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Abstract

Dynamical seasonal forecast models are improving with time but tend to

underestimate the amplitude of atmospheric circulation variability and to have

lower skill in predicting summer variability than in winter. Here, we construct

Nonlinear AutoRegressive Moving Average models with eXogenous inputs

(NARMAX) to develop the analysis of drivers of North Atlantic atmospheric

circulation and jet-stream variability, focusing on the East Atlantic (EA) and

Scandinavian (SCA) patterns as well as the North Atlantic Oscillation (NAO)

index. New time series of these indices are developed from empirical orthogo-

nal function (EOF) analysis. Geopotential height data from the ERA5 reanaly-

sis are used to generate the EOFs. Sets of predictors with known associations

with these drivers are developed and used to formulate a sliding-window NAR-

MAX model. This model demonstrates a high degree of predictive accuracy, as

indicated by its average correlation coefficients over the testing period (2006–

2021): 0.78 for NAO, 0.83 for EA and 0.68 for SCA. In comparison, the SEAS5

and GloSea5 dynamical forecast models exhibit lower correlations with

observed circulation changes: for NAO, the correlation coefficients are 0.51 for

SEAS5 and 0.34 for GloSea5, for EA they are 0.15 and 0.09, respectively, and

for SCA, they are 0.28 and 0.24, respectively. Comparison of NARMAX predic-

tions with forecasts and hindcasts from the SEAS5 and GloSea5 models high-

lights areas where NARMAX can be used to help improve seasonal forecast

skill and inform the development of dynamical models, especially in the case

of summer.
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1 | INTRODUCTION

The North Atlantic jet stream strongly influences the

weather in Northwest Europe and has a significant role

in determining the strength and sign of North Atlantic

atmospheric circulation indices such as the North Atlan-

tic Oscillation (NAO), East Atlantic (EA) pattern, and

Scandinavian (SCA) pattern; the anomalous weather pat-

terns of a particular season can be described by the inter-

play of these modes of variability (Hall & Hanna, 2018).

Recent extreme seasons have been characterized by dis-

tinctive jet-stream configurations, and jet strength and

location are intimately linked with extreme weather con-

ditions (e.g., in temperature and precipitation) experi-

enced across Northwest Europe (Hall & Hanna, 2018).

Extreme seasonal weather has important socio-economic

implications, in terms of risk avoidance, with costs to the

insurance industry (e.g., �£1.5 billion across the UK in

winter 2013/14 (Davies, 2014)), and impacts on agricul-

ture, food security, energy supply, public health/well-

being and severe weather planning.

Until relatively recently, North Atlantic atmospheric

variability was thought to be largely due to unpredictable

fluctuations (Stephenson et al., 2000). However, dynami-

cal seasonal forecasting systems have been used to

develop skillful seasonal forecasts for UK winter weather

from a few months ahead (Scaife et al., 2014). Many fac-

tors (drivers) appear to influence the NAO and jet-stream

changes, and these potential drivers can be broadly

grouped into cryosphere effects from variations in sea-ice

extent and snow cover, oceanic effects from North Atlan-

tic sea-surface temperatures (SST), tropical influences

such as the El-Niño Southern Oscillation (ENSO), and

stratospheric effects due to stratospheric circulation vari-

ability, solar variability, volcanic eruptions and the

Quasi-Biennial Oscillation (QBO) (Hall et al., 2015).

These drivers of jet-stream variability can oppose or

reinforce one another, and there are indications of inter-

actions between them (Hall et al., 2019). Drivers of jet-

stream variability show seasonal variation and distinctive

drivers of jet-stream variability operate in different sea-

sons. In addition to these identifiable drivers, a signifi-

cant part of North Atlantic jet changes is driven by

internal unforced variability due to chaotic internal

dynamical processes (Kushnir et al., 2006; Lorenz, 1963).

While a consensus has now been reached that some

observed drivers can be reproduced in climate models,

improved understanding of more recently identified

drivers of the North Atlantic extratropical jet stream is

crucial for making progress in UK seasonal climate pre-

dictions (Hall et al., 2015).

The focus of government-funded research is on dynami-

cal forecast systems; however, such forecasts are not always

accurate, such as in winter 2004–2005 (Hall, Scaife,

et al., 2017) and more recently in 2013–2014, when dynami-

cal model forecasts did not well predict the positive winter

NAO, and furthermore did not consider the accompanying

positive EA pattern and hence the exceptionally heavy rain

and flooding in southern England (Maidens et al., 2021).

While dynamical seasonal forecast models are sensitive in

winter to tropical forcing such as El Niño events, some evi-

dence suggests that they may be relatively insensitive to

Arctic variability (Cohen et al., 2019). Compared with win-

ter, dynamical model forecasts show relatively little skill in

summer, when there is less forcing from the tropics (Hall

et al., 2015). Recent work on seasonal prediction with

dynamical models has also revealed an intriguing conun-

drum called the signal-to-noise paradox: this is where such

models reasonably well predict the year-to-year variability

of the winter NAO but underpredict its amplitude, due to a

systematic underestimation of the mechanisms influencing

mid-latitude atmospheric circulation (Eade et al., 2014;

Scaife et al., 2014; Siegert et al., 2016; Stockdale et al., 2015).

Rare events are usually forecast to have a low probability

partly due to the signal-to-noise paradox, meaning that if a

model predicts a low, but above-average, chance of a rare

event happening, this does not necessarily constitute a

missed event (Legg & Mylne, 2004). Supplementing dynam-

ical seasonal forecasting systems, statistical methods iden-

tify slowly varying boundary conditions such as sea-ice

variability, ocean temperatures, and influences from the

stratosphere, which are capable of ‘nudging’ the jet stream

and providing elements of predictability (e.g., Baker

et al., 2018; Hall, Jones, et al., 2017; Hall, Scaife,

et al., 2017). In the mid-latitudes, statistical forecasting has

been relatively neglected compared with the tropics; how-

ever, recent developments in statistical techniques, under

the umbrella of ‘machine learning’ (e.g., Billings, 2013; Hall

et al., 2019) have taken place mainly outside the climate-

science community and are relatively quick and cheap to

implement.

The novel application of these advanced statistical tech-

niques and systems science methods has significant poten-

tial to improve forecast skills and help inform the

development of the next generation of dynamical seasonal

forecasting systems. Here, we use a Nonlinear AutoRegres-

sive Moving Average with eXogenous inputs (NARMAX)

systems identification approach (Billings, 2013; Hall

et al., 2019), which is an interpretable machine learning

method, to identify and model linear and nonlinear

dynamic relationships between a range of meteorological

and related variables. In addition to its ability to delineate

nonlinear relations, NARMAX is able to identify non-

stationary associations that arise from changes in forcings

over time, building on studies where dynamical models

have suggested changes in NAO forecast skill over periods
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of several decades (Weisheimer et al., 2019), and so NAR-

MAX, therefore, has significant potential to help improve

Northwest Europe seasonal weather forecasts. In a pioneer-

ing application of NARMAX in this area, Hall et al., 2019

found significant skill in NAO winter forecasting and iden-

tified key sources of predictability. Here, we extend skillful

seasonal forecasting to the summer season, where dynami-

cal seasonal prediction models currently remain the most

problematic, and identify factors that contribute skill to the

forecast. In a further innovation, we also consider two other

principal North Atlantic atmospheric circulation patterns

that complement the NAO. Our results form a firm basis

for improving Northwest European regional seasonal

weather prediction and should therefore be of interest to

potential end-users as well as to model developers and the

broader seasonal prediction scientific community.

2 | DATA

Updated versions of the three principal EOFs of

European and North Atlantic atmospheric circulation

variability (NAO, EA and SCA) were generated using

500 hPa geopotential height data from the European

Centre for Medium-Range Forecasts (ECMWF) ERA5

reanalysis (Hersbach et al., 2020), combined with the

Python eofs package (Dawson, 2016). ERA5 is based on

the Integrated Forecasting System (IFS) and replaces

ECMWF's earlier ERA-40 and ERA-Interim reanalysis

products. We obtained ERA5 data, specifically of

sea-surface temperatures (SSTs), sea-ice cover, sea level

pressure, and 500 hPa geopotential heights, from the

Copernicus Climate Data Store.

The summer EOFs are based only on high summer

(July and August), as using the full June/July/August

data generates a poorly defined pattern for EOF1. This is

consistent with previous analysis, for example, Folland

et al. (2009)), which suggest there is a strong summer

NAO signal that characterizes July and August, while the

summer NAO behaves differently during June. The three

winter EOFs are based on seasonal data for the full win-

ter quarter (December–February). Maps for the winter

and summer EOFs are shown in Figure 1. These are

largely similar to the EOFs obtained by Hall and Hanna

FIGURE 1 The three primary empirical orthogonal functions (EOFs) of atmospheric circulation variability (at the 500 hPa geopotential

height level) from ERA5 reanalysis based on 1950 to 2021 for winter (DJF, left) and high summer (JA, right).
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(2018)) but also show some notable differences. For

example, the winter SCA pattern has the high-pressure

anomaly further west than the (Hall & Hanna, 2018) ver-

sion, centred to the north and north-east of the British

Isles, while the winter NAO has the low-pressure anom-

aly centred to the south of Greenland, rather than over

Iceland. The differences are mostly down to the different

methodology used to calculate the EOFs, rather than dif-

ferent time periods.

Monthly 500 hPa geopotential height forecasts from

SEAS5 (provided by ECMWF) and GloSea5 (provided by

the UK Met Office) were analysed and projected onto the

EOFs using projectField from the eofs package. Seasonal

forecast runs were provided by the Copernicus Climate

TABLE 1 Potential drivers of winter and summer atmospheric circulation variability that are used as predictors for NARMAX models.

Dataset

Variable used and their abbreviations

as used in this study Region selected Dates

Atlantic Multidecadal Oscillation

(AMO)

ERA5 SST 7–75 W, 25–60 N, regional SST anomaly

minus global SST anomaly

1956–2021

Sea-surface temperature Nino 3.4

Tropical Atlantic (TASST)

W. Indian Ocean (WISST)

E. Indian Ocean (EISST)

W. Pacific (WPSST)

E. Pacific (EPSST)

North Atlantic Horseshoe (NAH)

North Atlantic dipole (DIP)

North Atlantic tripole (TRI)

Sub-Polar Gyre (GRE)

Barents Sea SST (Bar_SST)

Greenland/Iceland Norwegian Seas

(GIN)

North Atlantic SST gradient (SST_grad)

Sub-Polar Gyre (SPG_SST)

170–120 W, 5S–5N

50 W–0E,5S–5N

50–85E, 5S–5N

85–120E, 5S–5N

120–170E, 5S–5N

140–90 W, 5S–5N

40–15 W, 15–30 N minus 60–40 W, 30–

45 N

52–40 W, 42–52 N minus 35–20 W, 35–

42 N

60-40 W, 40-55 N minus 80–60 W, 25–

35 N

60–10 W, 50–65 N

25–70E, 75–80 N

20 W–20E, 65–80 N

60–30 W, 20–40 N minus 60–10 W, 50–

65 N

60–10 W, 50–65 N

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

Sea-ice concentration Barents–Kara Seas (BK)

E. Siberian/Laptev Seas (ESL)

Beaufort/Chukchi Seas (BC)

Canadian Archipelago/Baffin Bay (ArB)

Greenland Sea (GRE)

Bering Sea (BER)

Hudson Bay (HUD)

Labrador Sea (LAB)

10–100E, 65–85 N

100–180E, 68–85 N

180–120 W, 68–85 N

120–45 W, 63–80 N

45–0 W, 63–85 N

195–155 W, 55-68 N

100–70 W, 50:63 N

70–45 W, 40–63 N

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

1956–2021

Tropical precipitation Tropical Atlantic Rainfall (TAR)

W. Indian Ocean Rainfall (WIR)

E. Indian Ocean Rainfall (EIR)

W. Pacific Rainfall (WPR)

E. Pacific Rainfall (EPR)

50 W–0E, 5S–5N

50–85E, 5S–5N

85–120E, 5S–5N

120–170E,5S–5N

140–90 W, 5S–5N

1979–2021

1979–2021

1979–2021

1979–2021

1979–2021

Stratospheric polar vortex Temperature 100 hPa 65–90 N 1956–2021

Sea level pressure Barents SLP 60–120E, 67.5–90 N 1956–2021

Carbon dioxide Annual CO2 level NA 1959–2021

QBO Mean zonal wind, 30 hPa NA 1956–2021

Sunspots Sunspot no. NA 1956–2021

Snow cover extent Eurasian snow 55–150E, 45–80 N 1979–2021

HadCRUT5 2 m Temperature anomaly 90 W–90E, 20–80 N 1955–2021

MJO Indices 200 hPa velocity potential anomalies 1979–2021
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Change Service (C35) via the Climate Data Store website.

For both models, hindcasts are available from 1993 to

2016 inclusive. For SEAS5, a complete set of seasonal

forecast runs is also available from 2017 onwards, but at

the time of analysis for GloSea5 C35 only provided an

incomplete set of seasonal forecast runs covering the win-

ters of 2017/2018 to 2019/2020 inclusive and the sum-

mers of 2018 and 2019.

A number of variables that may be used to predict the

North Atlantic jet-stream and atmospheric circulation vari-

ability, and by extension temperature and precipitation over

Northwest Europe, have been collected for both winter

(DJF) and summer (JJA), building from the drivers identi-

fied by (Hall, 2016; Hall & Hanna, 2018; Hall, Scaife,

et al., 2017). A wide range of potential drivers have been

assembled, so as to be able to select from a wide range of

variables for inclusion in NARMAX. SST anomaly patterns

are used, including the ENSO and the Atlantic Multideca-

dal Oscillation (AMO), plus sea-ice anomalies, snow cover

anomalies and tropical precipitation anomalies. The strato-

spheric polar vortex and QBO are used as predictors for

winter atmospheric circulation, but not summer, due to a

lack of evidence for them having a strong influence on sum-

mer atmospheric circulation.

SST anomalies, sea-ice coverage anomalies, the AMO,

tropical precipitation anomalies and the strength of the

stratospheric polar vortex were calculated based on ERA5

reanalysis data. This version of the AMO is based on the

region from 7 to 75� W, 25 to 60� N, subtracting the global
SST anomaly from the regional SST anomaly to remove

biases that would result from the upward trend in global

SSTs. For summer, an SST-based North Atlantic dipole

index is used, based on Oss�o et al. (2018)), who provided

evidence for a link between this and a

high-pressure anomaly to the west of the British

Isles, resulting in relatively anticyclonic weather over Brit-

ain. The North Atlantic Horseshoe SST pattern (Cassou,

Terray, et al., 2004) is linked with the winter NAO. The

North Atlantic tripole is based on the methodology of Mar-

shall et al. (2001), who provided evidence for this being

linked especially with the NAO in winter. Snow cover data

are based on Estilow et al. (2015). Monthly sunspot num-

bers were obtained from the Solar Influences Data Analy-

sis Center (Center, 1956–2021). The QBO data are

obtained from the Free University of Berlin

(Naujokat, 1986). A full list of the drivers is provided in

Table 1. Predictors are sourced from a range of preceding

months, up to 8 months in advance in some cases, to

account for possible lagged teleconnections. For example,

for the winter season, the predictors from March to

October are considered to be the inputs, while for the sum-

mer season, the predictors from last September to April

are set to be the inputs of the modelling.

3 | METHODS

3.1 | The NARMAX model

The Nonlinear Autoregressive Moving Average with

exogenous input (NARMAX) model for multiple-input

and single-output (MISO) systems is generally repre-

sented as follows (Wei, 2019; Wei & Billings, 2022):

y kð Þ¼ F y k�1ð Þ,y k�2ð Þ,…,y k�ny
� �

,
h

u1 k�dð Þ,u1 k�d�1ð Þ,…,u1 k�d�nuð Þ,
u2 k�dð Þ,u2 k�d�1ð Þ,…,

u2 k�d�nuð Þ,…,ur k�dð Þ,ur k�d�1ð Þ,
…,ur k�d�nuð Þ, e k�1ð Þ,e k�2ð Þ,…,

e k�neð Þ
i
þ e kð Þ

ð1Þ

where y kð Þ, ui kð Þ (i= 1,2, …, r) and e kð Þ are the system

output, input and noise sequences, respectively; ny, nu,

and ne are the maximum lags for the system output,

input and noise, respectively; F �½ � is some nonlinear

function, and d is a time delay, typically set to d¼ 0 or

d¼ 1. The noise sequence e kð Þ is nearly always unknown

for real-world modelling, and it is usually estimated using

the prediction error ξ kð Þ¼ y kð Þ�by kjk�1ð Þ. In practice,

there are many model structures that can be used to

approximate the unknown mapping F �½ �, including

power-form polynomial models, neural networks, radial

basis function networks and wavelet expansions

(Billings, 2013; Wei et al., 2010). Power-form polyno-

mials, due to their desirable properties, especially their

transparency and interpretability, are commonly used to

construct NAMARX models (Billings, 2013).

The Nonlinear Autoregressive with eXogenous input

(NARX) model presented below is a special case of the

NARMAX model (1), which does include the lagged

noise variables e k�1ð Þ,e k�2ð Þ,…,e k�neð Þ,

y kð Þ¼ F y k�1ð Þ,y k�2ð Þ,…,y k�ny
� �

,
h

u1 k�dð Þ,u1 k�d�1ð Þ,…,u1 k�d�nuð Þ,
u2 k�dð Þ,u2 k�d�1ð Þ,…,u2 k�d�nuð Þ,

…,ur k�dð Þ,ur k�d�1ð Þ,…,

ur k�d�nuð Þ
i
þ e kð Þ:

ð2Þ

In many real-world applications, the output y(k) in

(1) and (2) is assumed to be irrelevant to previous output

SUN ET AL. 5 of 22Meteorological Applications
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values y k�1ð Þ,y k�2ð Þ,…,y k�ny

� �
. For such cases, model

(2) reduces to the nonlinear infinite-impulse response model

(NFIR, also known as Voterra series model) (Billings &

Wei, 2008; Wei & Billings, 2009) as follows:

y kð Þ¼ F u1 k�dð Þ,u1 k�d�1ð Þ,…,u1 k�d�nuð Þ,
h

u2 k�dð Þ,u2 k�d�1ð Þ,…,u2 k�d�nuð Þ,…,
ur k�dð Þ,ur k�d�1ð Þ,…,

ur k�d�nuð Þ
i
þ e kð Þ:

ð3Þ

In (4), if the time delay and the maximum lags are all

set to be zero, that is, d¼ny ¼nu ¼ 0, then the NFIR

model (4) reduces to a nonlinear multiple regression

(NMR) model (Hall et al., 2019),

y kð Þ¼F u1 kð Þ, u2 kð Þ,…ur kð Þ½ �þ e kð Þ: ð4Þ

For a simple illustration, consider a system with three

inputs u1, u2 and u3, for which the full initial NFIR

model comprising all linear and quadratic terms is

y kð Þ¼ θ0þθ1u1 kð Þþθ2u2 kð Þþθ3u3 kð Þþθ4u1 kð Þ2

þ θ5u2 kð Þ2þθ6u3 kð Þ2þθ7u1 kð Þu2 kð Þ
þ θ8u1 kð Þu3 kð Þþθ9u2 kð Þu3 kð Þþ e kð Þ:

ð5Þ

The degree of nonlinearity or nonlinear degree of

model (5) is 2, as it contains a number of quadratic model

terms. If a polynomial model contains at least one cubic

cross-product term, then its nonlinear degree is 3. How-

ever, model terms in (5) are usually not equally impor-

tant for explaining the system and interpreting the

change of the output y kð Þ, meaning that some terms that

make a tiny or negligible contribution to explaining the

variation in the response y kð Þ may be removed from the

model. With the help of a model-selection algorithm,

called the Forward Regression with Orthogonal Least

Squares (FROLS) (Billings, 2013), the most important

model terms in (3) can be determined and used to gener-

ate a concise and compact model. FROLS uses an effec-

tive but simple measure, called the error reduction ratio

(ERR), to evaluate the contribution of each candidate

model term to explaining the variation of the system out-

put. The number of model terms in the final model can

be determined using several statistics criteria, such as the

Akaike information criterion (AIC) (Akaike, 1974),

Bayesian information criterion (BIC) (Schwarz, 1978)

and the penalized error-to-signal ratio (PESR) (Wei

et al., 2010).

3.2 | The sliding-window NARMAX
models

Usually, the NARMAX model can generate reliable pre-

dictions and reveal convincing transparent relationships

between the system input and output over the entire

period of the dataset. However, it is more desirable to pay

attention to and make use of local information in the

dataset, especially for a complex dynamic time-varying

system or process like climate change. Therefore, in the

following, we introduce the sliding-window NARMAX

model (SW-NARMAX) for seasonal forecasts.

The proposed framework of the sliding-window NAR-

MAX model is shown in Figure 2. Take a single-input,

single-output system as an example, where the measured

input signal of N samples is denoted by U ¼ u1,…,uN½ �T and

the corresponding output is denoted by Y ¼ y1,…,yN½ �T .
In a matrix format, the dataset of the system can be

represented as D¼ U,Y½ � ¼ u1,…,uNð ÞT , y1,…,yNð ÞT
h i

.

Let W ¼ 1,1,…,1½ �w�1 be a window of length w. With

the one-step forward sliding window (which is shown in

the dotted rectangles in Figure 2), the original dataset

D can be resampled into s subsets, where s¼N�wþ1 as

follows:

bD1 ¼ u1,…,uwð ÞT , y1,…,ywð ÞT
h i

bD2 ¼ u2,…,uwþ1ð ÞT , y2,…,ywþ1

� �Th i

…

bDs ¼ uN�wþ1,…,uNð ÞT , yN�wþ1,…,yN
� �Th i

8
>>>>>><

>>>>>>:

: ð6Þ

For each windowed dataset bDi i¼ 1,2,…,sð Þ, a NAR-

MAX model Mi can be generated using the method dis-

cussed in Section 3.1. Thus, based on (6), there will be

s NARMAX models M= {M1, M2, …, Ms}, which are

represented by the green rectangles in Figure 2, and

s predictions of the system output over the testing period

bytest ¼ bytest1 ,…,bytests

� �
will be calculated accordingly.

Note that the whole available observations are split

into two parts: (1) around 80% of the data are used for

model training, and (2) the remaining 20% are used

for model testing. Each windowed dataset is a subset of

the training dataset. To find the most appropriate model

for each window, the associated windowed dataset is fur-

ther partitioned into training and validation sub-datasets.

For each window, the role of the validation data is three-

fold: (1) to test and validate the model performance using

‘unseen’ data during the training process; (2) to optimize

and adjust model parameters and hyper-parameters, such

as the window size and the model structures, where nec-

essary; and (3) to avoid overfitting.
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3.3 | Model selection and averaging

NARMAX modelling encompasses both linear and non-

linear models. In this case, as discussed in Section 3.1,

the polynomial form of the model structure, including

both linear and nonlinear forms, is considered. Note that

different nonlinear degrees can lead to quite different

models, which will affect the forecast and the explanation

of the system. A model with a higher nonlinear degree

may produce a more accurate representation of the sys-

tem and hence produce better prediction. However, such

a model can become very complex, and it needs a large

number of samples for model training and estimation.

Therefore, the present modelling challenge is a typical

small-size problem, where the number of observations is

smaller than the number of regressors. Taking a system

with n input variables as an example, if the nonlinear

degree of the model is deg, then the number of generated

model terms would be nþdegð Þ!=n!deg!, where the sym-

bol ‘!’ denotes the factorial function. This implies that

models with a high nonlinear degree deg (4 or higher)

are intractable, especially when the number of inputs is

large, as the number of generated model terms would be

tremendous.

In order to avoid overfitting and reduce the sensitivity

of the model but meanwhile guarantee a reliable model

structure, the highest nonlinear degree is set to be three

in this study. Then, for each windowed dataset, there are

three candidate NARMAX models: the linear model

Mm,li, the quadratic model Mm,q and the cubic model

Mm,c, where the number of each candidate NARMAX

models is defined as M. Therefore, with the window of

length w, there are a total of 3M NARMAX models

including linear and nonlinear model forms. To select

the best models from the huge number of potential model

candidates, the validation set is applied as discussed in

Section 3.1. For each model Mm,i (identified from the m-

th windowed dataset), where i� li,q,cf g, the prediction

for the validation set is denoted by byvm,i. The values of the

mean squared error (MSE) of each of the 3M identified

models are denoted by, msevm,li, msevm,q and msevm,c. The

best model is selected by comparing the MSE in each

data group. Thus, for each window of length l, there are

M best NARMAX models.

NARMAX methods are generally robust for system

analysis and prediction, but using a single ‘best’ model

may be risky in some applications. Therefore, it is reason-

able to apply a model-averaging algorithm to reduce the

risk associated with depending solely on a single model,

especially when dealing with small sample size applica-

tions; this can also mitigate the sensitivity of the model to

noise or uncertainties (Hall et al., 2019). In this study, the

weighted mean scheme is also considered to deliver the

predicted value. However, unlike the method in (Hall

et al., 2019), the weights are calculated based on the MSE

of the M models over the validation period, rather than

over the training period.

Assume the values of mean squared errors (MSEs) of

nMARMAX models over their respective training periods

are known as mse1,…,mses, respectively. Let

l1 ¼ 1=mse1, …, ln ¼ 1=mses, ð7Þ

FIGURE 2 The framework of the sliding-window NARMAX models.

SUN ET AL. 7 of 22Meteorological Applications
Science and Technology for Weather and Climate

 1
4

6
9

8
0

8
0

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://rm
ets.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/m
et.2

1
7

8
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
6

/0
2

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



l¼ l1þ…þ ln, ð8Þ

c1 ¼ l1=l, …, cs ¼ ls=l: ð9Þ

Then, the averaged model prediction can be

defined as

bytest ¼ c1bytest1 þ…þ cnbytests : ð10Þ

3.4 | Prediction verification

Some typical model validation criteria, including correla-

tion coefficients, mean absolute error (MAE) and root

mean square error (RMSE), are used to evaluate model

performance. The number of forecasts needs to be suffi-

ciently large to make the statistical conclusions about the

skill of the forecast robust and convincing, while

the sliding-window NARMAX (SW-NARMAX) method

can generate several models in the training set and pro-

duce valid statistical conclusions. As depicted in Figure 3,

the original dataset is meticulously segmented into a

training set, a validation set and a testing set. This meth-

odological approach facilitates the initial training of

models on the training set. Subsequently, these models

are refined and optimized within the validation set.

Finally, the efficacy and robustness of the models are

comprehensively assessed in the (fully independent) test-

ing set, ensuring a rigorous evaluation of their

performance. In addition, the continuous ranked proba-

bility score (CRPS) (Leutbecher & Haiden, 2021) is used

in this study to evaluate the quality of the seasonal fore-

cast models. The CRPS estimates the difference between

the observed and expected outcomes and can be viewed

as an integral over the possible Brier scores (Bradley

et al., 2008). It is herein defined as

CRPS N x,s2
� �

,y
� �

¼ sð Þffiffiffi
π

p ffiffiffi
π

p y� xð Þ
s

erf
y�xffiffiffi

2
p

� �
8
><

>:

þ
ffiffiffi
2

p
exp � y�xð Þ2

2s2

 !
�1

9
>=

>;
:

ð11Þ

Normally, x takes the value 1 or 0 according to

whether or not the event occurred in the predefined class,

especially a binary classification forecast, while pi is the

forecast probability for such occasion i. To clearly calcu-

late the CRPS of the SW-NARMAX models, we define

the two class as follows:

class 1 : x¼ 1, pi � �0:5,0:5½ �, ð12Þ

class 2 : x¼ 0, pi � �3,�0:5½ Þ[ 0:5,3ð �: ð13Þ

To calculate the CRPS of the SW-NARMAX models,

the forecast probability pi should be obtained first. By

FIGURE 3 The schematic illustration of the NARMAX model resampling using the sliding-window approach.
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applying the sliding-window methods in the training

period, there will be s SW-NARMAX models identified as

discussed above. Thus, for each year in the testing set,

there are s predictions as defined above. We can calculate

the forecast probability by

pi ¼
count byi � �0:5,0:5½ �ð Þ

s
, ð14Þ

where count means function to calculate the quantity

that meets the condition and byi i¼ 1,2,…,s indicates the

predictions of ith SW-NARMAX model.

Based on the definition of the classes, the CRPS ver-

ifies the accuracy of the predictions of SW-NARMAX

models matching the class of the observation. The smal-

ler the CRPS, the more consistent the category of SW-

NARMAX predictions is with the category of observed

values; otherwise, they are inconsistent.

Correlation coefficients and significance are assessed

using Pearson's correlation coefficient and associated

p-values to assess the probability of finding the result if

the correlation was zero, where p < 0.05 and p < 0.01 are

commonly selected values to assess significance.

To evaluate the statistical significance of the NAR-

MAX models, a Monte Carlo sampling method with the

autoregressive (AR) model analytical framework is imple-

mented in the supplementary material. This approach

involves generating 100 simulated databases derived from

the AR models. By repeatedly sampling from these data-

bases, a distribution of outcomes that reflects the inher-

ent variability is constructed, which in turn allows us to

estimate the statistical significance of the empirical

results. The insights gained from these simulations pro-

vide a robust basis for evaluating the statistical signifi-

cance of the NARMAX findings, ensuring that

conclusions are not only grounded in empirical evidence

but also resilient to the stochastic nature of the underly-

ing processes we investigate.

3.5 | Dynamical models

To help assess the accuracy and utility of NARMAX-

generated seasonal forecasts, comparisons are made

with the seasonal forecasts from two commonly used

dynamical models. Dynamical model seasonal forecasts

are generated based on runs from up to 1 month in

advance. Monthly forecast runs are obtained from the

C35 Copernicus Climate Change Service. For this anal-

ysis, hindcast data for 1993 to 2016 are used from the

ECMWF SEAS5 model (Johnson et al., 2019) and the

Met Office GloSea5 model (MacLachlan et al., 2015).

The GloSea5 outputs are based on seven ensemble

members, while SEAS5 has 25 ensemble members over

this period. The monthly runs are aggregated to pro-

duce a seasonal forecast that corresponds to the sea-

sonal prediction from 1 month out (e.g., the winter

forecasts are based on December with 1 month lead

time, January with 2 months lead time and February

with 3 months lead time, corresponding to a seasonal

forecast issued in November).

Predictions of 500 hPa heights from the dynamical

models are assessed against the three EOFs discussed in

Section 2, for both winter and summer. As with NAR-

MAX, in the case of summer, June is considered sepa-

rately from high summer (July and August), while winter

is defined simply as December, January and February

and is labelled by the year of the January. Correlation,

RMSE and the CRPS score are used together to provide

an indication of forecast skill.

4 | RESULTS

In this section, sliding-window NARMAX models are

defined by the indices they use (station-based NAO, EA

and SCA), by the start year of the predictor dataset (1979)

and by season (summer or winter). For example, the

Jun_NAO79 (JA_NAO79) summer models are the

sliding-window NARMAX models for the summer NAO

in June (July and August average), using the 1979–2022

predictor dataset. In the main part of this paper, we focus

on the NARMAX prediction results based on the 1979

(start date) datasets, while the rest of the prediction

results are presented in the Supplementary Information.

For a better evaluation of the performance of different

models against observations, model results are based on

weighted means of the model ensemble members over

validation and test periods.

4.1 | Experimental settings

Firstly, we give a brief introduction to the 1979 dataset

and the settings for the sliding-window NARMAX

models. In this dataset, six indices or system outputs

needed to be modelled in summer: that is, Jun_NAO79,

JA_NAO79, Jun_EA79, JA_EA79, Jun_SCA79 and

JA_SCA79. This dataset contains 43 observations (years)

for each index, while the number of input variables or

predictors is 130. Therefore, this application is a typical

small number modelling and forecasting problem

(Section 3.3). In the experiments, the predictors are up to

8 months in advance (Section 2) of the phenomenon

being predicted, where the latest month is April for sum-

mer and October for winter weather.
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In this paper, the original dataset is firstly resampled

into training and testing sets with a ratio of 8:2, leading

to 35 points in the training set and 9 points in testing set

(8 points in testing set for summer season). To avoid

overfitting, a validation process is performed over a sub-

set of around eight or nine samples in the training set.

The maximum nonlinear degree, deg, of NARMAX

models is 3 (Section 3.1). Prediction results from sliding-

window NARMAX models are shown in Sections 4.2

and 4.3.

To evaluate how predictors have evolved, a separate

NARMAX model for 1956 predictors dataset

(i.e., covering the period 1956–2022) was developed. This

model undergoes training during the period from 1956 to

2008/2009 is validated in the period 2001– 2008 and

tested in the period 2009– 2021, as detailed in Supple-

mentary Information Section 1.1. We refer to these as the

1979 and 1956 NARMAX models, named after the two

different time periods they represent.

4.2 | Summer seasonal prediction results

4.2.1 | NAO summer results

For the June (July and August average) NAO, the 15 most

frequent predictors in the sliding-window NARMAX

models (16 models for Jun_NAO79 and 19 models for

JA_NAO79) are listed in Figure 4a,b. Where the same pre-

dictor is shown for different months in the same graph

(Figures 4–9), that refers to separate ensemble NARMAX

models. To avoid overfitting, different months, such as

records in February and April for summer, for a particular

predictor are not used in the same NARMAX model. In

models of Jun_NAO79, the most selected predictors are

‘WIR’ and’ BER’, which considering across all relevant

months are both selected 13 times, followed by ‘NAsnow’,

‘EIR’ and ‘WPR’, which are selected 12, 10 and 10 times,

respectively. For the JA_NAO79 models, the most selected

predictor is ‘BC’, selected 13 times, followed by ‘GRE’ and

FIGURE 4 Results (predictors (a, b) and predictions (c, d) by sliding-window NARMAX) of Jun_NAO79 and JA_NAO79. Predictors are

shown according to the month in which that value occurred (e.g., AprTAR = tropical Atlantic rainfall for the month of April). Refer to

Table 1 for a full list of predictor names.
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‘WIR’, which are each identified nine times. In addition, in

models of Jun_NAO79 and JA_NAO79, some predictors,

specifically ‘WIR’, ‘BER’, ‘ESL’, ‘NAsnow’ and ‘lead1SS’,

are relatively frequently selected.

The predictions made by the sliding-window NAR-

MAX models are presented alongside the observed NAO

time series in Figure 4c,d. In Figures 4–9, the red lines

with ‘o’ markers represent the observations of the indices

(i.e., the EOF time series defined in Section 2), while the

blue lines with crosses represent the weighted mean pre-

dictions by the sliding-window NARMAX models. The

light blue area is the 95% confidence interval

(CI) generated by the identified NARMAX models. As

shown in Figure 4c, the weighted average predictions by

SW-NARMAX models follow the observations closely in

5 of 8 years and fall out of the CI in the remaining years

(2015, 2016 and 2019). Similarly, in Figure 4d, most pre-

dictions (5/8) by SW-NARMAX models are close to the

observations, while the rest of the years' (2016, 2019, and

2020) observations fall outside the CI.

As shown in Figure 4c,d, the two-digit decimal values

are the CRPS based on the NARMAX ensemble weighted

mean prediction for each year, while the two horizontal

dashed lines indicate the values of �0.5 and 0.5. As the

definition above, the area between �0.5 and 0.5 is consid-

ered to be ‘true’, while areas outside are set as ‘false’ for

the purpose of CRPS calculations defined in Equa-

tions (12) and (13). Smaller CRPS values indicate that the

predictions by SW-NAMRAX models are relatively more

similar to the observations with the same class, while

larger CRPS values indicate a larger departure between

the predicted and observed values.

Consider Figure 4c as an example. When the pre-

dicted value approximates the observed value and the

95% confidence interval (CI) coincides with the category

of observed values—as was the case in 2014, 2017, 2018

and 2021—the CRPS values are minimal, nearing zero.

However, for specific years such as 2015 and 2016, while

the observed value falls out of the predicted 95% CI

range, the CRPS values approximate 0.6 because most

FIGURE 5 Results (predictors [a, b] and predictions [c, d] by sliding-window NARMAX) of Jun_EA79 and JA_EA79. Predictors are

shown according to the month in which that value occurred (e.g., aprDIP = North Atlantic dipole for the month of April). Refer to Table 1

for a full list of predictor names.
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predictions do not correspond to the same category as the

observed values. This result aligns with our conclusion

that the SW-NARMAX weighted mean prediction and

observation for that year fall into different categories.

NARMAX verification statistics against observed data

for the model testing period are summarized in Table 2.

Model-observation correlation coefficients of the Jun_-

NAO79 models and JA_NAO79 models for the entire

testing period (2014–2021) are 0.89 and 0.87, respectively,

and are highly significant (p < =0.01). Furthermore, the

Jun_NAO79 model has more skillful performance due to

its smaller RMSE and MAE compared with the

JA_NAO79 model.

4.2.2 | EA summer results

The 15 most frequent predictors in the sliding-window

NARMAX models (19 Jun_EA79 models and 14 JA_EA79

models) are shown in Figure 5a,b. There is some consis-

tency in the analysis of the predictors: ‘DIP’, ‘HUD’,

‘GRE’, ‘WIR’, ‘EIR’ and ‘BER’ are selected in models for

two indices with high frequencies. Among them, ‘apr-

DIP’ is the most frequently selected predictor for the two

indices: 7 for Jun_EA79 and 5 times for JA_EA79. Mean-

while, there are several unique predictors in these two

NARMAX models, such as ‘lead3SS’, ‘lead2SS’,

‘lead1SS’, ‘EPR’, ‘LAB’, and’ annSS' for Jun_EA79 and

‘TAR’, ‘BK’, ‘lead5SS’ and ‘NAsnow’ for JA_EA79.

The comparison between the prediction of sliding-

window NARMAX models for EA and the observations is

shown in Figure 5c,d, while the verification statistics for

the validation and testing periods for the mean predic-

tions by the model ensembles are shown in Table 2.

Similarly, Figure 5c,d show that the weighted mean

predictions by the NARMAX models usually perform

well in following the observed yearly values from 2014 to

2021 (testing period) for Jun_EA79 and JA_EA79. For

FIGURE 6 Results (predictors [a, b] and predictions [c, d] by sliding-window NARMAX) of Jun_SCA79 and JA_SCA79. Predictors are

shown according to the month in which that value occurred (e.g., aprESL = E. Siberian/Laptev Seas for the month of April). Refer to Table 1

for a full list of predictor names.
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the Jun_EA79, observations in 2014, 2018 and 2021 are

in the 95% CI, while for the JA_EA79, most observations

(7/8) fall in the prediction band. Thus, the SW-NARMAX

models perform better for JA_EA79 than for Jun_EA79.

Similarly, the CRPS values reflect the accuracy of the

probabilistic predictions of the SW-NARMAX ensemble

models. For Jun_EA79, predictions in 2014, 2018 and

2021 are relatively accurate compared to other years. For

the years 2017 and 2020, the CRPS values are greater

than 1, as the weighted mean predictions of SW-

NARMAX models for 2 years are significantly different.

For the year 2015, 2016 and 2019, the CRPS values are

less than 1 while greater than 0.4. In these years, the

weighted mean predictions of SW-NARMAX models

have obvious differences with observations, while the

observations have the same category compared to the CI

FIGURE 7 Results (predictors [a] and predictions [b] by sliding-window NARMAX) of EOF NAO79 in winter. Predictors are shown

according to the month in which that value occurred (e.g., augNAH = North Atlantic Horseshoe for the month of August). Refer to Table 1

for a full list of predictor names.

FIGURE 8 Results (predictors [a] and predictions [b] by sliding-window NARMAX) of EOF EA79 in winter. Predictors are shown

according to the month in which that value occurred (e.g., augBK = Barents–Kara Seas for the month of August). Refer to Table 1 for a full

list of predictor names.

SUN ET AL. 13 of 22Meteorological Applications
Science and Technology for Weather and Climate

 1
4

6
9

8
0

8
0

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://rm
ets.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/m
et.2

1
7

8
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
6

/0
2

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



areas of SW-NARMAX models. For JA_EA79, the

SW-NARMAX ensemble models show better accuracy

among most years in the testing set, while in 2016 and

2019, the predictions by SW-NARMAX models are not

accurate compared to the observations.

Model-observed correlation coefficients of the

Jun_EA79 and JA_EA79 models for the testing period

(2014–2021) are 0.78 and 0.88, respectively (Table 2),

while the correlation coefficient of the Jun_EA79 is sig-

nificant at the p < =0.05 level.

4.2.3 | SCA summer results

The statistical analysis of predictors in 15 Jun_SCA79

NARMAX models and 18 JA_SCA79 models are shown

in Figure 6a,b. Ranked by frequency of predictor in the

models for Jun_SCA79, ‘BER’ appears most often,

17 times in the analysis, followed by ‘AMO’ (10 times)

and ‘HUD’ (7 times). For JA_SCA79, ‘ESL’ is the most

frequently selected (appearing 13 times), followed by

‘EPR’ and ‘BER’, which appear 12 and 10 times,

respectively.

Figure 6c,d show the comparison between the

weighted mean predictions and observations over

the out-of-sample period for SCA. A majority of the

observations (10/16) are, once again, in the prediction

band generated by the sliding-window models. However,

as before, in a few years, that is, 2016, 2018 and 2019 for

Jun_SCA79 and 2015, 2016 and 2019 for JA_SCA79, the

probabilistic prediction bands do not encompass the

observations. The statistical verification metrics for these

models are once again summarized in Table 2. Model-

observation correlation coefficients of the Jun_SCA79

models and JA_SCA79 models for the testing period

(2014–2021) are, respectively, 0.69 and 0.65 (Table 2).

The CRPS values in Figure 6c,d show that the SW-

NARMAX models for the summer SCA yield accurate

predictions for many years in the testing set, like 2014,

2015, 2017, 2020 and 2021 for Jun_SCA79 and

2014, 2017, 2018, 2020 and 2021 for JA_SCA, while for

the rest years in the testing set for the Jun_SCA79 and

JA_SCA, the weighted mean predictions and the CI areas

of the SW-NAMRAX models have obvious differences

with the observations.

FIGURE 9 Results (predictors [a] and predictions [b] by sliding-window NARMAX) of EOF SCA79 in winter. Predictors are shown

according to the month in which that value occurred (e.g., octLAB = Labrador Sea for the month of October). Refer to Table 1 for a full list

of predictor names.

TABLE 2 Verification statistics for averaged sliding-window

NARMAX models for summer seasonal prediction (test

period = 2014–2021). Correlations that are significant at p < = 0.05

are in bold, and correlations that are significant at p < = 0.01 are

underlined.

RMSE MAE Correlation coefficient

Jun_NAO79 0.38 0.27 0.89

JA_NAO79 0.67 0.50 0.87

Jun_EA79 0.87 0.67 0.78

JA_EA79 0.80 0.62 0.88

Jun_SCA79 0.84 0.64 0.69

JA_SCA79 0.51 0.38 0.65
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4.3 | Winter seasonal prediction results

4.3.1 | EOF NAO winter results

The frequency analysis of predictors in the winter EOF

NAO79 models are shown in Figure 7a, showing the

15 most chosen predictors among 21 EOF NAO79

models. As listed in Figure 7a, the joint most selected pre-

dictors are ‘OctBK’ and ‘Octsno’, with ‘sep_SPG_SST’ as

the next most frequently identified predictor. The perfor-

mance comparison is shown in Figure 7b, while the veri-

fication statistics of the weighted mean model is shown

in Table 3. For the EOF NAO model, the model-

observation correlation coefficient over the testing set

(2014–2022) period is 0.78.

The CRPS values in Figure 7b indicate that the SW-

NARMAX models show good accuracy over the testing

period for winter NAO as all CRPS values are close to

zero, implying that observations and predictions are in

the same class, while in the year 2016, the CRPS value is

relatively high. Moreover, the observations are in the 95%

CI area of the predictions proving the accuracy of the

models.

4.3.2 | EOF EA winter results

Figure 8a shows the relative frequency of predictors that

are included in 23 models of the winter EOF

EA. ‘augBK’ is the most commonly identified predictor

in winter EOF EA models. Based on the frequency analy-

sis of predictors in EOF EA predictor models, the most

commonly selected predictors are ‘HUD’ and ‘BK’, indi-

cating they have more influence on the winter EA.

Performance comparison is shown in Figure 8b. The

weighted mean prediction by EOF EA models (red line)

closely follows the observations in both the validation

and training sets, and the model prediction band consis-

tently encompasses the observations. This comparison

once again highlights the skillful performance of the

NARMAX models, which is particularly evidenced by

the significant correlation of 0.87 over the 2014–2022 test-

ing period (Table 3).

As shown by the CRPS values in Figure 8b, the SW-

NARMAX models of the winter EA demonstrate high

skill over the testing period, as the proximity of all CRPS

values to zero suggests that the observations and predic-

tions belong to the same class. Model accuracy is corrobo-

rated by nearly all the observations (except 2015) falling

within the 95% confidence interval (CI) range of

predictions.

4.3.3 | EOF SCA winter results

The 15 most frequent predictors in 16 winter EOF SCA

models are shown in Figure 9a, where the most selected

predictors are ‘NAH’ and ‘TRI’. Figure 9b shows the

comparison between observations and weighted mean

prediction of identified models in the testing set.

Although the RMSE (0.71) and MAE (0.54) of SCA79 in

the testing set are larger than those of other indices, most

(7/9) observations are in the prediction band, with the

predictions in 2014 and 2016 outside the prediction band.

However, the correlation coefficient (0.84 for SCA;

p < 0.01) indicates overall high predictive skill (Table 3).

Figure 9b shows that in most years, the SW-

NARMAX models have accurate predictions over the

testing period. However, in 2014 and 2016, the perfor-

mance of the SW-NARMAX models is considerably lower

compared with other years, although the models still cor-

rectly predict a negative winter SCA.

4.4 | Linear and nonlinear NARMAX
models

To better demonstrate the performance of the nonlinear

relationship between the predictors and the atmospheric

circulation indices, we compare experiments carried out

using the following two types of NARMAX model: pure

linear and pure nonlinear. This allows us to assess the

influence of the nonlinear combination of predictors

compared with assuming linearity in the seasonal

weather system.

As before, the original dataset is divided into two

parts: training and testing subsets with a ratio of 8:2. To

overcome overfitting, a validation subset is created within

the training set. For consistency, we put the statistical

results (RMSE, MAE and correlation) from the 1979 data-

set in this section with the testing period results for sum-

mer and winter, respectively, shown in Tables 4 and 5.

As shown in Tables 4 and 5, the pure nonlinear NAR-

MAX models produce more accurate predictions than

TABLE 3 Verification statistics for averaged sliding-window

NARMAX models for winter seasonal weather (testing

period = 2014–2022). Correlations that are significant at p < = 0.05

are in bold, and correlations that are significant at p < = 0.01 are

underlined.

RMSE MAE Correlation (2014–2021)

winter_NAO79 0.53 0.48 0.78

winter_EA79 0.49 0.42 0.87

winter_SCA79 0.71 0.54 0.84
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pure linear NARMAX models. Compared to the linear

NARMAX model, the pure nonlinear NARMAX model

has reduced the average RMSE of the predicted values for

six indices in summer by 120% and increased the correla-

tion coefficient by 80.65%. Meanwhile, for three indices

in winter, it has decreased their average RMSE prediction

value by 98.45 and increased their correlation coefficient

by 65.3%.

Mixed NARMAX models (including both linear and

nonlinear model terms) are usually more robust

and show better performance than either pure linear or

pure nonlinear NARMAX models, with a reduced aver-

age RMSE in summer by 24.85% and in winter by 29.35%,

and an improved correlation coefficient in summer by

50.2% and in winter by 35.5%. While models for most

indices are dominated by nonlinear elements, for some

indices, for example, JA_NAO79, jun_EA79, JA_SCA79

and winter_EA79, linear model terms play a significant

role in representing and explaining the variation in the

target signals.

4.5 | Dynamical models

Figure S12 illustrates how SEAS5 fared when predicting

the winter and high summer NAO, EA and SCA, using

hindcast data for 1993–2015 and forecast data for 2016–

2022, using that were initialized on 1 December (for

winter) and 1 June (for summer). Figure S13 shows the

corresponding data for GloSea5/6 (GloSea5 was

superseded by GloSea6 in 2021), which are based on

forecasts where all of the ensembles were initialized

during the month leading up to and including

1 December (for winter) and 1 June (for summer). Glo-

Sea5 forecast data were not available for 2016 and 2017.

There is a consistent tendency to underpredict the

amplitude of the extreme seasons, to a greater extent

than is observed for the NARMAX predictions, possibly

reflecting a greater ‘signal-to-noise’ problem than we

see with NARMAX. Both models showed significant

(at p < 0.05) skill with the winter NAO, producing cor-

relations of just over 0.4, but showed little skill at pre-

dicting the winter East Atlantic pattern. The GloSea5/6

correlation of 0.42 with the winter NAO is lower than

0.62 reported by Scaife et al. (2014), but if the analysis is

restricted to the period 1993–2012, the correlation is

much closer at 0.56, suggesting that the difference is pri-

marily due to GloSea5/6 having a lower success rate in

recent winters, for example, failing to predict the nega-

tive NAO of winter 2020/2021. While winters 2009/2010

and 2010/2011 were both predicted to have a negative

NAO, none of the ensemble members of SEAS5 or Glo-

Sea5 captured the intensity of the anomaly. While

SEAS5 correctly predicted a negative East Atlantic pat-

tern for the winter of 2004/05, the observed outcome

was more extreme than predicted by any of the ensem-

ble members. SEAS5 particularly tended to underpredict

the variability in the East Atlantic pattern in winter. For

the SCA pattern, again SEAS5 underpredicted the vari-

ability but performed better overall than GloSea5.

TABLE 4 Comparison of the

numerical performance of linear and

nonlinear NARMAX models in summer

(testing period: 2014–2021), where

significant correlation coefficients are

highlighted in bold (p < = 0.05).

RMSE MAE Correlation

Linear Nonlinear Linear Nonlinear Linear Nonlinear

Jun_NAO79 0.77 0.46 0.67 0.32 0.35 0.84

JA_NAO79 1.33 0.67 1.12 0.50 0.49 0.87

Jun_EA79 1.34 0.87 1.12 0.67 0.46 0.78

JA_EA79 1.18 0.93 1.02 0.86 0.29 0.70

Jun_SCA79 1.34 0.94 1.16 0.89 0.49 0.60

JA_SCA79 1.05 0.51 0.84 0.46 0.59 0.65

TABLE 5 Comparison of the numerical performance of linear and nonlinear NARMAX models in winter (testing period: 2014–2022),

where significant correlation coefficients are highlighted in bold (p < = 0.05).

RMSE MAE Correlation coefficient

Linear Nonlinear Linear Nonlinear Linear Nonlinear

winter_NAO79 0.85 0.59 0.74 0.53 0.46 0.73

winter_EA79 0.81 0.68 0.54 0.40 0.59 0.87

winter_SCA79 1.30 0.84 1.08 0.60 0.45 0.82
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In the case of high summer, covering July and

August, no skill is found for the summer NAO or SCA,

with both SEAS5 and GloSea5/6 giving small negative

correlations with the observed values. However, Glo-

Sea5/6 showed evidence of some skill at predicting the

summer EA, with a correlation of 0.36 with the observed

values, albeit still lower than the values obtained from

NARMAX. It appears that high summer is the area where

NARMAX may prove especially useful as a means of

improving the reliability of our seasonal forecasts.

When June is considered, the dynamical models per-

form much better, reflecting their greater skill at 1 month

out. SEAS5 outperforms GloSea5/6, with a correlation of

0.71 with the June NAO and a correlation of 0.82 with

the observed June East Atlantic pattern, while GloSea5/6

showed correlations of 0.51, 0.44 and 0.42 with the NAO,

EA and SCA, respectively. SEAS5 correlations with June

SCA were also lower, at 0.51.

4.6 | Comparison between dynamic
models and NARMAX models

In this section, we compare the performance of the

sliding-window NARMAX models discussed earlier

against the SEAS5 and GloSea5 dynamical models, based

FIGURE 10 Comparisons between NARMAX predictions and SEAS5 hindcasts and forecasts for the period 2006–2021.
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on a training period of 1979–2005 (27 years) and an out-

of-sample/testing period of 2006–2021 (16 years). Fig-

ures 10 and 11 show the NARMAX mean forecast for

each year, compared with the observed values and the

SEAS5 forecasts (Figure 10) and GloSea5/6 forecasts

(Figure 11). It is apparent that NARMAX suffers less

from the ‘signal-to-noise’ issue than the dynamical

models, although in some cases (especially winter EA),

there is still evidence of NARMAX underpredicting

extreme values. Another comparison between the SEAS5

and GloSea5/6 dynamical models and NARMAX models

is shown in Table 6, based on the data shown in

Figures 10 and 11. The statistical results for these NAR-

MAX models show higher correlation coefficients and

smaller RMSE for all indexes, indicating a more skillful

performance than the SEAS5 and GloSea5/6 models.

In Table 6, the predictions by NARMAX are com-

pared with the SEAS5 and GloSea5 models for winter

and separately for June and high summer (July and

August). NARMAX consistently outperforms the dynami-

cal models, and NARMAX forecasts are significantly cor-

related with the observed outcome in all cases. With the

exception of JA_SCA, all correlations are significant at

p < 0.01. The dynamical models only showed skill in

FIGURE 11 Comparisons between NARMAX predictions and GloSea5/6 hindcasts and forecasts for the period 2006–2021. GloSea5

forecasts issued in the month ending 1 June were missing for 2016 and 2017.
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some cases, with only SEAS5 predictions of June NAO

and June EA proving comparable to the NARMAX pre-

dictions. It is worth noting that the GloSea5/6 forecasts of

the winter NAO are statistically significant at p < 0.05

when a longer time period is considered, as is seen with

1993–2022 (Figure S13), but due to the smaller sample

size, the correlation of 0.47 over 2006–2021 falls short of

being statistically significant.

5 | DISCUSSION

The results presented here highlight the potential for

NARMAX to add considerable value to current dynami-

cal model predictions of NAO, EA and SCA, especially in

the case of summer, where dynamical models tend to

struggle to a greater extent than for winter. The NAO

alone only accounts for some of the variability in temper-

ature and precipitation over Northwest Europe, making

it useful for predicting other important modes of atmo-

spheric circulation variability. For example, (Hall &

Hanna, 2018) attributed the exceptionally high rainfall of

winter 2013/2014 over much of the UK primarily to a

strongly positive East Atlantic pattern. It is therefore

encouraging that the NARMAX results are strongly cor-

related with the observations in the case of EA and SCA

as well as NAO.

Splitting the summer into June and July/August shows

that the dynamical models perform better at forecasting

June NAO, EA and SCA from 1 month ahead than at fore-

casting July/August, as would be expected. The highest cor-

relation with the observed data is 0.82, in the case of SEAS5

predictions of June EA (compared with correlations of 0.84

and 0.78 for the 1956 and 1979 NARMAX models for June

EA, respectively). Surprisingly, the NARMAX verification

rate is similar for June and for July/August, indicating that

there is less of an advantage over the dynamical models at a

relatively short time range but that the accuracy of NAR-

MAX does not decline as much for 2 and 3 months ahead,

at least in the case of summer.

Compared with the dynamical models, NARMAX

predictions show a reduced ‘signal-to-noise’ problem,

that is, the year-to-year variability of the NAO, EA and

SCA is captured accurately, and while the amplitude of

extreme events is at times underpredicted, it is generally

underpredicted to a much smaller extent than with the

dynamical models. When analysing summer predictions

for June and for July/August, it is clear that the ‘signal-

to-noise’ problem with the dynamical models increases

markedly when predicting 2 and 3 months ahead as

opposed to just 1 month ahead, at least in the case of

summer. This is far less apparent with the NARMAX pre-

dictions, suggesting that NARMAX-assisted forecasts

may be especially useful at reducing the ‘signal-to-noise’

problem when forecasting further ahead. It is particularly

encouraging that this appears to be true for summer, as

the dynamical models tend to struggle more with sea-

sonal predictions of summer than of winter.

The lists of predictors that the sliding-window NAR-

MAX chooses for summer are mixed, but some consistent

results stand out. The 1956 model (see the supporting

information) has March Beaufort/Chukchi Sea SSTs as

one of the three most selected predictors for both June

and July/August NAO. Sea-ice and SSTs dominate among

the most often selected predictors, perhaps suggesting

feedback between sea-ice concentrations and SST anoma-

lies. The 1979 model is less likely to select sea-ice concen-

trations, and tropical rainfall dominates among the most

selected predictors for June and July/August NAO. The

same is mostly true for the EA, but for June EA, both

the 1956 and 1979 models often select solar activity with

varying lag times. For July/August SCA, the 1979 model

has March North Atlantic snow cover as the second most

often selected predictor.

TABLE 6 Verification statistics

comparing the SEAS5 and GloSea5/6

model hindcasts and forecasts with

NARMAX, for the period 2006–2021

(with NARMAX using the training

period 1979–2005). Correlations that are

significant at p < = 0.05 are in bold,

and correlations that are significant at

p < = 0.01 are underlined.

Index

Correlation with observed RMSE

SEAS5 GloSea5/6 NARMAX SEAS5 GloSea5/6 NARMAX

DJF_NAO 0.52 0.47 0.76 1.07 1.10 0.75

DJF_EA �0.16 �0.11 0.78 0.98 0.94 0.57

DJF_SCA 0.51 0.57 0.76 1.02 1.03 0.72

Jun_NAO 0.83 0.54 0.87 0.75 1.04 0.61

Jun_EA 0.77 �0.05 0.90 0.63 0.96 0.58

Jun_SCA 0.41 0.27 0.77 0.77 0.71 0.53

JA_NAO 0.18 0.01 0.71 1.30 1.34 0.80

JA_EA �0.15 0.42 0.80 0.91 0.64 0.60

JA_SCA �0.08 �0.13 0.52 1.05 0.96 0.60
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The recurrence of sea-ice concentrations in the top

10 predictors must be taken with some caution, for as dis-

cussed (Hall, Scaife, et al., 2017), the recent sharp decline

in sea-ice concentrations could contribute to models

overestimating the influence of sea ice and potentially

issuing poorer forecasts for recent years. However,

despite this issue, the NARMAX predictions consistently

outperformed the dynamical models, especially in the

case of high summer (July and August).

For winter, both sets of models commonly select the

North Atlantic Horseshoe (NAH) to predict the winter

NAO, especially the 1956 model, which has the May and

September NAH as the two most often selected predic-

tors. This is a reassuring result, as it ties in well with the

findings of Cassou, Deser, et al. (2004), which identified

plausible physical explanations for observed links

between the NAH and the subsequent winter NAO, par-

ticularly in relation to the NAH during the preceding

summer and autumn. The 1979 model most often selects

October Barents–Kara Sea-ice concentrations as a predic-

tor for the winter NAO, again an encouraging result, as,

for example, Warner et al. (2020) found evidence of inter-

annual winter NAO variability being strongly related to

Barents-Kara Sea ice. The 1979 model's second most

selected predictor for winter NAO is October European

snow cover, which is again a plausible result, as observa-

tions and dynamical model simulations also point to the

existence of links between the two (Wegmann et al.,

2020). September Hudson Bay sea-ice concentrations

recur as a commonly selected predictor for the winter

EA, and to a lesser extent so does the October strato-

spheric polar vortex. Hall, Scaife, et al. (2017)) discussed

links between solar activity (with a lead time of 6 months

to 2 years) and the June tripole and the winter NAO. Nei-

ther of those were in the top 10 predictors of the 1956

NARMAX model, although in the model from 1979, the

October tripole both featured in the 10 most frequently

selected predictors.

Lagged teleconnection links between sea-ice concen-

trations, SST anomalies, tropical precipitation and subse-

quent atmospheric circulation patterns have already been

found. For example, there may be links between

Barents–Kara Sea ice concentrations and extratropical

atmospheric circulation via complex teleconnections with

the Aleutian low and tropical SST and rainfall variations

(Warner et al., 2020). This also ties in well with the 1979

NARMAX model frequently choosing October Barents–

Kara sea-ice concentrations as a predictor of the winter

NAO. There is also evidence for a link between tropical

precipitation anomalies and wintertime European precip-

itation events (Li et al., 2020) and, correspondingly, the

East Atlantic Pattern (Maidens et al., 2021). Some further

discussion of the physical interpretability of the

NARMAX results is available in the supporting material

(see support material section 4).

Ongoing research is downscaling the three principal

EOFs used here, in order to determine the links between

the EOF time series (both observed and predicted by

NARMAX) and Northwest European temperatures and

precipitation, including links with persistence and vari-

ability indices as well as maximum, minimum and mean

values, that are relevant for end-users such as the agri-

food, energy and tourism industries.

6 | SUMMARY

These results demonstrate that NARMAX models have

considerable potential to improve upon purely dynamical

model-based seasonal weather predictions, especially in

the case of high summer (July and August) and therefore

significantly extends the pilot study of Hall et al. (2019),

which focused on winter. NARMAX models that are

designed based on a sufficiently long training period of at

least around 25 years, consistently show skillful perfor-

mance across the range of atmospheric circulation indi-

ces and seasons used here. Links between the individual

circulation indices and their potential predictors that are

frequently chosen by NARMAX are a basis for future

work, both with the aim of evaluating the physical plau-

sibility of such links and using NARMAX to assist the

identification of new teleconnection links that have not

previously been identified and explored.
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