This electronic thesis or dissertation has been downloaded from the King's Research Portal at https://kclpure.kcl.ac.uk/portal/

Towards a better understanding of the mechanisms underlying myosin-related congenital myopathies

Hau, Abbi

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
licence. https://creativecommons.org/licenses/by-nc-nd/4.0/
You are free to copy, distribute and transmit the work
Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Towards a better understanding of the mechanisms underlying myosin-related congenital myopathies

Thesis for the Degree of Doctor of Philosophy

Hoi Ting Abbi Hau

Table Of Contents

Table Of Contents 2
Tables 9
Abstract 10
Acknowledgements 11
Statement of Disruption 12
Abbreviations 13
Chapter 1 17
General introduction 17
1.1. Congenital Myopathies and the MYH7 gene 17
1.2. MYH7 mutations cause several distinct clinical pathologies 19
1.2.1. Laing Distal Myopathy (LDM) 23
1.2.2. Myosin Storage Myopathy (MSM) 23
1.3. Basic muscle physiology and phenotype 28
1.4. Myosin structure and function 29
1.4.1. Muscle structure - from whole muscle to sarcomere 29
1.4.2. Sarcomeric assembly 30
1.4.3. MyHC I expression 33
1.4.4. MyHC I in muscle development 34
1.4.5. Role of LMM region for MyHC I head functioning 37
1.5. Zebrafish as a model LDM and MSM 40
1.5.1. Structure of zebrafish skeletal muscle 42
1.5.2. Somatogenesis in zebrafish 43
1.6. Summary 46
Chapter 2 47
Materials and Methods 47
2.1. Human Muscle Biopsy Samples 47
2.2. Human Biopsy Assays 49
2.2.1. Measurement of myosin filament length 49
2.2.2. Identifying proportion of $S R X$ and $D R X$ state in muscle fibres 50
2.3. Zebrafish maintenance 52
2.4. Generating zebrafish KO lines using CRISPR/Cas9 system 52
2.4.1. CRISPR/Cas9 system 52
2.4.2. Identifying potential target sites for CRISPR gene editing 54
2.4.3. gRNA synthesis for smyhc1 KO 56
2.4.4. CRISPR injections - smyhc1 59
2.5. Generating smyhc2-5 KO mutants using Alt-R CRISPR Cas9 system 60
2.6. Genotyping. 61
2.6.1. DNA Extraction using alkaline lysis method 61
2.6.2. Primer design 61
2.6.3. High-Resolution Melt Analysis 63
2.6.4. Sanger Sequencing 64
2.7. Visualising Gene Expression 65
2.7.1. RNA extraction 65
2.7.2. cDNA synthesis 66
2.7.3. RNA Probe synthesis 68
2.7.4. Embryo fixation - for in situ hybridisation 68
2.7.5. Whole-mount in situ hybridisation (WISH) 69
2.8. Visualising Sarcomere Proteins Using Immunostaining 70
2.8.1. Embryo Fixation - for immunostaining 70
2.8.2. Immunostaining on sections 71
2.9. Zebrafish swimming velocity assay 71
Chapter 3 73
Characterising primary biophysical defects in the presence of MYH7 mutations 73
3.1. Introduction 73
3.2. Results 76
3.2.1. Mutation in MYH7 show no change in myosin filament lengths 76
3.2.2. Mutation in MYH7 shifts myosin molecules in DRX state in patient fibres 78
3.3. Discussion 81
3.3.1. Sarcomere assembly remain intact in the presence of defective slow myosin molecules . 81 81
3.3.2. Defective slow myosin MyBP-C binding domains destabilise myosin in SRX state 82
3.3.3. Mutations in myomesin binding site dispensable for sarcomere organisation 83
3.3.4. Conclusion 83
Chapter 4 84
Identify zebrafish equivalent gene to human MYH7 84
4.1. Introduction 84
4.2. Results 88
4.2.1. zebrafish smyhc1-5, myh7, myh7l and myh6 show similarities to human MYH6/7 88
4.2.2. MYH6 and MYH7 diverged before lobe-finned and teleost separation 90
4.2.3. Amino acid sequences unique to MYH7 are found in smyhc1-5, myh7 and myh7l 93
4.2.4. Zebrafish smyhc1-5, myh7 and myh7l syntenic to human MYH7 98
4.2.5. LDM and MSM mutations affect conserved amino acids in MYH7 100
4.3. Discussion 103
4.3.1. MYH6 and MYH7 existed in the common ancestor of human and zebrafish 103
4.3.2. Zebrafish smyhc1-5, myh7 and myh7l are orthologous to human MYH7. 104
4.3.3. smyhc1-5, myh7 and myh7l exist from a teleost duplication event 105
4.3.4. Conclusion 106
Chapter 5 108
Studying sarcomere assembly in the absence of smyhc1 108
5.1. Introduction 108
5.2. Results. 111
5.2.1. Generation of smyhc1 mutant alleles. 111
5.2.2. Smyhc1 $1^{\text {kg179/kg179 }}$ and smyhc1 $1^{k g 180 / 180}$ mutants are functionally null. 113
5.2.3. Smyhc1 mutants show no morphological defects and are viable and fertile 120
5.2.4. Movement defects persist in smyhc1 mutant 125
5.2.5. Defective sarcomere organisation observed in slow fibres 127
5.2.6. Lack of smyhc1 does not affect fast fibres 130
5.2.7. Slow fibres recover in adult smyhc1 KO mutants 132
5.2.8. Large deletion mutations from two gRNAs targeting the smyhc locus 133
5.3. Discussion 136
5.3.1 Smyhc1 mutants are functionally null with no off-target effects 136
5.3.2. Role of smyhc1 in sarcomere assembly in early slow fibres 140
5.3.3. Lack of smyhc1 does not affect sarcomere organisation in adulthood 141
5.3.4. Conclusion 142
Chapter 6 143
General Discussion. 143
6.1. Summary 143
6.2. Defective slow MyHC does not affect sarcomere organisation in adults. 143
6.3. Destabilised SRX state may trigger hypercontractility 145
6.4. Zebrafish smyhc1 orthologous to human MYH7 146
6.5. Smyhc1 functions exclusively in early muscle development 147
6.6. Role of smyhc1 in sarcomere assembly 148
6.7. Role of zebrafish smyhc genes in sarcomere assembly 149
6.8. Limitations and Future Directions 150
6.9. Final Conclusion 151
References 152
Appendix 174
Appendix 1.1 - Literature Review of LDM and MSM 174
Appendix 2.1 - Primer design for smyhc1 176
Appendix 3.1 - Mant-ATP Assay Average Data 180
3.1.1. - SRX and DRX values from slow fibres 180
3.1.2. - $S R X$ and $D R X$ values from fast fibres 181
3.1.3. - Proportion of DRX increases in patients with LMM mutations. 182
3.1.4. - Proportions of fast and slow fibres analysed in Mant-ATP assay 182
Appendix 4.1 - MYH6 and MYH7 signature amino acids 183
Appendix 4.2 - CLUSTALO Human MYH vs Zebrafish MYH proteins 184
Appendix 4.3 - Tropical Clawed Frog and Coelocanth MYH6/7 neighbour genes 203
Appendix 5.1 HRM derivative melt curves results showing non-injected siblings vs CRISPR/Cas9 injected embryos 204
Appendix 5.1 - smyhc1 F3 generation genotyping, length, and weight measurements 205
Appendix 5.2 - Zebrafish swimming velocity 2-30 dpf 208
Appendix 5.3 - BLAST search of gRNA to zebrafish genome 210
Appendix 5.4 - early STOP codon in exon 16 of smyhc1 from Whittle et al, 2020. 210

Figures

Figure 1.1. Mutations in MYH7 and their corresponding disease 21
Figure 1.2. Clinical phenotype vs MYH7 Disease. 22
Figure 1.3. The clinical phenotype for Laing Distal Myopathy 25
Figure 1.4. The clinical phenotype for Myosin Storage Myopathy. 26
Figure 1.5. Muscle Biopsy Diagnostics for LDM and MSM 27
Figure 1.6. Anatomy of skeletal muscle fibre 31
Figure 1.7. Schematic describing sarcomere assembly 32
Figure 1.8. Structure of Myosin Class II for thick filament assembly 36
Figure 1.9. Structure of S1 myosin head 39
Figure 1.10. Myosin conformation in contracting, DRX and SRX state 40
Figure 1.11. Muscle composition of zebrafish larvae 45
Figure 2.1 Map of MYH7 protein and plotted mutations of patient samples in Table 2.1 48
Figure 2.2. Methods for thick filament measurements 50
Figure 2.3. CRISPR/Cas9 mechanism to create site-specific mutations. 54
Figure 2.4. Identifying specific target sites in smyhc1 using CRISPR Direct 55
Figure 2.5. Plasmid DR274 to synthesise single guide RNA for CRISPR/Cas9 systems 57
Figure 2.6. Analysis of injected embryos at 24 hours post-injection. 60
Figure 3.1. Myosin filament measurements (slow fibre types) of controls and patients with MYH7 mutations. 77
Figure 3.2. The proportion of DRX increases in patients with LMM mutations. 80
Figure 3.3. Fibres with mutations leading to DRX are primarily present in the myomesin binding site. 81
Figure 4.1. Schematic evolution gene tree describing mammalian MYH genes 85
Figure 4.2. Phylogenetic tree of a range of tetrapod, lobe-finned fish, ray-finned fish, and cartilaginous fish. 86
Figure 4.3. RNA localisation of smyhc1-3 and myh7/myh7l. 87
Figure 4.4. Phylogram showing MYH proteins and zebrafish myh proteins. 90
Figure 4.5. Phylogenetic neighbour-joining tree analysis of MYH6 and MYH7 related genes of 76 proteins across several vertebrates 92
Figure 4.6. A mixture of lobe-finned MYH6 and MYH7 signatures was observed in ray-finned lineage. 94
Figure 4.7. The mixture of lobe-finned MYH6 and MYH7 signatures was observed in ray-finned lineage. 97
Figure 4.8. Synteny of flanking genes in lobe-finned MYH7 to ray-finned smyhc and myh7 genes. 99
Figure 4.9. Synteny of flanking genes in human MYH6 to ray-finned myh6 genes. 99
Figure 4.10. CLUSTALO protein sequence alignment of LMM regions from human MYH7 gene with zebrafish smyhc1 103
Figure 5.1. CRISPR/Cas9 knockout of smyhc1 115
Figure 5.2. CRISPR/Cas9 mutagenesis in F1 embryos 117
Figure 5.3. Genome editing generates likely null alleles of zebrafish smyhc1 119
Figure 5.4. Zygotic smyhc1 mutants show no morphological defects. 122
Figure 5.5. Mutation of smyhc1 reduces swimming velocity 123
Figure 5.6. Zygotic smyhc1 mutants survive to adulthood 124
Figure 5.7. Loss of smyhc1 reduces swimming velocity. 126
Figure 5.8. Defective sarcomere organisation in smyhc1 ${ }^{\text {kg179/kg179 }}$ mutants 129
Figure 5.9. Lack of smyhc1 does not affect fast muscle fibre morphology 131
Figure 5.10. Recovery of slow fibres in adult zebrafish stages 132
Figure 5.11. Genome editing targeting smyhc locus to delete smyhc2-5 134
Figure 5.12. Sequencing analysis of smyhc2-5 deletion. 135
Figure 5.13. Aligned sequencing segments highlighting gRNA used for smyhc1 KO showing potential off target effects in other smyhc and myh7/myh7l genes. 139

Tables

Table 1.1. Types of congenital myopathies. 18
Table 1.2. MYH and MYL genes are expressed in developing mammalian skeletal muscle. 34
Table 2.1. List of human samples from healthy controls and patients with disease mutations in MYH7. 47
Table 2.2. Primary antibodies 48
Table 2.3. Secondary antibodies 48
Table 2.4. smyhc1 CRISPR/Cas9 target sites 55
Table 2.5. Injection mixtures prepared for smyhc1 KO or HR 59
Table 2.6. smyhc2-5 CRISPR/Cas9 target sites 60
Table 2.7. Injection mixtures prepared for smyhc2-5 KO. 61
Table 2.8. Primer list for HRM and sequencing 62
Table 2.9. Proteinase K treatment according to the embryonic stage for WISH 69
Table 4.1. List of HsMYH7 candidate genes from protein BLAST analysis. 89

Abstract

Myosin is a family of proteins that plays a crucial role in generating force and motion by interacting with actin filaments in skeletal muscle. Myosin molecules notably contain heavy chain (MyHC) isoforms that have different functional capabilities. Mutations in one of its isoforms, MyHC I/ β (encoded by the MYH7 gene) have been reported in humans, associated with muscle weakness and have led to two main distinct skeletal muscle diseases, Laing Distal Myopathy (LDM) and Myosin Storage Myopathy (MSM). The pathophysiological mechanisms by which subtle amino acid changes in the LMM region of MyHCl / β molecules leading to such variable skeletal muscle phenotypes in LDM and MSM patients remain poorly understood. Using a wide range of human MYH7 patient muscle biopsy samples, investigation of primary biophysical defects in the presence of defective $\mathrm{MyHC} \mathrm{I} / \beta$ molecules including myosin filament length has revealed no change but rather a shift in myosin head positioning into a disordered relaxed state (DRX). On the road to generating a zebrafish LDM and MSM disease model, several genes were identified to be orthologous to human MYH7. Amongst orthologous genes, smyhc1 was targeted for genome editing using CRISPR/Cas9 to generate a loss of function model. Loss of smyhc1 led to early developmental defects, however, continued to grow to adulthood with no observable muscle defects. Smyhc1 null zebrafish are replaced and compensated by smyhc2 and smyhc3 in adult zebrafish. Work ongoing to generate large deletion of smyhc locus to understand the role of slow MyHC in sarcomere assembly during early developmental stages through to adulthood. It is concluded that in the presence of LDM mutations in the MyBP-C binding domain, myosin heads in the SRX state are destabilised, and zebrafish smyhc1 is orthologous to human MYH7 but only functions during the early stages of development. Continued work to generate knockout of smyhc locus may describe the function of smyhc2 and smyhc3 in later stages of development in the quest to model the progressive phenotype in LDM and MSM patients.

Acknowledgements

Thank you to all those who have supported me through the four years of my PhD. I thank my primary supervisor Dr Julien Ochala for guiding and supporting me throughout the PhD project. I am hugely grateful for the huge amounts of patience and support through many challenges in my mental health, family as well as the challenges in my PhD project itself. I would like to thank my secondary supervisor, Prof. Simon Hughes, for always showing the highest enthusiasm and continuously inspiring me throughout my MRes and PhD. I thank all Ochala lab members, Dr Yotam Levy, Dr Jacob Ross, Natasha Ranu, Edmund Battey and Dr Hannah Dugdale, and all Hughes and Hinits lab members, Vikki WilliamsWard, Tapan Pipalia, Dr Yaniv Hinits, Dr Ailbhe O’Brien, Dr Michael Attwaters, Dr Jeff Kelu, Kees Wanders and Dr Dan Turner for being such lovely friends and always warm and welcoming in the office and so supportive in the lab. I want to show appreciation to Prof Christer Hogstrand, Prof Wolfgang Maret and Prof Stephen Sturzenbaum for being constant supporters, being amazing guidance and always creating a fun environment whilst teaching the Biomedical and Molecular Science Research course. Thank you, Muscular Dystrophy, for funding my work. Most importantly, I thank my family for always showing unconditional love, I thank mum and dad for always feeding me every day, giving all the hugs needed and supporting me through everything and I thank all my sisters Claire, Sin-Yee and Sarah for being cheerleaders through everything. Finally, I would like to thank my boyfriend Erolle, who has supported me through the final years of my PhD, thank you for always being so loving and caring, encouraging me to be more courageous each day, and being the safe space to be comforted during the biggest challenges and supporting me as a scientist. I would have not been able to complete my PhD without such belief in me to become stronger each day, thank you so much Erolle.

Statement of Disruption

Between March 2020 and June 2020, access to the lab were restricted by King's College London due to the UK government's COVID-19 lockdown. Restricted lab access initiated late June 2020 and limited number of researchers were allowed to occupy the lab until June 2021. During restricted lab access, the fish facility was only open to researchers during early morning at 8-9:45am and after 4pm which greatly reduced the number of experiments performed on zebrafish as well as maintaining fish lines. COVID-19 restrictions did shift and delay experiments, use of equipment and fish maintenance with new booking rules with limited access. This delayed my ability to generate large number of fish lines through CRISPR injection, screening multiple CRISPR lines and maintain already existing fish lines.

Mid-March 2020 I caught COVID-19 and subsequently was diagnosed with long covid. Further disruption of my studies for a further 2 months to recover delayed and put all my experiments to a halt. Returning to the lab to continue experiments after partial recovery from long covid after a total of 5-months disruption did delay my output to generate data and write up my thesis as the symptoms involved impacted my usual workflow pre-pandemic. Thankfully King's College London provided a 5month extension to my PhD to cover lockdown disruption and for my 2-month time out of my PhD. Although this did not give me enough time to complete all the experiments to generate multiple zebrafish mutant lines (due to restricted access and inability to work to 100% performance pre-covid), it did give me enough time to wrap up any existing experiments that were partially completed and write up my thesis.

Abbreviations

AA, amino acid
AMO, antisense morpholino
ATP, adenosine triphosphate
BBR, 2\% Boehringer Blocking Reagent ${ }^{\text {TM }}$
BH, blocked head
BLAST, basic local alignment search tool
BTS, N-benzyl-p-toluene sulphonamide
Ca2+, calcium
cDNA, complementary DNA
CRISPR, clustered regularly interspaced short palindromic repeats
crRNA, CRISPR RNA guide sequence
CSA, cross-sectional area
DAPI, 4',6-diamidino-2-phenylindole
DCM, dilated cardiomyopathy
$\mathrm{ddH}_{2} \mathrm{O}$, double distilled water
$\mathrm{dH}_{2} \mathrm{O}$, distilled water
DIG-UTP, digoxigenin-uridine triphosphate
DNAse, deoxyribonuclease, enzyme degradation of DNA
dNTP, deoxyribonucleotide triphosphate
Dpc, days post coitum
Dpf, days post fertilisation
DRX, disordered relaxed state
DSB, double-strand break
EGTA, ethylene glycol-bis(β-aminoethyl ether)- $N, N, N^{\prime}, N^{\prime}$-tetraacetic acid
EJC, exon-junction complex
ELC, essential light chain
Els, embryonic lateralis superficialis
EtOH, ethanol
FH, Free head
Fmyhc, fast myosin heavy chain
gRNA, guide RNA
GS, goat serum

HCM, hypertrophic cardiomyopathy
Hh, hedgehog
HM, horizontal myoseptum
HMM, heavy meromyosin, head region of myosin, consisting of S1 and S2
Hpf, hours post fertilisation
HR, homologous recombination
HRM, high-resolution melt
HRP, Horseradish peroxidase
Icp, infracarinalis posterior
IFM, indirect flight muscle
IHM, Interacting Heads Motif
INDEL, insertion/deletion
lob, inferior obliquus
ISH, in situ hybridisation
K, Potassium
$\mathrm{K}_{2} \mathrm{HPO}_{4}$, di-potassium hydrogen phosphate
$\mathrm{KH}_{2} \mathrm{PO}_{4}$, potassium di-hydrogen phosphate
KO, knockout
L50 kDa, Lower 50 kDa
LB, Luria broth
LDM, Laing distal myopathy
LMM, light meromyosin, tail region of myosin
LOF, Loss-of-function
MABTween, MAB in PBS
Mant-ATP, 2'/3'-O-(N-Methyl-anthraniloyl)-adenosine-5'-triphosphate
mATP, Adenosine triphosphate
Mef2, myocyte enhancer factor 2
Mg, Magnesium
Mhc, myosin heavy chain (nomenclature in D. melanogaster)
MO, morpholino oligonucleotide
MOPS, 3-(N-Morpholino)propane sulfonic acid
Mpcs, muscle precursor cells
Mpf, months post fertilisation
MSM, myosin storage myopathy

MTJ, Myotendinous Junction
MyBP-C, Myosin Binding Protein C
MYH, Myosin Heavy Chain
MyHC, Myosin Heavy Chain
Myo, myosin (nomenclature in C. elegans)
NADH, nicotinamide adenine dehydrogenase
Nc, notochord
NHEJ, nonhomologous end-joining
NMD, nonsense-mediated mRNA decay
Nt , neural tube
Oligo, oligonucleotide
ORF, open reading frame
PAM, protospacer adjacent motif
PBS, phosphate-buffered saline
PBTween, Tween20 in PBS
PCR, polymerase chain reaction
PFA, paraformaldehyde
Pi, Organic phosphate
PMSF, phenylmethylsulfonyl fluoride
PTC, premature termination codon
PTU, 1-phenyl 2-thiourea, to block pigmentation in zebrafish
RLC, regulatory light chain
RNA, ribonucleic acid
rNTP, ribonucleotide triphosphate
S1, subfragment 1 of the myosin head
S2, subfragment 2 of the myosin head
Sca, supracarinalis anterior
SFLS, stress fibre-like structures
sgRNA, single guide RNA
Sh, sternohyoid
SM, slow myosin
Smyhc, slow myosin heavy chain
SRX, Super relaxed state
Ssoligo, short single oligonucleotide

TALENS, transcription activator-like effector nucleases
TCEP, Tris(2-carboxyethyl)phosphine
Tm, melting temperature
tracrRNA, tracr guide RNA
U50 kDa, Upper 50 kDa
UTR, untranslated region
WISH, whole-mount in situ hybridisation
WT, wild type
XY, lateral view
XZ, transverse view
ZFN, zinc finger nucleases

Chapter 1

General introduction

1.1. Congenital Myopathies and the MYH7 gene

Myopathies, in general, are defined as disorders where detrimental muscle dysfunction is a prominent feature. Multiple origins for such a group of diseases are known, including: the central nervous system, peripheral muscle system or the skeletal muscle itself. Congenital myopathies are early-onset muscle diseases which and occur at birth or early stages of life (Ravenscroft et al., 2017). Clinical assessment of congenital myopathy includes hypotonia, muscle weakness, the disproportion of muscle fibre types, centralised nuclei, cores and nemaline bodies. A recent increase in genetic diagnosis of many congenital myopathies have been clinically characterised into many subtypes through the discovery of affected muscle genes (Boycott et al., 2013). There are many different types of congenital myopathies as shown in Table 1.1. The congenital myopathies focused upon in the present work are due to sarcomeric gene mutations on one myosin gene, MYH7. MYH7 encodes beta/slow myosin heavy chain (MyHCI) that is known to facilitate muscle contraction in slow skeletal muscle and in the heart ventricle. Currently, there are no curative medicines for MYH7-related congenital myopathies and available treatments simply target the various symptoms (Tajsharghi and Oldfors, 2013; Topaloglu, 2020). During my analysis, I first described in my introduction the disease and its related clinical phenotypes and define myosin structure and function concerning the human MYH7 mutations that are well-described in the literature. Secondly, in my results chapters, I studied the potential underlying molecular and cellular mechanisms leading to pathology in the presence of defective slow myosin molecules and subsequently developed animal models that could be beneficial in the quest for treatment designed for MYH7-related diseases.

Table 1.1. Types of congenital myopathies.

Congenital Myopathy	Description	Clinical Phenotype	Affected Genes	Refere	
Central core disease	- Large, welldemarcated, central cores within numerous myofibres.	- Muscle weakness - Developmental problems - Some may develop malignant hyperthermia (reaction to general anesthesia)	- RYR1 - SELENON - MYH7 - TTN	\bullet	$\begin{aligned} & \text { (Robinson et al., } \\ & 2006 \text {) } \end{aligned}$
Centronuclear myopathy	- An elevated number of myofibres - centrally or internally located nuclei.	- Muscle weakness - Affects the face, arms, legs, eyes - Breathing difficulties	- CNMX - MTM1 - DNM2 - CNM1 - BIN1 - CNM2		(Laporte et al., no date; Bitoun et al., 2005; Tosch et al., 2006; Nicot et al., 2007; Koutsopoulos et al., 2013)
Congenital fibre type disproportion myopathy	- Small fibres - The predominance of either fast or slow fibres	- Muscle weakness - Affects the face, neck, arms, leg, and trunk	- ACTA1 - SEPN1 - TPM3 - RYR1 - TPM2 - MYH7		(Laing et al., 2004, 2005; Sobrido et al., 2005; Clarke et al., 2008; Lawlor et al., 2010; Ortolano et al., 2011)
Nemaline myopathy	- Presence of electrondense rod-like aggregates within myofibres	- Muscle weakness - Affects the face, neck, arms, and legs - Sometimes cases with scoliosis - May cause breathing and feeding problems	- ACTA1 - CFL2 - TPM2 - TPM3 - TNNT1 - NEB	\bullet	(Nowak, Ravenscroft and Laing, 2013; Romero, Sandaradura and Clarke, 2013)
Multi minicore disease	- Presence of multiples cores within a myofibre cross-sections	- Muscle weakness - Affects the arms and legs - Scoliosis	- SEPN1 - RYR1 - MYH7 - TTN - MEGF10 - EMARDD - CACNA1S	-	(Muelas et al., 2010; Cullup et al., 2012)
Hyaline body myopathy	- Hyaline bodies found between slow fibres - Hyaline bodies containing protein aggregates	- Muscle weakness - Muscle hypertrophy - Symptoms are quite variable	- MYH7 - FHL1 - NEB	\bullet	(Goebel and Blaschek, 2011)

1.2. MYH7 mutations cause several distinct clinical pathologies

To date, over 200 mutations in the MYH7 gene have been associated with congenital myopathies, with manifestation, symptoms and severity being variable (Tajsharghi and Oldfors, 2013). MYH7 mutations have often been associated with either cardiac phenotypes, such as hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM), and/or skeletal muscle symptoms, such as Laing Distal Myopathy (LDM) or Myosin Storage Myopathy (MSM). Interestingly, the position of mutation along the slow myosin molecule can dictate which one of the four diseases may be present. Mutations in the MYH7 gene have primarily been dominant, involving mutations leading to amino acid substitutions and/or deletions (Appendix 1.1). Human MYH7, located on chromosome 14, consists of 40 exons encoding the 1935-amino acid long MyHC I protein which is subdivided into the N-terminal heavy meromyosin (HMM) consisting of subfragment-1 (S1) and subfragment-2 (S2) and at the C-terminus, the light meromyosin (LMM) (Fig 1.1A). Each subdivision of the MyHC I protein describes the general structure of the myosin molecule (Fig 1.1B1). The S1 region encodes for the head region where myosin can interact with actin and ATP, the S2 region encodes for the neck of the myosin molecule for head movement and the LMM encodes for the tail for myosin monomers to dimerise into a double head myosin dimer and subsequently interlace into a myosin filament in the sarcomere for muscle contraction (Fig 1.1B2). HCM and DCM-related mutations are mainly concentrated in the S1 and S2 regions (Fig 1.1C) whilst LDM and MSM-related defects are primarily located in the LMM region (Fig 1.1C) (Lamont et al., 2014).

The most common diseases associated with MYH7 mutations are HCM and DCM and have been widely explored in literature (Tajsharghi and Oldfors, 2013). Since MYH7 is expressed in ventricular cardiac muscle as well as skeletal muscle, mutations in MYH7 can lead to cardiomyopathy in the absence of skeletal myopathy and some skeletal MYH7-associated myopathies may present with cardiomyopathy (Darin et al., 2007; Overeem et al., 2007; Tajsharghi et al., 2007; Uro-Coste et al., 2009; Homayoun et al., 2011). HCM presents with ventricular hypertrophy, hypercontraction, altered myosin head positioning and cardiac myocyte disorganisation (Maron et al., 1995; Fatkin and Graham, 2002; Frazier et al., 2008; Alamo et al., 2017). Contrastingly, DCM presents with dilated and enlarged ventricles leading to weakened contraction (Walsh et al., 2009; Alamo et al., 2017). Greater understanding of pathology has led to advances in the treatment of HCM treatments such as using Mavacamten to reverse the symptoms in HCM patients (Anderson et al., 2018; Spertus et al., 2021). Even though the underlying mechanism of HCM and DCM are widely explored (Tajsharghi and Oldfors, 2013), the pathophysiology of LDM and MSM are less well understood. When investigating the localisation of the MYH7 mutations affecting skeletal muscle, mutations in MYH7 leading to LDM and

MSM are predominantly located in the LMM region and are absent in the S 1 and S 2 region (Fig. 1.1D). LDM-related residue substitutions are generally found in the earlier segment of the LMM whereas MSM amino acid replacements are primarily observed in the C-terminal end of the LMM region (Fig 1.1D). A clear overlap between mutations leading to either LDM or MSM is, however, present from aa 1600 to aa 1800 (Lamont et al., 2014). Thus, the functional role of each segment within the LMM may describe the pathology in leading to either LDM or MSM.

Mutations leading to HCM, and DCM were found to have cardiac involvement and thus, are easily distinguished from LDM and MSM. Just over half of the patients with HCM and DCM have early onset of disease (Fig 1.2). In my PhD, my main aim is to focus on mutations in MYH7 leading to skeletal muscle diseases LDM and MSM. From here, I focus my investigation on the main symptoms and details distinguishing between the two skeletal muscle diseases, LDM and MSM. There are several similarities in clinical symptoms between LDM and MSM such as overall skeletal muscle weakness, distal lower limb myopathy, proximal myopathy, hypertrophy of muscle, axial involvement, and abnormal biopsy findings (Fig 1.2, Appendix 1.1). Despite such similarities between LDM and MSM, there are key distinct symptoms that enable each disease to be categorised (Fig 1.2).

B ${ }^{11}$

C All mutations in MYH7

D Mutations in MYH7 affecting Skeletal Muscle

Figure 1.1. Mutations in MYH7 and their corresponding disease.
A) Gene sequence map of MYH7 with 40 exons, 38 of which are coding exons. The transcript length is 6027 bps. B) Protein sequence map of MYH7 consisting of 1935 amino acid residues. MYH7 is subdivided into Subfragment1 (S1) in blue, subfragment-2 (S2) in pink and light meromyosin (LMM) in purple. C) All mutations in MYH7 mapped onto amino acid sequence. Each line represents the different diseases: Hypertrophic cardiomyopathy (HCM) in red, dilated cardiomyopathy (DCM) in purple, Laing distal myopathy (LDM) in blue and myosin storage myopathy (MSM) in yellow D) Number of mutations in MYH7 found in the literature with clinical phenotype in skeletal muscle mapped onto amino acid sequence. Mutation case frequency Hypertrophic cardiomyopathy (HCM) in red, dilated cardiomyopathy (DCM) in purple, Laing distal myopathy (LDM) in blue and myosin storage myopathy (MSM) in yellow. All mutations in MYH7 are sourced and detailed in Appendix 1.1.

Clinical Phenotype vs. Disease Type

Figure 1.2. Clinical phenotype vs MYH7 Disease.
Radar chart clinical phenotype and their percentage prevalence between the four main diseases associated with MYH7 mutations: Hypertrophic cardiomyopathy (red), dilated cardiomyopathy (purple), Laing distal myopathy (blue) and myosin storage myopathy (yellow). Percentage calculated by presence of particular phenotype from one disease category in comparison to the total number of cases with the disease. Clinical phenotypes were obtained from literature to generate this graph and detailed in Appendix 1.1.

1.2.1. Laing Distal Myopathy (LDM)

Both de novo and familial cases of LDM have been identified (Lamont et al., 2006). The cases encompass patients with symptoms early in childhood or individuals with phenotypes appearing as after 50 years of age (Laing et al., 1995; Mastaglia et al., 2002; Lamont et al., 2006; Tasca et al., 2012). Overall, muscle weakness in distal limbs (hands and feet) is conspicuous and may expand to other muscles too. Raising all five fingers are challenging exercise as finger extensors are weak, patients show an inability to raise the middle, ring and fifth finger in their attempt but all cases show an ability to raise their index finger (Fig 1.3A). Raising their feet upward is another challenging exercise as their ankle dorsiflexors are weak, patients appear to show slight flexion of their toes in their attempt but are unable to use the ankle to raise their foot (Fig 1.3B). Additionally, patients may experience neck flexion problems and, in some cases scoliosis (Fig 1.3C) (Tajsharghi and Oldfors, 2013). Muscle biopsy findings can include a predominance of fibres expressing MyHC I when cross-sections are stained for NADH, additionally, type I fibres appear smaller than fast fibres, additionally, there are scattered minicores (Fig 1.5A), internal nuclei, mitochondrial abnormalities, rimmed vacuoles and necrosis (Mastaglia et al., 2002; Tasca et al., 2012; Tajsharghi and Oldfors, 2013). Despite such a distinguished phenotype, the severity of each diagnostic phenotype will vary from one patient to another, whether they have the same mutation or between the different MYH7 mutations leading to LDM.

1.2.2. Myosin Storage Myopathy (MSM)

Like LDM, MSM also has de novo or familial cases (Cancilla et al., 1971; Barohn, Brumback and Mendell, 1994; Masuzugawa et al., 1997; Bohlega et al., 2003; Tajsharghi et al., 2003; Laing et al., 2005; Shingde et al., 2006; Pegoraro et al., 2007; Uro-Coste et al., 2009; Stalpers et al., 2011). Only one patient show delayed motor milestones, such as difficulty climbing stairs, running or a waddling gate (Tajsharghi and Oldfors, 2013). They are unable to raise all five fingers where only the index and fifth fingers can be raised as patients have muscle weakness in their fingers and their palm (Fig 1.4A). Patients also show muscle wasting in the upper limbs, particularly in the thighs and forearms (Fig 1.4B). A rare set of patients show a severe progression of their symptoms, where patients show additional phenotypes including scoliosis, assisted ventilation and scapular winging (Fig 1.4C) (Bohlega et al., 2003; Stalpers et al., 2011; Tajsharghi and Oldfors, 2013). Muscle biopsy specimens display protein aggregates which are present as clusters between slow fibres and are also described as hyaline bodies (Fig 1.5B, C) (Barohn, Brumback and Mendell, 1994; Bohlega et al., 2003; Shingde et al., 2006; Pegoraro et al., 2007; Tajsharghi and Oldfors, 2013). Protein aggregates between slow fibres in MSM patients are mostly made of filamentous material that can be slow MyHC immunoreactive (Fig 1.5C) (Tajsharghi et al., 2003).

Likewise with LDM, with such distinguished phenotype, the severity of each diagnostic phenotype will vary from one patient to another, whether they have the same mutation or between the different MYH7 mutations leading to MSM. Since there is high variability in the severity of clinical phenotype in LDM and MSM patients, diagnosing between the two diseases can be difficult without muscle biopsy data. There are some MYH7 patients that do not fit the initial diagnostic criteria (without muscle biopsy) for LDM or MSM and have been misdiagnosed as cases of limb-girdle syndrome or scapuloperoneal myopathy (Pegoraro et al., 2007; Ortolano et al., 2011). Limb-girdle syndromes predominantly affect the proximal limb muscles especially in the shoulder and hip areas, whereas scapuloperoneal myopathies typically present with symptoms of the scapular, lower leg, and sometimes facial muscles (Thomas, Schott and Morgan-Hughes, 1975; Groen et al., 2007). Despite such variable phenotypes, the main diagnostic criteria to distinguish between LDM and MSM are from analysing their muscle biopsies where biopsies from LDM show fibre type disproportion and small slow fibres and biopsies from MSM patients show the presence of myosin protein aggregates between fibres.

C Axial Involvement - Scoliosis

Figure 1.3. The clinical phenotype for Laing Distal Myopathy.
A) Distal lower limb myopathy shown in the hands with weakness in finger extension. Patients are unable to lift exterior fingers in an attempt to raise all fingers upwards. B) Weakness shown in the feet when patients were examined for ankle flexion to point feet and toes upward, patients appear unable to flex the foot and exterior toes upward and appear dropped. C) Axial involvement where some patients showcase scoliosis. Figure permission granted from Van den Bergh et al., 2014; Oda et al., 2015; Fiorillo et al., 2016.

A Distal Lower Limb Myopathy - Finger Extension

Cullup et al, 2012
Cullup et al, 2012
B Distal Upper Limb Myopathy

R1856W
Pegoraro et al, 2007

R1588P
Cullup et al, 2012

R1856W
Pegoraro et al, 2007

C Scapular Involvement

R1856W
Pegoraro et al, 2007

R1856W
Pegoraro et al, 2007

Figure 1.4. The clinical phenotype for Myosin Storage Myopathy.
A) Distal lower limb myopathy shown in the hands with weakness in finger extension. Patients are unable to lift all exterior fingers. B) Thighs show muscle wasting of the posterior compartment in thigh muscles (1-2) in more severe cases (left) and less severe cases (right) and wasting of forearms with abnormal elbow flexion (3-4). C) Scapular winging was identified in more severe cases (left) and less severe cases (right). Figure permission granted from Pegoraro et al., 2007; Cullup et al., 2012.

Figure 1.5. Muscle Biopsy Diagnostics for LDM and MSM
A) LDM patient biopsy with NADH staining showing fibre type disproportion. There is type I fibre predominance and with small type I fibres, type I fibres are labelled in dark staining (white arrows). Fibres also show oxidative defects where pale circle patches (mini cores) are found in NADH staining (yellow arrow). B) MSM patient biopsy with NADH staining showing the presence of hyaline bodies between fibres. C) MSM patient biopsy with slow myosin antibody stain (green) shows hyaline bodies containing aggregates of slow myosin. Fast myosin stain in fast fibres (red) appears normal with no protein aggregation. Figure permission granted from Shingde et al., 2006; Ortolano et al., 2011; Sundaram and Megha, 2012; Van den Bergh et al., 2014.

1.3. Basic muscle physiology and phenotype

During early development, muscle fibres are formed from the fusion of myoblasts, the mesoderm progenitor cells. At neonatal stages, the number of muscle fibres remain constant but grow in size by fusing with postnatal muscle stem cells, known as satellite cells. In adult skeletal muscle, muscle fibres remain constant with only fusion to compensate for muscle turnover from daily use and repair. Muscle can regenerate in response to injury through a series of degeneration and regeneration of tissue, cellular and molecular levels with the presence of satellite cells near the muscle fibres.

Muscle fibre type specification during embryogenesis in vertebrates are governed by the specific spatial and temporal expression of transcription factors MyoD, Myf-5, myogenin and MRF4 which are initiated by several inductive pathways (Cossu et al., 1996; Currie and Ingham, 1996). Myf5 and MRF4 are transcribed in the dorsal medial and ventrolateral ends of the dermomyotome. Cells expressing Myf5 and MRF4 then migrate beneath the dermomyotome and differentiate into first set of mononucleated skeletal muscle cells (Summerbell, Halai and Rigby, 2002; Kassar-Duchossoy et al., 2004).The myotome also have Pax3 and Pax7 expressing stem cells present in the central segment of the dermomyotome. MyoD is expressed in the hypaxial and epaxial progenitors and overlap with Myf5 expression to further develop the myotome alongside Pax3/Pax7 expressing stem cells (KassarDuchossoy et al., 2005; Relaix et al., 2005). Later in development, Mrf4 expression is suppressed, myod and myogenin are then expressed to initiate myoblast fusion into multinucleated muscle cells to produce mature myofibres (Tajbakhsh et al., 1997).

Capillaries facilitate the exchange of O_{2}, substrates and metabolites from the blood to skeletal muscle as well as many organs. Skeletal muscle occupies most capillary beds in the body, especially playing the dominant role for exchange of O_{2}, glucose, lactate, and fatty acid dynamics during exercise. Chronic diseases such as heart failure, muscle weakness and diabetes have been correlated with impaired capillary function (Klitzman and Duling, 1979; Sarelius and Duling, 1982; Cossu et al., 1996; Frisbee and Barclay, 1999).

Skeletal muscle is regulated through excitation-contraction coupling, a process involving the conversion of electrical activity of muscle fibres to the activation of muscle contraction. The initial steps for excitation-contraction coupling involve the action potential propagation from the spinal cord via motor neurons to the neuromuscular junction. This action potential to the neuromuscular junction triggers the release of acetylcholine (Ach) from nicotinic receptors. Released ACh binds to the postsynaptic receptors causing depolarisation of sarcolemma, depolarisation above the threshold will
initate an action potential that will spread along the surface and into the T-tubules of the muscle fibre (González-Serratos, 1971). Depolarisation down T-tubules activates voltage-sensitive dihydropyridine receptors and thus, open ryanodine receptor channels in the sarcoplasmic reticulum to release stored Ca^{2+} into the muscle fibre cytoplasm. Muscle in the inactive state is stabilised through the troponin/tropomyosin system in which tropomyosin is positioned to block myosin binding sites on thin actin filaments. Ca^{2+} release activates the contractile apparatus by binding to troponin C and subsequently lead to a confirmational change in tropomyosin complex, revealing the myosin binding sites on thin actin filaments to enable cross-bridge formation and force generation powered by ATP activated myosin (Gordon, Homsher and Regnier, 2000). When neural action potential decreases below threshold level, Ca^{2+} ions are transported back into the sarcoplasmic reticulum through the sarcoplasmic reticulum/endoplasmic reticulum ATPase. Lack of Ca^{2+} ions in the cytoplasm lead to tropomyosin returning into its inhibitory conformation and thus block actomyosin binding and cross bridge cycling stops.

1.4. Myosin structure and function

MYH7 is expressed in the heart and slow skeletal muscle to drive the contraction of cardiomyocytes in the ventricles and contraction of slow muscle within the sarcomere (the smallest unit for muscle contraction). As the exact pathogenic mechanisms by which subtle mutations in MYH7 lead to LDM or MSM remain unclear, it is important to describe what is known about myosin within its basic functional unit, the sarcomere. In the presence of defective myosin molecules, pathology of LDM and MSM may be a result of altered aggregation or impair the function of the myosin in cardiac and/or slow skeletal muscle.

1.4.1. Muscle structure - from whole muscle to sarcomere

Skeletal muscle is made up of muscle fibres and it is important to note that there are two types of skeletal muscle fibres in vertebrates, slow and fast (type 1 and type 2 , respectively). Whilst fast fibres consist of three subgroups (2A, 2B and 2 X), all of which show rapid contraction speed to produce high force but have low resistance to fatigue. Slow fibres contain more mitochondria than fast fibres and have oxidative metabolism to enable efficient muscle contraction to produce small but frequent forces and are resistant to fatigue. To generate such force in either fast or slow skeletal muscle, muscle fibres contain contractile tissue that is highly conserved in vertebrates and are organised with distinctive features for muscle contraction. Notably, cylindrical bundles of muscle fibres able to contract and relax. Each fibre contains myofibrils made up of small contractile units called sarcomeres that are arranged in series and parallel (Fig 1.6). Sarcomeric MyHCs form the regular filamentous array of
parallel thick myosin filaments interdigitating with parallel arrays of thin actin filaments. These structures are stabilised by M-lines and Z-lines that crosslink myosin thick filaments and actin thin filaments respectively (Howard, 1997; Alberts et al., 2015). During muscle contraction, coordinated events whereby actin filaments slide between myosin filaments causes Z-disk positioning to shorten and thus, causes muscle shortening to generate isometric and concentric muscle contraction.

1.4.2. Sarcomeric assembly

The exact mechanism and sequence of events in the assembly of the sarcomere remain controversial and there are several models describing aspects of sarcomere assembly (Fig 1.7). There have been initial models describing the ability for myosin molecules to self-assemble into thick filaments. Myosin molecules interlock at their C-terminal coiled coil rod domain, known as the assembly competence domain. Thus, enabling myosin molecules to form thick filaments and integrate into the sarcomere. However, the mechanism for integration of myosin molecules into the sarcomere still remain unclear (Atkinson and Stewart, 1991; Sohn et al., 1997; Ikebe et al., 2001; Ojima et al., 2015). One model of sarcomere assembly describes the formation of stress fibre-like structures. Sarcomere assembly involves utilising non-muscle myosin as a template for sarcomere proteins to assemble to form premyofibril. Pre-myofibrils containing non-muscle myosin and are then later replaced with muscle myosin such as embryonic, neonatal, fast or slow MyHC to form mature myofibrils (Fig 1.7A) (Rhee, Sanger and Sanger, 1994). Muscle-specific desmin, actinin and Z-disk portion of titin are initially expressed to produce stress fibre-like structures (SFLS) known as premyofibrils containing non-muscle myosin II (Rhee, Sanger and Sanger, 1994; Swailes et al., 2006). These stress fibre-like structures act as a template for the formation of a myofibril (Dlugosz et al., 1984). A second model describes the independent assembly of actin filaments stabilised by z-disks to form I-Z-I bodies (Fig 1.7B). I-Z-I bodies are proposed to be assembled prior to the integration of myosin and this model is known as the "stitching model" of sarcomere assembly (Rhee, Sanger and Sanger, 1994; Holtzer et al., 1997; Van Der Ven et al., 1999; Sanger et al., 2005). Data from cultured skeletal muscle cells describe independent actin filament complex formation from myosin thick filament assembly (Lin et al., 1994). A third model describes the role of titin recruited by α-actinin to bind to the Z-disk region and the M line to act as a template to regulate the alternating patterning of I-Z-I bodies and myosin filaments (Kelly and Zacks, 1969; Tokuyasu and Maher, 1987; Schwander et al., 2003; Au et al., 2004). The transition from premyofibrils to myofibrils occur when SFLS coupled with titin molecules stretch out whereby Z-disk spacing is increased from 1 to $2 \mu \mathrm{~m}$ (Yang, Obinata and Shimada, 2000). This stretching exposes M-band region of titin for the assembly of myomesin molecules into the M-band. Then the final step is the assembly if sarcomeric myosin filaments to integrate the I-Z-I bodies form the A band
using titin as the molecular ruler for sarcomere assembly (Komiyama, Maruyama and Shimada, 1990;
Péault et al., 2007)

Figure 1.6. Anatomy of skeletal muscle fibre

A) Skeletal muscle is made up of myofibers which are elongated muscle cells. Muscle fibres are in turn made of bundles of smaller myofibrils, mitochondria and surrounded by the sarcolemma. Each myofibril is made up of highly organised repeat structures called sarcomeres. B) Schematic showing basic components of the sarcomere. Components labelled are the Z-disk which anchor the actin filaments, I-band, a region only containing actin filaments, A-band, a region only containing myosin filaments and H-zone, where no A-band or I-band overlap. Adapted from Creative Commons Attribution 4.0 International license available online: https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle.

Figure 1.7. Schematic describing sarcomere assembly
A) Premyofibrils form where actin filaments, non-muscle myosin and a-actinin accumulate together at the edge of the muscle cell. B) I-Z-I brushes form when premyofibrils assemble and fuse together. Myomesin and muscle myosin are recruited. C) Nascent myofibril form when muscle myosin II replaces non-muscle myosin II using titin as a molecular ruler. D) Mature myofibril formed with aligned thick filament into A-band and stabilised with M band proteins, myomesin and C-proteins. Figure adapted from Du et al., 2003.

1.4.3. MyHC I expression

In humans, there are a total of eleven sarcomeric MyHC genes, from an evolutionary standpoint, the oldest of these genes is MYH16 and was ancestrally expressed for jaw muscles (Rossi et al., 2010). A later duplication event led to the formation of MYH15 and MYH14 (MYH7B), which were the ancestral skeletal and cardiac MyHC genes (Rossi et al., 2010). Currently there are two cardiac MyHC genes, MYH6 and MYH7 which are present in tandem on chromosome 14 (Yamauchi-Takihara et al., 1989; Gulick et al., 1991) whereas the fast, embryonic and neonatal skeletal MyHC genes are present in tandem on human chromosome 17. Each MyHC isotype and related gene has specific roles in development and/or physiology (Table 1.2). The human MYH7 gene (NM_000257) is located on the reverse strand of chromosome 14: 23,412,740-23,435,660 and consists of 38 coding exons with 2 flanking UTRs. MYH7 encodes the 1935 amino acid MyHC I protein which is expressed both in heart ventricles and in slow skeletal muscle. MYH7 is closely linked to MYH6; they are present next to each other on the same chromosome (Yamauchi-Takihara et al., 1989). Nevertheless, MYH6 is only expressed in the heart and in the atrial cardiac muscle, whereas MYH7 has both cardiac ventricle and slow skeletal muscle localisation and the only MyHC isotype for slow skeletal muscle in humans (Mahdavi, Periasamy and Nadal-Ginard, 1982).

Table 1.2. MYH and MYL genes are expressed in developing mammalian skeletal muscle.
Table adapted from Schiaffino et al., 2015 with addition from Schiaffino and Reggiani, 2011, Rossi et al., 2010.

	Gene	Protein	Expression in the development of muscle	Expression in adult muscle
Myosin Heavy Chains	MYH3	MyHC-Emb	Embryonic and fetal	Extraocular, masticatory, laryngeal, muscle spindles
	MYH8	MyHC-Neo	Embryonic and fetal	Extraocular, masticatory, laryngeal
	MYH2	MyHC-IIa	Fetal	Type 2A fast
	MYH4	MyHC-IIb	Postnatal	Type 2B fast
	MYH1	MyHC-IIx/d	Late fetal	Type 2X fast
	MYH7	MyHC-I/ β	Embryonic and fetal	Type I slow and heart ventricles
	MYH6	MyHC- α	Embryonic and fetal	Heart atrium
	MYH13	EO-MyHC	Embryonic and fetal	Extraocular
	MYH14/MYH7B	MYH14	Embryonic and fetal	Extraocular
	MYH15	MYH15	Postnatal	Extraocular
	MYH16	MYH16	Embryonic and fetal	Jaw
Essential Light Chains	MYL1	MLC-1fast	Embryonic	Fast
	MYL1	MLC-3fast	Fetal	Fast 2B predominance
	MYL4	MLC-1emb/atrial	Embryonic	Heart Atrium
	MYL3	MLC-1sb	Fetal	Type I slow and heart ventricles
	MYL6B	MLC-1sa	Fetal	Type I slow
Regulatory Light Chains	MYLPF	MLC-2fast	Embryonic and fetal	Fast
	MYL2	MLC-2slow	Embryonic and fetal	Type I slow and heart ventricles

1.4.4. MyHC I in muscle development

Myosin molecules are formed through the dimerization of individual myosin units and stabilised through a coiled-coil structure (Fig 1.1B). The coiled-coil structure was first introduced from X-ray diffraction studies modelling the coiled-coil as a packing mechanism with the presence of a heptad pattern for the two myosin monomers to adhere together (Crick, 1953; Cohen and Holmes, 1963). The heptad repeat is made up of amino acids that are named "abcdefg" to label the function of each amino acid playing different functional purposes for the myosin molecules to dimerise and interlace myosin dimers into a larger thick filament (Fig 1.8A) (Lupas, 1996). Amino acids at the a and d positions are primarily hydrophobic residues and are responsible for binding myosin monomers together to form coiled-coil myosin dimers (Fig 1.8A) (McLachlan and Karn, 1982). Amino acids e and g are generally
polar or charged residues that may form salt bridges to stabilize myosin dimers (Fig 1.8A) (Lupas, 1996). Amino acids at positions b, c and f are charged residues that can interact with other myosin dimers (Fig 1.8A) (McLachlan and Karn, 1982), perhaps to facilitate thick filament formation. The heptad repeat pattern continues through and periodically has flexible skip residues which are present within one or two turns of the α-helix (McLachlan and Karn, 1982). In C. elegans, there are four skip residues, the first three skip residues are separated by 196 residues and the fourth skip residue by 224 residues (McLachlan and Karn, 1982). The presence of skip residues enhances the skeletal muscle myosin coiled-coil to stabilize together but the main role is to form a larger distribution of alternating positive and negative charges b, c and f residue (Atkinson and Stewart, 1992) and is highly conserved amongst vertebrates and invertebrates (Rahmani et al., 2021). There are six alternating positively and negatively charged amino acid patterning in a 28 amino acid (aa) repeat throughout the molecule. Within each of the six alternating charged amino acids in the 28 aa patterns, the strongest positive charge is in the first b aa (1b) and the strongest negative charge is in the $3^{\text {rd }} b$ aa (3b) positions (Fig 1.8B). The strongest $1 b$ and $3 b$ aa enable multiple myosin molecules to bind together via polar charges to form larger myosin filaments in sarcomeres (Fig 1.8B)(McLachlan and Karn, 1982). Myosin molecules were predicted to pack together into crystalline layers (Squire, 1973) and were further confirmed in more recent cryo-EM myosin filament structures (Hu et al., 2016; Daneshparvar et al., 2020; Rahmani et al., 2021).

Mutations at specific amino acids in the heptad coiled-coil could provide insight into the mechanism for the disease pathology. Mutations in a and d regions may prevent myosin dimerization, mutations in e and g may also prevent myosin dimerization but may also alter the stability of the myosin molecule. Another possibility is the mutation in b, c and f may prevent myosin molecules from forming myosin filaments. Mapping of all LMM mutations from the extant literature was performed and was grouped according to their amino acid position to describe the trend between the position of the mutation in the heptad repeat and their individual diseases (Fig 1.8C, Appendix 1.1). From this analysis, both LDM and MSM patients show many mutations in the hydrophobic a and d region and the charged amino region b, c and f (Fig 1.8C, Appendix 1.1). This indicates that most mutations in MYH7 have the potential to affect either the myosin molecule dimerization or myosin filament formation. Whilst mutations affecting a and d or b, c, and f lead to skeletal muscle diseases LDM and MSM, data from amino acid positioning alone does not explain whether mutations affecting particular amino acids in the heptad repeat lead to one disease or the other.

B

c

Myosin Storage Myopathy

Figure 1.8. Structure of Myosin Class II for thick filament assembly
A) Myosin LMM region forms a heptad amino acid repeat arrangement from $a-g$. Each amino acid plays a role for myosin monomers to dimerise and for myosin dimers to form thick filaments. i) role of amino acids are: a, d - hydrophobic interactions (pink), ii) e, g ionic interactions (purple) and iii) b, c, f-charged amino acids (blue). Both S2 and LMM region show heptad repeat and dimerise through this coiled-coil structure in LMM region B) LMM region form a 28 aa pattern of 6 alternating positive and negatively charged amino acids (+ and - symbol). In each 28 aa pattern, the strongest charge occurs in 1 b and 3 b positions (large bold + and - symbol). There are 7 28aa repeats between skip 1 and skip 2, 728 aa repeats between skip 2 and 3 and there are 828 aa repeats between skip 3 and 4 . Schematic drawing of strongest charged patterning from 1 b and 3 b positions of coiledcoil between skip 1 and 2 on myosin LMM enabling myosin molecules to bind together for thick filament assembly through amino acid charges. C) Mutations in functional amino acids associated with LDM and MSM. Percentage calculated from the proportion of patients with a mutation in the selected region compared with the total number of disease patients (LDM or MSM).

1.4.5. Role of LMM region for MyHC I head functioning

Myosin filaments function within sarcomeres, myofibrils and myofibres where myosin is present in three main states: i) active, ii) disordered relaxed state (DRX) and iii) super relaxed state (SRX). (Alberts et $a l ., 2015)$. In the active state, MyHC acts as a molecular motor within a kinetic cycle by interacting with actin and converting chemical energy of ATP hydrolysis into mechanical force and motion, thus generating muscle contraction (Sweeney and Houdusse, 2010). Structural features of MyHC S1 head indicate the functional role for each step in the myosin actin kinetic cycle. Myosin head consists of a large upper 50 kDa cleft where actin and ATP binding sites are found. As ADP is released, this cleft closes and binds to actin tightly (Yengo et al., 1999; Volkmann et al., 2000; Coureux et al., 2003). At the C-terminus of the myosin S1 head, essential light chains bind in this region which elongates the alpha helical structure of the neck, this may aid in neck movement for power stroke for force production (Rayment and Holden, 1994). Myosin functional elements in S1 region include relay loops for connecting the molecule together in addition to two binding regions for both ATP and actin, the former consists of: ATP binding loops and switch 1 and 2, whereas the latter consists of actin binding loops, loop 1-4 and HCM loop (Fig 1.9A). MyHC S1 region can be subdivided into four subunits: the upper $50 \mathrm{kDa}(\mathrm{U} 50 \mathrm{kDa})$, lower $50 \mathrm{kDa}(\mathrm{L50} \mathrm{kDa})$, N -terminal subdomain and the lever arm. The four subunits in the S1 head connects to S2 region via the lever arm, this can be observed from a side view (Fig 1.9B). These four subdomains are linked by four highly conserved connectors: SH1 helix, relay, switch 2 and strut (Fig 1.9B) (A.T.Geisterfer-Lowrance et al., 1990). The S1 helix and relay domain play an important role to connect to the converter at the start of the $S 2$ region to induce conformational changes for actin binding and release via L50 kDa subunit. Before power stroke, the 50 kDa cleft partially closes near switch 2, this enables the hydrolysed phosphate to be held in place (Fig 1.9B) (Yount et al., 1995; D'Agostino et al., 2011). In the absence of ATP when myosin is in rigor state, both the outer cleft (closest to loop 2) and the inner loop (closest to switch 2) are closed, which enables protein to strongly hold onto actin (Coureux et al., 2003). The cleft is able to open and close across the myosin actin kinetic cycle, this may be controlled through ATP binding site opening and closing or
through alterations in the conformational change in β-sheet transducer (Málnási-Csizmadia et al., 2005).

Although the S 1 head is intricate in structure to generate mechanical force for muscle contraction, the LMM region also plays a role in controlling myosin head positioning during muscle contraction and relaxation. When myosin is in the relaxed state, there have been observations of a DRX and SRX (Fig 1.10A) (McNamara et al., 2015). The conventional "J" motif seen in myosin filament structures describes myosin molecules in their SRX state (Fig 1.10B). During the SRX state, myosin heads interact with each other and both heads block actin and ATP binding sites by folding towards the S2 region into a form called the "interacting heads motif" (IHM) (Alamo et al., 2017; Woodhead and Craig, 2020). Myosin is stabilised in the SRX state by a second protein MyBP-C where MyBP-C connects to myosin at two sites, the N-terminus of MyBP-C connects to the myosin head region and C-terminus of MyBPC connects to the myosin LMM (Luther et al., 2008; Spudich, 2015). During the DRX state, myosin heads spring away from the thick filament backbone and protrude towards the actin filaments (Zhao, Padrón and Craig, 2008; Wilson et al., 2014). The main difference between myosin in the DRX state compared with the SRX state is that myosin in an SRX state consumes ATP at a slower rate in comparison to DRX and much slower than during the contractile state (Fig 1.10A) (McNamara et al., 2015). There has been a link between HCM mutations affecting the N -terminal MyBP-C binding site on MYH7 that has led to destabilising myosin in the SRX state (Alamo et al., 2017; Toepfer et al., 2020). In chapter 3, I analyse the proportion of SRX and DRX myosin molecules in the presence and absence of MYH7 mutations to identify whether the C-terminal MyBP-C binding domain also plays a role in stabilising myosin in the SRX state.

Figure 1.9. Structure of S1 myosin head.
Functional elements of the human cardiac myosin head. A) Top view of myosin S1 head. Schematic diagram of myosin molecule on top left and box indicates the location of S1 head for structural ribbon view. Close up of lower myosin S1 head labelled with the positions of functional domains: ATP binding loops (red), HCM loop (cyan) and loop 1-4 to aid actin-binding (pink), main actin-binding loops (green), switch 1 and 2 for ATP binding (orange) and relay loops for connecting molecule together. B) Side view of myosin S 1 head. Schematic diagram of myosin molecule on top left and box indicates the location of $S 1$ head for schematic diagram of head and its structural ribbon. S1 head can be subdivided into 4 subdomains, 1 . Upper 50 kDa subdomain (U50 kDa) and 2. Lower 50 kDa subdomain (U 50 kDa) with the presence of the 50 kDa cleft in between where actin binds, 3. N terminal peptide, 4 . Lower connector for lever arm and $S 2$ connection. Actin binding is modulated between loops $2-4$, the HCM loop and the main actin-binding loops in (A), ATP binding is modulated between ATP binding loops and switch $1 / 2$. Relay and SH1 helix main function for twisting S 2 head for power stroke. Diagram in B adapted from Sweeney and Houdusse, 2010 using protein 4DB1 from Protein data bank (https://www.rcsb.org/structure/4DB1).

B

Back View

Figure 1.10. Myosin conformation in contracting, DRX and SRX state
A) Schematic diagram showing myosin molecules in 3 states: Contracting, DRX and SRX states. Blocked head represents the blocking of ATP site during SRX and DRX state. During contracting state, both blocked head and free head are available for ATP hydrolysis and ready for actin binding in the myosin actin kinetic cycle. During DRX state, blocked head is bound to the thick filament backbone and unable to hydrolyse ATP, free head remains flexible and able to hydrolyse ATP. When myosin is in SRX, both heads are bound to the thick filament backbone and both are unable to hydrolyse ATP. Energy consumption lowers from transition from contracting myosin to DRX to SRX state as ATP site availability decreases during the transition. B) Front and Back view of myosin in SRX state in ribbon representation. Myosin is helically ordered with the appearance of a tilted ' J ' motif (left). Free head represents availability of ATP site during DRX but not available during SRX. Essential light chain (orange) and regulatory light chain (yellow) binds at the bottom of the 'J' motif. Panel A adapted from Garfinkel, Seidman and Seidman, 2018 and panel B adapted from Woodhead et al., 2005.

1.5. Zebrafish as a model LDM and MSM

Currently there are a few in vitro human cell culture and in vivo animal models for LDM and MSM. Cell culture models for MSM have modelled mutations R1845W and H1901L. Cells transfected with R1845W and H1901L show accumulation of MyHC aggregates that did not incorporate into thick filaments and demonstrated that mutations R1845W and H1901L affected the 29 residue assembly complex domain for myosin filament formation (Dahl-Halvarsson et al., 2017). Although transfection
experiments in human cell lines can generate identical MYH7 mutations from human patients in human MYH7 gene, experiments have only shown overexpression of mutant MYH7 to healthy MYH7 and are not representative of the biological expression level of MYH7 in vivo (Dahl-Halvarsson et al., 2017). There are several in vivo models such as C. elegans and D. melanogaster.
C. elegans MSM models have modelled mutations by creating alleles in the unc-54 gene with mutations R1845, E1883K and H1901L (Dahl-Halvarsson et al., 2017). Unc-54 is the major MyHC gene expressed in body wall muscles (Tajsharghi, Pilon and Oldfors, 2005). C. elegans lacking unc-54 gene led to paralysis of body wall muscles and could be rescued in the presence of wild type UNC-54. Introducing either of the three mutant alleles of the unc-54 gene (R1845, E1883K and H1901L) there was partial rescue of motility but not to full rescued effect observed when introduced with wild type unc-54 (Dahl-Halvarsson et al., 2017). Although C. elegans is an easy model organism for the introduction of various alleles to identify the mechanism leading to disease, the unc-54 gene may not represent as an accurate ortholog to human MYH7. C. elegans is an invertebrate model organism where there is no skeletal muscle. Although C. elegans do contain striated muscle, unc-54 is not a skeletal MyHC and thus by utilising unc-54 to represent slow skeletal muscle may be inaccurate. There are alternative MyHCs in C. elegans such as unc-15, myo1, myo2 and myo3 that are localised in a subset of muscle or thick filament structure but neither of these muscles accurately resemble slow MyHC in humans (Miller, Stockdale and Karn, 1986).
D. melanogaster MSM models have modelled mutations by creating alleles in the Mhc gene with mutations L1793P, R1845W, and E1883K (Viswanathan et al., 2017). Mhc mutant alleles L1793P R1845W, and E1883K were transgenically expressed in Mhc null background to study developmental defects in the presence of defective myosin molecules. Indirect flight muscle (IFM) fibres show the presence of MyHC aggregates from 1-day old flies with a decline in muscle architecture in adult flies but not during early myofibrillogenesis during the pupae stage (Viswanathan et al., 2017). In vitro assembly assay to identify myosin polymerisation into thick filaments show that MSM mutant myosin was not able to form thick filaments as efficiently as wild type myosin when subjected to differing salt concentrations (Viswanathan et al., 2017). Additionally, in vitro studies subjecting thick filaments to proteolysis have shown that MSM mutant myosin form thick filaments that were less stable in comparison to wild type thick filaments. MSM mutant myosin were therefore unable to form thick filaments as readily and stably as wild type myosin. D. melanogaster LDM models have modelled mutations by creating alleles in the Mhc gene with mutations K1729del (Dahl-Halvarsson et al., 2018). Mhc mutant allele K1729del were generated using CRISPR/Cas9 genome editing to target Mhc gene
and use homologous recombination (HR) to insert a short single oligonucleotide (ssoligo) containing mutant allele K1729del to insert mutation into the Mhc gene. Homozygous mutants show high death rate and heterozygous larvae show reduced muscle function. Reduced lifespan, lack of flight, impaired jump movement and reduced overall movement were observed (Dahl-Halvarsson et al., 2018). At larvae stage, Z-disks and M -bands appear to be reduced in heterozygous mutants and are difficult to distinguish in homozygous mutants. At older stages, myosin thick filaments show distinct A bands, however appear faint in muscle fibres, however myosin accumulated in certain areas of the thick filament (Dahl-Halvarsson et al., 2018). Thus, D. melanogaster Mhc mutant allele K1729del show progression of disease with varying degree of severity, a similar phenotype to clinical diagnostics of human LDM patients. Although both MSM and LDM models in D. melanogaster have demonstrated instability of myosin filament formation in the presence of MSM mutations and the progression of muscle disease in the presence of LDM mutations, representation of the single Mhc gene in D. melanogaster as the ortholog to human MYH7 may be inaccurate.

To study how mutations in MYH7 pathologically lead to diseases, I will be studying the mechanisms by which mutations in MYH7 lead to developmental defects. Currently, there are no vertebrate animal models for MSM or LDM targeting the orthologous gene to human MYH7. I will be using zebrafish as my animal model as there are several advantages to studying muscle developmental defects compared to alternative animal models. Zebrafish larvae are transparent with optical clarity, allowing direct visualisation of muscle formation, growth, and function. From 0 to 5 days post fertilisation (dpf), zebrafish larvae do not feed and utilise their yolk as their source of nutrition, thus removing feeding as a factor in muscle development. Zebrafish can frequently produce large clutch sizes of 100-300 embryos which enable large sample sizes to be analysed. Large clutch sizes also enable ease of CRISPR/Cas9 genome editing as injections at the one-cell stage can be made quickly and efficiently (Maves, 2014). In chapter 4, I demonstrate the need to identify the zebrafish ortholog to human MYH7. In chapter 5, I determine the role of zebrafish ortholog of human MYH7 in sarcomere assembly using loss of function experiments in the quest to identify the importance of slow MyHC for the overall muscle structure and function.

1.5.1. Structure of zebrafish skeletal muscle

There are many structural similarities between zebrafish muscle to mammalian muscle. Zebrafish muscle spans from the trunk to the tail and is organised into roughly 30 chevron-shaped blocks called somites separated by connective tissue (Fig 1.11A). Each somite consists of skeletal muscle fibres that bundle to span across the length from posterior to anterior (Fig 1.11B). When viewing the zebrafish
trunk in a transverse cross-sectional view, the somites surround the neural tube, which forms the spinal cord, and notochord, a rod like structure which supports the developing embryo (Fig 1.11C). Zebrafish muscle fibres differentiate during development, muscle fibres are separated into compartments rather than mixed in muscle bundles. Slow fibres are mononucleated and are organised to be on the superficial layer of the somite and the fast muscle is multinucleated and is buried underneath in the deeper tissue (Fig 1.11B). Since fast and slow fibres are in such distinct location, identifying slow MyHC defects in zebrafish prove advantageous as fast and slow muscle fibres can be identified and analysed with ease.

1.5.2. Somatogenesis in zebrafish

In teleosts, to form muscle there is a subdivision step to form the blocks of cells called somites from the anterior to the posterior end of the body. From this subdivision, somites form epithelia to separate from the notochord and neural tube (Chevallier, Kieny and Mauger, 1977; Schröter et al., 2008). At around 10.5 hours post fertilisation (hpf), the first pair of somites are formed. Following this first somite, another pair of somites is added every 15 min until around 8 somites have been, and then every 30 min until 30 somite pairs have been formed by the 24 hpf (Stickney, Barresi and Devoto, 2000). In zebrafish, slow muscle fibres are the first to differentiate and, following this, fast muscle develops later. The first 20 slow fibres are differentiated next to the notochord (van Raamsdonk et al., 1982; Devoto et al., 1996). These cells are signalled through hedgehog (Hh) proteins to differentiate into slow muscle fibres (Blagden et al., 1997; Lewis et al., 1999; Bryson-Richardson et al., 2005). These slow cells first have an elongation step followed by migration to form a superficial monolayer of slow fibres of each somite (Fig 1.11) (Devoto et al., 1996; Blagden et al., 1997; Daggett et al., 2007). At the horizontal myoseptum, near the notochord, there is a subset of cells called the slow muscle pioneers (Fig 1.11) (Waterman, 1969; van Raamsdonk et al., 1982) which lie on the border between the dorsal and ventral divisions of the somite (Felsenfeld, Curry and Kimmel, 1991). Muscle pioneers express engrailed proteins and are also regulated by the Hh signalling present near the horizontal myoseptum (Wolff et al., 2004). Fast muscle fibres are then differentiated through fgf8 signalling (Groves, Hammond and Hughes, 2005). Following formation, muscle fibres fuse and finalise the organisation of the sarcomeres (Kimmel et al., 1995). In adult fish, slow muscle fibres are mainly found in a wedge along the lateral side of the horizontal myoseptum, whereas the fast muscle fibres make up the majority of the myotome. Intermediate muscle fibres are found in between the slow and fast fibres (Stone Elworthy et al., 2008; Nord et al., 2014). There are two groups of muscle stem cells, one set is found in the external cell layer and is responsible for fibre formation at the external layer of the myotome. These muscle stem cells express $p a x 3, p a x 7$ and met and are active for fibre formation after

24 hpf (Hammond et al., 2007; Gurevich et al., 2016; Nguyen et al., 2017). The other set of muscle stem cells is found deeper within the myotome and proliferate at early stages before 24 hpf (Knappe, Zammit and Knight, 2015; Pipalia et al., 2016; Roy et al., 2017).

During the formation of myofibrils, the sequence of events in sarcomere assembly in the developing zebrafish embryo is less well understood. There have been several studies to model aspects of sarcomere assembly described earlier. The initial steps of myofibrillogenesis have been described as an anchoring step at the cell periphery, close to the myotendinous junction (MTJ) (Kelly and Zacks, 1969; Tokuyasu, 1989) where there are integrin adhesion sites to connect thin filaments to the MTJ (Pardo, Siliciano and Craig, 1983; Ervasti, 2003; Quach and Rando, 2006). Thin filaments and Z-disks form I-Z-I bodies accumulate and aggregate at the MTJ (Tokuyasu and Maher, 1987). In chapter 5, I describe the role of slow MyHC in myofibrillogenesis to identify the mechanism behind LDM and MSM in early muscle development (Sanger et al., 2009).

Figure 1.11. Muscle composition of zebrafish larvae
A) Schematic of 3 dpf zebrafish larvae from lateral perspective, anterior left and posterior to the right with dorsal top and ventral bottom. Zebrafish labelled with eye, heart, yolk and somite highlighted in red. B) Schematic of zebrafish somite showing superficial slow fibres (left) where they are mono nucleated and arranged in parallel in a horizonal appearance when viewed from lateral perspective. Fast fibres (right) are multinucleated, are found deeper than slow fibres and appear at an angle when viewed laterally. At the centre line of the somite is the horizontal myoseptum where the slow muscle precursors are found. C) Cross section (YZ angle) of zebrafish trunk show fast and slow cell populations at their locations. Slow fibres shown at the superficial layer and fast fibres seen in the deeper layers. On the external cell layer (ECL) muscle stem cells can be observed. Another set of muscle stem cells can be observed in the deeper layers, between the fast fibres. Nt , neural tube, nc , notochord.

1.6. Summary

The two congenital myopathies that I have focused on in the present work, Laing Distal Myopathy (LDM) and Myosin Storage Myopathy (MSM) are due to sarcomeric gene mutations in MYH7 (Lamont et al., 2014; Parker and Peckham, 2020). Although there are currently no curative medicines for MYH7related congenital myopathies and available treatments simply target the various symptoms (Myosin storage myopathy, 2016; Topaloglu, 2020). The aim of this thesis was to study the potential underlying molecular and cellular mechanisms leading to LDM and MSM by identifying primary biophysical defects in human fibres obtained from affected patients and developing zebrafish models that investigated developmental defects in the quest for treatment design for MYH7-related diseases. In chapter 3, I investigate the primary biophysical defects in the presence of human MYH7 mutations to assess whether there was a change in myosin filament length or a change in myosin head positioning in the presence of defective myosin molecules. My main findings were the following: 1) There is no overall alteration in sarcomere organisation in the presence of defective myosin molecules. 2) Mutations affecting the MYH7 MyBP-C binding domain destabilise the SRX state.

In chapter 4, I identify the fish equivalent genes that can be accurately described the orthologous genes to human MYH7 to target for the generation of an accurate disease model in the future. In chapter 5, I generate smyhc1 knockout models using CRISPR/Cas9 genome editing to understand the role of zebrafish smyhc1 in sarcomere assembly. My main findings were the following: 1) Zebrafish genes smyhc1-5, myh7 and myh7l are orthologous to mammalian MYH7. 2) Loss of smyhc1 in zebrafish results in defective sarcomere organisation at the early stages of development, indicating the role of smyhc1 in sarcomere assembly to elongate the myofiber. 3) Transitional role of MYH7 from early developmental stages to adulthood remains in question. Overall, current data give early insight into the mechanism for the role of slow myosin in sarcomere assembly. Work ongoing to generate large deletion of smyhc locus to understand the role of slow MyHC in sarcomere assembly during early developmental stages through to adulthood.

Chapter 2

Materials and Methods

2.1. Human Muscle Biopsy Samples

All the human muscle biopsy specimens have been taken from various European clinical laboratories.
The use of these samples has been ethically approved (ethics approval REC 13/NE/0373)
Table 2.1. List of human samples from healthy controls and patients with disease mutations in MYH7.
The mutation map of these patients is presented in Fig.2.1.

Patient	Mutation	Gender	Age	Disease
C1	None	Male	55	-
C2	None	Female	25	-
C3	None	Female	63	-
C4	None	Male	37	-
C5	None	Female	44	-
P1	p.STOP1936Leu	Male	57	Myosin storage myopathy
P2	p.Thr304Ser	Female	60	Dilated cardiomyopathy and Distal myopathy
P3	p.Arg1845Trp	Male	55	Myosin storage myopathy
P4	p.Leu594Met	Female	30	Distal myopathy
P5	p.Arg453His	Female	47	Hypertrophic cardiomyopathy and Distal myopathy
P6	p.Met982Thr	Male	38	Myosin storage myopathy
P7	p.Ala1882Glu	Female	27	Laing distal myopathy
P8	p.Ala1440del	Female	15	Distal myopathy
P9	p.Glu1508del	Female	68	Laing distal myopathy
P10	p.Ala1603Pro	Female	44	Distal myopathy
P11	p.Glu1610Lys	Female	44	Hypertrophic cardiomyopathy, nemaline myopathy and distal myopathy
P12	p.Lys1617del	Female	22	Laing distal myopathy
P13	p.Ala1636Pro	Male	45	Laing distal myopathy
P14	p.Lys1729del	Female	53	Laing distal myopathy
P15	p.Leu1492Pro	Female	16	Laing distal myopathy
P16	p.Leu1467Pro	Female	35	Distal myopathy
P17	p.Thr441Met	Male	10	Distal myopathy
P18	p.Glu1669del	Female	49	Distal myopathy
P19	p.E1507del	Male	26	Distal myopathy

A

B Mutations from human muscle biopsy samples

Figure 2.1 Map of MYH7 protein and plotted mutations of patient samples in Table 2.1

Table 2.2. Primary antibodies

Primary Antibody/Sma II molecule		Type	Raised in	Raised against	Dilution	Method Used
MF20	All MyHC	IgG2b	Mouse	Chicken	$1: 10$	2.2 .1.
A4.951	Slow MyHC	IgG	Mouse	Human	$1: 50$	2.2 .1.
S58	Slow MyHC	IgA	Mouse	Chicken	$1: 5$	2.8 .2.
F59	Slow MyHC	IgG	Mouse	Chicken	$1: 5$	2.8 .2.
BA-D5	Slow MyHC	IgG2b	Mouse	Rat	$1: 5$	2.8 .2.
$\alpha-a c t i n i n ~$	$\alpha-a c t i n i n ~$	IgG1	Mouse		$1: 500$	2.8 .2.
F310	Fast MyHC	IgG1	Mouse	Chicken	$1: 5$	2.8 .2.
A4.1025	All MyHC	IgG2a	Mouse	Human	$1: 10$	2.8 .2.
MF20	All MyHC	IgG2b	Mouse	Chicken	$1: 500$	2.8 .2.
Phalloidin488	F-actin				$1: 50$	2.8 .2.
Phalloidin405	F-actin				$1: 50$	2.8 .2.

Table 2.3. Secondary antibodies
Secondary Target Dilution

Antibody		
IgG-Alexa488	Goat anti-mouse	$1: 1000$
IgG-Alexa555	Goat anti-mouse	$1: 1000$
IgG1-Alexa555	Goat anti-mouse	$1: 1000$
IgG1-Alexa488	Goat anti-mouse	$1: 1000$
IgG2a-Alexa488	Goat anti-mouse	$1: 1000$
IgG2a-Alexa594	Goat anti-mouse	$1: 1000$
IgG2b-Alexa488	Goat anti-mouse	$1: 1000$
IgG2b-Alexa594	Goat anti-mouse	$1: 1000$
IgA-FITC	Goat anti-mouse	$1: 500$

2.2. Human Biopsy Assays

2.2.1. Measurement of myosin filament length

Muscles were treated with skinning solution ($100 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \mathrm{MgCl}$, 5 mM EGTA, 10 mM Imidazole, 50% Glycerol, pH 7.5) at $4^{\circ} \mathrm{C}$ for 24 hours and then transferred to $-20^{\circ} \mathrm{C}$. Preparations of single muscle fibres were made by dissecting skinned muscle bundles. Muscle fibres from human biopsy samples were prepared and mounted onto microscope slides at room temperature (Fig 2.2). Each muscle fibre was clamped to half-split copper meshes designed for electron microscopy (SPI G100 2010C-XA, width, 3 mm). Prepared slides were then used for antibody staining (Hooijman, Stewart and Cooke, 2011).

Antibody staining

Fibres were mounted on microscope slides with clamps and stretched between two clamps. Fibres were then fixed with 4% PFA for 15 min at room temperature. After fixing, fibres were washed 3×5 min in PBS and then permeabilized using 0.1% Triton (in PBS) for 10 min at room temperature. After permeabilization, fibres were washed $3 \times 5 \mathrm{~min}$ in PBS and then blocked in 10% goat serum in PBS for 1 h at room temperature. 10% goat serum was then replaced with the primary antibody in their working dilutions (see Table 2.2) and incubated at $4{ }^{\circ} \mathrm{C}$ overnight. Fibres were washed $3 \times 5 \mathrm{~min}$ in PBS followed by incubation with secondary antibody in their working dilutions (see Table 2.3) at room temperature for 3 h . Fibres were washed 3×5 min PBS to remove excess antibody and then immersed in Fluoromount. Coverslip was placed onto slide without disturbing the position of the fibre and sealed with nail varnish. Confocal images were taken using Cell Voyager at 60x magnification.

Image analysis

Images were analysed using the DDecon plugin for ImageJ, a program that background corrects images by deconvolution and computes filament lengths with a precision of $10-20 \mathrm{~nm}$ by measurements of peak positions of fluorescently labelled filaments (Fig 2.2). Thick filament measurements were made by analysing observed scan intensities and modelled intensities (Gokhin et al., 2012).

Statistical Analysis of Myosin Filament Length

If there were a small change detected from my samples, an estimated expectation of change was 20% with an effect size of 1.5 . With $\alpha=0.05$ and power $(1-\beta)=0.80$, the minimum required sample size was 7 fibres per group (G-power analysis). Measurements taken from one fibre were pooled and averaged by calculating mean value to plot one point on the graph. All statistical computations were performed using Prism 8 (GraphPad). One-way ANOVA was used to identify differences when
comparing fibres between two individuals (controls or patients). Mean filament length measurements from each fibre from each patient were all pooled together and treated as a separate group for comparison to controls as each mutation was different from one patient to another. All data were expressed as mean \pm standard deviation (SD).

Figure 2.2. Methods for thick filament measurements.

1. Isolating muscle fibres from controls and patients in table 2.1. 2. Nine muscle fibres per human sample were mounted onto microscope slides. 3. Antibody staining for either a) fast and slow myosin (MF20) or b) staining for slow specific (A4.951) and actin (phalloidin) were made using antibodies in Table 2.2. 4. Images were taken on using Cell Voyager at 60x magnification

2.2.2. Identifying proportion of SRX and DRX state in muscle fibres

SRX experiments

Fibres were prepared as Methods 2.2.1 and the experiment was followed as in Toepfer et al., 2018. Fibres were dissected and mounted onto glass coverslip as in methods 2.2.1. The flow chamber was made by using three layers of double-sided sticky tape, fibre side up and a coverslip was placed on top. Before imaging, fibres were washed with 100 uL Rigor buffer (120 mM K acetate, 5 mM Mg acetate, $2.5 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}, 2.5 \mathrm{mM} \mathrm{KH}{ }_{2} \mathrm{PO}_{4}, 50 \mathrm{mM}$ MOPS, 5 mM , EGTA, 1 mM TCEP, pH 6.8) 5 times over 5 mins to remove ATP, BDM and glycerol. Fibres were then incubated with 100 uL mATP buffer (Rigor Buffer +250 uM Mant-ATP, pH 6.8) for 5 min . Fibres were imaged at $25^{\circ} \mathrm{C}$ using a Zeiss epifluorescence microscope (20x/0.8 Plan Apo objective). Fibre was located using brightfield light to avoid photobleaching of mATP. Fibres were excited at 395 nm (DAPI setting) at 20\% laser power, 20\% shift and exposure time of 20 ms . At time $0 \mathrm{~s}, 2$ images were taken to set the start point of intensity at 100%. mATP buffer was flushed with ATP buffer (Rigor Buffer +4 mM ATP, pH 6.8) and fluorescence
decay images were taken using AxioCam Cm1 camera at 5 s intervals for 90 s , then every 10 s until 180 s.

SRX analysis

Images taken from SRX experiments were analysed using ImageJ to record fluorescence intensities (File > Import > Image Sequence > Select the images > OK). A square on the image of the fibre was drawn and the fluorescence intensity of the square was measured (M key to measuring on keyboard). Another square was drawn on the background to measure background fluorescence. To normalise the background, mean background fluorescence was subtracted from the average fibre fluorescence intensity for each image. Then each point was divided by the fluorescence intensity of the final mATP before ATP flush ($\mathrm{t}=0$). Normalised values were exported to Prism GraphPad Software. Decay in fluorescence was then fit into a two-state exponential (Analyse > Nonlinear regression (curve fit) > Exponential > Two-Phase Decay > 95\% confidence interval).
$\mathrm{I}=1-\mathrm{P}_{1}\left(1-\exp \left(-\frac{t}{T 1}\right)\right)-\mathrm{P}_{2}\left(1-\exp \left(-\frac{t}{T 2}\right)\right)$

I = fluorescence intensity
P1 = initial proportion of fluorescence for the fast states
$\mathrm{P} 2=$ initial proportion of fluorescence for the slow states
T1 = time constants for the lifetime of fast state
T2 = time constants for the lifetime of the slow state

P1 and T1 represent fast decay in the DRX state and P2 and T2 represent slow decay in the SRX state. This assay shows an approximate proportion of 40\% of myosin in the DRX state and 60\% of myosin in the SRX state (Alamo et al., 2017; Christopher N. Toepfer et al., 2019).

Statistical Analysis for identifying proportion of SRX and DRX myosin states

If there were a small change detected from my samples, there was an estimated expected change of 20% with an effect size of an effect size of 1.5 . With $\alpha=0.05$ and power $(1-\beta)=0.80$, the minimum required sample size is then 7 fibres per group (G-power analysis) to identify such change. Measurements taken from one fibre were pooled and averaged by calculating mean value to plot one point on the graph. All statistical computations were performed using Prism 8 (GraphPad). One-way ANOVA was used to identify differences when comparing fibres between two individuals (controls or patients). Mean filament length measurements from each fibre from each patient were all pooled
together and treated as a separate group for comparison to controls as each mutation was different from one patient to another. All data were expressed as mean \pm standard deviation (SD).

2.3. Zebrafish maintenance

Zebrafish (Danio rerio) were obtained from the Zebrafish Facility at King's College London, Guy's Campus. Wildtype embryos ($A B$ background) were obtained from the mass embryos production (MEPs) facility. All genetically altered zebrafish were created on AB and reared on a 14/10 hr light/dark cycle at $28.5^{\circ} \mathrm{C}, 22 \%$ humidity. To collect embryos for experiments, males and females were initially paired in 1-litre breeding tanks and separated with barriers during the evening; this allows the mating pairs to acclimate to each other overnight. At the onset of light exposure, the following morning, the barriers were removed to enable breeding behaviour. Upon spawning, all embryos were collected using a mesh tea strainer and incubated at $28.5^{\circ} \mathrm{C}$ in petri dishes containing 1% methyl blue system water to prevent possible bacterial growth. Debris in dishes was removed using a 3 mL Pasteur pipette (Kimmel et al., 1995). All experiments were performed in accordance with guidelines and regulations of the UK Animals (Scientific Procedures) Act 1986.

2.4. Generating zebrafish KO lines using CRISPR/Cas9 system

Zebrafish have been used as a classic model organism for their characteristics of fast growth, transparent embryos, and small size. Zebrafish embryos are fertilised after laying eggs, enabling genetic manipulation at the one-cell stage using morpholino or CRISPR/Cas9 (Gutiérrez-Lovera et al., 2017). Genome editing using CRISPR/Cas9 has produced many genetic manipulations in zebrafish. There have been improvements by optimising the Cas9 protein, which was used in creating mutant zebrafish lines in this project (Hwang et al., 2013). Embryos can be collected after fertilisation and can be used to study the early stages of development as they are not developed in utero. Internal structures can be visualised as embryos are transparent, therefore, labelled antibodies or RNA probes could be seen easily. (Gutiérrez-Lovera et al., 2017). Thus, utilising zebrafish as a model organism to create disease models can be used to characterise the early developmental defects upon mutation.

2.4.1. CRISPR/Cas9 system

Gene editing tools have been developed to target specific sites in the genomes of many organisms such as mice, drosophila and zebrafish (Ma and Liu, 2015). Traditionally, genome editing tools such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) were used to target genes. These tools require a string of DNA binding proteins that bind to the target gene, this string of proteins is attached with an endonuclease domain whereby the two domains come in close
proximity to then enable the endonuclease to create a double-strand DNA break (DSB) at the target site. CRISPR/Cas9 genome editing is made by creating a DSB by Cas9 at the target gene site (Fig 2.3). CRISPR-Cas was originally discovered in a microbial adaptive immune system utilising 20 nucleotide RNA guide sequences (crRNA) and a guide RNA (tracrRNA) that enables the cleaving of foreign genetic material from invading viruses. The target DNA should contain a PAM sequence (for Cas9 it is NGG). As a genome editing tool, the crRNA and tracrRNA can be fused together to create a single-guide RNA (sgRNA). This sgRNA can then bind to Cas9 to direct the binging towards the target sequence by designing the 20 nucleotide sequence within the sgRNA. Upon binding of Cas9-sgRNA to target DNA, the Cas9 protein undergoes a conformational change and induces a DSB ~3 bp upstream of the PAM sequence. After a DSB is made, pathways for DNA damage repair are activated (Ran et al., 2013).

There are two different pathways: non-homologous end joining (NHEJ) or homologous recombination (HR) (Ran et al., 2013). NHEJ involves Ku proteins to be recruited at the free ends of DSB DNA to enable the recruitment of DNA-PKcs. XRCC4 and Ligase IV are recruited to re-ligate the DNA ends. NHEJ is an error-prone mechanism for DNA repair whereby INDEL mutations are likely to occur (Chang et al., 2017). The alternative repair mechanism is HR where there is a requirement for a template DNA strand from another chromosome. This process ensures that the DNA repair is made without mistakes at the site of damage. The initial steps in HR consist of pre-synapsis whereby double-strand break is detected and resection occurs at the 5' end to generate 3^{\prime} single-stranded DNA ends. Rad51 and Rad52 are recruited at 3^{\prime} single-stranded tails which then lead to the homology search and annealing of the complementary template DNA strand from another chromosome. This forms a double Holliday junction between damaged DNA and the complementary template DNA. Template DNA is then used as a reference for repairing damaged DNA. (Jasin and Rothstein, 2013). To make specific mutations, an introduction of an oligonucleotide containing desired could be used and by HR, insert into the genome.

Figure 2.3. CRISPR/Cas9 mechanism to create site-specific mutations.
Cas9 protein from S. pyogenes (yellow) binds to the gRNA scaffold (red) and the sgRNA-Cas9 complex binds to the target sequence (blue). Cas9 creates double-strand breaks (red triangles) 3bp upstream of the 5’NGG PAM sequence. Image adapted from Ran et al., 2013.

2.4.2. Identifying potential target sites for CRISPR gene editing

To identify potential target sites for CRISPR knockout, CRISPR Direct (http://crispr.dbcls.jp/) was used to identify targets with information on sequence specificity to minimise the chances of off-target mutations. Highly specific gRNA was selected based upon 20 base pair target sequence and also 12 mer+PAM site which bind 12 bases adjacent to PAM sequence. The whole cDNA sequence of smyhc1 was screened for potential target sites (Fig 2.4). Oligonucleotides were ordered for the insertion into expression vector pDR274 (Table 2.4).

CRISPR direct - Rational design of CRISPR/Cas target.

			retrieve sequence	
or Paste a nucleotide sequence: ?				
	AAGAGCTTCCA agTacaAGTITA ACACCAGCTCTG GIGcctgaccct даGАСТСТТАС TICCTGCACGA GICACIGICA. CCICCTCACAT CMACTGGIGC atcagamatgac gamactiacct СаGдаGдадсСС	GCaga_agactangGg GGTATCGIGATTITCC cagttacaaggtaca GagGTIGAGAGICT TCA CCIGCTGIGCIGITT Clatchagrgcig GgamacactGGaม. aAgadgGGTaCTCTG a actcctcccgattce GRGCTACTGGAGATGI	gagarctoctgancctcacaancactgcat crgatahgTanaicactitagTgTTCTTAA GACAMGGAGCGTCTGGAGGCCCRAACTCGT gaggatcararcatccangctancectect GICACTITATCAGCTCAAAGCTGMGAGAGAC ITGCTCATCACCAMCAACCCCTATGATTAC ifgctcalacomacaccectatgattac	
or upload sequence file: (? Choose File No file chosen				
PAM sequence requirement:	NGG	(e.g. NGG,	NRG) ©	

Specificity check: Zebrafish (Danio rerio) genome, GRCz11/danRer11 (May, 2017)

design

Figure 2.4. Identifying specific target sites in smyhc1 using CRISPR Direct.
Interface of CrisprDirect (http://crispr.dbcls.jp/). The DNA sequence of smyhc1 was entered into the text box. Zebrafish (Danio rerio) genome, GRCz11/DanRer11 was selected for the specificity check so possible off-targets can be analysed to ensure sequence comparison was using the most updated zebrafish gene database available.

Table 2.4. smyhc1 CRISPR/Cas9 target sites

$g R N A$ name	Gene	Exon	$\begin{array}{lll}\text { Target } & \text { Sequence } & + \text { PAM } \\ \text { (NGG or NG } & \text { using }\end{array}$ Cas9BE3)	Oligonucleotides for insertion into pDR274
gRNA smyhc1 KO1	smyhc1	2	CATGTCAAAAATACGAGTTTGGG	
$\begin{array}{r} g R N A \\ \text { smyhc1 } \\ \text { KO2 } \end{array}$	smyhc1	4	ACCACAGAGGAATCGTACACTGG	```Oligo 1: 5'- TAGGCACAGAGGAATCGTACAC -3' Oligo 2: 3'- GTGTCTCCTTAGCATGTGCAAA - 5'```
$\begin{array}{r} g R N A \\ E 1508 d \\ \text { el } \end{array}$	smyhc1	29	CAGAGGAAATCTCTGACCTTACT	```Oligo 1: 5'- TAGGTAAGGTCAGAGATTTCCT -3' Oligo 2: 3'- ATTCCAGTCTCTAAAGGACAAA -5```
$\begin{array}{r} g R N A \\ \text { K1617d } \\ \text { el } \end{array}$	smyhc1	30	TCTCAGACTGAAGAAGAAGATGG	```Oligo 1: 5'- TAGGTCAGACTGAAGAAGAAGA -3' Oligo 2: 3'- AGTCTGACTTCTTCTTCTCAAA -5```
$\begin{array}{r} g R N A \\ \text { K1729d } \\ \text { el } \end{array}$	smyhc1	32	GCTGAATCAGAAGAAGAAGCTGG	$\begin{aligned} & \text { Oligo 1: 5' } \begin{array}{l} \text { TAGGTGAATCAGAAGAAGAAGC -3' } \\ \text { Oligo 2: } 3^{\prime}-\quad \text { ACTTAGTCTTCTTCTTCGCAAA } \end{array} \underline{\text {-5 }} \end{aligned}$
$\begin{array}{r} g R N A \\ E 1856 K \end{array}$	smyhc1	34	CTGAAGAAGACCGTAAGAATCTG	```Oligo 1: 5'- TAGGGAGGAAGACCGTAAGAAT -3' Oligo 2: 3'- CTCCTTCTGGCATTCTTACAAA -5```

2.4.3. gRNA synthesis for smyhc1 KO

To synthesise gRNA plasmid DR274 was used, this plasmid contains a T7 promotor for gRNA synthesis and a gRNA scaffold next to the target sequence (Fig 2.5). To use this plasmid, pDR274 is digested with Bsal restriction enzyme ($37^{\circ} \mathrm{C}, 24 \mathrm{~h}$; reaction mix: $1 \mu \mathrm{~g}$ of pDR247 vector, $5 \mu \mathrm{~L}$ of Bsal-HF enzyme, $5 \mu \mathrm{~L}$ of 10X NEB 4 buffer, ddH2O to $50 \mu \mathrm{l}$) and purified using Qiagen's QIAquick PCR Purification kit (Qiagen, \#28106) and can be stored at $-20^{\circ} \mathrm{C}$. Bsal cuts the pDR274 vector creating 'sticky ends' for the insertion of an oligonucleotide (oligo) sequence. The target sequence is flanked with sticky ends 5^{\prime} - TAGG on oligo 1 and 5' - CAAA on oligo 2 to enable insertion into Bsal digested pDR274. Once the target sequence is ligated into the vector, the plasmid may be used to synthesise gRNA using T7 RiboMAX Large Scale RNA Production kit. Oligonucleotides of the target sequence were ordered from IDT Technologies (Table 2.4). The separate oligos were annealed together using 10x annealing buffer (0.4 M Tris- $\mathrm{HCl}, 0.2 \mathrm{M} \mathrm{MgCl}_{2}, 0.1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA). Oligonucleotide annealing reaction mix (5 uL Annealing buffer 10x, 1 uL $100 \mu \mathrm{M}$ CRISPR oligo 1, 1 uL $100 \mu \mathrm{M}$ CRISPR oligo 2, $43 \mathrm{uL} \mathrm{H}_{2} \mathrm{O}$) is heated to $95^{\circ} \mathrm{C}$ for 5 min , then cools $-1^{\circ} \mathrm{C}$ each 30 s down to $25^{\circ} \mathrm{C}$ and then incubated at $4^{\circ} \mathrm{C}$. Annealed oligos can be stored at $-20^{\circ} \mathrm{C}$. Annealed oligos are then ligated into digested pDR274 (2h, RT; Reaction mix: $1 \mu \mathrm{~L}$ Digested pDR274 [5 $\mu \mathrm{g}$], $3 \mu \mathrm{~L}$ annealed CRISPR oligos, $1 \mu \mathrm{~L}$ T4 DNA ligase, $5 \mu \mathrm{~L} 2 \mathrm{X}$ ligase buffer).

After ligation, $5 \mu \mathrm{~L}$ of ligation mix was used to transform $50 \mu \mathrm{~L}$ of NEB 5- α competent E. coli. Firstly, NEB 5-alpha competent E. coli were taken from $-80{ }^{\circ} \mathrm{C}$ and thawed on ice. $5 \mu \mathrm{~L}$ of plasmid (pDR274+oligo ligated) was added to $50 \mu \mathrm{~L}$ E. coli and gently agitated. Cells were placed on ice for 30 min , then heat shocked at $42^{\circ} \mathrm{C}$ for 45 s and then replaced on ice for $5 \mathrm{~min} .500 \mu \mathrm{~L}$ of SOC was added to cells aseptically and incubated at $37^{\circ} \mathrm{C}$ in an orbital shaker for $1 \mathrm{~h} .100 \mu \mathrm{~L}$ and $200 \mu \mathrm{~L}$ of cells were aseptically plated to agar plates containing $30 \mu \mathrm{~g} / \mu \mathrm{L}$ kanamycin and incubated at $37^{\circ} \mathrm{C}$ overnight. 4 single colonies were inoculated in 10 mL of Luria broth (LB) containing $30 \mu \mathrm{~g} / \mu \mathrm{L}$ kanamycin (4 colonies per gRNA were inoculated) and incubated overnight at $37^{\circ} \mathrm{C}$ in an orbital shaker at 225 rpm . Cells were pelleted using the centrifuge at $13,000 \mathrm{xg}$ for 10 min . The supernatant was removed, and the plasmid was isolated and purified using Qiagen Miniprep Kit. Minipreps were stored at $-20^{\circ} \mathrm{C}$. Insertions of oligos were checked by sequencing using M13 (-21) Forward Primer 5' -TGTAAAACGACGGCCAGT3^{\prime}.

Figure 2.5. Plasmid DR274 to synthesise single guide RNA for CRISPR/Cas9 systems.
A) pDR274 contains a T7 promoter for in vitro RNA production and a kanamycin resistance gene for the selection of positive clones. B) pDR274 was digested with Bsal (shown in red) for insertion of the target sequence into the plasmid. Before sgRNA synthesis, the plasmid was cut with Dral to enable 285 bp sgRNA to be synthesised at the T7 promotor and end after the gRNA scaffold sequence. The plasmid was obtained from Addgene.
pDR274 containing target sequence was digested using restriction enzyme Dral (Reaction mix: $5 \mu \mathrm{~g}$ pDR274+target sequence, $1 \mu \mathrm{~L}$ Dral RE, $2 \mu \mathrm{~L}$ 10x Tango Buffer and add ddH $\mathrm{H}_{2} \mathrm{O}$ to a final volume of 20 $\mu \mathrm{L}$) Reaction mix was incubated at $37^{\circ} \mathrm{C}$ for 24 hrs . Linearized plasmid was then isolated and purified using a Qiagen purification kit and eluted at $25 \mu \mathrm{~L}$. Concentration was measured using nanodrop.

Linearized pDR274+target sequence was used as the template DNA to produce gRNA with T7 RiboMAX Large Scale RNA Production kit (Promega). All reagents were thawed on ice and RNA synthesis was performed as followed: 0.5μ g template DNA, $8 \mu \mathrm{~L} 5 \mathrm{X}$ T7 transcription buffer, $12 \mu \mathrm{~L} 25 \mathrm{mM}$ rNTPs mix, $4 \mu \mathrm{~L}$ T7 enzyme mix and $\mathrm{ddH}_{2} \mathrm{O}$ up to $40 \mu \mathrm{~L}$. The reaction mix was incubated at $37^{\circ} \mathrm{C}$ overnight. DNA template was removed by digesting with $1 \mu \mathrm{~L}$ QR DNase for $30 \mathrm{~min} .2 \mu \mathrm{~L}$ sample of reaction was taken to run on 1% agarose gel.

RNA was purified using the phenol/chloroform/IAA method. The reaction was scaled up using water to at least $100 \mu \mathrm{~L}$ before starting. $100 \mu \mathrm{~L}$ phenol/chloroform/IAA was added to the reaction and vortexed followed by centrifugation at $13,000 \mathrm{xg}$ for 2 min . The upper phase is taken into a new tube. $10 \mu \mathrm{~L} 0.1$ Volume of 3 M Sodium acetate pH 5.2 and 1 volume of Isopropanol was added to the mix and placed on ice for 5 min . The reaction was centrifuged at $13,000 \mathrm{xg}$ for 10 min . The supernatant was poured off, leaving the pellet in the tube. Pellet was washed with 1 mL of 70% ethanol and then left to air dry for 5 min , then the pellet was resuspended in nuclease-free water ($25 \mu \mathrm{~L}$) and placed at $55^{\circ} \mathrm{C}$ for $5 \mathrm{~min} .2 \mu \mathrm{~L}$ sample was taken and run on 1% agarose gel next to the $2 \mu \mathrm{~L}$ taken at the end of the sgRNA synthesis reaction. RNA concentration was measured using Qbit. Guide RNA was stored at $-80^{\circ} \mathrm{C}$ in $5 \mu \mathrm{~L}$ aliquots.

2.4.4. CRISPR injections - smyhc1

Injection of genome editing tools at single-cell embryos increases the likelihood of injection mixture entering every cell. Injection needles were made using heat-treated capillary tubes that were pulled to form fine needles. Injection needles were attached to a microinjector to inject 1 nL of CRISPR injection mixture into each embryo. An injection mixture was prepared for each mutation type in Table 2.5. Embryos were provided from paired fish with known genotypes for each target gene. Male and female fish were paired the evening before and placed in 1 L breeding tanks with a separating barrier between the paired fish. In the morning of injections, upon light stimulation barriers were removed to enable breeding behaviour. Embryos were collected using a tea strainer and injected. Embryos were screened for 3 h and 24 h after injection to check the success of injections by analysing the fluorescence of rhodamine dextran (Fig 2.6).

Table 2.5. Injection mixtures prepared for smyhc1 KO or HR

Mutation	Reagents	Volume ($\mu \mathrm{L}$)	Final concentration
Knock Out 1 (KO1)	gRNA KO1 (87.7ng/ $\mu \mathrm{L}$) Cas9 Protein ($3220 \mathrm{ng} / \mu \mathrm{L}$) 5\% Rhodamine dextran ddH20	$\begin{array}{\|l\|} \hline 4 \\ 0.5 \\ 0.5 \\ 0 \end{array}$	~80pg per embryo ~300pg per embryo
Knock Out 2 (KO2)	gRNA KO1 ($87.7 \mathrm{ng} / \mu \mathrm{L}$) Cas9 Protein ($3220 \mathrm{ng} / \mu \mathrm{L}$) 5\% Rhodamine dextran ddH20	$\begin{aligned} & 2 \\ & 0.5 \\ & 0.5 \\ & 2 \end{aligned}$	~40pg per embryo ~300pg per embryo
K1617del	gRNA K1617del ($87.8 \mathrm{ng} / \mu \mathrm{L}$) Cas9 Protein ($3220 \mathrm{ng} / \mu \mathrm{L}$) ssoligo K1617del ($20 \mu \mathrm{M}$) 5\% Rhodamine dextran ddH20	$\begin{aligned} & 1 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 2.5 \end{aligned}$	~30pg per embryo ~300pg per embryo
K1729del	gRNA K1617del ($53 \mathrm{ng} / \mu \mathrm{L}$) Cas9 Protein ($3220 \mathrm{ng} / \mu \mathrm{L}$) ssoligo K1729del ($20 \mu \mathrm{M}$) 5\% Rhodamine dextran ddH20	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 3 \end{aligned}$	~12.5pg per embryo ~300pg per embryo
E1856K	gRNA K1617del (132 ng/ $\mu \mathrm{L}$) Cas9 Protein ($3220 \mathrm{ng} / \mu \mathrm{L}$) ssoligo E1856K ($20 \mu \mathrm{M}$) 5\% Rhodamine dextran ddH20	$\begin{aligned} & 2 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 1.5 \end{aligned}$	~80pg per embryo ~300pg per embryo

Figure 2.6. Analysis of injected embryos at $\mathbf{2 4}$ hours post-injection.
Red fluorescence indicates successful injection whilst lack of fluorescence in embryos shows unsuccessful injections.

2.5. Generating smyhc2-5 KO mutants using Alt-R CRISPR Cas9 system

2.5.1. smyhc2-5 deletion gRNA design

The whole cDNA sequence of smyhc2 and smyhc5 were screened for potential target sites using CRISPRdirect. Target sequences for smyhc2 and smyhc5 Table 2.6 were used to generate the deletion of smyhc2-5. Alt-R CRISPR-Cas9 crRNA with specific target sequences in Table 2.7 were ordered from Integrated DNA Technologies (https://eu.idtdna.com/pages/products/crispr-genome-editing/alt-r-crispr-cas9-system). Alt-R crRNAs and tracrRNA were dissolved to $100 \mu \mathrm{~L}$ with ddH ${ }_{2}$ O. crRNA:tracrRNA duplex were made ($95^{\circ} \mathrm{C}$, 5 min , Reaction mix: $1 \mu \mathrm{~L}$ crRNA, $1 \mu \mathrm{~L}$ tracrRNA and $3 \mu \mathrm{~L}$ Duplex buffer) to make a final concentration of $20 \mu \mathrm{M}$. Following heat treatment, crRNA:tracrRNA duplex was cooled to room temperature for a further 5 min . AltR CRISPR-Cas9 mix was assembled as described in Table 2.7 and heated to $37{ }^{\circ} \mathrm{C}$ for 10 min and cooled to room temperature for 5 min before injection. Injections of 1 nL were made at the one-cell stage and were reviewed at 24 hpf for successful injections with the presence of red fluorescence with rhodamine dextran as shown in Figure 2.6.

Table 2.6. smyhc2-5 CRISPR/Cas9 target sites

$c r R N A$ description	Gene	Exon	Target Sequence +PAM	Strand
smyhc2 KO1	Smyhc2	3	Acaatattgaacgcttattcagg	+
smyhc2 KO2	Smyhc2	5	GAGGTGGTCGTTGCCTACAGAGG	+
smyhc5 KO1	Smyhc5	1	GTATCTCAGGAAGTCGGACCGGG	+
smyhc5 KO2	Smyhc5	36	GCAGCTTACGGAACTTGGTCAGG	-

Table 2.7. Injection mixtures prepared for smyhc2-5 KO
[NEB Cas9 EnGen ${ }^{\circ}$ Spy Cas9 NLS, $20 \mu \mathrm{M}$ is equal to $3.22 \mathrm{mg} / \mathrm{ml}$ ($3220 \mathrm{ng} / \mathrm{ul}$).

Mutation	Reagents	Volume ($\mu \mathrm{L}$)
CRISPR A smyhc2 ex5 to smyhc5 ex1	crRNA+tracrRNA mix - smyhc2 KO2 ($20 \mu \mathrm{M}$)	1
	crRNA+tracrRNA mix - smyhc5 KO1 (20 $\mu \mathrm{M}$)	1
	EnGen-Cas9 buffer $\times 10$	0.5
	EnGen Cas9 protein (3220ng/ μ)	0.5
	5\% Rhodamine Dextran (Invitrogen, \#D1816)	0.5
	dH2O	0.5
		Total: 5
CRISPR A smyhc2 ex5 to smyhc5 ex36	crRNA+tracrRNA mix - smyhc2 exon 5 KO2 (20 $\mu \mathrm{M}$)	1
	crRNA+tracrRNA mix - smyhc5 exon $36 \mathrm{KO2}(20 \mu \mathrm{M})$	1
	EnGen-Cas9 bufferx10	0.5
	EnGen Cas9 protein ($3220 \mathrm{ng} / \mu \mathrm{\mu l}$)	0.5
	5\% Rhodamine Dextran	0.5
	dH2O	0.5
		Total: 5

2.6. Genotyping

2.6.1. DNA Extraction using alkaline lysis method

DNA can be extracted from embryos or fin clips from adult fish using an alkaline lysis method.
Single or pooled embryos or fin-clip $30 \mu \mathrm{~L}$ alkaline lysis buffer ($25 \mathrm{mM} \mathrm{NaOH}, 0.2 \mathrm{mM}$ EDTA) and heated to $95^{\circ} \mathrm{C}$ for 1 h . The reaction was stopped by adding $30 \mu \mathrm{l}$ of neutralisation buffer (55 mM Tris$\mathrm{HCl}, \mathrm{pH} 8)$. Samples were spun using microfuge and 1-2 $\mu \mathrm{L}$ were used for PCR or HRM. DNA solutions are stored at $4^{\circ} \mathrm{C}$.

2.6.2. Primer design

Primers were designed for both HRM and sequencing using Primer3 Plus (http://primer3plus.com/cgibin/dev/primer3plus.cgi) where the size of fragment and annealing temperature can be adjusted. Primers were designed to ideally be 20-22 nucleotides long and with an annealing temperature of less than $60^{\circ} \mathrm{C}$. known single nucleotide polymorphisms were considered and avoided to prevent primers from not annealing and to ensure HRM and PCR results are generated. Primers were designed for CRISPR mutations were targeting (Table 2.8). HRM PCR amplification of 100 bp fragment containing CRISPR target site. Sequencing primers were designed to give approximately 500 bp fragments that included the target site and both HRM primers. All primers are mapped onto smyhc1 in Appendix 2.1.

Table 2.8. Primer list for HRM and sequencing

Smyhc1-exon 2	Sequence
Forward HRM (amplicon size 107 bp)	5'-CGCAAGTCTGACAAGGAGC-3'
Reverse HRM	5'-GTGATGGAGGCTTTGACGTAC-3'
Forward Sequencing (amplicon size 603 bp)	5'-CCTGTGCTGTTCCTTTTCTCA-3'
Reverse Sequencing	5'-CCATGAGACTGTGTTGGCTG-3'
Smyhc1-exon 4	Sequence
Forward HRM (amplicon size 115 bp)	5'-TCTGTGTCACTGTCAACCCA-3'
Reverse HRM	5'-AGTTCTCACCTGACAGCAT-3'
Forward Sequencing (amplicon size 280 bp)	5'-TGAGTGATGAACGTTGAGCC-3'
Reverse Sequencing	5'-AAATGAGGGAAGTTTTGTGCAT-3'
Smyhc1 - exon 30	Sequence
Forward HRM (amplicon size 106 bp)	5'-GAATCAGAGACTCGCAGCAG-3'
Reverse HRM	5'-ATGCCTGCCTGTTAGCCTG-3'
Forward Sequencing (amplicon size 801 bp)	5'-GCAGAGATCCAGACAGCCTT-3'
Reverse Sequencing	5'-ACATGGACAGTGTTGACATTCA-3'
Smyhc1-exon 32	Sequence
Forward HRM (amplicon size 115 bp)	5'-TGAATGTCAACACTGTCCATGT-3'
Reverse HRM	5'-GCCTCCTCAACCTCAGTCTG-3'
Forward Sequencing (amplicon size 280 bp)	5'-TGACACACCTGTATTAGTAAACT-3'
Reverse Sequencing	5'-TTTCAGTAGCTTACCCTGGC-3'
Smyhc1 - exon 34	Sequence
Forward HRM (amplicon size 115 bp)	5' - ACACATACAGAAAACGATGAAGT-3'
Reverse HRM	5'-TTCAGCTGCAGTTTGTCCAC-3'
Forward Sequencing (amplicon size 450 bp)	5'-TCAGGCATTTTCTCTTCACACA-3'
Reverse Sequencing	5' -ACACAGGGACAAACAAAACATCA-3'
Smyhc2 - exon 5	
Forward HRM (amplicon size 173 bp)	5'-ACAATCAGGAGGTGGTCGTT-3'
Reverse HRM	5'-tgacgtgcceacaaaatcaa-3'
Forward Sequencing (amplicon size 800 bp)	5'-tcgtcatctcttccgcagAT-3'
Reverse Sequencing	5'-ttgacgtgcccacaaaatca-3'

2.6.3. High-Resolution Melt Analysis

HRM PCR analysis is a method in which mutations, polymorphisms, and epigenetic changes can be detected in double-stranded DNA. The $\mathrm{Vii}^{\mathrm{TM}} 7$ Real-Time PCR System was used in analysing MicroAmpR Optical 348-well plates and Applied Biosystems Melt Dr ${ }^{\text {TM }}$ HRM Master Mix. PCR fragments (from DNA extracted from embryos or fin clips) amplified in this analysis were around 100 bp at the target site where the predicted mutation takes place. At the PCR step, DNA sequences are intercalated with a fluorophore in Melt Doctor master mix during the melt and anneal phase of PCR. This fluorophore can then be detected and measured during HRM analysis. As amplified DNA sequences anneal, they anneal to one another according to their proportional abundance. In wild type +/+ DNA sample, both + DNA strands have the same sequence, thus creating a perfect +/+ homoduplex. In heterozygous +/- DNA samples, there will be 50% + DNA strands and 50% - DNA strands. When annealing occurs, there will be 25% homoduplex +/+ wild type, 25% homoduplex -/- mutant and $50 \%+/$ - heteroduplex mutant. After the annealing of the DNA, the HRM process begins. Samples were slowly heated from 50 to 95 ${ }^{\circ}$ C leading to the separation of DNA strands at their melting point. Fluorophores highly fluoresce when intercalated between bases of dsDNA and fluoresce much less when bound to ssDNA. Doublestranded DNA melt at different temperatures due to difference in melting points of duplexes. In wild type +/+ DNA samples, there will be 100\% +/+ homoduplexes and have the same melting temperature. Thus, the melt curve will have one step. In heterozygous +/- DNA samples, there will be three steps to the melt curve due to the presence of 3 different duplexes. Heteroduplexes are the least stable and melt first, then the less-stable mutant -/- homoduplex, followed by wild type +/+ homoduplex. Between the two homoduplexes, there will be a small shift in melting temperature as the stability between the two are very similar.

HRM Mix for each well:

Melt Dr Master Mix (2X)	$5 \mu \mathrm{~L}$
HRM Forward Primer (Table 2.8)	$0.4 \mu \mathrm{~L}$
HRM Reverse Primer (Table 2.8)	$0.4 \mu \mathrm{~L}$
$\mathrm{ddH}_{2} \mathrm{O}$ (double distilled water)	$3.72 \mu \mathrm{~L}$
Extracted genomic DNA	$1 \mu \mathrm{~L}$

$10 \mu \mathrm{~L}$

2.6.4. Sanger Sequencing

The target site for gene sequencing was amplified by PCR to send for sequence analysis. Primers for smyhc1 exons were designed and found in Table 2.8.

PCR reaction mix was made as below:
Polymerase Buffer (5x) $4 \mu \mathrm{~L}$
Forward Primer ($10 \mu \mathrm{M}$)
$0.4 \mu \mathrm{~L}$
Reverse Primer ($10 \mu \mathrm{M}$)
$0.4 \mu \mathrm{~L}$
dNTPs $(10 \mu \mathrm{M}) \quad 0.5 \mu \mathrm{~L}$
Polymerase (GoTaq, Phusion or Q5) $0.2 \mu \mathrm{~L}$
$\mathrm{ddH}_{2} \mathrm{O}$
$12.7 \mu \mathrm{~L}$
Extracted genomic DNA
$1 \mu \mathrm{~L}$
$20 \mu \mathrm{~L}$

Depending on which polymerase, the PCR cycling step will be specific to each enzyme. Here are the three cycling steps I used depending on the enzyme I used.

2.5.4.1. GoTaq ${ }^{\circledR}$ DNA Polymerase (M300) on thermocycler for PCR DNA amplification:

Step $195^{\circ} \mathrm{C} \quad 2 \mathrm{~min}$
Step $295^{\circ} \mathrm{C} \quad 30 \mathrm{sec}$
Step $3 \mathrm{Tm}-5^{\circ} \mathrm{C} \quad 30 \mathrm{sec}(\mathrm{Tm}$ found in Table 2.8)
Step $472{ }^{\circ} \mathrm{C} \quad 1 \mathrm{~min} / \mathrm{kb}$ (Repeat step 2-4 35x)
Step $5 \quad 72{ }^{\circ} \mathrm{C} \quad 7 \mathrm{~min}$
Step $64^{\circ} \mathrm{C} \quad \infty$
2.5.4.2. Phusion ${ }^{(B}$ High-Fidelity DNA Polymerase (NEB, M0530) on thermocycler for PCR DNA amplification:

Step 1	$98{ }^{\circ} \mathrm{C}$	30 sec
Step 2	$98{ }^{\circ} \mathrm{C}$	10 sec
Step 3	$\mathrm{Tm}+3^{\circ} \mathrm{C}$	30 sec (Tm found in Table 2.8)
Step 4	$72{ }^{\circ} \mathrm{C}$	$30 \mathrm{sec} / \mathrm{kb}$ (Repeat step 2-4 35x)
Step 5	$72{ }^{\circ} \mathrm{C}$	7 min
Step 6	$4{ }^{\circ} \mathrm{C}$	∞

2.5.4.3. Q5 ${ }^{\circledR}$ High-Fidelity DNA Polymerase (M0491) on thermocycler for PCR DNA amplification:

Step $198^{\circ} \mathrm{C} \quad 30 \mathrm{sec}$
Step $2 \quad 98^{\circ} \mathrm{C} \quad 10 \mathrm{sec}$
Step $3 \mathrm{Tm}+3^{\circ} \mathrm{C} \quad 30 \mathrm{sec}(\mathrm{Tm}$ found in Table 2.8)
Step $4 \quad 72{ }^{\circ} \mathrm{C} \quad 30 \mathrm{sec} / \mathrm{kb}$ (Repeat step 2-4 35x)
Step $572{ }^{\circ} \mathrm{C} \quad 2 \mathrm{~min}$
Step $64^{\circ} \mathrm{C} \quad \infty$

PCR product was screened for presence or absence of amplified DNA. $5 \mu \mathrm{~L}$ of PCR product and reference $6 \mu \mathrm{~L} 100 \mathrm{bp}$ ladder was loaded onto 2\% agarose gel (containing SafeView, NBS Biologicals, NBS-SV1). Gel electrophoresis was set at 100 V for 30 min . Gel analysed using GelDoc gel imager under UV lamp. The remaining $15 \mu \mathrm{~L}$ of PCR product was purified using Qiagen PCR Purification Kit (Qiagen, \#28106) or Exo-CIP ${ }^{\text {TM }}$ Rapid PCR Cleanup (NEB, \#E1050) following the manufacturer's instructions. Purified DNA samples to be sent for sequencing were added with $2 \mu \mathrm{~L}$ of forward sequencing primers according to the smyhc1 exon amplification. Sequences were sent to Genewiz or Eurofins for sequence analysis on Snapgene viewer (ver.3.1.2, GSL, Biotech).

2.7. Visualising Gene Expression

2.7.1. RNA extraction

Pools of 10-15 fish larvae were placed in a microfuge tube with 100μ I Tri-reagent (Sigma Aldrich, \#T9424) and manually homogenised by physical abrasion with a tissue grinder (Thermofisher Scientific, \#12-141-363). Probes were cleaned using 70\% EtOH between each sample. RNA was separated using Phenol:Chloroform:Isoamyl (Merck, P3803) and vortexed for 5 sec and incubated for 10 min at room temperature. Samples were then centrifuged $13,000 \mathrm{~g}$ at for $10 \mathrm{~min}, 4^{\circ} \mathrm{C}$. RNA is
present in the top aqueous phase and transferred into a new microfuge tube and purified using a RNeasy mini kit (Qiagen, \#74104).

2.7.2. cDNA synthesis

Template DNA for anti-sense RNA probe synthesis were made from the zebrafish cDNA library. cDNA synthesis using the oligo dT first-strand method with the SuperScript III Reverse Transcriptase kit (Invitrogen, \#12087539).

In a nuclease free tube, the following were mixed and incubated for $65^{\circ} \mathrm{C}$ for 5 min , then placed in ice for 1 min . Mix was then centrifuged at $13,000 \times g$ for 1 min :

```
Oligo(dT)15 (50 ng/ \muL) 0.5 \mu\textrm{L}
Total RNA (1 \mug) X LL
ddH2O
11.5- X \muL
dNTP mix (10 mM)
1\muL
```

$13 \mu \mathrm{~L}$
the following were then added to the mix:
5x First Strand buffer (Superscript III) $4 \mu \mathrm{~L}$
0.1 M DTT $1 \mu \mathrm{~L}$

RNase inhibitor $1 \mu \mathrm{~L}$
Superscript III RT enzyme $1 \mu \mathrm{~L}$

Mix was pipetted up and down and incubated at $50^{\circ} \mathrm{C}$ for 60 min . The enzyme was then inactivated at $70^{\circ} \mathrm{C}$ for 15 min .
cDNA clone for smyhc1 was located with the gene name smyhc1 on the zebrafish genome database 'www.zfin.org' and PCR primers were designed using Primer3 output. Primers chosen were designed to produce the only target 5'UTR of the gene. T3 sequence was added to the start of the reverse primer for the anti-sense probe synthesis and the T7 sequence was added to the start of the forward primer for sense probe synthesis.

Antisense probe
T3 sequence at the start of the REV primer:
5’ GGATCCATTAACCCTCACTAAAGGGAAgcactgcacaaaggctcata
Sense probe
T7 sequence before the FWD primer:
5' TAATACGACTCACTATAGGGAGAtgtcctcacccggttttact

PCR reaction was performed with the reaction mix below:

cDNA	$2.5 \mu \mathrm{~L}$
smyhc1 T7 Forward Primer	$1 \mu \mathrm{~L}$
smyhc1 T3 Reverse Primer	$1 \mu \mathrm{~L}$
5x Phusion Buffer	$10 \mu \mathrm{~L}$
Phusion Polymerase	$0.5 \mu \mathrm{~L}$
dNTP mix (10 $\mu \mathrm{M})$	$1.25 \mu \mathrm{~L}$
ddH $_{2} \mathrm{O}$	$33.75 \mu \mathrm{~L}$

	$50 \mu \mathrm{~L}$

PCR Program on the thermocycler was set for the following for amplification of smyhc1 template DNA:

Step $195^{\circ} \mathrm{C} \quad 2 \mathrm{~min}$
Step $2 \quad 95^{\circ} \mathrm{C} \quad 30 \mathrm{sec}$
Step $353^{\circ} \mathrm{C} \quad 30 \mathrm{sec}$
Step $4 \quad 72{ }^{\circ} \mathrm{C} \quad 1 \mathrm{~min} 30 \mathrm{sec}($ Repeat step 2-4 40x)
Step $5 \quad 72{ }^{\circ} \mathrm{C} \quad 7 \mathrm{~min}$
Step $612{ }^{\circ} \mathrm{C} \quad \infty$

The amplification mix was then purified using Qiagen Purification Kit. Then used for probe synthesis.

2.7.3. RNA Probe synthesis

cDNA from zebrafish embryos was used to produce antisense RNA probes for smyhc1. The key ingredient for in situ hybridisation is the steroid digoxygenin, which binds to the anti-DIG antibody. I used an NTP mix containing Digoxigenin-Uridine Triphosphate (DIG-UTP) which labels all uridine nucleotides with DIG. Anti-Dig antibody is conjugated with enzyme and binds to DIG during in situ hybridisation. With the addition of NBT/BCIP which detects the presence of alkaline phosphatase, produces a detectable colour at the site of probe-target RNA binding. This protocol was performed as described by Thisse and Thisse, 2008.

The following were mixed in order at room temperature:

Lineraised template DNA (200 ng)	$x \mu \mathrm{~L}$
$\mathrm{dH}_{2} \mathrm{O}$	$(13-\mathrm{x}) \mu \mathrm{L}$
DIG-UTP NTP mix	$2 \mu \mathrm{~L}$
10x transcription buffer	$2 \mu \mathrm{~L}$
RNase inhibitor	$0.5 \mu \mathrm{~L}$
RNA polymerase	$2 \mu \mathrm{~L}$
0.1 M DTT	$1 \mu \mathrm{~L}$

$20.5 \mu \mathrm{~L}$

Mix was incubated at $37^{\circ} \mathrm{C}$ for 2 h . Following this incubation, $1 \mu \mathrm{~L}$ of DNAse was added and incubated at $37{ }^{\circ} \mathrm{C}$ for 15 min to degrade template cDNA. $1 \mu \mathrm{~L}$ of 0.5 M EDTA was added to stop DNAse activity. The probe mix was purified using G-50 columns (Illustra, \#27533001) and adjusted to $100 \mu \mathrm{~L}$. The probe was aliquoted $(20 \mu \mathrm{~L})$ and stored at $-80^{\circ} \mathrm{C}$.

2.7.4. Embryo fixation - for in situ hybridisation

Embryos were selected developmental stages as described by Thisse and Thisse, 2008 and placed in a microfuge tube containing $500 \mu \mathrm{~L} 4 \%$ PFA. Fixation took place on a gentle rocker at $4^{\circ} \mathrm{C}$ overnight. If embryos were older than 24 hpf , chorions were removed manually using forceps 30 min before fixation to enable larvae tails to linearise. Embryos before 24 hpf were fixed with chorions intact and dechorionated after fixation. Following fixation, embryos were washed $2 \times 5 \mathrm{~min}$ in PBS and dehydrated with a series of methanol washes: $1 \times 5 \min 50 \% \mathrm{MeOH} 50 \%$ PBS, $2 \times 5 \min 100 \% \mathrm{MeOH}$. Embryos were then stored at $-20^{\circ} \mathrm{C}$ in $100 \% \mathrm{MeOH}$.

2.7.5. Whole-mount in situ hybridisation (WISH)

WISH is a technique used to label the presence of mRNA in the zebrafish embryo. WISH reveals the location and density of mRNA. DIG-oxygenin labelled RNA probes enter the fixed embryos and bind to target DNA by complementary binding. The excess probe was washed out as described below and immunohistochemistry is used to detect the probe using antibody and DIG-oxygenin. This protocol is followed and described by Thisse and Thisse, 2008.

Day 1

Embryos that were stored in MeOH from 2.6.4. where taken out from $-20^{\circ} \mathrm{C}$ and acclimatised to room temperature. Dehydrated embryos were then rehydrated using a series of washes containing 0.1% Tween20 in PBS (PBTween). Rehydration steps were $1 \times 5 \mathrm{~min} 50 \% \mathrm{MeOH}, 50 \%$ PBTween, followed by $2 x 5 \mathrm{~min}$ in PBTween. Then embryos were digested using proteinase K for a specific time and concentration depending on the age of the embryos according to Table 2.9, this step enables the probe to access deeper into the embryo/larvae for more accurate detection of RNA localisation. Proteinase K digestion was stopped with 2 x 5 min washes using glycine ($2 \mathrm{mg} / \mathrm{mL}$ in PBTween). Samples were then fixed again using 4\% PFA for 20 min, gently rocking at room temperature. Then samples were washed with PBTween $2 \times 5 \mathrm{~min}$, room temperature.

Table 2.9. Proteinase K treatment according to the embryonic stage for WISH

| Embryonic stage (hpf) | Concentration of Prot $K(\mu \mathrm{~g} / \mathrm{ml})$ | Time (minutes) |
| :---: | :--- | :--- | :--- |
| 24 | 10 | 10 |
| 26 | 30 | 6 |
| 28 | 30 | 8 |
| 30 | 30 | 10 |
| 33 | 30 | 13 |
| 36 | 30 | 16 |
| 37 | 30 | 17 |
| 40 | 50 | 12 |
| 45 | 50 | 13 |
| 47 | 50 | 17 |
| 50 | 50 | 19 |
| 56 | 50 | 22 |
| 60 | 50 | 26 |
| 74 | 50 | 36 |

To hybridise the embryos, a series of wash steps were made to prehybridise using hybe buffer: wash $5 \mathrm{~min} 50 \%$ hybe 50\% PBTween at room temperature, and then prehybridised in hybe (containing yeast RNA and heparin) at $65^{\circ} \mathrm{C}$ for 1 h to reduce nonspecific binding. Pre-hybe was removed and replaced 69
with hybe containing 1:200 of probe (made in 2.7.3.) and incubated at $65^{\circ} \mathrm{C}$ overnight. Probe was then removed and can be reused if stored at $-20^{\circ} \mathrm{C}$ for future use. Samples were washed on a $65^{\circ} \mathrm{C}$ heat block and gently agitated between washes: $1 x 10 \min 100 \%$ hybe, $1 x 10 \min 50 \%$ hybe $50 \% 2 x S S C, 1 x$ $10 \min 2 x S C C$ and then $4 \times 15 \min 0.2 x$ SSC. Samples were then moved to room temperature and were gently rocked on the rocking table between the next washes: $1 \times 5 \mathrm{~min} 50 \% 0.2 \times$ SSC 50% MABTween and 1×5 min MABTween. Samples were blocked with MAB Block (2% Boehringer Blocking ReagentTM (BBR) in $M A B$) for 1 h at room temperature, on the rocking table, this prevents any non-specific binding of the antibody. MAB block was replaced with an anti-DIG antibody conjugated to alkaline phosphatase enzyme diluted in BBR in a 1:5000 dilution and was on a rocking table at $4{ }^{\circ} \mathrm{C}$ overnight. Embryos were then placed onto the rocking table for 1 h at room temperature. A series of MABTween washes were made: 4x 15 min MABTween at room temperature on a rocking table. Samples were transferred onto a 24 well plate and MABTween was replaced with BCL Buffer III ($0.1 \mathrm{M} \mathrm{Tris-HCl}, 0.1$ $\mathrm{M} \mathrm{NaCl}, 50 \mathrm{mM} \mathrm{MgCl}$, and 0.1% Tween20) for 10 min . BCL Buffer was then replaced with BCL buffer containing $20 \mu \mathrm{~L} / \mathrm{mL}$ NBT + X-phos mixture (Roche, \#11681451001) and was incubated at room temperature in the dark. Samples were incubated until colour development ($15 \mathrm{~min}-2 \mathrm{~h}$). The reaction is stopped temporarily by replacing the developing buffer with PBTween +20 mM EDTA. Permanent stop of reaction by fixation with 4% PFA for 20 min and washed with PBS 2 x 5 min . Samples were stored at $4^{\circ} \mathrm{C}$ in PBS containing 0.02% azide.

To image samples, embryos/larvae were immersed in 100% glycerol on petri dishes and observed under a Leica MZ16F fluorescence stereomicroscope attached to iDS camera (\#UI-3080CP-C-HQ R2) camera and lighting controlled with an LED ring light attachment.

2.8. Visualising Sarcomere Proteins Using Immunostaining

2.8.1. Embryo Fixation - for immunostaining

Embryos were selected developmental stages as described by Thisse and Thisse, 2008 and placed in a microfuge tube containing $500 \mu \mathrm{~L} 4 \%$ PFA for embryos less than 3 dpf and 2% PFA used for larvae older than 3 dpf . Fixation took place on the gentle rocker for 1 h at room temperature. If embryos were older than 24 hpf , chorions were removed manually using forceps 30 min before fixation to enable larvae tails to linearise. Embryos before 24 hpf were fixed with chorions intact and dechorionated after fixation. Following fixation, embryos were washed $2 \times 5 \mathrm{~min}$ in PBS and washed with $2 \times 5 \mathrm{~min}$ PBTx (1x PBS with 0.5% Triton $x-100$). Embryos were then stored at $-4^{\circ} \mathrm{C}$ in PBS-azide. (0.02% azide). If zebrafish larvae were older than 1 dpf they were either treated with 1-phenyl 2-thiourea (PTU) at 24 hpf in fish water before initial fixation or bleached using a bleaching reagent $\left(3.3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2}, 5.95 \mathrm{~mL}\right.$

Abstract

$\mathrm{H}_{2} \mathrm{O}, 0.5 \mathrm{~mL}$ Formamide, 0.25 mL 20XSSC) to remove pigment. To stop bleaching, embryos washed in 2 X 5 min with PDT (0.5 mL DMSO, $2 \mathrm{~mL} 20 \%$ Triton-x100, $47.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) rocking at room temperature. Embryos were blocked with 5\% goat serum diluted in PBTx for 1 h at room temperature followed by incubation with the 1 st antibody 2% goat serum in PBTx at $4^{\circ} \mathrm{C} 1$ night, if 2 dpf or younger or 2 nights if 2-5 dpf. Embryos were then incubated with the 2 nd antibody in 2% goat serum and incubated at $4^{\circ} \mathrm{C}$ 1 night if 2 dpf or younger or 2 nights if 2-5 dpf. Embryos were then washed with PBTx 4×15 min. Embryos were then stored at $-4^{\circ} \mathrm{C}$ in PBS-azide (0.02% azide).

2.8.2. Immunostaining on sections

Fish larvae were washed 20% sucrose (in PBS) $2 x 5$ min on the rocking table, at room temperature. Fish larvae were then incubated with the 20% sucrose overnight at $4^{\circ} \mathrm{C}$ on the rocking table. The following day, larvae were positioned laterally with dorsal on top in embedding chambers containing OCT medium (Tissue-Tek, \#16-004004). Embedded embryos were then snap frozen using liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. To section samples, embedded embryos were acclimatised to $-22^{\circ} \mathrm{C}$ in the cryostat for 30 minutes before sectioning. To section samples, embedded embryos are loaded onto a cryostat chuck with $\mathrm{dH}_{2} \mathrm{O}$. Sections of $15 \mu \mathrm{~m}$ were cut and thaw-mounted onto poly-Lysine glass slides. Sections were air-dried on the slides at room temperature overnight. PAP pen was used to draw around samples to keep liquid staining to be enclosed within the sample. Before antibody staining, samples were rehydrated in with the addition of PBS for 5 min . Samples were incubated with primary antibody (Table 2.2) for 3 h , room temperature and then washed with PBS $2 \times 5 \mathrm{~min}$. Secondary antibody incubation was made (Table 2.3) for 3 h , at room temperature and then further washed with PBS. Samples were mounted with $100 \mu \mathrm{~L}$ of mounting medium (Fluoromount, SouthernBiotech, Cat. 0100-01) with a coverslip on top and set overnight in the dark.

2.9. Zebrafish swimming velocity assay

To assess swimming velocity in response to mechanostimulation, siblings and mutants from $2 \mathrm{dpf}+$ were randomly chosen and stimulated with forceps until a reaction was observed or until no movement would occur for 30s. Embryos at age 2 dpf and 5 dpf were recorded using MZ16 Light microscope (Leica, Watzlar, Germany), and larvae at age $15 \mathrm{dpf}, 20 \mathrm{dpf}$ and 30 dpf were recorded using Sony IMX586 OnePlus 7TPro Camera (OnePlus, Shenzhen, China). Larvae swimming velocity was measured using Tracker (https://physlets.org/tracker/), scale was set using photographs of graticule or presence of ruler from $15 \mathrm{dpf}+$ larvae. Larvae were treated with 100 uM BTS for 1 h at room temperature and the fish stimulation assay was repeated.

Chapter 3

Characterising primary biophysical defects in the presence of MYH7 mutations

3.1. Introduction

Sarcomeres in striated muscle are made up of four main elements: bipolar myosin thick filaments, polar actin filaments, z-disks (to enable polar actin filaments to assemble into a bipolar structure) and titin (to connect thick filaments to z-disks). How mutations in MYH7 lead to a mechanistic defect in sarcomere assembly and/or defective muscle contraction remain in question (Squire, 1973). There are two main mechanisms potentially affected by the presence of defective slow MyHC I molecules. Firstly, the ability for myosin to pack together into a myosin filament during sarcomere assembly (Sohn et al., 1997; Cripps, 1999; Thompson et al., 2012). Second, the functional positioning of myosin head during relaxed state or during contraction within the assembled sarcomere (Adhikari et al., 2019; Sarkar et al., 2020).

As described in my introduction chapter, MyHC I plays a key role in sarcomere assembly. The light meromyosin (LMM) structure is key for its intricate coiled coil structure which enables myosin monomers to dimerise and subsequently intertwine into a larger thick filament structure (Squire, 1973; Rahmani et al., 2021). The overall structure of the LMM between vertebrates and invertebrates are very similar with some differences around skip residues (Sodek et al., 1972; Hu et al., 2016). The conserved structure of the LMM between vertebrates and invertebrates emphasise the importance of the amino acid arrangement for myosin molecules packing together (Squire, 1973; Rahmani et al., 2021). Mutations in the LMM may lead to the improper formation and organisation of myosin filaments which may lead to an alteration of their length. Change in myosin filament length has been shown because of its elastic and structural properties (Wilson et al., 2014; Irving, 2017). Myosin filament lengths have been measured during active state and relaxed state; myosin filaments appear 1\% longer during active state than in relaxed state (Haselgrove, 1975; Ma et al., 2018).

Such malformed filament backbones formed with defective slow MyHC I molecules may modify myosin head orientation and motor function. In preparation for muscle contraction, the myosin head projects in close proximity to Actin, whereby myosin is in a state what is termed disordered relaxed state (DRX). In the DRX state, the myosin head is ready to bind to Actin, hydrolyse ATP, and subsequently generate force enabling the sarcomere to contract (Stewart et al., 2010; Cooke, 2011; Fusi, Huang and Irving, 2015). When in dormant state, myosin heads fold into what is termed super relaxed state (SRX) whereby myosin heads interact with each other and the thick filament backbone
to position the head to block actin and ATP binding sites (Hooijman, Stewart and Cooke, 2011; Alamo et al., 2016). During the SRX state, myosin heads are unavailable to bind to actin and catalyse ATP to generate force (Huxley and Brown, 1967; Woodhead et al., 2005; Alamo et al., 2008). The ratio between DRX and SRX in different muscle fibre types differ and are determined by the functional demand of muscle type (Hooijman, Stewart and Cooke, 2011; Spudich, 2015; Trivedi et al., 2018). The stabilisation of the SRX state is partially controlled by MyBP-C, involving the two MyBP-C binding sites on MYH7 (Alamo et al., 2017; Robert-Paganin, Auguin and Houdusse, 2018; Spudich, 2019).

Many hypertrophic cardiomyopathy (HCM) mutations in either the MyBP-C domain in MYH7 or in MyBP-C itself have been shown to destabilise SRX state with increased proportion myosin heads in DRX state (Adhikari et al., 2019; Sarkar et al., 2020). A link between HCM mutations affecting the converter and C-terminal MyBP-C binding site have led to destabilise myosin in SRX state and thus leading to a predominance of myosin heads in the DRX state and subsequently leading to hypercontraction of the cardiac muscle (Alamo et al., 2017; Toepfer et al., 2020). MyBP-C connects to myosin at two sites, the N-terminal MyBP-C domain connects to myosin head region and C-terminal MyBP-C connects to myosin LMM (Luther et al., 2008; Spudich, 2015). MyBP-C knockout studies have shown increased shift of myosin heads in SRX to DRX state and thus leading to hypercontractility and slowed relaxation (Stelzer, Fitzsimons and Moss, 2006; Moss, Fitzsimons and Ralphe, 2015; McNamara et al., 2016; Christopher N. Toepfer et al., 2019) but arrangement of myosin heads in thick filament are not severely disturbed (Luther et al., 2008; Zoghbi et al., 2008; McNamara et al., 2016). Mutations in the LMM affecting slow skeletal muscle, particularly in the second MyBP-C binding domain which can also be bound by myomesin, may show similar shift of myosin heads from SRX to DRX state seen in patients with mutations in MyBP-C binding domain in the head region.

Mutations affecting the MyBP-C binding domain may also affect the giant molecular spring within the sarcomere, known as Titin. Titin has been shown to play a role in passive tension after the active tension from myosin and actin filaments in the active cross-bridge cycle (Cazorla et al., 2001; Fukuda et al., 2005). Titin is known to have extensible spring-like features to provide the passive tension after the sarcomere have been overstretched (Labeit and Kolmerer, 1995; Freiburg et al., 2000). Passive tension from Titin have been shown to change thick filament length whereby M -lines within the A band appear further apart (Irving et al., 2011). Titin connects with myosin indirectly through MyBP-C at the crossbridge region (Tonino et al., 2019). Myosin in the conventional " J " motif resemble myosin in a relaxed state whereby myosin heads interact with each other to form a "interacting heads motif" (IHM) and both myosin heads interact with S2 region (Alamo et al., 2017; Woodhead and Craig, 2020).

Mutations in MyBP-C the myosin binding site may show weakened passive tension through poor interaction between myosin and titin through MyBP-C and thus, may present as muscle in exercises involving stretching the muscle.

The myomesin binding site is the alternative major domain in the myosin LMM region aside from the MyBP-C binding site mentioned earlier. There are 3 myomesin isoforms in humans: myomesin-1 is expressed in all skeletal and cardiac muscles, myomesin- 2 is expressed in adult heart and fast skeletal muscle (Agarkova et al., 2004), and myomesin-3 is expressed in slow skeletal muscle (Schoenauer et al., 2008). A case of mutation in myomesin have been associated with HCM (Siegert et al., 2011). Patients with mutations in EH-myomesin, a splice variant of myomesin-1 show DCM (Schoenauer et al., 2011; Bollen et al., 2017). Lack of myomesin-1 in human cell lines show sarcomere disassembly and regulation of muscle contraction (Hang et al., 2021). Myomesin-3 knockout studies in zebrafish show no effect on sarcomere organisation suggesting the role of myomesin-1 show predominant involvement in sarcomere organisation than myomesin-3 (Xu et al., 2012). However, the mechanism for sarcomere disassembly from lack of myomesin-1 remain unclear.

In this chapter, I study the primary defects in the presence of MYH7 mutations muscle fibres by analysing muscle fibres extracted from the vastus lateralis of healthy controls and patients with mutations in MYH7 (Table. 2.1). To identify whether mutations in MYH7 lead to alteration in myosin packing and subsequent myosin filament length, a comparison between myosin filament length from muscle fibres from healthy controls and patients with MYH7 mutations were made. Here we test for changes in myosin filament length using fluorescence microscopy, staining for slow myosin using antibody A4.951 (Webster et al., 1988; Cho, Webster and Blau, 1993; Blagden et al., 1997), followed by measuring the length of A-band (Methods 2.2.1). A similar technique has been used to measure change in actin filament length whereby aged mice show decreased actin filament length (Gokhin et al., 2014). I first show through immunofluorescence that there is no observable change to thick filament length in the presence of MYH7 mutations. To determine whether there were no changes in filament length, or the method of detecting changes was not sensitive enough to identify more subtle changes between active and relaxed states, I looked at the proportions of myosin in SRX and DRX states in the muscle fibres. Here, I could observe an increased proportion of myosin molecules in DRX state in muscle fibres from patients with LMM mutations. Mutations at the Myomesin and MyBP-C site show most percentage difference in proportion of myosin in DRX state. The extent of these alterations may vary from one mutation to another inducing muscle phenotype variability. However, degree of variability between LDM and MSM patients were not distinguishable through measuring
proportions of myosin in DRX and SRX states. It is concluded that mutations in LMM at the myomesin and MyBP-C site show increased DRX myosin head positioning by destabilising the SRX state.

3.2. Results

3.2.1. Mutation in MYH7 show no change in myosin filament lengths

To assess whether MYH7 mutations alter the length of myosin filaments, fibres were extracted from the vastus lateralis of healthy controls and patients with MYH7 mutations (Table 2.1, Fig 2.1) and subsequently stained with two different antibodies. Firstly, I stained with MF20 to visualise all skeletal myosin filaments to identify whether there were overall changes in myosin filament length (Shimizu et al., 1985). ImageJ plugin DDecon was used to deconvolute fluorescence microscopy images and subsequently measured for myosin filament lengths through their imaged fluorescence intensity peaks (Fig 3.1A). The variability of the measurements was 10.45% between controls (Fig 3.1). In control individuals, the overall mean myosin filament lengths were $1.75 \mu \mathrm{~m}$ ($\mathrm{SD}=0.05$, Fig 3.1A). Patients with mutations in MYH7 show no difference in myosin filament length compared to healthy controls (One Way ANOVA $p>0.05$) suggesting that mutations in MYH7 do not alter myofilament length. However, our findings may also suggest that mutations in MYH7 are very subtle, and our analysis may only affect slow fibres exclusively.

To address whether slow specific myosin filament lengths change in the presence of $M Y H 7$ mutations, muscle fibres were stained with A4.951, a slow type I myosin specific antibody (Fig 3.1B) (Webster et al., 1988; Cho, Webster and Blau, 1993; Blagden et al., 1997). Variability of the measurements between controls was 13.3\%. In control individuals, the overall mean myosin filament length in type I fibres was $1.72 \mu \mathrm{~m}(S D=0.28)$. There were observed no significant difference between controls and patient samples (Fig 3.1B) suggesting that mutations in MYH7 do not alter myofilament length in slow fibres. Despite no observable change in thick filament length in slow fibres, this does not rule out the possibility the current analysis is not sensitive enough to detect a 1% change generated by a change between myosin in an active or relaxed state (Haselgrove, 1975; Ma et al., 2018).

Figure 3.1. Myosin filament measurements (slow fibre types) of controls and patients with MYH7 mutations.

Abstract

A) Thick filament length obtained by immunostaining with MF20 targeting against slow myosin. Compared to measurements from 3 healthy controls, data shows no change in filament length in patients. Variability between filament measurements across each fibre was analysed (standard deviation/mean) show no significant variation within each fibre measurement per sample. B) Thick filament length obtained by immunostaining with A4.951 targeting against slow myosin. No observable difference between controls and patients. Variability between filament measurements across each fibre was analysed below. Statistical analysis using one-way ANOVA between the mean measurements of each fibre. The colours of each plot indicate the location of mutation - No mutation (grey), S1 (blue) and LMM (purple).

3.2.2. Mutation in MYH7 shifts myosin molecules in DRX state in patient fibres

Since there was no observable difference in myosin filament length from the previous fluorescence study, to detect subtle changes in myosin filaments, an investigation for more subtle structural changes in myosin head positioning were made. During the relaxed state, in the absence of Ca^{2+}, myosin molecules are present in two main states, the SRX and DRX (Fig 1.10). ATP turnover rate from myosin in a DRX state is 5 times faster than in SRX (McNamara et al., 2015). To measure ATP turnover rate, fibres were incubated with fluorescently labelled ATP (Mant-ATP) and when flushed with nonfluorescently labelled ATP, all fibres initially show a rapid decrease in the fluorescence followed by a slower decay in fluorescence intensity (Fig 3.2A). Proportion of the two states in each fibre were calculated by fitting ATP turnover rate into a two-state exponential curve. Proportions of P1 showing rapid decay phase represent the DRX state and P2 showing slow decay phase represent the SRX state (Fig 3.2A).

Initial comparison of single traces from two different patients, one mutation in the S1 region and one mutation from the LMM (Fig 3.2B). Patient fibre with S1 mutation T304S show similar decay in fluorescence intensity to healthy control fibre, while fibres from LMM mutation K1617del showed faster decay compared with healthy control. As we tested more fibres from each patient compared with controls, we plotted the calculated percentage of DRX myosin molecules in each fibre from individual patients (Fig 3.2C). Since mutations primarily affect slow skeletal muscle, fibres were stained with A4.951 after measuring fluorescence decay to identify which fibres were slow fibres and measurements were isolated to create graph (Fig 3.2C). Remaining measurements from fast fibres show no difference between controls and patients (Appendix 3.1.2). Proportion of fast and slow fibres in each sample were counted and patients with LDM show higher proportion of slow fibres than controls, consistent with clinical data from muscle biopsies (Appendix 3.1.3). However, patients with HCM and MSM also show higher proportion of slow fibres compared to controls thus, the predominance of slow fibres alone may not be an accurate diagnostic for LDM from muscle biopsies from the vastus lateralis (Appendix 3.1.3). Cross-sectional biopsies to determine type I fibre predominance reveal more consistent results in defining LDM phenotype (Fig 1.5). Mean percentage

Abstract

DRX myosin in healthy controls were 39.63% where variability of the measurements was 13.42% between controls. Patients with mutations in S1 region show similar proportion of DRX as seen in healthy controls. This suggests that mutations in my sample set directly affecting head region does not alter myosin head positioning in the relaxed state. However, fibres from patients with mutations in the LMM region show an increased proportion of DRX myosin compared to healthy controls, with an exception from mutation A1883E (Fig 3.2C). The mean proportion of DRX in the presence of LMM mutations were significantly higher at 55.45% compared to the 39.63% in healthy controls.

Mutations showing significantly higher DRX levels were plotted on the myosin protein map to identify possible affected binding sites (Fig 3.3). Position of these mutations clustered along the myomesin and MyBP-C binding site suggesting mutations in myomesin, and MyBP-C destabilize myosin in SRX state in slow skeletal muscle fibres. When comparing degree of variability of DRX and SRX proportions between LDM and MSM (Fig 3.2D) no distinguishment could be made from this data set, suggesting the mechanism of pathology between the two diseases remain unknown. Overall, our data indicate that mutations in the LMM influence remodelling of myosin filament length that cannot be detected through fluorescence microscopy in 3.2.1. and the head positioning during the relaxed states are possibly affected by the presence of mutations on and near the myomesin and MyBP-C binding site that destabilise myosin head positioning in the SRX state.

Figure 3.2. The proportion of DRX increases in patients with LMM mutations.
A) Single trace of fluorescence decay from one muscle fibre. Fluorescence decay is plotted on a two-state exponential decay curve. Rapid decay of fluorescence P1 represents the DRX state where ATP turnover is fast. The slow decay of fluorescence P2 represents the SRX state where ATP turnover is 5 times slower than DRX. Using a two-state exponential decay equation in Methods 2.2 .2 percentage proportions of each state can be calculated. B) representative single comparison of fluorescence decay of three conditions from Controls (black), p.T304S (green) and p.K1617del (red). All fibres were incubated with 125 uM mATP and chased with 4mM ATP. The experiment was recorded from $t=0 \mathrm{~s}$ as mATP was flushed into the flow chamber and images were taken every 5 s until $\mathrm{t}=180 \mathrm{~s}$ and every 10 s until $\mathrm{t}=300 \mathrm{~s}$. C) Slow fibres were selected for fibre type by immunostaining with A4.951 against slow myosin, data from positive staining fibres were plotted. Mutations in the LMM region increase DRX proportion in slow muscle fibres. The colours of each plot indicate the location of mutation - No mutation (grey), S1 (blue) and LMM (purple). D) Data presented with a mutation in MYH7 according to the pathology of the disease. The proportion of DRX between DM and MSM patients is indistinguishable. Statistical analysis using one-way ANOVA between the mean measurements of each fibre. Statistics using PRISM GraphPad - One way ANOVA ($\mathrm{p}=0.05$).

Figure 3.3. Fibres with mutations leading to DRX are primarily present in the myomesin binding site.
Map of MYH7 protein with binding domains labelled, close-up of C-terminal LMM region with labelled mutations from sampled patients. Patient mutations with significantly higher DRX proportions in Fig 3.3 are labelled in black and mutations with insignificant changes in DRX proportion are labelled in grey.

3.3. Discussion

In this chapter, I identify primary biophysical alterations in muscle fibres from patients with skeletal muscle disease causing mutations in MYH7. There are a few main findings. Firstly, myosin filament length is not observably altered in muscle fibres in the presence of MYH7 mutations. Secondly, although our analysis using immunofluorescence was not sensitive enough to detect changes in myosin filament length, it is also not a suitable to detect more subtle functional changes in myosin elasticity when in active vs relaxed. Functional changes were assessed by identifying the proportion of myosin heads positioned in either the SRX or DRX state. Fibres isolated from patients with mutations near and on myomesin and MyBP-C site show increased proportion of myosin heads in DRX state than in healthy controls.

3.3.1. Sarcomere assembly remain intact in the presence of defective slow myosin molecules

The LMM structure have been described as an intricate coiled-coil structure which enables myosin monomers to dimerise and subsequently intertwine into a larger thick filament structure (Squire, 1973; Rahmani et al., 2021). The conserved structure of the LMM between vertebrates and invertebrates emphasise the importance of the amino acid arrangement for myosin molecules packing together (Squire, 1973; Rahmani et al., 2021). The LMM is essential for myosin filament formation whilst S1 and S2 region are dispensable (Sohn et al., 1997; Cripps, 1999; Thompson et al., 2012). As of

Abstract

current, there have been no studies showing changes in myosin filament length. Despite such conserved intricate structure of the coiled-coil LMM, our results show a full formation of thick filaments into striations at regular intervals. Mutations in patients are dominant (heterozygous), typically missense or single amino acid deletions. Since patients with dominant mutations express both healthy and defective myosin, there is a degree of variability in the ratio of healthy to defective myosin molecules intermixed in the formation of thick filaments. Ratio of defective to healthy myosin molecules may be very small and thus, if there is defective organisation within the thick filament, they may be too subtle to detect using immunofluorescence to measure changes in thick filament measurement length.

3.3.2. Defective slow myosin MyBP-C binding domains destabilise myosin in SRX state

A link between hypertrophic cardiomyopathy (HCM) mutations affecting the converter and C-terminal MyBP-C binding site and MyBP-C itself have led to destabilise myosin in SRX state and thus leading to a predominance of myosin heads in the DRX state and subsequently leading to hypercontraction of the cardiac muscle (McNamara et al., 2016; Alamo et al., 2017; Christopher N. Toepfer et al., 2019). Since MyBP-C connects to myosin at two sites and studies have shown that mutations affecting the N terminal MyBP-C domain destabilises myosin in the SRX state (Luther et al., 2008; Spudich, 2015). My main focus was to identify whether mutations in the C-terminal MyBP-C binding domain also show the same effect. Our findings from patients with mutations affecting the MYH7 C-terminal MyBP-C binding domain show a shift in proportion of myosin heads from SRX state to predominantly in the DRX state. Shift of myosin head positioning towards the DRX state suggest the C-terminal MyBP-C binding domain show the same destabilising effect of the SRX state as the mutations found in the N terminal MyBP-C domain in the slow myosin molecule and MyBP-C itself. Current data suggest the role of both MyBP-C sites and MyBP-C itself is to stabilise the SRX state through the interaction with slow myosin at both binding sites. Mutations affecting the interaction between slow MyHC, and MyBPC have led to hypercontractile muscle in HCM patients and possibly hypercontractile and poor relaxing skeletal muscle. Since MyBP-C binding sites are affected, the role of titin in muscle contraction and relaxation may be affected. Titin connects with myosin indirectly through MyBP-C at the crossbridge region (Tonino et al., 2019) and provides passive tension after the sarcomere has been overstretched (Labeit and Kolmerer, 1995; Freiburg et al., 2000). Thus, mutations affecting the MyBP-C binding site reduces the ability for sarcomeres to return to relaxed state before muscle contraction and may lead to hypercontractile skeletal muscle.

Chapter 3: Characterising primary biophysical defects in the presence of MYH 7 mutants

3.3.3. Mutations in myomesin binding site dispensable for sarcomere organisation

Myomesin binding site overlap with the C-terminal MyBP-C binding site and brings the question whether myomesin interaction with slow myosin were affected in the presence of mutations at this site. The role of M -band protein myomesin have been described to regulate and stabilise the packing of myosin filaments into a hexagonal myosin filament lattice (Agarkova et al., 2003; Hu, Ackermann and Kontrogianni-Konstantopoulos, 2015). The predominantly expressed myomesin gene is myomesin-1 and is expressed in all skeletal and cardiac muscles (Schoenauer et al., 2008). Knockout of myomesin-1 in human cell lines show sarcomere disassembly and regulation of muscle contraction (Hang et al., 2021). However, our data do not show sarcomere disassembly but rather myosin filaments organised into striations at regular intervals. Additionally, we have shown that mutations in the Myomesin/MyBP-C binding site overlap which may have destabilised myosin heads from SRX state into DRX state. Thus, mutations affecting the myomesin binding site is dispensable for sarcomere assembly in slow muscles. Mutations at the Myomesin/MyBP-C binding overlap site are more likely to affect the involvement of MyBP-C than Myomesin in regulating contractility and relaxation of slow muscles.

3.3.4. Conclusion

In conclusion, I demonstrate that there is no overall alteration in sarcomere organisation in the presence of defective myosin molecules. I provide evidence that in the presence of mutations affecting the MYH7 MyBP-C binding site shift myosin heads from SRX state into predominantly DRX state. Shift of myosin head positioning may be due to destabilised SRX state. Although Myomesin and MyBP-C binding sites overlap in the LMM region, the likelihood of defects involving Myomesin appear unlikely. Despite current findings describing destabilising effects on slow myosin SRX state, there is no clear data to distinguish mechanistic defects between LDM and MSM patients. Since our current studies have only assessed the primary biophysical defects, how such distinct phenotypes are developed remain in question. To distinguish the mechanism of pathology leading up to the clinical phenotypes observed in LDM and MSM, studying the role of slow myosin during early developmental stages will aid in identifying the mechanistic defects associated with defective myosin molecules in the development of either LDM or MSM.

Chapter 4

Identify zebrafish equivalent gene to human MYH7

4.1. Introduction

In the previous chapter, I demonstrated primary biophysical defects in muscle fibres from patients with MYH7 mutations. If and how these mutations affect the early stages of development remains unknown as all samples analysed so far were from adults. To study the developmental defects of slow myosin mutations affecting slow skeletal muscle, zebrafish disease models might prove advantageous. An essential first step in such a process would be to identify the zebrafish equivalent of the human MYH7 gene that would be most likely to give a phenotype in a defined functional muscle. To identify a fish equivalent gene, I firstly look at the evolution of sarcomeric MyHC genes and whether zebrafish and humans have a common ancestor for slow MyHC. I next look at the expression of zebrafish MyHC genes and identify whether these genes are expressed in slow skeletal, and the heart ventricle as seen in humans.

In humans, there are a total of eleven sarcomeric MyHC genes. The oldest of these genes is MYH16 which was ancestrally expressed for jaw muscles (Fig 4.1). A later duplication event led to the formation of MYH15 and MYH14 (MYH7B), which were the ancestral skeletal and cardiac MyHC genes (Rossi et al., 2010). The next duplication event formed two clusters, the MYH6/7 cluster which is present in tandem on chromosome 14 (Yamauchi-Takihara et al., 1989; Gulick et al., 1991) and a fast skeletal MyHC cluster which is present in tandem on the human chromosome 17. The MYH6 and MYH7 cluster is known to have formed from a gene duplication event in mammals (Yamauchi-Takihara et al., 1989; Gulick et al., 1991). MYH6 and MYH7 have evolved to be different in their protein sequence and function, where MYH6 is expressed in the atrium of cardiac muscle and MYH7 is expressed in both ventricular cardiac muscle and slow type I fibres in slow skeletal muscle (Fig 4.1). This gene duplication event is can be seen in mammals amphibia, and lobe-finned fish but not easily identified in zebrafish or in avian (Desjardins et al., 2002). Chicken has three MyHC genes, MYH15 (formerly named MYH6/VMHC/SM2), MYH7B (formerly named ssMYHC/SM1) and MYH7 (formally named AMHC) (Chen et al., 1997) suggesting the use of ancestral MyHC genes for slow skeletal muscle. Tropical claw frogs have myh6 and gpc6 (myosin-7) genes present in tandem Ensembl Primary assembly 1:127,598,294-127,629,343 (Appendix 4.3). The coelacanth has MYH6 and MYH7 present in tandem on Scaffold JH126769.1: 686,924-731,742 (Appendix 4.3). In teleost fish, including zebrafish, there are a higher number of MyHC genes than there are in tetrapods (Watabe and Ikeda, 2006; Ikeda et al., 2007), as teleost fish have undergone an additional round of genome duplication (Amores et al., 1998;

Meyer and Schartl, 1999; Taylor et al., 2001). Zebrafish have 5 slow MyHC genes (Stone Elworthy et al., 2008): smyhc1, smyhc2, smyhc3, smyhc4 and smyhc5 (Stone Elworthy et al., 2008), there are 3 zebrafish cardiac MyHC genes including myh7, myh7l and myh6 (Zhang and Xu, 2009) and 6 fast MyHC genes: myhcz2, myhc4, myha, myhz1.1, myhz1.2 and myhz1.3 (Nord et al., 2014). When looking at the evolution of slow MyHC in zebrafish in comparison to humans, it was unclear whether the divergence of MYH6 and MYH7 occurred before the separation of lobe-finned and ray-finned lineage or whether there was a separate divergence of the slow and cardiac cluster formed from an ancestral slow MyHC (Fig 4.2). To address this in my results, I look at the protein sequence of lobe-finned MYH6 and MYH7 to determine the characteristic amino acids to distinguish between the two proteins and identify whether these key amino acids can categorise zebrafish MyHC genes into an MYH6 or MYH7 group. This can also identify whether the ancestral MyHC that lead to the divergence of MYH6 and MYH7 is the same ancestral MyHC that diverged in teleost fish. Synteny analysis of these genes will describe whether smyhc1-5, myh7, myh7l and myh6 were evolved from MYH7 and describe which zebrafish genes arose from a teleost genome duplication event.

Figure 4.1. Schematic evolution gene tree describing mammalian MYH genes.
The phylogenetic tree on the left with gene name, protein name and location of expression in mammals. Branches are not to scale. Figure adapted from Rossi et al., 2010. Abbreviations: EO-extraocular, Neo-neonatal, Emb-embryonic.

Figure 4.2. Phylogenetic tree of a range of tetrapod, lobe-finned fish, ray-finned fish, and cartilaginous fish. Phylogenetic tree using multiple sequence alignments of 251 genes comparing orthologs between a range of tetrapod, lobe-finned fish, ray-finned fish, and cartilaginous fish to describe the genetic relationship between human to zebrafish. Tree rooted with cartilaginous fish. Branches are not to scale. Figure adapted from Amemiya et al., 2013.

Human MYH7 is expressed in both the heart ventricle and slow skeletal muscle. In zebrafish, the expression of smyhc1, smyhc2 and smyhc3 genes are exclusively in slow muscle fibres (Stone Elworthy et al., 2008) (Fig 4.3). In the early stages of development, smyhc1 is predominantly expressed in slow fibres and in a small subset of slow muscles, smyhc2 and smyhc3 are expressed. Smyhc2 shows localisation in the craniofacial muscles and a small subset of slow muscle, named supracarinalis anterior (sca), inferior obliquus (iob) and embryonic lateralis superficialis (els) and infracarinalis posterior (icp) (Fig 4.3). Smyhc3 also shows weak localisation in craniofacial muscles and a subset of slow muscles named sca and els. At later stages, after 17 dpf to adulthood, secondary slow fibres, present at the horizontal myoseptum, smyhc1 expression is replaced by the expression of smyhc2 and smyhc3 (Stone Elworthy et al., 2008). Expression data for smyhc4 and smyhc5 were unknown as no in
situ hybridisation experiments were made for these genes. Myh7 is expressed in the heart ventricle and not in the slow skeletal muscle (Fig 4.3)(Park et al., 2009). Myh7l shows localisation in the heart ventricle and a weak signal in the tail (Fig 4.3)(Thisse and Thisse, 2004). However, no known studies for more specific probes to myh7l are published. The functional role of smyhc1-3, myh7 and myh7l show similarity to human MYH7, where smyhc genes are expressed in slow skeletal muscle and myh7 genes are expressed in ventricular cardiac muscle. However, the functional roles of these zebrafish genes have been split across many genes in comparison to the single MYH7 in humans. To identify how these genes arose and whether zebrafish slow MyHC genes are linked to human slow MyHC, I look at the gene synteny to first, identify whether these genes are linked to human MYH7 or whether these genes derived from a common slow ancestral MyHC gene to MYH6 and MYH7. Secondly, I will look at gene synteny between smyhc1-5 and myh7 and myh7l to determine whether these genes arose after a genome duplication event.

Figure 4.3. RNA localisation of smyhc1-3 and myh7/myh7l.
ZFIN search of the whole-mount in situ hybridisation (WISH) for 5'UTR smyhc1-3 sequences from 12-72hpf embryos (Elworthy et al., 2008). smyhc1 show expression predominantly in slow skeletal muscle, smyhc2 shows expression subset of slow muscle cells, in sca, iob and icp, and smyhc3 also show expression in a subset of slow muscle, in the sca and els. myh 7 24hpf. WISH targeting myh 7 mRNA at 24 hpf and targeting gfp mRNA in transgenic line $T g(m y h 7: g f p)$ (Park et al., 2009). Myh7 shows expression in the heart ventricle and appears in slow skeletal muscle, probe may cross hybridise with smyhc1 which reveals expression in slow muscle. To prevent cross hybridisation, indirect detection of myh7 expression using Tg(myh7:gfp) zebrafish and in situ against gfp reveal expression only present in the ventricle and no localisation in slow skeletal muscle. Myh7l shows expression in the heart ventricle and a slight appearance in slow skeletal muscle, which may also be due to cross hybridisation with smyhc1.WISH targeting myh7l mRNA at 24 hpf (Thisse et al., 2004). Abbreviations: supracarinalis anterior (sca), inferior obliquus (iob), embryonic lateralis superficialis (els) and infracarinalis posterior (icp). Figure permission granted from Stone Elworthy et al., 2008b; Park et al., 2009.

In this chapter, I first compare human MYH7 with genes in the zebrafish genome using BLAST analysis. This gave me an initial list of candidate zebrafish genes smyhc1-5, myh7, myh7l, myh6 and myh4 and myhz2. I then distinguished which of these candidate genes were true slow MyHCs and differentiate them from fast MyHC using their amino acid sequence. I identified synteny between zebrafish smyhc1-5, myh7 and myh7l with human MYH7 and zebrafish myh6 show synteny to human MYH6. Smyhc1-5 are syntenic to myh7/myh7l suggesting these genes arose from a teleost genome duplication event. Mapping human LDM and MSM mutations onto zebrafish smyhc1-5, myh7 and myh 71 protein sequences show mutations occurring at highly conserved amino acids. It is concluded that amongst data showing smyhc1-5, myh7 and myh7l evolutionarily linked to human MYH7, the function of smyhc1 showing broadest expression in slow skeletal muscle, smyhc1 was chosen as the zebrafish equivalent gene for human MYH7.

4.2. Results

4.2.1. zebrafish smyhc1-5, myh7, myh7l and myh6 show similarities to human MYH6/7

The first step is to identify a list of zebrafish slow MyHC genes and distinguish these genes from fast MyHC genes. To achieve this, I performed a basic local alignment search tool (BLAST) analysis using human MYH7 nucleotide and protein sequence against the zebrafish genome. Human MYH7 protein sequence was used for BLAST analysis and the top candidate proteins were firstly chosen based on at least 95% query and then further analysed for sequence identity. The query cover shows the percentage of amino acids in MYH7 aligned to sequences in the zebrafish database. Query covers that are less than 100% are due to shorter lengths of amino acid sequences in zebrafish genes compared to the length of human MYH7 sequences. A range of slow, fast and developmental myosin proteins was identified as possible candidates for the zebrafish equivalent to human MYH7 (Table 4.1). Identity scores for protein sequences were ranked for each candidate (Table 4.1) and smyhc1-5, myh7, myh7l and myh6 show the highest identity scores of $82-86 \%$ for protein sequences suggesting close amino acid sequence resemblance to human MYH7. CLUSTALO amino acid sequence alignment was used to compare human MYH proteins to all zebrafish candidate genes from BLAST analysis (Table 4.1, Appendix 4.2). Zebrafish smyhc1-5, myh7, myh7l and myh6 proteins cluster together with human MYH6 and MYH7 proteins suggesting the highest amino acid similarity to MYH6/7 (Fig 4.4). Myha, myhb, myhz1.1, myhz1.2, myhz1.3, myhz2 and myhc4 show amino acid identity scores of 76-78\% however, these proteins were eliminated from candidate proteins as they show greater similarity to non-slow human proteins MYH13, MYH3, MYH8, MYH4, MYH1 and MYH2 (Table 4.1, Appendix 4.2). Proteins showing the lowest \% identity scores were myh9a, myh9b, myh10, myh11a, myh11b and myh14. When comparing the amino acid sequence to human MYH proteins, myh9a, myh9b, myh10,
myh11a, myh11b and myh14 show greater similarity to non-slow human protein MYH14 (Fig 4.4, Appendix 4.2) and were therefore eliminated from the list of candidate proteins. Although smyhc1-5, myh7, myh7l and myh6 show the highest sequence identity to human MYH7 from BLAST analysis, sequence identity alone was not able to describe whether zebrafish genes are closely related to human MYH6 or MYH7. Whether zebrafish genes evolved from a pre-existing MYH6/7 before lobefinned and teleost separation or whether zebrafish proteins derived from a single ancestral slow MyHC and diverged differently to mammals and amphibia.

Table 4.1. List of HsMYH7 candidate genes from protein BLAST analysis.

Gene Name	Protein Sequence Identity (\%)
smyhc1	85.15
smyhc2	85.35
smyhc3	86.08
CU633479.4 (smyhc4)	85.8
CU633479.3 (smyhc5)	86.28
myh7	86.14
myh71	86.23
myh6	82.45
myha	77.02
myhb	78.12
myhz1.1	76.98
myhz1.2	77.03
myhz1.3	77.35
myhz2	77.14
myhc4	77.03
myh7ba	75.27
myh7bb	72.07
myh9a	39.72
myh9b	42.41
myh10	40.89
myh11a	41.56
myh11b	38.17
myh14	39.31

Figure 4.4. Phylogram showing MYH proteins and zebrafish myh proteins.
Cladogram showing CLUSTALO sequence alignment using full amino acid sequences aligned from human MYH proteins: MYH16, MYH15, MYH14, MYH13, MYH8, MYH3, MYH8, MYH4, MYH1, MYH2, MYH6 and MYH7 and zebrafish myh proteins: smyhc1-5, myh7, myh7l, myh6, myha, myhb, myhz1.1, myhz1.2, myhz1.3, myhz2, myhc4, myh9a, myh9b, myh10, myh11a, myh11b and myh14. Full sequence alignment in Appendix 4.2.

4.2.2. MYH6 and MYH7 diverged before lobe-finned and teleost separation

The presence of multiple zebrafish genes compared to two genes in lobe-finned lineage raises the question of how they arose during evolution. Whether there are more duplicates of the genes due to whole-genome duplication events and whether the common ancestor already had both MYH6 and MYH7 or a single slow MyHC. To identify whether the common ancestor of humans and zebrafish have both MYH6 and MYH7 or only a single ancestral slow MyHC, I performed a broader phylogenetic analysis incorporating information from across 76 MYH7-related proteins from a range of animal species (Fig 4.5). In mammals, the divergence of an ancestral slow MyHC gene formed just two MyHC branches, MYH6 and MYH7. In both xenopus and coelacanth, both show divergence of an ancestral slow MYH7 gene form two branches a myh6 and a myh7 branch. In ray-finned lineage (consisting of commonly known bony fish), the divergence of ancestral slow MyHC show more than two branches but form two main clusters, a first cluster consisting of smyhc1-5, myh7 and myh7l and a second

Abstract

cluster consisting of myh6 (Fig 4.5). The formation of two clusters in ray-finned lineage suggests the ancestor had both myh6 and myh7 and one of these genes duplicated to form smyhc1-5, myh7 and myh7l. Since the myh6 cluster and the smyhc1-5, myh7 and myh7l clusters are derived from an ancestral MYH6/7 protein, it was unclear whether the myh6 cluster is closer related to mammalian MYH6 and smyhc1-5, myh7 and myh7l cluster to MYH7 or vice versa. Analysis of key amino acids that describe the differences between the MYH6/7 may indicate whether the nomenclature given to fish MyHC proteins resembles the nomenclature given to mammalian MyHC proteins. Although the formation of two main ray-finned lineage clusters can be observed, a myh6 cluster and a smyhc1-5, myh7 and myh7l cluster, the first cluster consisting of a smyhc1-5/myh7 branch and a myh7l branch appear to be closer related to MYH6/7 in mammals than the second myh6 cluster. In this first cluster alone, the smyhc1-5/myh7 branch and myh7l branch may resemble the divergence of MYH6 and MYH7 seen in mammals (Fig 4.5). This may suggest that the first cluster alone may be closely related to MYH6/7 and ray-finned myh6 may have evolved independently of ancestral MYH6/7. However, both smyhc1-5, myh7 and myh7l cluster and myh6 cluster do not cluster with fast MyHC from fish or mammals. Zebrafish myha, myhb, myhz1.1, myhz1.2, myhz1.3, myhz2 and myhc4 all cluster with mammalian fast MyHC proteins (Fig 4.5) suggesting that these genes are closely related to fast MyHC genes than they are to MYH6/7 and that there was an ancestral divergence of fast and slow. In conclusion, the common ancestor of humans and zebrafish have both an MYH6 and MYH7 and in zebrafish, both a myh6 cluster and a smyhc1-5, myh7 and myh7l cluster are closely related to human MYH6/7 but further analysis in protein sequence will be required to identify which of these clusters is closer related to MYH7.

Figure 4.5. Phylogenetic neighbour-joining tree analysis of MYH6 and MYH7 related genes of 76 proteins across several vertebrates.
Phylogenetic neighbour-joining tree of MYH6 and MYH7 related genes. Mammalian amphibian and lobe-finned lineage show divergence in evolution to form MYH7 and MYH6 branches. Ray-finned lineage show more than one divergence to form myh6, myh7, myh7l and smyhc1-5. Phylogenetic neighbour-joining tree using protein sequence alignments made using MEGA-X Software (https://www.megasoftware.net/home).

4.2.3. Amino acid sequences unique to MYH7 are found in smyhc1-5, myh7 and myh7l

The nomenclature of zebrafish genes may not be correctly named to the corresponding human gene name. An analysis of amino acids unique to MYH6 vs MYH7 within mammalian proteins alone will first describe the divergence between mammalian MYH6/7. These amino acids can be used to compare MyHCs from ray-finned fish to describe whether zebrafish myh6 resemble human MYH6 and zebrafish smyhc1-5, myh7 and myh7l to human MYH7.

To identify whether ray-finned myh6 branch or smyhc1-5, myh7 and myh7l branches are more closely related to human MYH7, I investigated the amino acid sequences from lobe-finned MYH6 and MYH7 to find amino acids that define the separation between the two proteins. A variable amino acid describes changes in amino acid sequence between homologs. A signature amino acid for MYH6/7 describes a variation at one amino acid site to distinguish only between the two proteins. Protein sequences from MYH6 and MYH7 were aligned using CLUSTALW and initially, variable amino acids were selected that differentiated between the two MyHC proteins (Fig 4.6). There were 29 variable amino acids identified in the mammalian lineage (Fig 4.7A). Variable amino acids were initially determined as shown for amino acid 35 (Fig 4.6). The variable amino acid at this site is Threonine (T) for MYH6 and Lysine (K) for MYH7 across mammals (Fig 4.6). In the same position in the zebrafish smyhc1-5, myh7 and myh7l proteins, the aligned amino acid is K, as in lobe-finned MYH7. In ray-finned fish myh6, the aligned amino acid 35 is T, a sequence identical to mammalian MYH6 (Fig 4.6). Notably, the variable amino acid 35 is also a signature amino acid that can be used to distinguish between MYH6/7 in mammals and teleost fish.

Figure 4.6. A mixture of lobe-finned MYH6 and MYH7 signatures was observed in ray-finned lineage.
A) Example of signature amino acid residue to distinguish between MYH6 and MYH7. Mammalian MYH7 protein sequence shows variant K35 and in mammalian MYH6, the variant T35. In Zebrafish at equivalent amino acid 35, smyhc1-5, myh7 and myh7l show K35 residue and zebrafish myh6 show T36 residue.

Amongst the 29 variable amino acids, I isolated amino acids that were able to distinguish between ray finned smyhc genes, myh7 and myh7l to myh6 (Fig 4.7B). Amongst ray finned genes in Fig 4.7B, \%identity scores to either lobe finned MYH6 or MYH7 variable amino acids were determined (Fig 4.7B). The same variable/signature amino acid pattern observed in example aa 35 continues in zebrafish MyHC proteins at amino acids 282 and 318 in the S1 region and 1111 in the S2 region with amino acids D-T-L present in zebrafish smyhc1-5, myh7 and myh7l identical to mammalian MYH7 and amino acids N-V-N present in myh6 identical to mammalian MYH6 (Fig 4.7A). At these amino acids, 4 variable amino acids from zebrafish myh6 were identical to mammalian MYH6 and smyhc1-5, myh7 and myh7I to mammalian MYH7 (Fig 4.7A). Variable amino acids 35, 282, 318 and 1111 may be signatures to distinguish between MYH6 and MYH7 across other ray-finned fish however, further analysis from

MyHCs from other ray-finned fish will describe which variable amino acids are signatures or ancestral MYH6/7 amino acids. A comparison of the 4 variable amino acids with other ray-finned fish MyHC genes calculated a percentage identity score to mammalian MYH6/7 (Fig 4.7B). Ray-finned MyHCs were categorised into two groups, the first group being smyhc1-5, myh7 and myh7l and the second group of myh6. Amino acids from the two groups were compared to variable amino acids from MYH7 and MYH6 to identify which variable amino acids are signatures to describe MYH6/7 in ray-finned fish and mammals. When comparing ray-finned smyhc1-5, myh7 and myh7l to mammalian MYH7 at amino acids $35,282,318$ and 1111, the percentage identity for pattern K-D-T-L were $79 \%, 100 \%, 100 \%$ and 93% respectively (Fig 4.7B). In a comparison of ray-finned myh6 to mammalian MYH6, the percentage identity for pattern T-N-V-N were 100\%, 100\%, 100% and 75% respectively. Notably, at the same four variable amino acid sites, ray-finned smyhc1-5, myh7 and myh7l show 0\% identity to mammalian MYH6 and ray-finned myh6 show 0\% identity to mammalian MYH7 (Fig 4.7B). At these four amino acids, these are variable amino acids that can be described as signature amino acids as these amino acids can distinguish between MYH6/7 in both mammals and ray-finned fish. However, there is one counterexample to this pattern at amino acid 1093 in the $S 2$ region where mammals, ray-finned smyhc1-5, myh7 and myh7l are 79\% identical MYH6 variant R1093 and ray-finned myh6 is 75% identical mammalian MYH7 variant (Fig 4.7B). The remaining amino acids in Fig 4.7B show a combination of MYH6/7 variant amino acids where there was no clear distinction between smyhc1-5, myh7 and myh7l group or the myh6 group to mammalian MYH6/7. The overall percentage identity to either MYH6 or MYH7 from both ray-finned groups shows that smyhc1-5, myh7 and myh7l are 45\% identical to mammalian MYH7 and 23\% identical to mammalian MYH6. Ray-finned myh6 is 38\% identical to mammalian MYH6 and 18\% identical to mammalian MYH7 suggesting the group smyhc15, myh7 and myh7l are closely related to MYH7 and group myh6 are closely related to MYH6. Despite considering amino acids in Fig. 4.7B to determine whether ray-finned proteins are more identical to mammalian MYH6/7, the key consideration to distinguish between MYH6 and MYH7 are determined from signature amino acids $35,282,318$ and 1111. Using these amino acids with Xenopus, Coelacanth, and old teleost fish, MYH7 signatures were identified with 100% identity to MYH7 signature K-D-T-L amino acid pattern and MYH6 signatures were identified with 29% identity to MYH6 signature T-N-VN amino acid pattern (Appendix 4.1). Signature amino acids can distinguish MYH7 proteins from MYH6 proteins, however, MYH6 signature amino acids show divergence in amino acids in teleost, lobefinned fish, and amphibians (Appendix 4.1).

Examination of further variable amino acid sites showing identical sequences to either only MYH6 or MYH7 can describe which amino acids are ancestral to ray-finned smyhc1-5, myh7, myh7l and myh6.

Amino acids from aa36 to aa197, aa1089, aa1092 and aa1518 show a high identity percentage (<50\%) to lobe-finned MYH6 variant with amino acid sequence E-C-A-S-Q-S-E (Fig 4.7Ci). Amino acids aa319, aa1256 and in the LMM region, aa1323 with amino acid sequence $T-M-V$ show high sequence similarity to MYH7 signature and 0\% identity to mammalian MYH6 (Fig 4.7Ci). Further comparison of amino acids in Fig. 4.7Ci to fast MyHC (MYH1/2/4) proteins describe whether variant amino acids describe an ancestral to only slow MyHC or ancestral to fast, slow and cardiac MyHCs (Fig 4.7Cii). Amino acids with a high percentage identity for either MYH7, MYH6 or MYH1/2/4 were identified in aa37, aa111, aa319, aa1089 aa1092, aa1249, aa1323 and aa1518 suggesting amino acid sequence in ancestral for slow, fast and cardiac MyHC (Fig 4.7Cii). At amino acids 197 and 1256, ray-finned smyhc16 myh7, myh7l and myh6 show identical sequence to mammalian MYH6 and fast ray-finned MyHCs show high amino acid identity to fast MYH1/2/4, suggesting amino acid S197 and Y1256 are ancestral to MYH6/7 and amino acid T197 and L1256 are ancestral to fast MyHC (Fig 4.7Cii). Amino acids in Fig. 4.4C describe ancestral MyHC protein sequences but do not distinguish between MYH6/7 as a signature amino acid.

To summarise, there are 4 signature amino acids describing ray-finned smyhc1-5, myh7 and myh7l with identical amino acids to mammalian MYH7 and ray-finned myh6 to mammalian MYH6 (Fig 4.7B). There were 12 amino acids describing ancestral MyHCs where 10 of these variable amino acids were ancestral to slow, fast and cardiac MyHCs and 2 amino acids were ancestral to only MYH6/7 (Fig 4.7C). When excluding variant amino acids found in ancestral MyHCs in Fig. 4.7C, \% identity of remaining variant amino acids in Fig. 4.7B show smyhc1-5, myh7 and myh7l show a higher percentage identity to mammalian MYH7 and less identity to mammalian MYH6 and ray-finned myh6 show higher percentage identity to mammalian MYH6 than to mammalian MYH7. The distinction between the two ray-finned MyHC groups into MYH6 or MYH7 groups indicates that the common ancestor of mammals and ray-finned fish had a distinguished MYH6 and MYH7 present. Since zebrafish smyhc1-5, myh7 and myh7l have a higher \% identity to human MYH7 than to human MYH6, smyhc1-5, myh7 and myh7l remain as the zebrafish equivalent gene to human MYH7 and zebrafish myh6 is excluded as this protein show higher identity to mammalian MYH6. Although smyhc1-5, myh7 and myh7l show a high \% identity to human MYH7, the phylogenetic tree describes the divergence of these proteins into three branches: smyhc1-5, myh7 and myh7l. To identify whether these genes are orthologous to human MYH7 and whether there are many paralogs in zebrafish due to teleost duplication events and subsequent zebrafish duplication events, synteny of the genes was examined in 4.2.4.

Figure 4.7. The mixture of lobe-finned MYH6 and MYH7 signatures was observed in ray-finned lineage.
A) Species from lobe-finned lineage and ray-finned lineage in CLUSTALW and phylogenetic tree (neighbour joining) were used for the analysis of sequences. There are 29 variable amino acids identified through technique in Fig 4.6. Lobe finned lineage show MYH7 (pink) and MYH6 (green) signatures that distinguish between them as analysed. Residues in zebrafish show a mixture of MYH6 and MYH7 signatures. Amino acid locations are labelled with MYH protein regions S1(blue), S2(pink) and LMM (purple). CLUSTALW alignments were made using MEGA-X Software B) Variable amino acids that could categorise MYH6 and MYH7 within both lobe finned and ray finned MyHC genes. C) i) amino acids that were unable to categorise ray finned MyHC genes to either the MYH6 or the MYH7 cluster but rather describe the ancestral slow MyHC gene. ii) comparison of amino acid \%identity between ancestral slow amino acid (MYH6/7) sequence and fast MyHC signatures (yellow).

4.2.4. Zebrafish smyhc1-5, myh7 and myh7l syntenic to human MYH7

To identify whether zebrafish smyhc1-5, myh7 and myh7l are orthologous to human MYH7, synteny was examined between mammals including humans, gorillas and mice, lizard as an amphibian example and a range of ray-finned fish including zebrafish, mummichog, platyfish and goldfish. MYH6 and MYH7 are located next to each other on chromosome 14 with IL25 and CMTM5 downstream to MYH7 and upstream to MYH6 are NGDN, ZFHX2, THTPA, AP1G2 and JPH4, and this is conserved across the mammals such as the mouse and gorilla (Fig 4.8). Common wall lizards have NGDN, ZFHX2, THTPA and AP1G2 upstream to MYH7 and CMTM5 downstream. Almost all flanking genes of lobe-finned lineage are conserved. In ray-finned lineage, Mummichog smyhc1 have no similar genes downstream but has ngdn, pabpn, ZFHX4 and thtpa upstream to smyhc1. Platyfish have pabpn, ZFHX4 and thtpa upstream smyhc1 but no similar genes downstream. Zebrafish smyhc1-5 and myh7/myh7l, Goldfish smyhc1-4 and myh7 and platyfish myh7/myh7l share no similar flanking genes to humans, Gorilla, Lizard and mice however there are some conserved flanking genes shared with platyfish smyhc1 and mummichog smyhc1. Thus, upstream flanking genes of zebrafish smyhc1-5 are shared by goldfish smyhc1-4, platyfish and mummichog smyhc1 and upstream flanking genes of Mummichog smyhc1 are shared by lobe-finned lineage MYH7.

Zebrafish have two clusters of human MYH7 equivalent genes: a smyhc1-5 cluster and a myh7/71 cluster. To identify whether zebrafish myh7 and myh7l exist from a teleost genome duplication event, synteny was examined between zebrafish smyhc1-5 and myh7/myh7l. Zebrafish smyhc1, smyhc2, smyhc3, smyhc4 and smyhc5 are located next to each other on chromosome 24 with KCNH2 downstream to smyhc1 and cebp1, wdr48a, scnlab and acvr2ba upstream to smyhc5. Zebrafish myh7 and myh7l are present next to each other on chromosome 2 with kcnh $2 a$ and map4l downstream to $m y h 7$ and $w d r 48 b$ and $a c v r 2 b b$ are upstream to myh7l. To identify whether smyhc genes and myh7/myh7l exist due to a teleost duplication event or a zebrafish specific duplication event, a synteny analysis between zebrafish myh7/7l with goldfish myh7 and platyfish myh7/myh7l. Goldfish have kcnh2a and map4l downstream myh7 and trnau1abp, ano8a, plvapa, nr2f6 and kcn1a upstream myh7. Platyfish have map4l downstream to myh7 and trnau1abp is upstream to myh7. Almost all flanking genes of myh7/myh7l are shared between zebrafish, goldfish and platyfish suggesting that smyhc genes and myh7/7l genes exist from a teleost duplication event.

Mammalian MYH6/7 are found located next to each other but in teleost fish, smyhc genes and myh7/71 genes are separate from myh6 genes. Zebrafish have slc24a29, slc25a47a, dIO3B, ppp2r5cb and hsp90aa1.2 downstream myh6 (Fig 4.9). Atlantic herring, channel catfish and goldfish myh6 also share 98
similar flaking genes to zebrafish myh6 showing conservation in teleost fish (Fig 4.9). Humans have SLC24A29, DIO3B, PPP2R5CB and HSP90AA1.2 594+ genes upstream to MYH6/7 suggesting there was a chromosome inversion near the MYH6/7 site in teleost fish where MYH6 separated from MYH7 where teleost myh6 is orthologous to mammalian MYH6. In conclusion, there are two clusters of zebrafish genes orthologous to human MYH7 which are smyhc1-5 and myh7/myh7l where both clusters of genes are paralogous to each other.

Figure 4.8. Synteny of flanking genes in lobe-finned MYH7 to ray-finned smyhc and myh7 genes.
Colours indicate homologs of genes and all genes present adjacent are directly neighbour genes unless // is present. Chr: chromosome.

Figure 4.9. Synteny of flanking genes in human MYH6 to ray-finned myh6 genes.
Colours indicate homologs of genes and all genes present adjacent are directly neighbour genes unless // is present. Chr: chromosome.

4.2.5. LDM and MSM mutations affect conserved amino acids in MYH7

Mutations in MYH7 are relatively subtle, for example, one amino acid change or an amino acid deletion. Despite such subtle mutations, they have a huge impact on clinical phenotype and suggest mutations may occur in highly conserved amino acids in the slow myosin LMM region, thus affecting the head positioning of slow myosin shown in chapter 3.2.2. To identify whether LDM or MSM mutations in human MYH7 affect highly conserved amino acids, CLUSTALO protein sequence alignment of the LMM region using sequences from human MYH7 and zebrafish smyhc1-5, myh7 and myh7l (Fig 4.10). There are 31/41 patient mutations affecting conserved amino acids where 100% sequence identity is shared between human MYH7 and zebrafish smyhc1-5, myh7 and myh7l. There are $3 / 41$ patient mutations affect highly conserved amino acids but not 100% sequence identity between human MYH7 and zebrafish smyhc1-5, myh7 and myh7l. Amongst the 3 amino acids affected by patient mutations, amino acid L1492 is present in smyhc1-5 and myh7 but not myh7l, L1646 is present in smyhc1-5 and not myh7 and myh7l, X1936 is present in smyhc1-5 and myh7l but not in myh7l. At amino acids L1492, L1646 and X1936, zebrafish smyhc1-5 marginally show a higher number of conserved amino acids affected by LDM and MSM mutations than myh7 and myh7l suggesting overall smyhc1-5 share more conserved amino acids with human MYH7. 4/41 patient mutations affect variable amino acids where zebrafish amino acid variant diverged from human MYH7 amino acid sequence. The majority of LDM and MSM mutations affect highly conserved amino acids in both humans and zebrafish thus, zebrafish smyhc1-5 share the most similarity in key functional amino acids for myosin function with human MYH7.

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7 Dr.smyhc1 Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr. smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh7l

LEKEKSEFKLELDDVTSNMEQIIKAKANLEKMCRTLEDQMNEHRSKAEETQRSVNDLTSQ 60 LEKEKSELKLELDDVVSNMEQIVKSKSNLEKMCRTLEDQMSEYRTKAEEGQRTINDFTMQ LEKEKSELRLELDDVVSNMEQIVKAKANLEKMCRTLEDQMSEYRTKSEEGQRTINDFTMQ LEKEKSELRLELDDVVSNMEQIAKAKANLEKMCRTLEDQMSEYRTKYEEGQRSINDFTMK LEKEKSELRLELDDVVSNMEQIAKAKANLEKMCRTLEDQMSEYRTKYEEGQRSINDFTMK LEKEKSELRLELDDVVSNMEQLAKAKANLEKICRTLEDQMSEYRTKYEEGQRSINDFTMQ LEKEKSELRLELDDVVSNMEHVVKTKANLEKMTRSLEDQMNEYKTKYEEGQRCINDFTMQ LEKEKSELRLELDDVASSMEHIVKSKTNMEKVNRTLEDQMNEYRNKCEEYQRSLNDFTTQ $\star * * * * * *:: * * * * * * . * . * *:: ~ *: *: *: * *: *: * * * * * . *:::^{*} * * * *: * *: *:$

RAKLQTENGELSRQLDEKEALISQLTRGKLTYTQQLEDLKRQLEEEVKAKNALAHALQSA KAKLQTENGELSRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSA KAKLQTENGELSRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSA KAKLQTENGELSRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSA KAKLQTENGELSRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSA KARLQTENGELTRQLEEKDSLVSQLTRSKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSA KSKLQSENGELSRQLEEKDSLVSQLTRSKMSYTQQIEDLKRQLEEETKAKSALAHAVQSA KAKLQAENDEFSRQLEEKESLVSQLTRGKNSFSQQLEDLKRQLDEEIKAKNALAHALQSA :: :**:**.*: : ***:**: :*:*****.* : : : **:*******:** ***.*****:***

RHDCDLLREQYEEETEAKAELQRVLSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQR RHDSDLLREQFEEEQEAKAELQRSLSKTNSEVAQWRTKYETDAIQRTEELEDAKKKLAQR RHDAELLREQYEEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQR RHDAELLREQYEEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEDAKKKLAQR RHDAELLREQYEEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEDAKKKLAQR RHDSDLLREQYEEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEDAKKKLAQR RHDTDLLREQYEEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQR RHDTDLLREQYEEEQEAKAELQRSMSKANTEVAQWRTKYETDAIQRTEELEEAKKKLAQR A1440del

A1439P
LQEAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKILAEW 240 LQEAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEW LQDAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEW LQDAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEW LQDAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEW LQDAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEW LQETEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDLERSNAAAAALDKKQRNFDKVLSEW LQEAEEAVEAVNAKCSSLEKTKHRLQNEIEDLMVDVERSNTAAASLDKKQRHFDKIISEW 240

L1467P L1481P. L1492P R1500P E1507del
KQKYEESQSELESSQKEARSLSTELFKLKNAYEESLEHLETFKRENKNLQEEISDLTEQL 300 KQKYEESQTELESAQKESRSLSTELFKLKNSYEEVLDQLETMKRENKNLQEEISDLTEQL 300 KQKYEESQTELESAQKESRSLSTELFKLKNSYEESLDHLESMKRENKNLQEEISDLTEQL 300 KQKYEESQSELESSQKEARSLSTELFKLKNSYEESLDHLESMKRENKNLQEEIADLTEQI 300 KQKYEESQSELESSQKEARSLSTELFKLKNSYEESLDHLESMKRENKNLQEEIADLTEQI 300 KQKYEESQSELESSQKEARSLSTELFKLKNSYEESLDHLESMKRENKNLQEEIADLTEQI 300 KQKFEESQAELESSQKEARCLSTELFKLKNSYEEALDHLETMKRENKNLQEEISDLTEQL 300 KQKYEESQCELESSQKEARSLSTELFKLKNSYEESMDHLETMKRENKILQEEISDLTEQL 300 ***: **** ****:***:*.**********:*** : : : **: : ***** *****: *****:

Q1541P
E1573K
GSSGKTIHELEKVRKQLEAEKMELQSALEEAEASLEHEEGKILRAQLEFNQIKAEIERKL 360 GETGKSIHELEKIRKQLEQEKAEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKL 360 GESGKNIHELEKVRKQLEQEKQEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKL 360 GESGKNIHELEKMRKQLEQEKAEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKL 360 GESGKNIHELEKMRKQLEQEKAEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKL 360 GESGKNIHELEKMRKQLEQEKAEIQAALEEAEGSLEHEEGKILRAQLEFSQIKADIERKL 360 GEGGKSIHELEKMRKQLEQEKSEIQSALEEAEASLEHEEGKILRAQLEFSQIKADIERKL 360 GEGGKTIHELEKVRKQLEQEKAEIQAALEEAEGSLEHEEGKILRTQLEFNQIKADIERKL 360

360
360360360360

Figure 4.10. CLUSTALO protein sequence alignment of LMM regions from human MYH7 gene with zebrafish smyhc1.

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr. smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l

Hs.MYH7
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l

			LfsX32
	E1883K H1901L	E1914L X19	$6 \mathrm{WfsX32}$
Hs.MYH7	AYKRQAEEAEEQANTNLSKFRKVQHELDEAEERADIA	ESQVNKLRAKSRDIGTKGLNEE-	719
Dr.smyhc1	SYKRAAEEAEEQANSNLGKFRKLQHELDEAEERADIA	ESQVNKMRAKSRDS GPKKGHDEE	720
Dr.smyhc2	SYKRTAEEAEEQANSNLGKFRKLQHELDEAEERADIA	ESQVNKLRAKSRDSGSKKGADEE	720
Dr.smyhc3	SYKRAAEEAEEQANSNLGKFRKLQHELDEAEERADIA	ESQVNKLRAKSRDTGSKKGHDEE	720
Dr.smyhc 4	SYKRAAEEAEEQANSNLGKFRKLQHELDEAEERADIA	ESQVNKLRAKSRDTGSKKGHDEE	720
Dr.smyhc5	SYKRAAEEAEEQANSNLTKFRKLQHELDEAEERADIA	ESQVNKLRAKSRDTGSKKGQEEE	720
Dr.myh7	AYKRAAEEAEEQANTNLSKFRKIQHELDEAEERADIA	ESQVNKLRAKSRDVSSKKGHDQE	720
Dr.myh71	AYKRAAEESEEQANVHLGKFRKLQHELDEAEERADIA	ESQVNKLRAKSRDVGPKKAFDEE	720
	:*** ***:***** S^{*} ****:*************	*****:****** * :	

Figure 4.10. CLUSTALO protein sequence alignment of LMM regions from human MYH7 gene with zebrafish smyhc1.
Human MYH7 protein sequence shows high levels of sequence identity in the LMM. Sequence alignment using CLUSTALO (https://www.ebi.ac.uk/Tools/msa/clustalo/). Abbreviations and colour codes: LDM - Laing distal myopathy, MSM - myosin storage myopathy, $\star-100 \%$ sequence identity, : - $75 \%+$ sequence identity, $:-<75 \%$ sequence identity.

4.3. Discussion

In this chapter, I look to see which zebrafish gene to target to generate an accurate disease model of mutations found in human MYH7. There are several main findings. Firstly, many zebrafish equivalent genes from my initial BLAST search in 4.2.1, suggested candidates were smyhc1-5, myh7, myh7l and myh6. Secondly, in 4.2.2. protein sequence alignment and drawing the phylogenetic tree shows two main branches for mammalian MYH6 and MYH7 and two main branches for ray-finned fish smyhc15/myh7/myh7l and myh6. Thirdly, there are 4 signature amino acid sequences distinguishing MYH6 from MYH7. Ray-finned smyhc1-5, myh7 and myh7l show a higher resemblance to mammalian MYH7 and ray-finned myh6 to mammalian MYH6. Fourthly, I identified gene synteny between zebrafish smyhc1-5, myh7 and myh7l to human MYH7 and zebrafish myh6 to human MYH6. Lastly, CLUSTALO amino acid alignment between human MYH7 and zebrafish smyhc1-5, myh7 and myh7l show the majority of LDM and MSM patient mutations affect highly conserved amino acids.

4.3.1. MYH6 and MYH7 existed in the common ancestor of human and zebrafish

Mammalian MYH6 and MYH7 are located next to each other on the same chromosome and exist from a duplication event (Yamauchi-Takihara et al., 1989; Gulick et al., 1991). Consistent with current data, synteny analysis between human, gorilla and mouse show MYH6 and MYH7 positioned in tandem with conserved flanking genes (Fig 4.8). However, it was unclear whether the presence of MYH6 and MYH7 seen in mammals were conserved in birds, fish and amphibians (Desjardins et al., 2002). Contradictory to Desjardins et al. (2002), Ensembl search in tropical claw frogs and coelacanth, Myh6 and Myh7 orthologs exist in tandem with conserved flanking genes to mammals suggesting MYH6/7 are
conserved in amphibian and lobe-finned fish (Appendix 4.1). However, in chickens, there are three slow MyHC genes MYH15, MYH7B and MYH7 (Gonzalez-Sanchez and Bader, 1985; Yutzey, Rhee and Bader, 1994; Chen et al., 1997; Machida et al., 2002) where MYH15 and MYH7B are orthologous to mammalian MYH15 and MYH7B (Desjardins et al., 2002) but it was unclear whether MYH7 may be orthologous to mammalian MYH6/7 where an MYH6/7 may have existed ancestral avian lineage and may have been lost during avian evolution.

Zebrafish smyhc1-5 are orthologous to human MYH6/7 (McGuigan, Phillips and Postlethwait, 2004). However, it was difficult to identify whether MYH6 and MYH7 exist in the common ancestor of zebrafish in ray-finned linage or whether there was a unique radiation of ray-finned myh genes from a single ancestral MYH6/7 gene. CLUSTALO protein alignment between a range of teleost fish to mammalian MYH6/7 show teleost smyhc1-5, myh7, myh7l cluster together and teleost myh6 clustered together (Fig 4.5). Teleost smyhc1-5, myh7, and myh7l clusters are orthologous to mammalian MYH6/7 (Fig 4.5) supporting data from McGuigan. (2004) and additionally, the teleost myh6 cluster are orthologous to mammalian MYH6/7 suggesting MYH6/7 exist in the common ancestor of both mammals and teleost. Although teleost smyhc1-5, myh7, myh7l and myh6 cluster with mammalian MYH6/7, teleost smyhc1-5, myh7 and myh7l genes do not exist in tandem with myh6 genes. Synteny analysis show separation of smyhc1-5, myh7 and myh7l from myh6 genes in ray-finned lineage but not in mammals and amphibians (Fig 4.8, Fig 4.9) suggesting ray-finned lineage smyhc1-5, myh7, myh7l and myh6 genes did not radiate from a single ancestral MYH gene but from an ancestor with pre-existing MYH6/7. The present finding rejects the hypothesis that zebrafish do not show conservation of MYH6/7 in Desjardins. (2002) as our findings suggest the common ancestor of both humans and zebrafish have pre-existing MYH6/7. In conclusion, the presence of MYH6 and MYH7 in tandem is conserved across mammals, amphibians and lobe-finned fish and in contrast, ray-finned lineage show conservation of MYH6/7 but a separation of gene location of MYH6 (myh6) from MYH7 (smyhc1-5, myh7, myh7l) genes.

4.3.2. Zebrafish smyhc1-5, myh7 and myh7l are orthologous to human MYH7

Zebrafish smyhc1-5, myh7, myh7l and myh6 are orthologous to human MYH6/7 however there was no current data to suggest which of these zebrafish myh genes were orthologous to either MYH6 or to MYH7. In mammals, MYH6/7 have fewer exons than fast and developmental MYH genes. Mammalian MYH6 do not have an intron 13 and 37 and MYH7 only lack intron 37 (Liew et al., 1990; Epp et al., 1993; McGuigan, Phillips and Postlethwait, 2004), teleost do not show the same pattern of
missing intron seen in mammals to distinguish between $M Y H 6 / 7$. When determining differences between MYH6/7 amino acids in 4.2.3. there are 4 signature amino acids to distinguish between MYH6/7 in mammals and ray-finned fish (Fig 4.7). Utilising the 4 signature amino acids, zebrafish smyhc1-5, myh7 and myh7l are shown to be orthologous to human MYH7 and zebrafish myh6 to human MYH6. Present findings complement studies of the expression pattern of human MYH7 and zebrafish orthologs smyhc1-3 and myh7. Human MYH7 is expressed both in slow skeletal muscle and in the heart ventricle and Zebrafish have separate myh orthologs expressing smyhc1-3 only in slow skeletal muscle (Stone Elworthy et al., 2008) and myh7 is expressed in the heart ventricle (Park et al., 2009). Human MYH6 is predominantly expressed in the heart atrium and complimenting this expression pattern, zebrafish myh6 is also expressed in the heart atrium (Huang et al., 2005). Thus, I show zebrafish smyhc1-5, myh7 and myh7l are orthologous to human MYH7 and not to human MYH6.

4.3.3. smyhc1-5, myh7 and myh7l exist from a teleost duplication event

In teleost fish, including zebrafish, there are many slow MyHC orthologs to the one MYH7 in mammals (McGuigan, Phillips and Postlethwait, 2004; Watabe and Ikeda, 2006; Ikeda et al., 2007) as teleost fish have undergone an additional round of genome duplication (Amores et al., 1998; Meyer and Schartl, 1999; Taylor et al., 2001). Zebrafish smyhc1-5 share a syntenic relationship to myh7 and myh7l (Fig 4.8) and may have arisen from a teleost duplication event of smyhc to myh7 on another locus has also been observed in goldfish and platyfish (Fig 4.8). Both zebrafish smyhc and myh7 appear to have undergone further tandem duplication to form smyhc2-5 and myh7l, respectively. Platyfish only have one smyhc gene and two myh7 genes, whereas goldfish have four smyhc genes and one myh7 gene (Fig 4.8) suggesting either gene duplication occurred independently in zebrafish in comparison to new teleost fish or gene duplication may have occurred and subsequently lost in new teleost fish. Studies on smyhc1-5 from McGuigan et al. (2004) show tandemly arrayed genes are either all skeletal myhc genes or all cardiac. Smyhc1-5 are shown to be paralogs as they have high sequence similarity between smyhc genes with minimal gene conversion and intergenic region lengths similar to those in fast skeletal genes (Weiss et al., 1999; McGuigan, Phillips and Postlethwait, 2004). Tandem duplication is a result of more recent gene conversion as there is a more varied number of tandem gene duplication events in platyfish, goldfish and zebrafish. The increased number of tandemly duplicated genes makes it difficult to isolate a single ortholog to human MYH7 but rather a cluster of zebrafish genes reflects the function of a single gene in humans. Despite the difficulty in isolating one single gene as the zebrafish equivalent gene, zebrafish smyhc1-3 are only expressed in slow skeletal muscle which may
prove advantageous in studying developmental defects associated with human MYH7 mutations affecting slow muscle with no cardiomyopathy.

Smyhc1 is predominantly expressed at the early stages of development and subsequently replaced by smyhc2 and smyhc3 in adulthood (Stone Elworthy et al., 2008), smyhc1 may prove advantageous to target for zebrafish KO to study early developmental defects. Anti-sense morpholino (AMO) experiments to knock down smyhc1 in Danio rerio revealed paralysed embryos with defective myosin filament organisation (Codina et al., 2010), and defective M-line organisation (Xu et al., 2012) suggesting a role in slow skeletal muscle at early stages of development. There have been knockdown experiments on zebrafish targeting smyhc1-4 by co-injection of smyhc1 AMO, which targeted the 5'UTR of smyhc1, and smyhc2-4 AMO targeting highly conserved coding sequence (in smyhc2-4) in the first exon (Naganawa and Hirata, 2011). Smyhc1-4 knockdown shows no motility following touch at 24 hpf but shows normal burst swimming at 48 hpf (Naganawa and Hirata, 2011). Lack of contraction at 24 hpf followed by contraction at 48 hpf suggest knockdown show an effect on slow muscle and not fast (Naganawa and Hirata, 2011). Knockdown of smyhc1-4 shows a role in slow skeletal muscle as shown in Codina et al. (2010), however, the additional phenotype was not reported. Mutations in myh7 producing early stop codons show defects in ventricle contractility respectively (Auman et al., 2007). As no skeletal muscle phenotype was described in these mutants, they may have little role in skeletal muscle thus, myh7 is not ideal for studying defects in slow muscle. No known phenotype was identified with myh7l and smyhc5. Overall, present data suggest knockdown of smyhc1 shows a predominant slow skeletal muscle phenotype and thus, shows a high chance for generating an observable phenotype when creating disease mutations.

4.3.4. Conclusion

In conclusion, I demonstrate that the common ancestor of humans and zebrafish had a pre-existing MYH6 and MYH7 and zebrafish smyhc1-5, myh7, myh7l and myh6 are orthologous to this clade. Signature amino acids were able to distinguish between MYH6 and MYH7 in mammals and teleost fish where smyhc1-5, myh7 and myh7I are orthologous to mammalian MYH7. I provide evidence for a whole-genome duplication event and subsequent gene duplications in zebrafish smyhc1-5, myh7 and myh7l using gene synteny analysis. Smyhc1 show broad localisation of expression in the slow skeletal muscle at the early stages of development with evidence for early developmental defects in slow muscle (Codina et al., 2010; Xu et al., 2012). In chapter 5, I target smyhc1 using CRISPR/Cas9 to create null mutations to identify phenotypes associated with loss of smyhc1 function. By studying the
phenotype associated with smyhc1 null mutants, it will aid in identifying possible phenotypes associated with more subtle LDM and MSM mutations.

Chapter 5

Studying sarcomere assembly in the absence of smyhc1

5.1. Introduction

Laing Distal Myopathy (LDM) and Myosin Storage Myopathy (MSM) mutations affecting early stages of developmental defects are unknown and clinical phenotypes have only been analysed in adults and children. In the previous chapter, I demonstrated that zebrafish smyhc1 was orthologous to human MYH7, particularly in the role in sarcomere assembly during early development. In this chapter, I aimed to assess the role of smyhc1 in early development using loss of function (LOF) experiments.

During development, myosin molecules self-assemble into thick filaments by interlocking at their Cterminal coiled-coil rod domain (Atkinson and Stewart, 1991; Sohn et al., 1997; Ikebe et al., 2001; Ojima et al., 2015). In mammals, embryonic (MyHC-emb) and neonatal (MyHC-neo) myosin molecules are predominantly present in thick filaments of fast skeletal muscle during early stages of development (Whalen et al., 1981) and are later expressed in a specialized subset of muscles such as the extraocular, masticatory, laryngeal muscles and muscle spindles (Schiaffino et al., 2015). In mice and rats, MyHC-emb is expressed at E9.5, with expression peaking at E15 (Lyons et al., 1990); MyHCneo is then expressed at E10.5 and peak at 5 days post-birth (Lyons et al., 1990; Lu et al., 1999). These early myosin molecules are later replaced with adult myosin as the animal matures (Lowey, Waller and Bandman, 1991). Specifically, MyHC-2A and MyHC-2X are expressed during mammalian fetal and late fetal stages through to adulthood and MyHC-2B is expressed at postnatal stages through to adulthood (Schiaffino et al., 2015). Thus, embryonic, and neonatal MyHC are predominantly expressed in fast muscle during early development and is replaced by fast skeletal MyHC in adulthood.

Slow MyHC expression shows a different expression pattern to fast MyHC. Mammalian slow myosin (MYH7) is expressed during embryonic and fetal developmental stages through to adulthood in slow skeletal muscle and heart ventricles (Narusawa et al., 1987; Schiaffino et al., 2015). Chick embryos express three embryonic MyHCs during early embryonic development and one neonatal MyHC expressed in neonatal developmental stages and both embryonic and neonatal MyHC genes continue to express in skeletal muscle in adulthood in contrast to only a subset of muscle seen in mammals (Bandman and Rosser, 2000). In slow muscle fibres, MYH15 (SM1), MYH7b (SM2) and MYH7 (SM3) are expressed in skeletal muscle during embryonic development and continue to express in skeletal
muscle through to adulthood (Tidyman, Moore and Bandman, 1997; Rushbrook et al., 1998), alongside the single fast MyHC (Merrifield et al., 1989; Tidyman, Moore and Bandman, 1997). Only pectoral muscles in birds have a complete switch from embryonic MyHC expression to exclusively fast MyHC (Bandman and Rosser, 2000). In zebrafish, there are six fast MyHC genes clustered on chromosome 5. Fmyhc1.1, fmyhc1.2, and fmyhc1.3 are predominantly expressed only in fast skeletal muscles and fmyhc2.1, fmyhc2.2 and fmyhc2.3 are expressed in fast skeletal muscles and head muscles. In slow skeletal muscle, smyhc1 is predominantly expressed during embryonic development (Stone Elworthy et al., 2008). Zebrafish smyhc2 and smyhc3 are expressed in a subset of muscle at the early stages of development but their expression replaces smyhc1 in slow skeletal muscle in adulthood (Stone Elworthy et al., 2008). Knockdown of zebrafish smyhc1 results in paralysis at 24 hours post fertilisation (hpf) and slow muscles that show defective thick and thin filament assembly (Codina et al., 2010; Xu et al., 2012). Zebrafish smyhc1 morphants also show loss of myomesin-3 localisation in slow muscles (Xu et al., 2012). However, myomesin-3 knockout (KO) show no effect on the sarcomere assembly of thick and thin filaments (Xu et al., 2012). Knock out of zebrafish smyhc1 also show paralysis at 24 hpf and sarcomeres in slow fibres show no thick filament and M-lines (Li et al., 2020). Zebrafish smyhc1 KO mutants show reduced food intake and reduced survival rate of incomplete penetrance. To reconcile the function of smyhc1, I investigated the phenotype associated with LOF experiments using CRISPR/Cas9 to knock out smyhc1 in zebrafish.

Invertebrates show differing expression of MyHC genes compared to vertebrates. C. elegans have four MyHC isoforms encoded by five distinct genes for the formation of the muscle in the body wall (Waterston and Francis, 1985; Miller, Stockdale and Karn, 1986). Paramyosin, encoded by unc-15 is expressed at the core of the A-band where Paramyosin is essential for the base of the thick filament formation (Waterston, Fishpool and Brenner, 1977). MyHC-B, encoded by unc-54 make up most of the thick filament and positions on the outermost segment of the thick filament (Waterston and Francis, 1985). The middle segment of the thick filament is made up of MyHC-A, encoded by myo-3, in between Paramyosin and unc-54 layers (Waterston and Francis, 1985). Myo-1 and myo-2 encode MyHC-C and MyHC-D, respectively and are expressed exclusively in the pharyngeal muscle (Miller, Stockdale and Karn, 1986). In D.melanogaster, there are at least 14 MyHC isoforms during the embryonic, larval, pupal to adult stages (Bernstein et al., 1983; George, Ober and Emerson, 1989; Hess et al., 2007). Each MyHC isoform is distinct through alternative splicing events of multiple alternative exons at 5 positions of the gene from a single Mhc gene (George, Ober and Emerson, 1989; Zhang and Bernstein, 2001) and is controlled using transcriptional regulatory sequences (Arredondo et al., 2001; Kelly, Meadows
and Cripps, 2002; Marín, Rodríguez and Ferrús, 2004; Mas, García-Zaragoza and Cervera, 2004). In early indirect flight muscle (IFM) myogenesis, there is one early MyHC isoform (MyHC-IFM19) containing all the alternate exons, except exon 18 MyHC-IFM18 (Orfanos and Sparrow, 2013). During late IFM myogenesis, MyHC-IFM19 expression declines, but remains at the core of the thick filament (Orfanos and Sparrow, 2013) and the MyHC-IFM18 isoform is predominantly expressed and continue the same expression pattern through to adulthood. MyHC-IFM18 make up the majority of the exterior myosin thick filament while MyHC-IFM19 remains at the core of the filament structure (Hastings and Emerson, 1991; Suggs et al., 2017).

Early developmental phenotypes associated with gene knockout experiments can provide insight into how mutants change myosin function in vivo. CRISPR/Cas9 genome editing has been used as a tool to generate null alleles in the zebrafish genome (Chang et al., 2013; Hruscha et al., 2013; Hwang et al., 2013). CRISPR/Cas9 genome editing is made by creating a double-strand break using Cas9 protein at the target gene site and activating DNA damage repair including non-homologous end joining (NHEJ) or homologous recombination (Ran et al., 2013; Chang et al., 2017). Homologous recombination utilises a template DNA for DNA repair and ensures DNA repair is made without mistakes (Ran et al., 2013). NHEJ is an error-prone mechanism for DNA repair whereby insertion and/or deletion (INDEL) mutations are likely to occur (Chang et al., 2017). INDEL mutations can cause frame-shift mutations with premature stop codons and thus produce a non-functional truncated protein or degradation of mRNA by triggering nonsense-mediated decay (NMD) (Lykke-andersen and Jensen, 2015; Hug, Longman and Cáceres, 2016). Using CRISPR/Cas9, the generation specific mutations leading to LDM or MSM in smyhc1 gene using HR and the generation of smyhc1 KO lines utilising the NHEJ pathway in the zebrafish genome is possible to investigate the associated phenotype.

Generating LDM and MSM models were tested but not included in this chapter as the methods and strategies involved were not optimal to generate specific mutations. The first limitation in targeting the LMM region is the high level of sequence identity between all smyhc genes and myh7/myh7/ which may lead to further off target mutations but also lead to a mixture of HR and NHEJ between all targets. Prior to injections using short single oligonucleotides (ssoligo), initial tests for cutting using specific gRNA mostly positive (Appendix 5.1). All three gRNA show high levels of mutagenesis detected by HRM analysis when injected with gRNA K1617, K1729 and E1856 but not observed in E1508. A second method to HR to insert point mutations was to use base editing which is a new development of CRISPRCas9 was to retain the ability to target specific DNA loci and convert G-C base pairs to A-T base pairs
with the optimal site of base change around -17 to -13 upstream of the PAM site (Zhang et al., 2017a). An expansion of target gene location, a Cas9 variant known as Cas9-VQR recognises 5' NGA as the PAM sequence. BE have been fused to VQR-Cas9 to have BE features and recognise 5' NGA. Studies using fusion BE/Cas9-VQR on zebrafish have demonstrated BE in target sequences (Zhang et al., 2017b). Although utilising HR and base editing were available, screening for the presence of specific mutations were rare. Mutations identified from HR strategies were mainly INDEL mutations as a result from NHEJ and ssoligo insertion were never identified. When using base editing tools, no changes in bases were identified in any of injected embryos. Problems encountered in attempt to create a LDM and MSM model lead me to generate a smyhc1 KO mutant to understand the role of smyhc1 in relation to human MYH7, but smyhc1 KO mutants can subsequently be inserted with the defective smyhc1 or human MYH7 using expression vectors.

In this chapter, I attempted to use CRISPR/Cas9 with homologous recombination to generate disease mutations for LDM and MSM in smyhc1 but strategies used failed to generate such mutants. I subsequently generated null mutations in smyhc1 using CRISPR/Cas9 to examine its role in zebrafish sarcomere assembly. Guide RNAs were targeted to smyhc1 in exon 2 and exon 4, both alleles leading to frameshift mutations with an early stop codon. Smyhc1 mutants were viable and fertile. Homozygous smyhc1 mutants were paralysed from 24 hpf , the time at which pharyngula period begins (Kimmel et al., 1995). Swimming activity resumes at 48 hpf , coinciding with the onset of fast fibre formation. Smyhc1 mutants show paralysis from 2-20 days post fertilisation (dpf) when treated with N-benzyl-p-toluene sulphonamide (BTS), a drug to block fast myosin activity, revealing slow myosin remains inactive in mutants. Slow muscle-mediated swimming activity resumes at 30 dpf in smyhc1 mutants. Immunohistochemistry revealed loss of slow myosin at early stages and is compensated at 30 dpf. Work to generate smyhc1-5 KO mutants is ongoing to knock out all slow myosin function.

5.2. Results

5.2.1. Generation of smyhc1 mutant alleles

To generate smyhc1 mutants, CRISPR/Cas9 genome editing with single gRNAs was used to target the second (gRNA1 KO1) or fourth (gRNA2 KO2) coding exons of zebrafish smyhc1 (Fig 5.1A). Wild type parents lacking any polymorphisms in the CRISPR target site, crossed together, and their embryos injected at one-cell stage with sgRNA and Cas9 protein. Survival of injected embryos up to 5 dpf was high - 72/79 (91\%) for gRNAKO1 and 60/65 (92\%) for gRNAKO2, compared to 46/50 (92\%) and 49/50 (98\%) of their respective un-injected siblings. Embryos injected with gRNA KO1 and gRNA KO2 were 111
$35 / 72$ (49\%) and 60/60 (100\%) positive for rhodamine dextran, indicating successful delivery of CRISPR/Cas9 reagents (Fig 5.1B). Ten embryos from each injected group were screened for mutations using high-resolution melt (HRM) analysis and PCR. Unlike un-injected controls, which displayed a single melt curve peak, the majority $(9 / 10)$ of DNA samples extracted from gRNA KO1-injected embryos showed a shift in their melting curves, indicating mutagenesis presented as a shouldered or a double peak (Fig 5.1C). All DNA samples extracted from gRNA KO2 injected embryos show a shift in melting curve (10/10) compared to un-injected controls (5/5) (Fig 5.1C). Thus, HRM analysis revealed evidence of successful mutagenesis in embryos injected with either gRNA KO1 or gRNA KO2, a finding that was confirmed by sangar sequencing using primers flanking the smyhc1 CRISPR target site (Fig 5.1D). The remaining F0 embryos injected with gRNA KO1 and gRNA KO2 were raised to adulthood (Fig 5.1.B).

F0 adults, mosaic for mutations in smyhc1 were outcrossed to wild-type fish to screen for germline transmission of smyhc1 mutations to generate F1 heterozygous mutants (Fig 5.2A). There were eight putative F1 lays from F0 adults injected with gRNAKO1 outcrosses and four putative F1 lays from F0 adults injected with gRNAKO2 outcrosses. F1 lays were screened ($\mathrm{n}=16$ per lay) for mutagenesis using HRM analysis and subsequent sequencing (Fig 5.2A). There were $3 / 8$ F1 lays from FO gRNAKO1 injected parents found to show germline transmission of mutations in F1 progeny with a transmission frequency of 50\% (Fig 5.1A). F1 progeny from parents injected with gRNAKO1 show 2 different mutations in exon 2 of smyhc1, one with a 4-bp deletion and a second allele with 10-bp deletion where both mutations lead to predicted translation into a truncated protein due to frameshift mutation leading to an early stop codon (Fig 5.2B). When screening for germline transmission of mutations in lays obtained from F0 gRNAKO2 injected parents show $1 / 4 \mathrm{~F} 1$ progeny with germline transmission with a transmission frequency of 68.7% (Fig 5.1A). F1 progeny from parents injected with gRNAKO2 show 3 different mutations in exon 4 of smyhc1, one with a 3-bp deletion with 1-bp insertion, a second allele with 5-bp deletion where both care frameshift mutations leading to an early stop codon and are predicted to lead to truncated smyhc1 protein. A third allele with a 3-bp deletion and 12-bp insertion shows an in-frame mutation where an early stop codon was not predicted to be present (Fig 5.2B). Next, both smyhc1 mutant lines were outcrossed to wild-type fish to minimise possible background mutations in the F2 generation. F2 generation was viable and fertile in both smyhc1 ${ }^{\mathrm{kg} 179}$ and smyhc1 ${ }^{k g 180}$ lines and was obtained at expected Mendelian ratios (Fig 5.2C). F2 heterozygous fish were bred to homozygosity at F3, mutants were viable and fertile and obtained at an expected Mendelian ratio of 1:2:1 of wild-type:heterozygous:mutant in both smyhc1 ${ }^{\mathrm{kg179}}$ and smyhc1 $1^{\mathrm{kg} 180}$ lines (Fig 5.2C).

Overall, smyhc1 ${ }^{k g 179}$ and smyhc1 ${ }^{k g 180}$ were the chosen alleles and bred to homozygosity for LOF analysis.

5.2.2. Smyhc1 $1^{\mathrm{kg} 179 / \mathrm{kg} 179}$ and smyhc1kg180/180 mutants are functionally null

Smyhc1 was targeted at the earliest exons by CRISPR/Cas9 genome editing and smyhc1 ${ }^{\text {kg179 }}$ and smyhc1 ${ }^{k g 180}$ alleles were isolated. Smyhc1 $1^{k g 180}$ contains a 4 bp deletion in exon 2 leading to a frameshift at amino acid 28 and an early stop codon at amino acid 32 after a 5 amino acid nonsense tail thus, predicting a loss of function allele lacking all conserved domains. Smyhc1 ${ }^{\text {kg179 }}$ contains a 3 bp deletion and 1 bp insertion in exon 4 leading to a frameshift at amino acid 134 and an early stop codon at amino acid 148 after a 15 amino acid nonsense tail thus, predicting a loss of function allele lacking the majority of conserved motifs (Fig 5.3A). mRNA containing early stop codons are often regulated through a degradation pathway called nonsense-mediated decay (NMD) (Lykke-andersen and Jensen, 2015; Hug, Longman and Cáceres, 2016). NMD involves mRNA to screen non-functional mRNA transcripts by utilising an RNA binding complex called the exon junction complex (EJC). In the absence of an early stop codon, the ECJ is displaced by the ribosome during translation and protein is produced. In the presence of an early stop codon, however, EJCs present downstream of the early stop codon remain and thus trigger NMD for the degradation of mRNA (Hug, Longman and Cáceres, 2016). To screen for evidence that smyhc1 ${ }^{\mathrm{kg} 179}$ and smyhc1 $1^{\mathrm{kg} 180}$ alleles are null, homozygous mutants for smyhc1 were screened for NMD.

To identify whether NMD of smyhc1 occurs in kg 179 and kg 180 mutants, whole-mount in situ mRNA hybridisation (ISH) analysis was performed on mutants and their sibling controls from smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 $1^{\text {kg180/+ }}$ in-crosses at 24 hpf. Wild-type and heterozygous siblings from both smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 ${ }^{\text {kg180/+ }}$ in-cross show smyhc1 ISH signal in slow skeletal muscle in the trunk, as expected (Stone Elworthy et al., 2008). Reduction of smyhc1 ISH signal was observed in both smyhc1kg179/kg179 and smyhc1 ${ }^{k g 180 / 180}$ siblings, indicating mRNA is degraded through NMD (Fig 5.3B). Although trace level of smyhc1 ISH signal can be observed in both smyhc1 ${ }^{\mathrm{kg} 179 / \mathrm{kg} 179}$ and smyhc1 $1^{\mathrm{kg180/180}}$ mutants (Fig 5.3B) it was unclear whether smyhc1 protein levels were reduced in homozygous mutants compared to their siblings. Slow muscle fibres were analysed from embryos obtained from in-crosses of smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 ${ }^{\text {kg180/+ }}$ using F59 to specifically label slow MyHC in embryonic slow fibres (Devoto et al., 1996). Both smyhc1 $1^{k g 179 / k g 179}$ and smyhc1 ${ }^{\mathrm{kg} 180 / 180}$ mutations lead to complete loss of slow fibres compared to wild type and heterozygous siblings (Fig 5.3C). From these data, I conclude that
smyhc1 ${ }^{k g 179}$ and smyhc1 ${ }^{k g 180}$ are null alleles and are likely to produce a strong loss of function phenotype.

Figure 5.1. CRISPR/Cas9 knockout of smyhc1

Chapter 5: Studying sarcomere assembly in the absence of smyhc1
A) Schematic diagram describing CRISPR/Cas9 design to target smyhc1 exon 2 and exon 4. CRISPR/Cas9 genome editing consists of a Cas9 protein with a single guide RNA (sgRNA). sgRNA consists of a target sequence (red text and underlined) adjacent to a PAM site (pink highlight). Exons are shown in grey boxes with gRNAKO1 targeting exon 2 and gRNAKO2 targeting exon 4. B) Schematic workflow for CRISPR/Cas9 to generate smyhc1 mutants at FO. In-cross of wild type to give embryos for injection of CRISPR/Cas9 reagents targeting smyhc1. Survival of injected and un-injected (controls) embryos described (black text) with the number of embryos from injection to 5 dpf. Un-injected controls (grey text) underneath CRISPR injected data. C) High-resolution melt (HRM) curves to screen for mutations in CRISPR/Cas9 injected embryos. Aligned melt curves enabled un-injected embryos (red curves) as a control to differentiate whether mutagenesis occurred in CRISPR/Cas9-injected embryos (yellow, green, or blue curves). Examples of derivative melt curves (right) from un-injected vs CRISPR/Cas9 injected individuals. Un-injected embryo shows melt at approximately $81{ }^{\circ} \mathrm{C}$ and injected embryos with gRNAKO1 show shouldered and double peaks at approximately $77-82^{\circ} \mathrm{C}$. Un-injected embryo shows melt at approximately 81 ${ }^{\circ} \mathrm{C}$ and injected embryos with gRNAKO1 show shouldered and double peaks at approximately $78-82{ }^{\circ} \mathrm{C}$. Both gRNAKO1 and gRNAKO2 injected individuals show shouldered and double peaks indicating mutations in smyhc1 led to the formation of heteroduplex amplicons in HRM analysis. D) Example sequencing traces from un-injected and CRISPR/Cas9-injected individuals. Sequence become unreadable 3 bp upstream of PAM site (pink and underlined) where Cas9 protein cuts (red arrow) which indicated random mutagenesis in mosaic FOs.

B screening F1 mutations

mutations identified using gRNA KO 1

```
4bp del ( }n=17\mathrm{ )
Predicted outcome: frameshift, premature stop codon
Wt TCTGGAGGCCCAAACTCGTATTTTTGACATGAAGA
Mt TCTGGAGGCCCA----CGTATTTTTGACATGAAGA
Allele name: Smyhc1kg180
10bp del ( }n=6\mathrm{ )
Predicted outcome: frameshift, premature stop codon
Wt TCTGGAGGCCCAAACTCGTATTTTTGACATGAAGA
Mt TCTGGAGGCCCAA----------TTGACATGAAGA
```


C Generating F2 and F3s

mutations identified using gRNA KO 2
3 bp del G ins ($\mathrm{n}=5$
Predicted outcome: frameshift, premature stop codon Wt TTTGACCACAGAGGAATCGTACACTGGCAGCCACT
Mt TTTGACCACAGAGGAATCGTAC--GGGCAGCCACT
Allele name: $s m y h c 1^{k g 179}$

5bp del ($\mathrm{n}=16$)
Predicted outcome: frameshift, premature stop codon
Wt TTTGACCACAGAGGAATCGTACACTGGCAGCCACT
Mt TTTGACCACAGAGGAATC-----CTGGCAGCCACT
3bp del 12bp ins $(\mathrm{n}=14$)
Predicted outcome: in-frame indel
Wt TTTGACCACAGAGG---AATCGTACACTGGCAGCC
Mt TTTGACCACAGAGGCAAGTGACCACCCTGGCAGCC

Figure 5.2. CRISPR/Cas9 mutagenesis in F1 embryos.
A) Founder fish identified by crossing mosaic mutant FO adults to wild-types and screened for germline transmission of mutations using HRM and sequencing. B) DNA sequence of mutations identified in F1 adult fin clips. The sequence presented from 5^{\prime} to 3^{\prime} and predicted outcome described above sequence. Deletion sequences are shown in red text and insertion sequences are shown in green text. F1 fish with 4 bp deletion in exon 2 were chosen to generate a mutant line called smyhc1 ${ }^{\mathrm{kg} 180}$ (orange box) and F1 fish with 3 bp deletion and 1 bp insertion in exon 4 were chosen to generate mutant line smyhckg179 (red box). C) Heterozygous F1 adults crossed with wild-type to generate wild-type and heterozygous F2 generation to out-cross possible background mutations. F2 heterozygous adults were then in-crossed to generate F3 generation of wild-type, heterozygous and mutants. All crosses generated genotypes to Mendelian ratios when tested with the Chi-squared test ($p>0.05$).

Figure 5.3. Genome editing generates likely null alleles of zebrafish smyhc1.

Abstract

A) Schematic of smyhc1 genes and proteins showing the position of smyhc1 1^{kg179} and smyhc1 ${ }^{\mathrm{kg} 180}$ mutant alleles. Smyhc1 ${ }^{k g 179}$ frameshift mutation produces a truncated protein with the first 144 amino acids followed by a 15 amino acid nonsense tail lacking the majority of conserved domains. The Smyhc1 ${ }^{k g 180}$ produces a truncated protein at amino acid 28 followed by a 5 amino acid nonsense tail. B) in situ RNA hybridisation for smyhc1 mutant and wild type siblings from a smyhc1 $1^{\mathrm{kg179/+}}$ and smyhc1 ${ }^{\mathrm{kg} 180 /+}$ in-cross reveals nonsense-mediated decay (NMD) of mutant smyhc1 ${ }^{\mathrm{kg179}}$ and smyhc1 1^{kg180} mRNA AT 24 hpf . In a randomly selected sample from a smyhc1 ${ }^{\mathrm{kg} 179 /+}$ incross, $4 / 21$ were shown to be mutant, $11 / 21$ were heterozygous and $6 / 21$ normal expressors were wild type upon sequence genotyping. From a smyhc1 $1^{\text {kg180/+ }}$ in-cross, $6 / 29$ embryos were shown to be mutant, $15 / 29$ were heterozygous and 8/29 normal expressors were wild type upon sequence genotyping. Scale bar: 0.2 mm . C) Maximum intensity projections of S59 stained 24 hpf embryos showing somites with somite 17 centred and labelled. Wild-type siblings (left) show slow fibre staining and smyhc1 ${ }^{\mathrm{kg} 179 / \mathrm{kg} 179}$ and smyhc1 ${ }^{\mathrm{kg} 180 / \mathrm{kg} 180}$ mutant siblings show no slow fibre stain (right). Scale bar: $100 \mu \mathrm{~m}$.

5.2.3. Smyhc1 mutants show no morphological defects and are viable and fertile

Lays from smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 $1^{\text {kg180/+ }}$ in-crosses were first examined under a bright-field microscope at 1 to 5 dpf to identify any morphological and skeletal muscle defects. Mutant larvae were detected at the expected frequency suggesting null mutations in smyhc1 are not embryonically lethal (Fig 5.4). In two separate lays of smyhc1 ${ }^{\text {kg179/+ }}$ and one lay from smyhc1 ${ }^{\text {kg180/+ }}$ in crosses, no change in head, somite, tail, yolk sac, fin, pigmentation, or body length was observed (Fig 5.4). However, consistent with the previous study on antisense morpholino targeting smyhc1 (Codina et al., 2010; Xu et al., 2012) and in studies from smyhc1 KO mutants (Li et al., 2020) homozygous mutants for both kg179 and kg180 were immotile (Fig 5.5; 21/82 (26\%) and 12/52 (23\%) immotile embryos, respectively). Thus, lack of Smyhc1 in kg 179 and kg 180 mutants leads to fish that appear immotile but morphologically normal.

Since no obvious morphological defects were observed during the early stages of development, I looked at adult stages to determine whether lack of smyhc1 affects survival beyond 5 dpf and into adulthood at 4 months. F3 embryos were generated from smyhc1 ${ }^{\mathrm{kg} 179 /+}$ and smyhc1 $1^{\mathrm{kg} 180 /+}$ in-crosses, 100 randomly selected embryos from each cross and were monitored for 4 months. Growth of all siblings from crossed fish was divided into tanks of 50 and mixed-sex and genotype to ensure competition. At 4 mpf, 82% and 94% survival were observed from smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 ${ }^{\text {kg180/+ }}$ crossed fish. Any fish that died was fin-clipped and genotyped. Dead fish were a combination of wild type and heterozygous mutants suggesting death did not correlate with the lack of smyhc1 (Appendix 5.1.4). Genotyping of 4 mpf fish revealed that both lays conformed to Mendelian ratios (Fig 5.6A) and thus, suggested that lack of smyhc1 is not lethal for zebrafish development to adulthood. At 4 mpf adult fish were examined for morphological defects and males and females were categorised by gender. In both smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 $1^{\text {kg180/+ } i n-c r o s s e s, ~ n o ~ c h a n g e ~ i n ~ h e a d, ~ b o d y ~ s h a p e, ~ j a w ~ s h a p e, ~}$ eye shape and colour, tail, fin, or pigmentation pattern were observed (Fig 5.6B). Length and weight 120
measurements were taken on all fish at 4 mpf ; when comparing between siblings, no significant difference in length or weight was observed between sex-matched wild type, heterozygous or mutant siblings (Fig 5.6C). Homozygous smyhc1 $1^{\mathrm{kg179/179}}$ and smyhc1 ${ }^{\mathrm{kg} 180 / \mathrm{kg} 180}$ mutant males and females were observably fertile. We conclude that wild type smyhc1 is a non-essential gene for life in an aquarium.

Figure 5.4. Zygotic smyhc1 mutants show no morphological defects.
A) Bright-field images of $1,2,3,4$ and 5 dpf larvae from smyhc1 ${ }^{\text {kg179/+ }}$ heterozygous in crosses (wild type $\mathrm{n}=10$, heterozygous $\mathrm{n}=12$, mutant $\mathrm{n}=2$) and \mathbf{B}) smyhc1 ${ }^{\mathrm{kg180/+}}$ heterozygous in crosses (wild type $n=2$, heterozygous $n=18$, mutant $n=4$). Fish are shown anterior towards the left and dorsal upwards with genotyped heterozygotes and mutants below their respective wild type siblings. Scale bars: 0.5 mm .

Figure 5.5. Mutation of smyhc1 reduces swimming velocity.
Randomly selected larvae were dechorionated at 24 hpf and examined for presence or absence of tail coiling movement A) in smyhc1 ${ }^{\mathrm{kg179/+}}$ in-cross ($\mathrm{n}=82$) and \mathbf{B}) in smyhc1 $1^{\mathrm{kg} 180 /+}$ in-cross ($\mathrm{n}=52$). The genotype of the fish was revealed after the examination.

Figure 5.6. Zygotic smyhc1 mutants survive to adulthood.
A) Adults derived from in crosses of smyhc $1^{\mathrm{kg179/+}}(\mathrm{n}=39)$ and $s m y h c 1^{\mathrm{kg} 180 /+}(\mathrm{n}=55)$ fish were genotyped at 4 mpf showing the expected Mendelian ratios. Fish numbers above each bar. B) Images of adults derived from in crosses of smyhc1 ${ }^{\mathrm{kg} 179 /+}$ and smyhc1 ${ }^{\mathrm{kg} 180 /+}$ at 12 mpf . Scale bars: 1 cm . C) Length and mass of genotyped siblings from smyhc1 ${ }^{\mathrm{kg179/+}}$ and smyhc1 ${ }^{\mathrm{kg} 180 /+}$ in crosses at 4 mpf show no significant difference between genotypes. S.E.M. error bars in C. Large symbol reflect means for each sex and genotype and individual data points plotted in small. Overall length and weight were less in adult fish from smyhc1 ${ }^{\mathrm{kg180} /+}$ lay compared to adult fish from smyhc1 ${ }^{\text {kg179/+ }}$ in-cross, a difference that may reflect an uncontrolled environmental or genetic background effect.

5.2.4. Movement defects persist in smyhc1 mutant

We next determined whether the defective movement in smyhc1 mutants persists beyond 24 hpf. Previous studies have shown immotility in zebrafish at 24 hpf that were AMO knockdown or CRISPR/Cas9 KO of smyhc1 (Codina et al., 2010; Xu et al., 2012; Li et al., 2020; Whittle et al., 2020). Smyhc1 ${ }^{\text {kg179/+ }}$ were in-crossed to generate wild type, heterozygous and homozygous mutant embryos. Chorions were removed at 24 hpf and tail-coiling movement was analysed to categorise motile and immotile fish. By 48 hpf, fast muscle fibres, which do not express smyhc1, have assembled striated myofibrils (Stickney, Barresi and Devoto, 2000). At 48 hpf , immotile mutants regained tail muscle motility and appeared to move similarly to wild-type and heterozygous siblings (Fig 5.7A). Nevertheless, to determine whether swimming was affected by the loss of Smyhc1, embryos were examined for swimming velocity upon touch stimulation. Homozygous smyhc1 ${ }^{\text {kg179/kg179 }}$ mutants showed significantly reduced swimming velocity compared to their wild type and heterozygous siblings, with mean velocity reduced from 284.5 to $136.35 \mathrm{~mm} / \mathrm{s}-1$ (Fig 5.7B1). At 5 dpf , smyhc1 ${ }^{\text {kg179/kg179 }}$ mutants continued to show significantly reduced swimming velocity compared to their wild-type and heterozygous siblings, with mean velocity 542.8 to 374.8 (Fig 5.7B2). From 17-30 dpf, there was not a statistically significant difference between smyhc1 ${ }^{k g 179 / k g 179}$ and their siblings (Fig. 5.7B3-5). Thus, loss of Smyhc1 results in reduced swimming capacity in young larvae.

To examine motility driven by slow fibres, 48 hpf embryos were treated with $50 \mu \mathrm{M} \mathrm{N}$-benzyl-ptoluene sulphonamide (BTS), an inhibitor for fast muscle myosin II (Cheung et al., 2002; Li and Arner, 2015) and their swimming velocity was recorded (Fig 5.7A). All embryos showed strongly reduced swimming velocity after treatment with BTS (Fig. 5.7B). However, at 2, 5, 17 and 20 dpf homozygous smyhc1 ${ }^{\mathrm{kg} 179 / \mathrm{kg} 179}$ mutants were more affected than their wild-type and heterozygous siblings, showing very little twitching or no movement (Fig 5.7B1-4). At 30 dpf , there was no significant difference between homozygous smyhc1 ${ }^{\mathrm{kg} 179 / \mathrm{kg} 179}$ mutants and their siblings (Fig 5.7B5). Thus, slow fibre motility remains compromised in young mutant larvae.

Figure 5.7. Loss of smyhc1 reduces swimming velocity.
A) Schematic describing workflow to test for swimming velocity in fish water and subsequently fish water with N-benzyl-p-toluene sulphonamide (BTS). B) Zebrafish larvae from smyhc1 ${ }^{\text {kg179+ }}$ in-crosses were recorded for swimming activity upon touch stimulation using a needle in fish water (blue bar). Fish were treated with $50 \mu \mathrm{M}$ BTS for 10 minutes and recorded for swimming activity again (grey bar). Zebrafish larvae tested at B1) 2 dpf, B2) 5 dpf, B3) 17 dpf, B4) 20 dpf, B5) 30 dpf. Plots obtained using at least 3 separate lays from heterozygous smyhc1 ${ }^{\mathrm{kg179+}}$ in-crosses average numbers in Appendix 5.2. Log10 scale bar on the Y-axis. Error bars \pm SD. Statistics using one way ANOVA on GraphPad PRISM.

5.2.5. Defective sarcomere organisation observed in slow fibres

To examine the defects caused by a mutation in smyhc1, we used F59 and S58 antibodies which are known to detect MyHC in zebrafish slow muscle fibres at 48 hpf (Crow and Stockdale, 1986; Devoto et al., 1996). At 48 hpf , staining was absent for both antibodies in mutant compared to wild type confirming their reaction with Smyhc1 (Fig 5.8A). Subsequently, however, mutant larvae regained some slow MyHC immunoreactivity (Fig $5.8 \mathrm{~A}-\mathrm{B}$). At 72 hpf , wild-type larvae have S58 immunoreactivity in the head and trunk muscles (Fig 5.8B). In smyhc1 ${ }^{\text {kg179 }}$ mutants, S 58 positive slow myofibers continued to be undetectable in either slow or fast somitic trunk and tail muscle, whereas they were readily detected in superficial slow fibres and slow muscle pioneer fibres of siblings (Fig 5.8B). In contrast, S 58 immunoreactivity was detected in the head and cardiac muscle of mutants at a level similar to that observed in wild-type siblings (Fig 5.8B). Muscle fibres in three somitic regions continued to show slow MyHC immunoreactivity in mutants, Firstly, low levels of S58 immunoreactivity were presented in thin muscle fibres at the dorsal and ventral somitic extremes. Secondly, thin fibres with weak S58 stains were sometimes present at the horizontal myoseptum near the muscle pioneer fibres (Fig 5.8A). Moreover, specific subsets of muscle fibres thought to be generated from somatically-derived muscle precursor cells (mpcs) also showed S 58 immunoreactivity in mutants. The sternohyoid (sh), posterior hypaxial and supracarinalis anterior (sca), inferior obliquus (iob), supracarinalis posterior (scp) and infracarinalis posterior (icp) muscles all stained well (Fig 5.8B). Thus, mutation of smyhc1 prevented slow MyHC accumulation in most somitic muscle fibres, but not in locations where new fibres are produced from matrix metalloproteinases (MMPs).

To examine the defects in other sarcomeric structures caused by a mutation in smyhc1, we used phalloidin to detect actin and a-actinin antibody known to detect Z-line structures in zebrafish muscle fibres at 24 hpf. The lack of Smyhc1 in slow fibres allowed us to examine the formation of myofibrils in these cells in the absence of this MyHC. Smyhc1 ${ }^{\mathrm{kg179/+}}$ in-cross lays were examined for actin structure at 24 hpf with phalloidin-Alexa488. In the absence of Smyhc1 protein, we observed that actin filament organisation was severely defective (Fig 5.8B). In wild type siblings, F-actin was organised into sarcomeric thin filament units arrayed at regular intervals along the slow muscle fibre length into myofibrils. In mutant embryos, by contrast, the overall F-actin signal was reduced and disrupted thin filament organisation was observed. Filamentous actin was thin and wavy with actin accumulating at somite borders. Bundles of actin were also observed dotted across the surface of the myotome (Fig $5.8 B$). Nevertheless, there were a few fibres that showed some regions with organised F-actin filament along the horizontal myoseptum (Fig 5.8B). Smyhc1 ${ }^{\text {kg179/+ }}$ in-cross lays were examined for actin
structure at 24 hpf with an a-actinin antibody. In the absence of Smyhc1 protein, Z-disk structures were disorganised (Fig 5.8B). In wild type siblings, z-disks were organised in thin arrays at regular intervals along slow muscle fibres. However, in mutants, the α-actinin signal was overall reduced with accumulation at somite borders. Thin wispy a-actinin elongated from somite borders but is very faint in signal. Thus, lack of Smyhc1 resulted in disorganised sarcomeres in slow fibres.

Figure 5.8. Defective sarcomere organisation in smyhc1 ${ }^{\text {kg179/kg179 }}$ mutants

Chapter 5: Studying sarcomere assembly in the absence of smyhc1

Abstract

A) Slow MyHC immunofluorescence of 48 and 72 hpf larvae from smyhc1 ${ }^{k g 179+}$ in-crosses using 559 and S58 antibodies. Wild type sibling at top and smyhc1 ${ }^{\mathrm{kg179} / \mathrm{kg179}}$ mutants below. B) Slow MyHC immunofluorescence 72 hpf larvae from smyhc1 ${ }^{k g 179+}$ in-crosses using S 58 antibodies. Mutants showing S 58 signal exclusively in a subset of muscles: sca, els, iob, sh, scp and icp somite-derived muscles, and dorsal and ventral craniofacial muscles. Wild type sibling on left and smyhc1 ${ }^{\mathrm{kg} 179 / \mathrm{kg179}}$ mutants on right. C) Immunofluorescence of 24 hpf larvae from smyhc1 $1^{\text {kg179 }}$ in-crosses using F59 to label slow MyHC, phalloidin for filamentous actin and a-actinin to mark zdisks. Wild type sibling at top and smyhc1 ${ }^{10179 / k g 179}$ mutants below. Images of wild type and mutant centred on somite 17/18. Abbreviations: dm-head dorsal muscles, els-embryonic lateralis superficialis, icp-infracarinalis posterior, iob- inferior obliquus, sca-supracarinalis anterior, scp-supracarinalis posterior, sh-sternohyoideus; vm-head ventral muscles. Scale bars $=100 \mu \mathrm{~m}$.

5.2.6. Lack of smyhc1 does not affect fast fibres

To examine whether defects in fast or slow fibres are caused by a mutation in smyhc1, we used the A4. 1025 antibody known to detect all MyHC in zebrafish muscle fibres from 24-72 hpf. At 24 and 48 hpf, both wild-type larvae have A4.1025 immunoreactivity in the trunk slow muscle fibres (Fig 5.9A). In smyhc1 ${ }^{\text {kg179 }}$ mutant siblings, A4. 1025 shows immunoreactivity exclusively in early developing fast muscle fibres at 24 hpf and in 48 hpf fast fibres, no slow fibres were detected using A4.1025 (Fig 5.9A). At 72 hpf, wild-type larvae have A4.1025 immunoreactivity in slow trunk muscle fibres (Fig 5.9B). In smyhc1 ${ }^{\text {kg179 }}$ mutant siblings, A 4.1025 shows immunoreactivity to fast fibres and a small subset of slow muscles in the els in the horizontal myoseptum and thin muscle fibres at dorsal and ventral somatic extremes (Fig 5.9A). To confirm whether the A4.1025 signal is from fast fibres, co-staining using A4.1025 with F310 on 3 dpf larvae from smyhc1 ${ }^{\text {kg179/+ }}$ in-crosses. Wild-type siblings showed A4.1025 immunoreactivity in slow fibres and F310 showed immunoreactivity exclusively in fast muscles (Fig 5.9B). In smyhc1 ${ }^{\text {kg179 }}$ mutant siblings, both A4.1025 and F310 showed immunoreactivity exclusively in early developing fast muscle fibres at 24 hpf suggesting mutation in smyhc1 ${ }^{\text {kg179 }}$ abolished the majority of slow fibres in the trunk and fast fibres were not affected. Thus, mutation of Smyhc1 abolishes smyhc1 protein but does not affect fast fibre morphology.

Figure 5.9. Lack of smyhc1 does not affect fast muscle fibre morphology
A) Total MyHC immunofluorescence of 24,48 and 72 hpf larvae from smyhc1 ${ }^{\text {kg179+ }}$ in-crosses using A4.1025 antibodies. Wild type sibling on the left and smyhc1 $1^{\mathrm{kg} 179 / \mathrm{kg} 179}$ mutants on the right. Slow fibres at horizontal myoseptum and somitic extremes (arrowheads) B) Double immunostaining using A4.1025 to label total MyHC and F310 to label fast specific MyLC. 72 hpf wild type larvae sibling at top and smyhc1 ${ }^{\mathrm{kg} 179 / \mathrm{kg} 179}$ mutant below. Images of wild type and mutant centred on somite $17 / 18$. Scale bars $=100 \mu \mathrm{~m}$.

5.2.7. Slow fibres recover in adult smyhc1 KO mutants

Since recovery of slow swimming occurred at 20 and 30 dpf , we examined whether slow fibres form in smyhc1 KO mutants at adult stages (Fig 5.10). To assess whether loss of smyhc1 had effect on slow muscle growth and muscle structure at adult stages, we performed immunostaining of slow muscle fibres on cross sections of smyhc1\% adults. At adult stages, we used the A4.1025 antibody known to detect all MyHC in zebrafish muscle fibres and F59 and BA-D5 antibodies which are known to detect MyHC in zebrafish slow muscle fibres at 48 hpf (Crow and Stockdale, 1986; Schiaffino et al., 1989; Devoto et al., 1996). Smyhc1-/ mutants at 20 dpf, overall muscle appear normal from A4.1025 staining and slow fibres stained by F59 also appear normal, both staining in smyhc1-1 mutants were indistinguishable from wild type sibling (Fig 5.10). Smyhc1/- mutants at 30 dpf , slow fibres stained by BA-D5 also appear normal and were indistinguishable from wild type sibling (Fig 5.10). However, phalloidin staining appear brighter in signal in the mutant compared to heterozygous sibling (Fig 5.10). Results show full slow fibre recovery in smyhc1\% mutants at adult stages.

Figure 5.10. Recovery of slow fibres in adult zebrafish stages
Slow MyHC immunofluorescence 20 dpf and 30 dpf zebrafish from smyhc1 ${ }^{\text {kg179+ }}$ in-crosses using F59 (at 20 hpf) and BAD5 (at 30dpf) antibodies. At 20 dpf , wild type sibling at top and smyhc1 $1^{\mathrm{kg179} / \mathrm{kg} 179}$ mutant below. At 30 dpf , heterozygous sibling at top and smyhc1 $1^{\mathrm{kg} 179 / \mathrm{kg} 179}$ mutant below. Scale bars $=200 \mu \mathrm{~m}$

5.2.8. Large deletion mutations from two gRNAs targeting the smyhc locus

To model defects in later developmental stages, targeting smyhc1 alone will not describe the role of slow MyHC in sarcomere assembly and function through to adulthood. Since of smyhc1 is replaced by the expression of smyhc2 and smyhc3 in mature slow fibres (Stone Elworthy et al., 2008; Li et al., 2020), targeting the smyhc locus may describe the developmental function of slow MyHC in later stages of development to adulthood.

CRISPR/Cas9 genome editing was used to target smyhc2 and smyhc5 to ablate the smyhc locus except for smyhc1. To generate null smyhc2-5 knockout mutants, one gRNA targeted smyhc2 exon 5 and coinjected with either a second gRNA targeting smyhc5 exon 1 or exon 36 to delete the majority of smyhc2-5 locus (Fig 5.11A). There have been successful large deletions of $50 \mathrm{~kb}+$ by using a similar strategy where co-injection of multiple gRNAs in zebrafish led to functionally null mutants (Hoshijima et al., 2019; Kim and Zhang, 2020). The predicted size of PCR fragment between smyhc2 exon 5 and smyhc5 exon 1 is from 75.5 kb in non-injected embryos to 309 bp in injected, the number generated using deletion at the cut site with no additional INDEL mutations. Co-injection of gRNAs targeting smyhc2 exon 5 and smyhc5 exon 1 induced large deletion mutations in $1 / 16$ of F0 founder embryos (Fig 5.11B). Sequencing of PCR fragment led to deletion between gRNA cut sites with an additional 14 bp insertion (Fig 5.12A). Mutation removes smyhc3 and smyhc4 and removes the majority of the smyhc5 coding sequence, the start codon for smyhc2 is removed and thus, predicted to ablate smyhc25.

The predicted size of PCR fragment between smyhc2 exon 5 and smyhc5 exon 36 is from 64.9 kb in non-injected embryos to 390bp in injected, the number generated using deletion at the cut site with no additional INDEL mutations. Co-injection of gRNAs targeting smyhc2 exon 5 and smyhc5 exon 36 induced large deletion mutations in $2 / 16$ of F0 founder embryos (Fig 5.11C). Sequencing of the first PCR fragment led to deletion between gRNA cut sites with an additional 1bp deletion (Fig 5.12B). The second PCR fragment led to deletion between gRNA cut sites with additional 14bp deletion and 5bp insertion (Fig 5.12B). Here, mutation removes smyhc3 and smyhc4 and the smyhc5 coding sequence connects to smyhc2, predicted to generate a non-functional elongated and frameshifted smyhc2/5 protein. Both mutations are predicted to remove the possibility of smyhc2-5 function and future work to generate large deletion on smyhc1 mutant background to study the role of smyhc1-5 and the role of smyhc2-5 in sarcomere assembly.

Figure 5.11. Genome editing targeting smyhc locus to delete smyhc2-5.
A) Schematic of smyhc locus on chromosome 24. CRISPR/Cas9 gRNA is designed to target smyhc2 exon 5 (yellow bolt) and smyhc5 exon 1 (red bolt) and smyhc5 exon 36 (blue bolt). Sequencing primers in smyhc2 exon 5 (purple arrow) and smyhc5 exon 1 (blue arrow) and smyhc5 exon 36 (orange arrow). B) Predicted deletion of smyhc locus when targeted at smyhc2 exon 5 and smyhc5 exon 36 . The distance between sequencing primers smyhc2 exon 5 (purple arrow) and smyhc5 exon 1 (blue arrow) is 75.5 kb and the distance in predicted smyhc2-5 deletion is 390bp. 1/16 injected embryos show successful deletion of smyhc2-5 targeting smyhc2 exon 5 and smyhc5 exon36. C) Predicted deletion of smyhc locus when targeted at smyhc2 exon 5 and smyhc5 exon 1 . The distance between sequencing primers smyhc2 exon 5 (purple arrow) and smyhc5 exon 36 (red arrow) is 64.9 kb and the distance in predicted smyhc2-5 deletion is 309bp. 2/16 injected embryos show successful deletion of smyhc2-5 targeting smyhc2 exon 5 and smyhc5 exon1.

Figure 5.12. Sequencing analysis of smyhc2-5 deletion.
A) 1/16 injected embryos show successful deletion of smyhc2-5 targeting smyhc2 exon 5 and smyhc5 exon36. The DNA sequence of mutations identified in FO injected embryos. Mutation led to predicted cut sites at the PAM +3 sequence in smyhc2 and smyhc5 with additional 14bp insertion. B) 2/16 injected embryos show successful deletion of smyhc2-5 targeting smyhc2 exon 5 and smyhc5 exon1. DNA sequence of mutations identified in FO injected embryos. The sequence presented from 5^{\prime} to 3^{\prime} and predicted outcome described above sequence. One mutation led to predicted cut sites at the PAM +3 sequence in smyhc2 and smyhc5 with additional 1 bp deletion. The second mutation led to predicted cut sites at the PAM +3 sequence in smyhc2 and smyhc5 with additional 14bp deletion and 5bp insertion.

5.3. Discussion

Our findings make five important points regarding the role of smyhc1 and MyHC heterogeneity during skeletal muscle development. First, knockout of smyhc1 using CRISPR/Cas9 technology generated smyhc1 ${ }^{k g 179}$ and smyhc1 $1^{k g 180}$ mutants resulted in immotility at the early stages of development. Second, despite immotility at early stages, smyhc1 mutants show no morphological defects under light microscope observation and are viable and fertile when developing to adulthood. Third, movement defects persist in the early stages but not in adults. Fourth, loss of smyhc1 abolishes slow fibres and leads to disorganised sarcomere assembly in the early stages of development. Finally, loss of smyhc1 does not affect fast fibre development.

5.3.1 Smyhc1 mutants are functionally null with no off-target effects

Loss of Smyhc1 from KO mutants and morphants were shown to have paralysis up to 48 hpf (Codina et al., 2010; Xu et al., 2012; Li et al., 2020; Whittle et al., 2020). Our findings with smyhc1 ${ }^{\mathrm{kg179}}$ and smyhc1 ${ }^{\mathrm{kg180}}$ confirm this conclusion as homozygous smyhc1 ${ }^{\mathrm{kg} 179}$ and smyhc1 ${ }^{\mathrm{kg} 180}$ mutants were immotile at 24 hpf. However, at adult stages, smyhc1 KO mutants presented spinal curve defects, reduced food intake and larval lethality (Li et al., 2020; Whittle et al., 2020). Our findings do not show morphological defects or lethality in larval to adult stages.

Several mutants in the smyhc1 locus have now been reported, not all of which may be genetically simple. Current smyhc1 KO studies using CRISPR/Cas9 and TALENS have been used to target exon 5 (Li et al., 2020) and exon 16 (Whittle et al., 2020) of smyhc1 locus, respectively (Fig 5.13). Both smyhc1 KO alleles in the literature introduced frameshift mutations leading to early stop codons and showed strong smhyc1 mRNA NMD in mutants. However, the gRNA used by Li et al, 2020 targeted the 3' end of exon 4 of the smyhc1 locus but also shows 100% identity to smyhc2-5 sequence (Fig 5.13 , Appendix 5.3). As the sequence of these linked genes was not analysed in the chromosome carrying the smyhc1 mutant allele, linked off-target mutations in smyhc2-5 cannot be ruled out, particularly as we observed very efficient mutagenesis in this locus (Fig 5.11). Smyhc2 and smyhc3 are predominantly expressed in the head and jaw (S. Elworthy et al., 2008) which such off targets may hinder the ability for zebrafish larvae produce jaw movement and thus, unable to eat. In our mutants, we have sequenced smyhc2 and smyhc3 in our smyhc1 mutants to show that there are no off targets in these genes. Furthermore, the TALENS employed by Whittle et al, 2020, which caused a frameshift mutation leading to an early stop codon in exon 16 may also result in off-target effects as exon 16 show $87-89 \%$ sequence similarity 136
to myh7 and smyhc2. Moreover, an early stop codon in exon 16 may lead to a partially functional truncated protein as the predicted truncated protein contain ATP binding, actin binding, switch 1, switch 2 and loop domains (Appendix. 5.4). MyHC genes show high levels of sequence identity and screening for unique sequences to smyhc1 is crucial to avoid possible off target effects in other MyHC genes. Our CRISPR/Cas9 mutations were optimised to target exclusively to smyhc1 and BLAST analysis of both our gRNAs target only to smyhc1 (Appendix 5.3). Since our mutants did not show larval lethality, spinal curve defects and reduced food intake, may suggest that these are not specific to smyhc1 function. While these unfortunate issues raise questions about previous work, our finding of a similar phenotype in kg179 and kg180 suggest the previous reports are indeed primarily analysing the effect of loss of Smyhc1 function.

Our INDEL mutations generated using CRISPR/Cas9 targeted the N-terminal region of smyhc1 and thus lead to loss of majority of functional protein domains. Both smyhc1 ${ }^{\mathrm{kg179}}$ and smyhc1 ${ }^{\mathrm{kg} 180}$ mutants show strong nonsense-mediated mRNA decay where ribosomes failed to fully translate mRNA and thus, little truncated (and no full-length) protein is predicted to be produced. There is no known alternative splicing or promotor usage observed and phenotype observed at early stages of development suggest mutant proteins. If spliced variants were produced, they are predicted to be defective and thus, do not incorporate into functional thick filaments. At $72 \mathrm{hpf}, \mathrm{mRNAs}$ expressed from smyhc2 and smyhc3 are localised in specific subsets of muscles (Stone Elworthy et al., 2008). Our smyhc1 ${ }^{\text {kg179 }}$ mutants show slow MyHC immunoreactivity in the same subsets of slow fibres, suggesting that there were no off-target effects in smyhc2 and smyhc3. In adult zebrafish, smyhc1 expression is replaced by smyhc2 and smyhc3 (Stone Elworthy et al., 2008). Consistent with this, our finding that smyhc1 ${ }^{\mathrm{kg179}}$ mutants recover their swimming motility at 20-30 dpf a stage at which smyhc2 and smyhc3 become the predominantly expressed slow MyHC genes in slow skeletal muscle (Fig 5.10). Thus, our smyhc1 ${ }^{\text {kg179 }}$ and smyhc1 ${ }^{k g 180}$ mutants are likely functionally null with no-off-target effects in smyhc2, smyhc3 or other genes encoding slow MyHCs.

	Partial AMO (Xu et al, 2012)
smyhc1	-----ATGGGTGACGCCGTT
smyhc2	---ATGGGGGATGCTGTG
smyhc3	--AAGATGGGGGATGCTGTG
smyhc4	----ATGGGGGATGCTGTG
smyhc5	--ATGGGGGATGCTCTG
myh7	GGTTCTTCTGCCTC-CGCACTTGGTGCACATCAGACAAGGCAATCATGGGGGACGCTCAG
myh71	AAACCTGGAGCTTCCTTCTGCTGTGATTAATCGCTTTGGTTGACAATGGGCGATGCTGAA

smyhc1	ATGGCAGAGTTTGGGTCTGCTGCTCCCTTCCTGCGCAAGTCTGACAAGGAGCGTCTGGAG	75
smyhc2	ATGGCAGAGTTTGGGCCTGCGGCTCCGTTCTTACGTAAATCAGATAAGGAGCGTCTGGAG	75
smyhc3	ATGGCGGAGTTTGGAGCTGCGGCTCCGTACCTCAGGAAGTCGGACAGGGAGCGTCTGGAG	78
smyhc 4	ATGGCGGAGTTTGGAGCTGCGGCTCCGTACCTTAGGAAATCAGACAAGGAGCGTCTGGAG	75
smyhc5	ATGGAGGAGTTTGGAGCTGCGGCTCCGTATCTCAGGAAGTCGGACCGGGAGCGTCTGGAG	75
myh7	ATGGCAGAGTTTGGAGCAGCAGCTTCTTACCTGCGAAAGTCAGATCGAGAGCGTCTGGAA	142
myh7l	ATGTCTGTTTTTGGGGCCGCAGCGCCTTACCTGCGGAAGTCTGAAAAGGAGCGTCTTGAG	180
	*** * ***** * ** ** * * * *************	

smyhc1 GCCCAAACTCGTATTTTTGACATGAAGAAGGAGTGCTTTGTGCCTGACCCTGAGGTTGAG 135
smyhc2 GCCCAAACTCGTCCTTTTGACATGAAGAAGGAGTGTTTCGTGCCTGATCCCGAGGTTGAG 135
smyhc3 GCCCAAACTCGCCCCTTTGACATGAAGAAAGAGTGTTTTGTTCCTGATGCTGACGAGGAG 138
smyhc 4 GCCCAAACTCGCCCCTTTGACATGAAGAAAGAGTGTTTTGTTCCTGATGCTGACGAGGAG 135
smyhc5 GCCCAAACTCGCCCCTTTGACATGAAAAAGGAATGTTTCGTCCCGGATACTGATGAAGAG 135
myh7 GCACAAACCCGTCCCTTTGATATGAAAAAGGAGTGTTTTGTGCCTGATCCAGATGAAGAG 202
myh7l GCGCAGACGAAAGCCTTTGACTTAAAGAAGGAATGCTTTGTGCCGGATGCAATAGAGGAG 240
_ 300 bp_
gRNAKO2
435(
smyhc2 AACCCATACAAGTGGCTGCCAGTGTACAATCAGGAGGTGGTCGTTGCTTACAGAGGAAAG 435
smyhc3 AACCCCTACAAGTGGCTGCCAGTGTACAATCAGGAGGTGGTCGTTGCTTACAGAGGAAAG 438
smyhc4 AACCCCTACAAGTGGCTGCCAGTGTACAATCAGGAGGTGGTCGTTGCTTACAGAGGAAAG 435
smyhc5 AACCCCTACAAGTGGCTGCCAGTGTACAATCAGGAGGTGGTTCTGGCTTACAGAGGAAAG 435
myh7 AACCCCTACAAGTGGCTGCCGGTGTACAATCAGGAGGTGGTTGTAGCCTATAGAGGGAAA 502
myh71 AACCCCTACAAGTGGCTGCCGGTGTACAATCAGGAGGTTGTTATAGCCTATAGAGGGAAA 540

| | gRNA (Li et al, 2020) | | |
| :--- | :--- | :--- | :--- | :--- |
| smyhc1 | AAGAGGACTGAAGCTCCTCCTCACATCTTCTCCATCTCTGACAACGCCTACCAGTACATG | 495 | |
| smyhc2 | AAGAGGACTGAAGCTCCCCCTCACATCTTCTCCATCTCTGACAACGCCTACCAGTACATG | 495 | |
| smyhc3 | AAGAGGAGTGAAGCTCCTCCTCACATCTTCTCCATCTCTGACAACGCCTACCAGTACATG | 498 | |
| smyhc4 | AAGAGGAGTGAAGCTCCTCCTCACATCTTCTCCATCTCTGACAACGCCTACCAGTACATG | 495 | |
| smyhc5 | AAGAGGAGTGAAGCTCCTCCTCACATCTTCTCCATCTCTGACAACGCCTACCAGTACATG | 495 | |
| myh7 | AAGAGGAGTGAAGCTCCTCCCCACATCTTTTCCATCTCTGATAACGCCTATCAGTACATG | 562 | |
| myh71 | AAGAGGACTGAAGCTCCTCCCCACATCTATTCTATCTCTGACAATGCCTACCAATACATG | 600 | |
| | ******* ********* ** ******* ********** ** ***** ** ****** | | |
| | | | |
| smyhc1 | CTGTCAGACAGAGAGAACCAGTCCGTCCTCATCACTGGAGAATCTGGTGCTGGAAAGACT | 555 | |
| smyhc2 | CTGTCAGACAGAGAAAACCAGTCTGTCCTGATCACTGGAGAATCCGGTGCTGGAAAGACT | 555 | |
| smyhc3 | CTGTCAGACAGAGAAAATCAGTCTATTCTTATCACTGGAGAATCTGGTGCTGGAAAGACT | 558 | |
| smyhc4 | CTGTCAGATAGAGAAAACCAGTCCATTCTGATCACTGGAGAATCTGGTGCTGGAAAGACT | 555 | |
| smyhc5 | CTGTCAGACAGAGAAAATCAGTCTATTCTTATCACTGGAGAATCTGGTGCTGGAAAGACT | 555 | |
| myh7 | CTAACAGACAGGGAAAATCAGTCAATTCTGATCACTGGAGAATCGGGTGCAGGAAAGACT | 622 | |
| myh7l | TTAGCAGACAGAGAAAACCAGTCTATCCTTATCACTGGAGAATCTGGCGCTGGGAAGACT | 660 | |

smyhc1	AAGGGTTCTTCTTTCCAGACTGTGTCAGCCCTTCATAGGGAGAACTTGAATAAGCTGATG	1983
smyhc2	AAGGGTTCTTCCTTCCAGACAGTATCAGCTCTTCATAGGGAGAACCTGAATAAGCTGATG	1986
smyhc3		1666
smyhc 4	AAGGGCTCTTCTTTTCAGACAGTGTCTGCACTTCACAGGGAGAACTTGAATAAGCTGATG	1977
smyhc5	AAGGGCTCTTCTTTCCAGACAGTGTCTGCACTTCACAGGGAGAACTTGAATAAGCTGATG	1983
myh7	AAGGGCTCCTCCTTCCAGACTGTGTCTGCACTCCACAGGGAAAACTTAAATAAGTTAATG	2050
myh71	AAAGGATCATCATTCCAGACAGTGTCAGCACTTCACAGGGAGAATCTCAACAAATTAATG	2082

Figure 5.13. Aligned sequencing segments highlighting gRNA used for smyhc1 KO showing potential off target effects in other smyhc and myh7/myh7l genes.
Each segment sequenced and subsequently aligned using CLUSTALO. Yellow highlight indicates gRNA used in current thesis. Green highlight indicates morpholino and gRNA used in Xu et al, 2012 and Li et al, 2020, respectively. Blue highlight indicates whole of exon 16 where Whittle et al, 2020 targeted for TALENS genome editing, specific cut location is unknown.

Chapter 5: Studying sarcomere assembly in the absence of smyhc1

5.3.2. Role of smyhc1 in sarcomere assembly in early slow fibres

Smyhc1 play a key role in sarcomere assembly during the early stages of development as it is the first MyHC to be expressed in zebrafish slow fibres (Devoto et al., 1996). Studies have been made to model and describe the sequence of events in sarcomere assembly (Rhee, Sanger and Sanger, 1994; Holtzer et al., 1997; Ehler et al., 1999; Gregorio et al., 1999; Rui, Bai and Perrimon, 2010; Fenix et al., 2018). Our findings show that smyhc1 is essential for thick filament assembly and myofibril organisation in slow fibres during the early stages of development and are consistent with findings in which lack of Smyhc1 lead to defective sarcomere assembly during early stages of development (Li et al., 2020; Whittle et al., 2020).

Myofibrils are first anchored and assembled at the cell periphery, close to the membrane at the MTJ (Kelly and Zacks, 1969; Tokuyasu, 1989). There are integrin adhesion sites known as costameres which connect thin filaments to the MTJ (Pardo, Siliciano and Craig, 1983; Ervasti, 2003; Quach and Rando, 2006). Integrins, α-actinin, vinculin and talin are present at the early stages of the costameres and are suggested to be the site for α-actinin to accumulate at the MTJ (Fujita, Nedachi and Kanzaki, 2007; Du, Sanger and Sanger, 2008). Z-disks are formed initially as aggregates called z-bodies at the myotendinous junction (MTJ) (Tokuyasu and Maher, 1987). Mice and Drosophila have shown ligands at the extracellular matrix are essential for z-disk formation as the first step in sarcomere assembly (Volk, Fessler and Fessler, 1990; Bloor and Brown, 1998). In drosophila, integrins link to a zasp protein for recruitment of α-actinin for z-disk assembly (Au et al., 2004). Our smyhc1 ${ }^{\text {kg179 }}$ mutants show accumulation of α-actinin and actin filaments at the somite border supporting a model whereby actin and α-actinin anchor at the MTJ prior to integrating myosin filaments in building and elongating the muscle fibre.

After initiation of sarcomere at the MTJ, elongation of sarcomere can start to build. One model of sarcomere assembly describes the independent assembly of I-Z-I bodies before the integration of myosin, this is known as the "stitching model" of sarcomere assembly (Rhee, Sanger and Sanger, 1994; Holtzer et al., 1997; Van Der Ven et al., 1999; Sanger et al., 2005). A second model describes the formation of stress fibre-like structures utilising non-muscle myosin as a template for sarcomere proteins to assemble, forming a pre-myofibril and are then later replaced with muscle myosin to form mature myofibrils (Rhee, Sanger and Sanger, 1994). A third model describes the role of titin recruited by α-actinin to bind to the Z-disk region and the M -line to act as a template to regulate the alternating patterning of I-Z-I bodies and myosin filaments (Kelly and Zacks, 1969; Tokuyasu and Maher, 1987;

Schwander et al., 2003; Au et al., 2004). Our smyhc1 ${ }^{k g 179}$ mutants show some assembly of actin filaments and clustering of α-actinin at somite borders to initiate sarcomere assembly. However, in the absence of smyhc1, the elongation step of the myofibril is absent and thus, myofibrils do not elongate supporting the studies showing integration of myosin as one of the last steps in myofibrillogenesis.

On a cellular level, our staining does not show the weather slow fibres are non-existent in our smyhc1 ${ }^{\text {k9179 }}$ or whether the slow fibres remain present but rather the lack of myosin molecules with defective sarcomere formation. One test to confirm whether slow fibres exist in our smyhc1 ${ }^{\text {kg179 }}$ mutants is to cross our smyhc1 ${ }^{\mathrm{kg179}}$ mutants to a transgenic line Tg (Ola.Actb:Hsa.HRAS-EGFP)vu119 ($ß$ actin:GFP) which is a construct containing the β-actin promoter and a membrane targeted EGFP. This line is used to visualise membranes in live larvae (Cooper et al., 2005). Whether slow fibres have resulted in apoptosis, methods such as labelling activated Caspase-3 as one of the signalling molecules involved in cell apoptosis (Sorrells et al., 2013). The next test is to identify the defects in sarcomere assembly at many more timepoints for actin filament formation when there is a lack of smyhc1. To test how actin filaments form in our smyhc1 ${ }^{\text {kg179 }}$ mutants, I would cross my smyhc1 ${ }^{\mathrm{kg179}}$ mutants to Tg(acta1:lifeact-GFP;acta1:mCherryCAAX) which Lifeact-GFP binds to thin filaments through the Lifeact tag. mCherry is directed by the CAAX tag to the sarcolemma (Berger, Hall and Currie, 2015).

5.3.3. Lack of smyhc1 does not affect sarcomere organisation in adulthood

Despite defects in slow fibre sarcomere assembly in smyhc1 ${ }^{\text {kg179 }}$ mutants during early development, there were no defects in the migration of slow muscle precursor into the superficial layer of elongated slow fibres where juvenile to adult smyhc1 ${ }^{\mathrm{kg179}}$ mutants does not show an obvious phenotype. During early slow fibre development, smyhc1 is predominantly expressed and smyhc2 and smyhc3 are expressed in a subset of muscles (Stone Elworthy et al., 2008). In the adult stages, the predominant expression of smyhc1 diminishes at 42 dpf and is replaced by smyhc2 and smyhc3 in mature slow fibres (Stone Elworthy et al., 2008; Li et al., 2020). Our data showing immotility from smyhc1 ${ }^{\text {kg179 }}$ mutants at early stages of development followed by the recovery of phenotype in juvenile and adults correlate to the predominant expression of smyhc1 in young larvae transitioning to smyhc2 and smyhc3 in juvenile to adulthood.

During early mouse and human slow fibre development, MyHC-slow and predominantly MyHC-Emb (MYH3) are expressed in primary fibres. Lack of MyHC-Emb increases the fast myofiber number and

Abstract

slow myofiber area (Sharma et al., 2018). Despite early embryonic expression of smyhc1 in zebrafish slow fibres, our findings suggest that smyhc1 does not functionally resemble mammalian MYH3. Smyhc1 ${ }^{\text {kg179 }}$ mutants show defective primary slow fibres but continued survival to develop into secondary fibres in juveniles and adults with no observable difference in fast fibre number or increased slow fibre area. Our smyhc1 ${ }^{k g 179}$ mutants do not show secondary fibre defects as zebrafish smyhc1 is not homologous to mammalian MYH3 but rather to mammalian MYH7. Zebrafish smyhc2 and smyhc3 are also homologous to mammalian MYH7 and knockout of these genes may describe the juvenile to adult phenotype associated with mutations in human MYH7. Currently, there are no knockout studies have been made on these genes. Thus, defective sarcomere organisation in slow fibres from lack of smyhc1 at the early stages of development is not essential for sarcomere organisation in secondary fibres in juveniles to adulthood. Knockout of the smyhc locus will be crucial to identify the role of MYH7 from early development to adulthood and identify the role of smyhc2-5 in sarcomere assembly and organisation.

5.3.4. Conclusion

Smyhc1 has been demonstrated to play a role in sarcomere organisation during the early stages of development (Codina et al., 2010; Li et al., 2020; Whittle et al., 2020). Present data show lack of smyhc1 results in slow muscle immotility during the early stages of development with recovery at 30 dpf. Smyhc1 ${ }^{\text {kg179 }}$ mutants show defective sarcomere organisation at the early stages of development and give insight into the role of smyhc1 in sarcomere assembly after the initiation step whereby Zdisks anchor to the MTJ and subsequently elongate to form the mature myofiber. Phenotypic data from smyhc1 mutants give insight into the early developmental role of mammalian MYH7 however, the subsequent transitional role of MYH7 from juvenile to adulthood remains in question. Ongoing work to generate a large deletion of the smyhc locus will give insight into the role of MYH7 orthologs smyhc1-5 in zebrafish for sarcomere assembly.

Chapter 6

General Discussion

6.1. Summary

The two congenital myopathies that I have focused on in the present work, Laing Distal Myopathy (LDM) and Myosin Storage Myopathy (MSM) are due to sarcomeric gene mutations in MYH7 (Lamont et al., 2014; Parker and Peckham, 2020). Although there are currently no curative medicines for MYH7related congenital myopathies and available treatments simply target the various symptoms (Myosin storage myopathy, 2016; Topaloglu, 2020). The aim of this thesis was to study the potential underlying molecular and cellular mechanisms leading to LDM and MSM by identifying primary biophysical defects in human fibres obtained from affected patients and developing zebrafish models that investigated developmental defects in the quest for treatment design for MYH7-related diseases. My main findings were the following: 1) There is no overall alteration in sarcomere organisation in the presence of defective myosin molecules. 2) Mutations affecting the MYH7 MyBP-C binding domain destabilise the SRX state. 3) Zebrafish genes smyhc1-5, myh7 and myh7l are orthologous to mammalian MYH7. 4) Loss of smyhc1 in zebrafish results in defective sarcomere organisation at the early stages of development, indicating the role of smyhc1 in sarcomere assembly to elongate the myofiber. 5) Transitional role of MYH7 from early developmental stages to adulthood remains in question. Overall, current data give early insight into the mechanism for the role of slow myosin in sarcomere assembly.

6.2. Defective slow MyHC does not affect sarcomere organisation in adults.

Myosin molecules are formed through the dimerization of individual myosin units and stabilised through their coiled-coil structure in the light meromyosin (LMM) (McLachlan and Karn, 1982). The heptad repeats $a-g$ in the coiled-coil describe the functional purpose for myosin dimerization as described in my introduction. The common amino acids affected in LDM and MSM patients were in amino acids a and d for the main core of myosin dimerization through the characteristic hydrophobic and in the charged amino acids on the exterior portion of the mosin LMM at positions b, c and f (McLachlan and Karn, 1982). The charged amino acids within the heptad sequence form a larger 28 amino acid repeat to enable myosin dimers to form larger myosin filaments in sarcomeres (Squire, 1973; Atkinson and Stewart, 1992; Rahmani et al., 2021). Such mutations in MYH7 affecting either myosin dimerization or myosin filament assembly were unable to distinguish between LDM and MSM.

The LMM structure has been described as an intricate coiled-coil structure and its structure is conserved between vertebrates and invertebrates emphasising the importance of the amino acid arrangement for myosin molecules packing together (Squire, 1973; Rahmani et al., 2021). Despite such conserved intricate structure of the coiled-coil LMM, we demonstrated that in the presence of defective myosin molecules, there was no hindrance for defective myosin molecules to dimerise and pack into thick filaments and slow myosin is not essential for sarcomere organisation. Actin filaments have been shown to form independently of myosin (Lin et al., 1994) and initial steps in sarcomere assembly involve the formation of premyofibrils containing non-muscle myosin II (Rhee, Sanger and Sanger, 1994; Swailes et al., 2006). Muscle myosin, in this case, slow myosin replaces non-muscle myosin as one of the last steps in myofibril formation (Komiyama, Maruyama and Shimada, 1990; Péault et al., 2007) and argues that slow myosin is not essential for sarcomere organisation in myofibrils. Due to the subtle nature of dominant mutations in MSM and LDM patients, missense or single amino acid deletions in defective myosin molecules is intermixed with healthy myosin molecules with a high level of variability. Variability of healthy and defective myosin may have led to full thick filament formation with differences in length that are too subtle to detect through our methods with fluorescence microscopy. Further analysis using more sensitive techniques such as super-resolution microscopy and electron microscopy may be able to detect such small length changes in the thick filament.

Although there was no change in myosin filament length and organisation coupled with the presence of organised actin filaments, our results describing the quality of myosin packing were affected through observations of a change in myosin head positioning. Mutations affecting the LMM at the myomesin or MyBP-C binding site destabilise myosin in the super relaxed (SRX) state. The role of myomesin in the M-band is to regulate and stabilise the packing of myosin filaments into a hexagonal myosin filament lattice (Agarkova et al., 2003; Hu, Ackermann and Kontrogianni-Konstantopoulos, 2015). Loss of myomesin-1 in human cell lines has shown sarcomere disassembly (Hang et al., 2021). Our data show myofibres with organised myosin and actin filaments interlaced in regular intervals and argue that mutation at the myomesin binding site is dispensable for sarcomere organisation. Overall, I argue that LDM and MSM mutations affecting myosin do not affect sarcomere organisation and without a clear analysis of subtle changes, defects in thick filament assembly in the presence of defective myosin molecules remain in question.

6.3. Destabilised SRX state may trigger hypercontractility

The role of MyBP-C in stabilising myosin molecules in the SRX state has been highly studied. Myosin in the conventional " J " motif resembles myosin in a relaxed state whereby myosin heads interact with each other to form an "interacting heads motif" (IHM) and both myosin heads interact with the S2 region (Alamo et al., 2017; Woodhead and Craig, 2020). The absence of MyBP-C has resulted in a shift in the proportion of myosin molecules in the SRX state to predominantly in the disordered (DRX) state (Luther et al., 2008; Zoghbi et al., 2008; McNamara et al., 2016). The MyBP-C and myomesin binding sites overlap in the LMM and since mutations in this region did not lead to sarcomere disassembly, there is a higher possibility that LDM and MSM mutations affect the ability of MyBP-C to bind to myosin molecules at the LMM site. MyBP-C connects to myosin at two sites, the N-terminal MyBP-C domain connects to the myosin head region and C-terminal MyBP-C connects to myosin LMM (Luther et al., 2008; Spudich, 2015). There has been a link between hypertrophic cardiomyopathy (HCM) mutations in MYH7 and the destabilising effects of myosin in the SRX state and thus lead to hypercontractility in the heart (Alamo et al., 2017; Toepfer et al., 2020). Studies have also shown that in the absence of MyBP-C or the presence of defective MyBP-C molecules in HCM patients, there were also destabilising effects on SRX myosin head positioning as seen in the presence of mutations affecting the MyBP-C binding site on MYH7 (McNamara et al., 2016; Christopher N Toepfer et al., 2019; Christopher N. Toepfer et al., 2019). We also observed a shift in the proportion of myosin heads in DRX state in fibres in muscle fibres obtained from patients with mutations at the MyBP-C binding domain in the LMM of MYH7. Here I argue that the C-terminal MyBP-C binding domain also shows the same destabilising effect of the SRX state as mutations affecting the N -terminal MyBP-C domain and MyBP-C. Current data suggest that the role of both MyBP-C sites and MyBP-C itself is to stabilise the SRX state through the interaction with slow myosin. Mutations affecting this interaction at the MyBPC site in the head region and MyBP-C itself have led to hypercontractile muscle in HCM patients. Skeletal muscle from LDM and MSM patients may have also shown hypercontractility and show poor ability to relax.

The main clinical phenotype in HCM patients is hypertrophy of the heart ventricle, hypercontractility and myocardial fibrosis. In mouse HCM models, a small molecule drug Mavacamten has been shown to suppress and reverse the symptoms of hypertrophy of the heart ventricle, cardiomyocyte disarray and myocardial fibrosis (Green et al., 2016). Mavacamten have also been shown to reverse the destabilising effects on the IHM of myosin and restored the balance of myosin molecules in their SRX and DRX state in HCM cell lines (Toepfer et al., 2020). Subsequently, cell sizes were reduced and
restored to their original size as wild type cell lines (Toepfer et al., 2020) and are currently used as an effective treatment for HCM patients with mutations in the MYH7 MyBP-C site and MyBP-C (Hegde et al., 2021). Our findings describe the destabilising effects on slow myosin SRX state in LDM patients and may show similar pathological defects in slow skeletal muscle as shown in cardiac muscle from HCM patients. Treatment with Mavacamten may be a candidate treatment for LDM patients with mutations in the MyBP-C binding site.

6.4. Zebrafish smyhc1 orthologous to human MYH7

Early developmental defects are unknown in patients affected by LDM and MSM mutations as clinical phenotypes have only been analysed in adults and children. Zebrafish disease models might prove advantageous as early time points can be studied. Early developing zebrafish larvae are clear, quick development to adulthood and breeding of adult fish gives large clutch sizes. It is essential to identify the zebrafish equivalent of the human MYH7 gene that would be most likely to give a phenotype in the defined functional muscle.

There have been studies describing zebrafish smyhc1-5, myh7, myh7l and myh6 genes as orthologs to human MYH6/7 (McGuigan, Phillips and Postlethwait, 2004) but no current data to distinguish orthology between zebrafish myh genes to either MYH6 or MYH7 (Liew et al., 1990; Epp et al., 1993; McGuigan, Phillips and Postlethwait, 2004). Mammalian MYH6 and MYH7 are located next to each other on the same chromosome and exist from a duplication event (Yamauchi-Takihara et al., 1989; Gulick et al., 1991). In chapter 4.2.3. I identified 4 signature amino acids to distinguish between MYH6/7 in mammals and ray-finned fish (Fig 4.7). Additionally, in our analysis of gene synteny between humans to zebrafish, zebrafish smyhc1-5, myh7 and myh7l were syntenic to human MYH7 and zebrafish myh6 was syntenic to human MYH6. The presence of many slow MyHC orthologs to the MYH7 in mammals (McGuigan, Phillips and Postlethwait, 2004; Watabe and Ikeda, 2006; Ikeda et al., 2007) arose from a teleost genome duplication event (Amores et al., 1998; Meyer and Schartl, 1999; Taylor et al., 2001). Evidence of this duplication event can be seen in zebrafish smyhc1-5 are syntenic to myh7 and myh7l (Fig 4.8) which have also been observed in goldfish and platyfish (Fig 4.8). Expression patterns between human MYH7 and zebrafish orthologs smyhc1-3 and myh7 demonstrate similarity whereby MYH7 is expressed both in slow skeletal muscle and in the heart ventricle and Zebrafish have separate myh orthologs expressing smyhc1-3 only in slow skeletal muscle (Stone Elworthy et al., 2008) and myh7 expressed in the heart ventricle (Park et al., 2009). Human MYH6 is predominantly expressed in the heart atrium and compliments the expression pattern of zebrafish
myh6 in the heart atrium (Huang et al., 2005). Thus, I argue that the common ancestor of humans and zebrafish had a pre-existing MYH6 and MYH7 gene and show zebrafish are orthologous to human MYH7 and not to human MYH6.

As there is no single ortholog to human MYH7, but rather a cluster of orthologous zebrafish genes, the segmented expression pattern of smyhc1-5, myh7 and myh7l prove advantageous in studying developmental defects exclusively associated with slow skeletal muscle. Since zebrafish smyhc1-3 are only expressed in slow skeletal muscle (Stone Elworthy et al., 2008) the possibility of generating viable mutants is higher as myosin affecting the cardiac muscle is not compromised. Smyhc1 show broad localisation of expression in the slow skeletal muscle and smyhc2 and smyhc3 is expressed in a subset of muscles during the early stages of development. There are knockdown and knockout studies on smyhc1 revealing early developmental defects in slow muscle giving confidence in generating knockout mutants to study developmental defects associated with mutations in smyhc1, the zebrafish ortholog to MYH7 (Codina et al., 2010; Xu et al., 2012; Li et al., 2020; Whittle et al., 2020).

6.5. Smyhc1 functions exclusively in early muscle development

Smyhc1 has been demonstrated to play a role in sarcomere organisation during the early stages of development (Codina et al., 2010; Li et al., 2020; Whittle et al., 2020). Consistent with smyhc1 knockdown and knockout studies, present data show lack of smyhc1 results in slow muscle immotility during the early stages of development (Codina et al., 2010; Li et al., 2020; Whittle et al., 2020) with full recovery of slow muscle motility at 30 dpf. However, conflicting data is describing smyhc1 knockout (KO) mutant adults with spinal curve defects, reduced food intake and larval lethality (Li et al., 2020; Whittle et al., 2020). Our findings do not show such morphological defects or lethality in larval to adult stages. Since zebrafish myosin paralogs share a high degree of sequence identity, there are high risks of off-target effects when targeting using CRISPR/Cas9 or TALENS genome editing. Current smyhc1 KO studies using CRISPR/Cas9 and TALENS have been used to target exon 5 (Li et al., 2020) and exon 16 (Whittle et al., 2020) of the smyhc1 locus. Both smyhc1 KO alleles in the literature introduced frameshift mutations leading to early stop codons and showed strong NMD in mutants. However, gRNA from Li et al, 2020 targeting the 3' end of exon 4 of the smyhc1 locus may have led to off-target mutations in smyhc2-5 as gRNA design show 100% identity to smyhc2-5 sequence (Appendix 5.3). Moreover, the TALENS design from Whittle et al, 2020 leading frameshift mutation leading to an early stop codon in exon 16 may result in off-target effects as exon 16 shows $87-89 \%$ sequence similarity to myh7 and smyhc2 (Appendix 5.3). Ensuring the highest specificity to smyhc1, we 147
optimised our CRISPR/Cas9 mutations to exclusively target smyhc1 and BLAST analysis of both our gRNA targets only to smyhc1 giving confidence that our mutants show minimal to no off-target effects (Appendix 5.3).

Smyhc1 is predominantly expressed during the early stages of development whilst the expression of smyhc2 and smyhc3 are localised in a subset of muscles (Stone Elworthy et al., 2008). Our smyhc1kg179 mutants show predominant loss of slow MyHC signal in the trunk but show some signal in the subset of slow fibres expressing smyhc2 and smyhc3 as described by Elworthy et al, 2008. There is a transition phase of smyhc expression from juvenile to adult zebrafish whereby smyhc1 expression is replaced by smyhc2 and smyhc3 (Stone Elworthy et al., 2008). In the absence of smyhc1 at adult stages, our smyhc1 ${ }^{\text {kg179 }}$ mutants show full recovery of slow muscle motility and suggest lack of smyhc1 does not play a template role for the integration of smyhc2 and smyhc3. Since our findings show phenotype during early stages in smyhc1 KO mutants and full recovery of phenotype when smyhc1 is no longer required for motility, the lack of phenotype during adult stages reflects the transition from smyhc1 in early developing larvae to smyhc2 and smyhc3 in adults and the possibility of phenotypes in adult smyhc1 KO mutants are unlikely.

6.6. Role of smyhc1 in sarcomere assembly

Smyhc1 play a key role in sarcomere assembly during the early stages of development as it is the first MyHC to be expressed in zebrafish slow fibres (Devoto et al., 1996). Studies have been made to model and describe the sequence of events in sarcomere assembly during muscle fibre growth (Rhee, Sanger and Sanger, 1994; Holtzer et al., 1997; Ehler et al., 1999; Gregorio et al., 1999; Rui, Bai and Perrimon, 2010; Fenix et al., 2018). During early zebrafish development, smyhc1 has been shown as essential for thick filament assembly and myofibril organisation in slow fibres (Li et al., 2020; Whittle et al., 2020). The first step for myofibrillogenesis is for the accumulation of integrins, α-actinin, vinculin and talin at the myotendinous junction (MTJ) which are the somite borders in zebrafish (Kelly and Zacks, 1969; Tokuyasu, 1989). Z-disks are formed initially as aggregates called z-bodies and are also accumulated MTJ (Tokuyasu and Maher, 1987). Mice and drosophila have shown ligands at the extracellular matrix are essential for the z-disk formation as the first step in sarcomere assembly (Volk, Fessler and Fessler, 1990; Bloor and Brown, 1998). Our smyhc1 ${ }^{\text {kg179 }}$ mutants show accumulation of α-actinin and actin filaments at the somite border supporting the model describing actin and α-actinin anchoring to the MTJ before integrating myosin filaments in building and elongating the muscle fibre.

After initiation of sarcomere at the MTJ, elongation of sarcomere can start to build. There are three main models describing aspects of sarcomere assembly after the initial anchoring at the MTJ: The stitching model, describing the independent assembly of I-Z-I bodies before myosin integration (Rhee, Sanger and Sanger, 1994; Holtzer et al., 1997; Van Der Ven et al., 1999; Sanger et al., 2005), A pre myofibril model describing the formation of stress fibre-like structures utilising non-muscle myosin as a template for sarcomere proteins to assemble (Rhee, Sanger and Sanger, 1994), the model utilising titin as a molecular ruler, describing template assembly of sarcomere proteins according to the titin molecule (Kelly and Zacks, 1969; Tokuyasu and Maher, 1987; Schwander et al., 2003; Au et al., 2004). All three models suggest the integration of myosin into the sarcomere is the last step in myofibrillogenesis. In our smyhc1 ${ }^{k g 179}$ mutants, initiation of sarcomere assembly showing anchoring Zbodies to the somite border occurred, but the elongation step of the myofibril remains absent and thus, myofibrils do not elongate supporting the studies showing the integration of myosin as one of the last steps in myofibrillogenesis.

6.7. Role of zebrafish smyhc genes in sarcomere assembly

Smyhc1 ${ }^{k g 179}$ mutants show defective sarcomere organisation at the early stages of development and give insight into the role of one MYH7 ortholog, smyhc1. However, the subsequent transitional role of MYH7 from juvenile to adulthood remains in question. Since smyhc2 and smyhc3 replace smyhc1 in adult zebrafish, the defective phenotype at the early stages of development show recovery in adult stages. Since humans only have one slow myosin gene from development to adulthood, studying all smyhc orthologs to human MYH7 may describe the transitional role of slow myosin in the developing muscle. Currently, there are no knockout studies have been made on these genes. Despite defects in slow fibre sarcomere assembly in smyhc1 ${ }^{\mathrm{kg} 179}$ mutants during early development, there were no defects in the migration of slow muscle precursor into the superficial layer of elongated slow fibres where juvenile to adult smyhc1 ${ }^{\text {kg179 }}$ mutants show does not show an obvious phenotype. During early slow fibre development, smyhc1 is predominantly expressed and smyhc2 and smyhc3 are expressed in a subset of muscles (Stone Elworthy et al., 2008). In the adult stages, the predominant expression of smyhc1 diminishes at 42 dpf and is replaced by smyhc2 and smyhc3 in mature slow fibres (Stone Elworthy et al., 2008; Li et al., 2020). Our data showing immotility from smyhc1 ${ }^{\mathrm{kg} 179}$ mutants at early stages of development followed by the recovery of phenotype in juvenile and adults correlate to the predominant expression of smyhc1 in young larvae transitioning to smyhc2 and smyhc3 in juvenile to adulthood. Thus, defective sarcomere organisation in slow fibres from lack of smyhc1 at the early stages of development is not essential for sarcomere organisation in secondary fibres in juveniles to 149
adulthood. Knockout of the smyhc locus will be crucial to identify the role of MYH7 from early development to adulthood and identify the role of smyhc2-5 in sarcomere assembly and organisation. Ongoing work to generate a large deletion of the smyhc locus will give insight into the role of MYH7 orthologs smyhc1-5 in zebrafish for sarcomere assembly.

6.8. Limitations and Future Directions

Our results to study the primary biophysical defects in the presence of MYH7 mutations using human fibres show several limitations when using frozen muscle biopsy specimens from the 19 patients in our study. Initial sample size calculation for human single fibre analysis were not possible prior to receiving patient samples. Muscle samples received were ethically approved and come from European Biobanks (MRC Neuromuscular Centre and Italian Telethon Biobank) and stored in our - 80 degrees Celsius freezer (Ethics approval has already been obtained). Despite calculating sample sizes after receiving patient samples to be able to find a difference between patients, there was high variability seen in our results when analysing our muscle fibres. Any differences in the method of obtaining biopsies, post-processing stages for storage of samples, patient health, ethnicity and activity background are unknown between samples and may have led to high variability seen in our results studying our samples. A second factor that may have also led to high variability within our samples may have been the wide range of age between patients and limited number of MSM patient data as current patients with LDM or MSM are rare and/or de novo mutations in humans thus, sourcing high number of samples from many patients are not possible. The third limitation to our muscle fibre sample data is the small amounts of muscle fibres per patient received. Such small numbers of fibres per patient limited the number of experiments done and decision to only perform 2 types of experimental assays (thick filament measurement and myosin head positioning).

There were also limitations in generating our zebrafish disease models and smyhc1 KO lines. Firstly, the generation of smyhc1 KO mutants limited to only study developmental defects at the early stages but not in the later stages as smyhc2 and smyhc3 replace the functional role in adult zebrafish. Zebrafish development usually take 3 months to reach breeding age and generation of homozygous mutants require 3 generations of breeding. Generation of large deletion after generating my initial smyhc1 mutants limited the amount of time I would have been able to screen such mutations and also to breed them to homozygosity. Not only the lack of time in generating deletion of whole smyhc locus, I was also limited in being able to study the role of each individual smyhc gene to be able to fully confirm the potential off target results in other smyhc genes seen in Li et al, 2020 and Whittle et al, 150

Abstract

2020. Future work to either continue to generate large deletion in both wild type and smyhc1/mutants or generate individual smyhc mutants to study the role of each smyhc gene over the course of muscle development. Secondly, in attempt to generate specific mutations in disease models, using homologous recombination with short single oligonucleotides are rare events, however not impossible as there have been many studies shown to generate small and specific mutations with this method (Hruscha et al., 2013; Hwang et al., 2013; Armstrong et al., 2016). Another method could be considered in the future is to utilise the recently availability of prime editing (Anzalone et al., 2019), utilising a dead Cas9 protein nicks at target site and a pegRNA (gRNA with prime editing feature) is fused to template DNA for homologous recombination of edited gene. Prime editing minimised the possible INDELS generated by double strand breaks in my previous method utilising the regular Cas9 and subsequent short single oligonucleotide donor and show high success for specific point mutation gene editing. Another method to generate disease models for LDM and MSM in the future would be to insert an expression vector to express defective smyhc genes containing LDM or MSM disease mutations in our smyhc1 mutants and further future, the large smyhc locus deletion mutants. The exact same expression vector method but utilising wild type human MYH7 to identify whether human MYH7 would recover defects seen in smyhc1 mutants and in the larger smyhc whole locus deletion.

6.9. Final Conclusion

The two congenital myopathies that I have focused on, LDM and MSM currently no curative medicines and available treatments simply target the various symptoms (Myosin storage myopathy, 2016; Topaloglu, 2020). I demonstrated that there is no overall alteration in sarcomere organisation in the presence of defective myosin molecules but rather affect the MYH7 MyBP-C binding domain destabilise the SRX state. I highlight the possibility of testing the drug Mavacamten or a derivative of this drug to target LDM mutations through stabilising the SRX state, as a similar method for the treatment for HCM. Moving to the future disease models can be generated using zebrafish smyhc1 KO and smyhc1-5 whole locus KO with the addition of defective myosin molecules using an expression vector. Overall, current data give early insight into the mechanism for the role of slow myosin in sarcomere assembly in zebrafish and can be used as an accurate disease model to further study the mechanism behind the two diseases LDM and MSM for targeted drug testing.

References

A.T.Geisterfer-Lowrance, A. et al. (1990) 'A molecular basis for familial hypertrophic cardiomyopathy: An $\alpha \beta$ cardiac myosin heavy chain hybrid gene', Cell, 62(5), pp. 991-998. doi: 10.1016/0092-8674(90)90273-H.

Adhikari, A. S. et al. (2019) ' β-Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity', Nature Communications, 10(1), pp. 1-10. doi: 10.1038/s41467-019-10555-9.

Agarkova, I. et al. (2003) 'M-band: A safeguard for sarcomere stability?', Journal of Muscle Research and Cell Motility, 24(2-3), pp. 191-203. doi: 10.1023/A:1026094924677.

Agarkova, I. et al. (2004) 'The molecular composition of the sarcomeric M-band correlates with muscle fiber type', European Journal of Cell Biology, 83(5), pp. 193-204. doi: 10.1078/0171-9335-00383.

Alamo, L. et al. (2008) 'Three-Dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity', Journal of Molecular Biology, 384(4), pp. 780797. doi: 10.1016/j.jmb.2008.10.013.

Alamo, L. et al. (2016) 'Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis', Journal of Molecular Biology, 428(6), pp. 1142-1164. doi: 10.1016/j.jmb.2016.01.027.

Alamo, L. et al. (2017) 'Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes', eLife, 6, pp. 1-31. doi: 10.7554/eLife.24634. Alberts, B. et al. (2015) 'The Cytoskeleton: Myosin and Actin', in Molecular Cell Biology of The Cell. 6th Editio, pp. 889-962. Available at: https://www.ncbi.nlm.nih.gov/books/NBK21724/.

Amemiya, C. T. et al. (2013) 'The African coelacanth genome provides insights into tetrapod evolution', Nature, 496(7445), pp. 311-316. doi: 10.1038/nature12027.

Amores, A. et al. (1998) 'Zebrafish hox clusters and vertebrate genome evolution', Science, 282(5394), pp. 1711-1714. doi: 10.1126/science.282.5394.1711.

Anderson, R. et al. (2018) 'Mavacamten stabilizes a folded-back sequestered super-relaxed state of β cardiac myosin', bioRxiv, p. 266783. doi: 10.1101/266783.

Anzalone, A. V. et al. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA, Nature. doi: 10.1038/s41586-019-1711-4.

Armstrong, G. A. B. et al. (2016) 'Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system', PLoS ONE, 11(3), pp. 1-10. doi: 10.1371/journal.pone. 0150188.

Arredondo, J. J. et al. (2001) 'Control of Drosophila paramyosin/miniparamyosin gene expression. Differential regulatory mechanisms for muscle-specific transcription', Journal of Biological Chemistry, 276(11), pp. 8278-8287. doi: 10.1074/jbc.M009302200.

Atkinson, S. J. and Stewart, M. (1991) 'Expression in Escherichia coli of fragments of the coiled-coil rod domain of rabbit myosin: Influence of different regions of the molecule on aggregation and paracrystal formation', Journal of Cell Science, 99(4), pp. 823-836.
Atkinson, S. J. and Stewart, M. (1992) 'Molecular interactions in myosin assembly. Role of the 28residue charge repeat in the rod', Journal of Molecular Biology, 226(1), pp. 7-13. doi: 10.1016/0022-2836(92)90118-4.

Au, Y. et al. (2004) 'Solution structure of ZASP PDZ domain: Implications for sarcomere ultrastructure and enigma family redundancy', Structure, 12(4), pp. 611-622. doi: 10.1016/j.str.2004.02.019.

Auman, H. J. et al. (2007) 'Functional modulation of cardiac form through regionally confined cell shape changes', PLoS Biology, 5(3), pp. 0604-0615. doi: 10.1371/journal.pbio. 0050053.

Bandman, E. and Rosser, B. W. C. (2000) 'Evolutionary significance of myosin heavy chain heterogeneity in birds', Microscopy Research and Technique, 50(6), pp. 473-491. doi: 10.1002/1097-0029(20000915)50:6<473::AID-JEMT5>3.0.CO;2-R.

Barohn, R. J., Brumback, R. A. and Mendell, J. R. (1994) 'Hyaline body myopathy', Neuromuscular Disorders. doi: 10.1016/0960-8966(94)90027-2.

Berger, J., Hall, T. E. and Currie, P. D. (2015) 'Novel Transgenic Lines to Label Sarcolemma and Myofibrils of the Musculature', Zebrafish, 12(1), pp. 124-125. doi: 10.1089/zeb.2014.1065.

Van den Bergh, P. Y. K. et al. (2014) 'Laing early-onset distal myopathy in a Belgian family', Acta Neurologica Belgica, 114(4), pp. 253-256. doi: 10.1007/s13760-014-0298-7.

Bernstein, S. I. et al. (1983) 'Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations', Nature, 302(5907), pp. 393-397. doi: 10.1038/302393a0.
Bitoun, M. et al. (2005) 'Mutations in dynamin 2 cause dominant centronuclear myopathy', Nature Genetics, 37(11), pp. 1207-1209. doi: 10.1038/ng1657.

Blagden, C. S. et al. (1997) 'Notochord induction of zebrafish slow muscle mediated by sonic hedgehog', Genes and Development, 11(17), pp. 2163-2175. doi: 10.1101/gad.11.17.2163.

Bloor, J. W. and Brown, N. H. (1998) 'Genetic analysis of the Drosophila α (PS2) integrin subunit reveals discrete adhesive, morphogenetic and sarcomeric functions', Genetics, 148(3), pp. 1127-1142. doi: 10.1093/genetics/148.3.1127.

Bohlega, S. et al. (2003) 'Autosomal dominant hyaline body myopathy: Clinical variability and pathologic findings', Neurology, 61(11), pp. 1519-1523. doi: 10.1212/01.WNL.0000096022.09887.9D.

Bollen, I. A. E. et al. (2017) 'Myofilament Remodeling and Function Is More Impaired in Peripartum Cardiomyopathy Compared with Dilated Cardiomyopathy and Ischemic Heart Disease', American Journal of Pathology, 187(12), pp. 2645-2658. doi: 10.1016/j.ajpath.2017.08.022.

Boycott, K. M. et al. (2013) 'Rare-disease genetics in the era of next-generation sequencing: Discovery to translation', Nature Reviews Genetics, 14(10), pp. 681-691. doi: 10.1038/nrg3555.

Bryson-Richardson, R. J. et al. (2005) 'Myosin heavy chain expression in zebrafish and slow muscle composition', Developmental Dynamics, 233(3), pp. 1018-1022. doi: 10.1002/dvdy. 20380.

Cancilla, P. A. et al. (1971) 'Familial myopathy with probable lysis of myofibrils in type I fibers', Neurology. doi: 10.1212/WNL.21.6.579.

Cazorla, O. et al. (2001) 'Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes', Circulation Research, 88(10), pp. 1028-1035. doi: 10.1161/hh1001.090876.

Chang, H. H. Y. et al. (2017) 'Non-homologous DNA end joining and alternative pathways to doublestrand break repair', Nature Reviews Molecular Cell Biology, 18(8), pp. 495-506. doi: 10.1038/nrm.2017.48.

Chang, N. et al. (2013) 'Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos', Cell Research, 23(4), pp. 465-472. doi: 10.1038/cr.2013.45.

Chen, Q. et al. (1997) 'Identification of a genomic locus containing three slow myosin heavy chain genes in the chicken', Biochimica et Biophysica Acta-Gene Structure and Expression, 1353(2), pp. 148156. doi: 10.1016/S0167-4781(97)00067-5.

Cheung, A. et al. (2002) 'A small-molecule inhibitor of skeletal muscle myosin II', Nature Cell Biology, 4(1), pp. 83-88. doi: 10.1038/ncb734.

Chevallier, A., Kieny, M. and Mauger, A. (1977) 'Limb-somite relationship: origin of the limb musculature.', J Embrol Exp Morphol, 41, pp. 245-258.

Cho, M., Webster, S. G. and Blau, H. M. (1993) 'Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development', Journal of Cell Biology, 121(4), pp. 795-810. doi: 10.1083/jcb.121.4.795.

Clarke, N. F. et al. (2008) 'Mutations in TPM3 are a common cause of congenital fiber type disproportion', Annals of Neurology, 63(3), pp. 329-337. doi: 10.1002/ana.21308.

Codina, M. et al. (2010) 'Loss of Smyhc1 or Hsp90 $\alpha 1$ function results in different effects on myofibril organization in skeletal muscles of zebrafish embryos', PLoS ONE, 5(1). doi: 10.1371/journal.pone. 0008416.

Cohen, C. and Holmes, K. C. (1963) 'X-ray diffraction evidence for α-helical coiled-coils in native
muscle', Journal of Molecular Biology, 6(5), pp. 423-432. doi: 10.1016/S0022-2836(63)80053-4. Cooke, R. (2011) 'The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle', Biophysical Reviews, 3(1), pp. 33-45. doi: 10.1007/s12551-011-0044-9.

Cooper, M. S. et al. (2005) 'Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP', Developmental Dynamics, 232(2), pp. 359-368. doi: 10.1002/dvdy. 20252.

Cossu, G. et al. (1996) 'Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm', Development, 122(2), pp. 429-437. doi: 10.1242/dev.122.2.429.

Coureux, P. D. et al. (2003) 'A structural state of the myosin V motor without bound nucleotide', Nature, 425(6956), pp. 419-423. doi: 10.1038/nature01927.

Crick, F. H. C. (1953) 'The packing of α-helices: simple coiled-coils', Acta Crystallographica, 6(8), pp. 689-697. doi: 10.1107/s0365110x53001964.

Cripps, R. M. (1999) 'Assembly of thick filaments and myofibrils occurs in the absence of the myosin head', The EMBO Journal, 18(7), pp. 1793-1804. doi: 10.1093/emboj/18.7.1793.

Crow, M. T. and Stockdale, F. E. (1986) 'Myosin expression and specialization among the earliest muscle fibers of the developing avian limb', Developmental Biology, 113(1), pp. 238-254. doi: 10.1016/0012-1606(86)90126-0.

Cullup, T. et al. (2012) 'Mutations in MYH7 cause Multi-minicore Disease (MmD) with variable cardiac involvement', Neuromuscular Disorders, 22(12), pp. 1096-1104. doi: 10.1016/j.nmd.2012.06.007.

Currie, P. D. and Ingham, P. W. (1996) 'Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish', Nature, 382(6590), pp. 452-455. doi: 10.1038/382452a0.

D'Agostino, C. et al. (2011) 'In sporadic inclusion body myositis muscle fibres TDP-43-positive inclusions are less frequent and robust than p62 inclusions, and are not associated with paired helical filaments', Neuropathology and Applied Neurobiology, 37(3), pp. 315-320. doi: 10.1111/j.13652990.2010.01108.x.

Daggett, D. F. et al. (2007) 'Control of morphogenetic cell movements in the early zebrafish myotome', Developmental Biology, 309(2), pp. 169-179. doi: 10.1016/j.ydbio.2007.06.008.

Dahl-Halvarsson, M. et al. (2017) 'Myosin storage myopathy in C. Elegans and human cultured muscle cells', PLoS ONE, 12(1), pp. 1-14. doi: 10.1371/journal.pone.0170613.

Dahl-Halvarsson, M. et al. (2018) 'Drosophila model of myosin myopathy rescued by overexpression of a TRIM-protein family member', Proceedings of the National Academy of Sciences of the United States of America, 115(28), pp. E6566-E6575. doi: 10.1073/pnas.1800727115.

Daneshparvar, N. et al. (2020) 'CryoEM structure of Drosophila flight muscle thick filaments at 7 A resolution', Life Science Alliance, 3(8), pp. 1-14. doi: 10.26508/LSA. 202000823.

Darin, N. et al. (2007) 'New skeletal myopathy and cardiomyopathy associated with a missense mutation in MYH7', Neurology. doi: 10.1212/01.wnI.0000264430.55233.72.

Desjardins, P. R. et al. (2002) 'Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family', Molecular Biology and Evolution, 19(4), pp. 375-393. doi: 10.1093/oxfordjournals.molbev.a004093.

Devoto, S. H. et al. (1996) 'Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation', Development, 122(11), pp. 3371-3380. doi: 10.1242/dev.122.11.3371.

Dlugosz, A. A. et al. (1984) 'The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes.', Journal of Cell Biology, 99(6), pp. 2268-2278. doi: 10.1083/jcb.99.6.2268.

Du, A. et al. (2003) 'Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm', Developmental Biology, 257(2), pp. 382-394. doi: 10.1016/S0012-1606(03)00104-0.

Du, A., Sanger, J. M. and Sanger, J. W. (2008) 'Cardiac myofibrillogenesis inside intact embryonic hearts', Developmental Biology, 318(2), pp. 236-246. doi: 10.1016/j.ydbio.2008.03.011.

Ehler, E. et al. (1999) 'Myofibrillogenesis in the developing chicken heart: Assembly of Z-disk, M-line and the thick filaments', Journal of Cell Science, 112(10), pp. 1529-1539. doi: 10.1242/jcs.112.10.1529. Elworthy, Stone et al. (2008) 'Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity', Development, 135(12), pp. 2115-2126. doi: 10.1242/dev. 015719.

Elworthy, S. et al. (2008) 'Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity', Development, 135(12), pp. 2115-2126. doi: 10.1242/dev. 015719.

Epp, T. A. et al. (1993) 'Structural organization of the human cardiac α-myosin heavy chain gene (myh6)', Genomics, 18(3), pp. 505-509. doi: 10.1016/S0888-7543(11)80006-6.

Ervasti, J. M. (2003) 'Costameres: The Achilles' heel of Herculean muscle', Journal of Biological Chemistry, 278(16), pp. 13591-13594. doi: 10.1074/jbc.R200021200.

Fatkin, D. and Graham, R. M. (2002) 'Molecular Mechanisms of Inherited Cardiomyopathies', Physiological Reviews. doi: 10.1152/physrev.00012.2002.

Felsenfeld, A. L., Curry, M. and Kimmel, C. B. (1991) 'The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells', Developmental Biology, 148(1), pp. 23-30. doi:
10.1016/0012-1606(91)90314-S.

Fenix, A. M. et al. (2018) 'Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes', eLife, 7, pp. 1-33. doi: 10.7554/eLife. 42144.

Fiorillo, C. et al. (2016) 'MYH7-related myopathies: Clinical, histopathological and imaging findings in a cohort of Italian patients', Orphanet Journal of Rare Diseases, 11(1). doi: 10.1186/s13023-016-04761.

Frazier, A. et al. (2008) 'Familial hypertrophic cardiomyopathy associated with cardiac β-myosin heavy chain and troponin I mutations', Pediatric Cardiology, 29(4), pp. 846-850. doi: 10.1007/s00246-007-9177-9.

Freiburg, A. et al. (2000) 'Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity', Circulation Research, 86(11), pp. 1114-1121. doi: 10.1161/01.RES.86.11.1114.

Frisbee, J. C. and Barclay, J. K. (1999) 'Microvascular hematocrit and permeability-surface area product of in situ canine skeletal muscle during fatigue', Microvascular Research, 57(2), pp. 203-207. doi: 10.1006/mvre.1998.2118.

Fujita, H., Nedachi, T. and Kanzaki, M. (2007) 'Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes', Experimental Cell Research, 313(9), pp. 1853-1865. doi: 10.1016/j.yexcr.2007.03.002.

Fukuda, N. et al. (2005) 'Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle', Pflugers Archiv European Journal of Physiology, 449(5), pp. 449-457. doi: 10.1007/s00424-004-1354-6.

Fusi, L., Huang, Z. and Irving, M. (2015) 'The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation', Biophysical Journal, 109(4), pp. 783-792. doi: 10.1016/j.bpj.2015.06.038.

Garfinkel, A. C., Seidman, J. G. and Seidman, C. E. (2018) 'Genetic Pathogenesis of Hypertrophic and Dilated Cardiomyopathy', Heart Failure Clinics, 14(2), pp. 139-146. doi: 10.1016/j.hfc.2017.12.004.

George, E. L., Ober, M. B. and Emerson, C. P. (1989) 'Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons', Molecular and Cellular Biology, 9(7), pp. 2957-2974. doi: 10.1128/mcb.9.7.2957-2974.1989.

Goebel, H. H. and Blaschek, A. (2011) 'Protein Aggregation in Congenital Myopathies', Seminars in Pediatric Neurology, 18(4), pp. 272-276. doi: 10.1016/j.spen.2011.10.009.

Gokhin, D. S. et al. (2012) 'Thin-filament length correlates with fiber type in human skeletal muscle', AJP: Cell Physiology, 302(3), pp. C555-C565. doi: 10.1152/ajpcell.00299.2011.

Gokhin, D. S. et al. (2014) 'Alterations in thin filament length during postnatal skeletal muscle development and aging in mice', Frontiers in Physiology, 5(SEP), pp. 1-6. doi: 10.3389/fphys.2014.00375.

Gonzalez-Sanchez, A. and Bader, D. (1985) 'Characterization of a myosin heavy chain in the conductive system of the adult and developing chicken heart', Journal of Cell Biology, 100(1), pp. 270-275. doi: 10.1083/jcb.100.1.270.

González-Serratos, H. (1971) 'Inward spread of activation in vertebrate muscle fibres', The Journal of Physiology, 212(3), pp. 777-799. doi: 10.1113/jphysiol.1971.sp009356.

Gordon, A. M., Homsher, E. and Regnier, M. (2000) 'Regulation of contraction in striated muscle', Physiological Reviews, 80(2), pp. 853-924. doi: 10.1152/physrev.2000.80.2.853.

Green, E. M. et al. (2016) 'Heart disease: A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice', Science, 351(6273), pp. 617-621. doi: 10.1126/science.aad3456.

Gregorio, C. C. et al. (1999) 'Muscle assembly: A titanic achievement?', Current Opinion in Cell Biology, 11(1), pp. 18-25. doi: 10.1016/S0955-0674(99)80003-9.

Groen, E. J. et al. (2007) 'Analysis of the UK diagnostic strategy for limb girdle muscular dystrophy 2A', Brain, 130(12), pp. 3237-3249. doi: 10.1093/brain/awm259.

Groves, J. A., Hammond, C. L. and Hughes, S. M. (2005) 'Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish', Development, 132(19), pp. 4211-4222. doi: 10.1242/dev. 01958.

Gulick, J. et al. (1991) 'Isolation and characterization of the mouse cardiac myosin heavy chain genes', Journal of Biological Chemistry, 266(14), pp. 9180-9185. doi: 10.1016/s0021-9258(18)31568-0.

Gurevich, D. B. et al. (2016) 'Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo', Science, 353(6295). doi: 10.1126/science.aad9969.

Gutiérrez-Lovera, C. et al. (2017) 'The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic', Genes, 12(12), pp. 1-20. doi: 10.3390/genes8120349.

Hammond, C. L. et al. (2007) 'Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish', Developmental Biology, 302(2), pp. 504-521. doi: 10.1016/j.ydbio.2006.10.009.

Hang, C. et al. (2021) 'Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis', Journal of Cellular and Molecular Medicine, 25(3), pp. 1661-1676. doi: 10.1111/jcmm. 16268.

Haselgrove, J. C. (1975) 'X-ray evidence for conformational changes in the myosin filaments of 158
vertebrate striated muscle', Journal of Molecular Biology, 92(1), pp. 113-143. doi: 10.1016/0022-2836(75)90094-7.

Hastings, G. A. and Emerson, C. P. (1991) 'Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila', Journal of Cell Biology, 114(2), pp. 263-276. doi: 10.1083/jcb.114.2.263.

Hegde, S. M. et al. (2021) 'Effect of Mavacamten on Echocardiographic Features in Symptomatic Patients With Obstructive Hypertrophic Cardiomyopathy', Journal of the American College of Cardiology, 78(25), pp. 2518-2532. doi: 10.1016/j.jacc.2021.09.1381.

Hess, N. K. et al. (2007) 'Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene', Gene Expression Patterns, 7(4), pp. 413-422. doi: 10.1016/j.modgep.2006.11.007. Holtzer, H. et al. (1997) 'Independent assembly of $1.6 \mu \mathrm{~m}$ long bipolar MHC filaments and I-Z-I bodies', Cell Structure and Function, 22(1), pp. 83-93. doi: 10.1247/csf.22.83.

Homayoun, H. et al. (2011) 'Novel mutation in MYH7 gene associated with distal myopathy and cardiomyopathy', Neuromuscular Disorders, 21(3), pp. 219-222. doi: 10.1016/j.nmd.2010.12.005.

Hooijman, P., Stewart, M. A. and Cooke, R. (2011) 'A new state of cardiac myosin with very slow ATP turnover: A potential cardioprotective mechanism in the heart', Biophysical Journal, 100(8), pp. 19691976. doi: 10.1016/j.bpj.2011.02.061.

Hoshijima, K. et al. (2019) 'Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and FO Embryos that Lack Gene Function in Zebrafish', Developmental Cell, 51(5), pp. 645657.e4. doi: 10.1016/j.devcel.2019.10.004.

Howard, J. (1997) 'Molecular motors: Structural adaptations to cellular functions', Nature, 389(6651), pp. 561-567. doi: 10.1038/39247.

Hruscha, A. et al. (2013) 'Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish', Development (Cambridge), 140(24), pp. 4982-4987. doi: 10.1242/dev. 099085.

Hu, L. Y. R., Ackermann, M. A. and Kontrogianni-Konstantopoulos, A. (2015) 'The sarcomeric M-region: A molecular command center for diverse cellular processes', BioMed Research International, 2015. doi: 10.1155/2015/714197.

Hu, Z. et al. (2016) 'Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution', Science Advances, 2(9). doi: 10.1126/sciadv. 1600058.

Huang, H. et al. (2005) 'NXT2 is required for embryonic heart development in zebrafish', BMC Developmental Biology, 5, pp. 1-12. doi: 10.1186/1471-213X-5-7.

Hug, N., Longman, D. and Cáceres, J. F. (2016) 'Mechanism and regulation of the nonsense-mediated decay pathway', Nucleic Acids Research, 44(4), pp. 1483-1495. doi: 10.1093/nar/gkw010.

Huxley, H. E. and Brown, W. (1967) 'The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor', Journal of Molecular Biology, 30(2), pp. 383-434. doi: 10.1016/S0022-2836(67)80046-9.

Hwang, W. Y. et al. (2013) 'Efficient genome editing in zebrafish using a CRISPR-Cas system', Nature Biotechnology, 31(3), pp. 227-229. doi: 10.1038/nbt. 2501.

Ikebe, M. et al. (2001) 'The Tip of the Coiled-coil Rod Determines the Filament Formation of Smooth Muscle and Nonmuscle Myosin', Journal of Biological Chemistry, 276(32), pp. 30293-30300. doi: 10.1074/jbc.M101969200.

Ikeda, D. et al. (2007) 'Divergent evolution of the myosin heavy chain gene family in fish and tetrapods: Evidence from comparative genomic analysis', Physiological Genomics, 32(1), pp. 1-15. doi: 10.1152/physiolgenomics.00278.2006.

Irving, M. (2017) 'Regulation of Contraction by the Thick Filaments in Skeletal Muscle', Biophysical Journal, 113(12), pp. 2579-2594. doi: 10.1016/j.bpj.2017.09.037.

Irving, T. et al. (2011) 'Thick-filament strain and interfilament spacing in passive muscle: Effect of titinbased passive tension', Biophysical Journal, 100(6), pp. 1499-1508. doi: 10.1016/j.bpj.2011.01.059.

Jasin, M. and Rothstein, R. (2013) 'Repair of strand breaks by homologous recombination.', Cold Spring Harbor perspectives in biology, 5(11), pp. 1-18. doi: 10.1101/cshperspect.a012740.

Kassar-Duchossoy, L. et al. (2004) 'Mrf4 determines skeletal muscle identity in Myf5:Myod doublemutant mice', Nature, 431(7007), pp. 466-471. doi: 10.1038/nature02876.

Kassar-Duchossoy, L. et al. (2005) 'Pax3/Pax7 mark a novel population of primitive myogenic cells during development', Genes and Development, 19(12), pp. 1426-1431. doi: 10.1101/gad.345505. Kelly, A. M. and Zacks, S. I. (1969) 'The histogenesis of rat intercostal muscle.', The Journal of cell biology, 42(1), pp. 135-153. doi: 10.1083/jcb.42.1.135.

Kelly, K. K., Meadows, S. M. and Cripps, R. M. (2002) 'Drosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages', Mechanisms of Development, 110(12), pp. 39-50. doi: 10.1016/S0925-4773(01)00586-X.

Kim, B. H. and Zhang, G. J. (2020) 'Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs', G3: Genes, Genomes, Genetics, 10(3), pp. 1029-1037. doi: 10.1534/g3.119.401035.

Kimmel, C. B. et al. (1995) 'Stages of embryonic development of the zebrafish.', Developmental dynamics : an official public, 203(3), pp. 253-310. doi: 10.1002/aja.1002030302.

Klitzman, B. and Duling, B. R. (1979) 'Microvascular hematocrit and red cell flow in resting and contracting striated muscle', American Journal of Physiology - Heart and Circulatory Physiology, 6(4).
doi: 10.1152/ajpheart.1979.237.4.h481.
Knappe, S., Zammit, P. S. and Knight, R. D. (2015) 'A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent', Frontiers in Aging Neuroscience, 7(AUG), pp. 1-17. doi: 10.3389/fnagi.2015.00161.

Komiyama, M., Maruyama, K. and Shimada, Y. (1990) 'Assembly of connectin (titin) in relation to myosin and α-actinin in cultured cardiac myocytes', Journal of Muscle Research and Cell Motility, 11(5), pp. 419-428. doi: 10.1007/BF01739762.

Koutsopoulos, O. S. et al. (2013) 'Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome', European Journal of Human Genetics, 21(6), pp. 637-642. doi: 10.1038/ejhg.2012.226.

Labeit, S. and Kolmerer, B. (1995) 'Titins: Giant proteins in charge of muscle ultrastructure and elasticity', Science, 270(5234), pp. 293-296. doi: 10.1126/science.270.5234.293.

Laing, N. G. et al. (1995) 'Autosomal Dominant Distal Myopathy: Linkage to Chromosome 14’, American Journal of Human Genetics, 56(2), pp. 422-427.

Laing, N. G. et al. (2004) 'Actin mutations are one cause of congenital fibre type disproportion', Annals of Neurology, 56(5), pp. 689-694. doi: 10.1002/ana.20260.

Laing, N. G. et al. (2005) 'Myosin storage myopathy: Slow skeletal myosin (MYH7) mutation in two isolated cases', Neurology. doi: 10.1212/01.WNL.0000150581.37514.30.

Lamont, P. J. et al. (2006) 'Laing early onset distal myopathy: Slow myosin defect with variable abnormalities on muscle biopsy', Journal of Neurology, Neurosurgery and Psychiatry, 77(2), pp. 208215. doi: 10.1136/jnnp.2005.073825.

Lamont, P. J. et al. (2014) 'Novel Mutations Widen the Phenotypic Spectrum of Slow Skeletal/ β-Cardiac Myosin (MYH7) Distal Myopathy', Human Mutation, 35(7), pp. 868-879. doi: 10.1002/humu. 22553. Laporte, G. J. et al. (no date) 'A gene mutated in X-linked conserved in yeast', pp. 175-182.

Lawlor, M. W. et al. (2010) 'Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion', Human Mutation, 31(2), pp. 176-183. doi: 10.1002/humu. 21157.

Lewis, K. E. et al. (1999) 'Control of muscle cell-type specification in the zebrafish embryo by Hedgehog signalling', Developmental Biology, 216(2), pp. 469-480. doi: 10.1006/dbio.1999.9519.

Li, M. and Arner, A. (2015) 'Immobilization of dystrophin and Iaminin $\alpha 2$-chain deficient zebrafish larvae in vivo prevents the development of muscular dystrophy', PLoS ONE, 10(11), pp. 1-14. doi: 10.1371/journal.pone. 0139483.

Li, S. et al. (2020) 'Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants', The FASEB Journal, 34(1), pp. 1378-1397. doi:
10.1096/fj. $201900935 R$ R.

Liew, C. C. et al. (1990) 'Complete sequence and organization of the human cardiac β-myosin heavy chain gene', Nucleic Acids Research, 18(12), pp. 3647-3651. doi: 10.1093/nar/18.12.3647.

Lin, Z. et al. (1994) 'Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: Evidence for a conserved myoblast differentiation program in skeletal muscle', Cell Motility and the Cytoskeleton, 29(1), pp. 1-19. doi: 10.1002/cm.970290102.

Lowey, S., Waller, G. S. and Bandman, E. (1991) 'Neonatal and adult myosin heavy chains form homodimers during avian skeletal muscle development', Journal of Cell Biology, 113(2), pp. 303-310. doi: 10.1083/jcb.113.2.303.

Lu, B. D. et al. (1999) 'Spatial and temporal changes in myosin heavy chain gene expression in skeletal muscle development', Developmental Biology, 216(1), pp. 312-326. doi: 10.1006/dbio.1999.9488.

Lupas, A. (1996) 'Coiled coils: new structures and new functions', Trends in Biochemical Sciences, 21(10), pp. 375-382. doi: 10.1016/S0968-0004(96)10052-9.

Luther, P. K. et al. (2008) 'Understanding the Organisation and Role of Myosin Binding Protein C in Normal Striated Muscle by Comparison with MyBP-C Knockout Cardiac Muscle', Journal of Molecular Biology, 384(1), pp. 60-72. doi: 10.1016/j.jmb.2008.09.013.

Lykke-andersen, S. and Jensen, T. H. (2015) 'Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes', Nature Reviews Molecular Cell Biology, 16(11), pp. 665-677. doi: 10.1038/nrm4063.

Lyons, G. E. et al. (1990) 'The expression of myosin genes in developing skeletal muscle in the mouse embryo', Journal of Cell Biology, 111(4), pp. 1465-1476. doi: 10.1083/jcb.111.4.1465.

Ma, D. and Liu, F. (2015) 'Genome Editing and Its Applications in Model Organisms', Genomics, Proteomics and Bioinformatics, 13(6), pp. 336-344. doi: 10.1016/j.gpb.2015.12.001.

Ma, W. et al. (2018) 'Thick-Filament Extensibility in Intact Skeletal Muscle', Biophysical Journal, 115(8), pp. 1580-1588. doi: 10.1016/j.bpj.2018.08.038.

Machida, S. et al. (2002) 'Expression of slow skeletal myosin heavy chain 2 gene in Purkinje fiber cells in chick heart', Biology of the Cell, 94(6), pp. 389-399. doi: 10.1016/S0248-4900(02)00010-2.

Mahdavi, V., Periasamy, M. and Nadal-Ginard, B. (1982) 'Molecular characterization of two myosin heavy chain genes expressed in the adult heart', Nature, 297(5868), pp. 659-664. doi: 10.1038/297659a0.

Málnási-Csizmadia, A. et al. (2005) 'Switch movements and the myosin crossbridge stroke', Journal of Muscle Research and Cell Motility, 26(1), pp. 31-37. doi: 10.1007/s10974-005-9004-y.

Marín, M.-C., Rodríguez, J.-R. and Ferrús, A. (2004) 'Transcription of Drosophila Troponin I Gene Is

Regulated by Two Conserved, Functionally Identical, Synergistic Elements', Molecular Biology of the Cell, 15(3), pp. 1185-1196. doi: 10.1091/mbc.e03-09-0663.

Maron, B. J.et al. (1995) 'Prevalence of hypertrophic cardiomyopathy in a general population of young adults: Echocardiographic analysis of 4111 subjects in the CARDIA study', Circulation. doi: 10.1161/01.CIR.92.4.785.

Mas, J.-A., García-Zaragoza, E. and Cervera, M. (2004) 'Two Functionally Identical Modular Enhancers in Drosophila Troponin T Gene Establish the Correct Protein Levels in Different Muscle Types', Molecular Biology of the Cell, 15(4), pp. 1931-1945. doi: 10.1091/mbc.e03-10-0729.
Mastaglia, F. L. et al. (2002) 'Early onset chromosome 14 -linked distal myopathy (Laing)', Neuromuscular Disorders, 12(4), pp. 350-357. doi: 10.1016/S0960-8966(01)00287-5.

Masuzugawa, S. et al. (1997) 'Autosomal dominant hyaline body myopathy presenting as scapuloperoneal syndrome: Clinical features and muscle pathology', Neurology. doi: 10.1212/WNL.48.1.253.

Maves, L. (2014) 'Recent advances using zebrafish animal models for muscle disease drug discovery', Expert Opinion on Drug Discovery, 9(9), pp. 1033-1045. doi: 10.1517/17460441.2014.927435.
McGuigan, K., Phillips, P. C. and Postlethwait, J. H. (2004) 'Evolution of sarcomeric myosin heavy chain genes: Evidence from fish', Molecular Biology and Evolution, 21(6), pp. 1042-1056. doi: 10.1093/molbev/msh103.

McLachlan, A. D. and Karn, J. (1982) 'Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle', Nature, 299, pp. 226-231.
McNamara, J. W. et al. (2015) 'The role of super-relaxed myosin in skeletal and cardiac muscle', Biophysical Reviews, 7(1), pp. 5-14. doi: 10.1007/s12551-014-0151-5.

McNamara, J. W. et al. (2016) 'Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes', Journal of Molecular and Cellular Cardiology, 94, pp. 6571. doi: 10.1016/j.yjmcc.2016.03.009.

Merrifield, P. A. et al. (1989) 'Temporal and tissue-specific expression of myosin heavy chain isoforms in developing and adult avian muscle', Developmental Genetics, 10(5), pp. 372-385. doi: 10.1002/dvg. 1020100505.

Meyer, A. and Schartl, M. (1999) 'Gene and genome duplications in vertebrates: The one-to-four (-toeight in fish) rule and the evolution of novel gene functions', Current Opinion in Cell Biology, 11(6), pp. 699-704. doi: 10.1016/S0955-0674(99)00039-3.

Miller, D. M., Stockdale, F. E. and Karn, J. (1986) 'Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans', Proceedings of the National 163

Academy of Sciences of the United States of America, 83(8), pp. 2305-2309. doi: 10.1073/pnas.83.8.2305.

Moss, R. L., Fitzsimons, D. P. and Ralphe, J. C. (2015) 'Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium', Circulation Research, 116(1), pp. 183-192. doi: 10.1161/CIRCRESAHA.116.300561.

Muelas, N. et al. (2010) 'MYH7 gene tail mutation causing myopathic profiles beyond Laing distal myopathy', Neurology, 75(8), pp. 732-741. doi: 10.1212/WNL.0b013e3181eee4d5.

Myosin storage myopathy (2016) National Centre for Advancing Translational Sciences. Available at: https://rarediseases.info.nih.gov/diseases/7148/myosin-storage-myopathy.

Naganawa, Y. and Hirata, H. (2011) 'Developmental transition of touch response from slow musclemediated coilings to fast muscle-mediated burst swimming in zebrafish', Developmental Biology, 355(2), pp. 194-204. doi: 10.1016/j.ydbio.2011.04.027.

Narusawa, M. et al. (1987) 'Slow myosin in developing rat skeletal muscle', Journal of Cell Biology, 104(3), pp. 447-459. doi: 10.1083/jcb.104.3.447.

Nguyen, P. D. et al. (2017) 'Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest', Cell Stem Cell, 21(1), pp. 107-119.e6. doi: 10.1016/j.stem.2017.06.003.

Nicot, A. S. et al. (2007) 'Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy', Nature Genetics, 39(9), pp. 1134-1139. doi: 10.1038/ng2086.

Nord, H. et al. (2014) 'Differential regulation of myosin heavy chains defines new muscle domains in zebrafish', Molecular Biology of the Cell, 25(8), pp. 1384-1395. doi: 10.1091/mbc.E13-08-0486.

Nowak, K. J., Ravenscroft, G. and Laing, N. G. (2013) 'Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms', Acta Neuropathologica, 125(1), pp. 19-32. doi: 10.1007/s00401-012-1019-z.

Oda, T. et al. (2015) 'A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy', Human Genome Variation, 2(1), p. 15022. doi: 10.1038/hgv.2015.22.

Ojima, K. et al. (2015) 'The importance of subfragment 2 and C-terminus of myosin heavy chain for thick filament assembly in skeletal muscle cells', Animal Science Journal, 86(4), pp. 459-467. doi: 10.1111/asj. 12310.

Orfanos, Z. and Sparrow, J. C. (2013) 'Myosin isoform switching during assembly of the drosophila flight muscle thick filament lattice', Journal of Cell Science, 126(1), pp. 139-148. doi: 10.1242/jcs. 110361 .

Ortolano, S. et al. (2011) 'A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy', Neuromuscular Disorders, 21(4), pp. 254-262. doi: 10.1016/j.nmd.2010.12.011. Overeem, S. et al. (2007) 'Symptomatic distal myopathy with cardiomyopathy due to a MYH7 mutation', Neuromuscular Disorders, 17(6), pp. 490-493. doi: 10.1016/j.nmd.2007.02.007. Pardo, J. V., Siliciano, J. D. and Craig, S. W. (1983) 'A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements ("costameres") mark sites of attachment between myofibrils and sarcolemma.', Proceedings of the National Academy of Sciences, 80(4), pp. 1008-1012. doi: 10.1073/pnas.80.4.1008.

Park, J. S. et al. (2009) 'Isolation of a ventricle-specific promoter for the zebrafish ventricular myosin heavy chain (vmhc) gene and its regulation by GATA factors during embryonic heart development', Developmental Dynamics, 238(6), pp. 1574-1581. doi: 10.1002/dvdy. 21964.

Parker, F. and Peckham, M. (2020) 'Disease mutations in striated muscle myosins', Biophysical Reviews, 12(4), pp. 887-894. doi: 10.1007/s12551-020-00721-5.

Péault, B. et al. (2007) 'Stem and progenitor cells in skeletal muscle development, maintenance, and therapy', Molecular Therapy, 15(5), pp. 867-877. doi: 10.1038/mt.sj.6300145.

Pegoraro, E. et al. (2007) 'MYH7 gene mutation in myosin storage myopathy and scapulo-peroneal myopathy', Neuromuscular Disorders, 17(4), pp. 321-329. doi: 10.1016/j.nmd.2007.01.010.

Pipalia, T. G. et al. (2016) 'Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair', DMM Disease Models and Mechanisms, 9(6), pp. 671684. doi: $10.1242 / \mathrm{dmm} .022251$.

Quach, N. L. and Rando, T. A. (2006) 'Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells', Developmental Biology, 293(1), pp. 38-52. doi: 10.1016/j.ydbio.2005.12.040.
van Raamsdonk, W. et al. (1982) 'Differentiation of muscle fiber types in the teleost Brachydanio rerio, the zebrafish - Posthatching development', Anatomy and Embryology, 164(1), pp. 51-62. doi: 10.1007/BF00301878.

Rahmani, H. et al. (2021) 'The myosin II coiled-coil domain atomic structure in its native environment', Proceedings of the National Academy of Sciences of the United States of America, 118(14). doi: 10.1073/pnas. 2024151118.

Ran, F. A. et al. (2013) 'Genome engineering using the CRISPR-Cas9 system', Nature Protocols, 8(11), pp. 2281-2308. doi: 10.1038/nprot.2013.143.

Ravenscroft, G. et al. (2017) 'New era in genetics of early-onset muscle disease: Breakthroughs and challenges', Seminars in Cell and Developmental Biology, 64, pp. 160-170. doi:
10.1016/j.semcdb.2016.08.002.

Rayment, I. and Holden, H. M. (1994) 'The three-dimensional structure of a molecular motor', Trends in Biochemical Sciences, 19(3), pp. 129-134. doi: 10.1016/0968-0004(94)90206-2.

Relaix, F. et al. (2005) 'A Pax3/Pax7-dependent population of skeletal muscle progenitor cells', Nature, 435(7044), pp. 948-953. doi: 10.1038/nature03594.

Rhee, D., Sanger, J. M. J. W. and Sanger, J. M. J. W. (1994) 'The premyofibril: Evidence for its role in myofibrillogenesis', Cell Motility and the Cytoskeleton, 28(1), pp. 1-24. doi: 10.1002/cm.970280102.
Robert-Paganin, J., Auguin, D. and Houdusse, A. (2018) 'Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition', Nature Communications, 9(1). doi: 10.1038/s41467-018-06191-4.

Robinson, R. et al. (2006) 'Mutations in RYR1 in malignant hyperthermia and central core disease', Human Mutation, 27(10), pp. 977-989. doi: 10.1002/humu. 20356.

Romero, N. B., Sandaradura, S. A. and Clarke, N. F. (2013) 'Recent advances in nemaline myopathy', Current Opinion in Neurology, 26(5), pp. 519-526. doi: 10.1097/WCO.0b013e328364d681.

Rossi, A. C. et al. (2010) 'Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles', Journal of Physiology, 588(2), pp. 353-364. doi: 10.1113/jphysiol.2009.181008.

Roy, S. D. et al. (2017) 'Myotome adaptability confers developmental robustness to somitic myogenesis in response to fibre number alteration', Developmental Biology, 431(2), pp. 321-335. doi: 10.1016/j.ydbio.2017.08.029.

Rui, Y., Bai, J. and Perrimon, N. (2010) 'Sarcomere formation occurs by the assembly of multiple latent protein complexes', PLoS Genetics, 6(11). doi: 10.1371/journal.pgen. 1001208.
Rushbrook, J. I. et al. (1998) 'Protein and mRNA analysis of myosin heavy chains in the developing avian pectoralis major muscle', Journal of Muscle Research and Cell Motility, 19(2), pp. 157-168. doi: 10.1023/A:1005360612542.

Sanger, J. W. et al. (2005) 'How to build a myofibril', Journal of Muscle Research and Cell Motility, 26(6-8), pp. 343-354. doi: 10.1007/s10974-005-9016-7.

Sanger, J. W. J. M. et al. (2009) 'Myofibrillogenesis in skeletal muscle cells in zebrafish', Cell Motility and the Cytoskeleton, 66(8), pp. 556-566. doi: 10.1002/cm.20365.

Sarelius, I. H. and Duling, B. R. (1982) 'Direct measurement of microvessel hematocrit, red cell flux, velocity, and transit time', American Journal of Physiology - Heart and Circulatory Physiology, 12(6). doi: 10.1152/ajpheart.1982.243.6.h1018.

Sarkar, S. S. et al. (2020) 'The hypertrophic cardiomyopathy mutations R403Q and R663H increase the
number of myosin heads available to interact with actin', Science Advances, 6(14), pp. 1-11. doi: 10.1126/sciadv.aax0069.

Schiaffino, S. et al. (1989) 'Three myosin heavy chain isoforms in type 2 skeletal muscle fibres', Journal of Muscle Research and Cell Motility, 10(3), pp. 197-205. doi: 10.1007/BF01739810.

Schiaffino, S. et al. (2015) 'Developmental myosins: Expression patterns and functional significance', Skeletal Muscle, 5(1), pp. 1-14. doi: 10.1186/s13395-015-0046-6.

Schiaffino, S. and Reggiani, C. (2011) 'Fiber types in Mammalian skeletal muscles', Physiological Reviews, 91(4), pp. 1447-1531. doi: 10.1152/physrev.00031.2010.

Schoenauer, R. et al. (2008) 'Myomesin 3, a Novel Structural Component of the M-band in Striated Muscle', Journal of Molecular Biology, 376(2), pp. 338-351. doi: 10.1016/j.jmb.2007.11.048.

Schoenauer, R. et al. (2011) 'EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy', Basic Research in Cardiology, 106(2), pp. 233-247. doi: 10.1007/s00395-010-01312.

Schröter, C. et al. (2008) 'Dynamics of zebrafish somitogenesis’, Developmental Dynamics, 237(3), pp. 545-553. doi: 10.1002/dvdy. 21458.

Schwander, M. et al. (2003) 'B1 Integrins Regulate Myoblast Fusion and Sarcomere Assembly', Developmental Cell, 4(5), pp. 673-685. doi: 10.1016/S1534-5807(03)00118-7.

Sharma, A. et al. (2018) 'Myosin Heavy Chain-embryonic is a crucial regulator of skeletal muscle development and differentiation', bioRxiv, p. 261685. Available at: https://www.biorxiv.org/content/10.1101/261685v1.full.

Shimizu, T. et al. (1985) 'Axial arrangement of the myosin rod in vertebrate thick filaments: Immunoelectron microscopy with a monoclonal antibody to light meromyosin', Journal of Cell Biology, 101(3), pp. 1115-1123. doi: 10.1083/jcb.101.3.1115.

Shingde, M. V. et al. (2006) 'Myosin storage (hyaline body) myopathy: A case report', Neuromuscular Disorders, 16(12), pp. 882-886. doi: 10.1016/j.nmd.2006.09.001.

Siegert, R. et al. (2011) 'A myomesin mutation associated with hypertrophic cardiomyopathy deteriorates dimerisation properties', Biochemical and Biophysical Research Communications, 405(3), pp. 473-479. doi: 10.1016/j.bbrc.2011.01.056.

Sobrido, M. J. et al. (2005) 'Autosomal dominant congenital fibre type disproportion: A clinicopathological and imaging study of a large family', Brain, 128(7), pp. 1716-1727. doi: 10.1093/brain/awh511.

Sodek, J. et al. (1972) 'Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure.', Proceedings of the National Academy of Sciences of the United States of America, 69(12),
pp. 3800-3804. doi: 10.1073/pnas.69.12.3800.
Sohn, R. L. et al. (1997) 'A 29 residue region of the sarcomeric myosin rod is necessary for filament formation', Journal of Molecular Biology, 266(2), pp. 317-330. doi: 10.1006/jmbi.1996.0790.

Sorrells, S. et al. (2013) 'Analysis of apoptosis in zebrafish embryos by whole-mount immunofluorescence to detect activated caspase 3', Journal of Visualized Experiments, (82), pp. 1-8. doi: 10.3791/51060.

Spertus, J. A. et al. (2021) 'Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebocontrolled, phase 3 trial', The Lancet, 397(10293), pp. 2467-2475. doi: 10.1016/S0140-6736(21)00763-7.

Spudich, J. A. (2015) 'The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy', Biochemical Society Transactions, 43(1), pp. 64-72. doi: 10.1042/BST20140324.

Spudich, J. A. (2019) 'Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations', Pflugers Archiv European Journal of Physiology, 471(5), pp. 701-717. doi: 10.1007/s00424-019-02259-2.

Squire, J. M. (1973) 'General model of myosin filament structure’, Journal of Molecular Biology, 77(2), pp. 291-323. doi: 10.1016/0022-2836(73)90337-9.

Stalpers, X. et al. (2011) 'Scoliosis surgery in a patient with "de novo" myosin storage myopathy', Neuromuscular Disorders, 21(11), pp. 812-815. doi: 10.1016/j.nmd.2011.05.005.

Stelzer, J. E., Fitzsimons, D. P. and Moss, R. L. (2006) 'Ablation of myosin-binding protein-C accelerates force development in mouse myocardium', Biophysical Journal, 90(11), pp. 4119-4127. doi: 10.1529/biophysj.105.078147.

Stewart, M. A. et al. (2010) 'Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers', Proceedings of the National Academy of Sciences of the United States of America, 107(1), pp. 430-435. doi: 10.1073/pnas. 0909468107.

Stickney, H. L., Barresi, M. J. F. and Devoto, S. H. (2000) 'Somite development in Zebrafish', Developmental Dynamics, 219(3), pp. 287-303. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1065>3.0.CO;2-A.

Suggs, J. A. et al. (2017) 'A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects', DMM Disease Models and Mechanisms, 10(6), pp. 761-770. doi: 10.1242/dmm.028050.

Summerbell, D., Halai, C. and Rigby, P. W. J. (2002) 'Expression of the myogenic regulatory factor Mrf4
precedes or is contemporaneous with that of Myf5 in the somitic bud', Mechanisms of Development, 117(1-2), pp. 331-335. doi: 10.1016/S0925-4773(02)00208-3.

Sundaram, C. and Megha, S. U. (2012) 'Approach to the Interpretation of Muscle Biopsy', in Muscle Biopsy. InTech. doi: 10.5772/39034.

Swailes, N. T. et al. (2006) 'Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse', Journal of Cell Science, 119(17), pp. 3561-3570. doi: 10.1242/jcs.03096. Sweeney, H. L. and Houdusse, A. (2010) 'Structural and Functional Insights into the Myosin Motor Mechanism', Annual Review of Biophysics, 39(1), pp. 539-557. doi: 10.1146/annurev.biophys.050708.133751.

Tajbakhsh, S. et al. (1997) 'Redefining the genetic hierarchies controlling skeletal myogenesis: Pax- 3 and Myf-5 act upstream of MyoD', Cell, 89(1), pp. 127-138. doi: 10.1016/S0092-8674(00)80189-0.

Tajsharghi, H. et al. (2003) 'Myosin storage myopathy associated with a heterozygous missense mutation in MYH7', Annals of Neurology, 54(4), pp. 494-500. doi: 10.1002/ana. 10693.

Tajsharghi, H. et al. (2007) 'Homozygous mutation in MYH7 in myosin storage myopathy and cardiomyopathy', Neurology, 68(12), p. 962. doi: 10.1212/01.wnl.0000257131.13438.2c.

Tajsharghi, H. and Oldfors, A. (2013) 'Myosinopathies: Pathology and mechanisms', Acta Neuropathologica, 125(1), pp. 3-18. doi: 10.1007/s00401-012-1024-2.

Tajsharghi, H., Pilon, M. and Oldfors, A. (2005) 'A Caenorhabditis elegans model of the myosin heavy chain Ila E706R mutation', Annals of Neurology, 58(3), pp. 442-448. doi: 10.1002/ana.20594.

Tasca, G. et al. (2012) 'New phenotype and pathology features in MYH7-related distal myopathy', Neuromuscular Disorders, 22(7), pp. 640-647. doi: 10.1016/j.nmd.2012.03.003.

Taylor, J. S. et al. (2001) 'Comparative genomics provides evidence for an ancient genome duplication event in fish', Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1414), pp. 1661-1679. doi: 10.1098/rstb.2001.0975.

Thisse, C. and Thisse, B. (2008) 'High-resolution in situ hybridization to whole-mount zebrafish embryos', Nature Protocols, 3(1), pp. 59-69. doi: 10.1038/nprot.2007.514.

Thomas, P. K., Schott, G. D. and Morgan-Hughes, J. A. (1975) 'Adult onset scapuloperoneal myopathy', Journal of Neurology, Neurosurgery and Psychiatry, 38(10), pp. 1008-1015. doi: 10.1136/jnnp.38.10.1008.

Thompson, R. C. et al. (2012) 'Myosin filament assembly requires a cluster of four positive residues located in the rod domain', FEBS Letters, 586(19), pp. 3008-3012. doi: 10.1016/j.febslet.2012.06.019. Tidyman, W. E., Moore, L. A. and Bandman, E. (1997) 'Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle', Developmental Dynamics, 208(4), pp. 491-504.
doi: 10.1002/(SICI)1097-0177(199704)208:4<491::AID-AJA5>3.0.CO;2-D.
Toepfer, C. N. et al. (2018) MYBPC3 Mutations cause Hypertrophic Cardiomyopathy by Dysregulating Myosin: Implications for Therapy. doi: 10.1097/01.mbc.0000224842.25592.8a.

Toepfer, Christopher N. et al. (2019) 'Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin', Science Translational Medicine, 11(476), pp. 1-11. doi: 10.1126/scitranslmed.aat1199.

Toepfer, Christopher N et al. (2019) 'Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin', Science Trans/ational Medicine, 11(476). doi: 10.1126/scitranslmed.aat1199.

Toepfer, C. N. et al. (2020) 'Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy', Circulation, pp. 828-842. doi: 10.1161/CIRCULATIONAHA.119.042339.

Tokuyasu, K. T. (1989) 'Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III. Generation of fasciae adherentes and costameres', Journal of Cell Biology, 108(1), pp. 43-53. doi: 10.1083/jcb.108.1.43.

Tokuyasu, K. T. and Maher, P. A. (1987) 'Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of α-actinin dots within titin spots at the time of the first myofibril formation', Journal of Cell Biology, 105(6 I), pp. 2795-2801. doi: 10.1083/jcb.105.6.2795.

Tonino, P. et al. (2019) 'Fine mapping titin's C-zone: Matching cardiac myosin-binding protein C stripes with titin's super-repeats', Journal of Molecular and Cellular Cardiology, 133(April), pp. 47-56. doi: 10.1016/j.yjmcc.2019.05.026.

Topaloglu, H. (2020) 'Core myopathies - A short review', Acta Myologica, 39(4), pp. 266-273. doi: 10.36185/2532-1900-029.

Tosch, V. et al. (2006) 'A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy', Human Molecular Genetics, 15(21), pp. 3098-3106. doi: 10.1093/hmg/ddl250.

Trivedi, D. V. et al. (2018) 'Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light', Biophysical Reviews, 10(1), pp. 27-48. doi: 10.1007/s12551-017-0274-6.

Uro-Coste, E. et al. (2009) 'Striking phenotypic variability in two familial cases of myosin storage myopathy with a MYH7 Leu1793pro mutation', Neuromuscular Disorders, 19(2), pp. 163-166. doi: 10.1016/j.nmd.2008.11.012.

Van Der Ven, P. F. M. et al. (1999) 'Thick filament assembly occurs after the formation of a cytoskeletal scaffold', Journal of Muscle Research and Cell Motility, 20(5-6), pp. 569-579. doi: 10.1023/A:1005569225773.

Viswanathan, M. C. et al. (2017) 'Myosin storage myopathy mutations yield defective myosin filament
assembly in vitro and disrupted myofibrillar structure and function in vivo', Human Molecular Genetics, 26(24), pp. 4799-4813. doi: $10.1093 / \mathrm{hmg} / \mathrm{ddx} 359$.

Volk, T., Fessler, L. I. and Fessler, J. H. (1990) 'A role for integrin in the formation of sarcomeric cytoarchitecture', Cell, 63(3), pp. 525-536. doi: 10.1016/0092-8674(90)90449-O.

Volkmann, N. et al. (2000) 'Evidence for cleft closure in actomyosin upon ADP release', Nature Structural Biology, 7(12), pp. 1147-1155. doi: 10.1038/82008.

Walsh, R. et al. (2009) 'Cardiomyopathy: A systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations', Cardiology, 115(1), pp. 49-60. doi: 10.1159/000252808.

Watabe, S. and Ikeda, D. (2006) 'Diversity of the pufferfish Takifugu rubripes fast skeletal myosin heavy chain genes', Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 1 (1 SPEC. ISS.), pp. 28-34. doi: 10.1016/j.cbd.2005.12.001.

Waterman, R. E. (1969) 'Development of the lateral musculature in the teleost, Brachydanio rerio: A fine structural study', American Journal of Anatomy, 125(4), pp. 457-493. doi: 10.1002/aja. 1001250406.

Waterston, R. H., Fishpool, R. M. and Brenner, S. (1977) 'Mutants affecting paramyosin in Caenorhabditis elegans', Journal of Molecular Biology, 117(3), pp. 679-697. doi: 10.1016/0022-2836(77)90064-X.

Waterston, R. H. and Francis, G. R. (1985) 'Genetic analysis of muscle development in Caenorhabditis elegans', Trends in Neurosciences, 8(C), pp. 270-276. doi: 10.1016/0166-2236(85)90101-8.

Webster, C. et al. (1988) 'Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy', Cell, 52(4), pp. 503-513. doi: 10.1016/0092-8674(88)90463-1.

Weiss, A. et al. (1999) 'Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved', Proceedings of the National Academy of Sciences of the United States of America, 96(6), pp. 2958-2963. doi: 10.1073/pnas.96.6.2958.

Whalen, R. G. et al. (1981) 'Three myosin heavy-chain isozymes appear sequentially in rat muscle development', Nature, 292(5826), pp. 805-809. doi: 10.1038/292805a0.

Whittle, J. et al. (2020) ' MYH 3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin ', EMBO Molecular Medicine, 12(11), pp. 1-14. doi: 10.15252/emmm. 202012356.

Wilson, C. et al. (2014) 'The myosin inhibitor blebbistatin stabilizes the super-relaxed state in skeletal muscle', Biophysical Journal, 107(7), pp. 1637-1646. doi: 10.1016/j.bpj.2014.07.075.

Wolff, C. et al. (2004) 'iguana encodes a novel zinc-finger protein with coiled-coil domains essential
for Hedgehog signal transduction in the zebrafish embryo', Genes and Development, 18(13), pp. 15651576. doi: 10.1101/gad. 296004.

Woodhead, J. L. et al. (2005) 'Atomic model of a myosin filament in the relaxed state', Nature, 436(7054), pp. 1195-1199. doi: 10.1038/nature03920.

Woodhead, J. L. and Craig, R. (2020) 'The mesa trail and the interacting heads motif of myosin II', Archives of Biochemistry and Biophysics, 680(October 2019), pp. 12-14. doi: 10.1016/j.abb.2019.108228.

Xu, J. et al. (2012) 'Functional Analysis of Slow Myosin Heavy Chain 1 and Myomesin-3 in Sarcomere Organization in Zebrafish Embryonic Slow Muscles', Journal of Genetics and Genomics, 39(2), pp. 6980. doi: 10.1016/j.jgg.2012.01.005.

Yamauchi-Takihara, K. et al. (1989) 'Characterization of human cardiac myosin heavy chain genes.', Proceedings of the National Academy of Sciences, 86(10), pp. 3504-3508. doi: 10.1073/pnas.86.10.3504.

Yang, Y. G., Obinata, T. and Shimada, Y. (2000) 'Developmental relationship of myosin binding proteins (myomesin, connectin and C-protein) to myosin in chicken somites as studied by immunofluorescence microscopy', Cell Structure and Function, 25(3), pp. 177-185. doi: 10.1247/csf.25.177.

Yengo, C. M. et al. (1999) 'Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP release', Biochemistry, 38(44), pp. 1451514523. doi: 10.1021/bi991226I.

Yount, R. G. et al. (1995) 'Is myosin a "back door" enzyme?', Biophysical Journal, 68(4 SUPPL.), pp. 243-246.

Yutzey, K. E., Rhee, J. T. and Bader, D. (1994) 'Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart', Development, 120(4), pp. 871-883. doi: 10.1242/dev.120.4.871.

Zhang, R. and Xu, X. (2009) 'Transient and Transgenic Analysis of the Zebrafish Ventricular Myosin Heavy Chain (vmhc) Promoter: An Inhibitory Mechanism of Ventricle-Specific Gene Expression', Developmental Dynamics, 238(6), pp. 1564-1573. doi: 10.1002/dvdy.21929.Transient.

Zhang, S. and Bernstein, S. I. (2001) 'Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis', Mechanisms of Development, 101(1-2), pp. 35-45. doi: 10.1016/S0925-4773(00)00549-9.

Zhang, Y. et al. (2017a) 'Programmable base editing of zebrafish genome using a modified CRISPRCas9 system', Nature Communications, 8(1), pp. 6-10. doi: 10.1038/s41467-017-00175-6.

Zhang, Y. et al. (2017b) 'Programmable base editing of zebrafish genome using a modified CRISPR-

Cas9 system', Nature Communications, 8(1), pp. 6-10. doi: 10.1038/s41467-017-00175-6.
Zhao, F. Q., Padrón, R. and Craig, R. (2008) 'Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state', Biophysical Journal, 95(7), pp. 3322-3329. doi: 10.1529/biophysj.108.137067.

Zoghbi, M. E. et al. (2008) 'Three-dimensional structure of vertebrate cardiac muscle myosin filaments', Proceedings of the National Academy of Sciences of the United States of America, 105(7), pp. 2386-2390. doi: 10.1073/pnas. 0708912105.

Appendix

Appendix 1.1 －Literature Review of LDM and MSM

\％ ¢ ¢ \％ \％	$\begin{aligned} & \frac{0}{2} \\ & \frac{5}{5} \\ & \frac{6}{6} \\ & \frac{0}{2} \end{aligned}$																				
${ }^{\text {c．}} 30160 \mathrm{C}$	Misense point mutaion	1434	p．R1434	c	Heterorgeas	＇mм	Lange distal myopatiy		1008	100\％	100\％	1008		33\％		33x．				4.57	Feinsteneta $2016^{6 \prime}$
C．4307TC	Missense point mutaion	1235	0． 51435 P	d		імм	Laing distal myopativy		ox	100\％	$0 \times$	67x0			33\％	33\％	0\％	67\％	33\％	3.33	Fiomilietal $20016^{\text {4 }}$
C．43096ac	Missense point mutation	1437	p．A1437P	e		імм	Laing distal myopativ		100\％	1000x	$0 \times$	0．				100x	100\％	100x	ox		Dabaje eal $2018^{\text {a }}$
C．43096 ${ }^{\text {c }}$	Missense point mutation	1437	р． 11437 P	e	Heterorgaus	Lмм	Laing distal myopathy		100\％	100\％		1008				100\％					Feinsteneta 2016^{6}
C． $43156 \times$ c	Missense point mutation	1439	P．A1439P	a	Heterorgeas	мм	Laing distal myopativ		100x	100x	100\％	1000			100\％			100x			Parketal $2013^{\text {se }}$
C43587＞	Missense point mutaion	1453	0．L443P	a	Heterorgeus	імм	laing distal myopativy		100\％	100\％	67\％	50\％	500	178		178．	338		178	4.5	Lefteretal 2015°
C．4a47T	Misense point mutaion	1481	p．L4881p	a		мм	Laing distal myopatity		100\％	100x	100\％	\％		100\％		100x	1008	100x	0\％		Lamontetal $2014^{\text {n }}$
${ }^{\text {c．47755 }}$ ¢	Missense point mutaion	1492		e		імм	Laing distal myopatiy		1000	1000\％	1000	ox				100x	1008	100\％	ox		Dabajetal $20018^{\text {² }}$
		150	${ }^{\text {p．R1500 }}$	f	Heterorgeus	імм	Laing distal myopativ		100\％	100\％	100\％	10008	ox	100\％	$0 \times$				ox		Meredithetal 2004^{3}
${ }^{\text {C．452＿＿452delecaic }}$	Tricusdeotide deletion	1508	pe：E15088el	g	Heterorgaus	＇mм	Loing distal myopativy		1000\％	1000x	1000	10088			ox	ox		100\％	ox		Reesetal 2015^{34}
${ }^{\text {C．452＿＿452delciac }}$	Tricucteotide edeletion	1508	p， E I5088el	g	Heterorgeus	імм	Laing distal myopativ		100\％	1000	50\％	100\％			$0 \times$	$50 \times$	0\％	1005	${ }^{0}$		vanden Beerghetal 2014^{4}
C． 4522 ＿4524delata	Tricucdeotide deletion	108	p．e．1508sel	g		імм	Lange distal myopathy		100\％	0＊	100\％	100\％		0＊		100\％	1008	100\％	100\％		lamonetetal 2014^{71}
C． 4522 ＿4524delcas	Tricusceotide deletion	1508	p．e．1508del	g		імм	Laing distal myopativy		1000	100\％	100\％	1000		O\％		100\％	os	100x	ox		Lamontetal 2014^{71}
C．452＿＿452delecas	Tricusceotide deletion	1508	0．E．1508del	g	Heterorgeus	ıмм	Laing distal myopativy		1000	100x	60\％	200．			100\％	600		1000	1008		Dubours etal20117
	Missense point mutation	1541	p．01541p	e		¢мм	Laing disalal myopatiy		100\％	100x	100\％	\％		$0 \times$				1005			Lamontetal 2014^{71}
${ }^{\text {c．46450］}}$	Missens point mutaion	154	p．a1599p	f	Heterorgeus	imm	taing distal myopativ		1000\％	1000	75\％	67x．			25\％			25\％	OK	3.92	Fefeeretetal $2017{ }^{7}$
C．46796¢	Missense point mutation	156	p．R1560	c	Heterorgeas	⿺𠃊八м	Laing distal myopativy	16	79\％	75＊	19\％				Ox	0＊		$100 \times$	$0 \times$	2.2	Caronell Conilloetal 201
C．4772＞${ }^{\text {c }}$	Misense point mutaion	159	p．L1591p	e		＇мм	Lange distal myopathy		100\％	100x	100\％	100\％			1000	100x		100x	O＊		Tasce etal20012 ${ }^{12}$
C．47907 $\times 6$	Misense point mutation	1597	0． 15978	d	Heterorgous	імм	Laing distal myopathy		100\％	100\％	100\％	1005			100\％		1008	100x	ox		Carkeetal $2013^{\prime \prime}$
C47900 >6	Missense point mutation	1597	0．L1597	d	Heterorgeus	¢мм	Laing ditalal myopativ		100x	100\％		100x			100x	100x	100%	100x	$0 \times$		Carkeetal $2013^{\prime \prime}$
	Missense point mutation	1599	${ }_{\text {aris }}$	f		ıмм	Laing distal myopativy		100\％	1000	1008	0		0\％							Lamontetal $2014^{1{ }^{12}}$
C48027＞	Missense point mutation	1601		a		Імм	Laing ditalal myopativy		1000	100x	1000x	1000x				100x	ox	100x	ox		Dabajetal $2018{ }^{\text {d }}$
C48076 ${ }^{\text {c }}$	Missense point mutaion	1603	p．A163P	c		емм	Laing distal myopativy		100\％	100\％	100\％	100\％				100\％	50%	100x	${ }^{0}$	6.5	Dabajetal $20188^{\text {¹ }}$
C．480760c	Missense point mutation	1603	P．A1603P	c		＇мм	Lang ditalal myopathy		100x	100x	100\％	on			ox	100x	\％8	500	0	4.5	Fiollioetal $2016^{\text {a }}$
${ }^{\text {c } 483300}$	Misense point mutation	168	${ }^{\text {pR1608P }}$	a		емм	Lange distal myopatiy		100x	10008	1000	2008		ox		$100 \times$	1008	100x	100x		Lamontetal 2014^{17}
${ }^{C 48149} \times$	Missense point mutation	161	p．A1611	d		імм	Laing distal myopativy		1009	100x	100\％	100\％				100\％	ox	1000	0\％		Dobbjetal $20018^{\text {² }}$
${ }^{\text {c 4835T }}$ ¢	Misense point mutaion	1612	0．1612P	e		¢мм	Laing distal myopativy		1000	100x	$0 \times$	1000		ox		100x	0%		ox		Lamontetal 2014^{71}
C．8899＿4851deeAAG	Trioucteotide deletion	1617	p．x1617 del	c	Heterorgaus	емм	Laing distal myopathy	14	100\％	100\％	92\％	4288			$0 \times$	509		1780	\％		Odaetal 215^{50}
C4899＿4851deana	Tricusceotide deletion	1617	p．x1617 del	c		1 ＇мм	Lange distal myopathy	，	1000	100x	100\％	1000		0x		100x	ox	1000．	0＊		Lamontetal $2014^{\text {a }}$

			$\begin{aligned} & \frac{6}{4} \\ & \frac{5}{4} \\ & \frac{0}{4} \\ & \frac{0}{6} \\ & \frac{0}{4} \end{aligned}$								Distal Upper Limb Myopathy			\square							
C.889-4851deleac	Tricucceatide deletion	1617	axi617ece	c		¢им	Linge dital myposativ		100\%	$100 \times$	$100 \times$	100x		ox		1000	ox	1008	$0 \times$		Lamonetal $2014^{\text {n }}$
C.889-4851delatac	Troucceatide deetetion	1617	2016178er	c		чим	laing disal Inyopaty		1008	$100 \times$	1000x	1000		ax				100x			Lamortetal 2014^{7}
C.489-4851delan	Thanceleatue deetion	1617	exi617cel	c		¢им	Lang disatal myposatiy		12008	1008	as	1005		\%		$0 \times$	1008	1000.	$0 \times$		Lumometeal 2014^{7}
c.as9.4851denac	Tricucteotide deetion	161	2x1617del	c		¢им	laing disal Inyopativ		1000	200x	ox	$1000 \times$		\%		100\%	1008	100\%	100\%		Lumorteal 12014^{7}
	Tricucteatide deletion	1617	ex61718ed	c	eteraygas	чим	laing disalal myopativ		1008	1000x	1000x	1000x				1000x		1008	ox		Kombsietal $2014^{\text {a }}$
C.49060c	Miserse point mutation	1636	pal6sp	a		иим	uing ditalal mypostiv	20	200x	200x	1000	1000		ox		200x	ox	100x	ox		Lamometal 12013^{17}
Cas37x	Misense point mustion	1646	216668	d		¢им	Laing disalal myopativ		100x	100x	$1000 \times$	Ox		1008		1008	ox		$0 \times$		Lamonteal 2014^{7}
caspsoc	Misense point mustion	1662	مR1662P	f		"им	laing disal myopativ		1000	$100 \times$	0	$0 \times$		ox							Lamortetal 20.14^{7}
¢5005. S007delat	Tricucteotide deetion	166	peli699ed	f		¢им	laine disal myopativ		1008	200x	100\%	1000x		ox		1006	ox		ox		Lamontetal 2014^{71}
C5059.5661del	Trinucteotide deletion	1687	pe1687cel	d	Hetercryous	${ }^{\text {¢и м }}$	Lang distal mypostivy		1008	100x	$0 \times$	Ox		100x	Ox	100\%	ox	$1000 \times$	$0 \times$		Uetal2018 ${ }^{\text {² }}$
		1706	2.17768	a	Heererygus	un	laing disal Invopativ		1008	1000		${ }^{1000}$									Meredis etal 200^{3}
.5186. S1888daca	Tincuckeatsedeletion	1728	2xa729eel	c	Heeterergeus	¢им	laing dstal myopativy		100\%	200x	$80 \times$			20x	ox				0.		Podetal $20144^{4 \prime}$
	Trincteotide duplation	172	exiz9ap	c		¢им	laing disal Invosativ		1008	1000	Ox	1000		Ox		ox	ox	1008	$0 \times$		Lamonteal 12014^{7}
C5186.518808pata	TTincteotse euplataion	172	axiz9ap	c		${ }^{\text {un m }}$	Laing satal myoostry	32	$50 \times$	100x	1000x	100x						100x	$3 \times$	4.53	Usdetal 2009 "
. 5.352 .5354 dec can	Tincusceatide deletion	1789	2x1784cel	b		чим	Ling distal ITvopstiv		ox	100x		100x			ox				$0 \times$		Tasaetal 2012^{12}
C.5378.53800emicc	Trinucleatidedeetion	179	2ul733ed	d		¢им	laing dsatal myopativ		1008	1000x	1000	1000x		0x		1008	ox		100\%		Lamonteal 12014^{7}
Cssolion	Misemese point musation	180	${ }^{\text {petisouk }}$	e		"им	Laing disal myopaty		75x	75x	ox	758			100\%	25x	os	50x.	100x		Forlileeal $2016^{\text {c/ }}$
5.54010×4	Miserse pontrnutation	1801	${ }^{2}$ 218001k	e	Hetercreaus	${ }^{\text {¢и м }}$	laing disal myposativ		1008	1000		1000			$100 \times$			100x	67x.	5.67	Auvgieretal $12015^{\prime \prime}$
Cstoloa	Miserse point musation	180	petisork	e		имм	Laing dstal myoosty		1008	10008	ox	ox		Os		1006	ox	100\%	1008		Lamometal 12014^{7}
$55560 \times \mathrm{A}$	Misenses point mutation	1856	${ }^{\text {persask }}$	c		¢	laing disal myopativ		33x	50x	$50 \times$	sox	25x		Ox			1000x	75*	f	Fintereretat $2014^{\circ 0}$
C.43906	Misenese point musation	1467	${ }^{2} 14667 \mathrm{~N}$	a	Heeterevgus	¢им	Myosinstorge mropes		1008	100\%		100\%			0\%		$100 \times$	100\%	100\%		allupetal2012 ${ }^{11}$
Ca73300	Misense point muation	1588	RR1588P	b	Heterexgous	¢им	Myosinstorgempons		100x	100x	1000							100x			allupetal2012 ${ }^{\text {n }}$
	Triowceatide deetion	1789	20.1784cel	b	Heerexrgous	чим	Mrosinstorgemrone		1008	100x				100x	200x	10005	1008	100x	$0 \times$		Staleese al 12011^{18}
$53378 \times 1 \times$	Misense point mumation	1793		d	Heterexgous	"мм	Mvoistatogemprop		1008	500						$1000 \times$	508				Dreetal200"
CSSSEOT	Misense point muaton	1820	RR1820w	b	Homorgeas	"им	Myosin storgemyone		os					100\%			$50 \times$	100\%	$50 \times$		Yoceraretal2015"
-55330 ${ }^{\text {c }}$	Miserse point muation	1845	prassw	f	Heereragous	¢им	Myoinstogeemrope			100x		100x			100\%			100x			Uetal2018 ${ }^{\text {27 }}$
C55307	Misersese point musation	1845	pr1885w	f	Heterexgaus	¢им	Myosinstorgemvope		sox	100\%	$50 \times$	Sox	25x.	50x	500\%			1008		4.75	Pegaraetal 1207^{70}
C553307	Misense point musation	185	prassw	f	Heeterevgous	"им	Myosinstorgemyons	11	1008	100\%	1000x	1000x		1000	$1000 \times$		1008	1000x	100\%		Taphazkeal 2003^{7}
C.230140T	Misense point mustion	1845	pr1385w	f	Heerexgeus	¢мм	Mrosinstogem mropen		1008	1000x		1000x		100x	1000x				100x		Lingetal $2005^{\text {n }}$
c23040T	Misense point muation	1845	${ }^{2}$ R1885w	f	Heterexgus	чим	Myosin stogem myopa		sox	500	$50 \times$	$100 \times$		100x	$1000 \times$		50x		$0 \times$		Shingeetal2006 ${ }^{19}$
c.23040T	Misemse point mustion	1846	prassw	f	Heterexgous	${ }^{\text {uм }}$	Myooinstogem myons		ox	200x		100x		100x	100x	1000x		100x	100x		Wingetal $2005^{\text {a }}$
C200120A	Misense point muation	183	р11833k	b	Homargas	ммм	Myosinstorgempora		678	67x		67x.			$1000 \times$	$1000 \times$	67x.		1000x	5.67	Tashargieal 2007^{12}
C255960T	Misense point musation	190	р.H190at	f	Heterexgus	"им	Myosinstorge myope	10	100x	100x	1000\%	${ }^{1000}$		1008	ox			100x	ox		Soblege eat 1204^{42}
577000 A	Missense point muation	194	${ }_{\text {2,E1920 }}$	e		${ }^{\text {¢и M }}$	Mrosin trogemprone		1008	200x	ox	100x		$0 \times$			$0 \times$		100x		Lamometal 12011^{12}
C5807AT	Misenese point mutaion	1936	px<19645832		Heterexgous	мим	Myosinstorge myope		${ }^{1009}$	100x		1000x		1000		1005			ox		Bantaieala 217^{4}
45807×6	Missense point muation	1936	pxasswss3.		Heerecregeus	Lum	Myosinstorgemyope	12		$100 \times$		100x						100x			Ortomotetal 2011^{3}

Appendix 2.1 - Primer design for smyhc1

Sequence: smyhc1 primer design.dna (Linear / 3636 bp)
Features: 7 total
Primers: 8 total
5' ACACAGGACAACCCGAGGTAAGAACCAAAGAGCTTCCATGCAGAAAGACTAAGGGAGATCTCCTG
 HGTGTCCTGTTGGGCTCCATTCTTGGTTTCTCGAAGGTACGTCTTTCTGATTCCCTCTAGAGGAC

Exon 1

GACCTCACAAACACTGCATCCAAAGCCAACACAGAAAGACAAATCCAGTACAAGTTTAGGTATCG
 CTGGAGTGTTTGTGACGTAGGTTTCGGTTGTGTCTTTCTGTTTAGGTCATGTTCAAATCCATAGC Exon 1

TGATTTTCCTGATAAGTAAATCACTTTAGTGTTCTTAAACGCTCTTTTGTTGTGTCCTTAGCATA
 ACTAAAAGGACTATTCATTTAGTGAAATCACAAGAATTTGCGAGAAAACAACACAGGAATCGTAT \square Exon 1

ACACCAGCTCTGCAGTTACAAGGTACAGAGGTCTGACAAACACAAGgtgagaagttttgcatcta
 TGTGGTCGAGACGTCAATGTTCCATGTCTCCAGACTGTTTGTGTTCcactcttcaaaacgtagat Exon 1
cctgaaaaacaatactaaatgcatttattratcattctgtaactgtgatttcagtgtgttac ННН ggactetttgetatgattttacgtaaataaatagtaagacattgacactaagtcacacaatg
smyhc1 - exon 2 Seq fwd cctgtgctgttcctttecta
acttgtaaatttgcctgtgctgttcctttctcagagaagcacattatatttataagtttgttca ННН tgaacatttaaacggacacgacaaggaaaagagtctcttcgtgtaatataaatattcaaacaagt
tctgttttagATTTCAAAATGGGTGACGCCGTTATGGCAGAGTTTGGGTCTGCTGCTCCCTTCCT
 agacaaatcTAAAGTTTTACCCACTGCGGCAATACCGTCTCAAACCCAGACGACGAGGGAAGGA
smyhc1 - exon 2 HRM fwd
CGCAAGTCTGACAAGGAGC
GCGCAAGTCTGACAAGGAGCGTCTGGAGGCCCAAACTCGTATTTTTGACATGAAGAAGGAGTGCT HНН CGCGTTCAGACTGTTCCTCGCAGACCTCCGGGTTTGAGCATAAAAACTGTACTTCTTCCTCACGA

TTGTGCCTGACCCTGAGGTTGAGTACGTCAAAGCCTCCATCACCAGTAGAGACGGTGACAAAGTC
 AACACGGACTGGGACTCCAACTCATGCAGTTTCGGAGGTAGTGGTCATCTCTGCCACTGTTTCAG
ACTGTTGACACTGAATATGGAAAGgtaagcagggctcgaaattgcggcctttttgtcgcatatg
 TGACAACTGTGACTTATACCTTTCcattcgtcccgagctttaacgecggaaaaacagcgtatac Exon 2
cacccgaaatttaagctatgcgacctcataatatatttgggagcattcgtgcgactgcatataat

gtgggctttaaattcgatacgctggagtattatataaaccctcgtaagcacgctgacgtatatta
ggttgtagtgcgacctgttttttttcttctaaaacgtggtaaaatcggtcttccetgccgct
 ccaacatcacgctggacaaaaaaaagaaagattttgcaccatttagccagaagggacggcga atattggttcatattagctgtcaatcactcaagactttctgctgtcagatgacagggagggctet
 tataaccaagtataatcgacagttagtgagttctgaaagacgacagtctactgtccctcccgaaa
tgtgaccgcggggaatggaaacggctgaagagtgaaaagtacactgactctcgatgcgttgcatg
 acactggcgeccettacctttgccgacttctcactttcatgtgactgagagctacgeaacgtac
cactgcgtgttcagccaacacagtctcatggcaattcgtaacttttcatacatttccttgtgag
 gtgacgcacaagtcggttgtgtcagagtaccgttaagcattgaaaaagtatgtaaaggaacactc gtcggttgtgtcagagtacc
smyhc1 - exon 2 Seq Rev
atcaggctgcaacagcgcaaatgtccgctacaacaccatcgccaaagaagcttgcctttactgag

tttaaactgatgcgggttataacaaagaacagtattgcgccggcggtcatcgggagaatcctgct

ctgcccccctcatatattgggccggctgactcgcatgctttccgcaaacacagaaagatgtaat
 gacggggggagtatataacccggccgactgagcgtacgaaaaggcgtttgtgtctttctacatta
tcagcgcgtatcaaggcagagcattaaaacgacacgaactgaaaccaaaacttttataagtgaga HㅐHㅐㅐ agtcgcgcatagttccgtctcgtaattttgctgtgcttgactttggttttgaaaatattcactct
ctttettccttcttcgecgetcattcttgaggtgtatattattttctatttaattactga
 gaaaaaaggaaagaaggcaggcaagtaagaactccacatataataaaagataaattaatgact
tgactgctttgcatcttcagcettgaattgaatgatttattataatctttagtttgtttgeag
 actgacgaaacgtagaaagtcggaacttaacttactaaataatattagaaatcaaacaaaacatc
cagaaatattatttattaaattgacatgcatataaaaacaatagtacaaaataaatatteat cac
 gtctttataataaataattaactgtacgtatattttgttatcatgtttatttataaataatg
tgcaatgcttcatttgtgtttgatgcaaaccttcaatttattttcttatagtaacagtaggact
 acgttacgaagtaaacacaaactacgtttggaagttaaataaaaagaatatcattgtcatcctga
ttatatagcagataacttacattaaagtacattcaaggcagcatgaagatgagaaatagaattca
 aatatatcgtctattgaatgtaattcatgtaagttccgtcgtacttctactctttatcttaagt
ttgttactattattgtcatcattaatattcataattatcaacattaatttggaattatagca
 aacaatgataataacagtagtaattataaagtattaataagttgtaattaaaaccttaatatcgt caaatattaagtcatcacagcattagttccatagttgttctggcttttgttagtcctaactgat
 gtttataattcagtagtgtcgtaatcaaggtatcaacaaagaccgaaaacaatcaggattgacta
gttgetttcaaatacaataaatccottaatatacaatttgcagcgttgctaattetgttgggtg
 caacaaagettatgttatttagggaattatatgttaaacgtcgcaacgattaaaaacaacccac
ctcctaaatttttctggtgctcctaaatttttctggtgctcctaaatatttcaggttgggagc
 gaggatttaaaaagaccacgaggatttaaaaagaccacgaggatttataaagtccaaccetcg
tccggttgataccaagtaagaaagttaatttgagccgtggtaaggatgctatagttatttgaat
 aggccaactatggttcattctttcaattaaaactcggcaccattcctacgatatcaataaactta
atgataatagtgggcctttgttacatatttctgaaattctggtcacatttatcaaatgtctaaag
 tactattatcaccoggaaacaatgtataaagactttaagaccagtgtaaatagtttacagatttc
tggtgaatggaaattcatagacataagtttccccaaaagtaaaagaaaagaagaaaaaatacca
 accacttacctttaagtatctgtattcaaaggggtttccatttcttttctecttttatggt
tgattgtgtttctatgactttctaatacagcaaaacatatacaagtgacaaaatttgtattgtag
 actaacacaaagatactgaaagattatgtcgttttgtatatgttcactgttttaaacataacatc
ctggtgaaaaactaattaatttgctctgttctacagACTCTTACTTTCAAGGAGTGCGATGTTCA
 gaccacttttgattaattaaacgagacaagatgtcTGAGAATGAAAGTTCCTCACGCTACAAGT
TCCTCAGAACCCGCCAAAGTTTGATAAAATTGAGGACATGGCGATGTTCACCTTCCTGCACGAGC HHH НННННHHH 2210 AGGAGTCTTGGGCGGTTTCAAACTATTTTAACTCCTGTACCGCTACAAGTGGAAGGACGTGCTCG

CTGCTGTGCTGTTTAACCTCAAAGAGCGTTACGCAGCCTGGATGATCTACgtgagtgatgaacgt HHH GACGACACGACAAATTGGAGTTTCTCGCAATGCGTCGGACCTACTAGATGcactcactacttgca

Exon 3

smyhc1 - exon 4 Seq fwd

Appendix 3.1 - Mant-ATP Assay Average Data

3.1.1. - $S R X$ and $D R X$ values from slow fibres

	P1	P2	DRX	SRX	n
Controls	63.78	36.22	40%	60%	18
T304S	65.00	35.00	42%	58%	11
R453H	64.40	35.60	41%	59%	10
L594M	62.45	37.55	37%	63%	11
A1440del	73.30	26.70	56%	45%	10
A1467P	74.00	26.00	57%	43%	8
A1492P	75.30	24.70	59%	41%	10
E1507del	62.91	37.09	38%	62%	11
E1508del	71.71	28.29	53%	47%	7
A1603P	75.71	24.29	60%	40%	14
E1610K	76.00	24.00	60%	40%	10
K1617del	72.40	27.60	54%	46%	10
A1636P	74.73	25.36	58%	42%	11
L1657P	76.25	23.75	60%	39%	8
E1669del	76.27	23.73	60%	40%	11
K1729del	76.75	23.25	61%	39%	8
R1845W	74.00	26.00	57%	43%	11
A1883E	61.40	38.60	36%	64%	10
STOP1936L	76.00	23.89	60%	40%	9

3.1.2. - SRX and DRX values from fast fibres

A

	P1	P2	DRX	SRX	\boldsymbol{n}
Controls	60.70	39.30	35%	66%	10
T304S	62.00	38.00	37%	63%	1
R453H	59.67	40.33	33%	67%	3
L594M	68.00	32.00	47%	53%	3
A1440del	68.57	31.43	48%	52%	7
A1467P	65.67	34.33	43%	57%	3
A1492P	65.60	34.40	43%	57%	5
E1507del	65.00	35.00	42%	58%	3
E1508del	69.33	30.67	49%	51%	3
A1603P	55.50	44.50	26%	74%	2
E1610K	59.50	40.50	33%	68%	2
K1617del	57.00	43.00	28%	72%	2
A1636P	57.50	42.50	29%	71%	2
L1657P	78.50	21.00	65.00%	35.00%	2
E1669del	59.00	41.00	32%	68%	1
K1729del	53.00	47.00	22%	78%	1
R1845W	64.00	36.00	40%	60%	3
A1883E	0.00	0.00	0%	0%	0
STOP1936L	64.00	36.00	40%	60%	1

B

C

3.1.3. - Proportion of DRX increases in patients with LMM mutations.

3.1.4. - Proportions of fast and slow fibres analysed in Mant-ATP assay

	Total N	no. slow fibres	no. fast fibres	\% slow	\% fast
Controls	28	18	10	64\%	36\%
T304S	12	11	1	92\%	8\%
R453H	13	10	3	77\%	23\%
L594M	14	11	3	79\%	21\%
A1440del	17	10	7	59\%	41\%
A1467P	11	8	3	73\%	27\%
A1492P	15	10	5	67\%	33\%
E1507del	14	11	3	79\%	21\%
E1508del	10	7	3	70\%	30\%
A1603P	16	14	2	88\%	13\%
E1610K	12	10	2	83\%	17\%
K1617del	12	10	2	83\%	17\%
A1636P	13	11	2	85\%	15\%
L1657P	10	8	2	80\%	20\%
E1669del	12	11	1	92\%	8\%
K1729del	9	8	1	89\%	11\%
R1845W	14	11	3	79\%	21\%
A1883E	10	10	0	100\%	0\%
STOP1936L	10	9	1	90\%	10\%

Appendix 4.1 - MYH6 and MYH7 signature amino acids

Appendix 4.2 - CLUSTALO Human MYH vs Zebrafish MYH proteins

Hs.MYH7
Hs. MYH7
Hs.MYH6
Hs. MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr. smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh 6
Dr.myha
Dr.myhb Dr.myhz1.1 Dr.myhz1. 2 Dr.myhz1.3
Dr.myhz2
Dr.myhc4
Dr.myh 7 ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7

Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2
Dr.myhz1.3
Dr.myhz2
Dr.myhc4
Dr.myh 7ba
Dr.myh7bb
Dr.myh9a
Dr.myh9b
Dr.myh10
Dr.myh11a
Dr.myh11b
Dr.myh14
--------MGD----SEMAVFGAAAPYLRKSEKE------------RLEAQTRPFDLKKD 36
 -_-----SEMAVFGAAAPYLRKSEKE------------RLEAQTRPFDLKKD 36 ---MTD----AQMADFGAAAQYLRKSEKE------------RLEAQTRPFDIRTE 36
 --------MSSD----SEMAIFGEAAPFLRKSEKE-------------RIEAQNKPFDAKTS 37 -------MSSD----SEMAIFGEAAPFLRKSERE---------------RIEAQNKPFDAKTS 37 --------MSSD----SELAVFGEAAPFLRKSERE-------------RIEAQNRPFDAKTS 37 -------MSSD----TEMEVFGIAAPFLRKSEKE------------RIEAQNQPFDAKTY 37 MAAVTMSVPGRKAPPRPGPVPEAAQPFLFTPRGPSAGGGPG-----SGTSPQVEWTARRL 55 ---------------MDLSDLGEAAAFLRRSEAE-------------LLLLQATALDGKKK 33 --------MGD----AVMAEFGSAAPFLRKSDKE---------------RLEAQTRIFDMKKE 36 --------MGD----AVMAEFGPAAPFLRKSDKE-------------RLEAQTRPFDMKKE 36 ---------MGD----AVMAEFGAAAPYLRKSDRE------------RLEAQTRPFDMKKE 36 --------MGD----AVMAEFGAAAPYLRKSDKE--------------RLEAQTRPFDMKKE 36 --------MGD----ALMEEFGAAAPYLRKSDRE-------------RLEAQTRPFDMKKE 36 --------MGD----AQMAEFGAAASYLRKSDRE--------------RLEAQTRPFDMKKE 36 --------MGD----AEMSVFGAAAPYLRKSEKE-------------RLEAQTKAFDLKKE 36 --------MGD----ALMAEFGKAAPFLRKSDKE-------------RLEAQTRAFDIKTE 36 -------MSTD----AEMAVYGKAAIYLRKPEKE------------- RIEAQNKPFDAKSA 37 -------MSGD----PEMECFGPAAVYLRKPEKE------------RIEAQNRPFDAKTA 37 --------MSTD----AEMAVYGKAAIYLRKPEKE-------------RVEAQNKPFDAKTA 37 --------MSTD----AEMAVYGKAAIYLRKPEKE------------ RIEAQNKPFDAKTA 37 -------MSTD----AEMAVYGKAAIYLRKPEKE------------ RIEAQNKPFDAKTA 37 -------MSTD----AEMAIYGKAAIFLRKPEKE------------RIEAQSKPFDAKTA 37 -------MSTD----AEMAVYGKAAIYLRKPEKE------------RIEAQNKPFDAKSA 37 -------MSRM----LDMKEFGEAAPFLRKSDLE-------------LLAAQTVAFDGKKR 37 -------MSRF----MELREFGEAATFLRKTNLE------------QLAAQSHAFDGKKR 37 -----------------XAKMSDAEKFLYADRNTI------------NDPLAQADWATKKL 32 --------------------MSDVDKFLYVDRNLV------------NNPLAQADWATKKL 29 --------MPEM----AQRSGQEDPERYLFVDRAVV------------YNPTTQADWTAKKL 38 ----------------MTKKGLSDDEKFLFTDKDFI------------NSPVAQADWSAKKL 34 ---------------MTMQDNDDSNKFLFLDSEFK------------NSGVAQADWSTRKM 34 -----MSRP-------AGGS INDVACFL------STGAGPGSPTSVFSASSQADWAAKRL 42

VFVPDDKQEFVKAKIVSRE-GGKVTAETEYGK-TVTVKEDQVMQQNPPKFDKIEDMAMLT 94 SH3-like domain VFVPDDKQEFVKAKIVSRE-GGKVTAETEYGK-TVTVKEDQVMQQNPPKFDKIEDMAMLT 94 CFVPDDKEEFVKAKILSRE-GGKVIAETENGK-TVTVKEDQVLQQNPPKFDKIEDMAMLT 94 CFVADNKEMYVKGMIQTRE-NDKVIVKTLDDR-MLTLNNDQVFPMNPPKFDKIEDMAMMT 95 VFVAEPKESYVKSTIQSKE-GGKVTVKTEGGA-TLTVREDQVFPMNPPKYDKIEDMAMMT 97 VFVVDPKESYVKAIVQSRE-GGKVTAKTEAGA-TVTVKEDQVFSMNPPKYDKIEDMAMMT 95 VFVVDPKESFVKATVQSRE-GGKVTAKTEAGA-TVTVKDDQVFPMNPPKYDKIEDMAMMT 95 VFVAEPKESFVKGTIQSRE-GGKVTVKTEGGA-TLTVKDDQVFPMNPPKYDKIEDMAMMT 95 CFVVDSKEEYAKGKIKSSQ-DGKVTVETEDNR-TLVVKPEDVYAMNPPKFDRIEDMAMLT 95 VWVPSELHGFEAAALRDEG-EEEAEVELAESGRRLRLPRDQIQRMNPPKFSKAEDMAELT 114 CWIPDGENAYIEAEVKGSEDDGTVIVETADGE-SLSIKEDKIQQMNPPEFEMIEDMAMLT 92 CLVGT-- 59
CFVPDPEVEYVKASITSRD-GDKVTVDTEYGK-TLTFKECDVHPQNPPKFDKIEDMAMFT 94 CFVPDPEVEYVKASVTSRD-GDKVTVETEFGK-TVTVKEVDCHPQNPPKFDKIEDMAMFT 94 CFVPDADEEYLKATVISRD-GDKATCETSKGT-TVTVKECDVHPQNPPKFDKIEDMAMFT 94 CFVPDADEEYLKATVISRD-GDKVTCETSKKT-TVTVKECDVHPQNPPKFDKIEDMAMFT 94 CFVPDTDEEYVKGSIISRD-GDKVTCETEKGK-TVTVKECDVHPQNPPKFDKIEDMAMFT 94 CFVPDPDEEYVKASIVSRE-GDKVTVQTEKRK-TVTVKEADIHPQNPPKFDKIEDMAMFT 94 CFVPDAIEEFVKATVVSRE-GDKVTVETQGGK-TVTVKEADVLQQNPPKFDKIEDMAMLT 94 CFVVDEKVEYVKGQIQNKD-GGKVTVKTEDGR-TVTVKDGDVHPQNPPKFDKIEDMAMLT 94 CYVVDDKELYVKGTIKSRD-GGKVTVITLDTKEERVAKEEDVHPMNPPKFDKIEDMAMMT 96 YFVSEPKEMYLKGVLKSKE-GGKATVQTLCGKT-LTVKEDEIFPMNPPKFDKIEDMAMMT 95 CYVVDDKELYVKGTIKSKD-GGKVTVITLDTKEEKVVKEDDVHPMNPPKFDKIEDMAMMT 96 CYVVDDKELYVKGTIKSRD-GGKVTVITLDTKEERVAKEDDVHPMNPPKFDKIEDMAMMT 96 CYVVDDKELYVKGTIKSRD-GGKVTVITLDTKEERVAKEDDVHPMNPPKFDKIEDMAMMT 96 CYVVDDKELYVKGTIKSKD-GGKVTVVTLDTQTEKVVKEDDVHPMNPPKFDKIEDMAMMT 96 CYVVDDKELYVKGTIKSKD-GGKVTVITLDTKEERVVKEDDVHPMNPPKYDKIEDMAMMT 96 AWIPDDKDAYIEVEIKQID-GDRVEVETKDGK-CLTVKEDDIQQMNPPKFDLIEDMAMLT 95 VWIPDEKEAYIEVEIKDTD-GDKVMVETKDGR-MLTVKEEDIQQMNPPKFDLMEDMAMLT 95 VWVPSEKLGFEAGSIKEET-GDECLVELADSGKKIKVNKDDIQKMNPPKFSKVEDMAELT 91 VWVPSERLGFEAGSLKEEH-GDEVVVELADSGKKIRVNKDDIQKMNPPKFSKVEDMAELT 88 VWVPSERHGFEAASIREER-GEEVLVELAENGKKAMVNKDDIQKMNPPKFSKVEDMAELT 97 VWVPSEKHGFESASIKEEH-GDEVLVELMDNGKKITVNKDDIQKMNPPKFSKVEDMAELT 93 VWIPSERDGFQSASIKEET-GNEVVVEL-DNGQKVTVSKDDIQKMNPPKFNKVEDMAALT 92 VWVPSEKHGFESASIREER-GDEVEVELTDSGRKLTLLREELQRMNPPRFSKVEDMADLT 101 HLHEPGVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYKPEVVAAYRGKKRQE----- 152 HLHEPAVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNPEVVTAYRGKKRQE----- 150 HLHEPAVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNAEVVTAYRGKKRQE-----150 HLHEPAVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYKPEVVTAYRGKKRQE----- 150 HLNEPAVLYNLKDRYTSWMIYTYSGLFCVTVNPYKWLPVYNPEVVEGYRGKKRQE-----150 CLNEASVLHNLRERYYSGLIYTYSGLFCVVINPYKQLPIYTEAIVEMYRGKKRHE----- 169 HLNEASVLHTLKRRYGQWMIYTYSGLFCVTINPYKWLPVYQKEVMAAYKGKRRSE-----147 ----KGSVGTMWTLCLSWHLLKRRGLKP-T----------SPMTLRGPAGSKMRRKASSL 50 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYDSSVVKAYRGKKRTE----- 149 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNQEVVVAYRGKKRTE----- 149 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNQEVVVAYRGKKRSE-----149 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNQEVVVAYRGKKRSE-----149 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNQEVVLAYRGKKRSE-----149 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNQEVVVAYRGKKRSE----- 149 FLHEPAVLFNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNQEVVIAYRGKKRTE-----149 FLHEPAVLFNLKERYTAWMIYTYSGLFCVTVNPYKWLPVYDADVVAAYRGKKRTE-----149 HLNEPSVLYNLKERYAAWMIYTYSGLFCATVNPYKWLPVYDAEVVAAYRGKKRME----- 151 HLNEPTVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYDAVVVSGYRGKKRIE----- 150 HLNEPSVLYNLKERYAAWMIYTYSGLFCATVNPYKWLPVYDAEVVAAYRGKKRME----- 151 HLNEPSVLYNLKERYAAWMIYTYSGLFCATVNPYKWLPVYDAEVVAAYRGKKRME----- 151 HLNEPSVLYNLKERYAAWMIYTYSGLFCATVNPYKWLPVYDAEVVAAYRGKKRME-----151 HLNEPSVLYNLKERYAAWMIYTYSGLFCATVNPYKWLPVYDAEVVAAYRGKKRME----- 151 HLNEPSVLYNLKERYAAWMIYTYSGLFCATVNPYKWLPVYDAEVVAAYRGKKRME----- 151 HLNEASVLFNLRRRYSSWMIYTYSGLFCVTVNPYKWLPVYTAPVVAAYKGKRRSE----- 150 HLNEASVLFNLSRRYSFWMIYTYSGLFCVTVNPYKWLPVYSSEVVAAYKGKRRSD----- 150 đLNEASVLHNLRERYYSGLIYTYSGLFCVVINPYKYLPIYTEEIVEMYKGKKRHE-----146 LNEASVLHNLKERYYSGLIYTYSGLFCVVINPYKNLPIYSEEIVDMYKGKKRHE-----143 LNEASVLHNLKDRYYSGLIYTYSGLFCVVINPYKNLPIYSENIIEMYRGKKRHE----- 152 LNEASVLHNLRERYYSGLIYTYSGLFCVVVNPYKMLPIYSEKIIEMYKGKKRHE----- 148 LNEASVLHNLRERYFSGLIYTYSGLFCVVINPYKMLPIYSEKIIEMYKGKKRHE----- 147 LNEASVLHNLRERYYSGLIYTYSGLFCVVINPYKNLPIYTESIIEMYRGKKRHE----- 156 : .: : . ** . : *.:

Hs.MYH7

Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs. MYH4
Hs. MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1. 1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.mYH7
Hs.MYH7
Hs.MYH6
Hs.myH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs. МYн2
Hs.MYH3
Hs.mYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh71
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYн8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

AIGDRSK-KD-----Q--SPGK̄GTLEDQII-------------QANPALEAFGNAKTVRND 239
AIGDRGK-KD-----N-ANANKGTLEDQII------------QANPALEAFGNAKTVRND 240
VTGDKK--KE-----TQPGKMQGTLEDQII------------QANPLLEAFGNAKTVRND 241 VTGEKKK-D-------ESGKMQGTLEDQII-------------SANPLLEAFGNAKTVRND 242 VTGEKKK-EE-----PASGKMQGTLEDQII-------------SANPLLEAFGNAKTVRND 242
VTGEKKK-EE------VTSGKMQGTLEDQII-------------SANPLLEAFGNAKTVRND 242
VTGEKKK-EE-----ITSGKIQGTLEDQII-------------SANPLLEAFGNAKTVRND 242
ATGDLAK-K-------KDSKMKGTLEDQII-------------SANPLLEAFGNAKTVRND 240
SSPKGRKEPGV----------PGELERQLL------------QANPILEAFGNAKTVKND 257 AMIES-------------RKKQGALEDQIM------------QANTILEAFGNAKTLRND 232 -MRPVS-TIC-----ANATPT-GSIPTRACSA-RSTPTSGCPSTGPVWLTCTRA---RSA 141 AVS-G-K-KD-----A-ASEKKGTLEDQII------------QANPALEAFGNAKTIRND 238 AAPGG-K-KD-----P-SQEKKGTLEDQII------------QCNPALEAFGNAKTIRND 239 ASP-T-K-K------E-TTEKKGTLEDQII------------QCNPALEAFGNAKTIRND 237 AGS-S-K-KD-----S-SSEKKGTLEDQII------------QCNPALEAFGNAKTIRND 238 ASP-T-K-K------E-TTEKKGTLEDQII------------QCNPALEAFGNAKTIRND 237 AGGS--A-KK-----E-GAEKKGTLEDQII------------QANPALEAFGNAKTIRND 238 ASGGK-K--------D-QDKNKGTLEDQII------------QANPALEAFGNAKTIRND 237 AAGGSAG-K--------KDSSKGTLEDQII------------QANPALEAFGNAKTLRND 238 VQGGDKK-KE-----QTPGKMQGSLEDQII-------------AANPLLEAYGNAKTVRND 243 VAGKQK--QE-----PIPGKMQGSLEDQII------------AANPLLEAYGNAKTVRND 241 VQGPEKK-KE-----QASGKMQGSLEDQII-------------AANPLLEAYGNAKTVRND 243 VQGPEKK-KE-----QAAGKMQGSLEDQII-------------AANPLLEAYGNAKTVRND 243 VQGPEKK-KE-----QAAGKMQGSLEDQII------------AANPLLEAYGNAKTVRND 243 VQGGDKK-KE-----QAAGKMQGSLEDQII------------AANPLLEAYGNAKTVRND 243 VQGGDKK-KE-----QAPGKMQGSLEDQII------------AANPLLEAYGNAKTVRND 243 ALGEA------------AAKKGGTLEDQII------------EANPAMEAFGNAKTLRND 236 ALGEA------------GGKKGGTLEDQII------------EANPAMEAFGNAKTLRND 236 SSFKTKKDQSS------IALSHGELEKQLL-------------QANPILEAFGNAKTVKND 238 HKTKKDQSS------SVLSHGELEKQLL------------QANPILEAFGNAKTVKND 235 HKGRKDHNIPPESPKAVKLQGELERQLL------------QANPILESFGNAKTVKND 250 HKGKKDMS-----------AGELEKQLL------------QANPILEAFGNAKTIKND 235 HKGKKEAT-----------SGELEKQLL------------QANPILEAFGNAKTIKND 219
HKSGT-LGRPKDTVVQTVQYGELERQLL------------QANPILEAFGNAKTVKND 253

NSSRFGKFIRIHFGATGKLASADIETYLLEK---------------------------------2 270
NSSRFGKFIRIHFGATGKLASADIETYLLEK----------------------------------271
NSSRFGKFIRIHFGATGKLASADIETYLLEK----------------------------------2 272
NSSRFGKFIRIHFGTTGKLASADIETYLLEK-------------------------------- 273
NSSRFGKFIRIHFGATGKLASADIETYLLEK----------------------------------273
NSSRFGKFIRIHFGTTGKLASADIETYLLEK-----------------------------------273
NSSRFGKFIRIHFGTTGKLASADIETYLLEK----------------------------------273
NSSRFGKFIRIHFGTTGKLASADIETYLLEK----------------------------------271
NSSRFGKFIRINFDVAGYIVGANIETYLLEK----------------------------------- 288
NSSRFGKFIRMHFGARGMLSSVDIDIYLLEK---------------------------------263
QRCRLTSSPSLTTPTTTCLWIVRISLC-SPENLVLVRLRTRRRSSSTLPTLEELANRPQI 200
NSSRFGKFIRIHFGVSGKLASADIETYLLEK---------------------------------269
NSSRFGKFIRIHFGVSGKLSSADIETYLLEK---------------------------------- 270
NSSRFGKFIRIHFAASGKLASADIETYLLEK-------------------------------------268
NSSRFGKFIRIHFAASGKLASADIETYLLEK--------------------------------269
NSSRFGKFIRIHFAANGKLASADIETYLLEK----------------------------------268
NSSRFGKFIRIHFGASGKLASADIETYLLEK----------------------------------269
NSSRFGKFIRIHFDTRGKLASADIETYLLEK----------------------------------268
NSSRFGKFIRIHFGTSGKLSSADIETYLLEK------------------------------------269
NSSRFGKFIRIHFGTTGKLASADIETYLLEK---------------------------------2 274
NSSRFGKFIRIHFGTTGKLASADIETYLLEK---------------------------------272
NSSRFGKFIRIHFGTSGKLASADIETYLLEK----------------------------------274
NSSRFGKFIRIHFGTSGKLASADIETYLLEK----------------------------------2 274
NSSRFGKFIRIHFGTSGKLASADIETYLLEK----------------------------------2 274
NSSRFGKFIRIHFGTSGKLASADIETYLLEK----------------------------------2 274
NSSRFGKFIRIHFGTTGKLASADIETYLLEK---------------------------------274
NSSRFGKFIRIHFGPTGKLASADIDIYLLEK----------------------------------267
NSSRFGKFIRIHFGPTGKLASADIDIYLLEK---------------------------------267
NSSRFGKFIRINFDVNGYIVGANIETYLLEK---------------------------------- 269
NSSRFGKFIRINFDVNGYIVGANIETYLLEK----------------------------------266
NSSRFGKFIRINFDVTGYIVGANIETYLLEK---------------------------------281
NSSRFGKFIRINFDVTGFIVGANIETYLLEK--------------------------------266
NSSRFGKFIKINFDNTGYIVGANIETYLLEK----------------------------------2 250
NSSRFGKFIRINFDVAGYIVGANIETYLLEK----------------------------------284
. * : . : . *. :

Hs.MYH7
Hs.MYн6
Hs.MYH13
Hs.mYH8 Hs.MYH4 Hs.MYH1 Hs. МYн2
Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs. MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh 6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

SRVIFQLKAERDYHIFYQILSNKKPELLDMLLITNNPYDYAFISQGETTVASIDDAEELM 330 SRVIFQLKAERNYHIFYQILSNKKPELLDMLLVTNNPYDYAFVSQGEVSVASIDDSEELM 331 SRVTFQLSSERSYHIFYQIMSNKKPELIDLLLISTNPFDFPFVSQGEVTVASIDDSEELL 332 SRVTFQLKAERSYHIFYQITSNKKPDLIEMLLITTNPYDYAFVSQGEITVPSIDDQEELM 333 SRVTFQLKAERSYHIFYQILSNKKPELIEMLLITTNPYDFAFVSQGEITVPSIDDQEELM 333 SRVTFQLKAERSYHIFYQIMSNKKPDLIEMLLITTNPYDYAFVSQGEITVPSIDDQEELM 333 SRVVFQLKAERSYHIFYQITSNKKPELIEMLLITTNPYDYPFVSQGEISVASIDDQEELM 333 SRVTFQLKAERSYHIFYQILSNKKPELIELLLITTNPYDYPFISQGEILVASIDDAEELL 331 SRAIRQAKDECSFHIFYQLLGGAGEQLKADLLL-EPCSHYRFLTNGPSSSPGQ-ERELFQ 346 SRVIFQQAGERNYHIFYQILSGQK-ELHDLLLVSANPSDFHFCSCGAVTVESLDDAEELL 322 RRGLWRIKSSRQTLC-WRPLGTPRPPGTTTPLASASSSESTLEPQGNW---------LE 249 SRVTYQLKAERDYHIFYQILSQKKPELLEMLLITNNPYDYSYISQGETQVASIDDAEELI 329 SRVTYQLKAERDYHIFYQILSQRKPELLEMLLITNNPYDYSYISQGETQVASIDDRDELI 330 SRVTFQLKAERDYHIFYQILSQKKPELLEMLLITANPYDYAFISQGETQVASINDADELM 328 SRVTFQLKAERDYHIFYQILSQKKPELLEMLLITANPYDYAFISQGETQVASIDDSDELM 329 SRVTFQLKAERDYHIFYQILSQKKPELLEMLLITANPYDYAFISQGETQVAS INDADELM 328 SRVTFQLKAERDYHIFYQILSQRKPELLEMLLITNNPYDYAYISQGETTVASINDGEELL 329 SRVTFQLKAERDYHIFYQILSNKKPEILEMLLVTSNPYDYAFISQGETTVPSIDDSDELM 328 SRVTFQLKSERNYHIFFQILSNEKPELLDMLLITNNPYDYSYISQGEVTVSSINDNEELI 329 SRVTFQLPDERGYHIFYQMMTNHKPELIEMTLITTNPYDFPMCSQGQITVASIDDKEELV 334 SRVTFQLSAERSYHIFYQLCTGHKPELLEALLITTNPYDYPMISQGEITVKSINDVEEFI 332 SRVTFQLPDERGYHIFYQMMTNHKPELIEMTLITTNPYDFPMCSQGQITVASIDDKEELV 334 SRVTFQLPDERGYHIFYQMMTNHKPELIEMTLITTNPYDFPMCSQGQITVASIDDKEELV 334 SRVTFQLPDERGYHIFYQMMTNHKPELIEMTLITTNPYDFPMCSQGQITVASIDDKEELV 334 SRVTFQLPDERGYHIFYQMMTNHKPELIEMTLITTNPYDFPMCSQGQITVASIDDKEELV 334 SRVTFQLPDERGYHIFYQMMTNHKPELIEMTLITTNPYDFPMCSQGQITVASIDDKEELM 334 SRVIFQQPGERSYHIYYQIMSQKKPELLDMLLVSSNPYDYHFCSQGVTTVENMDDGQELM 327 SRVIFQQTGERSYHIYYQILSHRKPELQDMLLVSSNPFDYHFCSQGVITVDNMDDGDELL 327 SRAIRQAKDERAFHIFYYLLTGAGDKLRSELCL-EDYNKYRFLSNGNVTIPGQQDRELFA 328 SRAIRQAKEERTFHMFYYMLTGVGDKLRSELCL-EGYNKYRFLSNGNVTIPGQQDRDMYV 325 SRAIRQAKDERTFHVFYQLLAGAGEHLRSDLLL-EGFNSYRFLSNGNIPIPGQQDKDNFQ 340 SRCIRQAKTERAFHIFYYMVAGTKDKLREELLL-ENFNNYRFLSAGHVQI PGNQDDEMYD 325 SRCIRQAKIERSFHIFYYMVAGAKDKMREELLL-EDFANYRFLVAGHVQVQNQQDDEMLE 309 SRAIRQAKDERTFHIFYQLLSGATEAMRKELLL-GGADQYRFLCGGSLPVPGQSDSENFT 343 * : . :

*

ATDNAFDVLGFTSEEKNSMYKLTGATMHFGNMKFK-LKQREEQAEPDGTEEADKSAYLMG 389 ATDSAFDVLGFTSEEKAGVYKLTGAIMHYGNMKFK-QKQREEQAEPDGTEDADKSAYLMG 390 ATDNAIDILGFSSEEKVGIYKLTGAVMHYGNMKFK-QKQREEQAEPDGTEVADKAGYLMG 391 ATDSAIDILGFTPEEKVSIYKLTGAVMHYGNMKFK-QKQREEQAEPDGTEVADKAAYLQS 392 ATDSAVDILGFTADEKVAIYKLTGAVMHYGNMKFK-QKQREEQAEPDGTEVADKAAYLTS 392 ATDSAIEILGFTSDERVSIYKLTGAVMHYGNMKFK-QKQREEQAEPDGTEVADKAAYLQN 392 ATDSAIDILGFTNEEKVSIYKLTGAVMHYGNLKFK-QKQREEQAEPDGTEVADKAAYLQS 392 ATDSAIDILGFTPEEKSGLYKLTGAVMHYGNMKFK-QKQREEQAEPDGTEVADKTAYLMG 390 ETLESLRVLGFSHEEIISMLRMVSAVLQFGNIALKRERNTDQATMPD-NTAAQKLCRLLG 405 ATEQAMDILGFLPDEKYGCYKLTGAIMHFGNMKFK-QKPREEQLEADGTENADKAAFLMG 381 PT-RAIS----------------------RNLVSSHSKQPR---------EATTSSTRFSQ 278 ATDDAFDVLGFTQDEKSGIYKLTGAIMHFGNMKFK-QKQREEQAEADGTEDADKVAYLMG 388 ATDEAFDVLGFTQEEKNSIYKLTGAIMHYGNMKFK-QKQREEQAEADGTEDADKVAYLMG 389 ATDEAFDVLGFTQEEKNS IYKLTGAIMHYGNMKFK-QKQREEQAEADGTEDADKSAYLMG 387 ATDEAFDVLGFTQEEKNSIYKLIGAIMHYGNMKFK-QKQREEQAEADGTEDADKSAYLMG 388 ATDEAFDVLGFTQEEKNSIYKLIGAIMHYGNMKFK-QKQREEQAEADGTEDADKSAYLMG 387 ATDEAFDVLGFTQEEKNGIYKLIGAIMHFGNMKFK-QKQREEQAEADGTEDGDKVAYLMG 388 ATDSAFDILGFTQEEKNSVYKLTGAIMHYGNMKFK-QKQREEQAEADGTEDADKSAYLMG 387 ATDKAFDVLGFTSEEKMGVYKLTGAIMHYGNMKFK-QKQREEQAEPDGTEDADKAAYLMG 388 ATDTAIDILGFTGEEKMGIYKFTGAVLHHGNMKFK-QKQREEQAEPDGTEEADKISYLLG 393 ATDTAIDILGFNAEEKVGIYKLTGAVMHHGNMKFK-QKQREEQAEPDGTEVADKIAYLLG 391 ATDTAIDILGFNNEEKMGIYKFTGAVLHHGNMKFK-QKQREEQAEPDGTEEADKIGYLLG 393 ATDTAIDILGFNNEEKMGIYKFTGAVLHHGNMKFK-QKQREEQAEPDGTEEADKIGYLLG 393 ATDTAIDILGFNAEEKMGIYKFTGAVLHHGNMKFK-QKQREEQAEPDGTEEADKIAYLLG 393 ATDTAIDILGFTGEEKMGIYKFTGAVLHHGNMKFK-QKQREEQAEPDGTEEADKIAYLLG 393 ATDSAIDILGFTGEEKMGIYKFTGAVLHHGNMKFK-QKQREEQAEPDGTEEADKISYLLG 393 ATDHAMDILGFTPEEKYGCYKIVGAIMHFGNMKFK-QKQREEQAEADGTESADKASYLMG 386 ATDHAMDTLGFTPEEKYGCYKIVGG IMHFGNMKFK-VKQREEQAEADGTESADKASYLMG 386 ETIDAFRIMGIPEDEQTGLLKVVSAVLQLGNMSFKKERNSDQASMPD-DTAAQKVSHLLG 387 ETVEAMRIMGFSEEEHVGLLRVISSVLQLGNMSFKKERHSDQASMPD-DTAAQKVCHLMG 384 ETMEAMHIMSFNHEEILSMLKVVSAVLQFGNIVFKKERNTDQASMPE-NTAAQKLCHLLG 399 ETMEAMEIMGFSVEERADVLKVVSTVLQLGNIEFKKERNQEQATMPD-NTAAQ ETLEAMEVLGFNEEERIGMFKICSTVLQLGNIEFKAEKNQEQASMPD-NTA QTMDSMTIMGFTQEESTSMLKVISSVLQ * : GNITFHKEKNTDQASMPD-DTA

* :

KVCHLQG 384 KVCHLQG 368 KLCHLLG 402

Hs.mYH7
Hs.MYH7
Hs.MYH6
Hs.MYH6
Hs.MYH13
Hs.mYH8
Hs.MYH4
Hs.MYH1
Hs. МYн2
Hs.MYн3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh71
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.мYн7
Hs.MYH7
Hs.MYH6
Hs.myH13
Hs.MYн8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhzl. 3 Dr.myhz2 Dr.myhc4 Dr.myh 7 ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

VQQVIYATGALAKA--VYERMFNWMVTRINATLET-KQPRQYFIGVLD----IAGFEIFD 469 VQQVYYSIGALAKA--VYEKMFNWMVTRINATLET-KQPRQYFIGVLD----IAGFEIFD 470 VQQVTNSVGALAKA--VYEKMFLWMVTRINQQLDT-KQPRQYFIGVLD----IAGFEIFD 471 VQQVYNAVGALAKA--VYEKMFLWMVTRINQQLDT-KQPRQYFIGVLD----IAGFEIFD 472 VQQVYNAVGALAKA--IYEKMFLWMVTRINQQLDT-KQPRQYFIGVLD----IAGFEIFD 472 VQQVYNAVGALAKA--VYDKMFLWMVTRINQQLDT-KQPRQYFIGVLD----IAGFEIFD 472 VEQVSNAVGALAKA--VYEKMFLWMVARINQQLDT-KQPRQYFIGVLD----IAGFEIFD 472 VDQVHHAVNALSKS--VYEKLFLWMVTRINQQLDT-KLPRQHFIGVLD----IAGFEIFE 470 KEQADFALEALAKA--TYERLFRWLVLRLNRALDRSPRQGASFLGILD----IAGFEIFQ 486 IEQVTCAVGALSKS--MYERMFKWLVARINRALDA-KLSRQFFIGILD----ITGFEILE 461 -REVSCTLGT-SSSRSPETSKLKWTPLRWL----T-KSPISWVSTLVNCRKALPGPES-- 388 VQQVYYSIGALAKS--VYEKMFLWMVVRINQSLDT-KQPRQYFIGVLD----IAGFEIFD 468 VQQVYYSIGALAKS--VYEKMFLWMVVRINQSLDT-KQPRQYFIGVLD----IAGFEIFD 469 VQQVYYAIGALSKS--VYEKMFLWMVVRINQSLDT-KQPRQYFIGVLD----IAGFEIFD 467 VQQVYYAIGALSKS--VYEKMFLWMVVRINQSLDT-KQPRQYFIGVLD----IAGFEIFD 468 VQQVYYAVGALSKS--VYEKMFLWMVVRINQSLDT-RQPRQYFIGVLD----IAGFEIFD 467 VQQVYYAIGALAKS--VYEKMFLWMVVRINQSLDT-KQPRQYFIGVLD----IAGFEIFD 468 VQQVNYAIGALSKA--VYEKMFLWMVVRINQSLET-KQPRQYFIGVLD----IAGFEIFD 467 VDQVYYSIGALAKS--VYEKMFNWMVVRINQSLDT-KQHRQYFIGVLD----IAGFEIFD 468 VPQVYNSVSALSKS--IYERMFLWMVIRINQMLDT-KQQRNFFIGVLD----IAGFEIFD 473 VPQVNNATMALCKS--VYEKMFLWMVVRINEMLDT-KQPRQFFIGVLD----IAGFEIFD 471 VPQVYNSVSALSKS--IYERMFLWMVVRINQMLDT-KQQRNFFIGVLD----IAGFEIFD 473 VPQVYNSVSALSKS--IYERMFLWMVVRINQMLDT-KQQRNFFIGVLD----IAGFEIFD 473 VPQVYNSVSALSKS--IYERMFLWMVIRINQMLDT-KQQRNFFIGVLD----IAGFEIFD 473 VPQVYNSVSALSKS--IYERMFLWMVIRINQMLDT-KQQRNFFIGVLD----IAGFEIFD 473 VPQVYNSVSALSKS--IYEKMFLWMVIRINQMLDT-KQQRNFFIGVLD----IAGFEIFD 473 VEQVNYAVGALAKA--TYDRMFKWLVGRINRTLYT-ALPRQFFIGVLD----IAGFEIFE 466 VEQVTYAVGALAKA--TYDRMFKWLVGRINKTLYT-AIPRQFFIGVLD----IAGFEIFE 466 QEQAEFAVEALAKA--TYERLFRWLVMRINKALDKTKRQGASFIGILD----IAGFEIFE 468 QEQAEFAVEALAKA--TYERMFRWLVMRINKALDKTKRQGASFIGILD----IAGFEIFE 465 KEQADFAVEALAKA--TYERLFRWLVHRINKALDRTKRQGASFIGILD----IAGFEIFQ 480 KEQADFAIEALAKA--MYERLFRWILLRVNKALDKTKRQGASFLGILD----IAGFEIFE 465 KEQADFAVEALAKA--MYDRLFRWILGRVNKALDKTKRQGASFIGILD----IAGFEIFE 449 KQQADFAVEALAKA--TYERLFRWLVHRINRALDRRQRQGASFIGILD----IAGFEIFQ 483

[^0]Hs.MYH7
Hs.MYH7
Hs.MYн6
Hs.MYH13
Hs.mYH8
Hs.MYH4
Hs.MYH1
Hs. МYн2
Hs.MYн3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh71
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs.MYH7
Hs.MYн6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.mYH14
Hs.MYH15
Hs.mYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh7l
Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10
Dr.myh11a Dr.myh11b Dr.myh14

ENSFEQLCINH-----TNEKLQQFFNHHMFVLEQEEYKKE GIEWTFIDEGMDLQACIDLI 52
FNSFEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLQACIDLI 524 FNSEEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLQACIDLI 525 FNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLAACIELI 526 FNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLAACIELI 527 FNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLAACIELI 527 FNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLAACIELI 527 FNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLAACIELI 527 YNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLAACIELI 525 LNSFEQLCINY-----TNEKLQQLFNHTMFVLEQEEYQREGIPWTFLDFGLDLQPCIDLI 541 YNSLEQLCINF-----TNEKLQQFFNWHMFVLEQEEYKKESIEWVSIGFGLDLQACIDLI 516 -KLAMSLCKKARTWNSAKTPLGLWARLSMTRCSSGWWPGLTRPWTPRCRGSSSLECWTSL 447 FNTFEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIDWEFIDFGMDLQACIELI 523 FNTFEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLQACIELI 524 FNTEEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLQACIDLI 522 FNTFEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIDWEFIDFGMDLQACIDLI 523 FNTFEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLQACIDLI 522 FNTFEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLQACIDLI 523 FNTEEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLQACIDLI 522 FNTEEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIDWEFIDFGMDLQSCIDLI 523 FNSMEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIVWEFIDFGMDLAACIELI 528 FNSLEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLAACIELI 526 FNSMEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIVWEFIDFGMDLAACIELI 528 FNSMEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIVWEFIDFGMDLAACIELI 528 FNSMEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIVWEFIDFGMDLAACIELI 528 FNSMEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIVWEFIDFGMDLAACIELI 528 FNSMEQLCINF-----TNEKLQQFFNHHMFVLEQEEYKKEGIVWEFIDFGMDLAACIELI 528 LNSFEQLCINF-----TNEKLQQFFNHHMFILEQEEYKREGIEWTFIDFGLDLQACIDLI 521 FNNFEQMCINF-----TNEKLQQFFNHHMFILEQEEYKTEGIEWTFIDFGLDLQACIDLI 521 LNSFEQLCINY-----TNEKLQQLFNHTMFILEQEEYQREGIEWSFIDFGLDLQPCIELI 523 LNSFEQLCINY-----TNEKLQQLFNHTMFILEQEEYQREGIEWSFIDFGLDLQPCIDLI 520 LNSFEQLCINY-----TNEKLQQLFNHTMFILEQEEYQREGIEWSFIDFGLDLQPCIDLI 535 NNSFEQLCINY-----TNEKLQQLFNHTMFILEQEEYQREGIEWNFIDFGLDLQPCIELI 520 DNSFEQLCINY-----TNEKLQQLFNHTMFILEQEEYKKEGIEWSFIDFGLDLQPCIELI 504 LNSEEQLCINY-----TNEKLQQLFNHTMFVLEQEEYQREGIEWNFIDFGLDLQPCIDLI 538

[^1]Hs.mYH7
Hs. MYH7
Hs.MYн6
Hs.MYH13
Hs.mYH8 Hs.MYH4 Hs.MYH1 Hs. МYн2 Hs.MYH3 Hs.mYH14 Hs.MYH15 Hs.MYH16 Dr.smyhc1 Dr.smyhc2 Dr.smyhe3 Dr.smyhc4 Dr.smyhc5 Dr.myh7 Dr.myh71 Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs.myH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.mYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh7l
Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhzl. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

	NIK-GKPEAHFSLIHY 582
	kSANFQKPRNIK-GKPEAHFSLIHY 582
PKATDMTFKA	HLGGKSNNFQKPRNIK-GKQEAHFSLIHY 583
KATDTSE	QHLGKSNNFQKPKPAK-GKAEAHFSLVHY 584
PKATDTSFKNK	QHLGKSANFQKPKVVK-GKAEAHFSLIHY 585
PKATDTSFKNK	QHLGKSNNFQKPKPAK-GKPEAHFSLVHY 585
PKATDTSFKN	QHLGKSNNFQKPKPAK-GKPEAHFSLIHY 585
ATDTSFKN	QHLGKSANFQKPKVVK-GKAEAHFALIHY 585
SFKN	QHLGKSNNFQKPKVVK-GRAEAHFSLIHY 583
PKATDKSFVEK	-EQGGHPKFQRPRHLR---DQADFSVLHY 599
-PKATDITFKTK	NHFGKSVHLQKPKPDK-KKFEAHFELVHY 574
WKSPWASSPSWRNSAS	TTWASPATS-SPRGARARGP--RSTSSWF 564
	NHLGKNPTFQKPRIVK-GRPEAHFALVHY 581
PKASDATFKAKL	NHLGKNPNFQKPRIVK-GRPEAHFALVHY 582
PKASDATFKAKI	NHLGKSNNFQKPRIVK-GKPEAHFSLVHY 580
PKASDATFKAK	NHLGKSNNFQKPRIVK-GKPEAHFSLVHY 581
PKASDATFKAK	NHLGKSNNFQKPRIVK-GKPEAHFSLVHY 580
PKASDSTFKAKL	NHLGKSNNFQKPRAIK-GKPESHFSLVHY 581
PKASDATFKAKL	NHLGKSNNFQKPRLVK-GKPEAHFALVHY 580
PKASDQTFKAKI	NHLGKTNIFQKPRAVK-GKAEAHFALSHY 581
-PKATDTSFKNK	QHLGKCNAFQKPRPQK-GKAEAHFSLVHY 586
-PKATDTTFKN	QHLGKTNCFQKPKPAK-GKAEAHFSLVHY 584
PKATDTSFKNK	QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586
KATDTSFKN	QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586
PKATDTSFKN	QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586
	QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586
ATDVSFKNK	QHLGKCNAFQKPRPQK-GKAEAHFSLVHY 586
PKATDNSFKAKL	NHLGKSANFQKPRPDKKRKYEAHFELVHY 580
PKATESSFKAK	-NLLGKSPNFLKPRPDKKRKYDTHFELVHY 580
PKATDKSFVEKVVQ	ELGNNPKFQKPKKLK---DDADFCIIHY 581
PKATDKSFVEKV	-EQGTHPKFHKPKKLK---DEADFCIIHY 578
PKATDKTFVDK	EQGTHGKFQKPRQLK---DKADFCIIHY 593
ATDVSF	THANHTKFAKPKQLK---DKTEFSVQHY 578
KATDVSFVEK	-THSSHCKFSKPKNLK---EKTFFTVQHY 562
-PRATDRSFVDK	EQGSHSKFMRPRQLK---EEADFSIIHY 596

582 ---PKATDMTFKARKLE--------------NHLGKSANFQKPRNIK-GKPEAHFSLIHY 582 ---PKATDTSFKNKLYD-------------------OHLGKSNNFQKPKPAK-GKAFAHFSLVHY 584 ---PKATDTSFKNKLYD--------------QHLGKSANFQKPKVVK-GKAEAHFSLIHY 585 ---PKATDTSFKNKLYE--------------QHLGKSNNFQKPKPAK-GKPEAHFSLVHY 585 ---PKATDTSFKNKLYD--------------QHLGKSANFQKPKVVK-GKAEAHFALIHY 585 ---PKATDTSFKNKLYD--------------QHLGKSNNFQKPKVVK-GRAEAHFSLIHY 583 ---PKATDKSFVEKVAQ----------------EQGGHPKFQRPRHLR---DQADFSVLHY 599 WKSPWASSPSWRNSASSPKPPMPRSRQPCTTTTWASPATS-SPRGARARGP--RSTSSWF 564 ---PKASDQTFKAKLYD--------------NHLGKNPTFQKPRIVK-GRPEAHFALVHY 581 ---PKASDAIFKAKLYD--------------NHLGKNPNFQKPRIVK-GRPEAHFALVHY 582 ---PKASDATFKAKLYD---------------NHLGKSNNFQKPRIVK-GKPEAHFSLVHY 581 ---PKASDATFKAKLYD--------------NHLGKSNNFQKPRIVK-GKPEAHFSLVHY 580 ---PKASDSTFKAKLYD---------------NHLGKSNNFQKPRAIK-GKPESHFSLVHY 581 ---PKASDQTFKAKLYD--------------NHLGKTNIFQKPRAVK-GKAEAHFALSHY 581 ---PKATDTSFKNKLYD--------------QHLGKCNAFQKPRPQK-GKAEAHFSLVHY 586 ---PKATDTTFKNKLHD--------------QHLGKTNCFQKPKPAK-GKAEAHFSLVHY 584 ----PKATDTSFKNKLYD---------------QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586 ---PKATDTSFKNKLYD--------------QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586 ---PKATDTSFKNKLYD--------------QHLGKCNAFQKPKPAK-GKAEAHFSLVHY 586 ---PKATDVSFKNKLYD--------------QHLGKCNAFQKPRPQK-GKAEAHFSLVHY 586
 ---PKATDKSFVEKVVQ---------------ELGNNPKFQKPKKLK---DDADFCIIHY 581 ---PKATDKSFVEKVLQ---------------EQGTHPKFHKPKKLK---DEADFCI IHY 578
 ---PKATDVSFVEKLTN---------------THSSHCKFSKPKNLK---EKTFFTVQHY 562 * *: : :

AGIVDYNI---IGWLQKNKDPLNETVVGLYQKSSLKLLSTLFANYAGADAP-I------- 631 AGTVDYNI---LGWLEKNKDPLNETVVALYQKSSLKLMATLFSSYATADTGDS-------633 AGTVDYNI---AGWLDKNKDPLNETVVGLYQKSSLKLLSFLFSNYAGAET-GDSG----- 635 AGTVDYNI---TGWLDKNKDPLNDTVVGLYQKSAMKTLASLFSTYASAEA---DS----- 634 AGTVDYNI---AGWLDKNKDPLNETVVGLYQKSAMKTLAFLFSGAQTAEAE--GG----- 635 AGTVDYNI---AGWLDKNKDPLNETVVGLYQKSAMKTLALLFVGATGAEAE--AG----- 635 AGVVDYNI---TGWLEKNKDPLNETVVGLYQKSAMKTLAQLFSGAQTAEGEGAGG----- 637 AGTVDYSV---SGWLEKNKDPLNETVVGLYQKSSNRLLAHLYATFATADA---DS----- 632 AGKVDYKA---NEWLMKNMDPLNDNVAALLHQSTDRLTAEIWKDVEGIVGLEQVSSLGDG 656 AGVVPYNI---SGWLEKNKDLLNETVVAVFQKSSNRLLASLFENYMSTDSAIPF------ 625 TTQAPWDITSQAGWRRTKTP-MK----QWWACSRNRVWQSW--PFSSKKRRLQP------ 611 AGTVDYNI---SNWLVKNKDPLNETVVGLFQKSTVKLLSFLFAGYSGADSAQDSK----- 633 AGTVDYNI---SNWLVKNKDPLNETVVGLFQKSTLKLLGTLFANYAGAESADSGG----- 634 AGTVDYNI---NNWLVKNKDPLNETVVGLYQKSTMKMLS ILFANYAGAESAAEGG----- 632 AGTVDYNI---NNWLVKNKDPLNETVVGLYQKSTMKLLSNLFAGYAGAE---SGG----- 630 AGTVDYNI---NNWLVKNKDPLNETVVGLYQKSTMKLLSNLFANYTGADLAMEGG----- 632 AGTVDYNI---NNWLVKNKDPLNETVVGLFQKSTVKLLSMLFANYAGTESD-NGK----- 632 AGTVDYNI---NNWLVKNKDPLNETVVGLYQKSSLKLLSNLFANYAGADSATGDG----- 632 AGTVDYNI---AGWLVKNKDPLNETVVGLYQKSSLKLLSLLFSSYAGSDGGEKSG----- 633 AGTVDYNV---SGWLDKNKDPLNESVVQLYQKSSVKLLATLYPPV--VED---T------ 632 AGTVDYNI---SGWLDKNKDPLNDSVVQLYQKSSVKLLCHLYAAHASTEA---ES-----633 AGTVDYNI---SGWLDKNKDPLNESVVQLYQKSSVKLLATLYPPV--VEE---TG----- 633 AGTVDYNI---SGWLDKNKDPLNESVVQLYQKSSVKLLATLYPPV--VEE---TG----- 633 AGTVDYNI---SGWLDKNKDPLNESVVQLYQKSSVKLLATLYPPV--VEE---TG----- 633 AGTVDYNI---SGWLDKNKDPLNESVVQLYQKSSVKLLATLYPPV--VEE---TG----- 633 AGTVDYNV---NGWLDKNKDPLNESVVQLYQKSSVKLLATLYPPV--VEE---TG----- 633 AGVVPYNI---IGWLDKNKDPLNETVVICFQKSSNKLLASLYEKYVSSDSASDPK----- 632 AGVVPYNI---NGWLDKNRDPLNETVVGIFQRSSNKLMSSLFENFISLDSGSEAK----- 632 AGKVDYKA---NEWLMKNMDPLNDNVATLLNQSVDKFVSELWKDVDRIVGLDKVAGMGE-637 AGKVDYKA---DEWLMKNMDPLNDNVATLLNQSTDRFVSELWKDVDRIVGLDKVAGMSE-634 AGRVDYKA---DEWLMKNMDPLNDNVATLLHQSTDKFVAELWKDVDRIVGLDQVAGMNE-649 AGRVDYNA---VAWLTKNMDPLNDNVTALLNNSSNPFVQDLWKDADRVVGLETIAKMSD-634 AGKVDYNA---MSWLTKNMDPLNDNVTALLSNSSSAFIQDIWKDVDRVVGLETMAKMAKS 619 AGKVDYKA---KEWLVKNMDPLNDNVASLLHQSSDPFISELWREVERIVGLDQVSSGENS 653

 Actin binding domain

P687 - Actin binding domain Conver

Hs. MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2 Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16 Dr. smyhc1 Dr.smyhc2 Dr. smyhc3 Dr. smyhc 4 Dr.smyhc5 Dr.myh 7 Dr.myh7l Dr.myh6 Dr.myha Dr.myhb Dr.myhz1.1 Dr.myhz1. 2 Dr.myhzl. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs.MYH7
Hs.MYH 6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr.smyhc4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh 6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14
----GKSKGGKKKGSSFQTVSALHRENLNKLMTNLRTTHPHFVRCIIPNERKAPGVMDNP 689 ----GSKKGGKKKGSSFQTVSAVFRENLNKLMTNLRSTHPHFVRCLIPNETKTPGVMDHY 691 ----SAKKGAKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHE 690 ----GGKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHE 691 ----GGKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHE 691 ----GAKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHE 693 ----GKKKVAKKKGSSFQTVSALFRENLNKLMSNLRTTHPHFVRCIIPNETKTPGAMEHS 688 ------PPGGRPRRGMFRTVGQLYKESLSRLMATLSNTNPSFVRCIVPNHEKRAGKLEPR 710 ------GEKKRKKGASFQTVASLHKENLNKLMTNLKSTAPHFVRCINPNVNKIPGILDPY 679 -----EARSRREAPPS-Q--SPISTGSS-TS--PPSIAAPHFVRCIIPNEFKQSGVIDAH 660 ---GGKGGG-KKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCLIPNETKTPGAMENP 689 ---KGKGGA-KKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCLIPNETKTPGAMENP 690 ---GGKGKEKKKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMENP 689 ---GGKGKEKKKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMENP 687 ---GGKTKEKKKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMENP 689 ---GGKGGGSKKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMENP 689 ---G--KKEKKKKGSSFQTVSALHRENLNKLMTNLRSTHPHFVRCLIPNETKTPGAMENP 687 ------GKGAKKKGSSFQTVSALHRENLNKLMTNLKTTHPHFVRCLIPNESKIPGIMDNC 687 -----SKKGGKKKGGSMQTVSSQFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 687 ----GGKKGGKKKGGSFQTVSALFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 689 ----GGKKGGKKKGGSMQTVSSQFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 689 ----GGKKGGKKKGGSMQTVSSQFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 689 ----GGKKGGKKKGGSMQTVSSQFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 689 ----GGKKGGKKKGGSMQTVSSQFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 689 ----GGKKGGKKKGGSMQTVSSQFRENLGKLMTNLRSTHPHFVRCLIPNESKTPGLMENF 689 ----TGGKEKRKKAASFQTVSQLHKENLNKLMTNLRSTQPHFVRCIIPNETKTPGIMDSF 688 ----PGSKEKRKKGASFQTVSQLHKENLNKLMTNLRSTQPHFVRCIIPNEAKNPGMMEPF 688 ---SLHG-AVKTRKGMFRTVGQLYKEQLMNLMTTLRNTNPNFVRCIIPNHEKKAGKLAHH 693 ----LPG-AFKTRKGMFRTVGQLYKEQLSKLMATLRNTNPNFVRCIIPNHEKKAGKLDPH 689 ---TAFGAAYKTKKGMFRTVGQLYKESLTKLMATLRNTNPNFVRCIIPNHEKRAGKLEPH 706 ---SLAPSASKTKKGMFRTVGQLYKESLAKLMTTLHNTQPNFVRCIIPNHEKRAGKLDAH 691 D--SSAPAASKSKKGMFRTVGQLYKESLGKLMTTLHNTQPNFVRCIIPNHEKRAGKIDAH 677 GPVSFGAAGLKTKKGMFRTVGQLYKESLTKLMATLRNTNPNFLRCIIPNHEKRAGKLSPH 713

LVMHQLRCNGVLEGIRICRKGFPNRILYGDFRQRYRILNPAAIPEGQFIDSRKGAEKLLS 747 Converter
LVMHQLRCNGVLEGIRICRKGFPNRILYGDFRQRYRILNPAAIPEGQFIDSRKGAEKLLS 747 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFRQRYRILNPVAI PEGQFIDSRKGTEKLLS 749 LVMHQLRCNGVLEGIRICRKGFP SRILYADFKQRYRILNASAIPEGQFIDSKNASEKLLN 751 LVLHQLRCNGVLEGIRICRKGFP SRILYGDFKQRYKVLNASAIPEGQFIDSKKASEKLLA 750 LVLHQLRCNGVLEGIRICRKGFPSRILYADFKQRYKVLNASAI PEGQFIDSKKASEKLLG 751 LVLHQLRCNGVLEGIRICRKGFP SRILYADFKQRYKVLNASAIPEGQFIDSKKASEKLLG 751 LVLHQLRCNGVLEGIRICRKGFPSRILYADFKQRYKVLNASAIPEGQFIDSKKASEKLLA 753 LVLHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRVLNASAIPEGQFIDSKKACEKLLA 748 LVLDQLRCNGVLEGIRICRQGFPNRILFQEFRQRYEILTPNAIPKG-FMDGKQACEKMIQ 769 LVLQQLRCNGVLEGTRICREGFPNRLQYADFKQRYCILNPRTFPKSKFVSSRKAAEELLG 739 LIMHQLACNGVLEGIRICRKGFPNRLQYPEFKQRYQVLNPNVIPQG-FVDNKKASELLLA 719 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPSANPEGQFIDNKKAAEKLLG 749 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPSAIPEGQFIDNKKGAEKLLG 750 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPAAI PEGQFIDSRKGAEKLLG 749 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPAAIPEGQFIDSRKGAEKLLG 747 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPAAIPDGQFIDSRKGAEKLLG 749 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPAAIPEGQFIDSRKGAEKLLG 749 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNPAAIPEGQFIDSKKGAEKLLG 747 LVMHQLRCNGVLEGIRICRKGFPNRILYGDFKQRYRILNASAIPEGQFIENKKSAEKLLG 747 LVIHQLRCNGVLEGIRICRKGFP SRILYADFKQRYKVLNASVIPEGQFIDNKKASEKLLG 747 LVIHQLRCNGVLEGIRICRKGFPSRILYGDFKQRYKVLNASVIPEGQFIDNKKASEKLLG 749 LVIHQLRCNGVLEGIRICRKGFPSRILYADFKQRYKVLNASVIPEGQFIDNKKASEKLLG 749 LVIHQLRCNGVLEGIRICRKGFPSRILYADFKQRYKVLNASVIPEGQFIDNKKASEKLLG 749 LVIHQLRCNGVLEGIRICRKGFPSRILYGDFKQRYKVLNASVIPEGQFIDNKKASEKLLG 749 LVIHQLRCNGVLEGIRICRKGFPSRILYGDFKQRYKVLNASVIPEGQFIDNKKASEKLLG 749 LVIHQLRCNGVLEGIRICRKGFPSRILYGDFKQRYKVLNASVIPEGQFIDNKKASEKLLG 749 MVLHQLRCNGVLEGIRICRKGFPNRMLYAEFKQRYRILNPHAIPDDKFVDSRKAAEKLLA 748 LVLHQLRCNGVLEGIRICRKGFPNRILYAEFKQRYRILNPLAIPEDTYVDSRKAVEKLLG 748 LVLDQLRCNGVLEGIRICRQGFPNRIVFQEFRQRYEILTPNAIPKG-FMDGKQACVLMVK 752 LVLDQLRCNGVLEGIRICRQGFPNRIVFQEFRQRYEILTPNSIPKG-EMDGKQACMLMIR 748 LVLDQLRCNGVLEGIRICRQGFPNRIVFQEFRQRYEILTPNAIPKG-FMDGKQACERMIR 765 LVLEQLRCNGVLEGIRICRQGFPNRIVFQEFRQRYEILAANAIPKG-FMDGKQACCLMIK 750 LVLDQLSCNGVLEGIRICRQGFPNRIVFHEFRQRYEVLAAGSIPKG-FMDGKQSCTLMIK 736 LVLDQLRCNGVLEGIRICRQGFPNRIPFQEFRQRYEILTPNAIPRT-FMDGKHASELMIS 772 :: :.** ******* ****:***.*: : :*:*** :* * ::..: : : Actin binding domain MYPBC binding site

Hs.MYH7
Hs.MYH6 Hs.MYH13 Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2 Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr.smyhc1 Dr.smyhc2 Dr. smyhc 3 Dr. smyhc 4 Dr.smyhc5 Dr.myh7 Dr.myh7l
Dr.myh 6
Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh 7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b
Dr.myh 14

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs. MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs. MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

SLDIDHNQYKFGHTKVFFKAGLLGLLEEMRDERLSRIITRIQAQSRGVLARMEYKKLLER 807 DIDHNQYKFGHTKVFFKAGLLGLLEEMRDERLSRIITRMQAQARGQLMRIEFKKIVER 809 SIDVDREQFRFGNTKVFFKAGLLGLLEEMRDEKLVTLMTSTQAVCRGYLMRVEFKKMMER 811 SIDIDHTQYKFGHTKVFFKAGLLGLLEEMRDEKLAQIITRTQAVCRGFLMRVEYQKMLQR 810 SIEIDHTQYKFGHTKVFFKAGLLGTLEEMRDEKLAQLITRTQAICRGFLMRVEFRKMMER 811 SIDIDHTQYKFGHTKVFFKAGLLGLLEEMRDEKLAQLITRTQAMCRGFLARVEYQKMVER 811 SIDIDHTQYKFGHTKVFFKAGLLGLLEEMRDDKLAQLITRTQARCRGFLARVEYQRMVER 813 SIDIDHTQYKFGHTKVFFKAGLLGTLEEMRDDRLAKLITRTQAVCRGFLMRVEFQKMVQR 808 ALELDPNIYRVGQSKIFFRAGVLAQLEEERDLKVTDIIVSFQAAARGYLARRAFQKRQQ 829 SLEIDHTQYRFGITKVFFKAGFLGQLEAIRDERLSKVFTLFQARAQGKLMRIKFQKILEE 799 AIDLDVNEYKIGHTKVFFRAGILARLEDMRDERLAKIMTMLQCRLRGFLMRVEFKKMLER 779 SLDIDHNQYKLGHTKVFFKAGLLGTLEEMRDDRLALIITGIQARARGILSRLEFQKIVER 809 SLDIDHNQYKLGHTKVFFKAGLLGTLEEMRDDRLALIITGIQARARGILSRIEFQKIVER 810 SLDIDHNQYKFGHTKVFFKAGLLGTLEEMRDDRLALIITNIQARARGLLSRVEFQKIVDR 809 SLDIDHNQYRFGHTKVFFKAGLLGTLEEMRDDRLALIITGIQARARGILSRIEFQKIVDR 807 SLDIDHNQYKFGHTKVFFKAGLLGTLEEMRDDRLALIITNIQARSRGLLSRIEFQKLVDR 809 SLDIDHNQYKFGHTKVFFKAGLLGQLEEMRDDRLSLIISGIQARSRGLLARVEFQKIVER 809 SLDIDHQQYRFGHTKVFFKAGLLGQLEEMRDERLSKIITGIQAKSRGLLSRAEYIKMVER 807 SLDIDHTQYKFGHTKVFFKAGLLGTLEEMRDDQLARILTGIQAFARGLLMRVEYQKLVER 807 SIDVNHDEYRFGHTKVFFKAGLLGTLEEMRDEKLASLVTMTQALCRAYLMRREFVKMMER 807 SIDVDHTQYKFGHTKVFFKAGLLGTLEEMRDEKLVILVTMTQAVCRGYVMRKEFVKMMAR 809 SIDVNHDEYRFGHTKVFFKAGLLGTLEEMRDEKLASLVTMTQALCRAYLMRREFVKMMER 809 SIDVNHDEYRFGHTKVFFKAGLLGTLEEMRDEKLASLVTMTQALCRAYLMRREFVKMTER 809 SIDVNHDEYRFGHTKVFFKAGLLGTLEEMRDEKLASLVTMTQALCRAYLMRREFVKMMER 809 SIDVNHDEYRFGHTKVFFKAGLLGTLEEMRDEKLATLVTMTQALCRAYLMRREFVKMMER 809 SIDVNHDEYRFGHTKVFFKAGLLGTLEEMRDEKLATLVTMTQALCRAYLMRREFVKMMER 809 SLDIDHNQYRFGHTKVFFKAGLLGQLEEMRDERLAKILTLLQAASRGKIMRMELNKMTQR 808 SLDIDHTQYKFGHSKVFFKAGLLGQLEDMRDERLSKVLTLLQAFCRGKLMRMERKRMMKE 808 ALELDSNLYRIGQSKVFFRAGVLAHLEEERDMKITDVI INFQAWCRGYVARRAFAKRQQ 812 ALELDPNLYRIGQSKVFFRAGVLAHLEEERDMKITDVI INFQAWCRGYVARKAFAKRQQQ 808 ALELDPNLYRIGQSKIFFRTGVLAHLEEERDLKITDIIIYFQSVCRGYLARKAFAKKQQQ 825 HLDIDPNLYRIGQSKIFFRTGVLAQLEEERDLKITVIIIAFQSQARGFLARKAFAKRQQQ 810 HLDLDPNLYRIGLSKIFFRTGVLAQLEEERDLKLTDIIIAFQAQARGFLGRKAFSNKQKQ 796 ALELDKNLFRVGQSKVFFRAGVLAHLEEERDLKITDTIIRFQSAARGYLARKAFHKKQQ@ 832
: : : : . * :*:**: :***** ** : :
RDSLLVIQWNIRAFMGVKNWPWMKLYFKIKP
MyHC binding site
RDSLLVIQWNIRAFMGVKNWPWMKLYFKIKPLLKSAEREKEMASMKEEFTRLKEALEKSE 867 RDALLVIQWNIRAFMGVKNWPWMKLYFKIKPLLKSAETEKEMATMKEEFGRIKETLEKSE 869 RDSIFCIQYNIRSFMNVKHWPWMNLFFKIKPLLKSAEAEKEMATMKEDFERTKEELARSE 871 REALFCIQYNVRAFMNVKHWPWMKLFFKIKPLLKSAETEKEMATMKEEFQKTKDELAKSE 870 RESIFCIQYNIRAFMNVKHWPWMKLYFKIKPLLKSAETEKEMANMKEEFEKTKEELAKTE 871 RESIFCIQYNVRAFMNVKHWPWMKLYFKIKPLLKSAETEKEMANMKEEFEKTKEELAKTE 871 REAIFCIQYNIRSFMNVKHWPWMKLFFKIKPLLKSAETEKEMATMKEEFQKIKDELAKSE 873 RESIFCIQYNIRSFMNVKHWPWMKLFFKIKPLLKSAETEKEMATMKEEFQKTKDELAKSE 868 QSALRVMQRNCAAYLKLRHWQWWRLFTKVKPLLQVTRQDEVLQARAQELQKVQELQQQSA 889 RDALILIQWNIRAFMAVKNWPWMRLFFKIKPLVKSSEVGEEVAGLKEECAQLQKALEKSE 859 RMGLKVIQQNVHKFLQLRFWGWWKLYNKVKPLLNVARQEEEMKAKEEELRKAMAQTQELV 839 RDSLLVIQWNVRAFMGVKNWPWMKLYFKIKPLLKTAETEKEMANMKEEFTKLKEAYAKSE 869 RDSLLVIQWNVRAFMGVKNWPWMKLYFKIKPLLKTAETEKEMANMKEEFTKLKEAYAKSE 870 RDALLVIQWNVRAFMGVKNWPWMKLYFKIKPLLRSAEAEKEMANMKEEFLKLKEAYAKSE 869 RDALLVIQWNVRAFMGVKNWPWMKLYFKIKPLLRSAEAEKEMANMKEEFLKLKEAYAKSE 867 RDALLVIQWNVRAFMGVKNWPWMKLYFKIKPLLRSAEAEKEMANMKEEFLKLKEAYAKSE 869 RDALLVIQWNVRAFMGVKNWPWMKLFFKIKPLLKSAEAEKEMANMKDEFAKLKEAYAKSE 869 RDALLVIQWNVRAFMAVKNWPWMKLFFKIKPLLRSAEAEKEMANMKEEFLKLKEAYAKSE 867 RDALMVVQWNLRSFLGVKNWPWMKLFFKIKPLLKSAESEKEMANMKDEFNKLKEALEKSD 867 RESIYTIQYNIRSFMNVKHWPWMKVYYKIKPLLKSAETEKELANMKEDFVKCKEDLVKAE 867 RESIYSIQYNIRSFMNVKHWPWMKLYFKIKPLLKSAETEKEMAAMKENFEKMKEDLAKAL 869 RDAIYTIQYNVRSFMNVKHWPWMKVYYKIKPLLKSAETEKELATMKEDFVKCKEDLAKAE 869 RDAIYTIQYNVRSFMNVKHWPWMKVYYKIKPLLKSAETEKELATMKEDFVKCKEDLAKAE 869 RESIYTIQYNIRSFMNVKHWPWMKVYYKIKPLLKSAETEKELATMKEDFVKCKEALAKAE 869 RESIYTIQYNIRS FMNVKHWPWMKVYYKIKPLLKSAETEKELATMKEDFVKCKEALAKAE 869 RESIYTIQYNIRSFMNVKHWPWMKVYYKIKPLLKSAETEKELATMKEDFVKCKEDLVKAE 869 KEALMIIQWNIRAFNIVKNWPWMKLFFKIKPLLRSAATEKELAALKEEFLKLKEALEKSE 868 KEALMVIQWNIRAFYAVKNWPWMCLFFKIKPLLRSAATEKELATLKEEFQKLKEALERSE 868 LTAMRVIQRNCAAYIKLRNWQWWRLFTKVKPLLQVTRQEEEMVAKEEELVKMKERQQQAE 872 LTAMRVIQRNCAAYLKLRNWQWWRLFTKVKPLLQVSRQEEEMQAKEEELSKVREKQQVAE 868 LSALKVLQRNCAAYLKLRHWQWWRLFTKVKPLLQVTRQEEEMQAKDEELIKVKERQVKVE 885 LTAMKVLQRNCAVYLTLRNWQWWRLFTKVKPLLQVTRQEEEMNQIEEFLQKAKETAQKSE 856 LSALRVMQRNCAAYLKLRNWQWWRLFTKVKPLLQVTRQDEEIQAREAQLQKAKDKLSKLE 892

Hs.MYH7
ARRKELEEKMVSLLQEKNDLQLQVQAEQDNLADAEERCDQLIKNKIQLEAKVKEMNERLE 9

Hs. MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2
Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

ARRKELEEKMVSLLQEKNDLQLQVQAEQDNLADAEERCDQLIKNKIQLEAKVKEMNERLE 927 ARRKELEEKMVSLLQEKNDLQLQVQAEQDNLNDAEERCDQLIKNKIQLEAKVKEMNERLE 929 ARRKELEEKMVSLLQEKNDLQLQVQSETENLMDAEERCEGLIKSKILLEAKVKELTERLE 931 AKRKELEEKMVTLLKEKNDLQLQVQSEADSLADAEERCEQLIKNKIQLEAKIKEVTERAE 930 AKRKELEEKMVTLMQEKNDLQLQVQAEADALADAEERCDQLIKTKIQLEAKIKEVTERAE 931 AKRKELEEKMVTLMQEKNDLQLQVQAEADSLADAEERCDQLIKTKIQLEAKIKEVTERAE 931 AKRKELEEKMVTLLKEKNDLQLQVQAEAEGLADAEERCDQLIKTKIQLEAKIKEVTERAE 933 AKRKELEEKLVTLVQEKNDLQLQVQAESENLLDAEERCDQLIKAKFQLEAKIKEVTERAE 928 REVGELQGRVAQLEEERARLAEQLRAEAELCAEAEETRGRLAARKQELELVVSELEARVG 949 FQREELKAKQVSLTQEKNDLILQLQAEQETLANVEEQCEWLIKSKIQLEARVKELSERVE 919 NKVKELEEKTATLSQEKNDLTIQLQAEQENLMDAEERLTWMMKTKMDLESQISDMRERLE 899 ARKKELEEKMVSLLQEKNDLQLAVQSEQDNLVDAEERCEGLIKSKIQLEAKAKELTERLE 929 ARKKELEEKMVSLLQEKNDLQLAVQSEQDNLADAEERCEGLIKSKIQFEAKVKELTERLE 930 ARRKELEEKMVSLLQEKNDLQLAVQAEQDNLCDAEERCEGLIKNKIQLEAKAKELTERLE 929 ARRKELEEKMVSLLQEKNDLQLAVQSEQDNLCDAEERCEGLIKNKIQLEAKAKELTERLE 927 ARRKELEEKMVSLLQEKNDLQLAVQAEQDNLCDAEERCEGLIKNKIQLEAKAKELTERLE 929 ARRKELEEKMVSLLQEKNDLQLQVQAEQDNLCDAEERCDQLIKNKIQLEAKAKELTERLE 929 ARRKELEEKMVTLLQEKNDLQLQVQAEQDNLCDAEERCEGLIKNKIQMEAKAKELTERLE 927 ARRKELEEKMVSLLQEKNDLLLQVQSEQDTLTDAEERCEQLIKSKIQLEAKVKELSERIE 927 AKKKELEEKMVALLQEKNDLQLAVASEAENLSDAEERCEGLIKSKIQLEAKLKETTERLE 927 AKKKELEEKMVTLLQEKNDLQLQVASETENLSDAEERCEGLIKSKIQLEAKLKEATERLE 929 AKKKELEEKMVALLQEKNDLQLAVASESENLSDAEERCEGLIKSKIQLEAKLKETTERLE 929 AKKKELEEKMVALLQEKNDLQLAVASESENLSDAEERCEGLIKSKIQLEAKLKETTERLE 929 AKKKELEEKMVALLQEKNDLQLAVASESENLSDAEERCEGLIKSKIQLEAKLKETTERLE 929 AKKKELEEKMVALLQEKNDLQLAVASESENLSDAEERCEGLIKSKIQLEAKLKETTERLE 929 AKKKELEEKMVALLQEKNDLQLAVASEAENLSDAEERCEGLIKSKIQLEAKLKETTERLE 929 AKRKELEEKQVSLIQEKNDLSLQLQAEQDNLADAEDRCDLLIKTKIQLEAKVKEMTERLE 928 VKRKELEEKQVSLVQEKNDLSLQLQAEQDNLADAEDRCNLLIKAKIQMEGKIKELMERLE 928 DQLKESEAKQKQLNAEKLALQEQLQAETELCQEAEEMRSRLTARMQEMEEVLHELESRLE 932 QQLVEMEVKQQQLNAEKMALQEQLQAEMDLCAEADEMRNRLVAKKQELEEILHDLEARVE 928 NELVEMERKHQQLLEEKNILAEQLQAETELFAEAEEMRARLVAKKQELEEILHDLESRVE 945 IELKDIALKHTQLMDERNQLQEKLQAETELYAEAEEMRVRLASKKQELEEILHEMEARLE 930 TELKEITQKHDQVVEERNKLQAKLQEEAELYAESEEVRIRLETKKQELEEVLHEMEARLE 916 LDFTELDKKNQQLIEEKSVLTDQLQAEAELFAEAEEMRARLANRKQELEDVLGELESRLE 952 DEEEMNAELTAKKRKLEDECSELKRDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLD 987

DEEEMNAELTAKKRKLEDECSELKRDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDE 987 DEEEMNAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDE 989 EEEEMNSELVAKKRNLEDKCSSLKRDIDDLELTLTKVEKEKHATENKVKNLSEEMTALEE 991 EEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDE 990 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDE 991 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDE 991 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDE 993 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEELSGLDE 988 EEEECSRQMQTEKKRLQQHIQELEAHLEAEEGARQKLQLEKVTTEAKMKKFEEDLLLLED 1009 EEEEINSELTARGRKLEDECFELKKEIDDLETMLVKSEKEKRTTEHKVKNLTEEVEFLNE 979 EEEGMAASLSAAKRKLEGELSDLKRDLEGLETTLAKTEKEKQALDHKVRTLTGDLSLRED 959 DEEEMNAELVAKKRKLEDECSELKKDIDDLELTLAKVE KEKHATENKVKNLTEEMAALDE 989 DEEEMNAELVAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAALDE 990 DEEEMNAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAALDE 989 DEEEMNAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAALDE 987 DEEEMNAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAALDE 989 DEEEMNAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAALDD 989 DEEEMNAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAALDD 987 DEEEINADLTAKRRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNITEEMASLDE 987 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMASQDE 987 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMTSQDE 989 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAAQDE 989 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAAQDE 989 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAAQDE 989 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMASQDE 989 DEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMASQDE 989 DEEEMNATVLAKKRKLEDECAELKKDIDDLEITLAKVEKEKHATENKVKNLIEEMAALDE 988 DEEEMNATILAKKRKLEDECIELKKDLDDLEITLAKVEKEKHATENKVKNLVEEMAALDE 988 EEEERVAQFQSEKKKMQQNIGDLEQQLDEEEAARQK LQLEKVTMDAKLKKIEEDLMVIED 992 EEEERANHLQAEKKKMQQNIADLEQQLDEEEAARQKLQLEKVTMEAKLKKTEEEVMVLDD 988 EEEERNQSLQNEKKKMQSHIQDLEEQLDEEEAARQKLQLEKVTAEAKIKKMEEDILLLED 1005 EEEDRGAALQMEKKKMHEQIKDLEEHLEEEEDARQKLQLEKVTCDAKIKKLEDDILIMDD 990 EEEERSQAFQQEKGNLQQKLKELENHLAEQDATRQKLQLESGAADGKIKKLEEDVLIMED 976 EEEERTVQLTNEKKRIQQHVQDLEEQLEEEEGTRQRLQLEKVTLESKVKSLEAETLTLAE 1012 EEE
\cdot
**

Hs.MYH7
IIAKLTKEKKALQEAHQQALDDLQAEEDKVNTLTKAKVKLEQQVDDLEGSLEQEKKVRMD 1047

Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2
Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1.1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7

Hs.MYH7
Hs.MYH 6
Hs. MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr.smyhc4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh 6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

IIAKLTKEKKALQEAHQQALDDLQAEEDKVNTLTKAKVKLEQQVDDLEGSLEQEKKVRMD 1047 IIAKLTKEKKALQEAHQQALDDLQVEEDKVNSLSKSKVKLEQQVDDLEGSLEQEKKVRMD 1049 NISKLTKEKKSLQEAHQQTLDDLQVEEDKVNGLIKINAKLEQQTDDLEGSLEQEKKLRAD 1051 TIAKLSKEKKALQETHQQTLDDLQAEEDKVNILTKAKTKLEQQVDDLEGSLEQEKKLRMD 1050 TIAKLTKEKKALQEAHQQTLDDLQMEEDKVNTLTKAKTKLEQQVDDLEGSLEQEKKLCMD 1051 TIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKAKIKLEQQVDDLEGSLEQEKKIRMD 1051 TIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKAKIKLEQQVDDLEGSLEQEKKLRMD 1053 TIAKLTREKKALQEAHQQALDDLQAEEDKVNSLNKTKSKLEQQVEDLESSLEQEKKLRVD 1048 @NSKLSKERKLLEDRLAEFSSQAAEEEEKVKSLNKLRLKYEATIADMEDRLRKEEKGRQE 1069 DISKLNRAAKVVQEAHQQTLDDLHMEEEKLSSLSKANLKLEQQVDELEGALEQERKARMN 1039 SITKLQKEKRALEELHQKTLDDLQAEEDKVNHLTKNNSKLSTQIHELEDNWEQEKKIRAE 1019 IIAKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1049 IIAKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKIRMD 1050 IIAKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1049 IIAKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1047 IIARLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1049 IIAKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1049 IIAKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKVKLEQQVDDLEGSLEQEKKIRMD 1047 NIMKLTKEKKALQEAHQQTLDDLQSEEDKVNTLTKAKVKLEQQVDDLEGSLEQEKKVRMD 1047 SIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKSKTKLEQQVDDLEGSLEQEKKLRMD 1047 VIVKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1049 SIGKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKSKTKLEQQVDDLEGSLEQEKKLRMD 1049 SIGKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKSKTKLEQQVDDLEGSLEQEKKLRMD 1049 SIGKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKSKTKLEQQVDDLEGSLEQEKKLRMD 1049 SIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKSKTKLEQQVDDLEGSLEQEKKLRMD 1049 SIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKSKTKLEQQVDDLEGSLEQEKKLRMD 1049 TILKLTKEKKALQESHQQTLDDLQTEEDKVNTLTKAKAKLEQQVDDLEGSLEQEKKLRMD 1048 TISRLSKEKKALQDAHQQALEDLQSEENKVNMLSKAKIKLEQQVDDLEGSLEQEKKVRMD 1048 QNAKLSKEKKQMEERISEFTTNLAEEEEKSKSLQKLKTKHETMITDLEDRLRKEEKMRQE 1052 QNNKLSKEKKLMEERIAEFTTNLAEEEEKSKSLQKLKNKHEAMITDLEDRLRREEKQRQE 1048 QNSKFLKEKKLLEDRVGEMTSQLAEEEEKAKNLGKVKNKQEMMMVDLEERLKKEEKTRQE 1065 QNNKLQKERKILEERIADFSSNLAEEEEKSKNLTKLKNKHESMISELEVRLKKEEKTRQE 1050 KNKLQKEKQQLEERLADFSSNLAEEEEKSKNLTKLKAKHESMISDLEVRMKKEEKSRQD 1036 QRDRLSKEKKQLEERLNEVTDQLTEEEEKVKSLNKLKNKQEAVIADIEERLKREEQGRLE 1072 : : : : : . : **:*. **. *. : ** . *.: :

LERAKRKLEGDLKLTQES IMDLENDKQQLDERLKKKDFELNALNARIEDEQALGSQLQKK 1107 LERAKRKLEGDLKLTQES IMDLENDKLQLEEKLKKKEFDINQQNSKIEDEQVLALQLQKK 1109 LERAKRKLEGDLKMSQESIMDLENDKQQIEEKLKKKEFELSQLQAKIDDEQVHSLQFQKK 1111 LERAKRKLEGDLKLAQESTMDMENDKQQLDEKLEKKEFEISNLISKIEDEQAVEIQLQKK 1110 LERAKRKLEGDLKLAQESTMDTENDKQQLNEKLKKKEFEMSNLQGKIEDEQALAIQLQKK 1111 LERAKRKLEGDLKLAQESTMDIENDKQQLDEKLKKKEFEMSGLQSKIEDEQALGMQLQKK 1111 LERAKRKLEGDLKLAQES IMDIENEKQQLDEKLKKKEFEISNLQSKIEDEQALGIQLQKK 1113 LERNKRKLEGDLKLAQESILDLENDKQQLDERLKKKDFEYCQLQSKVEDEQTLGLQFQKK 1108 LEKLKRRLDGESSELQEQMVEQQQRAEELRAQLGRKEEELQAALARAEDEGGARAQLLKS 1129 CERELHKLEGNLKLNRESMENLESSQRHLAEELRKKELELSQMNSKVENEKGLVAQLQKT 1099 VEKARRKAESDLKMTIDNLNEMERSKLDLEEVVKKRDLEINSVNSKYEDEQSLNSTLQRK 1079 LERAKRKLEGDLKLTQES IMDLENDKQQMEEKLKKKDFEISQLNSKIEDEQALGAQLQKK 1109 LERAKRKLEGDLKLTQENLMDLENDKQQMEERLKKKDFEISQLNSKIEDEQALEAQLQKK 1110 LERAKRKLEGDLKLTQESVMDLENDKQQLEERLKKKDFEISQLSSKIEDEQAMAAQLQKK 1109 LERAKRKLEGDLKLTQESVMDLENDKQQLEERLKKKDFEISQLSSRIEDEQAMAAQLQKK 1107 LERVKRKLEGDLKLTQESVMDLENDKQQLEERLKKKDFEISQLTSRIEDEQAMATQLQKK 1109 LERAKRKLEGDLKLTQESLMDLENDKQQLEERLKKKDFEISQLNGKIEDEQTICIQLQKK 1109 LERAKRKLEGDLKLTQESIMDLENDKQQLEEKLKKKDFEISQLNSKIDDEQSIIIQLQKK 1107 LERSKRKLEGDVKLTQENVMDLENDKQQLEDKLKKKDFEINQLNQRIEDEQMASVQLQKK 1107 LERAKRKLEGDLKLAQES IMDLENDKQQSEEKIKKKDFETSQLLSKIEDEQSLGAQLQKK 1107 LERAKRKLEGDLKLAQESLMDLENDKQQLEEKLKKKDFETSQFLSRIEDEQSLGIQFQKK 1109 LERAKRKLEGDLKLAQES IMDLENDKQQSEEKLKKKDFETSQLLSKIEDEQSLGAQLQKK 1109 LERAKRKLEGDLKLAQES IMDLENDKQQSEEKLKKKDFET SQLLSKIEDEQSLGAQLQKK 1109 LERAKRKLEGDLKLAQES IMDLENDKQQSEEKLKKKDFETSQLLSKIEDEQSLGAQLQKK 1109 LERAKRKLEGDLKLAQESIMDLENDKQQSEEKIKKKDFETAQLLSKIEDEQSLGAQLQKK 1109 LERAKRKLEGDLKLAQES IMDLENDKQQSEEKIKKKDFETAQLLSKIEDEQSLGAQLQKK 1109 LERSKRKLEGDLKLSMESVMDLENDKQQLEEKLKKKDFEMNQISSKIEDDQVLIIQLQKK 1108 LERVKRKLEGDLKLSVESSMDLDNSKQQLEERLKKKDHEMVQIGAKIEEEQALVIQLHKK 1108 LEKNRRKLEGDSTELHDQIAELQAQIAELRAQLAKKEEELQAALARIEEEAALKNAAQKS 1112 LEKNRRKLEGDSTELHDQIAELQAQIAELKAQLAKKEEELQEALARIEEEAAQKNLAQKK 1108 LEKAKRKLDAETTDLQDQIAELQAQIDELKIQLAKKEEELQAVLARGDEEVAQKNNALKQ 1125 LDKAKRKLEAESNDLQEQIADLQAQIADLKAQLAKKEEELQAALARLEDETGQKNNALKK 1110 VEKAKRKLETEHSDLQEQMKNLQTLIAELKTQQARSEMEIQELQASVEAESTQKSNALKK 1096 QEKWKRRMEGEAVEAQEQLSDMSLLVTELRGSLSQREKEITTLQTRLEEEGARRTEAQRA 1132 : : : : : : : . . \quad : : :

Hs.MYH7
Hs. MYH7
Hs.MYн6
Hs.MYH13
Hs.mYH8 Hs.MYH4 Hs.MYH1 Hs. МYн2
Hs.MYH3 Hs.mYH14 Hs.MYH15 Hs.MYH16 Dr.smyhc1 Dr.smyhc2 Dr.smyhc3 Dr.smyhc4 Dr.smyhc5 Dr.myh 7 Dr.myh71 Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhzl. 3 Dr.myhz2 Dr.myhc4 Dr.myh 7 ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc 4
Dr.smyhc5
Dr.myh7
Dr.myh71
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1. 1
Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

LKELQARIEELEEELEAERTARAKVEKLRSDLSRELEEISERLEEAGGATSVQIEMNKKR 1167 LKENQARIEELEEELEAERTARAKVEKLRSDLSRELEEISERLEEAGGATSVQIEMNKKR 1169 IKELQARIEELEEEIEAEHTLRAKIEKQRSDLARELEEISERLEEASGATSAQIEMNKKR 1171 IKELQARIEELGEEIEAERASRAKAEKQRSDLSRELEEISERLEEAGGATSAQVELNKKR 1170 IKELQARIEELEEEIEAERASRAKAEKQRSDLSRELEEISERLEEAGGATSAQIEMNKKR 1171 IKELQARIEELEEEIEAERASRAKAEKQRSDLSRELEEISERLEEAGGATSAQIEMNKKR 1171 IKELQARIEELEEEIEAERASRAKAEKQRSDLSRELEEISERLEEAGGATSAQIEMNKKR 1173 IKELQARIEELEEEIEAERATRAKTEKQRSDYARELEELSERLEEAGGVTSTQIELNKKR 1168 LREAQAALAEAQEDLESERVARTKAEKQRRDLGEELEALRGELEDTLDSTNAQQELRSKR 1189 VKELQTQIKDLKEKLEAERTTRAKMERERADLTQDLADLNERLEEVGGSSLAQLEITKKQ 1159 IKEHQDRIEELEEELEAERAMRAKVEKQRSDLSRDLEDLSDRLEEAGGATSAQIEQNRKR 1139 LKELQARIEELEEELEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 LKELQARIEELEEELEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1170 LKELQARIEELEEELEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 LKELQARIEELEEELEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1167 LKELQARIEELEEELEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 LKELQARIEELEEELEAERAARAKVEKQRADLARELEEISERLEEAGGATAAQIEMNKKR 1169 LKELQARVEELEEELEAERAARAKVEKQRADLARELEEISERLEEAGGATAAQIEMNKKR 1167 LKENQARIEELEEELDAERAARAKVEKQRSDISRELEDISERLEEAGGATSAQVELNKKR 1167 IKELQARIEELEEEIEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1167 IKELQARIEELEEEIEAERAARAKVEKQRSDLARELEEISERLEEAGGATSAQIEMNKKR 1169 IKELQARIEELEEEIEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 IKELQARIEELEEEIEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 IKELQARIEELEEEIEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 IKELQARIEELEEEIEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 IKELQARIEELEEEIEAERAARAKVEKQRADLSRELEEISERLEEAGGATAAQIEMNKKR 1169 IKELQARIEELEEEMEAERSTRAKMEKHRSDSSKELEELSERLEEAGGATSAQIEMNKKR 1168 IKELQTRIEELEEELEAERAARSKSEKQRSDVSRELEELSERLEEAGGATTAQIEMNKKR 1168 IREMEAQISELQEDLELEKAARNKAEKQRRDLGEELEALKTELEDTLDSTAAQQELRAKR 1172 IRELESQLSELQEDLELERAARTKAEKHRRDLGEELEALKTELEDTLDSTAAQQELRTKR 1168 LRELQAQLAELQEDLESEKAARNKAEKLKRDLSEELEALKTELEDTLDTTAAQQELRSKR 1185 IRELEGHISDLQEDLESERAARNKAEKTKRDLGEELEALKSELEDTLDTTATQQELRAKR 1170 IHEMEGLLSELQDELEAEQGAGRKSEKARKELEEELSALRTELEDSLDTTAVQQELRAKR 1156 LREAMSQVSELKEEVENERGMRERAEKQRRDLGEELEALRTELEDTLDTTAAQQELRSRR 1192

EAEFQKMRRDLEEATLQHEATAAALRKKHADSVAELGEQIDNLQRVKQKLEKEKSEFKLE 1227 EAEFQKMRRDLEEATLQHEATAAALRKKHADSVAELGEQIDNLQRVKQKLEKEKSEFKLE 1229 EAEFQKMRRDLEEATLQHEATAATLRKKQADSVAELGEQIDNLQRVKQKLEKEKSELKME 1231 EAEFQKLRRDLEEATLQHEAMVAALRKKHADSMAELGEQI DNLQRVKQKLEKEKSELKME 1230 EAEFQKMRRDLEESTLQHEATAAALRKKHADSVAELGEQIDSLQRVKQKLEKEKSELKME 1231 EAEFQKMRRDLEEATLQHEATAATLRKKHADSVAELGEQIDNLQRVKQKLEKEKSEMKME 1231 EAEFQKMRRDLEEATLQHEATAATLRKKHADSVAELGEQIDNLQRVKQKLEKEKSEMKME 1233 EAEFLKLRRDLEEATLQHEAMVAALRKKHADSVAELGEQIDNLQRVKQKLEKEKSEFKLE 1228 EQEVTELKKTLEEETRIHEAAVQELRQRHGQALGELAEQLEQARRGKGAWEKTRLALEAE 1249 ETKFQKLHRDMEEATLHFETTSASLKKRHADSLAELEGQVENLQQVKQKLEKDKSDLQLE 1219 EAELLKLRRELEEAALQSEATASTLRKKHVDSMAELTEHVESLQRVKSKLEKDKQVMKAE 1199 EAEFQKLRRDLEEATLQHEATAATLRKKHADSVADLGEQIDNLQRVKQKLEKEKSELKLE 1229 EAEFQKLRRDLEEATLQHEATASTLRKKHADSVSDLGEQIDNLQRVKQKLEKEKSELRLE 1230 EAEFQKLRRDLEEATLQHEATASTLRKKHADSVSDLGEQIDNLQRVKQKLEKEKSELRLE 1229 EAEFQKLRRDLEEATLQHEATASTLRKKHADSVSDLGEQIDNLQRVKQKLEKEKSELRLE 1227 EAEFQKLRRDLEEATLQHEATASTLRKKHADSVSDLGEQIDNLQRVKQKLEKEKSELRLE 1229 EAEFQKLRRDLEEATLQHEATAATLRKKQADSVAELGEQIDNLQRVKQKLEKEKSELRLE 1229 EAEFQKLRRDLEEATLQHEATAATLRKKQADSVAELGEQIDNLQRVKQKLEKEKSELRLE 1227 DAEFQKIRRDLEESTLQHEATTASLRKKHADSVAELGEQIDNLQRVKQKLEKEKVELKLE 1227 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSEYKME 1227 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSELKME 1229 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSEYKME 1229 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSEYKME 1229 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSEYKME 1229 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSEYKME 1229 EAEFQKLRRDLEESTLQHEATAAALRKKQADSVAELGEQIDNLQRVKQKLEKEKSEYKME 1229 EADFLKLRRDLEEAILHHEAMTAALRKKHADSVVELSEQIDSLQRVKQKLEKERSEAKME 1228 EADFIKLRRDLEEASLHHETTIAMLRRKHADTVAEMGEQLDNLQRVKQKLEKEKAETRME 1228 ETEVTQLKKTLEDEARAHEQMLSEVRQKHNQAFEELNEQLEQSKRSKASVDKAKQALESE 1232 ETEVAQLKKALEEDAKVHEQVMAEIRQKHSQAFDELNEQLEQVKRNKVSVEKSKQALESE 1228 EQEVAELKKAIDDETRNHESQIQEMRQRHGTALEEISEQLEQAKRVKGNLEKNKQTLESD 1245 EQEVTLLKRAIEDESRVHEAQVQEMRQKHTQALEELTEQLEQSKRVKVNLEKAKQALEKE 1230 EQEVAMLKKLIEDEGRSHEAQVHELKQKHAQAVDELSQQLDQSKRAKATLEKAKQALEKE 1216 EAELGELQRCLEEETRRHEAQLSELRIKHTAAIDSLQEQLDNAKRSRQSLEKAKAVLEEE 1252

```
: .. ::: ::: * :: :: :. .: :: : :: : :* : .
```

Hs.myH7
Hs.MYн6
Hs.MYH13
Hs.mYH8 Hs.MYH4 Hs.mYH1 Hs. МYн2
Hs.mYн3 Hs.MYH14 Hs.MYH15 Hs.myH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1. 3
Dr.myhz2
Dr.myhc4
Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs. MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs. MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh 6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

LDDVTSNMEQIIKAKANLEKMCRTLEDQMNEHRSKAEETQRSVNDLTSQRAKLQTENGEL 1287 LDDVTSNMEQIIKAKANLEKVSRTLEDQANEYRVKLEEAQRSLNDFTTQRAKLQTENGEL 1289 IDDMASNIEALSKSKSNIERTCRTVEDQFSEIKAKDEQQTQLIHDLNMQKARLQTQNGEL 1291 TDDLSSNAEAISKAKGNLEKMCRSLEDQVSELKTKEEEQQRLINDLTAQRARLQTEAGEY 1290 INDLASNMETVSKAKANFEKMCRTLEDQLSEIKTKEEEQQRLINELSAQKARLHTESGEF 1291 IDDLASNMETVSKAKGNLEKMCRALEDQLSEIKTKEEEQQRLINDLTAQRARLQTESGEY 1291 IDDLASNVETVSKAKGNLEKMCRTLEDQLSELKSKEEEQQRLINDLTAQRGRLQTESGEF 1293 IDDLSSSMESVSKSKANLEKICRTLEDQLSEARGKNEEIQRSLSELTTQKSRLQTEAGEL 1288 VSELRAELSSLQTARQEGEQRRRRLELQLQEVQGRAGDGERARAEAAEKLQRAQAELENV 1309 VDDLLTRVEQMTRAKANAEKLCTLYEERLHEATAKLDKVTQLANDLAAQKTKLWSESGEF 1279 IDDLNASMETIQKSKMNAEAHVRKLEDSLSEANAKVAELERNQAEINAIRTRLQAENSEL 1259 LDDVVSNMEQIVKSKSNLEKMCRTLEDQMSEYRTKAEEGQRTINDFTMQKAKLQTENGEL 1289 LDDVVSNMEQIVKAKANLEKMCRTLEDQMSEYRTKAEEGQRTINDFTMQKAKLQTENGEL 1290 LDDVVSNMEQIAKAKANLEKMCRTLEDQMSEYRTKYEEGQRSINDFTMKKAKLQTENGEL 1289 LDDVVSNMEQIVKAKANLEKMCRTLEDQMSEYRTKYEEAQRSINDFTMQKAKLQTENGEL 1287 LDDVVSNMEQLAKAKANLEKICRTLEDQMSEYRTKYEEGQRSINDFTMQKARLQTENGEL 1289 LDDVVSNMEHVVKTKANLEKMTRSLEDQMNEYKTKYEEGQRCINDFTMQKSKLQSENGEL 1289 LDDVASSMEHIVKSKTNMEKVNRTLEDQMNEYRNKCEEYQRSLNDFTTQKAKLQAENDEF 1287 LDDLASNMES IVKAKVNLEKMCRSLEDQMNEHRSKAEEAQRALNDVSTQKAKLLTENGEL 1287 IDDLSSNMEAVAKAKANLEKMCRTLEDQLSEIKSKSDENLRQINDLSAQRARLQTENGEF 1287 VDDVSSSMEAVAKSKTNLEKMCRTLEDQLSEFKSKHDEHVRHINDLSAQKARLQTENGEM 1289 IDDLSSNMEAVAKAKANLEKMCRTLEDQLSEIKSKNDENLRQINDLSAQRARLQTENGEF 1289 IDDLSSNMEAVAKAKANLEKMCRTLEDQLSEIKSKNDENLRQLNDLSAQRARLQTENGEF 1289 IDDLSSNMEAVAKAKANLEKMCRTLEDQLSEIKSKNDENIRQINDLSAQRARLQTENGEF 1289 IDDLSSNMEAVAKAKANLEKMCRTVEDQLSEIKSKNDENLRQINDLSAQRARLQTENGEF 1289 IDDLSSNMEAVAKAKANLEKMCRTVEDQLSEIKSKNDENLRQINDLSAQRARLQTENGEF 1289 ADDLTSNLEQLAKGKATAEKTCRLYEDQMNESKAKVEELQRQLSDTNTQRARAQAESAEL 1288 CEDLASNVEHLSRAKTTTEKMCRMYEDQLNESKTKIEELQRQLMDVTSQKARAQTESAEV 1288 RNELQIELKSLSQSKNDSENRRKKAESQLQELQVKHTESERQKHELLDKVSKMQAELESL 1292 RNELQIELQTLMQGKGESEHRRKKAEAQLQELQVKHTESERQRIELAERLTKMQAELDNV 1288 NKELTNEVKSLQQAKSESEHKRKKLEAQLQEVMARFSEGEKVKGELADRTHKIQTELDNV 1305 TSELHVELRSLTQGKQDVEHKKKKLEGQLADLQSRFNDSERHKAELGDRVSKITVELESV 1290 VGDLNGNLRSLGNAKQDLEQKKKKVETQLADLQTRFNESERKREELGDAVSKLNTEYNNV 1276 RLNLSAELKTLQGGKMESERGRKRAEGQLQELNARLSQAEREREEREERLGKLQSELESL 1312
$:: \quad: \quad: \quad \star \quad * \quad: \quad: \quad . \quad: \quad: \quad: \quad:$
,
SRQLDEKEALISQLTRGKLTYTQQLEDLKRQLEEEVKAKNALAHALQSARHDCDLLREQY 1347 ARQLEEKEALISQLTRGKLSYTQQMEDLKRQLEEEGKAKNALAHALQSARHDCDLLREQY 1349 SHRVEEKESLISQLTKSKQALTQQLEELKRQMEEETKAKNAMAHALQSSRHDCDLLREQY 1351 SRQLDEKDALVSQLSRSKQASTQQIEELKHQLEEETKAKNALAHALQSSRHDCDLLREQY 1350 SRQLDEKDAMVSQLSRGKQAFTQQIEELKRQLEEETKAKSTLAHALQSARHDCDLLREQY 1351 SRQLDEKDTLVSQLSRGKQAFTQQIEELKRQLEEEIKAKSALAHALQSSRHDCDLLREQY 1351 SRQLDEKEALVSQLSRGKQAFTQQIEELKRQLEEEIKAKNALAHALQSSRHDCDLLREQY 1353 SRQLEEKESIVSQLSRSKQAFTQQTEELKRQLEEENKAKNALAHALQSSRHDCDLLREQY 1348 SGALNEAESKTIRLSKELSSTEAQLHDAQELLQEETRAKLALGSRVRAMEAEAAGLREQL 1369 LRRLEEKEALINQLSREKSNFTRQIEDLRGQLEKETKSQSALAHALQKAQRDCDLLREQY 1339 SREYEESQSRLNQILRIKTSLTSQVDDYKRQLDEESKSRSTAVVSLANTKHDLDLVKEQL 1319 SRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSARHDSDLLREQF 1349 SRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSARHDAELLREQY 1350 SRQLEEKDSLVSQLTRGKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSARHDAELLREQY 1349 SRQLEEKDSLVSQLTRGKQSYTQQIEDLRRQLEEEVKAKNALAHAVQSARHDAELLREQY 1347 TRQLEEKDSLVSQLTRSKQSYTQQIEDLKRQLEEEVKAKNALAHAVQSARHDSDLLREQY 1349 SRQLEEKDSLVSQLTRSKMSYTQQIEDLKRQLEEETKAKSALAHAVQSARHDTDLLREQY 1349 SRQLEEKESLVSQLTRGKNSFSQQLEDLKRQLDEEIKAKNALAHALQSARHDTDLLREQY 1347 GRQLEEKECLISQLTRGKTSYTQQLEDLRRQLEEEVKAKNALAHAVQSARHDCDLLREQF 1347 GRQLEEKEALVSQLTRGKQAFTQQIEELKRQIEEEVKAKNALAHAVQSARHDCDLLREQF 1347 GRQLEEKESLVSQLTRSKQAYTQQIEELKRQIEEEVKAKNSLAHAVQSSRHDCDLLREQY 1349 GRQLEEKEALVSQLTRGKQAFTQQIEELKRQIEEEVKAKNALAHAVQSARHDCDLLREQF 1349 GRQLEEKEALVSQLTRGKQAFTQQIEELKRQIEEEVKAKNALAHAVQSARHDCDLLREQF 1349 GRQLEEKEALVSQLTRGKQAFTQQIEELKRQIEEEVKAKNALAHAVQSARHDCDLLREQF 1349 GRQLEEKEALVSQLTRGKQAFTQQIEELKRQIEEEVKAKNALAHAVQSARHDCDLLREQF 1349 GRQLEEKEALVSQLTRGKQAFTQQIEELKRQIEEEVKAKNALAHAVQSARHDCDLLREQF 1349 GRKLEEREALVSQLQRSKNTFSQNIEELKKQLEEESKSKNALTHALQSSRHDCDLLREQY 1348 SRRLEEKEVLVMQLQRTKIAFSQTVEELKKQLEEESKAKNSLAHAVQSSRHDCDLLREQF 1348 QGTVTKVESKSIKAAKDCSAVESQLKDAQALLEEETRQKLAISTRLRQLEDEQNNLKEML 1352 NTLLSDAEGKSIKASKDCSTVESQLQDVQEVLQEETRQKLALNTRLRQLEDEQHSLREQL 1348 SCLLEDAEKKGIKLTKDVSSLESQLQDTQELLQEETRQKLNLSSRIRQLEEEKNNLLEQQ 1365 TNLLNEAEGKNIKLSKDVASLSSQVQDTQELLAEETRQKLQLSTKLRQIEDDRNALQEQL 1350 NSILNEAESKNIKLSKDVVSLNSQLQDAQELLAEETRQKLNFSTRLRQMEDERNGLLEQI 1336 SSSLSSSDSKSHRLHKEVSSLESQLHDVQELLQEETRQKLALGSRVRALEEEKAGLMERL 1372

Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2 Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1.1 Dr.myhz1. 2 Dr.myhzl. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh 14

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs. MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc 2
Dr.smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

EEETEAKAELQRVLSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQEAEEAVEAV 1407 EEETEAKAELQRVLSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQDAEEAVEAV 1409 EEEQEAKAELQRALSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQEAEENTETA 1411 EEEQEGKAELQRALSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQEAEEHVEAV 1410 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQDAEEHVEAV 1411 EEEQEAKAELQRAMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQDAEEHVEAV 1411 EEEQESKAELQRALSKANTEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQAAEEHVEAV 1413 EEEQEGKAELQRALSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQDSEEQVEAV 1408 EEEAAARERAGRELQTAQAQLSEWRRRQEEEA-GALEAGEEARRRAAREAEALTQRLAEK 1428 EEEQEVKAELHRTLSKVNAEMVQWRMKYENNVIQRTEDLEDAKKELAIRLQEAAEAMGVA 1399 EEEQGGKSELQRLVSKLNTEVTTWRTKYETDAIQRTEELEETKRKLAARLQEAEEAAETA 1379 EEEQEAKAELQRSLSKTNSEVAQWRTKYETDAIQRTEELEDAKKKLAQRLQEAEEAVEAV 1409 EEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQDAEEAVEAV 1410 EEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEDAKKKLAQRLQDAEEAVEAV 1409 EEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEDAKKKLAQRLQDAEEAVEAV 1407 EEEQEAKAELQRSLSKANSEVAQWRTKYETDAIQRTEELEDAKKKLAQRLQDAEEAVEAV 1409 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQETEEAVEAV 1409 EEEQEAKAELQRSMSKANTEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQEAEEAVEAV 1407 EEEQEAKAELQRALSKANTEVATWRARYETDGIQRTEELEDAKKKLVQKLQEAEEAVEAV 1407 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEESKKKLAQRLQEAEEQIEAV 1407 EEEQEAKAELQRSMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQDAEESIEAV 1409 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEESKKKLAQRLQEAEEQIEAV 1409 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEESKKKLAQRLQEAEEQIEAV 1409 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEESKKKLAQRLQEAEEQIEAV 1409 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEESKKKLAQRLQEAEEQIEAV 1409 EEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEESKKKLAQRLQEAEEQIEAV 1409 DEEQEGKSELQRALSKANAEVAQWRTKYETDAIQKTEELEEAKKKLATRLQESEEQVEAS 1408 EEEQEAKSELQRALSKANIEIAQWRTKYETDAIQRTDELEDAKKKLVARLQGSEEAVEAS 1408 EEEEESKKNVEKQLHTAQAQLAEMKKKIEQEA-QSLESMEDGKKKLQREVESVLQQLEER 1411 EEEEEAKRNLEKQIGTMQAQLVDMKKKMEQES-GSLECAEESRKRVQRDLEAVSQRLDER 1407 EEEEESRKNLEKQLATLQAQIVETKKKLEDDV-GALEGLEEVKRKLQKDMEVTSQKLEEK 1424 DEEAEAKRNVERHVSTLNIQISDFKKKLEEMT-GNVELLEEGKKRLQRDLEAANTQFEEK 1409 DEETEARRNVERHVSSLNTQLSEAKKRLDEYS-SNFQMLEESKKRLQRDLEATKGELEEK 1395 EEEEEKTRELTRQIQNHTQQLADLKRQTEEVN-SAVEAGEETRRKMQRDLENAVQREKSK 1431

467
NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKILAEWKQKYEESQSEL 1467 NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKILAEWKQKYEESQSEL 1469 NSKCASLEKTKQRLQGEVEDLMRDLERSHTACATLDKKQRNFDKVLAEWKQKLDESQAEL 1471 NAKCASLEKTKQRLQNEVEDLMLDVERSNAACAALDKKQRNFDKVLSEWKQKYEETQAEL 1470 NSKCASLEKTKQRLQNEVEDLMIDVERSNAACIALDKKQRNFDKVLAEWKQKYEETQAEL 1471 NAKCASLEKTKQRLQNEVEDLMIDVERTNAACAALDKKQRNFDKILAEWKQKCEETHAEL 1471 NAKCASLEKTKQRLQNEVEDLMLDVERTNAACAALDKKQRNFDKILAEWKQKCEETHAEL 1473 NAKCASLEKTKQRLQGEVEDLMVDVERANSLAAALDKKQRNFDKVLAEWKTKCEESQAEL 1468 TETVDRLERGRRRLQQELDDATMDLEQQRQLVSTLEKKQRKFDQLLAEEKAAVLRAVEER1488 NARNASLERARHQLQLELGDALSDLGKVRSAAARLDQKQLQSGKALADWKQKHEESQALL 1459 QARAASLEKNKQRLQAEVEDLTIDLEKANAAAAALDKKQRLFDKMLAEWQQKCEELQVEV 1439 NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEWKQKYEESQTEL 1469 NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEWKQKYEESQTEL 1470 NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEWKQKYEESQSEL 1469 NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEWKQKYEESQSEL 1467 NAKCSSLEKTKHRLQNEIEDLMVDVERSNAAAAALDKKQRNFDKVLAEWKQKYEESQSEL 1469 NAKCSSLEKTKHRLQNEIEDLMVDLERSNAAAAALDKKQRNFDKVLSEWKQKFEESQAEL 1469 NAKCSSLEKTKHRLQNEIEDLMVDVERSNTAAASLDKKQRHFDKIISEWKQKYEESQCEL 1467 NAKCSSLEKTKHRLQNEIEDLMLDLERSNAASAALDKKQRSFDKVMAEWKQKYEESQCEL 1467 NSKCASLEKTKQRLQGEVEDLMIDVERANSLAANLDKKQRNFDKVLAEWKQKYEEGQAEL 1467 NAKCASLEKTKQRLQNEVEDLMIDVERANALAANLDKKQRNFDKVLAEWKQKYEETQAEL 1469 NSKCASLEKTKQRLQGEVEDLMIDVERANALAANLDKKQRNFDKVLAEWKQKYEEGQAEL 1469 NSKCASLEKTKQRLQGEVEDLMIDVERANALAANLDKKQRNFDKVLAEWKQKYEEGQAEL 1469 NSKCASLEKTKQRLQGEVEDLMI DVERANALAANLDKKQRNFDKVLAEWKQKYEEGQAEL 1469 NSKCASLEKTKQRLQGEVEDLMIDVERANALAANLDKKQRNFDKVLAEWKQKYEEGQAEL 1469 NSKCASLEKTKQRLQGEVEDLMIDVERANALAANLDKKQRNFDKVLAEWKQKYEEGQAEL 1469 NAKCSSLEKTKHRLQSEIEDLVLDLERSNAAATALDKKQRQFDKILAEWRHKYEECQSEL 1468 NAKCASLEKTKHRLQTEIEDLMVDLERSNAVAIALDKKQRNFDKVLSEWRQKFEETQSEL 1468 NASYDKLDKTKTRLQRELDDVLVDQGHLRQTVQELERKQKKFDQMLAEEKSISTKYAEER1471 NAAFDKLDKTKTRLQQELDDMLVDQDHLRQIVSNLEKKQKKFDQMLAEEKSISARYAEER 1467 AIAFDKLEKTKNRLQQELDDLMVDLDHQRQIVSNLEKKQKKFDQMLAEEKTISARYAEER 1484 AAAYDKLEKTKNRLQQELEDTLMDLDNQRQLVSNLEKKQKKFDQMLAEEKSISSKYADER1469 TASYDKSEKTKNHLQQELDDVLLDLDNQRQLVSNMEKKQRKFDQMLADEKTLSSKYSQER1455 EEEKERIERQKERLREEIEDMTIALQRERQNCTALEKRQKKFDQCLAEEKAVSARLQEER1491

Hs. MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2 Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr.smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1.1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7
Hs. MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh 71
Dr.myh 6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

ESSQKEARSLSTELFKLKNAYEESLEHLETFKRENKNLQEEISDLTEQLGSSGKTIHELE 1527 ESSQKEARSLSTELFKLKNAYEESLEHLETFKRENKNLQEEISDLTEQLGEGGKNVHELE 1529 EAAQKESRSLSTELFKMRNAYEEVVDQLETLRRENKNLQEEISDLTEQIAETGKNLQEAE 1531 EASQKESRSLSTELFKVKNVYEESLDQLETLRRENKNLQQEISDLTEQIAEGGKQIHELE 1530 EASQKESRSLSTELFKVKNAYEESLDHLETLKRENKNLQQEISDLTEQIAEGGKHIHELE 1531 EASQKESRSLSTELFKIKNAYEESLDQLETLKRENKNLQQEISDLTEQIAEGGKRIHELE 1531 EASQKEARSLGTELFKIKNAYEESLDQLETLKRENKNLQQEISDLTEQIAEGGKRIHELE 1533 EASLKESRSLSTELFKLKNAYEEALDQLETVKRENKNLEQEIADLTEQIAENGKTIHELE 1528 ERAEAEGREREARALSLTRALEEEQEAREELERQNRALRAELEALLSSKDDVGKSVHELE 1548 DASQKEVQALSTELLKLKNTYEESIVGQETLRRENKNLQEEISNLTNQVREGTKNLTEME 1519 DSSQKECRMYMTESFKIKTAYEESLEHLESVKKENKTLQEEIKDLIDQLGEGGRSVHELQ1499 ESAQKESRSLSTELFKLKNSYEEVLDQLETMKRENKNLQEEISDLTEQLGETGKSIHELE 1529 ESAQKESRSLSTELFKLKNSYEESLDHLESMKRENKNLQEEISDLTEQLGESGKNIHELE 1530 SSQKEARSLSTELFKLKNSYEESLDHLESMKRENKNLQEEIADLTEQIGESGKNIHELE 1529 SSQKEARSLSTELFKLKNSYEESLDHLESMKRENKNLQEEIADLTEQIGESGKNIHELE 1527 SSQKEARSLSTELFKLKNSYEESLDHLESMKRENKNLQEEIADLTEQIGESGKNIHELE 1529 SSQKEARCLSTELFKLKNSYEEALDHLETMKRENKNLQEEISDLTEQLGEGGKS IHELE 1529 SQKEARSLSTELFKLKNSYEESMDHLETMKRENKILQEEISDLTEQLGEGGKTIHELE 1527 EGAQKEARSLSTELFKLKNSYEETLDHLETIKRENKNLQEEISDLTDQVSEGRKSVHELE 1527 EGAQKEARSLSTELFKMKNSYEETLDQLETLKRENKNLQQEISDLTEQIGETGKSIHELE 1527 EGAQKEARSLSTELFKMKNSYEETLDHLETLKRENKNLQQEITDLTEQLGETGKTIHELE 1529 EGAQKEARSLSTELFKMKNSYEETLDQLETLKRENKNLQQEISDLTEQLGETGKSIHELE 1529 EGAQKEARSLSTELFKMKNSYEETLDQLETLKRENKNLQQEISDLTEQIGETGKSIHELE 1529 EGAQKEARSLSTELFKMKNSYEETLDQLETLKRENKNLQQEISDLTEQLGETGKSIHELE 1529 EGAQKEARSLSTELFKMKNSYEETLDQLETLKRENKNLQQEISDLTEQLGETGKSIHELE 1529 EGAQKEARSLSTELFKMKNSYEETLDQLETLKRENKNLQQEISDLTEQIGETGKSIHELE 1529 ESSQKESRNLSTELFKLKNSYEEALDHLESIKRESKNLQEEISDLNDQISQGGKTIHELE 1528 EGSQKESRSLSTELFKLKNSYEEALDQLETIKRENKNLQEEITDLTDQISQGNKTIHELE 1528 DRAEAEAREKETKSLTLARELEAMTDLKNELERVNKQLKTEMEDLVSSKDDAGKSVHELE 1531 DRAEAEAREKETRMLALARELETLTDMKEELDRTNKLLRAEMEDLVSSKDDVGKSVHDLE 1527 DRAEAEAREKDTKALSMARALDEALEAKEEFERLNKQLRAEMEDLISSKDDVGKNVHELE 1544 DRAEAEAREKETKALSLARALEEAQEAREEFERANKALRAEMEDLVSSKDDVGKNVHELE 1529 DCAEAEAREKETKCLALTRALEECQGSLRELEKLNKTLRTDMEDLISSKDN--KNAHELE 1513 DRA
DRAEAESREK KETRFLSLS ALQEATEQRDELERTNKQLRLEMEQLVNAQDDVGKNVHELE 1551 $: \quad .: ~ . ~ * ~: ~: ~ * ~ . ~ . ~: ~: ~: ~$ KVKKQLDHEKSELQTSLEEAEASLEHEEGKILRIQLELNQVKSEIDRKIAEKDEELDQLK 1591 KI KKQVEQEKSELQAALEEAEASLEHEEGKILRIQLELNQVKSEVDRKIAEKDEEIDQMK 1591 KIKKQVEQEKCELQAALEEAEASLEHEEGKILRIQLELNQVKSEVDRKIAEKDEEIDQLK 1593 KSRKQIELEKADIQLALEEAEAALEHEEAKILRIQLELTQVKSEIDRKIAEKDEEIEQLK 1588 RACRVAEQAANDLRAQVTELEDELTAAEDAKLRLEVTVQALKTQHERDLQGRDEAGEERR 1608 KVKKLIEEEKTEVQVTLEETEGALERNESKILHFQLELLEAKAELERKLSEKDEEIENFR 1579 KLKKKLEMEKEELQVALEEAESSLEVEESKVIRIQLELAQVKADIDRRIHEKEEEFEATR 1559 KIRKQLEQEKAEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKLSEKDEEMEQAK 1589 KVRKQLEQEKQEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKLSEKDEEMEQAK 1590 KMRKQLEQEKAEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKLAEKDEEMEQAK 1589 KIRKQLEQEKAEIQTALEEAEGSLEHEEGKILRAQLEFNQVKADIERKLSEKDEEMEQAK 1587 KMRKQLEQEKAEIQAALEEAEGSLEHEEGKILRAQLEFSQIKADIERKLSEKDEEMEQAK 1589 KMRKQLEQEKSEIQSALEEAEASLEHEEGKILRAQLEFSQIKADIERKLAEKDEEMEQSK 1589 KVRKQLEQEKAEIQAALEEAEGSLEHEEGKILRTQLEFNQIKADIERKLSEKDEEMEQVK 1587 KLRKQLEQEKTELQSALEEADASVEHEEGKILRAQLEFNQLKADFERKMSEKDEEMEQAR 1587 KAKKTVETEKAEIQTALEEAEGTLEHEESKILRVQLELNQVKGEIDRKLAEKDEEIEQIK 1587 KGKKTAEIEKSEIQAALEEAEATLEHEESKILRVQLELNQVKGEIDRKLAEKDEEIEQIK 1589 KSKKAVETEKAEIQTALEEAEGTLEHEESKILRVQLELNQVKSEIDRKLAEKDEEIEQIK 1589 KSKKAVETEKAEIQTALEEAEGTLEHEESKILRVQLELNQVKSEIDRKLAEKDEEIEQIK 1589 KSKKAVETEKAEIQTALEEAEGTLEHEESKILRVQLELNQVKSEIDRKLAEKDEEIEQIK 1589 KAKKTVETEKAEIQTALEEAEGTLEHEESKILRVQLELNQVKGEIDRKLAEKDEEMEQIK 1589 KAKKTVETEKAEIQTALEEAEGTLEHEESKILRVQLELNQVKGEIDRKLAEKDEEIEQIK 1589 KIKKGLDLEKTEIQAALEEAEGTLEHEESKTLRIQLELNQIKADTDRKLAEKDEEIDNLR 1588 QMKKVLDHEKCDIQAALEEAEGTLEHEESKTLRVQLELSQTKTEVEKKLAERDEEIDNLR 1588 RAKRGMEQQLEEMKTQLEELEDELQLTEDAKLRLEVNMQALKAQFERDLQSRDEQGEEKR 1591 KSKRAMEQQLEEMKTQLEELEDELQATEDAKLRLEVNMQAMKAQYERDLQGRDELGEEKK 1587 KSKRTLEQQVEEMRTQLEELEDELQATEDAKLRLEVNMQAMKAQFDRDLQARDEQNEEKK 1604 KSKRGLEAQVEEMKTQLEELEDELQAAEDAKLRLEVNMQALKAQFERDLQGRDEQGEEKK 1589 KTKRALEAQVEEMTIQMEELEDELQAAEDAKLHLEVNMQALKVQIQRDIQGREEQSEEKR 1573 RSRRALETEAQSLKEQTQELEDELGEAENARLRLEVTLQALRAQFEREISTKEEKGEEKR 1611

Hs.MYH7
Hs. MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8 Hs.MYH4 Hs.MYH1 Hs.MYH2 Hs.MYH3 Hs.MYH14 Hs.MYH15 Hs.MYH16
Dr. smyhc1
Dr.smyhc2
Dr. smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb Dr.myhz1.1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Hs.MYH7

Hs.MYH7
Hs.MYH 6
Hs. MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr.smyhc4
Dr. smyhc5
Dr.myh 7
Dr.myh 71
Dr.myh 6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Myomesin binding site
RNHLRVVDSLQTSLDAETRSRNEALRVKKKMEGDLNEMEIQLSHANRMAAEAQKQVKSLQ1647 RNHQRVVDSLQTSLDAETRSRNEVLRVKKKMEGDLNEMEIQLSHANRMAAEAQKQVKSLQ1649 RNSQRAAEALQSVLDAEIRSRNDALRLKKKMEGDLNEMEIQLGHSNRQMAETQKHLRTVQ 1651 RNHTRVVETMQSTLDAEIRSRNDALRVKKKMEGDLNEMEIQLNHANRLAAESLRNYRNTQ 1650 RNHLRVVESMQSTLDAEIRSRNDALRIKKKMEGDLNEMEIQLNHANRQAAEALRNLRNTQ1651 RNHIRIVESMQSTLDAEIRSRNDAIRLKKKMEGDLNEMEIQLNHANRMAAEALRNYRNTQ1651 RNHIRIVESMQSTLDAEIRSRNDAIRLKKKMEGDLNEMEIQLNHANRMAAEALRNYRNTQ1653 RNYQRTVETMQSALDAEVRSRNEAIRLKKKMEGDLNEIEIQLSHANRQAAETLKHLRSVQ 1648 RQLAKQLRDAEVERDEERKQRTLAVAARKKLEGELEELKAQMASAGQGKEEAVKQLRKMQ1668 RKQQCTIDSLQSSLDSEAKSRIEVTRLKKKMEEDLNEMELQLSCANRQVSEATKSLGQLQ 1639 KNHQRAIESLQASLEAEAKGRAEALRLKKKMETDLNEMEIQLDHANKNNSELVKTLKRLQ1619 RNQQRVVDTLQSSLESETRSRNEALRLKKKMEGDLNEMEIQLSQANRQASEAQKQLKGLH 1649 RNQQRVVDTLQSSLESETRSRNEALRLKKKMEGDLNEMEIQLSQANRQASEAQKQLKGLH 1650 RNQQRMIDTLQSSLESETRSRNEALRLKKKMEGDLNEMEIQLSQANRQASEAQKQLKGLH 1649 RNQQRMIDTLQSSLESETRSRNEALRLKKKMEGDLNEMEIQLSQANRQASEAQKQLKGLH 1647 RNQQRMIDTLQSSLESETRSRNEALRLKKKMEGDLNEMEIQLSQANRQASEAQKQLKSLQ1649 RNLQRTIDTLQSSLESETRSRNEALRIKKKMEGDLNEMEIQLSQANRQAAEAQKQLKSVH 1649 RNQQRTIDTLQSALESETRSRNEALRIKKKMEGDLNEMEIQLSQANRQAAEAQKQLKSVQ1647 RNYQRMIESLQASLEAETRSRNEALRVKKKMEGDLNEMEIQLSQANRQAADAQKQLKMVQ 1647 RNSQRVTEAMQSTLDSEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ1647 RNSQRIIDSMQSTLDAEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ1649 RNSQRITDSMQSTLDSEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ1649 RNSQRITDSMQSTLDSEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ1649 RNSQRVTESMQSTLDSEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ1649 RNSQRVTEAMQSTLDSEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ 1649 RNSQRVTEAMQSTLDSEVRSRNDALRIKKKMEGDLNEMEIQLSHANRQAAEAQKQLRNVQ1649 RNHQRALESMQATLDAEAKSRSEAIRVKKKMENDLNEMEVQLNHANWLATESQKMVRNLQ1648 RNHQRTLEGMQTTLDAETRARNEAIRVKKKMENDMNEME IHLNHANRQAVESQKMVRNLQ1648 KQIVKDVREMEMELEDERKQRAQAVSVRKKLELDLSELAAQIDLANKARDEALKQLKKLQ1651 RQLLKQVREMEMELEDERKQRTLAMAARKKMELDLKELEAAIDQANKNRDEALKQLKKVQ 1647 RALVKQVREMEAELEDERKQRALAVAAKKKLEMDLKDVEAQIEAANKARDEAIKQLRKLQ 1664 RQLVKQVRELETELEDERKQRTALAASKKKLEGDLKDLEGQIETSNKGRDEAIKQLRKLQ1649 RAL ELEAELEDEQKMRTSLAAAKKKLEGDLQDLEDQVDVNSRARDEAVKQLRKIQ 1633 RELETMLEEEKTQRAQALTVKKQLETELQEAEAQVEAANRGREEAFRQMKRLQ 1671 SLLKDTQIQLDDAVRANDDLK
Myomesin binding site 1706 SLLKDTQIQLDDAVRANDDLKENIAIVERRNNLLQAELEELRAVVEQTERSR-KLAEQEL 1706
SLLKDTQIQLDDAVRANDDLKENIAIVERRNNLLQAELEELRAVVEQTERSR-KLAEQEL 1708 GQLKDSQLHLDDALRSNEDLKEQLAIVERRNGLLLEELEEMKVALEQTERTR-RLSEQEL 1710 GILKETQLHLDDALRGQEDLKEQLAIVERRANLLQAEIEELWATLEQTERSR-KIAEQEL 1709 GILKDTQLHLDDAIRGQDDLKEQLAMVERRANLMQAEVEELRASLERTERGR-KMAEQEL 1710 AILKDTQLHLDDALRSQEDLKEQLAMVERRANLLQAEIEELRATLEQTERSR-KIAEQEL 1710 GILKDTQIHLDDALRSQEDLKEQLAMVERRANLLQAEIEELRATLEQTERSR-KIAEQEL 1712 GQLKDTQLHLDDALRGQEDLKEQLAIVERRANLLQAEVEELRATLEQTERAR-KLAEQEL 1707 AQMKELWREVEETRTSREEIFSQNRESEKRLKGLEAEVLRLQEELAASDRAR-RQAQQDR 1727 IQIKDLQMQLDDSTQLNSDLKEQVAVAERRNSLLQSELEDLRSLQEQTERGR-RLSEEEL 1698 QQIKDLQVQMDEDARQHEELRKQYNLQERRLSLLQTELEEVRSALEGSERSR-KLLEQEV 1678 GHLKDAQLQLDDALRGNDDLKENIAIVERRNNLLQAELDELRSLVEQTERGR-KLAEQEL 1708 GHLKDAQLQLDDALRGNDDLKENIAIVERRNNLLQAELDELRSLVEQTERGR-KLAEQEL 1709 GHLKDAQLQLDDALRGNDDLKENIAIVERRNNLLQAELDELRSLVEQTERGR-KLAEQEL 1708 GHLKDAQLQLDDALRGNDDLKENIAIVERRNNLLQAELDELRSLVEQTERGR-KLAEQEL 1706 GHLKDAQMQLDDALRANDDLKENIAIVERRNNLLQAELDELRSLVEQTERGR-KLAEQEL 1708 AHMKDAQLQLDDSLRTNEDLKENTAIVERRNNLLQAELEELRAALEQTERGR-KLAEQEL 1708 AHLKDSQLQLDDSLRSNDDLKENTAIVERRNALLQAELEELRAVLEQTERGR-KLAEQEL 1706 SCLKETQLQMDDTLHSNDDLKENITLLERRNNLMQTELEELRGILEQTERVR-KLAEQEL 1706 SQLKDAQLHLDDAVRAQEDMKEQVAMVERRNTLMQSEIEELRAALEQTERGR-KVAEQEL 1706 GQLKDAQLHLDEALRAQEDMKEQVAMVERRNNLMQAEIEELRVALEQTERGR-KVAEQEL 1708 AQLKDAQLHLDDAVRGQEDMKEQVAMVERRNTLMQSEIEELRAALEQTERGR-KVAEQEL 1708 AQLKDAQLHLDDAVRGQEDMKEQVAMVERRNTLMQSEIEELRAALEQTERGR-KVAEQEL 1708 AQLKDAQLHLDDAVRGQEDMKEQVAMVERRNTLMQSEIEELRAALEQTERGR-KVAEQEL 1708 AQLKDAQLHLDDAVRGQEDMKEQVAMVERRNTLMQSEIEELRAALEQTERGR-KVAEQEL 1708 AQLKDAQLHLDDAVRGQEDMKEQVAMVERRNTLMQSEIEELRAALEQTERGR-KVAEQEL 1708 TQIKDLQMELDETVHQNEELKEQSAVTERRNNLLTAEVEELRCQLEQNDRAR-KLAEFEL 1707 LQIKDLQVELDESMHHCEELKEQVAVTERRNTLLSAELEELRGVAEQTDRMR-KVAEHEL 1707 AQMKEQMREFEDLRLSRDESLNQAKENERKIKSMEAEIMQLHEDLAAADRAK-RQIQQER 1710 AQMKDLLRELEDTRLSREEILAQSKENEKKVKSMEAEMIQMQEGKLAAVDSLHSNLHMH-1706 AQMKDYQRELEEARTSRDEIFTQSKENEKKLKSLEAEILQLQEDLASSERAR-RHAEQER 1723 AQMKDFQRELDDAHAAREEVLSSAKENERKAKTLEAELLQLQEDLAAAERAK-KQVEAER 1708 TQMKDYQRELEDARASHKEVLSDARESERKARAMEAEILHLHEELASAEKAR-KHAERER 1692 TQMKELIRELDETKLARDEIVAQSKDSEKRLQTLEAELLQLTEDLSVSERQK-RQAQQER 1730

[^2] TSERVQLLHSQNTSLINQKKKMESDLTQLQSEVEEAVQECRNAEEKAKKAITDAAMMA 1768 LDASDRVQLLHSQNTSLINTKKKLEADIAQCQAEVENSIQESRNAEEKAKKAITDAAMMA 1770 LDASERVQLLHTQNTSLINTKKKLENDVSQLQSEVEEVIQESRNAEEKAKKAITDAAMMA 1769 LDASERVQLLHTQNTSLINTKKKLETDISQIQGEMEDIVQEARNAEEKAKKAITDAAMMA 1770 LDASERVQLLHTQNTSLINTKKKLETDISQIQGEMEDIIQEARNAEEKAKKAITDAAMMA 1770 LDASERVQLLHTQNTSLINTKKKLETDISQMQGEMEDILQEARNAEEKAKKAITDAAMMA 1772 LDSNERVQLLHTQNTSLIHTKKKLETDLMQLQSEVEDASRDARNAEEKAKKAITDAAMMA 1767 DEMADEVANGNLSKAAILEEKRQLEGRLGQLEEELEEEQSNSELLNDRYRKLLLQVESLT 1787 LEATERINLFYTQNTSLLSQKKKLEADVARMQKEAEEVVQECQNAEEKAKKAAIEAANLS 1758 EITEWHNEINIQNQSLLVVKRKLESDVQRISNEHEELISEFRLTEERAKKAMMDAARMA 1738 MDVSERVQLLHSQNTSLLNQKKKLEGDNTQLQTEVEEAVQECRNAEEKAKKAITDAAMMA 1768 MDVSERVQLLHSQNTSLLNQKKKLEGDNTQLQTEVEEAVQECRNAEEKAKKAITDAAMMA 1769 MDVSERVQLLHSQNTSLLNQKKKLEGDNTQLQTEVEEAVQECRNAEEKAKKAITDAAMMA 1768 MDVSERVQLLHSQNTSLLNQKKKLEGDNTQLQTEVEEAVQECRNAEEKAKKAITDAAMMA 1766 MDVSERVQLLHSQNTSLLNQKKKLEGDNTQLQTEVEEAVQECRNAEEKAKKAITDAAMMA 1768 LDTSERVQLLHSQNTSLLNQKKKLETDISQLQTEVEEAVQECRNAEEKAKKAITDAAMMA 1768 LDVTERVQLLHSQNTSLINQKKKLETDLSQFQTEVEEAVQECRNAEEKAKKAITDAAMMA 1766 TDATERMQLLHSQNTGLINQKKKQESDLLQLQNELEELVQENRNAEEKAKKAITDAAMMA 1766 VDASERVGLLHSQNTSLLNTKKKLESDLVQIQSEVEDTVQEARNAEEKAKKAITDAAMMA 1766 VDASERVTLLHSQNTSLINTKKKLEADLVQIQGEMEDVVQEARNAEEKAKKAITDAAMMA 1768 VDASERVGLLHSQNTSLLNTKKKLEADLVQIQSEVEDTVQEARNAEDKAKKAITDAAMMA 1768 VDASERVGLLHSQNTSLLNTKKKLEADLVQIQSEVEDTVQEARNAEDKAKKAITDAAMMA 1768 VDASERVGLLHSQNTSLLNTKKKLEADLVQIQSEVEDTVQEARNAEEKAKKAITDAAMMA 1768 VDASERVGLLHSQNTSLLNTKKKLETDLVQIQSEVEDTVQEARNAEEKAKKAITDAAMMA 1768 VDASERVGLLHSQNTSLLNTKKKLESDLVQIQGEVEDTVQEARNAEEKAKKAITDAAMMA 1768 LETTERVNLLHSQNTSMLNQKKKLENDLATLSSEVDDAVQECRNAEEKAKKAITDAAMMA 1767 LESSERVNLLHAQNTVMLNQKKKLESDLSMLSGEVDDAQQECRNAEEKAKKAITDAAMMA 1767 DELQDEINSQNAKNSLSSDERRRLEARIAQLEEELEEEHLSVELVNDRLKKASLQAEQVT 1770 LLVQLCIH-----TSI--EGLRELIILIRDHPNTVSPFTRWKTLVHNAVK-----------179 DELADEISNSASGKAALLDEKRRLEARIAQLEEELEEEQSNMELLNDRFRKTTMQVDTLN 1783 DELADELASNASGKSALSDEKRRLEAKIQQLEEELEEEQGNMEMLNDRLRKSAQQVDQLT 1768 DEIAGEMASGSFGKSGTSDEKRRLESKIQHLEEELDDEQATTETLNERLRRSVQEVDQLT 1752 DEMADEI INNATGKSALFDEKRRLETRITQMEEELEEAQSNAELLAERQRKSTLQIETLT 1790

Hs.MYH7

Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.MYH16
Dr. smyhc1
Dr. smyhc2
Dr.smyhc3
Dr. smyhc 4
Dr. smyhc5
Dr.myh 7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1.3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

Skip 4

EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIALKGGKKQLQKLEARVRELENEL 1826 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIALKGGKKQLQKLEARVRELEGEL 1828 EELKKEQDTSAHLERMKKNLEQTVKDLQHRLDEAEQLALKGGKKQIQKLENRVRELENEL 1830 EELKKEQDTSAHLERMKKNLEQTVKDLQHRLDEAEQLALKGGKKQIQKLEARVRELEGEV 1829 EELKKEQDTSAHLERMKKNMEQTVKDLQLRLDEAEQLALKGGKKQIQKLEARVRELESEV 1830 EELKKEQDTSAHLERMKKNLEQTVKDLQHRLDEAEQLALKGGKKQIQKLEARVRELEGEV 1830 EELKKEQDTSAHLERMKKNMEQTVKDLQLRLDEAEQLALKGGKKQIQKLEARVRELEGEV 1832 EELKKEQDTSAHLERMKKNLEQTVKDLQHRLDEAEQLALKGGKKQIQKLETRIRELEFEL 1827 TELSAERSFSAKAESGRQQLERQIQELRGRLGEEDAGARARHKMTIAALESKLAQAEEQL 184 EELKKKQDTIAHLERTRENMEQTITDLQKRLAEAEQMALMGSRKQIQKLESRVRELEGEL 1818 EELRQEQDHCMHLEKIKKNYEVTIKDLQAKMEEAEQLALKGGKRTIMKLEARIKELETEL 1798 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIAMKGGKKQVQKLEARVRELENEV 1828 EELKKEQDTSAHLERMKKNMEQT IKDLQHRLDEAEQIAMKGGKKQVQKLESRVRELESEV 1829 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIAMKGGKKQVQKLEVRVRELESEV 1828 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIAMKGGKKQVQKLESRVRELESEV 1826 EELKKEQDTSAHLERMKKNMEQT IKDLQHRLDEAEQIAMKGGKKQVQKLEARVRELENEV 1828 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIAMKGGKKQVQKLEARVRELESEV 1828 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQIAMKGGKKQVQKLEARVRELECEV 1826 EELKKEQDTSAHLERMKKNMEQTIKDLQHRLDEAEQVAMKGGKKQLQKMEARIRELENEL 1826 EELKKEQDTSAHLERMKKNLEITVKDLQHRLDEAENLAMKGGKKQLQKLESRVRELESEI 1826 EELKKEQDTSAHLERMKKNLEVTVKDLQHRLDEAESLAMKGGKKQLQKLEARVRELESEV 1828 EELKKEQDTSAHLERMKKNLEVTVKDLQHRLDEAENLAMKGGKKQLQKLESRVRELESEV 1828 EELKKEQDTSAHLERMKKNLEVTVKDLQHRLDEAENLAMKGGKKQLQKLESRVRELESEV 1828 EELKKEQDTSAHLERMKKNLEITVKDLQHRLDEAENLAMKGGKKQLQKLESRVRELETEI 1828 EELKKEQDTSAHLERMKKNLEVTVKDLQHRLDEAENLAMKGGKKQLQKLESRVRELESEV 1828 EELKKEQDTSAHLERMKKNLEITVKDLQHRLDEAENLAMKGGKKQLQKLESRVRELESEV 1828 EELKKEQDTSAHLERMKKNMEQT IKDLQLRLDEAEQIALKGGKKQIQKLESKVRDLESEL 1827 EELKKEQDTSSHLERMKRNMEQTIKDLQNRLDEAEQIALKGGKKQIQKMEIRVRELETEL 1827 VELTAERSNSQRLEGLRSQLDRQNKDMKQKLQELEGAVKSKYKST ITALETKIQQLEEQL 1830 TELAGERSAAQKSENARQQLERQNKDLKSKLQELEGSVKSKFKAS IAALEAKILQLEEQL 1843 NELQAERTTSQKNESARQLMERQNKELKAKLQEMENQVKSKFKSS ISALEAKVAQLEEQL 1828 NELHTERSNAQRMESGWQQMERQNKELRAKLLEMEGQVKSKQRSTVAALESKLQQTEDQL 1812 VQLSGERTLAQKSESARETLERQNKELKTRLSEMEGAVKGKHRLSVAALEAKIESMEEQV 1850

Hs.MYH7
Hs.MYн6
Hs.MYH13
Hs.mYH8 Hs.MYH4 Hs.MYH1 Hs. МYн2
Hs.MYH3 Hs.mYH14 Hs.MYH15 Hs.MYH16 Dr.smyhc1 Dr.smyhc2 Dr.smyhe3 Dr. smyhc 4 Dr. smyhc5 Dr.myh7 Dr.myh71 Dr.myh6 Dr.myha Dr.myhb Dr.myhz1. 1 Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh 7 ba Dr.myh 7 bb Dr.myh9a Dr.myh 9 b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

EAEQKRNAESVKGMRKSERRIKELTYQTEEDRKNLLRLQDLVDKLQLKVKAYKRQAEEAE 1886 EAEQKRNAESVKGMRKSERRIKELTYQTEEDKKNLLRLQDLVDKLQLKVKAYKRQAEEAE 1888 DVEQKRGAEALKGAHKYERKVKEMTYQAEEDHKNILRLQDLVDKLQAKVKSYKRQAEEAE 1890 ENEQKRNAEAVKGLRKHERRVKELTYQTEEDRKNVLRLQDLVDKLQAKVKSYKRQAEEAE 1889 ESEQKHNVEAVKGLRKHERRVKELTYQTEEDRKNILRLQDLVDKLQTKVKAYKRQAEEAE 1890 ESEQKRNVEAVKGLRKHERKVKELTYQTEEDRKNILRLQDLVDKLQAKVKSYKRQAEEAE 1890 ESEQKRNAEAVKGLRKHERRVKELTYQTEEDRKNILRLQDLVDKLQAKVKSYKRQAEEAE 1892 EGEQKKNTESVKGLRKYERRVKELTYQSEEDRKNVLRLQDLVDKLQVKVKSYKRQAEEAD 1887 EQETRERILSGKLVRRAEKRLKEVVLQVEEERRVADQLRDQLEKGNLRVKQLKRQLEEAE 1907 EGEIRRSAEAQRGARRLERCIKELTYQAEEDKKNLSRMQTQMDKLQLKVQNYKQQVEVAE 1878 DGEQKQHVETVKTLCKNERRLKELVFQTEEDHKTNQRMQALVEKLQNKLKVYKRQIEEAE 1858 ELEQRKASESVKGVRKYERRIKELTYQTEEDRKNLARLQDLVDKLQLKVKSYKRAAEEAE 1888 EMEQRKASDSVKGVRKYERRIKELTYQTEEDRKNLARLQDLVDKLQLKVKSYKRTAEEAE 1889 EMEQRKASESVKGVRKYERRIKELTYQTEEDRKNLARLQDLVDKLQLKVKSYKRAAEEAE 1888 EMEQRKASESVKGVRKYERRIKELTYQTEEDRKNLARLQDLVDKLQLKVKSYKRAAEEAE 1886 ELEQKKASESVKGIRKYERRIKELTYQTEEDRKNLARLQDLVDKLQLKVKSYKRAAEEAE 1888 ESEQKKSSEAVKGIRKYERRIKELTYQTEEDRKNLARLQDLVDKLQLKVKAYKRAAEEAE 1888 EAEQKRSSESVKGIRKYERRIKELTYQTEEDRKNIARLQDLVDKLQLKVKAYKRAAEESE 1886 DAEQKRGSESVKGVRKFEERRIKELTYQTDEDRKNLARLQDLVDKLQLKVKSYKRSAEEAE 1886 DAEQRRGADAVKGVRKYERRVKELTYQTEEDKKNINRLQDLVDKLQLKVKAYKRQSEEAE 1886 EAEQRRGADAVKGVRKYERRVVKELTYQTEEDKKNIIRLQDLVDKLQLKVKAYKRQSEDAE 1888 EAEQRRGADAVKGVRKYERRVKELTYQTEEDKKNVNRLQDLVDKLQLKVKAYKRQSEEAE 1888 EAEQRRGADAVKGVRKYERRVKELTYQTEEDKKNVNRLQDLVDKLQLKVKAYKRQSEEAE 1888 EAEQRRGADAVKGVRKYERRVKELTYQTEEDKKNVNRLQDLVDKLQLKVKAYKRQSEEAE 1888 EAEQRRGADAVKGVRKYERRVKELTYQTEEDKKNVNRLQDLVDKLQLKVKAYKRQSEEAE 1888 EAEQRRGADAVKGVRKYERRVKELTYQTEEDKKNINRLQDLVDKLQLKVKAYKRQSEEAE 1888 ESEQKKSNELQKGIRKYERRIKELTYQTEEDRKNIARLQELIDKLQAKVKTYKRQAEDAE 1887 DCEQKKSAEFQKGIRKYERRIKELTYQTEEDRKTLLRMQDLIDKLQAKVKSFKRQAEDAE 1887 DSEMKERQQSTKQVRRVEKKLKEVLLLQVEDERRNADQSKTETEKANIRLKQMKRQLEETE 1890 ---1749 EQEAKERAAANKIVRRTEKKLKEVFMQVEDERRHADQYKEQMEKANSRMKQLKRQLEEAE 1903 EQESRDKQNTAKAVRQKDKKLKEMMTQVEDERKQAEQYKDQADKATARVKQLKRQLEESE 1888 DHESRERQAIAKAMRQKDKKLKELMNQVEDERKQMEQYKDQAEKANLRARQLKMQMEESD 1872 EQERQERAMANKLVRKTEKKLKEVLMQVEDERRHADQYREQLDKSMGRLRQLKRQLEEVE 1910

Hs.MYH7
Hs.MYH7
Hs.MYH6
Hs.MYH13
Hs.MYH8
Hs.MYH4
Hs.MYH1
Hs.MYH2
Hs.MYH3
Hs.MYH14
Hs.MYH15
Hs.mYH16
Dr.smyhc1
Dr.smyhc2
Dr.smyhc3
Dr.smyhc4
Dr.smyhc5
Dr.myh7
Dr.myh7l
Dr.myh6
Dr.myha
Dr.myhb
Dr.myhz1.1
Dr.myhz1. 2 Dr.myhz1. 3 Dr.myhz2 Dr.myhc4 Dr.myh7ba Dr.myh 7 bb Dr.myh9a Dr.myh9b Dr.myh10 Dr.myh11a Dr.myh11b Dr.myh14

EQANTNLSKFRKVQHELDEAEERADIAESQVNKLRAKSRDIGTKGLNEE-------------1935 EQANTNLSKFRKVQHELDEAEERADIAESQVNKLRAKSRDIGAKQKMHDEE----------1939 EQANTQLSRCRRVQHELEEAAERADIAESQVNKLRAKSRDVGSQKMEE--------------1938 EQSNANLSKFRKLQHELEEAEERADIAESQVNKLRVKSREVHTKISAE-------------- 1937 EQSNVNLAKFRKLQHELEEAKERADIAESQVNKLRVKSREVHTKVISEE------------1939 EQSNVNLSKFRRIQHELEEAEERADIAESQVNKLRVKSREVHTKIISEE-------------1939 EQSNTNLAKFRKLQHELEEAEERADIAESQVNKLRVKSREVHTKVISEE------------1941 EQANAHLTKFRKAQHELEEAEERADIAESQVNKLRAKTRDFTSSRMVVHESEE------- 1940 EEASRAQAGRRRLQRELEDVTESAESMNREVTTLRNRLRRGPLTFTTRTVRQV----FRL 1963 TQANQYLSKYKKQQHELNEVKERAEVAESQVNKLKIKAREFGKKVQEE------------- 1926 DQANQTLARYRKTVHELDDAEDRAGMAETALNKLRTRHRVAGKGITSVEIIQVSKTGTSK 1918 EQANSNLGKFRKLQHELDEAEERADIAESQVNKMRAKSRDSGPKKGHDEE-----------1938 EQANSNLGKFRKLQHELDEAEERADIAESQVNKLRAKSRDSGSKKGADEE----------- 1939 EQANSNLGKFRKLQHELDEAEERADIAESQVNKLRAKSRDTGSKKGHDEE----------- 1938 EQANSNLGKFRKLQHELDEAEERADIAESQVNKLRAKSRDTGSKKGHDEE----------- 1936 EQANSNLTKFRKLQHELDEAEERADIAESQVNKLRAKSRDTGSKKGQEEE-----------1938 EQANTNLSKFRKIQHELDEAEERADIAESQVNKLRAKSRDVSSKKGHDQE----------- 1938 EQANVHLGKFRKLQHELDEAEERADIAESQVNKLRAKSRDVGPKKAFDEE----------- 1936 ELANANTAKLRKLQHELEEAEERADIAESQVNKLRAKTRDGAPGKKTQDE------------1936 EQANSHLSKLRKVQHELEEAEERADISESQVNKLRAKSRDAGKAKEE---------------1933 EQANTHLTRFRKVQHELEEAQERADIAESQVNKLRAKSREFGKGKEAEE------------ 1937 EQANSHLSKLRKVQHELEEAEERADIAESQVNKLRAKSRDSGKGKDAAE-------------1937 EQANSHLSKLRKVQHELEEAEERADIAESQVNKLRAKSRDSGKGKEAAE------------ 1937 EQANSHLSKLRKVQHELEEAEERADIAESQVNKLRAKSRDAGKGKESAE------------1937 EQANSHLSKLRKVQHELEEAEERADIAESQVNKLRAKSRDAGKAKEE----------------1935 EQANSHLSKLRKVQHELEEAEERADISESQVNKLRAKSRDAGKAKEE--------------1935 EQANSNLTKYKKIQHELDDAEERADIAESQVNKLRTRSRDSGSKTTPKLAE--------- 1938 EQVNCNMTRFRKIQHDLDEAEERADMAESQVNKLRVRTRETHVVKVVE---------------1935 EEAARANASCRKLRRELEDATESASAMNREVSTLKNKLRRGDFTGNVRRAI------GRT 1944
 EESQRITAARRKLQRELDEATETNDAMSREVNSLKSKLRRGNETSSFSSTPRRTGGGGRR 1948 EESQRATAARRKLQKELNEAIEANDALSREVSSLRSKLRRGSDSSFSTPLRRSAGGSFRQ 1932 EENSRSNAQRRKLQRELEEMSDSMQSMNRELNTLRSQLRRAPLPLSMRAGRRA------- 1963

Hs. MYH7	935
Hs. MYH7	--- 1935
Hs.MYH6	----------- 1939
Hs.MYH13	------------ 1938
Hs.MYH8	----------- 1937
Hs.MYH4	-------- 1939
Hs.MYH1	----1939
Hs.MYH2	---1941
Hs.MYH3	---1940
Hs. MYH14	-EEGVASDEEAEEAQPGSGPSPE------P----EGS-PPAHPQ-----------1995
Hs.MYH15	------1926
Hs.MYH16	T---L------SEE--1923
Dr.smyhc1	-----1938
Dr.smyhc2	----- 1939
Dr.smyhc3	----- 1938
Dr.smyhc 4	---1936
Dr.smyhc5	-- 1938
Dr.myh7	--- 1938
Dr.myh71	------ 1936
Dr.myh 6	----- 1936
Dr.myha	----- 1933
Dr.myhb	--- 1937
Dr.myhz1.1	-- 1937
Dr.myhz1.2	--1937
Dr.myhz1.3	--- 1937
Dr.myhz2	----- 1935
Dr.myhc4	---- 1935
Dr.myh 7 ba	---- 1938
Dr.myh 7 bb	- 1935
Dr.myh9a	G---V-----ESDDENDLK------S-------------EGS-EPTPE------------19619
Dr.myh9b	-1749
Dr.myh10	Q---LQMEGDFSDDDADSK------ASD------L----NEN-QPPPAE-----------1986
Dr.myh11a	G---IIDSSDAAEDDADMQ------S-D------Y----NGT-KSNE--------------1974
Dr.myh11b	ARRTMMETSEIPEDGGPSA------T-------------SVC-QPGELQMESISNTQDNN 1972
Dr.myh14	----LVD--DLSQENSDSEDPGASPTPSSGPPGTPTPSDNALGPPPPYSL---TDAE--- 2011

Appendix 4.3 - Tropical Clawed Frog and Coelocanth MYH6/7 neighbour genes

Appendix 5.1 HRM derivative melt curves results showing non-injected siblings vs

CRISPR/Cas9 injected embryos

A) smyhc1 gRNAE1508del, uninjected controls show single peak with melting temperature at $78{ }^{\circ} \mathrm{C}$, no shift in melting temperature peak of injected embryos B) smyhc1 gRNAK1617del uninjected controls show single peak with melting temperature at $80^{\circ} \mathrm{C}$, injected embryos show derivative melt curve show shifted double peak C) smyhc1 gRNAK1617del uninjected controls show single peak with melting temperature at $78{ }^{\circ} \mathrm{C}$, injected embryos show derivative melt curve show shifted double peak D) smyhc1 gRNAE1856K uninjected controls show single peak with melting temperature at $78{ }^{\circ} \mathrm{C}$, injected embryos show derivative melt curve show shifted double peak.

Appendix 5.1 - smyhc1 F3 generation genotyping, length, and weight measurements
5.1.1. - Smyhc1kg179

Fish no.	Gender	Length (mm)	Mass (mg)	Genotype (By HRM)	Genotype by Seq
1 m		26	370	Wild Type	Wild Type
2 f		25	390	Wild Type	Wild Type
5 m		24	340	Wild Type	
8 m		26	310	Wild Type	Wild Type
12 m		26	320	?	Wild Type
13 m		25	400	Wild Type	
17 m		23	230	Wild Type	
19 m		26	340	Wild Type	
20 m		25	310	Wild Type	
25 m		27	370	Wild Type	
29 m		27	340	Wild Type	
30 m		25	340	Wild Type	
40 m		26	310	Wild Type	
3 m		25	360	Heterozygote	Heterozygote
4 f		26	420	Heterozygote	Heterozygote
7 m		28	440	Heterozygote	
9 m		25	290	Heterozygote	
10 m		27	330	Heterozygote	
11 m		25	280	Heterozygote	
15 m		26	280	Heterozygote	
16 m		26	280	Heterozygote	
21 m		25	240	Heterozygote	
22 m		27	310	Heterozygote	
24 m		29	440	Heterozygote	
27		26	360	Heterozygote	
28 f		25	340	Heterozygote	
33 m		25	250	Heterozygote	
34 m		28	340	Heterozygote	
35 m		26	340	Heterozygote	
37 m		25	360	Heterozygote	
38 m		29	410	Heterozygote	
39 m		28	360	Heterozygote	
6 m		23	370	Mutant	Mutant
14 m		26	340	Mutant	Mutant
18 m		29	390	Mutant	
23 m		26	360	Mutant	
26 m		28	340	Mutant	
31 m		26	310	Mutant	
32 m		29	390	Mutant	
36 m		23	240	Mutant	

5.1.2. - Smyhc1 ${ }^{k g 180}$

Fish no.	Gender	Length (mm)	Mass (mg)	Genotype (By HRM)	Genotype by Seq
13 m		22	160	Wild Type	
15 m		23	250	Wild Type	
16 f		22	220	Wild Type	
18 m		24	210	Wild Type	
24 mm		23	220	Wild Type	
25 m		22	200	Wild Type	
28 m		23	180	Wild Type	
29 m		22	180	Wild Type	
30 f		21	180	Wild Type	
32 m		24	240	Wild Type	
33 m		23	220	Wild Type	
36 m		20	200	Wild Type	
43 f				Wild Type	Wild Type
48 f				Wild Type	Wild Type
51 m				Wild Type	
54 m				Wild Type	
56 m				Wild Type	
3 m		24	220	Heterozygote	Heterozygote
6 m		24	210	Heterozygote	Heterozygote
8 m		21	210	Heterozygote	
9 f		23	180	Heterozygote	
10 m		24	240	Heterozygote	
11 m		24	240	Heterozygote	
14 m		22	200	Heterozygote	
17 f		21	180	Heterozygote	
31 m		21	160	Heterozygote	
34 f		23	230	Heterozygote	
37 f		22	210	Heterozygote	
39 f		25	250	Heterozygote	
41 f				Heterozygote	Heterozygote
42 f				Heterozygote	Heterozygote
44 f				Heterozygote	
45 f				Heterozygote	
47 ff				Heterozygote	
49 m				Heterozygote	
52 m				Heterozygote	
53 m				Heterozygote	
55 m				Heterozygote	
1 m		23	220	Mutant	Mutant
2 f		25	270	Mutant	Mutant
4 m		24	220	Mutant	Mutant
5 f		22	180	Mutant	Mutant
7 f		21	170	Mutant	Mutant
12 m		24	290	Mutant	Mutant
19 m		22	200	Mutant	Mutant
20 f		25	280	Mutant	Mutant
21 f		22	220	Mutant	Mutant
22 m		25	210	Mutant	Mutant
23 m		22	250	Mutant	Mutant
26 m		19	100	Mutant	Mutant
27 m		23	200	Mutant	Mutant
38 f		22	210	Mutant	Mutant
40 m		22	190	Mutant	Mutant
6 f				Mutant	Mutant
10 m				Mutant	Mutant

5.1.3. - Summary of smyhc1 $1^{\mathrm{kg} 179}$ and smyhc1 ${ }^{\mathrm{kg} 180}$ mendalian ratio and Chi squared test
smyhc1kg179

Summary of fish numbers	expected	observed	chi squared	
wt	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{3 3 \%}$	0.53661755
het	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{4 8 \%}$	>0.05 therefore observed values are the predicted ratio
mut	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{2 0 \%}$	
total no.	$\mathbf{4 0}$	$\mathbf{4 0}$		

smyhc1kg180

Summary of fish numbers	expected	observed		chi squared
wt	$\mathbf{1 3 . 7 5}$	$\mathbf{1 7}$	31%	0.196464031
het	$\mathbf{2 7 . 5}$	$\mathbf{2 1}$	38%	>0.05 therefore observed values are the predicted ratio
mut	$\mathbf{1 3 . 7 5}$	$\mathbf{1 7}$	$\mathbf{3 1 \%}$	
total no.	$\mathbf{5 5}$	$\mathbf{5 5}$		

5.1.4. - Genotype of dead fish from F3 generation of smyhc1 heterozygous in-crosses from 5 dpf to 4 mpf

Fish death from F3 smyhc1 ${ }^{\text {kg179/+ }}$ and smyhc1 $1^{\mathrm{kg} 180 /+}$ in-cross
smyhc1 ${ }^{\text {kg179 }}$
Fish no. Genotype by Seq
1 Heterozygote
2 Heterozygote
3 Wild Type
4 Heterozygote
5 Mutant
6 Heterozygote
7 Heterozygote
8 Wild Type
9 Heterozygote
10 Mutant
11 Heterozygote
12 Mutant
13 Heterozygote
14 Heterozygote
15 Heterozygote
16 Mutant
17 Heterozygote
18 Wild Type
19 Heterozygote
20 Wild Type
21 Heterozygote
22 Heterozygote
23 Heterozygote
24 Mutant

Appendix 5.2 - Zebrafish swimming velocity 2-30 dpf

2 dpf	Lay	Date/Info	Genotype	Swimming Velocity				count
				BTS- (mm/s)	SD	BTS+ (mm/s)	SD	
	1	29/09/2019	Wild Type	327.08	86.11	8.99	4.25	4
			Heterozygote	259.06	99.80	8.20	3.73	8
			Mutant	102.24	32.06	0.49	0.28	5
	2	11/03/2020	Wild Type	278.47	134.59	7.17	3.17	6
			Heterozygote	238.93	174.56	6.66	4.84	10
			Mutant	131.72	21.61	0.66	0.21	5
	3	11/03/2020	Wild Type	311.32	184.05	6.17	3.99	6
			Heterozygote	258.96	119.74	7.12	6.08	10
			Mutant	130.50	27.23	0.41	0.33	6
	4	11/03/2020	Wild Type	369.12	297.27	11.38	7.51	5
			Heterozygote	233.24	141.47	12.69	8.02	11
			Mutant	180.93	99.43	0.75	0.79	5
	Average (1-4)		Wild Type	321.50	175.51	8.43	4.73	
			Heterozygote	247.55	133.89	8.66	5.67	
			Mutant	136.35	45.08	0.58	0.40	

5 dpf	Lay	Date/Info	Genotype	Swimming Velocity				count
				BTS-(mm/s)	SD	BTS+ (mm/s)	SD	
	1	29/09/2019	Wild Type	573.06	125.65	58.58	24.47	6
			Heterozygote	544.61	219.44	55.25	19.24	9
			Mutant	453.88	153.73	3.29	2.39	5
	2	11/03/2020	Wild Type	579.10	291.34	93.96	19.32	6
			Heterozygote	620.23	333.73	55.63	28.71	10
			Mutant	377.15	442.20	1.36	0.68	5
	3	11/03/2020	Wild Type	548.59	390.91	44.38	60.51	5
			Heterozygote	690.93	366.66	30.28	16.17	11
			Mutant	293.42	160.62	0.77	0.55	5
	Average (1-3)		Wild Type	566.92	269.30	65.64	34.77	
			Heterozygote	618.59	306.61	47.05	21.37	
			Mutant	374.82	252.18	1.81	1.21	

17 dpf	Lay	Date/Info	Genotype	Swimming Velocity				count
				BTS-(mm / s)	SD	BTS + (mm/s)	SD	
	1	11/12/2020	Wild Type	15.97	7.68	3.93	2.06	7
			Heterozygote	15.25	4.93	3.39	0.81	7
			Mutant	23.82	20.01	0.35	0.31	5
	2	11/12/2020	Wild Type	12.80	1.71	4.09	0.66	4
			Heterozygote	15.46	7.33	4.10	1.47	7
			Mutant	10.10	4.84	0.62	0.32	4
	3	11/12/2020	Wild Type	11.74	2.69	4.02	0.34	5
			Heterozygote	12.42	5.39	3.93	1.01	9
			Mutant	14.66	5.05	0.18	0.06	4
	Average (1-3)		Wild Type	13.50	4.02	4.01	1.02	
			Heterozygote	14.38	5.88	3.80	1.09	
			Mutant	16.19	9.97	0.38	0.23	

20 dpf	Lay	Date/Info	Genotype	Swimming Velocity				count
				BTS- (mm/s)	SD	BTS+ (mm/s)	SD	
	1	11/12/2020	Wild Type	25.46	6.91	4.67	1.61	6
			Heterozygote	22.85	8.90	4.21	2.65	8
			Mutant	24.11	6.27	0.46	0.21	4
	2	11/12/2020	Wild Type	34.24	19.19	4.91	1.77	6
			Heterozygote	40.95	17.35	4.93	1.78	13
			Mutant	33.26	7.73	0.42	0.00	3
	3	11/12/2020	Wild Type	36.35	29.32	3.64	0.63	3
			Heterozygote	24.72	20.73	5.90	2.40	8
			Mutant	37.38	28.80	0.34	0.16	4
	Average (1-3)		Wild Type	32.02	18.48	4.41	1.34	
			Heterozygote	29.51	15.66	5.01	2.28	
			Mutant	31.59	14.27	0.41	0.12	
30 dpf	Lay	Date/Info	Genotype		Swimming	g Velocity		count
				BTS- (mm/s)	SD	BTS+ (mm/s)	SD	
	1	11/12/2020	Wild Type	50.65	26.85	4.12	2.77	5
			Heterozygote	59.89	40.38	6.49	2.63	7
			Mutant	75.45	7.71	6.17	2.51	3
	2	11/12/2020	Wild Type	60.56	27.75	6.15	1.09	4
			Heterozygote	41.56	21.25	5.67	1.09	7
			Mutant	32.53	17.45	5.60	0.78	4
	3	11/12/2020	Wild Type	33.72	15.71	5.86	0.60	4
			Heterozygote	38.38	8.45	5.28	1.74	7
			Mutant	51.37	14.16	6.16	2.13	4
	Average (1-3)		Wild Type	48.31	23.44	5.38	1.49	
			Heterozygote	46.61	23.36	5.81	1.82	
			Mutant	53.12	13.11	5.97	1.81	

Appendix 5.3 - BLAST search of gRNA to zebrafish genome

smyhc1 gRNAKO1										
5 '-CATGTCAAAAATACGAGTTTGGG-3'										
Genomic Location	Overlapping Gene(s;	Orientation	Query name	Query start	Query end	Query ori	Length	Score	E-val	\%ID
24:40667704-40667724	smyhc1	Reverse	Query_1	1	21	Forward	21	42	0.024	100
smyhc1 gRNAKO2										
5^{\prime}-ACCACAGAGGAATCGTACACTGG-3'										
Genomic Location	Overlapping Gene(s;	Orientation	Query name	Query start	Query end	Query ori	Length	Score	E-val	\%ID
24:40665790-40665812 smyhc1		Forward	Query_1	1	23	Forward	23	46	0.002	100
smyhc1 gRNA - (Li et al, 2020)										
5 '-GGCTGACAGCATGTACTGGTAGG-3'										
Genomic Location	Overlapping Gene(s;	Orientation	Query name	Query start	Query end	Query ori	Length	Score	E-val	\%ID
24:40665704-40665724	smyhc1	Forward	Query_1	3	23	Forward	21	42	0.035	100
24:40698260-40698280	smyhc2	Forward	Query_1	3	23	Forward	21	42	0.035	100
24:40723771-40723791	smyhc3	Forward	Query_1	3	23	Forward	21	42	0.035	100
24:40744293-40744313	CU633479.1	Forward	Query_1	3	23	Forward	21	42	0.035	100
24:40772959-40772979	CU633479.2	Forward	Query_1	3	23	Forward	21	42	0.035	100
smyhc1 exon 16 (Whittle et al, 2020)										
Genomic Location	Overlapping Gene(s;	Orientation	Query name	Query start	Query end	Query ori	Length	Score	E-val	\%ID
24:40662386-40662462	smyhc1	Reverse	Query_1	1	77	Forward	77	152	$3.00 \mathrm{E}-34$	100
2:24264943-24264998	myh7	Reverse	Query_1	12	64	Forward	56	61.8	$7.00 \mathrm{E}-07$	89.29
24:40688153-40688209	smyhc2	Reverse	Query_1	21	77	Forward	57	57.8	$1.00 \mathrm{E}-05$	87.72

Appendix 5.4 - early STOP codon in exon 16 of smyhc1 from Whittle et al, 2020

[^0]: * * * *

[^1]: *

[^2]: :*: ..: . : . *: : *:

