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A B S T R A C T

Tree populations worldwide are facing an unprecedented threat from a variety of tree diseases and invasive
pests. Their spread, exacerbated by increasing globalisation and climate change, has an enormous environ-
mental, economic and social impact. Computational individual-based models are a popular tool for describing
and forecasting the spread of tree diseases due to their flexibility and ability to reveal collective behaviours.
In this paper we present a versatile individual-based model with a Gaussian infectivity kernel to describe the
spread of a generic tree disease through a synthetic treescape. We then explore several methods of calculating
the basic reproduction number 𝑅0, a characteristic measurement of disease infectivity, defining the expected
number of new infections resulting from one newly infected individual throughout their infectious period. It
is a useful comparative summary parameter of a disease and can be used to explore the threshold dynamics
of epidemics through mathematical models. We demonstrate several methods of estimating 𝑅0 through the
individual-based model, including contact tracing, inferring the Kermack–McKendrick SIR model parameters
using the linear noise approximation, and an analytical approximation. As an illustrative example, we then
use the model and each of the methods to calculate estimates of 𝑅0 for the ash dieback epidemic in the UK.
1. Introduction

The loss of biodiversity due to the spread of tree diseases and
invasive pests within forest ecosystems has an enormous environmen-
tal, economic, and social impact worldwide (Freer-Smith and Webber,
2017; Cuthbert et al., 2021). This threat has been escalating rapidly due
to increasing globalisation resulting in a greater number of accidental
imports and climate change creating a more favourable environment
for many pests and pathogens.

Mathematical and computational models are powerful tools for
deepening our understanding of the fundamental behaviours of differ-
ent pests and pathogens, as well as describing and forecasting their
future spread (Cornell et al., 2019; Gertsev and Gertseva, 2004; Wang
and Song, 2008; Meentemeyer et al., 2011; Cunniffe et al., 2016).
Individual-based models, where each individual tree (or group of trees)
is represented, with properties governed by a set of probabilistic rules,
have the advantage of providing information about the whole system
(i.e., the macroscale and collective behaviour) from modelling the
individual (microscale) behaviour and are ideal for exploring spatial
patterning. Previous compartmental individual-based models of tree
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disease have considered a square lattice representing susceptible trees
with pathogen spread stochastically through nearest neighbour interac-
tions (Orozco-Fuentes et al., 2019). Although suitable for some fungal
diseases (Orozco-Fuentes et al., 2019; Goleniewski and Newton, 1994),
many tree diseases are spread through airborne pathogens on longer
scales and are not suitable for nearest neighbour contact spread (Parnell
et al., 2009; Grosdidier et al., 2018). Thus, here we adopt a spatially
explicit individual-based model with a dispersal kernel representing the
spatial dispersal of the pathogen or pest which results in the probability
of infection, similar to those previously used to explore controls for
human epidemics (Suprunenko et al., 2021).

The infectivity of a disease can be quantified by the basic reproduc-
tion number, 𝑅0, defined as the total number of expected secondary
infections arising from one newly infected individual introduced into a
fully susceptible population. It helpfully defines the threshold between
epidemic (𝑅0 > 1), and containment (𝑅0 < 1), and can be used
as a comparative parameter for diseases with differing behaviours
and spread mechanisms. In many mathematical models (including the
Kermack–McKendrick SIR model considered in this text) 𝑅0 can be used
304-3800/© 2024 The Author(s). Published by Elsevier B.V. This is an open access
c/4.0/).
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to determine the steady-state conditions of the disease or pathogen
density in a host population (Suprunenko et al., 2021; Kermack and
McKendrick, 1927; Jeger and Van den Bosch, 1994; Segarra et al.,
2001; Diekmann and Heesterbeek, 2000; Van den Bosch et al., 2008;
Wang and Zhao, 2012; Van den Driessche and Watmough, 2002).

It is possible to calculate 𝑅0 from knowledge of the pathogen’s life-
cycle and its interactions with the host plant (Van den Bosch et al.,
2008), however this information is not always readily available. Previ-
ous work estimating 𝑅0 in real-world ecological scenarios has included
utilising a spatially-explicit population dynamic model for wheat stripe
rust (Mikaberidze et al., 2016), the SIR model with a time-varying
infestation rate for the oak processionary moth pest (Wadkin et al.,
2022) and stochastic epidemiological landscape models for sudden oak
death (Filipe et al., 2012).

For varying implementations of spatially explicit individual-based
models, previous work has sought a corresponding analytic approxi-
mation to 𝑅0, which can provide quick insights into epidemic proper-
ties (Suprunenko et al., 2021; Bolker, 1999; Keeling, 1999; Brown and
Bolker, 2004; Filipe and Maule, 2003; North and Godfray, 2017). For
an individual-based stochastic compartmental model, similar to the one
we consider here, a recent approximation exploits localised invasions
at the start of an epidemic to estimate 𝑅0 analytically and to explore
the impact of spatial control strategies (Suprunenko et al., 2021). We
will consider this approximation, as well as our own derivation of an
analytic expression, throughout the manuscript.

In this paper, we present a versatile individual-based model with
a Gaussian infectivity kernel (referred to henceforth as the IBM) and
explore several methods for estimating the basic reproduction number
from this model, including contact tracing, parameter inference for a
SIR model and an analytic approximation. We then take an illustrative
case-study of the UK ash dieback epidemic to compare these methods.
We outline the IBM, the compartmental SIR model with accompanying
parameter inference methodology, and the analytic approximation of
𝑅0 in Section 2, present the results in Section 3, and discuss the findings
in Section 4.

2. Methods

In this section we introduce the basic reproduction number 𝑅0
(Section 2.1), present the IBM for a generic tree disease (Section 2.2),
summarise the stochastic SIR model (Section 2.3), outline the statis-
tical methodology for parameter inference of the stochastic SIR model
(Section 2.4), and derive an analytical approximation of 𝑅0 for the IBM
(Section 2.5).

2.1. The reproduction number 𝑅0

The reproduction number is a key parameter quantifying the spread
of a disease. The basic reproduction number, 𝑅0, describes the expected
number of secondary infections produced by one primary infected
tree, over their infectious period. Some of the methods presented in
Section 3 estimate the basic reproduction number at every time-step of
the simulation, which we will refer to as the instantaneous basic repro-
duction number, 𝑅0(𝑡). We will also consider the instantaneous effective
reproduction number, calculated at a time 𝑡 as 𝑅(𝑡) = 𝑅0𝑆(𝑡)∕𝑆(0),
which takes into account that as a disease progresses the number of
susceptibles, 𝑆(𝑡), is decreasing and thus limiting disease transmission.

2.2. The individual-based model

We consider individual trees as points, randomly distributed at a
density 𝜌 within a bounded square of 𝐿 × 𝐿. All trees are classified as
being in one of three states: susceptible (𝑆), infected (𝐼) or removed
(𝑅†) (a compartmental SIR model as described in Section 2.3 Kermack
and McKendrick, 1927). Susceptible trees have yet to be infected and
2

are at risk, infected trees currently have the disease and are infective to
surrounding susceptible trees during their infectious period 𝑇I, and re-
moved trees have previously been infected, but are no longer infectious.
Trees transition through the states 𝑆 → 𝐼 → 𝑅† with opportunities to
transition in every iteration of an arbitrary discrete time-step which can
be rescaled to handle different time courses.

We assume that susceptible trees at shorter distances from infected
trees are more likely to become infected than those further away. Thus,
infection spreads through the trees based on a spatial kernel, allowing
a dependence on the distance between a susceptible and an infectious
tree. The choice of this kernel is flexible, linking to the spatial dispersal
of a pathogen and the probability of infection upon pathogen presence.
A Gaussian kernel is commonly used, however, in some ecological cases
other kernels may be more appropriate (Nathan et al., 2012; Grosdidier
et al., 2018). For simplicity, here we apply a Gaussian kernel to capture
the decay of infection probability with increasing distance between
trees, but this is easily transferable to any other kernel function. In this
case, the probability of a susceptible tree 𝑆𝑖 becoming infected due to
an infectious tree 𝐼𝑗 , separated by a distance 𝑟, in an arbitrary time-step
of the IBM 𝛥𝑡, is described by the function

𝑃𝑟(𝑆𝑖 → 𝐼𝑖|𝐼𝑗 ) = 𝐵 exp
(

−𝑟2

2𝑙2

)

𝛥𝑡 + 𝑜(𝛥𝑡),

here 𝐵 is an infectivity parameter, 𝑙 is the length scale of the pathogen
ispersal and 𝑜(𝛥𝑡)∕𝛥 𝑡 → 0 as 𝛥𝑡 → 0. To make epidemics comparable as
he transmission length scale varies, we scale the infectivity parameter,
eading to the kernel

𝑟(𝑆𝑖 → 𝐼𝑖|𝐼𝑗 ) =
𝑏

2𝜋𝑙2
exp

(

−𝑟2

2𝑙2

)

𝛥𝑡 + 𝑜(𝛥𝑡), (1)

here 𝛥𝑡 = 1 and therefore 𝑏∕(2𝜋𝑙2) = 𝐵 takes a value between 0 and 1.
Two example kernels of the above form with contrasting length scales
are shown in Fig. 1(a).

We also assume that a susceptible tree is more likely to become
infected if it is surrounded by a greater number of infectious trees, thus
we require the probability that tree 𝑆𝑖 becomes infected through any of
the infectious trees 𝐼𝑗 (with 𝑗 = 1,… , 𝑁𝐼 ) and their respective proba-
bility of infecting 𝑆𝑖, i.e., 𝑝𝑖𝑗 . To avoid a lengthy union calculation, we
calculate the probability of 𝑆𝑖 remaining uninfected, through ∏

(1−𝑝𝑖𝑗 ).
he infectious period is set by a fixed parameter 𝑇𝐼 . Once a tree has
een infectious for 𝑇𝐼 time-steps, it transitions into the removed (𝑅†)
ategory.

The simulation begins with an initial number of infected trees, 𝐼0,
hosen stochastically from trees closest to the centre of the domain.
n one time-step all the possible infections are assessed and the cor-
esponding compartmental transitions are applied. Example snapshots
rom the model are shown for the two illustrative infectivity kernels
ith contrasting length scale parameters in Fig. 1(b) and (c).

.2.1. Contact tracing through the IBM
The most direct way to calculate 𝑅0 in a computational setting

s through the contact tracing of secondary infections throughout the
imulation. This is straightforward if the disease dynamics are one-to-
ne, with a tree becoming infected due to a ‘contact’ with a single
nfectious tree. However, in the IBM described above, we assume
nfections can occur due to pressure from multiple sources through the
nfectious kernels surrounding each infected tree, as shown in Fig. 2.

In this case, after assessing the transition probabilities for all pair-
ise combinations of susceptible and infected trees, we can assign a

esulting number of newly caused infections to each infectious tree
hat is proportional to the number of trees contributing towards the
ransition, as illustrated in Fig. 2. For example, if tree 𝑆1 is successfully
nfected with transition probabilities positively assessed from tree 𝐼1
nd 𝐼2, then both tree 𝐼1 and 𝐼2 are deemed to have caused 0.5
econdary infections for the transition of 𝑆1 into the infected category.
hese secondary infections can then be summed for each 𝐼𝑖 after all

have been considered. This method conserves the total number
𝑗
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Fig. 1. (a) Two example Gaussian infectivity kernels from (1), with 𝑏 = 10, 𝑙 = 100 (orange, long-range spread) and 𝑏 = 10, 𝑙 = 10 (blue dashed, short-range spread). The resulting
infection dynamics are shown in (b) and (c) for the long and short-range spreads respectively, showing snapshots at (i) 𝑡 = 0, (ii) 20% tree mortality and (iii) 50% tree mortality.
Both cases begin with 𝐼0 = 20 infected trees with an infectious period of 𝑇𝐼 = 10 time-steps, amongst a population of susceptible trees with density 𝜌 = 0.05 in a bounded box of
size 𝐿 = 500.
Fig. 2. Schematic illustrating the number of secondary infections, 𝑛𝐼𝑗 , caused by two infected trees, 𝐼1 and 𝐼2. The circles around each of 𝐼1 and 𝐼2 at time-step 𝑡 = 𝑡𝑖 illustrate
the surrounding infectivity kernel, with a length scale described by parameter 𝑙, and infectivity by 𝑏. For each tree within the infectious zone, the probability of transition is
assessed as described in Section 2.2. For newly infected trees (i.e., 𝐼3 , 𝐼4 and 𝐼5), the contributing infection pressures from previous infected trees (i.e., 𝐼1 and 𝐼2) are assessed
independently, with proportional responsibility allocated to each previous infectious tree, as shown in the table.
of secondary infections caused, whilst allowing an insight into the
individual tree contributions.

We can then estimate 𝑅(𝑡) and 𝑅0 through this proxy-contact tracing
method. The number of new secondary infections caused by each
infected tree in each time-step can be averaged, giving the mean num-
ber of new infections in a time-step, 𝑛𝐼𝑗 . The instantaneous effective
reproduction number is then 𝑅(𝑡) = 𝑛𝐼𝑗𝑇I where 𝑇I is the infectious
period. For example, if in a single time-step there were 20 initially
infected trees leading to 10 new infections, with a mean infection
duration of 10 timesteps then 𝑛𝐼𝑗 = 0.5 and 𝑅(𝑡 = 1) = 0.5 × 10 = 5,
corresponding to the fact that at this stage of the dynamics there are
five new infections (on average) from one initial infection over its
infectious period. We present examples of this method as an estimate
for 𝑅0 in Section 3.1.

2.3. The compartmental SIR model

We consider estimating the parameters for a standard SIR model
to describe the IBM output as a method of calculating 𝑅0 (see Sec-
tion 2.4 for inference details). The established formulation of a com-
partmental SIR model (Andersson and Britton, 2000; Kermack and
McKendrick, 1927) describes the rates of change of the populations in
each compartment by

𝑑𝑆
𝑑𝑡

= −𝛽𝐼𝑆, 𝑑𝐼
𝑑𝑡

= 𝛽𝐼𝑆 − 𝛾𝐼, 𝑑𝑅†

𝑑𝑡
= 𝛾𝐼,

where 𝛽 describes the rate of infection at which contact of one infected
with one susceptible will result in infection due to pathogen dispersal
3

(sometimes referred to as the effective contact rate), and 𝛾 describes
the rate of removal due to a limited infectious period.

Since the IBM described above is inherently probabilistic, we will
consider the more flexible stochastic SIR system (as opposed to the de-
terministic system) described by the Itô stochastic differential equation
(SDE)

𝑑𝑋𝑡 = 𝑎(𝑋𝑡, 𝜃)𝑑𝑡 +
√

𝑑(𝑋𝑡, 𝜃)𝑑𝑊𝑡, (2)

where 𝑋𝑡 = (𝑆𝑡, 𝐼𝑡)′ is the state of the system at time 𝑡, 𝜃 = (𝛽, 𝛾)′ is a
vector of parameter values, and 𝑑𝑊𝑡 = (𝑊1,𝑡,𝑊2,𝑡)′ denotes a vector
of uncorrelated standard Brownian motion processes. The SDE drift
function 𝑎(𝑋𝑡, 𝜃) and diffusion coefficient 𝑑(𝑋𝑡, 𝜃) are given by

𝑎(𝑋𝑡, 𝜃) =
(

−𝛽𝑆𝑡𝐼𝑡
𝛽𝑆𝑡𝐼𝑡 − 𝛾𝐼𝑡

)

and

𝑑(𝑋𝑡, 𝜃) =
(

𝛽𝑆𝑡𝐼𝑡 −𝛽𝑆𝑡𝐼𝑡
−𝛽𝑆𝑡𝐼𝑡 𝛽𝑆𝑡𝐼𝑡 + 𝛾𝐼𝑡

)

. (3)

A derivation of the above can be found in Fuchs (2013). The drift
and diffusion functions are the infinitesimal mean and variance that
match the most natural Markov jump process representation of the SIR
model (Gillespie, 2000). The conditions under which this leads to a
reasonable approximation are also discussed in Gillespie (2000). In this
model, the basic reproduction number is given by 𝑅0 = 𝛽𝑁∕𝛾. In the
next section we outline an inference scheme for estimating plausible
values of 𝛽 and 𝛾 (and thus 𝑅0) from the time-series output of the IBM.

Note that other variations of this model exist, allowing flexibil-
ity to capture the dynamics of different diseases, such as the SEIRS
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Fig. 3. The analytic density function 𝜌(𝑟, 𝑡) given by (7) for the idealised scenario of one infectious individual surrounded by susceptibles at an initial density of 𝜌0 = 0.02 and
infection parameters 𝑏 = 10 and 𝑙 = 10 showing (a) the 3D surface 𝜌(𝑟, 𝑡), (b) the changing density with distance from the initial infected and (c) the changing density with time.
model (Bjørnstad et al., 2020) which includes additional exposed cate-
gory, E, and feeds removed individuals back into the susceptible (S) cat-
egory after a period of immunity. Similarly, it would be straightforward
to adapt the corresponding categories in the IBM.

2.4. Bayesian inference

To perform Bayesian inference using the stochastic SIR model, (2)
and (3), we apply the linear noise approximation (LNA) to obtain a
tractable likelihood function, assume a Normal prior, and use a Markov
chain Monte Carlo algorithm (see e.g., Gamerman and Lopes (2006)) to
sample values from the posterior distribution of the parameter 𝛽. We
fix 𝛾 based on the set removal rate in the IBM, i.e., 𝛾 = 1∕𝑇𝐼 . Further
details of this process are given in Appendix A.

2.5. An analytic approximation of 𝑅0

We consider an idealised, spatially explicit analytic expression of
𝑅0 for a single infectious individual. A full derivation is given in Ap-
pendix B. Firstly, consider a single infectious individual with infectious
period 𝑇𝐼 , surrounded by susceptibles at varying distance 𝑟 at a density
𝜌. We can estimate the number of new infections caused by the infected
individual to be equal to the number of susceptibles at distance 𝑟,
𝑆(𝑡) = 2𝜋𝑟𝜌, multiplied by the probability of infection at 𝑟, in this case
described by (1). The expected number of new secondary infections
from the initial infected individual at time step 𝑡 (for 1 < 𝑡 < 𝑇𝐼 ) for all
possible values of 𝑟 is therefore

𝑛𝐼 (𝑡) ≡ 𝐼(𝑡) − 𝐼(𝑡 − 1) = ∫

∞

0
2𝜋𝑟𝜌 𝑏

2𝜋𝑙2
exp

(

−𝑟2

2𝑙2

)

𝑑𝑟,
4

= 𝑏𝜌.
The cumulative sum of new secondary infections from the single infec-
tious individual during a set time period 0 ≤ 𝑡 ≤ 𝑇 , denoted 𝑁𝐼 (𝑇 ),
could then be approximated as

𝑁𝐼 (𝑇 ) =
𝑡=𝑇
∑

𝑡=1
𝑛𝐼 (𝑡) = 𝑏𝜌𝑇 ,

leading to a first approximation of 𝑅0 as the sum of secondary infections
at the end of the infectious period 𝑇𝐼 :

𝑅0 ≡ 𝑁𝐼 (𝑇𝐼 ) = 𝑏𝜌𝑇𝐼 . (4)

We refer to (4) as 𝑅0 approximation 1. However, this assumes that
the density of the susceptibles remains fixed at each time step as the
infection process progresses.

If we consider a large but finite domain of size 𝐿, we can introduce
a time variant density taking into account the decreasing number of
susceptibles due to the infection process, 𝜌(𝑡), leading to 𝑛𝐼 (𝑡) = 𝑏𝜌(𝑡)
with

𝜌(𝑡) = 𝜌0 exp
(

− 𝑏𝑡
𝐿2

)

, (5)

where 𝜌0 is the density at time 𝑡 = 0. The cumulative sum of new
secondary infections, during a set time period 0 ≤ 𝑡 ≤ 𝑇 , is then given
by

𝑁𝐼 (𝑇 ) = ∫

𝑇

0
𝑏𝜌0 exp

(

− 𝑏𝑡
𝐿2

)

𝑑𝑡,

= 𝜌0𝐿
2
[

1 − exp
(

− 𝑏𝑇
𝐿2

)]

.

This is equivalent to noting that 𝑁𝐼 (𝑇 ) is the overall change in the
density of susceptibles, multiplied by the area, i.e., 𝑁𝐼 (𝑇 ) = 𝐿2[𝜌(𝑡 =
0)−𝜌(𝑡 = 𝑇 )]. The value of 𝑅0 is the sum of the new secondary infections
across the whole infectious period,

𝑅0 ≡ 𝑁𝐼 (𝑇𝐼 ) = 𝐿2𝜌0

[

1 − exp
(

−
𝑏𝑇𝐼

)]

. (6)

𝐿2
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Fig. 4. A comparison of the three analytic approximations to 𝑅0 presented in Section 2.5, (with 𝜌 = 0.02, 𝐿 = 1000 and 𝑇𝐼 = 100), plus the analytic approximation presented
in Suprunenko et al. (2021). (a) Approximation 1, (4), in black, approximation 2, (6), in blue dashed with circle markers and approximation 3, (8), in orange with diamond markers,
for increasing values of infectious parameter 𝑏, and fixed length scale 𝑙 = 100, with the approximation from Suprunenko et al. (2021) in purple with square markers. The inset shows
a smaller range of 𝑏 to highlight the difference between the overlapping lines for approximations 1–3. (b) The differences in the 𝑅0 estimates between the three approximations,
with the red solid line showing the difference between approximation 1 and 2, (4)–(6), the pink line with circle markers showing the difference between approximation 1 and
approximation 3, (4)–(8), and the green line with square markers showing the difference between approximation 2 and approximation 3, (6)–(8). (c) Approximation 1, (4), in
black, approximation 2, (6), in blue dashed with circle markers, approximation 3, (8), in orange with diamond markers, and the approximation from Suprunenko et al. (2021) in
purple with square markers for increasing values of infectious length-scale parameter 𝑙.
This can be considered as a second approximation to 𝑅0 where some
reduction in the number of susceptibles has been taken into account.
We refer to (6) as approximation 2. Note that this is an idealised
scenario in which density reductions due to secondary and tertiary
infections are neglected.

We can go a step further by considering the spatial influence of de-
creasing susceptibles. Due to the spatial infection kernel, we expect the
density to vary both spatially (corresponding to the choice of infection
kernel governing the spatial properties of the infection process) and
temporally. We therefore consider a variant density of the form

𝜌(𝑟, 𝑡) = 𝜌0 exp
(

− 𝑏
2𝜋𝑙2

𝑡𝑔(𝑟; 𝑙)
)

, (7)

where 𝜌0 is the density at 𝑡 = 0 and 𝑔(𝑟; 𝑙) is a kernel equivalent to the
infection kernel in (1). This density function, (7), is shown in Fig. 3 for
infection parameters 𝑏 = 10 and 𝑙 = 10 to illustrate its impact at short
infection length scales. As with density (5) above, this function only
considers the density reduction due to the secondary infections caused
by the initial infected individual. The same approach could be taken
for a different choice of infection kernel.

As above, the total number of new secondary infections from the
primary infection during a set time period, 0 ≤ 𝑡 ≤ 𝑇 , at a certain
distance 𝑟, 𝑁𝐼 (𝑟, 𝑇 ), can be calculated from the overall change in
density

𝑁𝐼 (𝑟, 𝑇 ) = 𝐿2[𝜌(𝑟, 𝑡 = 0) − 𝜌(𝑟, 𝑡 = 𝑇 )].

For all possible values of 𝑟 this becomes

𝑁𝐼 (𝑇 ) = ∫

∞

0
2𝜋𝑟(𝜌0 − 𝜌(𝑟, 𝑇 ))𝑑𝑟 = ∫

∞

0
2𝜋𝑟𝜌0

×
[

1 − exp
(

− 𝑏
2𝜋𝑙2

𝑇 𝑔(𝑟; 𝑙)
)]

𝑑𝑟.
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Although the above is difficult to solve directly, it can be integrated by
performing a series expansion on the exponential term and integrating
on a term-by-term basis, leading to

𝑁𝐼 (𝑇 ) = 2𝜋𝜌0𝑙2
∞
∑

𝑛=1

(−1)𝑛+1( 𝑏
2𝜋𝑙2 𝑇 )

𝑛

(𝑛)(𝑛!)
.

If 𝑏∕2𝜋𝑙2 and 𝑇 are small, the first order term is sufficient to approxi-
mate 𝑅0 as a linear function of 𝑇 . This is confirmed by the numerical
simulations in Section 3.3. Evaluating the summation gives

𝑁𝐼 (𝑇 ) = 2𝜋𝜌0𝑙2
[

𝐸1

(

𝑏
2𝜋𝑙2

𝑇
)

+ ln
(

𝑏
2𝜋𝑙2

𝑇
)

+ 𝛤
]

,

where the function 𝐸1(𝑥) is the mathematically well studied exponen-
tial function 𝐸1(𝑥) = ∫ ∞

𝑥 𝑡−1 exp(−𝑡)𝑑𝑡 and 𝛤 is the Euler–Mascheroni
constant ≈ 0.57721. The estimated value of the basic reproduction
number is therefore

𝑅0 ≡ 𝑁𝐼 (𝑇𝐼 ) = 2𝜋𝜌0𝑙2
[

𝐸1

(

𝑏
2𝜋𝑙2

𝑇𝐼

)

+ ln
(

𝑏
2𝜋𝑙2

𝑇𝐼

)

+ 𝛤
]

, (8)

referred to as approximation 3. A comparison of the three approx-
imations presented here, (4), (6), and (8), plus the approximation
from Suprunenko et al. (2021), is shown in Fig. 4. Note that for all
the approximations derived here, reductions in susceptibles were only
taken into account due to secondary infections caused from the singular
primary infection, and not due to any further infections through the
epidemic process, thus making all the approximations an over-estimate
of 𝑅0; we discuss this further in Section 3.3. In the parameter ranges
considered, there is little difference between approximation 1 and
approximation 2. Both overestimate the value of 𝑅0 in comparison to
approximation 3, (8), particularly at a short-range infectious length
scale, i.e., for 𝑙 < 50 for 𝑏 = 10. For this reason, for the remainder
of this manuscript we consider (8) as an analytic approximation to 𝑅
0



Ecological Modelling 489 (2024) 110630L.E. Wadkin et al.
Fig. 5. Proxy contact tracing through the IBM (with parameters 𝑏 = 10, 𝑙 = 100, 𝐼0 = 5, 𝐿 = 1000, 𝜌 = 0.02 and 𝑇𝐼 = 10) to estimate (a) the instantaneous effective reproduction
number, 𝑅(𝑡), with snapshots of the disease spread with susceptible (green), infected (red) and removed (black) trees at 𝑡 = 25 and 𝑡 = 50 in the inset, in a bounded box of 𝐿 = 1000
and (b) the instantaneous basic reproduction number 𝑅0(𝑡) (blue solid line) and basic reproduction number 𝑅0 (orange dashed line, calculated as the mean of 𝑅0(𝑡)).
Fig. 6. Proxy contact tracing through the IBM (with parameters: 𝑙 = 100, 𝐼0 = 5, 𝐿 = 1000, 𝜌 = 0.02 and 𝑇𝐼 = 10 at increasing values of infectivity 𝑏) to estimate 𝑅0 for varying 𝑏. The
mean (from 500 simulations) (a) infected population with time, along with (b) the instantaneous effective reproduction number 𝑅(𝑡) and (c) the instantaneous basic reproduction
number 𝑅0(𝑡). Error bars show the standard deviation. (d) Box plots of the estimated 𝑅0 values from each of the 500 runs (calculated as the mean of each of the 500 corresponding
𝑅0(𝑡) time series).
and further investigate its suitability to describe the IBM in Section 3.3.
We also consider the analytic approximation from Suprunenko et al.
(2021), calculating estimates of 𝑅0 for our model parameters using the
open source code provided.

3. Results

In this section we investigate the three methods of estimating
the basic reproduction number from a typical individual-based model
(IBM), described in Section 2. These methods include contact tracing
(Section 3.1 using the methods described in Section 2.2.1), fitting to
the standard SIR equations (Section 3.2 using the methods described in
Section 2.4), and an analytical approximation (Section 3.3, using the
methods described in Section 2.5). We then compare these methods by
applying them to a simulation of the ash dieback pathogen in the UK
(Section 3.4).
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3.1. Contact tracing through the IBM

In the IBM described in Section 2.2, we assume infections can occur
due to pressure from multiple sources through the infectious kernels
surrounding each infected tree, as shown in Fig. 2. This results in
infection dynamics that are not one-to-one. We thus use the method for
proxy-contact tracing described in Section 2.2.1, resulting in a time-step
estimate for the (instantaneous) effective reproduction number, 𝑅(𝑡).
An example estimate of 𝑅(𝑡), the corresponding instantaneous basic
reproduction number calculated as 𝑅0(𝑡) = 𝑅(𝑡)𝑆(0)∕𝑆(𝑡), and a point
estimate of 𝑅0 (calculated as the mean of 𝑅0(𝑡)) for a single illustrative
simulation are shown in Fig. 5.

We can consider how varying the two IBM infection parameters,
the infectivity 𝑏 and the length scale 𝑙, will impact the reproduction
number, summarised in Figs. 6 and 7. The mean infected population
time series (averaged over 500 IBM simulations for each parameter
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Fig. 7. Proxy contact tracing through the IBM (with parameters: 𝑏 = 10, 𝐼0 = 5, 𝐿 = 1000, 𝜌 = 0.02 and 𝑇𝐼 = 10 at increasing values of infectious length scale 𝑙) to estimate 𝑅0
for varying 𝑙. The mean (from 500 simulations) (a) infected population with time, along with (b) the instantaneous effective reproduction number 𝑅(𝑡) and (c) the instantaneous
basic reproduction number 𝑅0(𝑡). Error bars show the standard deviation. (d) Box plots of the estimated 𝑅0 values from each of the 500 runs (calculated as the mean of each of
the 500 corresponding 𝑅0(𝑡) time series).
set) show the epidemic dynamics for increasing values of 𝑏 and 𝑙,
shown in Figs. 6(a) and 7(a), respectively. The mean instantaneous
effective reproduction number 𝑅(𝑡) for increasing 𝑏 and 𝑙 are shown
in Figs. 6(b) and 7(b), respectively. As the ‘strength’ of the epidemic
increases (through an increasing 𝑏, or to a lesser extent, an increasing 𝑙)
the early values of 𝑅(𝑡) increase. This results in a faster decreasing pool
of susceptibles, and thus a more significant decrease in 𝑅(𝑡) with time.
The instantaneous basic reproduction number, 𝑅0(𝑡), takes into account
this decrease in susceptibles, and is shown for increasing 𝑏 and 𝑙 in
Figs. 6(c) and 7(c), respectively, showing the expected increase in 𝑅0(𝑡)
with both increasing 𝑏 and 𝑙. A single value of the basic reproduction
number, 𝑅0, can be calculated as the mean of the instantaneous basic
reproduction number for each simulation, shown in the box plots in
Figs. 6(d) and 7(c) for increasing 𝑏 and 𝑙, respectively. For increasing
infectivity 𝑏, 𝑅0 increases linearly. For increasing length-scale 𝑙, 𝑅0
increases but saturates due to the presence of the bounding box (here
at 𝐿 = 1000), artificially decreasing the number of infections.

3.2. Fitting the stochastic SIR equations

It may be necessary to avoid the computational expense of tracking
infections through the IBM. In this case, we can compare the simu-
lations to the SIR model (Kermack and McKendrick, 1927) described
with introduced stochasticity by (2) and (3). In this formulation, 𝑅0
is defined as 𝛽𝑁∕𝛾. Here, we employ the inference scheme detailed
in Section 2.4 and Appendix A to estimate the SIR model parameter
𝛽. Since 𝛾 is known from the IBM input parameters (𝛾 = 1∕𝑇𝐼 ), we can
then calculate 𝑅0. Example fittings of the stochastic SIR model for three
characteristic spread dynamics with increasing dispersal length scale 𝑙
are shown in Fig. 8. At shorter length scales, we can see the slower
increase in the infectious population, due to the spatial structure and
a loss of the homogeneous mixing assumption when the interactions
are short-range, particularly visible at the start of the epidemic due to
a restricted number of susceptibles falling within the infection kernel.
An advantage of this technique is the ability to obtain a posterior
distribution of plausible 𝑅 values (through the posterior distribution
7
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for 𝛽 and our estimate of 𝛾 = 1∕𝑇𝐼 from the IBM), shown in Fig. 8 for
each of the example infection spread dynamics.

3.3. An analytical approximation

An idealised, spatially explicit analytical approximation for 𝑅0 is de-
rived in Section 2.5. In this section, we compare the analytic predictions
of 𝑅0 resulting from (8) to the numerical results from proxy contact
tracing within the IBM (as described in Section 2.2.1 and Section 3.1).

The cumulative number of expected secondary infections due to
a primary infection over an infectious period of 𝑇𝐼 = 100, 𝑁𝐼 (𝑡),
is shown in Fig. 9(a) for a fixed dispersal parameter 𝑙 = 100 and
increasing 𝑏. The linear relation between time and 𝑁𝐼 (𝑡) was predicted
by (8) in Section 2.5. For lower values of 𝑏, the analytic approximation
captures the estimation from the proxy contact tracing. For 𝑏 = 8, the
analytic estimate from (8) overestimates 𝑁𝐼 (𝑡) from around 𝑡 = 50, as
it only takes into account a reduction in susceptibles from infections
caused by the primary infectious individual, and not other infections
involved in the epidemic process. The contact-traced estimate shows
the actual saturation of 𝑁𝐼 (𝑡) that occurs as the number of available
susceptibles limits the infection spread. Similarly, Fig. 9(b) shows 𝑁𝐼 (𝑡)
for fixed 𝑏 = 5 and increasing dispersal parameter 𝑙. In this case,
the overestimation from the analytic 𝑁𝐼 (𝑡) occurs at shorter length
scales (e.g., for 𝑙 = 10 in this parameter regime), where the pool
of susceptibles has been reduced in a small area around the primary
infection, limiting the epidemic process, as shown by contact tracing.
A larger dispersal kernel encompasses a larger local neighbourhood
of infectivity around the primary susceptible, resulting in less sensi-
tivity to reductions in susceptibles through subsequent infections. The
approximation of the basic reproduction number 𝑅0 is given by the
cumulative number of secondary infections resulting from the primary
infection over its infectious period, i.e., 𝑅0 = 𝑁𝐼 (𝑇𝐼 ). In general, (8)
overestimates 𝑅0 due to the neglect of any subsequent infections caused
by the secondary infections. This is exacerbated when the infectivity is
high, or the length scale of dispersal is low, as seen in the plateau of
infections in Fig. 9(a) and (b). Thus, (8) describes constant transition
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Fig. 8. Example epidemic regimes (with 𝜌 = 0.02, 𝑇𝐼 = 10 and 𝐿 = 1000) taking place over similar time scales with an increasing radius of infection 𝑙: (a) 𝑏 = 10 and 𝑙 = 40,
(b) 𝑏 = 10 and 𝑙 = 100, and (c) 𝑏 = 15 and 𝑙 = 400, showing (i) a snapshot at 20% mortality with susceptible (green), infectious (red) and removed (black) trees, (ii) posterior
distributions of the inferred SIR parameter 𝛽, (iii) the number of infectious (I, red) and susceptible (S, green) trees from the IBM, with the corresponding stochastic SIR fitting
using the median inferred 𝛽, and 𝛾 = 1∕𝑇𝐼 = 0.1, shown as the mean of 500 runs in black dashed with standard deviation error bars in grey and (iv) posterior distribution of
estimated 𝑅0(𝑡), using all posterior estimates of 𝛽, and 𝛾 = 1∕𝑇𝐼 = 0.1.
rates accurately but deviates from model simulations when subsequent
infections cause a significant reduction in local susceptible density. The
values of 𝑅0 estimated through both the analytic and numeric contact
tracing approximations for an arbitrary fixed infectivity of 𝑏 = 5 and an
increasing dispersal parameter 𝑙 are shown in Fig. 9(c). The analytic
approximation captures the general trend of increasing 𝑅0, followed
by saturation due to a limited susceptible population in the infectious
area, as in Fig. 7(d). The analytic approximation previously defined
in Suprunenko et al. (2021) (also shown in Fig. 9(c)) shows a similar
trend and is in agreement with the predictions from (8) at greater
length scales.

A useful property of the basic reproduction number is its quantifi-
cation of the transmission threshold, defined as 𝑅0 = 1, predicting the
separation of states between confinement and epidemic. In Fig. 9(d),
the threshold predicted by (8) is shown with a two-dimensional phase
plot of all estimated 𝑅0 over tree density and infection parameter 𝑏,
allowing a categorisation of disease confinement or epidemic from the
model parameters.

We can also assess how the total tree mortality relates to the
threshold 𝑅0 > 1 predicted by (8). The total proportion of host trees
in the Removed (𝑅†) compartment (removal prevalence) for increasing
predicted analytical 𝑅 from (8) is shown for an illustrative epidemic
8
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regime (𝐿 = 500, 𝜌 = 0.01, 𝑇𝐼 = 100, 𝑟 = 100, 0 < 𝑏 < 4) in Fig. 9(e).
When 𝑏 and 𝜌 result in an analytical prediction of 𝑅0 less than one,
correspondingly, tree mortality is low. When the infectivity is increased
such that analytical 𝑅0 > 1, tree mortality rises considerably. The ap-
proximation described by (8) therefore demonstrates the threshold-like
behaviour defined by 𝑅0 = 1. It is worth noting that despite being above
the threshold, the numerical simulations from the IBM can still fail to
produce an epidemic, due to the influence of early stochastic forces in-
creasing the probability of epidemic extinction (Heffernan et al., 2005;
Tildesley and Keeling, 2009), a disadvantage of the general concept of
𝑅0 (Li et al., 2011). The threshold-like behaviour witnessed in Fig. 9(e)
demonstrates that (8) provides a simple predictive framework for the
IBM considered here.

3.4. Application to ash dieback

In this section we employ the idealised IBM, as described in Sec-
tion 2.2, to describe the spread of ash dieback (Hymenoscyphus frax-
ineus), a highly destructive fungal tree disease, and use each of the
above methods to estimate the basic reproduction number 𝑅0.

The IBM is initialised with a density of 𝜌 = 0.0444 trees/m2, given
the estimate of 444 ash trees per hectare (10,000 m2) within small



Ecological Modelling 489 (2024) 110630L.E. Wadkin et al.
Fig. 9. Comparison between the analytical expression for 𝑁𝐼 (𝑡) (the cumulative number of secondary infections resulting from the primary infection), and hence 𝑅0 = 𝑁𝐼 (𝑇𝐼 ) from
(8), and the value of 𝑅0 estimated through proxy contact tracing through the IBM (as in Section 3.1). In all cases 𝐿 = 1000, 𝜌 = 0.02, 𝐼0 = 1 and 𝑇𝐼 = 100. (a) 𝑁𝐼 for increasing
infectivity 𝑏 (with fixed infectious length scale 𝑙 = 100). The analytic estimate of 𝑁𝐼 (𝑡) (from (8)) is shown as a dashed line, with a circle at the end of the infectious period
indicating 𝑅0. The solid lines show the median contact traced estimates of 𝑅0 (over 500 runs of the IBM) with standard deviation error bars. (b) 𝑁𝐼 for increasing infectious length
scale 𝑙 (with fixed infectivity 𝑏 = 5). The analytic estimate of 𝑁𝐼 is shown as a dashed line, with a circle at the end of the infectious period indicating 𝑅0. The solid lines show
the median contact traced estimates of 𝑅0 (over 500 runs of the IBM) with standard deviation error bars. (c) The analytic estimates of 𝑅0 from (8) for increasing length scale 𝑙
(and fixed infectivity 𝑏 = 5) is shown as the solid orange line with circle markers. The analytic approximation from Suprunenko et al. (2021) is shown as the dashed purple line.
Box plots show the corresponding estimates of the contact traced 𝑅0 values from 500 runs of the IBM. (d) The analytic 𝑅0 phase plane predicted by (8) for increasing density 𝜌
and infectivity 𝑏. The threshold, given by 𝑅0 = 1, is plotted in red and illustrates the separation between confinement and epidemic. (e) The relationship between the total tree
mortality (removal prevalence) over 500 runs of the IBM and the 𝑅0 value predicted by (8), demonstrating the threshold-like behaviour at 𝑅0 = 1.
woodlands in the UK (The Tree Council, 2014). We set the dispersal
parameter 𝑙 in (1) to be 138 m, based upon estimates of the local
dispersal kernels for the ash dieback pathogen from spore-trapping
data (Grosdidier et al., 2018). The pathogen can remain active for
around 4 years after infection (Wylder et al., 2018) and so the infectious
period is chosen to be 𝑇𝐼 = 4 years. This leaves the unconstrained in-
fectivity parameter, 𝑏, and the time-step over which new infections are
assessed, 𝑑𝑡. Here we arbitrarily take 𝑑𝑡 = 1week, and consider a range
of 𝑏 (with units m2week−1) to focus on regimes resulting in 0 < 𝑅0 < 7.

Assuming there will be some variability in the estimate of 𝜌 in
different areas, we show the phase plane of the analytic estimation of
𝑅0 for a range of densities and infectivity parameters, along with the
threshold value of 𝑅0 = 1, in Fig. 10(a). This illustrates the values
of 𝜌 and 𝑏 that would result in the epidemic regime. The estimates
of 𝑅0 for 500 simulations with fixed 𝜌 = 0.0444 trees/m2 and 𝑙 =
138m through each of the methods described above, plus the analytic
9

approximation from Suprunenko et al. (2021), are shown in Fig. 10(b).
The overestimate of 𝑅0 through both analytical expressions is clear, as
discussed in Section 3.3, with similar estimates of 𝑅0 resulting through
both contact tracing and inference of the SIR parameters. Given an
estimate of the infectious parameter 𝑏 (discussed further in Section 4),
this would allow the prediction of 𝑅0 through several comparative
methods without requiring physical contact tracing of the infection.

4. Discussion

Stochastic IBMs are a popular choice for describing the spread of
tree diseases and pests through woodland areas, due to their flexibility
and ability to describe large-scale collective behaviours from the pro-
gramming of individual behaviours. Here we use a typical IBM for the
spread of an arbitrary disease or pest through a synthetic forest, and
explore different methods of calculating the basic reproduction number
𝑅 , a key parameter for disease characterisation and forecasting.
0



Ecological Modelling 489 (2024) 110630L.E. Wadkin et al.
Fig. 10. (a) The analytic 𝑅0 phase plane predicted by (8) for increasing density 𝜌 (including the estimated tree density relevant for ash dieback, 𝜌 = 0.0444) and infectivity 𝑏. The
threshold, given by 𝑅0 = 1, is plotted in red and illustrates the separation between confinement and epidemic. (b) The estimates of 𝑅0 with the ash dieback parameters 𝑙 = 138m,
𝜌 = 0.0444 trees/m2 and 𝑇𝐼 = 4 years through the analytic approximation (8) (solid line with orange circles), previous analytic approximation from Suprunenko et al. (2021) (purple
dashed line), contact tracing where 𝑅0 is the mean of 𝑅0(𝑡) (blue circles), and inference of the SIR parameters (green diamonds). Markers indicate the mean of 500 simulations,
with standard deviation error bars.
We have expanded upon similar compartmental IBMs of tree dis-
ease (Orozco-Fuentes et al., 2019), introducing a flexible spatial com-
ponent to the infection spread through the inclusion of an infectious
kernel, as used in Parnell et al. (2009) to describe the spread of Asiatic
citrus canker disease. The infectious dispersal kernel characterises the
spatial spread of the disease and thus has a large impact on the
epidemic outcome (Fabre et al., 2021). In this case we use an IBM with
a Gaussian probability of infection due to its simplicity and prevalence
in similar models (Nathan et al., 2012; Mikaberidze et al., 2016; Fabre
et al., 2021; Prussin II et al., 2015), but this is entirely flexible and the
most appropriate choice will depend on the nature of the disease or pest
considered. For example, for the ash dieback epidemic, both Gaussian
and power law kernels have been estimated for the dispersal at dif-
ferent scales (Grosdidier et al., 2018). Future work should explore the
impact of different kernels on the IBM behaviour and the corresponding
estimations of 𝑅0.

The choice of infectious kernel is linked to dispersal (Nathan et al.,
2012; Bullock et al., 2017) describing the probability of pathogen
presence over distance. Dispersal kernels can be estimated through
either mechanistic models (Nathan et al., 2011; Thompson et al., 2014),
or through fitting statistical functions to dispersal data (Bullock et al.,
2017; Grosdidier et al., 2018), but can be challenging to ascertain.
A further complication is the mapping of a dispersal kernel to the
corresponding infectious kernel, i.e., how does probability of pathogen
presence correspond to the probability of successful infection? In the
IBM kernel this is captured in the infectivity parameter 𝐵 = 𝑏∕(2𝜋𝑙2),
and we consider a range of arbitrarily chosen values to illustrate the
methodology. For the ash dieback simulation, we take the length scale
from the dispersal kernel estimated from ecological data describing
the density of pathogen spores at varying distance from infected ash
trees (Grosdidier et al., 2018). Since 𝐵 (and thus 𝑏) is not known, we
again consider a range of parameter values leading to plausible 𝑅0
estimations.

Inference for 𝐵 under the IBM may be possible by leveraging
recently proposed approximate Bayesian computation techniques (ABC,
see e.g. Minter and Retkute (2019)) although such approaches typically
require several millions of model simulations. The practical applica-
bility of ABC for our proposed spatio-temporal model remains the
subject of ongoing work. It may also be possible to constrain 𝐵 through
estimations of 𝑅0 (through empirical means or from data of infections)
in previous outbreaks of the disease or pest under similar conditions.
Climate change is driving the geographical expanse of many ecological
epidemics and invasions, and so ecological data may be available from
multiple locations.

The most straightforward way of calculating 𝑅0 within the IBM is
through the contact tracing of infections. This can be done directly, by
storing the number of secondary infections resulting from a singular
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tree, but requires a model in which trees are considered individually
in the infection time-step, thus requiring more computational expense.
In the case of a vectorised IBM, where individual secondary infections
are not tree specific, we can calculate an estimation of 𝑅(𝑡) through
the number of average new infections, and sharing ‘the blame’ for these
between the currently infected population. Although noisy, particularly
at the beginning of an epidemic regime (if the length scale of infectivity
is low and initial infected trees are clustered, resulting in a limited
number of susceptible trees in the local area) and end of epidemic
simulation (as the number of susceptible trees available approaches
zero), the median of the 𝑅0(𝑡) series provides an estimation consistent
with the other methods considered here. True contact-tracing methods,
where the source of individual infections is tracked, have the advantage
of providing a direct measurement of 𝑅0, even with increasing model
complexity, but are more computationally expensive. Vectorised imple-
mentations of infection spread will require approximations to tracking
the average number of infections caused by individuals and thus result
in more noisy estimations.

The temporal output from the IBM can be compared to the classic
SIR equations, allowing a straight-forward estimation of 𝑅0 through
the model parameters 𝛽 and 𝛾. The estimation of the model parameters
through the inferential scheme results in a distribution of plausible 𝑅0
values, which has the advantage of capturing the parameter uncertainty
and is useful for forecasting best and worst-case scenarios. However,
this method relies on the assumption that the standard SIR equations
will effectively capture the time-series resulting from the IBM. Unless
the length scale of dispersal is very large, we will not fulfil the homo-
geneous mixing assumption of the SIR model. Despite this, we still find
the parameter estimates to be descriptive enough to provide a measure
of 𝑅0 consistent with other methods. Future work could explore the
relationship between the dispersal kernel parameters and the SIR model
parameters.

We also derive an analytical expression for approximating 𝑅0 which
predicts the epidemic threshold and the contact-traced reproduction
number computed through the IBM simulations, with the caveat that
it overestimates 𝑅0, particularly when the epidemic severity is high.
Our analytic approximation shows good consistency with the previous
expression developed in Suprunenko et al. (2021) with a reduced
over-estimate at shorter length scales, and is perhaps more simple to
implement computationally. Future work could consider a thorough
quantitative comparison of existing analytic 𝑅0 approximations under
varying infectious dynamics and models. The overestimation of 𝑅0
can be compared to well-known results (Tildesley and Keeling, 2009;
Keeling and Eames, 2005) showing that the first-generation basic repro-
duction number for farms infected with foot-and-mouth overestimates
the growth rate of infection. The analytic estimate has the advantage of



Ecological Modelling 489 (2024) 110630L.E. Wadkin et al.

a
v
e

C

q
–

t
H
M
S
l
i
t
i
a

D

c
i

Table 1
Advantages and disadvantages of the methods presented to estimate 𝑅0 from an individual-based model.

Method Advantages Disadvantages

Contact tracing Intuitive, accurate representation of model dynamics,
straight-forward to implement, robust to other individual
based model implementations

Computationally expensive, requires an approximation using
the average number of infections if individual infection
causes are not tracked

Analytic approx. Requires IBM parameters only, provides a quick upper bound
(worst-case) scenario estimate

Over-estimation at short length-scales, non-trivial to adapt to
other IBM implementations, kernels and epidemic regimes,
assumption of spatial homogeneity of individuals

Inference of SIR parameters Require model output only (easily transferable to varying
model implementations and to real-world applications),
quantifies uncertainty

Computationally expensive, prior knowledge of parameters
required, relies on the assumption that the standard SIR
equations capture the model dynamics (homogeneous mixing)
𝑋

a
s

𝑑

w
‘

f
p

𝑑

w

calculation through the IBM model parameters only, however compara-
ble analytical solutions are challenging to determine for more elaborate
life-cycles, dynamics and aggregated host distributions.

Considering an illustrative simulation of ash dieback in the UK
using the IBM allows a comparison of the different estimation methods
of 𝑅0 in context. If the infectivity parameter 𝑏 were to be estimated
(through estimation of 𝐵 and 𝑙), as discussed above, the IBM model
parameters could be used to efficiently calculate an upper-bound for a
plausible estimation of 𝑅0. Numerical methods such as contact tracing
and inference of the SIR model parameters provide a more accurate
estimation of 𝑅0, albeit at more computational expense. Future work
could expand the IBM to larger areas, considering varying densities
of woodland across different geographical areas to generate landscape
level predictive 𝑅0 maps.

Exploring different underlying tree distributions to capture more re-
alistic landscapes would also be an interesting avenue for future work.
This would be straightforward to implement in the IBM and the approx-
imations of 𝑅0 through both proxy-contact tracing and inference of the
SIR parameters would be estimated in the same way, however, an ad-
justment in the analytic 𝑅0 estimation would be required as this deriva-
tion depends on an assumption of an homogeneous underlying host tree
distribution. Similarly, the work here could be extended to consider
other formulations of compartmental models, e.g., SIRS where removed
individuals can transition back to the susceptible class (Golightly et al.,
2023), or SEIR as considered in Suprunenko et al. (2021).

This work provides an additional framework to existing meth-
ods (Suprunenko et al., 2021) to estimate epidemic severity through
the parameter 𝑅0, using a flexible IBM for tree disease spread. Given
knowledge of the dispersal kernel for a particular pathogen, the IBM
can be used to estimate 𝑅0 through several methods, the advantages
nd disadvantages of which are summarised in Table 1, and thus pro-
ides an extensible tool which can be further developed for ecological
pidemic forecasting.
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Appendix A. Bayesian inference details

For inference on the stochastic SIR model, (2) and (3), we apply the
linear noise approximation (LNA) to obtain a tractable approximation
to the stochastic differential equation. Formal details of the LNA can
be found in Kurtz (1972), van Kampen (2001) and Komorowski et al.
(2009), with an outline derivation below.

Consider a partition of the system 𝑋𝑡 as

𝑡 = 𝜂𝑡 +𝑍𝑡, (A.1)

where {𝜂𝑡, 𝑡 ≥ 0} is a deterministic process satisfying the ordinary
differential equation (ODE)
𝑑𝜂𝑡
𝑑𝑡

= 𝑎(𝜂𝑡, 𝜃), 𝜂0 = 𝑥0, (A.2)

nd {𝑍𝑡, 𝑡 ≥ 0} is a residual stochastic process. The residual process 𝑍𝑡
atisfies

𝑍𝑡 = {𝑎(𝑋𝑡, 𝜃) − 𝑎(𝜂𝑡, 𝜃)} 𝑑𝑡 +
√

𝑑(𝑋𝑡, 𝜃) 𝑑𝑊𝑡,

hich will typically be intractable. The assumption that ‖𝑋𝑡 − 𝜂𝑡‖ is
‘small’’ motivates a Taylor series expansion of 𝑎(𝑥𝑡, 𝜃) and 𝑑(𝑥𝑡, 𝜃) about
𝜂𝑡, with retention of the first two terms in the expansion of 𝑎 and the
irst term in the expansion of 𝑏. This gives an approximate residual
rocess {𝑍̂𝑡, 𝑡 ≥ 0} satisfying

𝑍̂𝑡 = 𝐻𝑡𝑧̂𝑡 𝑑𝑡 +
√

𝑑(𝜂𝑡, 𝜃) 𝑑𝑊𝑡,

here 𝐻𝑡 is the Jacobian matrix with (𝑖, 𝑗)th element

(𝐻𝑡)𝑖,𝑗 =
𝜕𝑎𝑖(𝜂𝑡, 𝜃)
𝜕𝜂𝑗,𝑡

.

For the SIR model in (2) and (3) we therefore have

𝐻𝑡 =
(

−𝛽𝐼𝑡 −𝛽𝑆𝑡
𝛽𝐼𝑡 𝛽𝑆𝑡 − 𝛾

)

.

Given an initial condition 𝑍̂0 ∼ N(𝑧̂0, 𝑉0), it can be shown that 𝑍̂𝑡 is a
Gaussian random variable (Fearnhead et al., 2014). Consequently, the
partition in (A.1) with 𝑍𝑡 replaced by 𝑍̂𝑡, and the initial conditions
𝜂0 = 𝑥0 and 𝑍̂0 = 0 give

( )
𝑋𝑡 ∼ N 𝜂𝑡, 𝑉𝑡 , (A.3)

https://doi.org/10.25405/data.ncl.24787752
https://doi.org/10.25405/data.ncl.24787752
https://doi.org/10.25405/data.ncl.24787752
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where 𝜂𝑡 satisfies (A.2) and 𝑉𝑡 satisfies
𝑑𝑉𝑡
𝑑𝑡

= 𝑉𝑡𝐻
′
𝑡 + 𝑑(𝜂𝑡, 𝜃) +𝐻𝑡𝑉𝑡, 𝑉0 = 0. (A.4)

Further details on the derivation of (A.4) are given in Wadkin et al.
(2022). Hence, the linear noise approximation is characterised by
the Gaussian distribution in (A.3), with mean and variance found by
solving the ODE system given by (A.2) and (A.4), which can be solved
numerically.

Given the observational process 𝑋𝑡, and parameter vector 𝜃, the
likelihood is then

𝐿(𝜃|𝑋) =
𝑛−1
∏

𝑖=0
N2(𝑋𝑡𝑖+1 ;𝑋𝑡𝑖 + 𝑎(𝑋𝑡𝑖 , 𝜃)𝑑𝑡, 𝑉𝑡𝑖 + (𝑉𝑡𝑖𝐻𝑡𝑖 +𝑑(𝜂𝑡𝑖 , 𝜃) +𝐻𝑡𝑖𝑉𝑡𝑖 )𝑑𝑡)

(A.5)

where N2(⋅, 𝑚, 𝑣) denotes the multivariate Gaussian density with mean
vector 𝑚 and variance matrix 𝑣. In this case we fix 𝛾 according to the
removal rate in the IBM and so 𝜃 = (𝛽) only. We set a prior specification
of 𝛽 ∼ logN(0, 1). Since 𝛽 > 0 we work on a unrestricted parameter space
by letting 𝜆 = log 𝛽. The posterior is given by

𝜋(𝜆|𝑋) ∝ 𝜋(𝜆)𝐿(𝑒𝜆|𝑋), (A.6)

where 𝜋(𝜆) = N(𝜆 ; 𝑎𝛽 , 𝑐2𝛽 ). We can then use an MCMC scheme (Al-
gorithm 1) to generate draws of 𝜆|𝑋 and exponentiate to give draws
of 𝜃|𝑋. This results in a posterior distribution of plausible values of
𝛽. In cases where 𝛾 is not known, it is straightforward to expand the
parameter search to target 𝜃 = (𝛽, 𝛾)′.

Algorithm 1 Random walk Metropolis algorithm

1. Initialise at 𝜃(0) in the support of 𝜋(𝜃|𝑋). Set the iteration counter
𝑖 = 1.

2. Propose 𝜃∗ = 𝜃(𝑖−1) + 𝜖𝑖 where 𝜖𝑖 ∼ N(0, 𝛺)
3. With probability

𝛼(𝜃∗|𝜃(𝑖−1)) = min
{

1,
𝜋(𝜃∗)𝜋(𝑋|𝜃∗)

𝜋(𝜃(𝑖−1))𝜋(𝑋|𝜃(𝑖−1))

}

put 𝜃(𝑖) = 𝜃∗ otherwise put 𝜃(𝑖) = 𝜃(𝑖−1).
4. If 𝑖 = 𝑀 stop otherwise put 𝑖 ∶= 𝑖 + 1 and go to step 2.

Appendix B. Analytic 𝑹𝟎 derivation

In this section, an idealised, spatially explicit expression of 𝑅0(𝑡) is
erived for the IBM. Firstly, consider a single infectious individual with
nfectious period 𝑇𝐼 , surrounded by susceptibles at varying distance 𝑟
t a density 𝜌. We can estimate the number of new infections caused
y the infected individual to be equal to the number of susceptibles at
istance 𝑟, 𝑆(𝑡) = 2𝜋𝑟𝜌, multiplied by the probability of infection at 𝑟,

in this case described by (1). The expected number of new secondary
infections from the initial infected individual at time step 𝑡 (for 1 < 𝑡 <
𝑇𝐼 ) for all possible values of 𝑟 is therefore

𝑛𝐼 (𝑡) ≡ 𝐼(𝑡) − 𝐼(𝑡 − 1) = ∫

∞

0
2𝜋𝑟𝜌 𝑏

2𝜋𝑙2
exp

(

−𝑟2

2𝑙2

)

𝑑𝑟,

= 𝑏𝜌.

he cumulative sum of new secondary infections from the single infec-
ious individual during a set time period 0 ≤ 𝑡 ≤ 𝑇 , denoted 𝑁𝐼 (𝑇 ),
ould then be approximated as

𝐼 (𝑇 ) =
𝑡=𝑇
∑

𝑛𝐼 (𝑡) = 𝑏𝜌𝑇 ,
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𝑡=1
eading to a first approximation of 𝑅0 as the sum of secondary infections
t the end of the infectious period 𝑇𝐼 :

𝑅0 ≡ 𝑁𝐼 (𝑇𝐼 ) = 𝑏𝜌𝑇𝐼 . (B.1)

However, this assumes that the density of the susceptibles remains fixed
at each time step as the infection process progresses.

If host growth is neglected (likely appropriate for many tree based
scenarios), fewer trees will be available to infect at time-step 𝑡 + 1.
The susceptible tree density can therefore be seen as a monotonically
decreasing function of time, 𝜌(𝑡), leading to

𝑛𝐼 (𝑡) = 𝑏𝜌(𝑡).

n a large but finite domain of size 𝐿, tree density approximately
ollows
𝑑𝜌
𝑑𝑡

= −
𝑛𝐼 (𝑡)
𝐿2

= −
𝑏𝜌(𝑡)
𝐿2

.

Solving the above, with the initial condition 𝜌0 at 𝑡 = 0, leads to

𝜌(𝑡) = 𝜌0 exp
(

− 𝑏
𝐿2

𝑡
)

.

The cumulative sum of new secondary infections, during a set time
period 0 ≤ 𝑡 ≤ 𝑇 , is then given by

𝑁𝐼 (𝑇 ) =
𝑡=𝑇
∑

𝑡=1
𝑛𝐼 (𝑡) = ∫

𝑇

0
𝑏𝜌0 exp

(

− 𝑏𝑡
𝐿2

)

𝑑𝑡,

= 𝜌0𝐿
2
[

1 − exp
(

− 𝑏𝑇
𝐿2

)]

.

This is equivalent to noting that 𝑁𝐼 (𝑇 ) is the overall change in the
density of susceptibles, multiplied by the area, i.e., 𝑁𝐼 (𝑇 ) = 𝐿2[𝜌(𝑡 =
0)−𝜌(𝑡 = 𝑇 )]. The value of 𝑅0 is the sum of the new secondary infections
across the whole infectious period,

𝑅0 ≡ 𝑁𝐼 (𝑇𝐼 ) = 𝐿2𝜌0

[

1 − exp
(

−
𝑏𝑇𝐼
𝐿2

)]

.

This can be considered as a second approximation to 𝑅0 where some
reduction in the number of susceptibles has been taken into account.
Note that this is an idealised scenario in which density reductions due
to secondary and tertiary infections are neglected.

However, the uniform density reductions in the above assume that
secondary infections are equally likely at all spatial locations about
the primarily infected tree, which is not the case for an infectivity
kernel as in (1). On average, neglecting this spatial variation within
the changing density results in an overestimation of the number of
secondary infections induced by the tails of the dispersal kernel, thus
giving rise to a greater 𝑅0 value. Taking this into account, we can
instead consider a spatial variant density of the form

𝜌(𝑟, 𝑇 ) = 𝜌0 exp
(

− 𝑏
2𝜋𝑙2

𝑇 𝑔(𝑟; 𝑙)
)

, (B.2)

where 𝑔(𝑟; 𝑙) is a Gaussian kernel as in (1). As above, the total number of
new secondary infections from the primary infection during a set time
period, 0 ≤ 𝑡 ≤ 𝑇 , at a certain distance 𝑟, 𝑁𝐼 (𝑟, 𝑇 ), can be calculated
rom the overall change in density

𝐼 (𝑟, 𝑇 ) = 𝐿2[𝜌(𝑟, 𝑡 = 0) − 𝜌(𝑟, 𝑡 = 𝑇 )].

or all possible values of 𝑟 this becomes

𝐼 (𝑇 ) = ∫

∞

0
2𝜋𝑟(𝜌0 − 𝜌(𝑟, 𝑇 ))𝑑𝑟 = ∫

∞

0
2𝜋𝑟𝜌0

×
[

1 − exp
(

− 𝑏
2𝜋𝑙2

𝑇 𝑔(𝑟; 𝑙)
)]

𝑑𝑟.

Here the finite lattice square of area 𝐿2 has been replaced with inte-
gration in polar coordinates over 𝑑𝑟. Although the above is difficult to
solve directly, it can be integrated by performing a series expansion
on the exponential term and integrating on a term-by-term basis, as

follows:
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w
t

𝑁𝐼 (𝑇 ) = ∫

∞

0
2𝜋𝑟𝜌0

[

1 − exp
(

− 𝑏
2𝜋𝑙2

𝑇 𝑔(𝑟; 𝑙)
)]

𝑑𝑟,

= 2𝜋𝜌0 ∫

∞

0
𝑟
⎡

⎢

⎢

⎣

1 −
∞
∑

𝑛=0

(− 𝑏
2𝜋𝑙2 𝑇 )

𝑛

𝑛!
exp

(

− 𝑟2

2𝑙2

)

⎤

⎥

⎥

⎦

𝑑𝑟,

= 2𝜋𝜌0 ∫

∞

0
𝑟
⎡

⎢

⎢

⎣

1 −
∞
∑

𝑛=0

(−1)𝑛+1( 𝑏
2𝜋𝑙2 𝑇 )

𝑛

𝑛!
exp

(

− 𝑛𝑟2

2𝑙2

)

⎤

⎥

⎥

⎦

𝑑𝑟,

= 2𝜋𝜌0
∞
∑

𝑛=0

(−1)𝑛+1( 𝑏
2𝜋𝑙2 𝑇 )

𝑛

𝑛! ∫

∞

0
𝑟 exp

(

− 𝑛𝑟2

2𝑙2

)

𝑑𝑟,

= 2𝜋𝜌0𝑙2
∞
∑

𝑛=1

(−1)𝑛+1( 𝑏
2𝜋𝑙2 𝑇 )

𝑛

(𝑛)(𝑛!)
.

If 𝑏∕2𝜋𝑙2 and 𝑇 are small, the first order term in the above equation is
sufficient to approximate 𝑁𝐼 (𝑡) as a linear function of 𝑇 . Finally, the
above can be summed to give

𝑁𝐼 (𝑇 ) = 2𝜋𝜌0𝑙2
∞
∑

𝑛=1

(−1)𝑛+1
(

𝑏
2𝜋𝑙2 𝑇

)𝑛

(𝑛)(𝑛!)
,

= 2𝜋𝜌0𝑙2
[

𝐸1

(

𝑏
2𝜋𝑙2

𝑇
)

+ ln
(

𝑏
2𝜋𝑙2

𝑇
)

+ 𝛤
]

,

(B.3)

here the function 𝐸1(𝑥) is the mathematically well studied exponen-
ial function 𝐸1(𝑥) = ∫ ∞

𝑥 𝑡−1 exp(−𝑡)𝑑𝑡 and 𝛤 is the Euler–Mascheroni
constant ≈ 0.57721. The estimated value of the basic reproduction
number is therefore

𝑅0 ≡ 𝑁𝐼 (𝑇𝐼 ) = 2𝜋𝜌0𝑙2
[

𝐸1

(

𝑏
2𝜋𝑙2

𝑇𝐼

)

+ ln
(

𝑏
2𝜋𝑙2

𝑇𝐼

)

+ 𝛤
]

.
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