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New Stability Criterion for Positive Impulsive
Fuzzy Systems by Applying Polynomial

Impluse-Time-Dependent Method
Likui Wang, Bo Zheng, Hak-Keung Lam

Abstract—The problem of exponential stability and L1-gain
for continuous-time positive impulsive Takagi-Sugeno (T-S) fuzzy
systems is further studied in this paper. Different from the
Lyapunov function in the existing literatures, where the Lyapunov
matrices are time-invariant or only linear dependent on the
impulse interval, in this paper, a novel polynomial impulse-time-
dependent (ITD) copositive Lyapunov function is constructed by
using polynomial impulse time function. In addition, the binomial
coefficients are applied to derive new finite linear program-
ming conditions. Since more impulse intervals information are
contained in the polynomial ITD copositive Lyapunov function,
less conservative results are obtained. The final three examples
demonstrate the influence of the polynomial degree on the results
and the effectiveness of the developed new results.

Index Terms—positive impulsive systems, polynomial impulse-
time function, T-S fuzzy modeling, L1-gain

I. INTRODUCTION

IMPULSIVE systems are a subclass of hybrid systems
commonly used to characterize instantaneous jumps at

discrete moments in dynamics and have many applications in
network control [1], sampled-data control [2], and biomedical
field [3]. Recently, positive impulsive systems have attracted
much attention due to the description of practical processes
such as ecosystems [4] and traffic congestion [5]. Unlike
general impulsive systems, positive impulsive systems have
non-negative states and outputs when initial states and inputs
are non-negative. The positivity has to be considered in the
stability and stabilization analysis, and make the research
more challenge than general systems [6]-[10]. Linear posi-
tive impulsive systems have many research results [11]-[16].
However, nonlinear positive impulse system research still has
many problems. As we all know, the T-S fuzzy model can
accurately approximate the nonlinear systems through local
linearization, and is a powerful tool to deal with nonlinear
systems [17]-[20]. By the T-S fuzzy model, the research results
in linear impulsive systems can be widely applied to nonlinear
impulsive systems. Therefore, the positive impulsive T-S fuzzy
systems have received great attentions and obtained a great
deal of results [21]-[24].

The stability and stabilization of impulsive systems is al-
ways a hot issue [25]-[29]. Many scholars are committed to
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reducing the conservatism of stability analysis, the essential
point is how to design the Lyapunov function [17]-[24]. The
quadratic Lyapunov function is an important tool for studying
general systems and has been used in the stability of systems
[25]. However, the general time-invariant quadratic Lyapunov
function does not reflect the impulse time information of the
impulsive systems, therefore, the result is conservative [21],
[30]. In [20], an ITD quadratic Lyapunov function is designed
to study stability for T-S fuzzy systems with delayed impulses.
Whereafter, the ITD Lyapunov function design method was
widely used in the research of various impulsive systems, such
as stability analysis of nonlinear neutral state delay systems
with impulses [22] and stability analysis of positive fuzzy
impulsive systems [23]. Based on the results of [20], an ITD
discretized quadratic Lyapunov function is proposed in [31]
by partition on impulse intervals for the stability research
of impulsive delay systems. By increasing the number of
partitions, the conservatism of stability results can be further
reduced.

As a special kind of positive systems, the positive impulsive
T-S fuzzy systems can also be analyzed by applying ITD
discretized quadratic Lyapunov function. However, for positive
impulsive systems, the quadratic Lyapunov function does not
reflect the positive characteristics. Sometimes the results are
non-convex because of the positive conditions and need to
be solved by complex iterative algorithms or other techniques
[32]-[34]. The copositive Lyapunov function (CLF) proposed
by considering the positive characteristics of system states
provides a powerful tool for positive systems. The stability
conditions by the CLF are expressed by linear programming,
which can generally avoid non-convex conditions and be easily
solved by using existing optimization algorithms [21],[24].
In order to analyze the stability of positive impulse fuzzy
systems, an ITD discretized copositive Lyapunov function
is proposed in [21]. Based on the discretized copositive
Lyapunov function, less conservative conditions are obtained.
Then in [24], the internal contact information of state variables
in the impulse intervals is improved by introducing states
x(t)−x(tk) and x(t−k ). Compared to [21], the method in [24]
reduces the number of partitions, but both the ITD method
and the ITD discretized method are only linear dependent
on the impulse intervals. Could we use the impulse intervals
to construct a polynomial ITD Lyapunov function to further
reduce the conservatism? This is the first motivation of this
paper.

On the other hand, for controller design of positive impul-
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sive fuzzy systems, the time-varying impulse intervals along
with the positivity of the system states often lead to non-
convex conditions, then how to use the polynomial ITD
Lyapunov function to study the stabilization problem and get
convex conditions is the second motivation of this paper.

Based on the above discussion, the main contributions of
this paper are as follows: 1. Different from the existing method
that dividing the impulse intervals into small subintervals, a
novel polynomial ITD copositive Lyapunov function is de-
signed for the exponential stability and L1-gain of positive im-
pulsive T-S fuzzy systems. Since more impulse intervals infor-
mation are contained in polynomial ITD copositive Lyapunov
function, less conservative stability conditions are obtained
by setting appropriate degree of the polynomial. 2. In order
to avoid non-convex conditions caused by uncertaint impulse
interval, a controller is designed based on the polynomial
ITD copositive Lyapunov function to stabilize the positive
impulsive T-S fuzzy system and maintain positivity.

Notation: N denotes the set of positive integers. X ⪰
0(⪯ 0) means all entries of X are nonnegative (nonpositive).
D+f(t) = limε→0+ sup f(t+ε)−f(t)

ε . A real materix X is
called Metzler, if there exist a scalar α > 0 such that
X+αI ⪰ 0. 1-norm of a vector x ∈ Rn is ∥x∥1 =

∑n
i=1 |xi|.

λmin (νi) and λmax (νi) are, respectively, the minimal and
maximal elements in all vector νi. Cmn = n!

m!(n−m)! , m ≤ n.
If f ∈ L1 (resp.f ∈ ℓ1), then its norm is defined by
∥f∥L1 =

∫∞
0

∥f(t)∥1 dt (resp. ∥f∥ℓ1 =
∑∞
k=0 ∥f(k)∥1) .

n0, n1 = {n0, n0 + 1, · · · , n1}, with n0 ≤ n1 ∈ N.

II. PROBLEM FORMULATION

Consider the following impulsive T-S fuzzy mode:
Plant rule i: If ϱ1(t) is Φi1, and · · · and ϱg(t) is Φig , THEN

ẋ(t) =Aix(t) +Biu(t) + Eiω(t), t ̸= tk

x(tk) =Jix(t
−
k ) + Fiωd(tk), k ∈ N

z(t) =Cix(t) +Diω(t)

(1)

where ϱj is known premise variable, Φij is the fuzzy set, i =
1, r, j ∈ 1, g, r is the number of fuzzy rules. x(t) ∈ Rn, z(t) ∈
Rnz , u(t) ∈ Rnu , ω(t) ∈ Rnω , and ωd(tk) ∈ Rnd denote the
system state, the output, the control input, the continuous-time
disturbance input, and the discrete-time disturbance input. Ai,
Bi, Ei, Ji, Fi, Ci, and Di are constant matrices. {tk} denotes
the impulsive instant, which strictly increases and satisfies
t0 = 0 and limk→∞ tk = +∞ ; T (σ0, σ1) denote the class
of impulse interval σ0 ≤ Tk = tk − tk−1 ≤ σ1 for all k ∈ N.

By fuzzy inference methods, the impulsive T-S fuzzy system
(1) can be derived as follows [21], [24]:

ẋ(t) =

r∑
i=1

hi(ϱ(t)) (Aix(t) +Biu(t) + Eiω(t)) , t ̸= tk

x (tk) =

r∑
i=1

hi (ϱ (tk))
(
Jix

(
t−k
)
+ Fiωd (tk)

)
, k ∈ N

z(t) =

r∑
i=1

hi(ϱ(t)) (Cix(t) +Diω(t))

(2)

where ϱ(t) = [ϱ1(t), · · · , ϱg(t)]T and 0 ≤ hi(ϱ(t)) ≤ 1 is
membership function.

Lemma 1 ([21]): System (2) is said to be positive, if for all
x(t0) ⪰ 0, disturbance input ω(·) ⪰ 0, and ωd(·) ⪰ 0, there
exists a control input u(t) such that the trajectory x(t) ⪰ 0,
∀t ≥ t0.

Lemma 2 ([24]): System (2) with u(·) ≡ 0 is positive if
and only if matrix Ai are Metzler, Ei ⪰ 0, Ji ⪰ 0, Fi ⪰ 0,
Ci ⪰ 0, Di ⪰ 0 for any i ∈ 1, r.

Definition 1: The system (2) is said to be globally expo-
nentially stable (GES) over T (σ0, σ1) and have an L1-gain
bound γ, if system (2) is GES when ω(·) ≡ 0, ωd(·) ≡ 0 and∫∞
0

∥z(s)∥1ds ≤ γ
∫∞
0

∥ω(s)∥1ds + γ
∑
k∈N ∥ωd (tk)∥1 is

satisfied with the zero-initial condition for any nonnegative
ω(t) ∈ L1, ωd (tk) ∈ ℓ1.

III. MAIN RESULTS

A. Relaxed stability conditions

In this section, a new stability criteria for the positive
implsive T-S fuzzy system (2) is obtained by constructing
a polynomial ITD copositive Lyapunov function. Similar to
previous studies such as [21], we can construct the following
auxiliary functions for impulse intervals:

ρ(t) =
1

tk − tk−1
, ρ10(t) =

tk − t

tk − tk−1
, t ∈ [tk−1, tk) .

Note that ρ10 (tk−1) = 1, ρ10
(
t−k
)
= 0, and ρ̇10(t) = −ρ(t).

Let ρ11(t) = 1− ρ10(t), we have ρ11 (tk−1) = 0, ρ11
(
t−k
)
=

1, and ˙ρ11(t) = ρ(t). Since σ0 ≤ Tk ≤ σ1, we have

ρ(t) =
ρ20(t)

σ0
+
ρ21(t)

σ1
(3)

where ρ20 ∈ [0, 1], ρ21(t) = 1− ρ20(t).
Generally, linear equation ρ10(t) + ρ11(t) = 1 is used to

construct ITD Lyapunov function. On the other hand, it is
noted (ρ10(t)+ρ11(t))

N = 1 contains more impulse intervals
information such as the cross term and can be used for the
construction of polynomial ITD Lyapunov functions. Based on
the above, we design the following polynomial ITD copositive
Lyapunov function:

V (t) = xT(t)

N∑
s=0

CsNρN−s
10 (t)ρs11(t)νs, t ∈ [tk−1, tk) (4)

where N is a prescribed positive integer, νs ∈ Rn+. Let
VN (t) =

∑N
s=0 CsNρ

N−s
10 (t)ρs11(t)νs.

Obviously, V (t) > 0 is continuous inside t ∈ [tk−1, tk),
and V (tk−1) = xT(tk−1)ν0, V (t−k ) = xT(t−k )νN . To lighten
the notation, we will use hi and ρ10 instead of hi(ϱ(t)) and
ρ10(t), t ̸= tk.

Remark 1: The polynomial ITD copositive Lyapunov func-
tion (4) contains more impulse intrevals information than
ITD copositive Lyapunov function utilized in the past study
such as [23]. When N = 0 or N = 1, the designed
Lyapunov function (4) will reduces to V (t) = xT(t)ν0 [33]
or V (t) = xT(t)(ρ10ν0 + ρ11ν1) [23], which means that the
classic Lyapunov matrices time-invariant CLF and the ITD
copositive Lyapunov function are special cases of (4).
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Next, we will discuss V̇N (t) when t ∈ [tk−1, tk). Note

V̇N (t)=

N∑
s=0

CsN
(
(N − s)ρN−s−1

10 ρs11ρ̇10+sρ
N−s
10 ρs−1

11 ρ̇11
)
νs

=(ρ10 + ρ11)ρ

N∑
s=0

CsN
((

− (N − s)ρN−s−1
10 ρs11

+ sρN−s
10 ρs−1

11

)
νs

)
=ρ

N∑
s=0

CsN
((

− (N − 2s)ρN−s
10 ρs11

− (N − s)ρN−s−1
10 ρs+1

11 + sρN−s+1
10 ρs−1

11

)
νs

)
. (5)

Let ν−1 ≡ 0, νN+1 ≡ 0, φ = s+ 1, and ψ = s− 1, one can
obtained that

N∑
s=0

CsN
(
−(N − s)ρN−s−1ρ̃s+1 + sρN−s+1ρ̃s−1

)
νs

=

N−1∑
s=0

CsN
(
−(N − s)ρN−s−1ρ̃s+1

)
νs

+

N∑
s=1

CsN
(
sρN−s+1ρ̃s−1

)
νs

=

N∑
φ=1

N !

(φ− 1)!(N − φ+ 1)!

(
−(N − φ+ 1)ρN−φρ̃φ

)
ν(φ−1)

+

N−1∑
ψ=0

N !

(ψ + 1)!(N − ψ − 1)!

(
(ψ + 1)ρN−ψρ̃ψ

)
νψ+1

=

N∑
φ=1

N !

(φ)!(N − φ)!

(
−φρN−φρ̃φ

)
νφ−1

+

N−1∑
ψ=0

N !

(ψ)!(N − ψ)!

(
(N − ψ)ρN−ψρ̃ψ

)
νψ+1

=

N∑
s=0

CsN
(
−sρN−sρ̃sνs−1 + (N − s)ρN−sρ̃sνs+1

)
. (6)

Substitute (6) into (5), we have

V̇N =ρ

N∑
s=0

CsNρN−s
10 ρs11

(
− (N − 2s)νs − sνs−1

+ (N − s)νs+1

)
. (7)

For simplicity

ΛN =ρ

N∑
s=0

CsNρN−s
10 ρs11

(
− (N − 2s)νs − sνs−1

+ (N − s)νs+1

)
, (8)

ΛNs =− (N − 2s)νs − sνs−1 + (N − s)νs+1. (9)

Remark 2: In [35], a ITD discrete Lyapunov function with
polynomial time dependent νs is proposed. However, the
stability condition need to limit the time t. Obviously, for
t ∈ [tk−1, tk), VN (t) is continuous, and D+VN (t) = V̇N (t),

which means that we will not increase any constraints when
using the Lyapunov function (4) for stability analysis. Com-
pared to general linear impulse-time dependent in [21], only
νs and νs−1 are related. IN Equation (7), νs, νs−1 and νs+1

are all related. This shows that polynomial ITD strengthen the
internal connection of the Lyapunov function inside an impulse
interval.

Theorem 1: Given a integer N ≥ 0, a scalar µ > 0, the
system (2) with u(·) ≡ 0, ω(·) ≡ 0, ωd(·) ≡ 0 is GES over
T (σ0, σ1), if exist vectors νs ∈ Rn+, s ∈ 0, N , i ∈ 1, r, ν−1 ≡
0, νN+1 ≡ 0, such that (9) and the following inequalities hold:(

AT
i +

lnµ

σ(µ)
I

)
νs +

ΛNs
σ0

≺ 0 (10)(
AT
i +

lnµ

σ(µ)
I

)
νs +

ΛNs
σ1

≺ 0 (11)

JT
i ν0 − µνN ⪯ 0 (12)

where

σ(µ) =

{
σ1 µ ∈ (0, 1]
σ0 µ > 1

. (13)

Proof: Using (4) and (7), for t ∈ [tk, tk+1), k ∈ N, we have

D+V (t) = xT(t)

N∑
s=0

CsNρN−s
10 ρs11

(
r∑
i=1

hiA
T
i νs + ρΛNs

)
.

From (3), (10), and (11), we have

Ωs =

(
r∑
i=1

hiA
T
i +

lnµ

σ(µ)
I

)
νs + ρΛNs

=

(
r∑
i=1

hiA
T
i +

lnµ

σ(µ)
I

)
νs +

(
ρ20
σ0

+
ρ21
σ1

)
ΛNs

= ρ20

((
r∑
i=1

hiA
T
i +

lnµ

σ(µ)
I

)
νs +

ΛNs
σ0

)

+ ρ21

((
r∑
i=1

hiA
T
i +

lnµ

σ(µ)
I

)
νs +

ΛNs
σ1

)
≺ 0.

Then we can conclude that there exists a positive scalar α,
such that

D+V (t) +

(
lnµ

σ(µ)
+ α

)
V (t)

= xT(t)

N∑
s=0

CsNρN−s
10 ρs11(Ωs + αIνs)

< 0. (14)

For the impulse moment t = tk, combining (2), (4), and
(12), we have

V (tk) =

r∑
i=1

hi (ϱ (tk))x
T
(
t−k
)
JT
i ν0

≤
r∑
i=1

hi (ϱ (tk))x
T
(
t−k
)
µνN = µV

(
t−k
)
. (15)
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Next, similar to [21], we need to distinguish µ ∈ (0, 1] and
µ > 1 to complete the proof.

When µ ∈ (0, 1], we have σ(µ) = σ1, 0 ≤ − lnµ
σ1

(t− tk) ≤
− lnµ. Then, from (14), one gets

V (t) < e−α(t−tk)e−
lnµ
σ1

(t−tk)V (tk)

≤ 1

µ
e−α(t−tk)V (tk). (16)

Working on (16) recursively with (15), we have

V (t)<
1

µ
e−α(t−tk)µV (t−k)<

1

µ
e−α(t−tk)e−α(t

−
k −tk−1)V (tk−1)

< · · · < 1

µ
e−α(t−t0)V (t0) . (17)

Since λmin (νs) ∥x(t)∥1 ≤ V (t) ≤ λmax (νs) ∥x(t)∥1, s ∈
0, N , we obtain from (17) that

∥x(t)∥1 <
λmax (νs)

µλmin (νs)
e−α(t−t0) ∥x (t0)∥1 . (18)

When µ > 1, σ(µ) = σ0. For t ∈ [tk, tk+1), applying
the inequality of − lnµ

σ0
(t− tk) < 0 and (14), the following

inequality holds:

V (t) < e−α(t−tk)e−
lnµ
τ0

(t−tk)V (tk) ≤ e−α(t−tk)V (tk) .
(19)

For t ∈ [tk−1, tk), by the inequality − lnµ
τ0

(
t−k − tk−1

)
≤

− lnµ
τ0
τ0 = − lnµ, and (14), we have

V
(
t−k
)
< e−α(t

−
k −tk−1)e−

lnµ
τ0

(t−k −tk−1)V (tk−1)

<
1

µ
e−α(t

−
k −tk−1)V (tk−1) . (20)

Then, using (15), (19) and (20), yields

V (t) < e−α(t−tk)µV (t−k )

< e−α(t−tk)µ
1

µ
e−α(t

−
k −tk−1) · · ·µ 1

µ
e−α(t

−
1 −t0)V (t0)

= e−α(t−t0)V (t0) (21)

which implies that

∥x(t)∥1 <
λmax (νs)

λmin (νs)
e−α(t−t0) ∥x (t0)∥1 . (22)

Therefore, the proof is completed.
Remark 3: Theorem 1 provides a new condition for the

exponential stability of impulsive positive fuzzy systems based
on the Lyapunov function (4). Although the Lyapunov function
(4) contains non-convex polynomials, the resulting stability
conditions are expressed as convex linear programming, and
can be solved by existing optimization algorithms. Obviously,
the stability analysis results in Theorem 1 can be combined
with the discrete method in paper [21] to perform equidistant
partition on the impulse interval. However, according to our
simulation results, the stability analysis results of Theorem
1 are identical to the eigenvalue analysis results for linear
systems. Further discretization is unnecessary. Details are
shown in Example 1.

Theorem 2: Given scalars γ > 0, µ > 0, and a integer
N ≥ 0, the system (2) with u(·) ≡ 0 is GES and has L1 -gain

γ over T (σ0, σ1), if there exists vectors νs ∈ Rn+, ν−1 ≡ 0,
νN+1 ≡ 0, s ∈ 0, N , i ∈ 1, r, such that (9), (12), (13), and
the following inequalities hold:(

AT
i +

lnµ

σ(µ)
I

)
νs +

ΛNs
σ0

+ CT
i 1 ≺ 0 (23)(

AT
i +

lnµ

σ(µ)
I

)
νs +

ΛNs
σ1

+ CT
i 1 ≺ 0 (24)

ET
i νs +DT

i 1− γϕ(µ)1 ≺ 0 (25)

FT
i ν0 − γϕ(µ)1 ⪯ 0 (26)

where

ϕ(µ) =

{
µ µ ∈ (0, 1]

e

(
1−σ1

σ0

)
lnµ

µ > 1
. (27)

Proof: Note that (23) and (24) implies (10) and (11). When
ω(·) ≡ 0 and ωd(·) ≡ 0, if (23), (24), and (12) hold, the
positive impulsive T-S fuzzy system (2) is GES by Theorem
1. Next, the L1-gain performance will be achieved.

By using the convex combination method, for t ∈ [tk, tk+1),
k ∈ N, we can compute from (2), (4), (23), (24), and (25) that

D+V (t) +
lnµ

σ(µ)
V (t) + ∥z(t)∥1 − γϕ(µ)∥ω(t)∥1

=

N∑
s=0

CsNρN−s
10 ρs11

r∑
i=1

hi

(
ωT
(
ET
i νs +DT

i 1− γϕ(µ)1
)

+ xT
((

Ai +
lnµ

σ(µ)

)
νs + ρΛNs + CT

i 1

))
<0. (28)

For the impulse moment t = tk, since ωd(tk) ⪰ 0, we can
obtain from (2), (4), (12), and (26) that

V (tk) =

r∑
i=1

hi (ϱ (tk))
(
xT
(
t−k
)
JT
i + ωT

d (tk)F
T
i

)
ν0

≤ µV
(
t−k
)
+ γϕ(µ) ∥ωd (tk)∥1 . (29)

Based on (28), (29), and the results in [21], under the zero
initial condition, when µ ∈ (0, 1], we have∫ ∞

0

∥z(s)∥1ds− γ

∫ ∞

0

∥ω(s)∥1ds− γ

∞∑
k=1

∥ωd (tk)∥1

≤ −V (∞) ≤ 0.

When µ > 1, we have∫ ∞

0

∥z(s)∥1ds− γ

∫ ∞

0

∥ω(s)∥1ds− γ

∞∑
k=1

∥ωd (tk)∥1

≤ −e
τ1 lnµ

τ0 V (∞) ≤ 0.

Therefore, we get the conclusion.
Remark 4: Note that the stability condition of Theorem 2

is expressed by convex linear programming, which shows the
importance of binomial coefficients CsN .
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B. State-feedback stabilization
The parallel-distributed compensation scheme is adopted to

design a controller for the positive impulsive fuzzy systems
(2) as follows:

u(t) =

r∑
i=1

hiKix(t), t ̸= tk (30)

where Ki ∈ Rnu×n is control gain and hi is the same as
the ith rule membership function of the positive impulsive
systems (2). Then, we consider the closed-loop impulsive T-S
fuzzy system obtained based on (2) and (30), which is shown
as follows:

ẋ(t) =

r∑
i=1

r∑
j=1

hihj

(
(Ai +BiKj)x(t) + Eiω(t)

)
, t ̸= tk

x (tk) =

r∑
i=1

hi (ϱ (tk))
(
Jix

(
t−k
)
+ Fiωd (tk)

)
, k ∈ N

z(t) =

r∑
i=1

hi (Cix(t) +Diω(t))

(31)

Theorem 3: Given scalars γ > 0, µ > 0, and a integer
N ≥ 0. the closed-loop system (2) is GES and has L1-gain γ
over T (σ0, σ1), if exist vectors νs ∈ Rn+, ν−1 ≡ 0, νN+1 ≡ 0,
η ∈ Rnz

+ , ζj ∈ Rn ⪯ 0, ξj ∈ Rn ⪰ 0, scalars 0 < p ≤ 1,
1 ≤ q, β > 0, s ∈ 0, N , i, j ∈ 1, r, such that(9), (12), (13),
(25), (26), (27), and the following inequalities hold:

pνs ⪯ ϑ0 ⪯ νs (32)
νs ⪯ ϑ1 ⪯ qνs (33)

Ωijs +Ωjis + βI ⪰ 0 (34)(
AT
i +

lnµ

σ(µ)
I

)
νs + ζi + ξi +

ΛNs
σ0

+ Ci1 ≺ 0 (35)(
AT
i +

lnµ

σ(µ)
I

)
νs + ζi + ξi +

ΛNs
σ1

+ Ci1 ≺ 0 (36)

(37)

where

Ωijs = ηTBTj νsAi +Biη(
1

q
ξTj +

1

p
ζTj )

under the control law (30), and the controller gain

Kj =
1

ηTBT
h ϑ0

ηζTj +
1

ηTBT
h ϑ1

ηξTj .

Proof: By Theorem 2, the stability conditions of system (2)
with the controller (30) can be formulated as inequalities (12),
(25), (26) and(

AT
h +KT

hB
T
h +

lnµ

σ(µ)
+ αI

)
VN + ρΛNs + CT

h 1 ≺ 0

(38)

where Ah =
∑r
i=1 hiAi, and Bh, Kh have the same defini-

tion. By the definitions of Kj , it is obtained that

KT
j B

T
hVN =

ηTBT
hVN

ηTBT
h ϑ0

ζj +
ηTBT

hVN
ηTBT

h ϑ1
ξj

TABLE I
MAXIMUM UPPER BOUND OF T FOR SYSTEM (41) WITH µ = 0.5

N 1 3 5 7 10

[21] 1.69 1.809 1.861 1.886 1.906
Theorem 1 1.69 1.875 1.943 1.959 1.9608

TABLE II
MINIMUM LOWER BOUND OF T FOR SYSTEM (42) WITH µ = 3

N 1 3 5 10

[21] 0.316 0.295 0.291 0.287
Theorem 1 0.316 0.2831 0.2829 0.2829

which, together with (32), (33), and η ⪰ 0, Bh ⪰ 0, VN ≻ 0,
we have

pηTBT
hVN ≤ ηTBTh ϑ0 ≤ ηTBT

hVN ,
ηTBT

hVN ≤ ηTBTh ϑ1 ≤ qηTBT
hVN ,

and

1

p
ζj +

1

q
ξj ⪯ KT

j B
T
hVN ⪯ ζj + ξj . (39)

Then we can see (38) is ensured by (35) and (36) Next, we
consider the positivity of the closed-loop impulsive T-S fuzzy
system (31). From (39), we have(

ηTBThVNAh +Bhη(
1

q
ξTh +

1

p
ζTh )

)
1

ηTBThVN

= Ah +Bh

(
1

pηTBThVN
ηζTh +

1

qηTBThVN
ηξTh

)
⪯ Ah +Bh

(
1

ηTBT
h ϑ0

ηζTh +
1

ηTBT
h ϑ1

ηξTh

)
= Ah +BhKh

Obviously, if (34) holds, Ah+BhKh is Metzler. The proof is
completed.

Remark 5: Using positive characteristics and linear scaling,
an impulse time independent controller gain is designed in
Theorem 3 for stabilization analysis. We divide the controller
gain Kj into positive part and negative part by ξj and ζj ,
and their values are determined by search the parameters p
and q. It should be pointed out that only when ξj + ζj ⪯ 0,
the controller (30) can be used to stability analysis for system
(31).

IV. NUMERICAL EXAMPLE

In this section, we use three numerical examples to show
the validity of the research results. Example 1 shows the
application in linear positive impulsive systems GES analysis.
Example 2 shows the applications in positive impulsive T-S
fuzzy systems GES analysis and L2-gain. Example 3 uses a
two linked tanks system to show the application of the research
results in the real system. These routines are implemented in
MATLAB using YALMIP with MOSEK.
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Fig. 1. Tmax for system (41) with different values of N

Example 1: Consider the following linear impulsive model:{
ẋ(t) = Ax(t), t ̸= tk
x(tk) = Jx(t−k ), k ∈ N (40)

Case 1: σ0 = σ1 = T ,

A =

[
0.1 1
1 −1

]
, J =

[
0.1 0.1
0.2 0.2

]
. (41)

Case 2: σ0 = σ1 = T ,

A =

[
−3 1
1 −4

]
, J =

[
1.7 0.3
0.2 1.8

]
. (42)

Case 3: σ0 ≤ Tk ≤ σ1,

A =

[
−1 0.1
0 1.2

]
, J =

[
1.2 0
0 0.5

]
. (43)

Case 1 and Case 2. Obviously, for the positive system
(41) and (42), A is Metzler and B ⪰ 0. By the eigenvalue
analysis of eATJ , for exponential stability, system (41) admits
a maximum impulse interval T ≤ 1.9608, and system (42)
admits a minimum impulse interval T ≥ 0.2829. Table I
lists the maximum upper bound of T for system (41) and
Table II lists the minimum upper bound of T for system (42)
obtained by the method in [21] and Theorem 1 in this work.
When N=1, the Lyapunov functions in this paper and in [21]
both reduce to ITD copositive Lyapunov function, so the same
results are obtained. Obviously, when N = 10, the same result
as the eigenvalue analysis method can be obtained by using
Theorem 1. Although the method in [21] can also reach 1.9602
for system (41) and 0.283 for system (42), the number of
partitions needs to reach 500. In [21], the number of variables
νs is N+1, and the number of linear programming inequalities
is (4N+1)r. In Theorem 1, the number of variables νs is also
N + 1, but the number of linear programming inequalities is
(2N + 1)r. It can be seen that the method in this paper can
use a lower number of variables to get better results than [21].

Fig. 1 shows the maximum upper bound of impulse in-
terval Tmax is calculated by different degree of polynomial
N ∈ [20, 300]. This shows that, unlike in [21], the conservative

TABLE III
MAXIMUM UPPER BOUND ON σ1 FOR SYSTEM (43) WITH µ > 1

N 1 10 20 30

[21] 0.2712 0.4044 0.4239 0.4361
[24] 0.4857 0.5636 0.5701 0.5726

Theorem 1 0.2712 0.5774 0.5775 0.5776

degree of stability analysis results decreases gradually with
the increase of the number of partitions, the conservative
degree of stability analysis results can be effectively reduced
by selecting the appropriate degree of polynomial in this paper.
The influence of a high degree of polynomial on the results
also appears in the paper [35], which we all consider a problem
with the capability of the solver. However, since the Lyapunov
function (4) is polynomial ITD and the stability condition is
linear programming, it is difficult to give strict mathematical
proof that the degree of conservatism will gradually decrease
as N increases. Further explanation is provided in Example 2.

Case 3. In this case, system (43) has time-varying im-
pulse intervals, and the system stability range is Tk ∈
[0.1824, 0.5776] according to the eigenvalue analysis. The
GES results obtained by the methods in [21], [24] and this
paper will vary depending on the parameter µ. In the previous
Case 1 and Case 2, the calculation is based on the fixed µ
value. Let σ0 = 0.1824, Table III lists the maximal upper
bound of σ1 obtained by [21], [24] and Theorem 1 in this paper
when µ > 1. It can be seen that our result is less conservative
than in [21] and [24].

Example 2: Consider the following impulsive system in
[21]:

ẋ1(t) =(−2 + 0.2 sin2 (x1(t)))x1(t) + 0.1x2(t) + u1(t)

+ 0.5ω(t)

ẋ2(t) =(0.15 + 0.1 sin2(x1(t)))x1(t) + u2(t)

+ (0.2 + 0.1 sin2(x1))x2(t)

x1(tk) =(1.1 + 0.1 sin2(x1(t
−
k )))x1(t

−
k ) + 0.1x2(t

−
k )

+ 0.5ωd(tk)

x2(tk) =0.1x1(t
−
k ) + 0.8x2(t

−
k )

z(t) =0.2x1(t) + 0.1x2(t) + 0.1ω(t)

By fuzzy inference methods, this nonlinear system can be
represented by a two-rule impulsive T-S fuzzy model (2) with

A1 =

[
−2 0.1
0.15 0.2

]
, A2 =

[
−1.8 0.1
0.25 0.3

]
,

B1 = B2 =

[
1 0
0 1

]
, E1 = E2 =

[
0.5
0

]
,

J1 =

[
1.1 0.1
0.1 0.8

]
, J2 =

[
1.2 0.1
0.1 0.8

]
,

F1 = F2 =

[
0.5
0

]
, C1 = C2 =

[
0.2
0.1

]T
, D1 = D2 = 0.1

and h1 = 1− sin2(x1(t)), h2 = sin2(x1(t)).
Case (1). ω(·) ≡ 0, ωd(·) ≡ 0 and u(·) ≡ 0. For

this example, the system is GES over the impulse interval
Tk ∈ [0.16, 0.58] in [21] and Tk ∈ [0.1487, 0.5973] in [24].
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Fig. 2. State responses of the system with u(·) ≡ 0 for Example 2 with
different impulse intervals.

By Theorem 1 with N = 10, we have the system is GES
over Tk ∈ [0.1478, 0.604]. Note that a linear impulsive system
composed of A2 and E2 is GES over Tk ∈ [0.1478, 0.604] by
eigenvalue analysis. Fig. 2 shows the system state trajectories
of this example under different impulse intervals. It can be
seen that the impulsive system is still stable at T = 0.14
and T = 0.8, which proves the effectiveness of our results.
Let σ0 = 0.2, Table IV list the maximal upper bound of
σ1 obtained by [21], [24] and Theorem 1 in this paper. It
is clear that our method can obtain better results with fewer
parameters.

Case (2). u(·) ≡ 0. Let Tk = 0.21, Table V lists the
L1-gain γ computed by [21], [24], and Theorem 2 in this
paper. It can be seen that the L1 performance γ changes with
the polynomial degree N . It is worth noting that in general
linear programming programs, there are two solvers: Feasp
and Mincx. The Feasp can be used for Theorem 1, and the
Mincx can be used for Theorem 2. For this example, when
using the Mincx, min(γ) = 0.4837 for all N ≥ 5. This
shows that in Example 1, the conservativeness of exponential
stability analysis results slightly increases with the increase of
N , which due to the problem of solver accuracy.

Case (3). As shown in Fig. 2, the system is unstable when
impulse interval Tk ∈ [1, 2] with ω(·) ≡ 0, ωd(·) ≡ 0
and u(·) ≡ 0. Assume that the continuous-time disturbance
input ω(t) = 0.5e−0.5t and the discrete-time disturbance input

ωd(tk) =

{
2 ∗ sin(0.2tk), tk ∈ [0, 15]
0, tk > 8

. We consider using

the controller (30) such that the closed-loop impulsive fuzzy
system is GES with L1-gain and positive. Applying Theorem
3 with N = 8, u = 1.2, p = 0.65, q = 1.69, η = [1, 8]T,

TABLE IV
MAXIMUM UPPER BOUND ON σ1 OF EXAMPLE 2 WITH µ > 1

N 1 3 5 7 10

[21] 0.2697 0.3369 0.3506 0.3564 0.3609
[24] 0.2841 0.3398 0.3522 0.3574 0.3616

Theorem 1 0.2697 0.3709 0.3713 0.3715 0.3715

TABLE V
VALUES OF L1 OF EXAMPLE 2 WITH µ > 1

N 1 2 5 7 10

[21] Infeasible 0.88 0.63 0.58 0.54
[24] 0.83 / / 0.55 0.54

Theorem 2 Infeasible 0.4860 0.4837 0.4837 0.4837
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Fig. 3. State responses of the system for Example 2 with Tk ∈ [1, 2]

γ = 0.26, we have

K1 =

[
−0.0127 −0.0772
−0.1013 −0.6178

]
,

K2 =

[
−0.0239 −0.0817
−0.1909 −0.6537

]
.

Let the initial states be x(0) = [1, 0.6], The state trajectories of
the system in this example with the controller (30) are shown
in Fig. 3. Obviously, the controller (30) renders the impulse
fuzzy system stable and maintain positivity.

Example 3: Consider the two linked tanks system in [24]
and [31] described by the following T-S model:

ẋ(t) =

4∑
i=1

hi(Aix(t) +Biu(t))

z(t) =

4∑
i=1

hiCi(x(t)− xr)

(44)

where the membership functions h1 = f11(t)f21(t), h2 =
f11(t)f22(t), h3 = f12(t)f21(t), h4 = f12(t)f22(t), with
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Fig. 4. State responses of the system without disturbance for Example 3

fi1(t) =
zi(t)−bi
ai−bi , fi2(t) = 1− fi1(t), i = 1, 2.

A1 =

 −R1a1 − R12a1a2√
|a21−a22|

R12a1a2√
|a21−a22|

R12a1a2√
|a21−a22|

−R2a2 +
R12a1a2√
|a21−a22|

 ,
A2 =

 −R1a1 − R12a1b2√
|a21−b22|

R12a1b2√
|a21−b22|

R12a1b2√
|a21−b22|

−R2b2 +
R12a1b2√
|a21−b22|

 ,
A3 =

 −R1b1 − R12b1a2√
|b21−a22|

R12b1a2√
|b21−a22|

R12b1a2√
|b21−a22|

−R2a2 +
R12b1a2√
|b21−a22|

 ,
A4 =

 −R1b1 − R12b1b2√
|b21−b22|

R12b1b2√
|b21−b22|

R12b1b2√
|b21−b22|

−R2b2 +
R12b1b2√
|b21−b22|

 ,
Bi =

[
1 0
0 1

]
, Ci =

[
0.5 0.5

]
.

In order to track the reference value xr and render the
closed-loop system positive, the following controller is de-
signed:

u(t) =

4∑
i=1

hiKi (x(t)− xr)−
4∑
i=1

hiAixr

+

∞∑
k=1

δ (t− tk)Kd

(
x
(
t−k
)
− xr

)
. (45)

where Ki and Kd are the controller gain. The closed-loop
impulsive system can be represented as

Ξ̇(t) =

4∑
i=1

4∑
j=1

hihj(Ai +BiKj)Ξ(t), t ̸= tk

Ξ(tk) = KtΞ(t
−
k )

z(t) =

4∑
i=1

hi(ϱ(t))(CiΞ(t)).

(46)
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Fig. 5. State responses of the system with disturbance for Example 3

where

Ξ(t) =

{
x(t)− xr, x(t0) ⪰ xr

xr − x(t), x(t0) ⪯ xr
.

From Lemma 2, the system (46) is positive when Ai +BiKj

are Metzler, Kt = I +BKd ⪰ 0, Ci ⪰ 0.

The parameters are given by [24]: R1 = R2 = 0.95,
R12 = 0.52. a1 = 0.2236, b1 = 0.4472 (x1 ∈ [5, 20]),
a2 = 0.2582, b2 = 0.4082 (x2 ∈ [6, 15] ). Assume that

Kt =

[
0.6 0
0 0.5

]
, and the impulse interval Tk ∈ [0.1, 0.6].

First, we study the stability of closed-loop positive im-
pulsive T-S fuzzy system (46). The solution is obtained by
applying the Theorem 3 with N = 6, u = 1.01, p = 0.5,
q = 1.5, η = [1, 5]T:

K1 =

[
0.0109 −0.0351
0.0544 −0.1756

]
, (47)

K2 =

[
0.0216 0.0077
0.1079 0.0383

]
, (48)

K3 =

[
0.0267 −0.0113
0.1335 −0.0564

]
, (49)

K4 =

[
−0.0147 −0.1475
−0.0736 −0.7373

]
. (50)

Let x(0) = [5, 6]T, xr = [15, 10]. The trajectories of state
xi for the closed-loop impulsive system (46) are shown in Fig.
4. which demonstrates that the controller (45) render the T-
S positive impulsive fuzzy system (44) stable and track the
reference value xr.

Then, we consider the following system constructed by
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system (46) with disturbance:

Ξ̇(t) =

4∑
i=1

4∑
j=1

hihj(Ai +BiKj)Ξ(t)

+

r∑
i=1

hiEiω(t), t ̸= tk

Ξ (tk) =KtΞ(t
−
k )

z(t) =

4∑
i=1

hi(CiΞ(t) +Diω(t)).

(51)

where ω(t) =
(
0.1e−2t, 0.1e−2t

)T
,

Ei =

[
0.1 0.2
0.2 0.1

]
, Di =

[
0.5 0.5

]
.

As N = 6, u = 1.01, p = 0.6, q = 1.8, η = [1, 10]T, applying
Theorem 3, we have γ = 0.689

K1 =

[
−0.0107 −0.1255
−0.1070 −1.2552

]
,

K2 =

[
−0.0083 −0.0834
−0.0834 −0.8339

]
,

K3 =

[
−0.0014 −0.0987
−0.0137 −0.9867

]
,

K4 =

[
−0.0213 −0.2475
−0.2127 −2.4750

]
.

Figure 5 shows the trajectories of state xi for the system
(51). It can be seen that under the condition of disturbance
ω(t), the controller render the system states positive and
approach to the expected reference value xr.

V. CONCLUSION

This paper provides a new sufficient conditions for expo-
nential stability and L1-gain of positive impulsive T-S fuzzy
systems by designing the polynomial ITD Lyapunov function.
In addition, based on parallel distributed compensation, an
impulse-time independent controller is designed for stabiliza-
tion. In the end, three numerical examples have been presented
to validate the effectiveness of the obtained results. It is
worth noting that the homogenous polynomially membership
function dependent Lyapunov-Krasovskii functional in [17]
and the polynomial ITD Lyapunov function in this paper have
achieved low conservative results in the stability analysis.
However, the dynamic mechanism needs to be clarified, which
is our future research.
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