAR, and diseased aortas with failed outcomes follow-

ing TEVAR—multinomial logistic regression is used. Multinomial logistic regression is an

extension of logistic regression for the setting of H> 2 classes with coefficient estimates

defined as follows:

PrðY ¼ kjX ¼ xÞ ¼
ebk0þbk1x1þ���þbkpxp

1þ
PH� 1

l¼1
ebl0þbl1x1þ���þblpxp

ð7Þ

The variability of the logistic decision boundary includes lasso regularization applied to

hC1/2i to examine the impact of increasing the model’s dependence on shape over size. The

objective function is the penalized negative binomial log-likelihood:

min
ðb0 ;bÞ2Rpþ1

�
1

N

XN

i¼1

yi � ðb0 þ xT
i bÞ � logð1þ eðb0þxT

i bÞÞ

" #

þ ljjbjj1

 !

ð8Þ

Two decision boundaries are created using two binomial logistic regression classifiers. The

hyperparameter λ is varied to understand the impact of decreasing the influence of size on

clinical decision-making to maximize the impact of using a shape-based classifier [50, 51].

Finite element simulations

The utility of K over κg is investigated in a more controlled setting by simulating local growth

in ideal geometries and examining the associated change in κg versus K. Two geometries are

tested: a sphere that experiences a small change in global size followed by surface deformation

due to local growth and an idealized aorta that experiences a larger change in global size fol-

lowed by surface deformation due to local growth. Growth is modeled using a morphoelastic

model in ABAQUS (2018, Dassault Systèmes, Waltham, MA) that decomposes the deforma-

tion gradient F into an elastic contribution Fe and a growth contribution Fg: F = FeFg [52–54].

Adopting the assumption that Fg does not explicitly contribute to the free energy in previous

work on computational modeling of multiplicative growth [52–54], a neo-Hookean (NH)

strain energy function of the following form is used: W = W(F, Fg) = We(Fe). When there is no

growth, Fg = I and Fe = F, which represents a purely elastic deformation. With this decomposi-

tion and the NH strain energy, the stress can be derived and updated during the loading pro-

cess according to the following relations:

Se ¼ 2
@We

@Ce
ð9Þ

s ¼
1

J
FeSeF

T
e ð10Þ

Where Se and σ are the second Piola-Kirchhoff stress and Cauchy stress, respectively. The

above model is implemented with ABAQUS Explicit solver and using the VUMAT subroutine
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[55, 56]. Assuming isotropic growth with constant growth rate in the longitudinal-circumfer-

ential plane, the growth contribution Fg becomes:

Fg ¼

1 0 0

0 n 0

0 0 n

2

6
6
6
4

3

7
7
7
5

ð11Þ

where ν is the growth factor and the growth rate is _n. See SI Finite Element Simulations for fur-

ther details.

Results

Three major and two minor results come from our analysis. The first major result is that aortic

size scales as a generalized bent cylinder and depends only on a single length scale, ℓ. The sec-

ond major result is that projecting aortas into a two-dimensional space defined by (δK, ℓ−1)

separates aortic geometries into shape-preserving self-similar growth and growth with shape

changes; moreover, all aortic geometries are shown to be topologically homeomorphic to T2.

The third major result shows that the (δK, ℓ−1)-feature space outperforms all other size and

shape measures when applied to the predictive classification of TEVAR success. The first

minor result shows that the data projected into the normalized (fdK ;~‘ � 1) space are best fit to a

simple power law (fdK � ~‘ � 2). The second minor result shows that δK and δκg hold similar

information, however, δK provides a stronger signal of shape changes when shape and size

changes occur simultaneously.

Universal scaling of aortic size

The analysis includes a variety of size measures previously described in the literature, including

the traditional metric of maximum diameter (2Rm) and higher-dimensional values of area

(AT) or volume (V) (Fig 5). When each length scalar is plotted versus maximum diameter, the

data collapses onto lines, with linear size measures having a slope of 1 and higher-dimensional

measures (
ffiffiffiffiffiffi
AT

p
and V1/3) having slopes that correspond to modeling aortic size as a general-

ized bent cylinder. In generalized bent cylinders, area and volume scale as AT � 2p‘� L and

V � p‘2
� L. Hypothesizing a linear relationship between axial length L and cross-sectional

circular radius ℓ, L � c‘, the reparameterized equations AT* 2πcℓ2 and V* πcℓ3 are

obtained.

Fig 5 shows that
ffiffiffiffiffiffi
AT

p
� 10‘ and V1/3 * 3.5ℓ, which implies that AT* 100ℓ2 and

V* 42.88ℓ3. Solving for c, we obtain c* 15.9 for area and c* 13.6 for volume. The pre-fac-

tor c can alternatively be calculated using L � c‘ directly. L is best approximated using the

length of the aortic centerline measured from the segmentations. Thus, c � L
‘

can be calculated

on each aortic geometry (Fig 6), with c = 16.6±2.4 when ℓ* hC1/2i−1 is used. The values of

c* 15.0, c* 13.6 and c* 16.6 indicate similar constants that are produced using indepen-

dent methods and that quantify a linear relationship between aortic axial length and cross-sec-

tional size. This demonstrates that aortic geometry follows a universal linear scaling between

different size measures and globally retains an invariant toroidal-cylindrical geometry. This

indicates that additional information is unlikely to exist with higher-dimensional size mea-

surements that have been the focus of recent literature and provides geometric reasoning

behind the well-known utility of maximum diameter in aortic management.
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Role of shape deviation

Fig 7 plots the data from 302 aortic segmentations into two spaces: ð
P

K;~‘ � 1Þ and ðfdK ;~‘ � 1Þ.

Size is represented in both by ~‘ � 1 ¼ ‘
� 1
=h‘i

� 1

norm, where hℓinorm is the mean of the normal aor-

tas. As was shown above, the different measures of ℓ differ only by a constant pre-factor.

Therefore, the same normalized size axis is obtained irrespective of how ℓ is measured. ∑K is

Fig 5. Universal Scaling of Aortic Size. Data for 302 aortas, including non-pathologic (black circles), pathologic with

failed TEVAR (light gray circles), and pathologic with successful TEVAR (dark gray circles) aortas are plotted. A.

shows that parameterizations of aortic size (mm) including maximum aortic diameter (2Rm, red dashed line), mean

radius (hRi, black solid line), median radius ( ~R2 , black dotted line), and mean inverse linearized aortic Casorati

curvature (hC1/2i−1, black dashed line) are equivalent. Dimensionally scaled, aortic area (
ffiffiffiffiffiffi
AT

p
, red dotted line) and

volume (V1/3, red solid line) are also linear when plotted against ℓ = 2Rm. All size measures can be collapsed onto a

single master curve (B.), proving that all aortas scale as generalized bent cylinders parameterizable by a single length

scale ℓ.

https://doi.org/10.1371/journal.pcbi.1011815.g005

Fig 6. Length-to-Size Ratio as Function of Size. Ratio of centerline length L to radial size ℓ. For the relationship L �
c‘ indicating a linear scaling between axial length and cross-sectional circular radius, we obtain c = 16.6±2.4. The

yellow symbols indicate selected aortas shown in Fig 7A.

https://doi.org/10.1371/journal.pcbi.1011815.g006
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the total integrated Gaussian curvature of each aorta and mathematically defines its topology.

Fig 7B plots the aortic data points (black and grey circles) along with the representative aortas

in yellow. Red points are calculated on analytically generated surfaces (see SI Ideal Shapes)

analyzed through the same analysis pipeline as the aortic data: spheres (red circles), tori (red

stars), cylinders (red diamonds), pseudospheres (red rightward pointing triangle), and cate-

noids (red upward pointing triangle) of various sizes.

These ideal shapes represent the three canonical geometries: spherical, parabolic, and

hyperbolic. Their total curvature values of ∑K = 4π (spherical), ∑K = 0 (parabolic or Euclidian),

and ∑K = −4π (hyperbolic) are in agreement with analytical results from differential geometry

[57]. This agreement for the ideal surfaces is an important validation of the computational

methodology used in this paper. The aortic data clearly align along the ∑K = 0 line and cluster

with the tori and cylinders. The normal aortas (solid black dots) show a very tight distribution

with very little variance along ∑K. The diseased aortas show more spread, which is likely a

Fig 7. Aortic Topological Invariance and Aortic Clustering in ðfdK ; ~‘ � 1Þ-space. A. The eight canonical representative aortas along

the normal-to-diseased axis (left to right): a 3-year-old child, healthy adults, and type B aortic dissection (TBAD) patients at varying

degrees of aneurysmal degeneration. Two clinical regimes exist: shape preserving growth and growth with shape changes. B. shows

the topologic equivalence of all aortic shapes to tori (red stars) and cylinders (red diamonds); the yellow symbols correspond to

specific aortic shapes along the normal-to-diseased axis (A.). Red circles correspond to perfect spheres of varying size; pseudospheres

and catenoids are depicted as red rightward-pointing triangles and upward-pointing triangles, respectively. C. shows the optimal

two-dimensional aortic geometric feature space with independent axes for size and shape. The solid red curve fdK ¼ 1:2~‘ � 2 is a best

fit to the data. The power-like behavior is further supported by the probability distribution of δK (Fig 8). The aortas separate into

shape invariant (normal) and shape fluctuating (diseased) populations. Furthermore, this feature space defines decision boundaries

that correctly classify diseased patients based on success of TEVAR.

https://doi.org/10.1371/journal.pcbi.1011815.g007
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consequence of the complex shapes encountered in the group. Nevertheless, what is striking in

this data is that throughout the morphologic life span of an aorta (during normal growth and

diseased degeneration), any given aorta is topologically equivalent to a generalized bent cylin-

der or torus homeomorphic to T2. Consequently, by the Gauss-Bonnet Theorem, aortic topo-

logic invariance implies that as aortas deform, be it through normal growth or pathology,

every increase in K somewhere must be balanced by a proportional decrease elsewhere on the

aortic surface [45, 57, 58]. Therefore, the distribution of K across the aortic surface should

hold information about shape. Since ∑K is constant, the variance δK = hK2i−hKi2 captures the

balance of positive and negative curvature regions across the surface and is a measure of shape

deformation. Normalized δK is defined as fdK ¼ dK=hdKinorm, where hδKinorm is the mean δK
of the normal aortas. Examination of the data in Fig 7C shows that fdK quantitatively captures

the above-mentioned qualitative descriptions of aortic shape. Our three aortic populations nat-

urally separate into three regions in ðfdK ;~‘ � 1Þ-space. In the asymptotic limit fdK ! 0, self-sim-

ilar aortic growth occurs; all normal aortas exist along this limit. In the other limit, fdK !1,

fluctuations in shape become seemingly independent of size change. The most distorted and

convoluted aortas, which also correspond to patients with failed endovascular surgeries, cluster

in this limit. The two limits are joined through a transition region that appears as an elbow in

the two-dimensional shape-size feature space. Interestingly, the dissection patients who had

successful surgery predominantly cluster in this region. The utilization of this novel

ðfdK ;~‘ � 1Þ-space for aortic classification is further developed below.

Power law fit in the ðfdK ;~‘� 1Þ feature space

In the ðfdK ;~‘ � 1Þ geometric feature space, the data can be fit to a power law ðfdK � ~‘ � 2Þ. Here

we follow an established statistical framework of discerning power-law behavior in empirical

data to determine whether the data is truly consistent with a power-law [59]. Fig 8 shows sepa-

rate probability distributions for δK and Rm and then plots these on doubly logarithmic axes.

Logarithmic distributions, p(x)/ x−a, are linear in log-log space: lnp(x) = αlnx + c, where c is a

constant. The log-log transformed δK distribution suitably fits a straight line with R2� 0.74,

while the Rm data does not fit a line (R2� 0.002). This indicates that a power law may be an

appropriate fit for the shape metric δK and is not an appropriate fit for the size parameter Rm.

The size data are well approximated by a Gaussian distribution, a fact demonstrated in the lit-

erature on aortic size distributions [30].

Classification with predictive modeling

The strong correlation between δK divergence and the evolution of aortic pathology begs

application to treatment planning. Fig 9 compares the effectiveness of aortic size, the clinical

standard, with the ðfdK ;~‘ � 1Þ shape-size feature space in determining aortic disease states (nor-

mal aortas, successful TEVAR, and failed TEVAR). Significant variability in aortic size within

the broader patient population is captured by this single institutional dataset. Furthermore,

there is overlap between the normal and diseased populations and as such, classification accu-

racy dramatically changes due to slight differences in model parameterizations (from 73% in

Fig 9A, 83.9% in Fig 9B, and 87.0±2.3% in Fig 9C). The dual parameterization of both aortic

size and shape—two orthogonal metrics—expands the geometric characterization into a two-

dimensional space (Fig 9D and 9E). Classification accuracy increases to 90.3% in Fig 9D and

92.8±1.7% in Fig 9E.
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As shown in Fig 10A, there is no significant difference amongst size predictors such as aor-

tic volume, surface area, median and maximum diameters shown in Fig 5, as well as Gaussian-

curvature based size measures like the L2-norm of the Gaussian curvature (GLN) and the

area-averaged Gaussian curvature (GAA) [40, 60, 61], see SI Other Shape Metrics. There is a

major difference with shape measures: clinical shape measures, which are based on the aortic

centerline and include tortuosity index [21, 43, 44, 62], question mark angle [44, 63], cross-sec-

tional eccentricity [42, 64], and mean centerline curvature [43], significantly underperform δK
in aortic disease state classification (Fig 10B). Similarly, δK outperforms other shape measures

described in the biomedical engineering literature including the sphericity index (χ) [65], flat-

ness index (γ) [65], Gaussian curvature (κg) [40, 41], area-averaged mean curvature (MAA),

and L2-norm of the mean curvature (MLN) [40, 60, 61] (Fig 10C).

Shape evolution modeling

In this paper, K is shown to be a topologic invariant across aortic anatomies and δK a strong

function of aortic shape changes. The integrated total curvature ∑K is a topologic invariant

and remains approximately constant across all aortic anatomies (Fig 7B). δK is approximately

constant across the range of normal aortas, matching empirical knowledge that non-patho-

logic aortas experience shape-preserving growth. δK diverges with rapidly degenerating aortas,

especially those where TEVAR ultimately failed. The role of δK in this divergence is elucidated

Fig 8. fdK Fits Power Law Distribution while Size is Gaussian. Probability distributions of δK and Rm are plotted. A.

The δK distribution is fitted to a power law in the form P = axb + c. C. A linear fit logP = blogδK + c achieves a high R2.

B. The Rm distribution is well-fit to a two-term Gaussian in the form P ¼ a1e
�

x� b1
c1

� �2

þ a2e
�

x� b2
c2

� �2

. D. When a linear fit

is applied to the log-transformed data, logP = blogRm + c, a low R2 value results.

https://doi.org/10.1371/journal.pcbi.1011815.g008
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with FE simulations on spheres (Fig 11) and an idealized aorta (Fig 12). More information on

the simulation parameterizations can be found in SI Finite Element Simulations.

Fig 11 shows how for the case of a small change in global size, as exhibited by the narrow

range of the x-axis (9.5%), the fluctuation in Gaussian curvature (δκg) accurately captures sur-

face deformation just as well as the fluctuation in total curvature (δK). This is to be expected as

the main function of total curvature is to normalize size effects by mapping the aortic surface

to S2. Thus, with little change in overall size, Gaussian curvature remains an effective indicator

of shape. This is to be contrasted with what happens when size does change, as in the real

patient data (400%) or the idealized aorta shown in Fig 12 (50%). Gaussian curvature is no lon-

ger an effective indicator of shape when size also changes because it convolutes shape and size

effects. On the other hand, total curvature normalizes size effects and effectively captures the

degeneration in the shape of the ideal aorta. This experimental evidence in a controlled simu-

lated system bolsters the empirical data and mathematical formulation, proving the signifi-

cance of δK.

Fig 9. Clustering Analysis in ðfdK ; ~‘ � 1ÞGeometric Feature Space Shows Superior Accuracy and Stability

Compared to Size Alone. The ðfdK ;~‘ � 1Þ geometric feature space improves upon current sized-based methods. The

clinical paradigm relies on size metrics alone to classify aortic disease states (green for normal aortas, blue for

successful TEVAR, and red for failed TEVAR). However, broad within-group size distributions indicate considerable

variability in aortic sizes within the general population. Clinicians routinely utilize statistical means of these

distributions as thresholds for classifying disease states, but linear decision boundaries are highly sensitive to small

changes in model setup. A. A 73.0% accuracy for classifying the 3 states is obtained when each threshold is defined as

the mean hC1/2i of the two neighboring distributions. B. An 83.9% accuracy is achieved when the threshold is defined

as the midpoint of the means of individual class distributions. C. An 87.0% accuracy is obtained when a logistic

regression classifier is used. Thus, small changes in how a threshold is defined dramatically alter the perceived utility of

size. D. The ðfdK ; ~‘ � 1Þ shape and size-based geometric feature space allows for the utilization of two independent

parameters to characterize aortic disease state. A 90.3% classification accuracy is obtained when defining thresholds

according to the mean δK and hC1/2i of each patient group. E. A 92.8% mean accuracy with a standard deviation of

only 1.7% is obtained using a logistic regression classifier with varying regularization parameters. The shaded region

indicates the interquartile range of decision boundaries and demonstrates the robustness of the two-parameter space.

Unlike the single parameter space, the presence of two physically interpretable and orthogonal asymptotic limits

ensures more effective classification.

https://doi.org/10.1371/journal.pcbi.1011815.g009
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Discussion

Type B aortic dissection (TBAD) is a life-threatening disease with significant associated mor-

bidity and mortality [17, 19, 20]. While the old paradigm of open surgical repair was fraught

with peri-operative risk, new minimally invasive approaches like TEVAR often trade a

decrease in initial operative risk for a higher risk of long-term repair failure. Proper identifica-

tion of patients for TEVAR is therefore critical and necessitates the definition of an appropri-

ate classification scheme [17, 22, 66, 67]. While previous work has focused on linking changes

in aortic anatomy and suitability for repair, there remains a dire need to improve our under-

standing of how best to define geometric changes and to understand their impact on patient

outcomes.

Projection of aortic anatomy into the (δK, ℓ−1)-space provides an improved ability to differ-

entiate aortas along the entire spectrum of growth and pathology, including both normal size-

related development and pathologic shape-related changes that occur secondary to aortic dis-

section. We demonstrate that in normal conditions, the aorta undergoes shape-invariant

growth (see Fig 7), while, in diseased states, the aorta experiences shape fluctuations defined

by increasing δK. As shown in Fig 10, δK significantly outperforms all other available measures

of shape in predicting clinical treatment outcomes, including tortuosity, which is prevalent in

the clinical arena.

Furthermore, because of the invariant global cylindrical geometry of the aorta, the parame-

terization of size is dependent only on the single length scale ℓ−1. Higher-dimensional charac-

terizations of size, including area AT and volume V, do not provide additional information

[68, 69]. Thus, current efforts to replace 2Rm with area or volume [68, 69] are unlikely to yield

substantially more information (Figs 5 and 10). This universal size scaling provides the quanti-

tative basis behind the utility of maximum diameter throughout the decades of aortic manage-

ment and further validates the study of shape [67].

Fig 10. Aortic Population Classification Based on Various Size and Shape Features. Comparison of size and shape metrics in classifying aortic disease state from

medical imaging. A. Measures of aortic size achieve similar classification accuracies and thus are functionally equivalent (corroborating Fig 5). The GLN and GAA are

other size metrics. B. δK significantly outperforms measures of aortic shape from the clinical literature in classifying aortic disease state (normal non-diseased aortas,

diseased aortas with desired outcomes following TEVAR, and aortas with failed outcomes following TEVAR). C. δK outperforms general shape metrics from the broad

engineering literature. Error bars indicate ±1 standard deviation of the classification accuracies for the different classification methods.

https://doi.org/10.1371/journal.pcbi.1011815.g010
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Fig 9 compares the efficacy of a single-variable space defined by maximum diameter (2Rm),

the clinical standard, with an enhanced shape-size feature space for predicting treatment out-

comes. Using size as the sole metric of disease change, the cornerstone of imaging-based prac-

tice in other clinical contexts, is inherently problematic because a critical point between

closely-spaced and overlapping populations is very sensitive to the available data. For instance,

a well-known problem in Rm-based criteria is the bias against smaller-statured female patients

because of the heavily male-weighted population-based statistics [70, 71]. This is best illus-

trated by Fig 9. While arbitrarily defined size classifiers did discriminate amongst normal

Fig 11. δK and δκg Equivalent for Small Changes in Overall Size. Simulation of a sphere with pressurization followed by growth.

A. ∑K is a topologic invariant and thus remains relatively constant throughout the simulation. B. δK captures the increasing

degeneration of the spherical surface due to growth. C. δAj fails to capture this degeneration. D. δκg seems to capture the

degeneration of the spherical surface as the value diverges for increasing size. However, the narrow scale of the x-axis indicates that

there is little increase in overall size for this simulation. E. Surface geometries for selected frames in the simulation, with the

undeformed geometry on the right side and the final geometry on the left side. The vectors indicate the direction of surface

deformation.

https://doi.org/10.1371/journal.pcbi.1011815.g011

PLOS COMPUTATIONAL BIOLOGY Geometry and morphology of aortic dissections

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011815 February 2, 2024 19 / 27

https://doi.org/10.1371/journal.pcbi.1011815.g011
https://doi.org/10.1371/journal.pcbi.1011815


aortas, successful TEVAR, and failed TEVAR, such scalars lack physical meaning and clinical

generalizability outside of the specific cohort being analyzed. This is partly due to natural pop-

ulation-level variation in aortic size in addition to the inherently operator-dependent nature of

aortic size measurements (such as diameter) [30].

The addition of the second axis (δK) alleviates this issue by providing a quantifiable and

reproducible shape scalar. δK also captures the global geometry of the aorta and is operator-

independent. The combined ðfdK ;~‘ � 1Þ-feature space demonstrates greater than 90%

Fig 12. δK Superior to δκg with Significant Size Changes. Simulation of an ideal aorta with pressurization followed by growth. A.

∑K is a topologic invariant and thus remains relatively constant as hC1/2i increases throughout the simulation. B. δK captures the

increasing surface degeneration due to growth. C. δAj does not capture this degeneration, as evidenced by the increasing error with

simulation progression. D. When size significantly changes, δκg no longer captures the geometric deformation. E. Surface geometries

for selected frames in the simulation, with the undeformed geometry on the right side and the final geometry on the left side. The

heatmap coloring indicates Kj the total curvature at the per-partition level.

https://doi.org/10.1371/journal.pcbi.1011815.g012
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classification accuracy for the same three cohorts. The addition of a tangible shape axis also

offers enhanced interpretability of the underlying geometric trends driving aortic pathology.

Such a classification space can be clinically applied to pre-operative treatment planning for

aortic dissection patients. δK outperforms previously described shape metrics in both the clini-

cal and engineering literatures. Clinically-derived shape measures, such as the tortuosity

index, are predominately acquired from aortic centerlines [21, 72]. These measures underper-

form compared to δK and are no better than ℓ−1 alone for characterizing aortic disease pathol-

ogy from geometry. As such, future analysis of δK is liable to demonstrate substantial clinical

application of δK as a clinical outcomes predictor.

No general theory exists on the meaning of δK divergence. In soft matter systems such as

spherical vesicles, where size weakly changes, and in dynamic systems, rapid fluctuations of

Gaussian curvature have been linked to so-called ‘topologic catastrophes’ indicative of physical

instability [48, 49, 73]. While we do not inherently study aortic stability as it relates to clinical

rupture, we show that aortas with high δK independently classify as high risk for clinical com-

plications and poor outcomes post-TEVAR. It is therefore reasonable to conjecture that verti-

cal divergence in the ðfdK ;~‘ � 1Þ-space is a sign of aortic instability and an indicator of

suboptimal suitability for endovascular repair.

The morphologic evolution of biological structures is tightly integrated with disease devel-

opment in many other contexts. δK is a size-independent shape metric, and because it only

requires extrinsic geometric information, this procedure can be applied to any surface mesh

geometry. For instance, 3D imaging is extensively used to analyze lung nodules for malignancy

[1], breast lesions for tumor growth [74], liver irregularities for cirrhosis [2], cerebral aneu-

rysms [75], and the left ventricle for heart failure [76].

As with the aorta, size-based criteria form the mainstay of clinical approaches, while shape

is qualitatively used but has been proven difficult to quantify until now. This methodology is

based on a general geometric and topologic foundation, and future analysis will be needed to

validate its extension to other clinically relevant problems of characterizing disease through

analysis of shape change in medical imaging.

Supporting information

S1 Appendix. Supplementary information supporting the main text. Fig A includes the

demographic information for the non-pathologic aortic cohort. Fig B is the demographic

information for the dissection cohort. Section titled “Aortic Segmentation and Post-Processing

from CTA Imaging” includes details on the methods and procedures involved in Segmenta-

tion, Noise Reduction, Smoothing, Isolation of the Outer Surface of the aortic mask, and

Meshing. The section on “Calculation of the Shape Operator” details our implementation of

the Rusinkiewicz algorithm of calculating surface curvatures on a meshed surface which are

the primary inputs into our shape and size calculations. The section “Artifact Removal” details

the criteria used to remove the flat edges and and rims which are generated during the segmen-

tations and constitute artifacts. The section “Jensen-Shannon Divergence of Partition Gaussian

Curvature” details our implementation of the JSD as a measure of κg spatial gradients within

partitions. The section titled “Sensitivity to Partition Size” details our exploration of how patch

size impacts the distribution of data projected into the shape-size feature space. The section

“Ideal Shapes” provides the analytical functions used to generate the idea shapes used for

cross-validation of our methods in the manuscript. The section “Other Shape Metrics” shows

our detailed exploration of other published functions quantifying shape and the projection of

our data into each one of the individual shape-size feature spaces. The section “Finite Element

Simulations” provides details of material model selection and element selection for the FEA
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simulations in the paper. And the final supplementary section “Analysis on Pre-Operative

Data” projects only the last pre-operative scan into the shape-size feature space, this is a

reduced dataset of the full data set provided in Fig 7 of the paper.

(PDF)

S1 Dataset. Contains all the data necessary to reproduce the main figures: Scan ID, mean

curvedness, δK, total aortic area, aortic volume, mean aortic radius, max aortic radius, tor-

tuosity index, cross sectional eccentricity, mean centerline curvature, question mark angle,

radius ratio, and scan sequence. The data correspond to the raw mask segmentations which

can be obtained from the public GitHub: https://github.com/SurgBioMech/khabaz_2024/tree/

main.

(XLSX)
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