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Abstract
Background: Cardiovascular disease is the most common cause of death
worldwide, including infection and inflammation related conditions. Multiple
studies have demonstrated potential advantages of hybrid positron emission
tomography combined with computed tomography (PET/CT) as an adjunct to
current clinical inflammatory and infectious biochemical markers. To quantita-
tively analyze vascular diseases at PET/CT, robust segmentation of the aorta
is necessary. However, manual segmentation is extremely time-consuming and
labor-intensive.

Abbreviations: 2-[18F]FDG, 2-deoxy-2-[18F]fluoro-D-glucose; BA, Bland–Altman; DSC, dice similarity coefficient; EANM, European Association of Nuclear Medicine;
HD, Hausdorff distance; HU, Hounsfield unit; ICC, intraclass correlation coefficient; IQR, interquartile range; LDCT, low-dose computed tomography; Na[18F]F,
sodium [18F]fluoride; PET, positron emission tomography; SD, standard deviation; SEQUOIA, SEgmentation, QUantification, and visualizatiOn of the dIseased Aorta;
SUV, standardized uptake value; TBR, target-to-background ratio.
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2 SEQUOIA–PET/CT

Purpose: To investigate the feasibility and accuracy of an automated tool to
segment and quantify multiple parts of the diseased aorta on unenhanced
low-dose computed tomography (LDCT) as an anatomical reference for
PET-assessed vascular disease.
Methods: A software pipeline was developed including automated segmenta-
tion using a 3D U-Net, calcium scoring, PET uptake quantification, background
measurement, radiomics feature extraction, and 2D surface visualization of
vessel wall calcium and tracer uptake distribution. To train the 3D U-Net, 352
non-contrast LDCTs from (2-[18F]FDG and Na[18F]F) PET/CTs performed in
patients with various vascular pathologies with manual segmentation of the
ascending aorta,aortic arch,descending aorta,and abdominal aorta were used.
The last 22 consecutive scans were used as a hold-out internal test set. The
remaining dataset was randomly split into training (n = 264;80%) and validation
(n = 66; 20%) sets. Further evaluation was performed on an external test set of
49 PET/CTs. The dice similarity coefficient (DSC) and Hausdorff distance (HD)
were used to assess segmentation performance. Automatically obtained cal-
cium scores and uptake values were compared with manual scoring obtained
using clinical softwares (syngo.via and Affinity Viewer) in six patient images.
intraclass correlation coefficients (ICC) were calculated to validate calcium and
uptake values.
Results: Fully automated segmentation of the aorta using a 3D U-Net was
feasible in LDCT obtained from PET/CT scans. The external test set yielded a
DSC of 0.867 ± 0.030 and HD of 1.0 [0.6–1.4] mm, similar to an open-source
model with a DSC of 0.864 ± 0.023 and HD of 1.4 [1.0–1.8] mm. Quantifi-
cation of calcium and uptake values were in excellent agreement with clinical
software (ICC: 1.00 [1.00–1.00] and 0.99 [0.93–1.00] for calcium and uptake
values, respectively).
Conclusions: We present an automated pipeline to segment the ascend-
ing aorta, aortic arch, descending aorta, and abdominal aorta on LDCT from
PET/CT and to accurately provide uptake values, calcium scores, background
measurement, radiomics features, and a 2D visualization. We call this algorithm
SEQUOIA (SEgmentation, QUantification, and visualizatiOn of the dIseased
Aorta) and is available at https://github.com/UMCG-CVI/SEQUOIA. This model
could augment the utility of aortic evaluation at PET/CT studies tremendously,
irrespective of the tracer, and potentially provide fast and reliable quantification
of cardiovascular diseases in clinical practice, both for primary diagnosis and
disease monitoring.

KEYWORDS
aorta, artificial neural network, calcium score, cardiovascular disease, computed tomography,
positron emission tomography, radiomics

1 INTRODUCTION

Cardiovascular disease is the most common cause of
death worldwide. In addition to atherosclerosis these
include infection and inflammation-related diseases, for
example, vascular graft infections and vasculitis.1 Non-
invasive imaging techniques play a central role in the
identification, stratification, and follow-up of infectious
and inflammatory vascular disease. Multimodality imag-
ing, such as positron emission tomography (PET) and
computed tomography (CT) of these diseases, allows
physicians to observe molecular information PET in
an anatomical context CT. PET imaging allows for the

imaging of functional alterations, which frequently arise
before the structural modifications that can be detected
via CT imaging.2

Multiple studies have demonstrated potential advan-
tages of hybrid PET/CT imaging in addition to conven-
tional clinical inflammatory and infectious biomarkers.
2-Deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG) PET/CT
is recommended for diagnosis of large vessel vas-
culitis and polymyalgia rheumatica and has higher
diagnostic accuracy than conventional CT alone.3,4 Fur-
thermore, 2-[18F]FDG-PET/CT has a valuable role in
the non-invasive evaluation of suspected vascular graft
infections.5 Besides 2-[18F]FDG,other potential vascular
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SEQUOIA–PET/CT 3

tracers are increasingly being studied. For example,
some studies have shown that increased uptake of
sodium[18F]fluoride (Na[18F]F) is associated with higher
cardiovascular risk.6,7 Na[18F]F binds to hydroxyapatite
and is visible in active atherosclerosis progression, thus,
PET/CT could prove useful for early diagnosis or even
prediction of these diseases.8,9

Currently, vascular diseases are diagnosed mostly
using visual assessment in clinic. The clinical utility
of measurements such as standardized uptake val-
ues (SUV) or target-to-background ratios (TBR), is
less established.3,5 Some studies have demonstrated
the potential for use of quantitative measurements.
For example, cutoff values of SUVmax and TBR
values had a high AUC of 0.83–0.94 for differen-
tiating giant cell arteritis from control patients.10–12

However, these are mostly small single center, ret-
rospective studies and cut-off values differ between
studies. To analyze aortic diseases more accurately
at PET/CT, it is important to localize and quanti-
tatively assess the aorta, for example, calcium in
the aortic wall. Thus, aortic segmentation is needed.
However, manual segmentation is time-consuming,
labor-intensive, and prone to variability. This hinders
large prospective studies utilizing quantitative mea-
surements, causing a lack of standardization of these
indices. As a result, translation of these indices into
clinical practice is currently impossible. Therefore,
automated segmentation and quantification is neces-
sary.

(Semi-)automated organ segmentation reached clin-
ical maturity, but most of the vascular software tools
currently focus on diagnostic (contrast-enhanced) CT
or magnetic resonance angiography.2 This is due to
the high image quality of these techniques and typ-
ical use of intravascular contrast agents, contrary
to low-dose CT (LDCT) as often utilized in PET/CT.
Recently, various groups have published segmenta-
tion models for (PET/)CT including the aorta.13–16

However, these models only include the aorta as
one full segment or only include the thoracic aorta,
while many cardiovascular diseases manifest dif-
ferently in different parts of the aorta.17–19 Evi-
dence on the exact metabolic activity in different
segments of aortic diseases, such as large ves-
sel vasculitis (giant cell arteritis, Takayasu arteritis)
and atherosclerosis/(micro)calcifications, is limited or
unevaluated.

Therefore, the aim of this study was to investi-
gate the feasibility and accuracy of an automated
tool to segment and quantify multiple parts of
the diseased aorta on unenhanced LDCT as an
anatomical reference for PET-assessed vascular
disease.

2 MATERIALS AND METHODS

2.1 Study population and image
acquisition

Our dataset included 352 retrospectively selected
whole-body PET/CTs from four different cohorts: 38
2-[18F]FDG-PET/CT scans of patients with diabetes
mellitus from the RELEASE study19; 62 2-[18F]FDG-
PET/CT scans of patients with confirmed giant cell
arteritis from the GPS cohort20; 235 clinical Na[18F]F
PET/CT scans; and 17 clinical 2-[18F]FDG-PET/CT
scans from patients with abdominal aortic aneurysms.21

Due to its retrospective design, the medical research
involving human subjects acts (WMO) obligation was
waived by the local ethics committee (registration
no. METC 2021/173). Therefore, objection registry
was checked for all patients, but informed consent
was not obtained. Data was stored and processed
pseudonymized.

Imaging was performed on the following scanners:
Biograph mCT40, Biograph mCT64, Biograph Vision,
or Biograph Vision Quadra (Siemens Healthineers,
Knoxville, TN, USA). See Table 1 for the patient char-
acteristics and PET/CT scan parameters. 2-[18F]FDG
and Na[18F]F PET/CT scans were performed follow-
ing European Association of Nuclear Medicine (EANM)
procedure guidelines.22,23 After at least 6 h of fast-
ing, 2 or 3 MBq/kg (dependent on scanner type) of
tracer was intravenously administered to each patient.
Sixty minutes after administration, an LDCT and sub-
sequent PET scan from skull to knee, 1, 2, or 3 min
per bed position (dependent on tracer and scanner
type) or 10 min for the Biograph Vision Quadra, were
performed.

2.2 Manual segmentation

The aorta was manually segmented on the LDCT into
four different regions (ascending aorta, aortic arch,
descending aorta, and abdominal aorta) by four trained
observers. Each dataset (as described above) was pro-
cessed by one and the same MD(/PhD) student. The
ascending aorta was delineated from the slice just
above the aortic valve up to the first aortic branch, the
aortic arch from the next slice up to and including the
slice past the last aortic branch, the descending aorta
from the next slice up to and including the diaphragm,
and the abdominal aorta from the next slice up to the
iliac bifurcation. All manual segmentations were per-
formed using Affinity Viewer (version 2.0.3; Hermes
Medical Solutions, Stockholm, Sweden) and were used
as “ground truth”.
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4 SEQUOIA–PET/CT

TABLE 1 Patient characteristics, PET/CT acquisition and
reconstruction methods.

Characteristics
N (%) or mean ± SD or
median (IQR)

No. of patients 352 (100)

Age (years) [range] 64.8 ± 15.1 [10–95]

Sex (males) 202 (57)

BMI (kg/m2) [range] 26.8 ± 5.1 [15.1–46.6]a

Cardiovascular disease

Giant cell arteritis 64 (18)

Type 2 diabetes mellitus 62 (18)

Aneurysm/with stent 18 (5)/5 (1)

Situs Inversus 1 (0)

Oncology patients without
cardiovascular disease

222 (63)

Radioactive tracers

2-[18F]FDG 117 (33)

Na[18F]F 235 (67)

Scanners

Biograph mCT40 97 (28)

Biograph mCT64 156 (44)

Biograph vision 95 (27)

Biograph vision quadra 4 (1)

Tube voltage (kV) 80 (N = 3), 100(N = 87),
120(N = 221),
140(N = 41)

Tube current time product (mAs) 14.5 (8.5–23.1)

Volumetric CT dose index (mGy) 0.9 (0.6–1.5)

Slice thickness (mm) 3

Matrix size (pixel × pixel) 512 × 512

Abbreviations: BMI, body mass index; IQR, interquartile range; SD, standard
deviation.
aOf 24 patients, length and/or weight was unknown.

2.3 Deep learning segmentation
architecture and training

A four-layer 3D U-Net architecture was used to pro-
cess one input channel and five output classes (one for
every anatomical region and one for the background;
see Figure 1).24 To represent a clinical dataset the last
consecutive 22 scans were used as a hold-out inter-
nal test set. The remaining dataset was randomly split
into a training set (80%; n = 264), and a validation set
(20%; n = 66). To optimize training, images were resam-
pled to a voxel spacing of 0.97 × 0.97 × 1.5 mm3, then
cropped toward the center in x-y plane to 256 × 256 pix-
els, and inferior slices were cropped if the CT volume
was larger than 700 slices.During training,all CT images
were normalized based on window width/level settings

of 600/100 Hounsfield units (HU), to improve contrast in
the aorta.Data augmentation was used by random crop-
ping to 160 × 160 × 64 voxels (156 × 156 × 94 mm3;with
a bias toward the center of the images), random rota-
tion (between −5 and +5 degrees in transversal plane),
and random Gaussian noise addition (with a mean of
zero and a standard deviation [SD] between 0 and 6).
The following training parameters were used:batch-size
of 10, Adam optimizer with a learning rate of 0.001,
and the dice similarity coefficient (DSC) loss.The model
was trained for 200 epochs with an early stopping algo-
rithm (and a 20-epoch patience). Before every epoch,
the training dataset was randomly shuffled.

Predictions were performed using a sliding window
with overlap, so that there were multiple predictions
for each voxel, which were subsequently averaged.
Small unconnected volumes (<10 mL) were removed
from the prediction. The amount of overlap of the
sliding window, that is, the number of predictions per
voxel, and thereby the speed and accuracy of the
model, can be adjusted by choosing a “fast” or “accu-
rate” option. Unless differently specified, results of this
article correspond to the “accurate” option. The “fast”
option could make it feasible to process extremely large
datasets.

All software code was written in Python (version 3.9,
Python software foundation) using the open-source Ten-
sorFlow library with Keras API. The U-Net was trained
on a 16 GB NVIDIA Tesla P100 GPU from a Microsoft
Azure virtual machine (Microsoft, Redmont, WA, USA).

2.4 External test

To test the performance of the algorithm on previ-
ously unseen data from a different center with dif-
ferent scanners, an external test set including 49
2-[18F]FDG-PET/CTs from Leeds Teaching Hospitals
National Health Service Trust performed in patients with
suspected large vessel vasculitis was used; this cohort
was reported upon previously.25 Scans were acquired
on three different scanners: Discovery 710, Discovery
690 (GE Healthcare, Chicago, IL, USA), or Gemini TF64
(Philips Healthcare, Best, the Netherlands). Prediction
and analyses were performed in Leeds,so no data trans-
fer agreement between the institutions was needed. In
this previously published test set only the full aorta
was segmented, so all classes were added together
as a single label, and we were not able to perform
a per segment analysis. Also, to compare the perfor-
mance with a recently published open-source model
(TotalSegmentator15), predictions of this model on this
external test set were also compared with the manual
segmentations (performed in Leeds too).
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SEQUOIA–PET/CT 5

F IGURE 1 The used four-layer 3D U-Net architecture with convolutional steps, max pooling, transposed convolution, and corresponding
skip connections. A softmax last layer was used. On the left an example of a 3D LDCT patch as input of the U-Net, and on the right an example
of the corresponding five classes given as output.

2.5 Automated prediction versus
manual segmentations

The primary performance on both the internal and
the external test set was assessed with the DSC
and the average Hausdorff distance (HD). In addition,
volumes of the predicted and manual segmentations
were calculated. To assess clinical applicability, the
segmentations were overlaid onto the CT to quantify
calcium volume and calcium mass scores, and onto
the co-registered PET images to measure SUVmean,
SUVmax,and SUVpeak.As Agatston scores can be heav-
ily influenced by small differences in segmentations,
these scores were not included for the segmentation
comparison.

For the development and evaluation of the model, the
recommendation of the Society of Nuclear Medicine
and Molecular Imaging were followed as much as prac-
tically feasible and checks all boxes of the checklist for
artificial intelligence in medical physics.26–28

2.6 Calcium and SUV measurements

An earlier in-house developed and validated algorithm
for a calcium phantom was adjusted to calculate Agat-
ston scores, calcium volume scores, and calcium mass
scores within the segmentations.29 In that study, the cal-
culation methods of four different manufacturers were
extensively validated and included the international
standard described by McCollough et al.30 The algo-
rithm was validated using clinical scans;30 calcifications
from six patients were manually scored on syngo.via
(Siemens Healthineers, Knoxville, TN, USA) and com-
pared to the automatically obtained scores. A mass

calibration factor of 0.79 was used in both the algo-
rithm and syngo.via. Calcifications which were partly
outside the aorta, and thus not completely segmented,
were excluded from analysis, for example, due to their
progression in aortic branches or their connection with
vertebrae.

The algorithm also included the measurements of
SUVmean, SUVmax, and SUVpeak in PET images. The
SUVpeak measurements were determined in a sphere of
12 mm in diameter as described by Frings et al.31 In the
same patient images, the automatically obtained SUV
measurements were compared with values obtained
from the manual segmentations performed using Affin-
ity Viewer. As Affinity Viewer only limits the center
voxel of the SUVpeak sphere to the boundaries of the
segmentations,32 this was used for the validation. How-
ever, for further analyses, the entire sphere was limited
to the boundaries of the segmentations to exclude high
uptake from non-related surrounding tissue.

2.7 Additional quantification
functionality

The following additional functionality was added to the
algorithm to assist future aortic PET/CT research:

1. Calcification measurements: the algorithm provides
Agatston, volume, and mass scores for the entire
aorta, per segment, and if wanted per calcifica-
tion. There is also an option to calculate SUVmean,
SUVmax, and TBR values per calcification.

2. Radiomics features: the algorithm provides the pos-
sibility to automatically extract radiomics features per
segment using PyRadiomics33 which are stored in a
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6 SEQUOIA–PET/CT

comma separated values file. Settings can easily be
adjusted to need.

3. Background measurements: in the center of the
ascending aorta a cylindrical volume of interest of
around 1 mL is automatically extracted. Size, seg-
ment, and location of the volume can easily be
adjusted.

4. 2D visualization: a visualization method was devel-
oped to show the calcium and PET tracer hotspot
distribution. Within the full aorta segmentation sim-
ple thresholding was used to get images of aortic
calcifications on CT and PET tracer uptake hotspots.
Any thresholds can be chosen by the user. For CT:
the standard 130 HU threshold according to the Agat-
ston method,34 a 147 HU threshold when 100 kVp is
used as described by Nakazato et al.,35 a patient spe-
cific threshold of the mean HU in the ascending aorta
plus three times the SD of the background HU as
described by Raggi et al.,36 or any other HU value.For
PET:any SUV value,or the background adapted 50%
highest peak threshold of Frings et al..37 A surface
mesh of the full aorta was obtained using marching
cubes. A map of calcium HU and SUV uptake on the
aorta surface was obtained by outward projection of
HU and uptake values from the centerline.

The algorithm was named SEQUOIA (SEgmentation,
QUantification, and visualizatiOn of the dIseased Aorta;
and refers to the vascular tree).

2.8 Statistical analysis

Normally distributed data was presented as mean ± SD
and non-parametric data as median (interquartile range
[IQR]). All above-mentioned values from manual and
automatically obtained values were statistically com-
pared using Bland–Altman (BA) analysis, and the
intraclass correlation coefficients (ICC) with absolute
agreement. The BA analysis was performed with MAT-
LAB (version R2018a, MathWorks, Natick, MA, USA),
and ICC calculated using Statistical Package for Social
Sciences (version 28, SPSS Inc., Chicago, IL, USA).

3 RESULTS

Figure 2 shows the pipeline of SEQUOIA. This
result section will go into each part in the order of
the presented pipeline: segmentation, quantification,
background measurement, and 2D visualization. As
radiomics is a publicly available feature, we will not go
into detail of that.

The developed software was tested on an Intel Xeon
CPU E5-1620 with 32 GB RAM with an NVIDIA GeForce
RTX 3060 GPU. Automated segmentations performed
well compared to manual segmentations. For the “fast”

F IGURE 2 Pipeline of SEgmentation, QUantification, and
visualizatiOn of the dIseased Aorta (SEQUOIA).

or “accurate” option, segmentations took 102 ± 19 s or
370 ± 53 s (mean ± SD), respectively. Also, calcium
and SUV measurements compared well with clinical
software and including saving, the segments and back-
ground measurements took on average 40 ± 10 s per
scan. The calculation time of the 2D visualization is
dependent on the size of the aorta, and takes only
22 ± 9 s. The software has been made publicly avail-
able via GitHub under the Apache 2.0 license (https://
github.com/UMCG-CVI/SEQUOIA).

3.1 Segmentation

3.1.1 Internal test

Comparing the automated predictions of the U-Net with
the manual segmentations of the internal test set, this
resulted in a pooled DSC of 0.826± 0.075 (mean± SD),
and HD of 1.6 [1.2–2.5] mm (median [IQR]). Per seg-
ment this was 0.800 ± 0.090 and 2.1 [1.5–2.7] mm,
0.842 ± 0.054 and 1.3 [1.0–1.7] mm, 0.843 ± 0.067
and 1.6 [1.1–3.2] mm, and 0.820 ± 0.073 and 1.6 [1.2–
2.6] mm for the ascending aorta,aortic arch,descending
aorta, and abdominal aorta, respectively. When com-
paring all segments added together as one label, this
resulted in a DSC of 0.885 ± 0.048, and HD of 1.2 [1.0,
1.5] mm. BA analysis showed a minor overall bias and
small limits of agreement for label volume, SUVmean,
SUVmax, SUVpeak, calcium volume, and calcium mass
scores (Table S1 and Figure S1). These figures and
table also show negligible differences between the
different segments.

3.1.2 External test

Comparing manual segmentations from the test set with
the automated predictions of the U-Net gave a similar
DSC of 0.867 ± 0.030 (mean ± SD) and HD of 1.0
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SEQUOIA–PET/CT 7

TABLE 2 Comparison external test set between manual segmentations and U-Net predictions ("accurate" and "fast" method) and manual
segmentations and open-source model predictions.

Manual versus U-Net
("accurate”)

Manual versus U-Net
("fast")

Manual versus
open-source model

DSC 0.867 ± 0.025 0.831 ± 0.038 0.864 ± 0.023

HD (mm) 1.0 [0.6 – 1.4] 1.2 [0.8 – 1.8] 1.4 [1.0 – 1.8]

Volume (mL) BA 56.4 [9.1, 103.8] 88.9 [35.5, 142.4] 71.2 [31.4, 111.0]

ICC 0.85 [−0.12 – 0.96] 0.70 [−0.08 – 0.92] 0.79 [−0.07 – 0.95]

SUVmean BA 0.0 [−0.1, 0.1] 0.0 [−0.1, 0.1] 0.0 [−0.1, 0.1]

ICC 1.00 [1.00 – 1.00] 1.00 [0.99 – 1.00] 1.00 [1.00 – 1.00]

SUVmax BA 1.6 [−3.6, 6.9] 1.8 [−3.5, 7.0] 1.5 [−2.9, 5.8]

ICC 0.48 [0.06 – 0.71] 0.45 [0.02 – 0.69] 0.66 [0.27 – 0.83]

SUVpeak BA 0.5 [−1.5, 2.6] 0.6 [−1.5, 2.6] 0.5 [−1.3, 2.2]

ICC 0.63 [0.31 – 0.80] 0.61 [0.26 – 0.79] 0.75 [0.49 – 0.87]

Calcium volume (mL) BA 0.8 [−3.4, 5.1] 1.4 [−4.2, 7.0] 1.7 [−3.2, 6.7]

ICC 0.98 [0.96 – 0.99] 0.96 [0.90 – 0.98] 0.96 [0.86 – 0.98]

Calcium mass (g) BA 0.2 [−1.2, 1.7] 0.4 [−1.5, 2.2] 0.4 [−0.8, 1.7]

ICC 0.97 [0.94 – 0.98] 0.94 [0.87 – 0.97] 0.96 [0.89 – 0.99]

Note: Comparison was done using the Dice similarity coefficient, Bland-Altman bias and 95% limits of agreement, and intraclass correlation coefficient. Dice similarity
coefficients are shown in mean ± SD. Bland-Altman and intraclass correlation coefficients are given in mean [95% confidence interval].
Abbreviatins: BA, Bland–Altman bias and 95% limits of agreement; DSC, dice similarity coefficient; HD, Hausdorff distance; ICC, intraclass correlation coefficient; SUV,
standardized uptake value.

[0.6–1.4] mm (median [IQR]) (Table 2). For SUVmean,
SUVpeak, calcium volume, and calcium mass, variability
(in terms of limits of agreement) was small.For SUVmean
no bias was noticed (0%).For volumes,SUVpeak,calcium
volume, and calcium mass there was a consistent bias
toward smaller predicted values of 14%−18% and a
trend of increasing difference with larger size (Figure 3).
For SUVmax, a larger bias toward smaller predicted val-
ues of 29% was observed, as well as relatively larger
variability compared with other parameters. Figure 4
illustrates some predicted segmentations with proper
outcome and some common mistakes.Figure S2 shows
a screenshot of the image of one of the outliers from
the SUVpeak plot, in which the manual segmentation
included high uptake from the myocardium, which was
not included in the prediction.Median ICC values ranged
between 0.63 and 1.00.

For the “fast” option the U-Net predictions gave only
a small reduction in accuracy in terms of DSC and
HD (0.831 ± 0.038 and 1.2 [0.8–1.8] mm, respectively).
BA biases and limits of agreement and ICC values
were similar compared to the “accurate” results. Only
the volume BA bias was larger and ICC value lower
(Table 2).

Predictions of the open-source model resulted in sim-
ilar DSC of 0.864 ± 0.023 and HD of 1.4 [1.0 – 1.8]
mm. Also, BA plots showed similar results (Figure 3).
Small variability was noticed, but even larger biases
toward smaller predictions of 16%−29%. Again, no bias

was seen for SUVmean (0%). Median ICC values ranged
between 0.75 and 1.00 (Table 2).

3.2 Quantification

3.2.1 Calcium and SUV measurements

Our software performed well when compared to the
clinical software. Results for Agatston, calcium volume,
and calcium mass scores showed small variability and
only little bias toward smaller values of a few voxels
(Figure 5). Five calcifications in the clinical software
were detected and scored as two separate calcifica-
tions in our software (red crosses in Figure 5). This was
because the clinical software connects the two calcifi-
cations with one single voxel in the z-plane (Figure S3).
In our software, the calcification threshold was 1 mm2

per slice to reduce the number of false positives due to
noise, which resulted in at least two connected pixels.
ICC (mean [95% CI]) values of Agatston, volume, and
mass scores were 1.00 (1.00–1.00), 1.00 (1.00–1.00),
and 1.00 (1.00–1.00), respectively.

Also, results for SUV measurements showed small
variability and negligible bias of the SUVmean, SUVmax,
and SUVpeak of our software compared to clinical soft-
ware (Figure 6). ICC values of SUVmean, SUVmax, and
SUVpeak were 0.96 (0.05–0.99), 0.99 (0.61–1.00), and
0.96 (0.84–0.99), respectively.
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8 SEQUOIA–PET/CT

F IGURE 3 Bland–Altman plots of SUVmean, SUVmax, SUVpeak, calcium volume, calcium mass, and full volume of the external test set. The
dots (red) show the comparison between the manual segmentations and our 3D U-Net. The triangles (blue) show the comparison between the
manual segmentations and the open-source model. Analysis could only be done for the full aortic volume.

3.3 Background measurement and 2D
visualization

3.3.1 Additional quantification
functionality

In Figure 7 and 8 an example of the background volume
in the ascending aorta and 2D meshes of one of the
external test set patients are shown. In the supplemen-
tary materials a video can be found (Video S1) and on
the GitHub page of SEQUOIA two html files can be
found to open the meshes in ParaView Glance. The
meshes show the calcium distribution on CT and the
distribution of 2-[18F]FDG uptake hotspots in PET of
one patient from the external test set.

4 DISCUSSION

This study presents SEQUOIA, an open-source, auto-
mated,accurate,and fast model to segment the ascend-
ing aorta, aortic arch, descending aorta, and abdominal

aorta on LDCT. Additionally, SEQUOIA automatically
obtains calcium scores (Agatston, volume, and mass)
and SUV measurements (mean, max, and peak) with
excellent accuracy. The model performed well in an
external test set from a different center acquired on
three different scanners. Even though a substantially
smaller training set was used, for the full aorta the model
presented here performed equally well as a recently
published open-source model.15 However, in contrast
to the open-source model, SEQUOIA provides mul-
tiple aortic segments, additional measurements, and
was specially trained on low-dose data. Furthermore, to
assist more research, background measurements, 2D
visualizations of calcium CT and tracer PET distribution,
and automatic radiomics feature extraction were added
to the software. SEQUOIA has been made publicly
available on GitHub.

Due to the time-consuming and labor-intensity char-
acteristics of manual segmentation in large image data
like PET/CT, the number of quantitative vascular stud-
ies is limited. The value of PET/CT in diagnosis or
follow-up of vascular diseases is known. However, for
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SEQUOIA–PET/CT 9

F IGURE 4 Examples of predictions from the U-Net: (a) and (b) an acceptable prediction; (c) and (d) erroneous gap between the
descending and abdominal aorta due to unusual anatomy (the spiral morphology causes a sharp turn in the descending aorta close to the
abdominal aorta unrecognized by the model as part of the aorta); (e) and (f) erroneous gaps in the descending aorta due to unusual anatomy
and in the abdominal aorta due to a large aneurysm.

F IGURE 5 Bland–Altman plots of Agatston score, calcium volume score, and calcium mass scores in which the automated calcium scoring
was compared to manual scoring from clinical software (syngo.via, Siemens Healthineers). The red crosses represent calcifications detected as
one calcification by the clinical software, but as two separate calcifications by our automated software. This was due to a difference in threshold
settings, resulting in one single voxel that connects (clinical software) or separates (our software) the two calcifications. The single outlier in the
top right was caused by the same reason due to which some single voxels in this large calcification were missed.
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10 SEQUOIA–PET/CT

F IGURE 6 Bland–Altman plots of SUVmean, SUVmax, and SUVpeak in which the automated calcium scoring was compared to manual
scoring from clinical software (affinity viewer, Hermes medical solutions).

F IGURE 7 Axial, coronal, and sagittal planes through the CT image of a patient fused with the ascending aorta segmentation (green) and
with background segmentation (red). Note that CT artifacts are due to a pacemaker lead in the vena cava.

many diseases there is no consensus yet on how to
perform the quantification, and thus, how to use these
measurements in diagnosis or risk assessment.3,5,12

The European Association of Cardiovascular Imag-
ing and the EANM recently stated that more research
including the use of artificial intelligence is needed
in this growing field.38,39 The developed software pro-
gram here could speed up aortic studies in nuclear
medicine. This could help to better understand the
metabolic mechanisms and the pathology of differ-
ent vascular diseases in different parts of the aorta.
For example, automatic segmentation and radiomics
feature extraction might support studies to differen-
tiate between inflammation and infection in possible
vascular graft infections or infectious aneurysms.40,41

This would also follow the latest recommendations
of the EANM and the Society of Nuclear Medicine
and Molecular Imaging to rely on automated segmen-

tations, rather than manual delineation, for radiomics
studies.42

Although the acquisition of LDCT from PET/CTs are
not intended for accurate calcium analysis, this tool
could help in a better understanding of the role of
PET/CT in atherosclerosis. For example, in aortic stud-
ies the role of Na[18F]F uptake in plaque vulnerability
and calcium burden can be investigated. Together with
the radiomics features it might help in differentiating
between atherosclerosis and vasculitis as 2-[18F]FDG
uptake in both conditions can mimic each other.43

Besides,as SEQUOIA is made in a modular pipeline, the
calcium scoring algorithm can easily be used in higher
dose CTs or different organ segmentations, for example,
the coronaries.

Furthermore, the segmentation with background
measurement in the ascending aorta is useful for reli-
ably obtaining an image derived input function. This
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SEQUOIA–PET/CT 11

F IGURE 8 An example of two 2D surface meshes with the CT calcium distribution (left; in log scale) and the 2-[18F]FDG uptake hotspot
distribution (right). A video of these surface meshes can be found in the supplementary (Video S-1). HTML files can be found on the GitHub
page (https://github.com/UMCG-CVI/SEQUOIA) to view these meshes in the interactive ParaView Glance tool.

is necessary to achieve automated kinetic analysis in
PET/CT,44 especially for long axial field-of -view PET
scanners. This approach might prove useful in other
diseases as well.45 The 2D visualization may be used
to illustrate differences to scans obtained in the con-
text of longitudinal imaging, while those differences
can be exactly measured in the segmentation volumes
themselves.

Based on experience, segmenting one aorta took
about 10−15 min. Assuming quantification, that is, cal-
cium and SUV measurements,would also take about 10
min (in the best-case scenario) and an analyst is work-
ing effectively 8 h per day and 5 days a week, in theory
all 330 aorta datasets in our dataset could be analyzed
in about 20 days. Using our software with the “accurate”
method, this could be done in about 1.5 days assuming
the computer also works outside working hours.With the
“fast”method this could even be done in less than half a
day. Thus, the software speeds up result acquisition with
at least 10−40 times, not taken into account the other
work the person could do in the meantime.

Although other aortic segmentation models have
been published,13–16,25 to the best of our knowledge,
this is the first software tool that automatically segments
the ascending aorta, aortic arch, descending aorta, and
abdominal aorta separately in PET/CTs in combination
with an accurate calcium scoring algorithm and addi-
tional quantification features. Comparing our model with
the manual segmentations from the test set, the model
predictions resulted in on average 16% smaller total aor-
tic volumes. This is similar to a previously published

validation study of a CNN.46 The open-source model
even resulted in about 21% smaller volumes.Our results
also demonstrated that this still gives comparable clini-
cal values, like SUVmean, SUVpeak, calcium volume, and
calcium mass scores.The smaller volumes can probably
be explained by three reasons. First, in the given spa-
tial resolution, to ensure the entire aorta is included in
the manual segmentation, some systematic bias might
be introduced by segmenting the outer side of the wall.
Second, compared with our model the manual segmen-
tations from the test set started closer to the aortic
valve in the ascending aorta, where our manual seg-
mentations of the training set excluded that to avoid high
myocardial uptake.We observed that some outliers were
caused by including spill-over from the myocardium in
the manual segmentation. Third, although we included
various types of pathologies, the segmentation tool
sometimes had some difficulties in recognizing the aorta
due to large aneurysms or heavily calcified parts. These
reasons also explain the divergence seen in Figure 3
for the SUV parameters. With larger volumes around
the same pathology, SUVmean will go down. As we
observed some outliers in the manual segmentations
including spill-over from surrounding tissue, differences
in SUVmax and SUVpeak values will be larger causing
bigger outliers. However, when the model will be regu-
larly retrained, the robustness will increase. When using
any model, including ours, one should always visually
check the segmentation results before interpreting the
clinical values, to avoid exclusion of regions of interest,
or inclusion of adjacent organs.
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12 SEQUOIA–PET/CT

This study has several limitations. First, the training
dataset was relatively small and monocentric. However,
the model performed well in an external set from dif-
ferent scanners and results were already comparable
with an open-source model. Besides, regularly retrain-
ing the model will increase its accuracy and robustness.
Second, segmentation accuracy was not assessed in
an external test set for the four aortic segments sepa-
rately due to a lack of appropriately labeled independent
test data. Third, the calcium scoring algorithm could not
be tested on CT scans from different manufacturers.
However, results compared with commercially avail-
able software (syngo.via; Siemens Healthineers) were
similar and the algorithm was previously extensively
validated on different scanners with phantom scans.29

Future studies should confirm that this tool works well
on different CT scanners or acquisition settings before
implementing the tool.Fourth, the calcium validation was
only performed on a per calcification level, so no vali-
dation was performed on total scores per patient. This
was done to exclude the influence of manual segmen-
tation errors or anatomical deviations. Fifth, we did not
include the vena cava as a class for segmentation and
later target-to-background measurements. In future ver-
sions of the tool, the model can be extended to include
the vena cava.

To conclude, we present SEQUOIA, an automated
pipeline to segment the ascending aorta, aortic arch,
descending aorta, and abdominal aorta on LDCT from
PET/CT and to accurately provide PET-tracer uptake
values, calcium scores, guided background measure-
ments, radiomics features, and a 2D visualization.
However, additional validation is needed for clinical
applicability. This model may speed up aortic PET/CT
studies tremendously, irrespective of the tracer, and
potentially provide fast quantification of cardiovascular
diseases and beyond in clinical practice in the future,
both for primary diagnosis and disease monitoring.
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