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Integrated Fault-Tolerant Control Design with
Sampled-Output Measurements for Interval Type-2

Takagi-Sugeno Fuzzy Systems
Hongying Zhou, Hak-Keung Lam, Fellow, IEEE, Bo Xiao, Member, IEEE, and Chengbin Xuan

Abstract—This paper is concerned with the integrated design of
fault estimation (FE) and fault-tolerant control (FTC) for uncer-
tain nonlinear systems suffering from actuator faults and external
disturbance. The uncertain nonlinear systems are characterized
as the interval type-2 (IT2) Takagi-Sugeno (T-S) fuzzy model, and
IT2 membership functions are employed to effectively handle
uncertainties. A fuzzy observer, utilizing only sampled-output
measurements, is applied to simultaneously estimate actuator
faults and system states. Based on the estimation, the fault-
tolerant controller is designed to ensure the system stability
under a predefined H∞ performance. The sampling behavior
complicates the system dynamics and makes the integrated FTC
design more challenging. To confront this issue, the discontinuous
Lyapunov functional technique is exploited to enhance stability
results by considering the sampling characteristic, upon which
FE and FTC units are co-designed in the linear matrix inequality
(LMI) framework. To further relax stability criteria, the analysis
process incorporates the bound information of membership
functions through the membership-function-dependent (MFD)
method. Additionally, the relationship of mismatched premise
variables resulting from the sampling scheme is also taken into
account. Moreover, considering the imperfect premise matching
(IPM) framework, the proposed fault-tolerant controller provides
greater flexibility in selecting the shapes of membership functions
and number of fuzzy rules that can vary from the counterpart
of the fuzzy system. Finally, the efficacy of the proposed FTC
technique is validated through a detailed numerical example.

Index Terms—Interval type-2 (IT2) fuzzy model, fault esti-
mation (FE), fault-tolerant control (FTC), membership-function-
dependent (MFD) method, sampled-output measurements.

I. INTRODUCTION

COMPLEX nonlinear systems, posing significant chal-
lenges to system analysis and synthesis, are prevalent

in real-world applications. The Takagi-Sugeno (T-S) fuzzy
model, which consists of a bunch of local linear subsys-
tems blended via membership functions, is shown to be
an efficient approach to describe nonlinear plants [?], [?].
The T-S fuzzy model, characterized by a systematic model
structure and advantageous properties, enables the analysis
and control synthesis of nonlinear plants. This is achieved by
integrating fruitful linear system theories alongside fuzzy logic
theories [?], [?]. Apart from nonlinearity, uncertainties quite
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often appear in many cases, such as parameter variation and
measurement inaccuracy, which could deteriorate the system
control performance if not fully considered in the analysis.
While the traditional type-1 fuzzy set possesses prominent
capabilities to deal with nonlinearity, it is less capable of
handling uncertainties with its definite membership functions
directly. Therefore, the subsequent interval type-2 (IT2) fuzzy
set [?] expands abilities in handling nonlinearity within uncer-
tain environments, where uncertainties can be directly captured
and represented by IT2 membership functions [?]. Benefiting
from this favorable property, a large quantity of research
results on the IT2 fuzzy framework have been published,
such as stability analysis [?], [?], tracking control [?], model
reduction [?], [?], and filtering [?], [?]. It is noteworthy
that [?] intorduced an effective constructing technique for
the IT2 fuzzy model, which was followed by an innovative
membership-function-dependent (MFD) method reported in
[?] under the imperfect premise matching (IPM) mechanism in
which fuzzy rule number and shapes of membership functions
of the fuzzy controller and fuzzy model allow to be diverse.
In [?], [?], [?], control applications of IT2 fuzzy sets such
as video streaming, mobile robots, and power systems can be
found.

What should be noted is that the design of fault-tolerant
control (FTC) systems [?] is of considerable significance in
nonlinear control communities, which maintains the system
functionality with an admissible performance in the event of
failures, especially when more rigorous demands on system
safety and reliability are required in engineering fields, for
example, nuclear power plants, underwater vehicles, aircraft,
and chemical processes. Existent FTC methods can be gen-
erally categorized into two types [?], [?]: passive and active.
For both normal and faulty scenarios, the passive FTC methods
employ the unaltered controller throughout the whole control
process, capable of accommodating a collection of presumed
faults. In contrast, the active FTC methods proactively adjust
controllers in response to the impact of faults imposed on the
plant, and compensate for fault effects by utilizing the online
fault estimation (FE), which reveals superior fault tolerance
capabilities. Recalling the merits of fuzzy model in tackling
nonlinear systems, the fuzzy FTC techniques have attracted
great attention and undergone extensive investigation, see, e.g.,
[?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?]. However,
the reported FTC strategies regarding IT2 fuzzy systems are
relatively fewer in comparison to the type-1 counterpart. The
works in [?], [?], [?], [?], [?] investigate active FTC issues
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for IT2 fuzzy systems, among which only [?] considers the
design of the FE and FTC modules simultaneously, and [?],
[?], [?], [?] are realized by the two-step design method.

On the other hand, sampled-data control mechanisms play
a significant role in theoretical and practical research fields
due to widely used digital technologies. Within sampled-data
control systems, the control signals hold constants over the
sampling interval and update only at the sampling instants
[?]. This behavior perplexes the systems dynamics and brings
about great challenges in the stability analysis with the discon-
tinuity included. To perform stability analysis for sampled-data
control systems, several methods have been presented such as
the impulsive model approach [?], the discrete-time approach
[?], and the input delay approach [?], [?]. In the last strategy,
discrete-time signals are converted to the time-delay forms,
enabling continuous-time stability analysis methods available
to sampled-data control systems. By virtue of the input delay
method, a large amount of research [?], [?], [?], [?], [?]
concerning the fuzzy sample-data control strategies has been
published. Nevertheless, to the best of the authors’ knowl-
edge, no results have been published on the observer-based
active FTC issue for IT2 fuzzy systems under the sampled-
data mechanism. For the sampled observer-based fuzzy FTC
system, there exist bidirectional robustness interactions [?]
between the fault-tolerant controller and observer resulting
from mismatched membership functions and estimation errors.
If the bidirectional robustness interactions are ignored in the
analysis, only a suboptimal solution is expected. Hence, the
integrated design approach is required where the fault-tolerant
controller and observer are designed together. It is beneficial
to obtain an optimal solution with the desired fault-tolerant
performance, but it makes the sampled-data based integrated
FTC problem even more complex.

Inspired by the aforesaid discussions, in this work, we
propose a sampled-data based integrated design of FE and
FTC for nonlinear plants subject to uncertainties, actuator
faults, and external disturbances, depicted by the IT2 T-
S fuzzy model. Resorting to the Lyapunov stability theory,
the MFD results are developed to ensure the asymptotical
stability of the augmented system under the prespecified H∞
performance. Then, the technique on co-designing the FE and
FTC is provided via the one-step linear matrix inequality
(LMI) expression. At last, a simulation example is proposed
to illuminate the efficacy of the established FTC technique.
The key contributions of the paper are shown as below:
1) In this work, to facilitate the digital implementation, an in-

tegrated fuzzy FTC design technique is provided for nonlin-
ear systems with uncertainties, actuator faults, and external
disturbance via co-designing FE and FTC units based on
sampled-output measurements. The proposed FTC strategy
is designed to obtain an optimal solution by considering the
bidirectional robustness interaction between the observer
and controller, different from most existing IT2 fuzzy FTC
approaches that ignore such interactions.

2) The discontinuous Lyapunov functional technique, which
considers the sampling characteristic, is utilized along with
the MFD method to relax stability criteria. Moreover, the
mismatched problem of premise variables stemming from

sampling behaviors is considered as well to earn tighter
membership function bounds, which facilitates the stability
analysis.

3) The developed IT2 fuzzy observer estimates both system
states and actuator faults using only sampled measure-
ments. In addition, the fault-tolerant controller enjoys more
design flexibility with the aid of IPM scheme where the
fuzzy rule number and membership functions of the fuzzy
controller and the fuzzy system are allowed to be different.

The remainder of the paper is organized as below. In Section
II, some preliminaries are presented. Section III introduces
the main results. Section IV gives a simulation example to
demonstrate the validity of the designed FTC technique. In
Section V, the conclusions are summarized.

Notations: I and 0 indicate the identity matrix and zero
matrix with compatible dimensions, respectively; P > 0(≥ 0)
represents that P is a real symmetric and positive defi-
nite (semidefinite) matrix; the superscript “T” represents ma-
trix transposition; ⋆ denotes a term produced by symmetry;
diag{. . .} is used to describe a block-diagonal matrix.

II. PRELIMINARIES

A. IT2 T-S Fuzzy Model

Consider a family of nonlinear systems affected by additive
actuator faults and external disturbance along with uncertain-
ties, which are depicted as the IT2 T-S fuzzy model as below:

Rule i: IF ψ1(ϖ(t)) is 0̃i
1 and ψ2(ϖ(t)) is 0̃i

2 and · · · and
ψΨ(ϖ(t)) is 0̃i

Ψ, THEN{
ẋ(t) = Aix(t) +Bi

(
u(t) + f(t)

)
+Diw(t),

y(t) = Cx(t),

in which x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp stand
for the system state, control input, and measurement output,
respectively. w(t) ∈ Rd indicates the external disturbance
that belong to L2[0,∞). f(t) ∈ Rm signifies actuator faults
with an assumption that ḟ(t) belongs to L2[0,∞). ψα(ϖ(t))
represents the premise variables and 0̃i

α stands for IT2 fuzzy
sets where α = 1, 2, . . . ,Ψ and i = 1, 2, . . . , r. ϖ(t) denotes
the measurable system states. Ai, Bi, Di, and C are known
constant matrices. The subsequent interval sets depict the firing
strength of rule i

Wi(ϖ(t)) = [wi(ϖ(t)), w̄i(ϖ(t))], i = 1, 2, . . . , r

in which wi(ϖ(t)) =
∏Ψ

α=1 µ0̃i
α

(ψα(ϖ(t))) and

w̄i(ϖ(t)) =
∏Ψ

α=1 µ̄0̃i
α
(ψα(ϖ(t))) denote the lower and

upper grades of membership, respectively. µ
0̃i

α

(ψα(ϖ(t)))

and µ̄0̃i
α
(ψα(ϖ(t))) signify the lower and upper membership

functions, respectively. Upon definitions of IT2 membership
functions, µ̄0̃i

α
(ψα(ϖ(t))) ≥ µ

0̃i
α

(ψα(ϖ(t))) ≥ 0, which
results in the holding of w̄i(ϖ(t)) ≥ wi(ϖ(t)) ≥ 0 for all i.
The inferred IT2 fuzzy model is shown asẋ(t) =

r∑
i=1

wi(ϖ(t))
[
Aix(t) +Bi

(
u(t) + f(t)

)
+Diw(t)

]
,

y(t) = Cx(t),
(1)
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in which wi(ϖ(t)) = ϵi(ϖ(t))wi(ϖ(t)) +
ϵ̄i(ϖ(t))w̄i(ϖ(t)) ≥ 0, furnished with the performance
that

∑r
i=1 wi(ϖ(t)) = 1. 0 ≤ ϵi(ϖ(t)) ≤ 1 and

0 ≤ ϵ̄i(ϖ(t)) ≤ 1 indicate nonlinear weighting functions with
ϵi(ϖ(t)) + ϵ̄i(ϖ(t)) = 1 for all i. In this work, the fuzzy
system (1) is assumed to be controllable and observable,
which allows existence of controllers and observers to attain
the expected FTC performance.

Remark 1. In this work, the actuator is only supposed to
suffer partial damage. Under such a condition, the faults may
be compensated by adjusting the actuator action.

B. IT2 Fuzzy Observer With Sampled-Output Measurements

In this work, the designed observer relies only on the
sampled-output measurements to simultaneously estimate sys-
tem states and actuator faults. In addition, as system member-
ship functions are uncertain, the proposed fuzzy observer only
shares the known bound expressions of membership functions
with the fuzzy system. Thus, the rule j of the IT2 fuzzy
observer is represented by

Rule j: IF ψ1(ϖ(ts)) is 0̃
j
1 and ψ2(ϖ(ts)) is 0̃

j
2 and · · ·

and ψΨ(ϖ(ts)) is 0̃
j
Ψ, THEN

˙̂x(t) = Aj x̂(t) +Bj

(
u(t) + f̂(t)

)
+ Lj

(
y(ts)− ŷ(ts)

)
,

˙̂
f(t) = Fj

(
y(ts)− ŷ(ts)

)
,

ŷ(t) = Cx̂(t),

where x̂(t) ∈ Rn, f̂(t) ∈ Rm, ŷ(t) ∈ Rp are the observer
state, fault estimation, and observer output, respectively. ts
denotes the sth sampling time with ts+1 − ts ≤ h. Lj and Fj

denote the fuzzy observer gains that need to be decided with
j = 1, 2, . . . , r. The IT2 fuzzy observer is represented as

˙̂x(t) =

r∑
j=1

θj(ϖ(ts))
[
Aj x̂(t) +Bj

(
u(t) + f̂(t)

)
+ Lj

(
y(ts)− ŷ(ts)

)]
,

˙̂
f(t) =

r∑
j=1

θj(ϖ(ts))
[
Fj

(
y(ts)− ŷ(ts)

)]
,

ŷ(t) = Cx̂(t),

(2)

where θj(ϖ(ts)) =
αj(ϖ(ts))wj(ϖ(ts))+ᾱj(ϖ(ts))w̄j(ϖ(ts))∑r

k=1

(
αk(ϖ(ts))wk(ϖ(ts))+ᾱk(ϖ(ts))w̄k(ϖ(ts))

)
with

∑r
j=1 θj(ϖ(ts)) = 1. 0 ≤ αj(ϖ(ts)) ≤ 1 and

0 ≤ ᾱj(ϖ(ts)) ≤ 1 denote nonlinear weighting functions
with αj(ϖ(ts)) + ᾱj(ϖ(ts)) = 1 for all j, which can be
determined in light of the practical demand [?].

C. IT2 Fuzzy Fault-Tolerant Controller

Upon the estimated information on actuator faults and
system states, an IT2 fuzzy fault-tolerant controller will be
developed to ensure the stability of the uncertain nonlinear
system suffering from actuator faults in the form of IT2 fuzzy
model (1). To furnish the fuzzy controller with more design
freedom, the constructed controller is capable of having its
particular membership functions, potentially differing from

those of the concerned fuzzy system. The rule l of the IT2
fuzzy fault-tolerant controller is shown by

Rule l: IF φ1(ϖ(ts)) is ℵ̃l
1 and φ2(ϖ(ts)) is ℵ̃l

2 and · · ·
and φΩ(ϖ(ts)) is ℵ̃l

Ω, THEN

u(t) = Klx̂(t)− f̂(t),

in which φυ(ϖ(ts)) and ℵ̃l
υ , υ = 1, 2, . . . ,Ω, l = 1, 2, . . . , c,

denote the premise variables and IT2 fuzzy sets, respectively.
Kl is the fuzzy controller gain that needs to be decided. The
subsequent interval sets depict the firing strength of rule l

Ml(ϖ(ts)) = [ml(ϖ(ts)), m̄l(ϖ(ts))], l = 1, 2, . . . , c

in which ml(ϖ(ts)) =
∏Ω

υ=1 µℵ̃l
υ

(φυ(ϖ(ts)) and

m̄l(ϖ(ts)) =
∏Ω

υ=1 µ̄ℵ̃l
υ
(φυ(ϖ(ts)) indicate the

lower and upper grades of membership, respectively.
µℵ̃l

υ

(φυ(ϖ(ts))) and µ̄ℵ̃l
υ
(φυ(ϖ(ts))) represent the

lower and upper membership functions, respectively.
Upon definitions of IT2 membership functions,
µ̄ℵ̃l

υ
(φυ(ϖ(ts))) ≥ µℵ̃l

υ

(φυ(ϖ(ts))) ≥ 0, which results
in the holding of m̄l(ϖ(ts)) ≥ ml(ϖ(ts)) ≥ 0 for all l. The
inferred IT2 fuzzy fault-tolerant controller is shown by

u(t) =

c∑
l=1

ml(ϖ(ts))
[
Klx̂(t)− f̂(t)

]
, (3)

where ml(ϖ(ts)) =
β
l
(ϖ(ts))ml(ϖ(ts))+β̄l(ϖ(ts))m̄l(ϖ(ts))∑c

k=1

(
β
k
(ϖ(ts))mk(ϖ(ts))+β̄k(ϖ(ts))m̄k(ϖ(ts))

)
and

∑c
l=1ml(ϖ(ts)) = 1. β

l
(ϖ(ts)) ∈ [0, 1] and

β̄l(ϖ(ts)) ∈ [0, 1] denote nonlinear weighting functions
having the property β

l
(ϖ(ts)) + β̄l(ϖ(ts)) = 1 for all l.

Remark 2. Note that the proposed fuzzy FTC technique
utilizes only sampled-output measurements to stabilize the
closed-loop system, which is greatly practical and significant
in engineering applications due to widely used digital tech-
nologies. The observer-based FTC design with sampled-output
measurements is the first time to be considered for uncertain
nonlinear systems in the IT2 fuzzy model. Furthermore, the
proposed fuzzy fault-tolerant controller enjoys a high degree of
freedom in selecting the number of fuzzy rules and membership
functions not constrained to the counterpart of the fuzzy system
by virtue of the IPM scheme.

D. Useful Lemmas

Lemma 1. [?] Let g(x) ∈ Υ[ι1 ι2) with g(ι1) = 0. Then for
any matrix M > 0, the inequality below is satisfied:∫ ι2

ι1

gT (x)Mg(x)dx ≤ 4(ι2 − ι1)
2

π2

∫ ι2

ι1

ġT (x)Mġ(x)dx.

Lemma 2. [?] With symmetric matrix X , positive definite
matrix W and scalar ς , the following inequality holds:

−XW−1X ≤ ς2W − 2ςX.

Lemma 3. [?] For any matrix
[
U V
⋆ U

]
≥ 0, scalar function

ϑ(t) ∈ [0, h], and vector function ξ(t) : [−h, 0] −→ R2n+m
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so that the integration in the inequality below is well defined,
then

−h
∫ t

t−h

ξ̇T (ν)Uξ̇(ν)dν ≤ ηT (t)△ η(t),

in which

△ =

−U U − V V
⋆ −2U + V + V T U − V
⋆ ⋆ −U

 ,
η(t) =

[
ξT (t) ξT (t− ϑ(t)) ξT (t− h)

]T
.

III. MAIN RESULTS

Upon the preliminaries aforementioned, the stability analy-
sis of the whole closed-loop system in the IT2 fuzzy frame-
work will be conducted with the prescribed H∞ performance
in this section. Then, resorting to the obtained MFD stability
criteria, the integrated design strategy of the FE and FTC will
be proposed in the form of the LMI.

A. Stability and H∞ Performance Analysis

Denote ex(t) = x(t) − x̂(t), ef (t) = f(t) − f̂(t), e(t) =
[eTx (t) e

T
f (t)]

T , and v(t) = [wT (t) ḟT (t)]T . In this work, the
sampling behavior is handled by the input delay approach.
Thus, defining ϑ(t) = t − ts for ts ≤ t < ts+1, we can get
0 ≤ ϑ(t) < h. Applying ts = t− ϑ(t) and combining (1), (2)
and (3), we have

ẋ(t) =

r∑
i=1

c∑
l=1

wi(ϖ(t))ml(ϖ(ts))
[
(Ai +BiKl)x̂(t)

+Aiex(t) +Bief (t) +Diw(t)
]
, (4)

˙̂x(t) =

r∑
j=1

c∑
l=1

θj(ϖ(ts))ml(ϖ(ts))
[
(Aj +BjKl)x̂(t)

+ LjCex(t− ϑ(t))
]
, (5)

ė(t) =

r∑
i=1

r∑
j=1

c∑
l=1

wi(ϖ(t))θj(ϖ(ts))ml(ϖ(ts)
[
A 21

ijl x̂(t)

+ A 22
i e(t) + A 22

dj e(t− ϑ(t)) + E 21
i v

]
, (6)

where

A 21
ijl =

[
Ai −Aj +

(
Bi −Bj

)
Kl

0

]
,A 22

i =

[
Ai Bi

0 0

]
,

A 22
dj =

[
−LjC 0
−FjC 0

]
,E 21

i =

[
Di 0
0 I

]
.

Denote U (t) = [x̂T (t) eT (t)]T . Combining (5) and (6), an
augmented system is depicted as following:

U̇ (t) =

r∑
i=1

r∑
j=1

c∑
l=1

wi(ϖ(t))θj(ϖ(ts))ml(ϖ(ts))
[
AijlU (t)

+ AdjU (t− ϑ(t)) + Eiv(t)
]
,

zp(t) = Cxx̂(t) + Cee(t),
(7)

where

Aijl =

[
A 11

jl 0

A 21
ijl A 22

i

]
, Adj =

[
0 A 12

dj

0 A 22
dj

]
, Ei =

[
0

E 21
i

]
,

A 11
jl = Aj +BjKl, A 12

dj =
[
LjC 0

]
,

A 21
ijl , A 22

i , A 22
dj and E 21

i have been defined under (6). zp(t) ∈
R2n+m represents the performance output where weighting
matrices Cx and Ce are given by the user.

In the subsequent analysis, for notational convenience,
wi(ϖ(t)), θj(ϖ(ts)) and ml(ϖ(ts)) are represented by wi, θsj
and ms

l , respectively. The augmented system (7) is rewritten
in a concise form asU̇ (t) =

r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lΓijlζ(t),

zp(t) = C̄U (t),

(8)

where Γijl = [Aijl Adj 0 Ei], ζ(t) = [U T (t) U T (t −
ϑ(t)) U T (t− h) vT (t)]T , and C̄ = [Cx Ce].

Remark 3. According to (4) and (6), we can find that the
bidirectional robustness interaction exists between the control
system and the observer. Consequently, it is infeasible to
conduct the controller design independent of the observer
design. To get rid of this problem, we integrate together
the design of fault-tolerant controller and observer, which is
conducive to attaining an optimal solution with the desired
fault-tolerant performance.

The target of the article is to develop the fault-tolerant
controller based on FE using sampled-output measurements so
that augmented system (7) is asymptotically stable despite the
occurrence of actuator faults and satisfies the prescribed H∞
performance

∫∞
0
zTp (t)zp(t)dt ≤ γ2

∫∞
0
vT (t)v(t)dt under the

zero initial condition.

Theorem 1. With given scalars γ > 0, hijlu, δijlu, fuzzy
observer gain matrices Lj ∈ Rn×p, Fj ∈ Rm×p, and fuzzy
controller gain matrix Kl ∈ Rm×n, the augmented system (7)
is guaranteed to be asymptotically stable under the prespec-
ified H∞ performance index γ, if there exist positive definite
matrices P ∈ R(2n+m)×(2n+m), Q ∈ R(2n+m)×(2n+m),
R ∈ R(2n+m)×(2n+m), Y ∈ R(2n+m)×(2n+m), non-negative
definite matrix Πijlu ∈ R(12n+7m+d)×(12n+7m+d), and matrix
S ∈ R(2n+m)×(2n+m) such that the following inequalities are
satisfied for i, j = 1, 2, . . . , r, l = 1, 2, . . . , c, u = 1, 2, . . . ,U:[

R S
⋆ R

]
≥ 0, (9)

Ξijl −Πijlu ≤ 0, ∀i, j, l, u (10)
r∑

i=1

r∑
j=1

c∑
l=1

(
hijluΞijl + δijluΠijlu

)
< 0, ∀u (11)

where

Ξijl =


Φ̄ijl hΓ

T
ijlR hΓT

ijlY C̄T

⋆ −R 0 0
⋆ ⋆ −Y 0
⋆ ⋆ ⋆ −I

 ,

Φ̄ijl =


Φ̄11

ijl Φ
12
j S PEi

⋆ Φ22 R− S 0
⋆ ⋆ −Q−R 0
⋆ ⋆ ⋆ −γ2I

 ,
Φ̄11

ijl =PAijl + A T
ijlP +Q−R− π2

4
Y,
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Φ12
j =PAdj +R− S +

π2

4
Y,

Φ22 =− 2R+ S + ST − π2

4
Y.

Proof. Consider the discontinuous Lyapunov-Krasovskii func-
tional candidate as below

V (t) =

4∑
k=1

Vk(t), (12)

in which

V1(t) =U T (t)PU (t),

V2(t) =

∫ t

t−h

U T (ν)QU (ν)dν,

V3(t) =h

∫ 0

−h

∫ t

t+w

U̇ T (ν)RU̇ (ν)dνdw,

V4(t) =h
2

∫ t

ts

U̇ T (ν)Y U̇ (ν)dν

− π2

4

∫ t

ts

(
U (ν)− U (ts)

)T
Y
(
U (ν)− U (ts)

)
dν,

with positive matrices P , Q, R, and Y . By virtue of Lemma
1, it is obvious that V4(t) ≥ 0. In addition, V4(t) reduces to
zero at t = ts so that we have limt→t−s

V (t) ≥ V (ts).
Computing the derivative of the Vk(t) (k = 1, 2, 3, 4)

regarding time t and considering ts = t− ϑ(t), we can have

V̇1(t) =U̇ T (t)PU (t) + U T (t)P U̇ (t), (13)

V̇2(t) =U T (t)QU (t)− U T (t− h)QU (t− h), (14)

V̇3(t) =h
2U̇ T (t)RU̇ (t)− h

∫ t

t−h

U̇ T (ν)RU̇ (ν)dν, (15)

V̇4(t) =h
2U̇ T (t)Y U̇ (t)− π2

4

(
U (t)− U (t− ϑ(t))

)T
× Y

(
U (t)− U (t− ϑ(t))

)
. (16)

Resorting to Lemma 3 to address the integral term inside
V̇3(t) in (15), it yields that

V̇3(t) ≤h2U̇ T (t)RU̇ (t)− ζT (t)Λζ(t), (17)

where

Λ =


−R R− S S 0
⋆ −2R+ S + ST R− S 0
⋆ ⋆ −R 0
⋆ ⋆ ⋆ 0

 .
To study the H∞ performance of augmented system (7), the

following index function is introduced

J(t) =

∫ ∞

0

(
zTp (t)zp(t)− γ2vT (t)v(t)

)
dt. (18)

It can be seen that the H∞ performance is guaranteed if
the condition J(t) ≤ 0 holds. Under zero initial conditions,
namely V (t)|t=0 = 0, we can find that

J(t) =

∫ ∞

0

(
V̇ (t)+zTp (t)zp(t)−γ2vT (t)v(t)

)
dt−

∫ ∞

0

V̇ (t)dt

=

∫ ∞

0

(
V̇ (t)+zTp (t)zp(t)−γ2vT (t)v(t)

)
dt−V (∞)+V (0)

≤
∫ ∞

0

(
V̇ (t)+zTp (t)zp(t)−γ2vT (t)v(t)

)
dt. (19)

Hence, considering (13)-(19) along with (8), we can con-
clude that J(t) ≤ 0 once the condition below holds

V̇ (t) + zTp (t)zp(t)− γ2vT (t)v(t)

≤
r∑

i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
l

[
ζT (t)ΓT

ijlPU (t) + U T (t)PΓijlζ(t)
]

+ U T (t)QU (t)− U T (t− h)QU (t− h)− ζT (t)Λζ(t)

− π2

4

(
U (t)− U (t− ϑ(t))

)T
Y
(
U (t)− U (t− ϑ(t))

)
+ U T (t)C̄T C̄U (t)− γ2vT (t)v(t)

+ h2ζT (t)
( r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lΓ

T
ijl

)
(R+ Y )

×
( r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lΓijl

)
ζ(t)

=

r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
l ζ

T (t)Φijlζ(t)

+ h2ζT (t)
( r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lΓ

T
ijlR

)
R−1

×
( r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lRΓijl

)
ζ(t)

+ h2ζT (t)
( r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lΓ

T
ijlY

)
Y −1

×
( r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
l Y Γijl

)
ζ(t)

≤ 0, (20)

in which

Φijl =


Φ11

ijl Φ
12
j S PEi

⋆ Φ22 R− S 0
⋆ ⋆ −Q−R 0
⋆ ⋆ ⋆ −γ2I

 ,
Φ11

ijl =PAijl + A T
ijlP +Q−R− π2

4
Y + C̄T C̄,

Φ12
j =PAdj +R− S +

π2

4
Y,

Φ22 =− 2R+ S + ST − π2

4
Y.

Through utilizing Schur complement, the holding of the
inequality (20) is implied by the following inequality

r∑
i=1

r∑
j=1

c∑
l=1

wiθ
s
jm

s
lΞijl < 0, (21)

in which Ξijl is defined in Theorem 1.
For obtaining less conservative results, the MFD approach is

employed by introducing the membership function information
into the stability criteria. The state space of interest Θ is
partitioned into U connected substate spaces Θu, i.e., Θ =
∪U
u=1Θu, so that more local membership function information
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can be considered. Let us define hijl(ϖ(t), ϖ(ts)) = wiθ
s
jm

s
l

to lighten notations. In each subspace Θu, the constant maxi-
mum and minimum to enclose the local membership function
hijlu(ϖ(t), ϖ(ts)) are denoted as h̄ijlu and hijlu, respectively,
which are included into stability conditions with the aid of
slack matrices. According to the definition of h̄ijlu and hijlu,
it is obvious that 0 ≤ hijlu ≤ hijlu(ϖ(t), ϖ(ts)) ≤ h̄ijlu ≤ 1.
Here, we introduce the slack matrices Πijlu, i, j = 1, 2, . . . , r,
l = 1, 2, . . . , c, u = 1, 2, . . . ,U , with the constraint that
Πijlu ≥ 0 and Πijlu ≥ Ξijl. Thereby, within the subspace
Θu, from (21) we can deduce

r∑
i=1

r∑
j=1

c∑
l=1

hijlu(ϖ(t), ϖ(ts))Ξijl

=

r∑
i=1

r∑
j=1

c∑
l=1

(
hijlu(ϖ(t), ϖ(ts)) + hijlu − hijlu

)
Ξijl

≤
r∑

i=1

r∑
j=1

c∑
l=1

hijluΞijl

+

r∑
i=1

r∑
j=1

c∑
l=1

(
hijlu(ϖ(t), ϖ(ts))− hijlu

)
Ξijl

≤
r∑

i=1

r∑
j=1

c∑
l=1

(
hijluΞijl + δijluΠijlu

)
, (22)

in which δijlu = h̄ijlu − hijlu are constants relative to the
bounds of IT2 membership functions.

Accordingly, the holding of criteria (10) and (11) can
make sure that

∑r
i=1

∑r
j=1

∑c
l=1 hijlu(ϖ(t), ϖ(ts))Ξijl < 0,

which guarantees the H∞ performance of the augmented
system (7). Furthermore, when v(t) = 0, considering (20)-
(22), it is obvious that V̇ (t) < 0 excluding U (t) = 0, which
indicates that augmented system (7) is asymptotically stable.
This completes the proof.

Remark 4. Because of the sampling mechanism adopted,
the values of hijlu(ϖ(t), ϖ(ts)) are dependent on both ϖ(t)
and ϖ(ts). As we deem ϖ(ts) totally irrelevant to ϖ(t),
the injected information of membership functions cannot be
extracted well via hijlu and δijlu. The potential relation
between ϖ(t) and ϖ(ts) should be explored to calculate lower
and upper bounds of hijlu(ϖ(t), ϖ(ts)) to narrow down the
bounds of IT2 membership functions, which helps further relax
the MFD stability criteria. Recalling that ts = t − ϑ(t) and
0 ≤ ϑ(t) < h over a sampling period, ϖi(ts) can be estimated
via ϖi(t) by: ϖi(ts) ∈ [ϖi(t)− hϖ̇imax ϖi(t) + hϖ̇imax],
where ϖi(ts) and ϖi(t) represent the i-th element of vectors
ϖ(ts) and ϖ(t), respectively. ϖ̇imax denotes the maximum
value of |ϖ̇i(t)| amid the dynamic process. Hence, based
on the aforementioned estimation, hijl(ϖ(t), ϖ(ts)) can be
estimated by hijl(ϖ(t)) which only depends on the variable
ϖ(t).

B. Integrated Design of IT2 Fuzzy Observer and Fault-
Tolerant Controller

Note that the observer and controller gain matrices are
coupled with unknown matrix variables in Theorem 1, so

that the gain matrices cannot be immediately solved through
Theorem 1 by utilizing the LMI toolbox. Hence, according to
the results developed in Theorem 1, the procedures on the co-
design of the fuzzy fault-tolerant controller and fuzzy observer
are provided in what follows.

Theorem 2. With given scalars γ > 0, hijlu, δijlu, ς1,
ς2, and constant matrix J ∈ Rn×m, the augmented
system (7) is guaranteed to be asymptotically stable un-
der the prespecified H∞ performance index γ, if there
exist positive definite matrices W1 ∈ Rn×n, W2 ∈
Rn×n, W3 ∈ Rm×m, Q̄ ∈ R(2n+m)×(2n+m), R̄ ∈
R(2n+m)×(2n+m), Ȳ ∈ R(2n+m)×(2n+m), non-negative defi-
nite matrix Π̄ijlu ∈ R(12n+7m+d)×(12n+7m+d), and matrices
S̄ ∈ R(2n+m)×(2n+m), N ∈ Rp×p, Tj ∈ Rn×p, Gj ∈ Rm×p,
Ml ∈ Rm×n for i, j = 1, 2, . . . , r, l = 1, 2, . . . , c, u =
1, 2, . . . ,U , such that

CW2 = NC (23)[
R̄ S̄
⋆ R̄

]
≥ 0, (24)

Ξ̆ijl − Π̄ijlu ≤ 0, ∀i, j, l, u (25)
r∑

i=1

r∑
j=1

c∑
l=1

(
hijluΞ̆ijl + δijluΠ̄ijlu

)
< 0, ∀u (26)

where

Ξ̆ijl =



Ξ̆11
ijl Ξ̆

12
j S̄ Ēi Ξ̆15

ijl Ξ̆16
ijl WC̄T

⋆ Ξ̄22 Ξ̄23 0 Ξ̆25
j Ξ̆26

j 0
⋆ ⋆ Ξ̄33 0 0 0 0
⋆ ⋆ ⋆ −γ2I hĒ T

i hĒ T
i 0

⋆ ⋆ ⋆ ⋆ Ξ̄55 0 0
⋆ ⋆ ⋆ ⋆ ⋆ Ξ̄66 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I


,

Ξ̆11
ijl =

Σ11
jl Σ12

ijl 0

⋆ Σ22
i Σ23

i

⋆ ⋆ 0

+ Q̄− R̄− π2

4
Ȳ ,

Ξ̆12
j =

 0 TjC TjCJ
0 −TjC −TjCJ
0 −GjC −GjCJ

+ R̄− S̄ +
π2

4
Ȳ ,

Ξ̆15
ijl =Ξ̆16

ijl =

Υ11
jl Υ12

ijl 0

0 Υ22
i 0

0 Υ32
i 0

 , W =

W1 0 0
⋆ W2 W2J
⋆ ⋆ W3

 ,
Ξ̄22 =− 2R̄+ S̄ + S̄T − π2

4
Ȳ , Ξ̄23 = R̄− S̄,

Ξ̆25
j =Ξ̆26

j =

 0 0 0
hCTTT

j −hCTTT
j −hCTGT

j

hJ TCTTT
j −hJ TCTTT

j −hJ TCTGT
j

 ,
Ξ̄33 =− Q̄− R̄, Ξ̄55 = ς21 R̄− 2ς1W, Ξ̄66 = ς22 Ȳ − 2ς2W,

Σ11
jl =AjW1 +BjMl +W1A

T
j +MT

l B
T
j ,

Σ12
ijl =W1(Ai −Aj)

T +MT
l (Bi −Bj)

T ,

Σ22
i =AiW2 +BiJ

TW2 +W2A
T
i +W2JBT

i ,

Σ23
i =AiW2J +BiW3,

Υ11
jl =h

(
W1A

T
j +MT

l B
T
j

)
,

Υ12
ijl =h

(
W1(Ai −Aj)

T +MT
l (Bi −Bj)

T
)
,

Υ22
i =h

(
W2A

T
i +W2JBT

i

)
,
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Υ32
i =h

(
J TW2A

T
i +W3B

T
i

)
.

Then the observer gains are obtained as Lj = TjN
−1, Fj =

GjN
−1, and the fault-tolerant controller gain is obtained as

Kl =MlW
−1
1 .

Proof. Aiming to attain the convex design criteria that can be
handled by convex programming strategies, the congruence
transformation is employed to (10)-(11) by pre- and post-
multiplication of X = diag{W,W,W, I,R−1, Y −1, I} with
the definition W = P−1. After performing the congru-
ence transformation, apply Lemma 2 to the terms −R−1 =
−WR̄−1W and −Y −1 = −WȲ −1W respectively to circum-
vent the existence of R−1 and Y −1 in the design conditions.
Then, it yields

Ξ̄ijl − Π̄ijlu ≤ 0, ∀i, j, l, u (27)
r∑

i=1

r∑
j=1

c∑
l=1

(
hijluΞ̄ijlu + δijluΠ̄ijl

)
< 0, ∀u (28)

where

Ξ̄ijl =



Ξ̄11
ijl Ξ̄

12
j S̄ Ēi Ξ̄15

ijl Ξ̄16
ijl WC̄T

⋆ Ξ̄22 Ξ̄23 0 Ξ̄25
j Ξ̄26

j 0
⋆ ⋆ Ξ̄33 0 0 0 0
⋆ ⋆ ⋆ −γ2I hĒ T

i hĒ T
i 0

⋆ ⋆ ⋆ ⋆ Ξ̄55 0 0
⋆ ⋆ ⋆ ⋆ ⋆ Ξ̄66 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I


,

R̄ =WRW, S̄ =WSW, Q̄ =WQW, Ȳ =WYW,

Ξ̄11
ijl =AijlW +WA T

ijl + Q̄− R̄− π2

4
Ȳ ,

Ξ̄12
j =AdjW + R̄− S̄ +

π2

4
Ȳ , Ξ̄15

ijl = Ξ̄16
ijl = hWA T

ijl,

Ξ̄25
j =Ξ̄26

j = hWA T
dj , Π̄ijlu = XΠijluX .

Ξ̄22, Ξ̄23, Ξ̄33, Ξ̄55, and Ξ̄66 are the same as defined in
Theorem 2. Similarly, after pre- and post-multiplication of
diag{W,W} to (9), we can get the condition (24).

In order to facilitate design synthesis, the positive definite
matrix W is specified as

W =

W1 0 0
⋆ W2 W2J
⋆ ⋆ W3

 , (29)

where matrix variables W1 ∈ Rn×n, W2 ∈ Rn×n, and W3 ∈
Rm×m are unknown, while J ∈ Rn×m is the constant matrix
chosen by the user. Meanwhile, assume that there exists a
nonsingular matrix N to make the equality constraint CW2 =
NC valid. Then, we have

LjCW2 =LjNC

:=TjC, (30)
FjCW2 =FjNC

:=GjC. (31)

Substituting the matrix variable W constructed in (29) into
(27) and (28) and considering the expressions stated in (30)
and (31) with Ml = KlW1, the inequalities (25) and (26) can
be derived. This completes the proof.

Remark 5. Theorem 2 proposes sufficient conditions for
asymptotical stability of the augmented system (7). However,
there is an equality constraint (23) in Theorem 2, which is
hard to be solved through the LMI toolbox. To obviate this
problem, we introduce the following condition:

(CW2 −NC)T (CW2 −NC) <ϱI, (32)

where ϱ is a positive scalar. By Schur complement, we can
see that (32) can be rewritten as[

−ϱI (CW2 −NC)T

⋆ −I

]
< 0. (33)

In consequence, the issue of solving the conditions (23)-(26)
in Theorem 2 is transformed into the optimization problem
below

min ϱ (34)
subject to (24)-(26) and (33).

IV. SIMULATION EXAMPLE

To validate the efficacy of the designed FTC strategy under
the sampled-data scheme, a numerical example is presented.

Consider a nonlinear system with the parameter uncertainty,
actuator fault and external disturbance, depicted by an IT2 T-S
fuzzy model with three fuzzy rules in the form of (1):

A1 =

[
0.59 −7.29
0.01 −2.85

]
, A2 =

[
0.02 −4.64
0.35 −8.56

]
,

A3 =

[
0.73 8.45
0.26 −15.43

]
, B1 =

[
1
0.3

]
,

B2 =
[
8 2

]T
, B3 =

[
4 0.8

]T
,

D1 =
[
0.5 0.1

]T
, D2 =

[
1 0.1

]T
,

D3 =
[
0.2 0.01

]T
, C =

[
1 0

]
,

in which the lower and upper membership functions of
the IT2 fuzzy model are depicted as: w1(x1(t)) = 1 −
1/(1 + e(−x1(t)−3.5)), w3(x1(t)) = 1/(1 + e(−x1(t)+3.5)),
w̄2(x1(t)) = 1 − w1(x1(t)) − w3(x1(t)), w̄1(x1(t)) = 1 −
1/(1 + e(−x1(t)−2.5)), w̄3(x1(t)) = 1/(1 + e(−x1(t)+2.5)),
w2(x1(t)) = 1 − w̄1(x1(t)) − w̄3(x1(t)). To certify design
flexibility of the established FTC technique by using the
IPM scheme, a two-rule IT2 fuzzy fault-tolerant controller is
provided to stabilize the nonlinear plant subject to the actuator
fault with the lower and upper membership functions defined
as: m1(x1(ts)) = {1, when x1(ts) < −2.2; (−x1(ts)+1.8)/4,
when −2.2 ≤ x1(ts) ≤ 1.8; 0, when x1(ts) > 1.8},
m̄1(x1(ts)) = {1, when x1(ts) < −1.8; (−x1(ts) + 2.2)/4,
when −1.8 ≤ x1(ts) ≤ 2.2; 0, when x1(ts) > 2.2},
m̄2(x1(ts)) = 1−m1(x1(ts)), m2(x1(ts)) = 1−m̄1(x1(ts)).

The operation domain of x1(t) is assumed within the range
of [−3, 3]. As discussed before, more abundant information
of membership functions will be captured via partitioning
the entire operation domain into a series of subdomains. But
the more subdomains are, the higher the computation cost
will be. Here, the operating domain x1 is partitioned into 5
uniform subdomains where the suddomain is characterized by
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[− 21
5 + 6

5u,−3 + 6
5u], u = 1, 2, . . . , 5. To apply the FTC

approach built in Theorem 2, let us define ς1 = 0.1, ς2 = 0.1,
J = [1 1]T . Set the sampling interval h = 0.01s and
ẋ1max = 10 which should be verified by simulations. In light
of Remark 4, the largest variation of x1(t) over a sampling
period can be calculated by hẋ1max = 0.1. It implies that
x1(ts) locates in the interval of [x1(t) − 0.1, x1(t) + 0.1].
This relationship helps gain more accurate constant parameters
hijlu and δijlu relevant to bounds of membership functions. By
solving the minimization problem (34) under the prespecified
H∞ performance γ = 1.5, the fuzzy observer and fuzzy fault-

tolerant controller gains are computed as: L1 =

[
7.5160
2.5580

]
,

L2 =

[
32.9597
5.6985

]
, L3 =

[
14.6504
5.1413

]
, F1 = 8.2363,

F2 = 15.6380, F3 = 27.3333, K1 =
[
−2.9992 2.5619

]
,

K2 =
[
−3.1414 1.7613

]
.

To conduct simulations, we assume that ϵ1(x1(t)) =
(sin(x1(t)) + 1)/2, ϵ̄1(x1(t)) = 1 − ϵ1(x1(t)), ϵ3(x1(t)) =
(cos(x1(t)) + 1)/2, ϵ̄3(x1(t)) = 1 − ϵ3(x1(t)), through
which w1(x1(t)) and w3(x1(t)) can be obtained. ϵ2(x1(t))
and ϵ̄2(x1(t)) are unnecessary to know as w2(x1(t)) can
be calculated based on the relationship w2(x1(t)) = 1 −
w1(x1(t)) − w3(x1(t)). Besides, for the observer and fault-
tolerant controller, the weighting functions are selected as:
αj(x1(ts)) = ᾱj(x1(ts)) = 0.5, j = 1, 2, 3, and β

l
(x1(ts)) =

β̄l(x1(ts)) = 0.5, l = 1, 2, respectively. We first assume the
actuator fault f(t) as

f(t) =

{
0, t < 5,

2(1− e−0.5(t−5)), t ≥ 5.

The external disturbance is depicted as w(t) =
e−0.2t sin(0.3t). The simulation results are provided by Figs.
1-3 under the initial states x(0) = [1 − 0.8]T and x̂(0) =
[−0.5 0]T . Specifically, Fig. 1 displays the state responses
of the open-loop system; Fig. 2 shows the time response of
the actuator fault and its estimation; Fig. 3 represents the
trajectories of system states and their estimations. From Fig.
1, we can find that the concerned system is unstable without
cooperation of the controller. As displayed in Figs. 2 and 3,
the obtained sampled-data fuzzy observer can reconstruct the
actuator fault and system states with a satisfactory level. And
also, it is observed that the obtained fault-tolerant controller
can successfully stabilize the closed-loop system with system
states asymptotically approaching zero despite the appearance
of actuator faults. It demonstrates the efficacy of the provided
FE-based FTC approach with sampled-output measurements.

To further demonstrate the robust FTC performance of
the presented strategy, we assume the actuator fault f(t) as
follows:

f(t) =


1, 10 < t ≤ 20,

1.5− 0.5e(−t+20), 20 < t ≤ 40,

0.5 + cos(0.1t− 4), 40 < t ≤ 123,

0, otherwise.

The simulation results are represented in Figs. 4 and 5. Fig.
4 displays the time response of the actual fault and its estima-
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Fig. 1. Time response of system state x(t) of the open-loop system
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Fig. 2. Time response of actuator fault f(t) and its estimation f̂(t)
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Fig. 3. Time response of system state x(t) and its estimation x̂(t)
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Fig. 4. Time response of actuator fault f(t) and its estimation f̂(t)
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Fig. 5. Time response of system state x(t) and its estimation x̂(t)

tion, and Fig. 5 exhibits the trajectories of system states and
their estimations. It indicates that the actuator fault and system
states can be effectively estimated by the designed fuzzy
observer, and the system states converge to zero gradually
based on the obtained fuzzy fault-tolerant controller. In light of
the simulation results above, we can draw a conclusion that the
fault compensation based fault-tolerant controller is well built
to stabilize the nonlinear system suffering from uncertainties,
actuator faults and external disturbance, which demonstrates
the validity of the proposed sampled-data observer-based FTC
approach.

Remark 6. To validate the merits of the proposed MFD FTC
technique, the elements related to the information on member-
ship functions in Theorem 2 are removed. The stability con-
ditions will reduce to the membership-function-independent
(MFI) form, which are concluded by a minimization problem
ϱ subject to the LMI constraints of (24), (33), and Ξ̆ijl < 0 for
i, j = 1, 2, . . . , r, l = 1, 2, . . . , c. The remaining parameters
are under the same setting above-mentioned, and the MFI
approach does not provide a feasible solution, which manifests
that our proposed MFD FTC strategy excels the MFI one with

the results relaxed.

V. CONCLUSION

In this paper, we propose an integrated design strategy of
the FE and FTC for IT2 fuzzy systems subject to uncertainties,
actuator faults, and external disturbance. Using only sampled-
output measurements, an IT2 fuzzy observer on jointly esti-
mating actuator faults and system states is presented. Upon the
estimated information, an IT2 fuzzy fault-tolerant controller
is designed to compensate for the impact of faults on the
plant and stabilize the closed-loop system with a satisfactory
performance. To make the results less conservative, the MFD
approach is employed in the stability analysis. This approach
considers information from the sampling process to narrow
down the boundaries of membership functions. Finally, the
simulation example demonstrates the efficacy of the integrated
FTC approach with sampled-output measurements provided
in this work. The future research topics could include the
extension of the main results in the IT2 fuzzy framework, such
as fault-tolerant tracking control and FTC for simultaneous
actuator and sensor faults.


