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A. Calculation of the best-fit surface in bead-spring model 

 

Here we detail how we determine surface si. Say bead Pi has l neighbors, the position vectors of 

which are denoted by r1, r2, …, rl. In Cartesian coordinates, rj = (xj, yj, zj), j=1, 2, ..., l. We are 

looking for a best-fit plane si that is the closest to these points. The equation of si in Cartesian 

coordinates is written as 

 

AxByCz1 

 

where A, B and C are to be determined. By defining three matrices M, b, and x 
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Our goal becomes to look for a best solution x to the following linear equation 

 

Mx = b 

 

This well-known linear regression problem has the following solution 

 

x  M T M 
1

M Tb 

x j

2 x jy j x jz j
x jy j x j

2 y j z j

x jz j y jz j x j

2



















1

x j
y j
z j



















 

 

The surface normal at bead Pi is then approximated by the normal to the plane si. 

 

 

B. Analytical expressions for LC surface torque and pressure 

 

Here we derive expressions for the surface torque, Eq. 3, and surface pressure, Eq. 4. We first 

demonstrate that 3 different surface torque expressions can be reduced into a single form, given 

that the nematic LC is uniaxial and the Euler-Lagrange equation for the surface holds. The 

director on the surface is denoted by n and the surface-preferred orientation is denoted by nS. 

The angle between n and nS is θ. We start with Eq. 3, as given by Mackay and Denniston (34). 

Stress τ is analogous to the antisymmetric stress of the bulk LC. By introducing the surface 

molecular field HW = W(Q - QS), one has 

 

 QH
W H

W
Q  

 



The above torque is not explicitly dependent on LC elastic constants. With a uniaxial 

assumption, the surface-preferred Q-field is written as QS = qS (nS nS –I/3), where qS is the 

surface-preferred scalar order parameter. If we assume that the LC is uniaxial, one has Q = q (n n 

–I/3), where q is the scalar order parameter. Thus 

 

 WqqS n nS  nSn  nnS  
 

Substituting the above expression into Eq. 3, one has 

 

  2WqqS n nS  nS n  2WqqS sin cos̂  

 

where a unit vector ̂  denotes the direction of Γ. 

 

A second form of surface torque is given by de Gennes and Prost (35) 

 

                                                                        n                                                            (5) 

 

where ν is the surface normal and Π is related to the (bulk) distortion energy density fd of the LC 

by 
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The above form of surface torque is not explicitly dependent on surface anchoring W. The total 

free energy of the LC in the director representation is (35) 

 

 
F  fd dV  fS dS

SV  

 

where the surface free energy density fS has an alternative form in terms of the Q-tensor 
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We again adopt a uniaxial assumption, and the above equation reduces to 
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In the director model, q = qS =1. Thus the first term of fS is a constant and can be dropped. The 

equivalent surface energy in director representation is 

 

                                                             fS  WqqS
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                                                         (7) 

 



In order to compare to other forms for the surface torque, we keep q and qS in the above 

expressions. So the total free energy becomes 
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By free energy minimization, one has the Euler-Lagrange equation 
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Plugging the above equation and Eq. 6 into Eq. 5, one has 
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A third way of calculating the magnitude of the surface torque Γ is via the derivative of fS with 

respect to the angle θ. Eq. 7 is written in θ as 

 
2cosS
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Therefore 
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In summary, the two forms of surface torque given by Ref. (34) and Ref. (35) are distinct. The 

former is not explicitly dependent on elasticity, and the latter is not explicitly dependent on 

surface anchoring. However, we have shown that if the LC is uniaxial, and if it obeys the Euler-

Lagrange equation, the two forms are equivalent. The advantage of using Eq. 3 by Mackay and 

Denniston is two-fold: first, its tensorial form takes into account order parameter variations. 

Second, it avoids tedious calculations of elastic forces. 

 

We next consider the contribution from symmetric stress. For neutral (zero) anchoring, the 

vesicle can still feel stress by the surrounding LC. The local stress is (44) 
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where fB is the bulk free energy density with fB = fLd + fE. For a third order tensor aijk, we define 

aijk

T  akji . Normal pressure on the surface is the only relevant component of the stress 

responsible for surface deformation. Thus we are interested in calculating pS 
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Recall that the boundary condition on the surface for finite anchoring in Q-tensor form is 
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one has 
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By generalizing surface energy density fS into a function of Q 
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one obtains 

 

                                                                S B Sp f f   Q                                                     (10) 

 

If a single-elastic-constant assumption is adopted, Eq. 9 reduces to 

 

𝝂 ∙ 𝑳𝟏𝛁𝐐 = 𝑾(𝐐 − 𝐐𝑺) 
 

and Eq. 8 becomes 
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fig. S1. Illustration of the stress calculation due to surface torque. Say node P0 has m = 6 

neighbors, Pi (open circles), with distance |P0Pi| = r0i, i = 1, 2..., 6. Torque Γ0i is defined on R0i 

(open triangles, Ri for short), the middle point of P0Pi. Q0i,i+1 (open squares, Qi for short) is the 

center of the circumscribed circle of triangle P0PiPi+1 with P7  P1 . Ftorq is calculated on polygon 

R1Q1R2Q2...R6Q6 which constructs node P0's area S0. The bead-spring surface can be covered by 

these polygons. The reciprocal length of P0P1 is defined as b01 = |Q6R1| + |R1Q1|; the reciprocal 

length of P0P2 is b02 = |Q1R2| + |R2Q3|; ..., etc. 

 

 

C. Surface torque to force calculation 

 

Here we show how to convert the surface torque into a stress distribution. Given a surface torque 

Γ (units of N/m), the equivalent force distribution is 

 

𝑭𝒕𝒐𝒓𝒒 = 𝝂 ∙ 𝛁 × 𝚪 

 

where ν is the surface normal. 𝑭𝒕𝒐𝒓𝒒 has units of force per area. In a spherical coordinate system, 

the surface of interest is a sphere of radius R at the origin, and the torques are along the ϕ axis 

and are only dependent on θ. The resultant stress is 

 

𝑭𝒕𝒐𝒓𝒒 =
𝟏
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𝝏
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In order to numerically calculate the force, we employ Stokes' theorem. Say we are calculating 

𝑭𝒕𝒐𝒓𝒒 for node P0 and it has m edges, the length of which is denoted by r0j, j = 1, 2, ..., m. The 

reciprocal length for r0j is b0j, as illustrated in fig. S1. If the torque is defined on the middle point 

of edge j as Γ0j, the local stress 𝑭𝟎
𝒕𝒐𝒓𝒒

 on node Pi can be estimated by 
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where the area of S0 of polygon R1Q1R2Q2...RmQm is the summation of the areas of triangle SP0RjQ j
 

and SP0QjRj1
, j = 1, 2 ..., m with Rm1  R1. Thus 
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Thus the surface area of the network is 
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where (i, j) sweeps all neighboring pairs. 

 


