This is a repository copy of No faster-than-light observers (GenRel).
White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209132/
Version: Published Version

Article:

Stannett, M. orcid.org/0000-0002-2794-8614, Higgins, E., Andréka, H. et al. (3 more authors) (2023) No faster-than-light observers (GenRel). Archive of Formal Proofs, 2023. ISSN 2150-914x
© 2023 The Author(s). For reuse permissions, please contact the Author(s).

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

No Faster-Than-Light Observers (GenRel)

Mike Stannett*, Edward Higgins
University of Sheffield, UK
Hajnal Andréka, Judit Madarász, István Németi, Gergely Székely ${ }^{\dagger}$
Alfréd Rényi Institute of Mathematics, Budapest, Hungary
(${ }^{\dagger}$ Secondary affiliation: University of Public Service, Budapest, Hungary)

September 13, 2023

Abstract

We have previously verified, in the first order theory SpecRel of Special Relativity, that inertial observers cannot travel faster than light $[1,2]$. We now prove the corresponding result for GenRel, the first-order theory of General Relativity. Specifically, we prove that whenever an observer m encounters another observer k (so that m and k are both present at some spacetime location x), k will necessarily be observed by m to be traveling at less than light speed.

Contents
1 Sorts 3
1.1 Bodies . 3
1.2 Quantities . 3

2 Points 11
2.1 Squared norms and separation functions 13
2.2 Topological concepts . 14
2.3 Lines . 14
2.4 Directions . 14
2.5 Slopes and slopers . 15

3 WorldView 26
4 Functions 27
4.1 Differentiable approximation 29
4.2 lemApproxEqualAtBase 30

5 WorldLine 33
*Corresponding author: m.stannett@sheffield.ac.uk
6 Translations 34
7 AXIOM: AxSelfMinus 41
8 TangentLines 42
9 Cones 49
10 AXIOM: AxLightMinus 49
11 Proposition1 50
12 AXIOM: AxEField 53
13 Norms 53
13.1 axTriangleInequality 54
14 AxTriangleInequality 58
15 Sublemma3 58
16 Vectors 67
17 CauchySchwarz 73
18 Matrices 82
19 LinearMaps 83
20 Affine 91
20.1 Affine approximation 91
21 Sublemma4 107
22 MainLemma 110
23 AXIOM: AxDiff 125
24 TangentLineLemma 125
25 Proposition2 137
26 AXIOM: AxEventMinus 139
27 Proposition3 139
28 ObserverConeLemma 141
29 Quadratics 142
30 Classification 148
31 ReverseCauchySchwarz 195
32 KeyLemma 201
33 Cardinalities 207
34 AffineConeLemma 211
35 NoFTLGR 218

1 Sorts

GenRel is a 2 -sorted first-order logic. This theory introduces the two sorts and proves a number of basic arithmetical results. The two sorts are Bodies (things that can move) and Quantities (used to specify coordinates, masses, etc).
theory Sorts
imports Main
begin

1.1 Bodies

There are two types of Body: photons and observers. We do not assume a priori that these sorts are disjoint.

```
record Body =
    Ph :: bool
    Ob :: bool
```


1.2 Quantities

The quantities are assumed to form a linearly ordered field. We may sometimes need to assume that the field is also Euclidean, i.e. that square roots exist, but this is not a general requirement so it will be added later using a separate axiom class, AxEField.
class Quantities $=$ linordered-field
begin
abbreviation inRange $O O::^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool $(-<-<-)$
where $(a<b<c) \equiv(a<b) \wedge(b<c)$
abbreviation inRange $O C::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool $(-<-\leq-)$
where $(a<b \leq c) \equiv(a<b) \wedge(b \leq c)$
abbreviation inRange $C O::^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool $(-\leq-<-)$
where $(a \leq b<c) \equiv(a \leq b) \wedge(b<c)$
abbreviation inRange $C C::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool $(-\leq-\leq-)$

```
    where (a\leqb\leqc)\equiv(a\leqb)\wedge(b\leqc)
lemma lemLEPlus: }a\leqb+c\longrightarrowc\geqa-
    by (simp add: add-commute local.diff-le-eq)
lemma lemMultPosLT1:
    assumes (a>0)\wedge(b\geq0)\wedge(b<1)
    shows (a*b)<a
    using assms local.mult-less-cancel-left2 local.not-less by auto
lemma lemAbsRange: e>0\longrightarrow((a-e)<b<(a+e))\longleftrightarrow (abs
(b-a)<e)
    by (simp add: local.abs-diff-less-iff)
lemma lemAbsNeg: abs x =abs (-x)
    by simp
lemma lemAbsNegNeg: abs (-a-b) =abs (a+b)
    using add-commute local.abs-minus-commute by auto
lemma lemGENZGT:(x\geq0)\wedge(x\not=0)\longrightarrowx>0
    by auto
lemma lemLENZLT: }(x\leq0)\wedge(x\not=0)\longrightarrowx<
    by force
lemma lemSumOfNonNegAndPos: }x\geq0\wedgey>0\longrightarrowx+y>
    by (simp add: local.add-strict-increasing2)
lemma lemSumOfTwoHalves: }x=x/2+x/\mathscr{2
    using mult-2[of x/2] by force
lemma lemDiffDiffAdd: (b-a)+(c-b)=(c-a)
    by (auto simp add: field-simps)
lemma lemSumDiffCancelMiddle: }(a-b)+(b-c)=(a-c
    by (auto simp add: field-simps)
lemma lemDiffSumCancelMiddle: }(a-b)+(b+c)=(a+c
    by (auto simp add: field-simps)
lemma lemMultPosLT: ((0<a)\wedge(b<c)) \longrightarrow(a*b<a*c)
    using mult-strict-left-mono by auto
lemma lemMultPosLE: ((0<a)\wedge (b\leqc)) \longrightarrow(a*b\leqa*c)
    using mult-left-mono by auto
```

```
lemma lemNonNegLT: ((0\leqa)^(b<c))\longrightarrow(a*b\leqa*c)
    using mult-left-mono by auto
lemma lemMultNonNegLE: ((0\leqa)\wedge (b\leqc)) \longrightarrow(a*b\leqa*c)
    using mult-left-mono by auto
abbreviation sqr :: ' }a=>\mp@subsup{|}{}{\prime}
    where sqr x \equiv x*x
abbreviation hasRoot :: ' a m bool
    where hasRoot x\equiv\existsr.x sqr r
abbreviation isNonNegRoot :: ' }a>>'\mp@code{'a bool
    where isNonNegRoot x r \equiv(r\geq0)^(x=sqr r)
abbreviation hasUniqueRoot :: 'a m bool
    where hasUniqueRoot x \equiv\exists!r. isNonNegRoot x r
abbreviation sqrt :: ' }a>>'\mp@code{'
    where sqrt x \equivTHE r . isNonNegRoot x r
lemma lemAbsIsRootOfSquare: isNonNegRoot (sqr x) (abs x)
    by simp
lemma lemSqrt:
    assumes hasRoot x
    shows hasUniqueRoot x
proof -
    obtain r where x =sqr r using assms(1) by auto
    define rt where rt = (if (r\geq0) then r else (-r))
    hence rt:rt \geq0^sqr rt=x using rt-def \langlex=sqr r> by auto
    hence rtroot: isNonNegRoot x rt by auto
    {fix y
        assume yprops: isNonNegRoot x y
        hence }y=r
            using local.square-eq-iff rt by auto
        hence }((y\geq0)\wedge(x=sqr y))\longrightarrow(y=rt) by aut
    }
    hence rtunique: }\forally.\mathrm{ isNonNegRoot }xy\longrightarrow(y=rt) by aut
    thus ?thesis using rtroot by auto
qed
lemma lemSqrMonoStrict: assumes (0\lequ)^(u<v)
```

```
shows (sqr u)< (sqr v)
proof -
    have 1:(u*u)\leq(u*v) using assms comm-mult-left-mono by auto
    have (u*v)< (v*v)
        using assms mult-commute comm-mult-strict-left-mono by auto
    thus ?thesis using 1 le-less-trans by auto
qed
lemma lemSqrMono: (0\lequ)^(u\leqv)\longrightarrow(sqr u)\leq(sqr v)
    by (simp add: local.mult-mono')
lemma lemSqrOrderedStrict: }(v>0)\wedge(sqr u<sqr v)\longrightarrow(u<v
    using mult-mono[of v uvu] by force
lemma lemSqrOrdered: (v\geq0)}\wedge(sqr u\leqsqr v)\longrightarrow(u\leqv
    using mult-strict-mono[of v u v u] by force
lemma lemSquaredNegative: sqr x = sqr (-x)
    by auto
lemma lemSqrDiffSymmetrical: sqr (x-y) = sqr (y-x)
    using lemSquaredNegative[of }y-x]\mathrm{ by auto
lemma lemSquaresPositive: }x\not=0\longrightarrow\mathrm{ sqr x>0
    by (simp add: lemGENZGT)
lemma lemZeroRoot: (sqr x=0)\longleftrightarrow(x=0)
    by simp
lemma lemSqrMult: sqr (a*b)=(sqr a)* (sqr b)
    using mult-commute mult-assoc by simp
lemma lemEqualSquares: sqr u=sqr v\longrightarrowabs u=abs v
    by (metis local.abs-mult-less local.abs-mult-self-eq local.not-less-iff-gr-or-eq)
lemma lemSqrtOfSquare:
    assumes b= sqr a
shows sqrt b=abs a
proof -
    have b\geq0 using assms by auto
    hence conj1: hasUniqueRoot b using lemSqrt[of b] assms by auto
    moreover have isNonNegRoot b (abs a) using lemAbsIsRootOf-
Square assms by auto
    ultimately have sqrt b=abs a
        using theI[of \lambdar.0\leqr\wedgeb=sqr r abs a] by blast
    thus ?thesis by auto
```

qed

```
lemma lemSquareOfSqrt:
    assumes hasRoot b
and }\quada=sqrt
shows sqr a=b
proof -
    obtain r where r: isNonNegRoot b r using assms(1) lemSqrt[of b]
by auto
    hence }\forallx.0\leqx\wedgeb=sqr x\longrightarrowx=r using lemSqrt by blas
    hence a =r using rassms(2) the-equality[of isNonNegRoot br] by
blast
    thus ?thesis using r by auto
qed
```

lemma lemSqrt1: sqrt $1=1$
proof -
have isNonNegRoot 11 by auto
moreover have $\forall r$. isNonNegRoot $1 r \longrightarrow r=1$
proof -
\{ fix r assume isNonNegRoot $1 r$
hence $r:(r \geq 0) \wedge(1=$ sqr $r)$ by simp
hence $r=1$ using calculation lemSqrt by blast
\}
thus ?thesis by blast
qed
ultimately show ?thesis using the-equality[of isNonNegRoot 1 1]
by blast
qed
lemma lemSqrt0: sqrt $0=0$
using lemZeroRoot local.mult-cancel-right1 by blast
lemma lemSqrSum: sqr $(x+y)=(x * x)+(2 * x * y)+(y * y)$
proof -
have $x * y+y * x=x * y+x * y$ using mult-commute by simp
also have $\ldots=(x+x) * y$ using distrib-right by simp
finally have $x y$: $x * y+y * x=2 * x * y$ using mult-2 by auto
have $\operatorname{sqr}(x+y)=x *(x+y)+y *(x+y)$ using distrib-right by auto
also have $\ldots=x * x+x * y+y * x+y * y$ using distrib-left add-assoc
by auto
finally have sqr $(x+y)=(s q r x)+x * y+y * x+(s q r y)$
using distrib-left add-assoc by auto
thus ?thesis using xy add-assoc by auto qed
lemma lemQuadraticGEZero:
assumes $\forall x . a *(s q r x)+b * x+c \geq 0$
and $\quad a>0$
shows (sqr b) $\leq 4 * a * c$
proof -
\{ fix $x::^{\prime} a$
have $a * \operatorname{sqr}(x+(b /(2 * a)))=a *((\operatorname{sqr} x)+2 *(b /(2 * a)) * x+$ $(\operatorname{sqr}(b /(2 * a))))$
using lemSqrSum $[$ of $x(b /(2 * a))$] mult-assoc mult-commute[of $x(b /(2 * a))]$
by auto
hence 1: $a * \operatorname{sqr}(x+(b /(2 * a)))$

$$
=(a *(\operatorname{sqr} x))+(a *(2 *(b /(2 * a)) * x))+(a * \operatorname{sqr}(b /(2 * a)))
$$

using distrib-left by auto
have $a *(2 *(b /(2 * a)) * x)=b * x$ using mult-assoc assms(2) by simp
hence 2: $a * \operatorname{sqr}(x+(b /(2 * a)))=a *(\operatorname{sqr} x)+(b * x)+(a * s q r$ $(b /(2 * a)))$
using 1 by auto
have $(a * \operatorname{sqr}(b /(2 * a)))=c+((a * \operatorname{sqr}(b /(2 * a)))-c)$
using add-commute diff-add-cancel by auto
hence $(a * \operatorname{sqr}(x+(b /(2 * a))))$
$=(a *(\operatorname{sqr} x)+(b * x)+c)+((a * \operatorname{sqr}(b /(2 * a)))-c)$ using 2 add-assoc by auto
hence 3: $(a * \operatorname{sqr}(x+(b /(2 * a)))) \geq((a * \operatorname{sqr}(b /(2 * a)))-c)$
using assms(1) by auto
\}
hence $\forall x .(a * \operatorname{sqr}(x+(b /(2 * a)))) \geq((a * \operatorname{sqr}(b /(2 * a)))-c)$
by auto
hence $(a * \operatorname{sqr}((-b /(2 * a))+(b /(2 * a)))) \geq((a * \operatorname{sqr}(b /(2 * a)))$

- c) by fast
hence $((a * \operatorname{sqr}(b /(2 * a)))-c) \leq 0$ by simp
hence $4 * a *((a * \operatorname{sqr}(b /(2 * a)))-c) \leq 0$
using local.mult-le-0-iff assms(2) by auto
hence $4 * a *((a * \operatorname{sqr}(b /(2 * a))))-4 * a * c \leq 0$
using right-diff-distrib mult-assoc by auto
hence $4: 4 * a *((a * \operatorname{sqr}(b /(2 * a)))) \leq 4 * a * c$ by simp
have $\operatorname{sqr}(b /(2 * a))=(\operatorname{sqr} b) /(4 * a * a)$
using mult-assoc mult-commute by simp
hence $4 * a *((a * \operatorname{sqr}(b /(2 * a))))=4 * a *((a *(s q r b) /(4 * a * a)))$ by

```
auto
    hence 4*a*((a*\operatorname{sqr}(b/(2*a))))=(4*a*a)*(sqr b)/(4*a*a)
        using mult-commute by auto
    hence 4*a*((a*sqr (b/(2*a))))=(sqr b)
        using assms(2) by simp
    thus ?thesis using 4 by auto
qed
lemma lemSquareExistsAbove:
    shows }\existsx>0.(sqr x)>
proof -
    have cases: }(y\leq0)\vee(y>0)\mathrm{ by auto
    have one: 1\geq0 by simp
    have onestrict: 0< 1 by simp
    { assume yle0: y \leq 0
        hence y< sqr 1 using yle0 le-less-trans by simp
        hence ?thesis using onestrict by fast
    }
    hence case1: (y\leq0) \longrightarrow ?thesis by auto
    { assume ygt0: y>0
        { assume ylt1: y< 1
        hence sqr y < y using ygt0 mult-strict-left-mono[of y 1] by auto
        hence sqr y < sqr 1 using ylt1 by simp
        hence y<1 using ygt0 lemSqrOrderedStrict[of 1 y] by auto
        hence }y<sqr 1 by sim
        hence ?thesis using onestrict by best
    }
    hence a: (y<1)\longrightarrow ?thesis by auto
    { assume y=1
        hence b1: y< sqr 2 by simp
        have 2>0 by simp
        hence ?thesis using b1 by fast
    }
    hence b: (y=1) \longrightarrow ?thesis by auto
    { assume ygt1:y> 1
        hence yge1: y \geq1 by simp
        have yge0: y \geq0 using ygt0 by simp
        have }y\leqy\mathrm{ by simp
        hence sqr y>y*1 using lemMultPosLT ygt0 ygt1 by blast
        hence sqr y>y by simp
        hence ?thesis using ygt0 by bestsimp
    }
    hence (y>1) \longrightarrow? ?thesis by simp
    hence }((y<1)\vee(y=1)\vee(y>1))\longrightarrow\mathrm{ ?thesis using a b by auto
```

```
        hence ?thesis by fastforce
    }
    hence ypos: (y>0)\longrightarrow?thesis by auto
    thus ?thesis using cases case1 by auto
qed
lemma lemSmallSquares:
    assumes x>0
    shows \existsy>0.(sqr y<x)
proof -
    have invpos: 1/x>0 using assms(1) by auto
    then obtain z where z:(z>0)\wedge((sqr z)>(1/x))
        using lemSquareExistsAbove by auto
    define y where y:y=1/z
    hence ypos: y>0 using z by auto
    have 1: 1/(sqr z)< 1/(1/x) using z invpos
        by (meson local.divide-strict-left-mono
                local.mult-pos-pos local.zero-less-one)
    hence (sqr y) < x using z y by simp
    thus ?thesis using ypos by auto
qed
lemma lemSqrLT1:
    assumes 0<x<1
    shows 0< (sqr x)<x
using assms lemMultPosLT1[of x x] by auto
```

lemma lemReducedBound:
assumes $x>0$
shows $\exists y>0 .(y<x) \wedge(\operatorname{sqr} y<y) \wedge(y<1)$
proof -
have x 2: $x>x / 2$
using assms lemSumOfTwoHalves[of x] add-strict-left-mono[of 0
$x / 2 x / 2]$
by auto
have x2pos: $x / 2>0$ using assms by simp
define y where $y=\min (x / 2)(1 / 2)$
hence $y:(y \leq x / 2) \wedge(y \leq 1 / 2) \wedge(y>0)$ using x2pos by auto
have yltx: $y<x$ using y x2 le-less-trans by auto
have $y l t 1: y<1$ using y le-less-trans by auto
hence sqr $y<y$ using lemSqrLT1 y by simp

```
    thus ?thesis using yltx ylt1 y by auto
qed
end
```

end

2 Points

This theory defines ($1+3$)-dimensional spacetime points. The first coordinate is the time coordinate, and the remaining three coordinates give the spatial component.

```
theory Points
    imports Sorts
begin
```

record ' a Point $=$
tval :: 'a
xval :: 'a
yval :: 'a
zval :: 'a
record 'a Space $=$
svalx :: 'a
svaly :: 'a
svalz :: 'a
abbreviation tComponent :: ' a Point $\Rightarrow{ }^{\prime} a$ where
tComponent $p \equiv$ tval p
abbreviation sComponent $::$ 'a Point \Rightarrow 'a Space where
sComponent $p \equiv($ svalx $=$ xval p, svaly $=$ yval p, svalz $=$ zval $p)$
abbreviation mkPoint :: ' $a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ ' a Point where mkPoint $t x y z \equiv(t v a l=t, x v a l=x, y v a l=y, z v a l=z)$
abbreviation stPoint :: ' $a \Rightarrow{ }^{\prime} a$ Space \Rightarrow ' a Point where stPoint $t s \equiv m k P o i n t ~ t(s v a l x ~ s)($ svaly $s)($ svalz $s)$
abbreviation mkSpace :: ' $a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ Space where $m k S p a c e$ x y $z \equiv(\operatorname{svalx}=x$, svaly $=y$, svalz $=z$)

Points have coordinates in the field of quantities, and can be
thought of as the end-points of vectors pinned to the origin. We can translate and scale them, define accumulation points, etc.
class Points $=$ Quantities
begin

```
abbreviation moveBy :: 'a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow{ }^{\prime}\) 'a Point ( \(\left.-\oplus-\right)\)
where
\((p \oplus q) \equiv \\) tval \(=\) tval \(p+\) tval \(q\),
    xval \(=\) xval \(p+\) xval \(q\),
    yval \(=\) yval \(p+\) yval \(q\),
    \(z v a l=z v a l p+z v a l q\) D
```

abbreviation movebackBy $::$ 'a Point $\Rightarrow{ }^{\prime} a$ Point $\Rightarrow{ }^{\prime} a$ Point ($\left.-\ominus-\right)$ where

$$
\left.\begin{array}{rl}
(p \ominus q) & \equiv(\text { tval }=\text { tval } p-\text { tval } q, \\
\text { xval } & =\text { xval } p-x v a l ~ \\
\\
\text { yval } & =\text { yval } p-\text { yval } q, \\
& z v a l \\
=\text { zval } p-z v a l ~
\end{array}\right)
$$

abbreviation sMoveBy :: 'a Space \Rightarrow 'a Space \Rightarrow 'a Space ($-\oplus s-)$ where

$$
\begin{gathered}
(p \oplus s q) \equiv \\
\text { svaly }=\text { svaly } p+\operatorname{svalx} p+\operatorname{svalx} q \\
\end{gathered}
$$

$$
\text { svalz }=\text { svalz } p+\operatorname{svalz} q D
$$

```
abbreviation sMovebackBy :: 'a Space \(\Rightarrow\) 'a Space \(\Rightarrow{ }^{\prime}\) 'a Space (- - s
-) where
\((p \ominus s q) \equiv 0\) svalx \(=\) svalx \(p-\operatorname{svalx} q\),
    svaly \(=\) svaly \(p-\) svaly \(q\),
    svalz \(=\operatorname{svalz} p-\operatorname{svalz} q D\)
```

abbreviation scaleBy $:: ~ ' a \Rightarrow$ 'a Point \Rightarrow ' a Point ($-\otimes-)$ where
scaleBy a $p \equiv$ (tval $=a * t v a l ~ p, x v a l=a * x v a l ~ p$,
yval $=a * y v a l ~ p, z v a l=a * z v a l p$)
abbreviation s ScaleBy $::$ ' $a \Rightarrow$ 'a Space \Rightarrow 'a Space ($-\otimes s-$) where
sScaleBy a $p \equiv 0$ svalx $=a * \operatorname{svalx} p$,
svaly $=a *$ svaly p,
svalz $=a * \operatorname{svalz} p$)
abbreviation sOrigin :: 'a Space where

$$
\text { sOrigin } \equiv 0 \text { svalx }=0, \text { svaly }=0, \text { svalz }=0 \text { D }
$$

abbreviation origin :: ' a Point where origin $\equiv($ tval $=0, x v a l=0, y v a l=0, z v a l=0$ D
abbreviation $t U n i t::$ 'a Point where
t Unit $\equiv 0$ tval $=1$, xval $=0, y v a l=0, z v a l=0$ D
abbreviation $x U n i t::$ ' a Point where
x Unit $\equiv 0$ tval $=0, x v a l=1, y v a l=0, z v a l=0$ D
abbreviation $y U n i t::$ ' a Point where
y Unit $\equiv($ tval $=0, x v a l=0, y v a l=1, z v a l=0$)
abbreviation $z U n i t::$ ' a Point where
$z U n i t \equiv \$ tval $=0$, xval $=0$, yval $=0, z v a l=1$)
abbreviation timeAxis :: 'a Point set where
timeAxis $\equiv\{p$. xval $p=0 \wedge$ yval $p=0 \wedge$ zval $p=0\}$
abbreviation onTimeAxis :: 'a Point \Rightarrow bool
where onTimeAxis $p \equiv(p \in$ timeAxis $)$

2.1 Squared norms and separation functions

This theory defines squared norms and separations. We do not yet define unsquared norms because we are not assuming here that quantities necessarily have square roots.
abbreviation norm2 :: 'a Point $\Rightarrow{ }^{\prime} a$ where

$$
\text { norm2 } p \equiv \operatorname{sqr}(\text { tval } p)+\operatorname{sqr}(\text { xval } p)+\operatorname{sqr}(\text { yval } p)+\operatorname{sqr}(\text { zval } p)
$$

abbreviation sep2 :: 'a Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow ' a where sep2 p $q \equiv$ norm2 $(p \ominus q)$
abbreviation sNorm2 :: 'a Space $\Rightarrow{ }^{\prime} a$ where
s Norm2 $s \equiv \operatorname{sqr}($ svalx $s)$

$$
\begin{aligned}
& +\operatorname{sqr}(\text { svaly s) } \\
& +\operatorname{sqr}(\text { svalz s) }
\end{aligned}
$$

abbreviation sSep2 :: 'a Point $\Rightarrow{ }^{\prime} a$ Point $\Rightarrow{ }^{\prime} a$ where
sSep2 p $q \equiv \operatorname{sqr}($ xval $p-\operatorname{xval} q)$
$+\operatorname{sqr}($ yval $p-y v a l q)$
$+\operatorname{sqr}(z v a l p-z v a l q)$
abbreviation m Norm2 $::{ }^{\prime} a$ Point $\Rightarrow{ }^{\prime} a(\|-\| m)$
where $\|p\| m \equiv \operatorname{sqr}($ tval $p)-\operatorname{sNorm2}(s C o m p o n e n t ~ p)$

2.2 Topological concepts

We will need to define topological concepts like continuity and affine approximation later, so here we define open balls and accumulation points.

```
abbreviation inBall :: 'a Point \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) Point \(\Rightarrow\) bool
(- within - of -)
where inBall \(q \in p \equiv \operatorname{sep2} q p<\operatorname{sqr} \varepsilon\)
abbreviation ball :: ' \(a\) Point \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) Point set
    where ball \(q \varepsilon \equiv\{p\). inBall \(q \in p\}\)
abbreviation accPoint :: 'a Point \(\Rightarrow\) 'a Point set \(\Rightarrow\) bool
    where accPoint \(p s \equiv \forall \varepsilon>0 . \exists q \in s .(p \neq q) \wedge(\) inBall \(q \varepsilon p)\)
```


2.3 Lines

A line is specified by giving a point on the line, and a point (thought of as a vector) giving its direction. For these purposes it doesn't matter whether the direction is "positive" or "negative".
abbreviation line :: 'a Point $\Rightarrow{ }^{\prime}$ 'a Point \Rightarrow 'a Point set
where line base drtn $\equiv\{p . \exists \alpha \cdot p=($ base $\oplus(\alpha \otimes d r t n))\}$
abbreviation lineJoining $:: ~ ' a$ Point \Rightarrow ' a Point \Rightarrow ' a Point set where lineJoining $p q \equiv$ line $p(q \ominus p)$
abbreviation isLine :: 'a Point set \Rightarrow bool
where isLine $l \equiv \exists b d .(l=$ line $b d)$
abbreviation sameLine :: 'a Point set \Rightarrow 'a Point set \Rightarrow bool where sameLine l1 l2 $\equiv(($ isLine l1 $) \vee($ isLine l2 $)) \wedge(l 1=l 2)$
abbreviation onLine $::$ 'a Point \Rightarrow 'a Point set \Rightarrow bool
where onLine $p l \equiv($ isLine $l) \wedge(p \in l)$

2.4 Directions

Given any two distinct points on a line, the vector joining them can be used to specify the line's direction. The direction of a line is therefore a set of points/vectors. By lemDrtn these are all parallel
fun $d r t n ~:: ~ ' a ~ P o i n t ~ s e t ~ \Rightarrow ~ ' a ~ P o i n t ~ s e t ~$
where $\operatorname{drtn} l=\{d . \exists p q .(p \neq q) \wedge($ onLine $p l) \wedge($ onLine $q l)$ $\wedge(d=(q \ominus p))\}$
abbreviation parallelLines :: 'a Point set \Rightarrow ' a Point set \Rightarrow bool where parallelLines $l 1 l 2 \equiv(d r t n l 1) \cap(\operatorname{drtn} l 2) \neq\{ \}$

```
abbreviation parallel :: 'a Point => 'a Point }=>\mathrm{ bool ( - | - )
    where parallel p q\equiv(\exists\alpha\not=0.p=(\alpha\otimesq))
```

The "slope" of a line can be either finite or infinite. We will often need to consider these two cases separately.
abbreviation slopeFinite :: 'a Point $\Rightarrow{ }^{\prime}$ a Point \Rightarrow bool where slopeFinite $p q \equiv($ tval $p \neq$ tval $q)$
abbreviation slopeInfinite :: ' a Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow bool where slopeInfinite $p q \equiv($ tval $p=$ tval $q)$

```
abbreviation lineSlopeFinite :: 'a Point set \(\Rightarrow\) bool
    where lineSlopeFinite \(l \equiv(\exists x y .(\) onLine \(x l) \wedge(\) onLine \(y l)\)
```

 \(\wedge(x \neq y) \wedge(\) slopeFinite \(x y))\)

2.5 Slopes and slopers

We specify the slope of a line by giving the spatial component ("sloper") of the point on the line at time 1. This is defined if and only if the slope is finite. If the slope is infinite (the line is "horizontal") we return the spatial origin. This avoids using "option" but means we need to consider carefully whether a sloper with value sOrigin indicates a truly zero slope or an infinite one.
fun sloper :: 'a Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow 'a Point
where sloper $p q=($ if (slopeFinite $p q)$ then $((1 /$ (tval $p-t v a l$ $q)) \otimes(p \ominus q))$ else origin)

```
fun velocityJoining :: 'a Point }=>\mp@subsup{}{}{\prime}'a Point = ' a Space
```

 where velocityJoining \(p q=\) sComponent (sloper \(p q\))
 fun lineVelocity :: 'a Point set \Rightarrow 'a Space set
where lineVelocity $l=\{v . \exists d \in d r t n l . v=$ velocityJoining origin
d $\}$

lemma lemNorm2Decomposition:

shows norm2 $u=$ sqr (tval u) + sNorm2 (sComponent u)
by (simp add: add-commute local.add.left-commute)

```
lemma lemPointDecomposition:
    shows p = (((tval p)\otimestUnit )}\oplus(((xval p)\otimesxUnit
    \oplus(((yval p)\otimesyUnit) }\oplus((zval p)\otimeszUnit)))
    by force
```

lemma lemScaleLeftSumDistrib: $((a+b) \otimes p)=((a \otimes p) \oplus(b \otimes p))$
using distrib-right by auto
lemma lemScaleLeftDiffDistrib: $((a-b) \otimes p)=((a \otimes p) \ominus(b \otimes p))$
using left-diff-distrib by auto
lemma lemScaleAssoc: $(\alpha \otimes(\beta \otimes p))=((\alpha * \beta) \otimes p)$
using semiring-normalization-rules(18) by auto
lemma lemScaleCommute: $(\alpha \otimes(\beta \otimes p))=(\beta \otimes(\alpha \otimes p))$
using mult.left-commute by auto
lemma lemScaleDistribSum: $(\alpha \otimes(p \oplus q))=((\alpha \otimes p) \oplus(\alpha \otimes q))$
using distrib-left by auto
lemma lemScaleDistribDiff: $(\alpha \otimes(p \ominus q))=((\alpha \otimes p) \ominus(\alpha \otimes q))$
using right-diff-distrib by auto
lemma lemScaleOrigin: ($\alpha \otimes$ origin $)=$ origin
by auto
lemma lemMNorm2OfScaled: mNorm2 (scaleBy α p) $=($ sqr $\alpha) *$
mNorm2 p
using lemSqrMult distrib-left right-diff-distrib' by simp
lemma lemSNorm2OfScaled: sNorm2 (sScaleBy α p) $=\left(\begin{array}{ll}\text { sqr } & \alpha\end{array}\right) *$
sNorm2 p
using lemSqrMult distrib-left by auto
lemma lemNorm2OfScaled: norm2 $(\alpha \otimes p)=(s q r \alpha) *$ norm2 p
using lemSqrMult distrib-left by auto

```
lemma lemScaleSep2: (sqr a)* (sep2 p q) = sep2 (a\otimesp) (a\otimesq)
    using lemNorm2OfScaled[of a p\ominusq] lemScaleDistribDiff by auto
lemma lemSScaleAssoc: }(\alpha\otimess(\beta\otimessp))=((\alpha*\beta)\otimessp
    using semiring-normalization-rules(18) by auto
lemma lemScaleBall:
    assumes }x\mathrm{ within e of }
and a\not=0
shows (a\otimesx) within ( a*e) of ( }a\otimesy
proof -
    have a2pos: sqr a>0 using assms(2) lemSquaresPositive by auto
    have sep2 (a\otimesx) (a\otimesy)=(sqr a)*(sep2 x y) using lemScaleSep2
by auto
    hence sep2 ( }a\otimesx)(a\otimesy)<(sqr a)*(sqr e
        using assms mult-strict-left-mono a2pos by auto
    thus ?thesis using mult-commute mult-assoc by auto
qed
```

lemma lemScaleBallAndBoundary:
assumes sep2 x y sqre
and $\quad a \neq 0$
shows $\quad \operatorname{sep} 2(a \otimes x)(a \otimes y) \leq \operatorname{sqr}(a * e)$
proof -
have a2pos: sqr a>0 using assms(2) lemSquaresPositive by auto
have sep2 $(a \otimes x)(a \otimes y)=(s q r a) *($ sep2 $x y)$ using lemScaleSep2
by auto
hence sep2 $(a \otimes x)(a \otimes y) \leq(s q r a) *(s q r e)$
using assms mult-left-mono a2pos by auto
thus ?thesis using mult-commute mult-assoc by auto
qed

```
lemma lemTimeAxisIsLine: isLine timeAxis
proof -
    \(\{\) fix \(p\)
        \{ assume \(p: p \in\) timeAxis
            hence \(p=(\) origin \(\oplus((\) tval \(p) \otimes t U n i t))\) by auto
        \}
        hence l2r: onTimeAxis \(p \longrightarrow(\exists v .(p=(\) origin \(\oplus(v \otimes t U n i t))))\)
by blast
    \{ assume \(v: \exists v \cdot p=(\) origin \(\oplus(v \otimes t U n i t))\)
```

```
            hence onTimeAxis p by auto
        }
        hence }(\existsv.(p=(\mathrm{ origin }\oplus(v\otimestUnit))))\longleftrightarrow \longleftrightarrow onTimeAxis 
        using l2r by blast
    }
    hence timeAxis = line origin tUnit by blast
    thus ?thesis by blast
qed
lemma lemSameLine:
    assumes p\in line b d
shows sameLine (line b d) (line pd)
proof -
    define l1 where l1: l1 = line b d
    define l2 where l2: l2 = line pd
    have lines: isLine l1 ^ isLine l2 using l1 l2 by blast
    obtain A where p: p=(b\oplus(A\otimesd)) using assms by auto
    hence b: b=(p\ominus(A\otimesd)) by auto
    {fix x
        { assume x: x \inl1
            then obtain a where a: x=( b\oplus (a\otimesd)) using l1 by auto
            hence }x=((p\ominus(A\otimesd))\oplus(a\otimesd))\mathrm{ using b by simp
            also have ... = (p\oplus ((a\otimesd)\ominus(A\otimesd)))
                using add-diff-eq diff-add-eq add-commute add-assoc by simp
                finally have }x=(p\oplus((a-A)\otimesd)
            using lemScaleLeftDiffDistrib by presburger
        hence }x\inl2\mathrm{ using l2 by auto
    }
    hence l2r: (x\inl1) \longrightarrow( x\inI2) using l2 by simp
    { assume x: x fl2
            then obtain }a\mathrm{ where a: x = (p}\oplus(a\otimesd))\mathrm{ using l2 by auto
            hence }x=(b\oplus((A+a)\otimesd)
                using p add-assoc lemScaleAssoc distrib by auto
        hence }x\inl1\mathrm{ using l1 by auto
    }
    hence }(x\inl1)\longleftrightarrow(x\inl2)\mathrm{ using l2r by auto
    }
    thus ?thesis using lines l1 l2 by auto
qed
```

```
lemma lemSSep2Symmetry: sSep2 p q=sSep2 q p
    using lemSqrDiffSymmetrical by simp
lemma lemSep2Symmetry: sep2 p q= sep2 q p
    using lemSqrDiffSymmetrical by simp
lemma lemSpatialNullImpliesSpatialOrigin:
assumes sNorm2 s=0
shows s=sOrigin
    using assms local.add-nonneg-eq-0-iff by auto
lemma lemNorm2NonNeg: norm2 p \geq0
    by simp
lemma lemNullImpliesOrigin:
assumes norm2 p =0
shows p=origin
proof -
    have norm2 p = sqr (tval p) + sNorm2 (sComponent p) using
add-assoc by simp
    hence a: sqr (tval p) + sNorm2 (sComponent p) = 0 using assms
by auto
    { assume b: sNorm2 (sComponent p) > 0
        have sqr (tval p) + sNorm2 (sComponent p)>0
            using b lemSumOfNonNegAndPos by auto
        hence False using a by auto
    }
    hence c: }\neg(sNorm2 (sComponent p)>0) by aut
    have d: sNorm2 (sComponent p) \geq0 by auto
    have }\forallx\cdot(\neg(x>0))\wedge(x\geq0)\longrightarrowx=0 by aut
    hence e: sNorm2 (sComponent p) = 0 using c d by force
    hence f:sComponent p=sOrigin
        using lemSpatialNullImpliesSpatialOrigin by blast
    have norm2 p = sqr (tval p) using e add-assoc by auto
    hence sqr (tval p)=0 using assms by simp
    hence (tval p)=0 using lemZeroRoot by simp
    thus ?thesis using f by auto
qed
lemma lemNotOriginImpliesPosNorm2:
assumes p}\not=\mathrm{ origin
```

```
shows norm2 p>0
proof -
have 1: norm2 p \geq0 by simp
have 2: norm2 p\not=0 using assms(1) lemNullImpliesOrigin by force
thus ?thesis using 12 dual-order.not-eq-order-implies-strict by fast
qed
lemma lemNotEqualImpliesSep2Pos:
    assumes }y\not=
    shows sep2 y x>0
proof -
    have ( }y\ominusx)\not=\mathrm{ origin using assms by auto
    hence 1: norm2 ( }y\ominusx\mathrm{ ) >0 using lemNotOriginImpliesPosNorm2
by fast
    have sep2 y x = norm2 (y\ominusx) by auto
    thus ?thesis using 1 by auto
qed
lemma lemBallContainsCentre:
    assumes }\varepsilon>
    shows }x\mathrm{ within }\varepsilon\mathrm{ of }
proof -
    have sep2 x x = 0 by auto
    thus ?thesis using assms by auto
qed
lemma lemPointLimit:
    assumes }\forall\varepsilon>0.(v within \varepsilon of u
    shows v=u
proof -
    define d where d:d= sep2 vu
    { assume v\not=u
        hence d>0 using lemNotEqualImpliesSep2Pos d by auto
        then obtain s where s: (0<s)\wedge (sqr s<d) using lemSmall-
Squares by auto
    hence v within s of }u\mathrm{ using d assms(1) by auto
    hence sep2 vu< sep2 v u using s d by auto
    hence False by auto
    }
    thus ?thesis by auto
qed
lemma lemBallPopulated:
    assumes e>0
    shows \existsy.(y within e of }x)\wedge(y\not=x
```

```
proof -
    obtain e1 where e1: (0<e1) ^(e1<e)\wedge(sqr e1<e1)
        using assms lemReducedBound by auto
    hence e2: sqr e1 < sqr e using lemSqrMonoStrict[of e1 e] by auto
    define y where y: y=(x\oplus \ tval = e1, xval=0, yval=0, zval=0
D)
    hence }(y\ominusx)=0 tval=e1,xval=0,yval=0,zval=0 ) by aut
    hence sep2 y x sqr e1 by auto
    hence 1:y within e of x using e2 by auto
    have tval }y=\mathrm{ tval }x+e1\mathrm{ using }y\mathrm{ by simp
    hence }y\not=x\mathrm{ using e1 by auto
    thus ?thesis using 1 by auto
qed
lemma lemBallInBall:
    assumes p within x of q
and }0<x\leq
shows p within y of q
proof -
    have sqr x \leq sqr y using assms(2) lemSqrMono by auto
    thus ?thesis using le-less-trans using assms(1) by auto
qed
lemma lemSmallPoints:
    assumes }e>
    shows \existsa>0.norm2 (a\otimesp)<sqre
proof -
    { assume po: p = origin
        define a where a:a=1
        hence apos: a>0 by auto
        have norm2 ( }a\otimesp)<sqr e using a po assms by aut
        hence ?thesis using apos by auto
    }
    hence case1: p = origin \longrightarrow ?thesis by auto
    { assume pnoto: p}\not==\mathrm{ origin
        obtain e1 where e1: (e1>0)^(e1<e)\wedge(sqr e1<e1)
        using lemReducedBound assms by auto
    hence e1sqr: 0< (sqr e1)< (sqr e) using lemSqrMonoStrict by
auto
    define n2 where n2: n2 = norm2 p
    hence n2pos: n2 > 0 using pnoto lemNotOriginImpliesPosNorm2
```

```
by auto
    then obtain s where s:(s>0)\wedge(sqr s>n2)
        using lemSquareExistsAbove by auto
    hence 0< (n2/(sqr s))< 1 using n2pos by auto
    hence (sqr e1)*(n2/(sqr s)) < sqr e1
        using lemMultPosLT1[of sqr e1 (n2/(sqr s))] e1sqr by auto
    hence ineq: (sqr e1)*(n2/(sqr s)) < sqr e using e1sqr by auto
    define a where a: a=e1/s
    have e1>0\wedges>0 using e1 s by auto
    hence apos: a > 0 using a by auto
    have norm2 ( a\otimesp)=(sqr e1)*(n\mathcal{Z}/(sqr s))
        using lemNorm2OfScaled[of a] a n2 by auto
        hence norm2 ( }a\otimesp)<sqre using ineq by aut
        hence ?thesis using apos by auto
    }
    hence p\not= origin }\longrightarrow\mathrm{ ?thesis by auto
    thus ?thesis using case1 by auto
qed
```

lemma lemLineJoiningContainsEndPoints:
assumes $l=$ lineJoining $x p$
shows onLine $x l \wedge$ onLine $p l$
proof -
have line: isLine l using assms(1) by blast
have $p: x=(x \oplus(0 \otimes(p \ominus x)))$ by simp
have $x: p=(x \oplus(1 \otimes(p \ominus x)))$ using add-commute diff-add-cancel
by fastforce
thus ?thesis using p line assms(1) by blast
qed
lemma lemLineAndPoints:
assumes $p \neq q$
shows $\quad($ onLine $p l \wedge$ onLine $q l) \longleftrightarrow(l=$ lineJoining $p q)$
proof -
define $l j$ where $l j: l j=$ lineJoining $p q$
define lhs where lhs: lhs $=($ onLine $p l \wedge$ onLine $q l)$
define $r h s$ where $r h s: r h s=(l=l j)$
\{ assume hyp: lhs
then obtain $b d$ where $b d: l=\{x . \exists a . x=(b \oplus(a \otimes d))\}$ using $l h s$ by auto
obtain $a p$ where $a p: p=(b \oplus(a p \otimes d))$ using hyp lhs bd by auto
obtain $a q$ where $a q: q=(b \oplus(a q \otimes d))$ using hyp lhs bd by auto
hence $(q \ominus p)=((b \oplus(a q \otimes d)) \ominus(b \oplus(a p \otimes d)))$ using ap by fast
also have $\ldots=((a q \otimes d) \ominus(a p \otimes d))$ using add-diff-cancel by auto
finally have qdiffp: $(q \ominus p)=((a q-a p) \otimes d)$
using lemScaleLeftDiffDistrib[of aq ap d] by auto
define R where $R: R=a q-a p$
hence $R n z: R \neq 0$ using assms(1) qdiffp by auto
define r where $r: r=1 / R$
hence $(r \otimes(R \otimes d))=(r \otimes(q \ominus p))$ using R qdiffp by auto
hence $d: d=(r \otimes(q \ominus p))$ using lemScaleAssoc $[$ of r R $d]$ r Rnz by force
have $b=(p \ominus(a p \otimes d))$ using ap by auto
also have $\ldots=(p \ominus(a p \otimes(r \otimes(q \ominus p))))$ using d by auto
finally have $b: b=(p \ominus((a p * r) \otimes(q \ominus p)))$
using lemScaleAssoc[of ap $r q \ominus p$] by auto
$\{$ fix x
assume $x \in l$
then obtain a where $x=(b \oplus(a \otimes d))$ using bd by auto
hence $x=((p \ominus((a p * r) \otimes(q \ominus p))) \oplus((a * r) \otimes(q \ominus p)))$
using b d lemScaleAssoc[of a $r q \ominus p$] by fastforce
also have $\ldots=(p \oplus(((a * r) \otimes(q \ominus p)) \ominus((a p * r) \otimes(q \ominus p))))$
using add-diff-eq diff-add-eq by force
also have $\ldots=(p \oplus(((a * r)-(a p * r)) \otimes(q \ominus p)))$
using left-diff-distrib by force
finally have $x \in l j$ using $l j$ by auto
\}
hence $l 2 r: l \subseteq l j$ by auto
\{ fix x
assume $x \in l j$
then obtain a where a : $x=(p \oplus(a \otimes(q \ominus p)))$ using $l j$ by auto hence $x=((b \oplus(a p \otimes d)) \oplus(a \otimes(R \otimes d)))$ using ap qdiffp R by auto
also have $\ldots=(b \oplus((a p+a * R) \otimes d))$
using add-assoc distrib-right lemScaleAssoc
by auto
finally have onLine $x l$ using $b d$ by auto
\}
hence $l j \subseteq l$ by auto
hence $l=l j$ using $l 2 r$ by auto
\}
hence L2R: lhs \longrightarrow rhs using rhs by auto

```
    \{ assume l: rhs
        hence line: isLine \(l\) using rhs \(l j\) by blast
    have \(p\) : \(p=(p \oplus(0 \otimes(q \ominus p)))\) by simp
    have \(q: q=(p \oplus(1 \otimes(q \ominus p)))\) using add-commute diff-add-cancel
by fastforce
    hence lhs using \(p\) line l lhs rhs lj by blast
    \}
    hence rhs \(\longrightarrow\) lhs by auto
    hence \(l h s \longleftrightarrow r h s\) using \(L 2 R\) by auto
    thus ?thesis using lhs rhs \(l j\) by auto
qed
lemma lemLineDefinedByPair:
    assumes \(x \neq p\)
and \(\quad(\) onLine \(p l 1) \wedge(\) onLine \(x l 1)\)
and (onLine pl2) \(\wedge(\) onLine x l2)
    shows \(l 1=12\)
proof -
    have \(l 1=\) lineJoining x \(p\)
        using lemLineAndPoints[of x p l1] assms(1) assms(2) by auto
    also have \(\ldots=12\)
        using lemLineAndPoints[of x p l2] assms(1) assms(3) by auto
        finally show \(l 1=l 2\) by auto
qed
lemma lemDrtn:
    assumes \(\{d 1, d 2\} \subseteq d r t n l\)
    shows \(\exists \alpha \neq 0 . d 2=(\alpha \otimes d 1)\)
proof -
    have d1d2: \(\{d 1, d 2\} \subseteq\{d . \exists p q .(p \neq q) \wedge\) onLine \(p l \wedge\) onLine
\(q l \wedge(d=(q \ominus p))\}\)
            using assms(1) by auto
    have d1: \(\exists\) p1 q1. \((p 1 \neq q 1) \wedge(\) onLine \(p 1 l) \wedge(\) onLine q1 \(l) \wedge\)
\((d 1=(q 1 \ominus p 1))\)
            using \(d 1 d 2\) by auto
    then obtain p1 q1
            where \(p q 1:(p 1 \neq q 1) \wedge(\) onLine \(p 1 l) \wedge(\) onLine \(q 1 l) \wedge(d 1=\)
(q1 \(\ominus p 1)\) )
            by blast
    hence l1: \(l=\) lineJoining p1 q1 using lemLineAndPoints[of p1 q1
\(l]\) by auto
    have d2: \(\exists \mathrm{p} 2 \mathrm{q2} \cdot(p 2 \neq q 2) \wedge(\) onLine \(p 2 l) \wedge\left(\right.\) onLine \(\left.q^{2} l\right) \wedge\)
\((d 2=(q 2 \ominus p 2))\)
```

using $d 1 d 2$ by auto
then obtain $p^{2} q^{2}$
where $p q 2:(p 2 \neq q 2) \wedge($ onLine $p 2 l) \wedge($ onLine $q 2 l) \wedge(d 2=$ ($q 2 \ominus p 2$))
by blast
hence $(p 2 \in$ lineJoining p1 q1) $\wedge(q 2 \in \operatorname{lineJoining~p1~q1)~using~}$ $l 1$ by blast
then obtain $a p a q$
where apaq: $(p 2=(p 1 \oplus(a p \otimes(q 1 \ominus p 1)))) \wedge((q 2=(p 1 \oplus$ $(a q \otimes(q 1 \ominus p 1)))))$
by blast
define diff where diff: diff $=a q-a p$
hence diffnz: diff $\neq 0$ using apaq pq2 by auto
have $d 2=(q 2 \ominus p 2)$ using $p q 2$ by simp
also have $\ldots=((p 1 \oplus(a q \otimes(q 1 \ominus p 1))) \ominus(p 1 \oplus(a p \otimes(q 1 \ominus p 1))))$
using apaq by force
also have $\ldots=((a q \otimes(q 1 \ominus p 1)) \ominus(a p \otimes(q 1 \ominus p 1)))$ by auto
also have $\ldots=((a q-a p) \otimes d 1)$
using pq1 lemScaleLeftDiffDistrib[of aq ap d1] by auto
finally have $(d 2=($ diff $\otimes d 1)) \wedge($ diff $\neq 0)$ using diff diffnz by auto
thus ?thesis by auto
qed
lemma lemLineDeterminedByPointAndDrtn:
assumes $(x \neq p) \wedge(p \in l 1) \wedge($ onLine $x l 1) \wedge($ onLine x l2 $)$
and $\quad d r t n l 1=d r t n ~ l 2$
shows $\quad l 1=12$
proof -
define $d 1$ where $d 1: d 1=d r t n ~ l 1$
define $d 2$ where $d 2: d 2=d r t n ~ l 2$
hence $d d: d 1=d 2$ using assms(2) $d 1$ by auto
define $p x$ where $p x: p x=(p \ominus x)$
have l1: $(x \neq p) \wedge($ onLine $p l 1) \wedge($ onLine $x l 1)$ using $\operatorname{assms}(1)$ by auto
hence $\exists p q .(p \neq q) \wedge$ onLine $p l 1 \wedge$ onLine $q l 1 \wedge(p x=(q \ominus$ $p)$) using $p x$ by blast
hence $p x \in\{d . \exists p q .(p \neq q) \wedge$ onLine $p l 1 \wedge$ onLine $q l 1 \wedge(d$ $=(q \ominus p))\}$
by blast
hence $p x \in d 1$ using $d 1$ subst $[o f d 1$ drtn $l 1 \lambda s . p x \in s]$ by auto
hence $p x \in d 2$ using $d d$ by simp
hence pxonl2: $p x \in d r t n ~ l 2 ~ u s i n g ~ d 2 ~ b y ~ s i m p ~$
hence $\exists u v .(u \neq v) \wedge$ onLine ul2 \wedge onLine $v l 2 \wedge(p x=(v \ominus$ u)) by auto
then obtain $u v$ where $u v:(u \neq v) \wedge$ onLine u l2 \wedge onLine v l2 $\wedge(p x=(v \ominus u))$ by blast

```
hence (x\not=u)\vee (x\not=v) by blast
then obtain w where w: ((w=u)\vee (w=v))\wedge(x\not=w) by blast
hence xw: (x\not=w)^(onLine x l2) ^ (onLine w l2) using uv
assms(1) by blast
    hence l2:l2 = lineJoining x w using lemLineAndPoints[of x w l2]
by auto
    hence ( }w\ominusx)\indrtn l2 ^ px\indrtn l2 using xw pxonl2 by aut
    then obtain a where a: (a\not=0)^(p\ominusx)=(a\otimes(w\ominusx))
        using lemDrtn[of w\ominusx p\ominusx l2] px xw pxonl2 by blast
    hence }p=(x\oplus(a\otimes(w\ominusx)))\mathrm{ by (auto simp add: field-simps)
    hence onLine p (lineJoining x w) by blast
    hence l2lj: l2 = lineJoining x p
    using lemLineAndPoints[of x p l2] assms(1) l2 xw
    by auto
    have l1lj: l1 = lineJoining x p
    using lemLineAndPoints[of x p l1] assms(1)
    by auto
    thus ?thesis using l2lj by blast
qed
end
end
```


3 WorldView

This theory defines worldview transformations. These form the ultimate foundation for all of GenRel's axioms.

```
theory WorldView
    imports Points
begin
```

class WorldView $=$ Points +
fixes

$$
\left.W:: \text { Body } \Rightarrow \text { Body } \Rightarrow{ }^{\prime} \text { a Point } \Rightarrow \text { bool (- sees }- \text { at }-\right)
$$

```
begin
abbreviation ev :: Body }=>\mp@subsup{}{}{\prime}\mathrm{ 'a Point }=>\mathrm{ Body set
    where ev hx \equiv{b.h sees b at x }
fun wvt :: Body }=>\mathrm{ Body }=>\mp@subsup{}{}{\prime}a\mathrm{ Point }=>\mp@subsup{}{}{\prime}a\mathrm{ Point set
    where wvt m k p={q. (\exists b. (m sees b at p))^(evmp=ev kq)
}
abbreviation wvtFunc :: Body }=>\mathrm{ Body }=>\mathrm{ ('a Point }=>\mp@subsup{}{}{\prime}a\mathrm{ a Point }
bool)
    where wvtFunc mk\equiv( }\lambdapqq.q\inwvt mkp
abbreviation wvtLine :: Body }=>\mathrm{ Body }=>\mathrm{ ' 'a Point set }=>\mp@subsup{}{}{\prime}'a Poin
set }=>\mathrm{ bool
    where wvtLine m kl l' \equiv \existspq\mp@subsup{p}{}{\prime}\mp@subsup{q}{}{\prime}.(
                                    (wvtFunc m k p p
                                    (l= lineJoining pq)}\wedge(l'= lineJoining
p' q}\mp@subsup{q}{}{\prime}
end
end
```


4 Functions

This theory characterises the various types of function (injective, bijective, etc).

```
theory Functions
    imports Points
begin
```

We do not assume a priori that all of the functions we define are well-defined or total. We therefore need to allow for functions which are only partially defined, and also for "functions" which might be multi-valued. For example, we cannot say in advance whether one observer might see another's worldline as a bifurcating structure rather than a basic single-valued trajectory.

To achieve this we'll often think of functions as relations and write " $\mathrm{fx} \mathrm{y}=$ true" instead of " $\mathrm{x} x=\mathrm{y}$ ". Similarly, a spacetime set S will be sometimes be expressed as its characteristic function.

```
class Functions = Points
begin
abbreviation bounded :: ('a Point = ' 'a Point) => bool
```

where bounded $f \equiv \exists$ bnd $>0 .(\forall p \cdot($ norm2 $(f p) \leq b n d *$ (norm2 p)))

```
abbreviation composeRel ::
('a Point \(\Rightarrow\) 'a Point \(\Rightarrow\) bool)
\(\Rightarrow\left({ }^{\prime} a\right.\) Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool \()\)
\(\Rightarrow\left('\right.\) a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool \()\)
    where (composeRel \(g f) p r \equiv(\exists q \cdot((f p q) \wedge(g q r)))\)
```

abbreviation injective :: ('a Point \Rightarrow 'a Point \Rightarrow bool) \Rightarrow bool
where injective $f \equiv \forall x 1$ x2 y1 y2.
$(f x 1 y 1 \wedge f x 2 y 2) \wedge(x 1 \neq x 2) \longrightarrow(y 1 \neq y 2)$
abbreviation definedAt :: ('a Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow bool $) \Rightarrow{ }^{\prime} a$ Point \Rightarrow bool
where definedAt fx $\equiv \exists y . f x y$
abbreviation domain $::\left(\right.$ 'a Point $=>{ }^{\prime}$ a Point \Rightarrow bool $) \Rightarrow$ 'a Point set
where $\operatorname{domain} f \equiv\{x . \operatorname{definedAt} f x\}$
abbreviation total $::\left({ }^{\prime} a\right.$ Point $\Rightarrow{ }^{\prime}$ a Point \Rightarrow bool $) \Rightarrow$ bool where total $f \equiv \forall x$. (definedAt $f x)$
abbreviation surjective :: ('a Point $\Rightarrow{ }^{\prime}$ a Point \Rightarrow bool) \Rightarrow bool where surjective $f \equiv \forall y . \exists x . f x y$
abbreviation bijective $::\left({ }^{\prime} a\right.$ Point $\Rightarrow{ }^{\prime}$ a Point \Rightarrow bool $) \Rightarrow$ bool where bijective $f \equiv($ injective $f) \wedge($ surjective $f)$
abbreviation invertible :: ('a Point $\Rightarrow{ }^{\prime} a$ Point $) \Rightarrow$ bool
where invertible $f \equiv \forall q \cdot(\exists p .(f p=q) \wedge(\forall x . f x=q \longrightarrow x=$ p))
fun applyToSet $::\left({ }^{\prime} a\right.$ Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow bool $) \Rightarrow{ }^{\prime} a$ Point set $\Rightarrow{ }^{\prime} a$ Point set
where applyToSet $f s=\{q . \exists p \in s . f p q\}$
abbreviation singleValued $::\left({ }^{\prime} a\right.$ Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow bool $) \Rightarrow{ }^{\prime} a$ Point \Rightarrow bool
where singleValued $f x \equiv \forall y z \cdot(((f x y) \wedge(f x z)) \longrightarrow(y=z))$

```
abbreviation isFunction \(::\left({ }^{\prime} a\right.\) Point \(\Rightarrow\) ' \(a\) Point \(\Rightarrow\) bool \() \Rightarrow\) bool
    where isFunction \(f \equiv \forall x\). singleValued \(f x\)
abbreviation isTotalFunction \(::\left(\right.\) 'a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool \() \Rightarrow\) bool
    where isTotalFunction \(f \equiv(\) total \(f) \wedge(\) isFunction \(f)\)
fun toFunc:: ('a Point \(\Rightarrow\) 'a Point \(\Rightarrow\) bool \() \Rightarrow{ }^{\prime} a\) Point \(\Rightarrow{ }^{\prime} a\) Point
    where toFunc \(f x=(\) SOME \(y . f x y)\)
fun asFunc \(::\left(\right.\) 'a Point \(\Rightarrow{ }^{\prime} a\) Point \() \Rightarrow\left({ }^{\prime} a\right.\) Point \(\Rightarrow{ }^{\prime} a\) Point \(\Rightarrow\) bool \()\)
    where (asFunc f) \(x y=(y=f x)\)
```


4.1 Differentiable approximation

Here we define differentiable approximation. This will be used later when we define what it means for a worldview transformation to be "approximated" by an affine transformation.

```
abbreviation diffApprox :: ('a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool \() \Rightarrow\)
    ('a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool \() \Rightarrow\)
    'a Point \(\Rightarrow\) bool
    where diffApprox \(g\) f \(x \equiv(\) definedAt \(f x) \wedge\)
    \((\forall \varepsilon>0 .(\exists \delta>0) .(\forall y\).
            ( ( \(y\) within \(\delta\) of \(x\) )
            \(\longrightarrow\)
            \(((\) definedAt \(f y) \wedge(\forall u v .(f y u \wedge g y v) \longrightarrow\)
            \((\operatorname{sep2} v u) \leq(\operatorname{sqr} \varepsilon) * \operatorname{sep2} y x)))\) )
))
```

abbreviation cts :: ('a Point $\Rightarrow{ }^{\prime}$ a Point \Rightarrow bool) $\Rightarrow{ }^{\prime} a$ Point \Rightarrow bool
where cts $f x \equiv \forall y .(f x y) \longrightarrow(\forall \varepsilon>0 . \exists \delta>0$.
$($ applyToSet $f($ ball $x \delta)) \subseteq$ ball $y \varepsilon)$
fun invFunc :: ('a Point \Rightarrow 'a Point \Rightarrow bool $) \Rightarrow\left({ }^{\prime} a\right.$ Point $\Rightarrow{ }^{\prime} a$ Point
\Rightarrow bool)
where (invFunc f) $p q=f q p$
lemma lemBijInv: bijective $($ asFunc $f) \longleftrightarrow$ invertible f
by (metis asFunc.elims(1))

4.2 lemApproxEqualAtBase

The following lemma shows (as one would expect) that when one function differentiably approximates another at a point, they take equal values at that point.
lemma lemApproxEqualAtBase:
assumes diffApprox g f x
shows $(f x y \wedge g x z) \longrightarrow(y=z)$
proof -
\{ $\mathrm{fix} y z$
assume hyp: $f x y \wedge g x z$
have lt01: $0<1$ by auto
then obtain d where dprops: $(d>0) \wedge(\forall y$.
((y within d of $x)$
\longrightarrow
$(\forall u v .(f y u \wedge g y v) \longrightarrow$
$(\operatorname{sep} 2 v u) \leq(\operatorname{sqr} 1) * \operatorname{sep} 2 y x)))$
using assms(1) by best
hence x within d of x by auto
hence $\forall u v .(f x u \wedge g x v) \longrightarrow(\operatorname{sep2} v u) \leq(s q r 1) * \operatorname{sep} 2 x x$ using dprops by blast
hence sep 0 : (sep $2 z y) \leq 0$ using hyp by auto
\{ assume $z \neq y$
hence sep2 $z y>0$ using lemNotEqualImpliesSep2Pos[of zy] by auto
hence False using sep0 by auto
\}
hence $z=y$ by auto
\}
thus ?thesis by auto
qed
lemma lemCtsOfCtsIsCts:
assumes cts $f x$
and $\quad \forall y .(f x y) \longrightarrow(c t s g y)$
shows cts (composeRel g f) x
proof -
\{ fix z
assume z : (composeRel g f) $x z$
then obtain y where $y: f x y \wedge g y z$ by auto
\{ fix e
assume epos: $e>0$
have $(\forall \varepsilon>0 . \exists \delta>0 .($ applyToSet $g($ ball $y \delta)) \subseteq$ ball $z \varepsilon)$ using assms(2) y by auto

```
            then obtain dy
            where dy: (dy>0)^((applyToSet g (ball y dy))\subseteq ball ze)
            using epos y by auto
            have }(\forall\varepsilon>0.\exists\delta>0.(applyToSet f(ball x \delta))\subseteq ball y \varepsilon
            using y assms(1) by auto
            then obtain d
            where d:(d>0)}\wedge((\mathrm{ applyToSet f (ball x d))}\subseteq\mathrm{ ball y dy)
            using dy by auto
        { fix w
            assume w:w\in applyToSet (composeRel g f)(ball x d)
            then obtain uv
                where v: (u\in ball x d)^(fuv)\wedge(gvw) by auto
            hence v}\mathrm{ f ball y dy using d by auto
            hence }w\in\mathrm{ ball ze using vdy by auto
        }
        hence applyToSet (composeRel gf) (ball x d) \subseteq ball ze by auto
        hence }\existsd>0.(\mathrm{ applyToSet (composeRel g f) (ball x d)}\subseteq\mathrm{ ball z
e)
            using d by auto
        }
        hence }\foralle>0.\existsd>0.applyToSet (composeRel gf)(ball x d)\subseteq bal
ze by auto
    }
    thus ?thesis by auto
qed
lemma lemInjOfInjIsInj:
    assumes injective f
and injective g
shows injective (composeRel g f)
proof -
    { fix x1 z1 x2 z2
        assume hyp:(composeRel gf) x1 z1 ^(composeRel gf) x2 z2 ^
(x1 = x2)
            then obtain y1 y2
            where ys: (fx1 y1) ^(gy1z1) ^(f x2 y2) ^(g y2 z2) by auto
            hence y1 \not= y2 using hyp assms(1) by auto
            hence z1 }\not=z2\mathrm{ using assms(2) ys by auto
    }
    thus ?thesis by auto
qed
lemma lemInverseComposition:
    assumes h=composeRel gf
    shows (invFunc h) = composeRel (invFunc f) (invFunc g)
```

```
proof -
    {fix pr
            { assume hyp: h pr
            then obtain q}\mathrm{ where f pq^gqr using assms by auto
            hence (invFunc g) r q ^(invFunc f) q p by force
            hence (composeRel (invFunc f) (invFunc g)) r p by blast
    }
    hence l2r: (invFunc h) rp\longrightarrow (composeRel (invFunc f) (invFunc
g)) r p by auto
    { assume (composeRel (invFunc f) (invFunc g)) r p
            then obtain q}\mathrm{ where (invFunc g) rq}^\mathrm{ (invFunc f) q p by
auto
            hence (invFunc h) rp using assms by auto
    }
    hence (composeRel (invFunc f)(invFunc g)) r p \longleftrightarrow (invFunc
h) rp
            using l2r by auto
    }
    thus ?thesis by fastforce
qed
lemma lemToFuncAsFunc:
    assumes isFunction f
and totalf
shows asFunc (toFunc f)=f
proof -
    {fix pr
            { assume (asFunc (toFunc f)) pr
                hence f pr using someI[offp] assms(2) by auto
            }
            hence l2r:(asFunc (toFunc f)) pr\longrightarrowf pr by auto
            { assume fpr: fpr
            hence (asFunc (toFunc f)) pr using someI[offp] assms(1) by
auto
            }
            hence f pr \longleftrightarrow(asFunc (toFunc f)) pr using l2r by auto
    }
    thus ?thesis by blast
qed
lemma lemAsFuncToFunc: toFunc (asFunc f)=f
    by fastforce
```

end
end

5 WorldLine

This theory defines worldlines.

```
theory WorldLine
    imports WorldView Functions
begin
```

```
class WorldLine = WorldView + Functions
begin
abbreviation wline :: Body }=>\mathrm{ Body }=>\mathrm{ ' 'a Point set
    where wline m k\equiv{p.m sees k at p }
lemma lemWorldLineUnderWVT:
    shows applyToSet (wvtFunc m k) (wline m b)\subseteq wline k b
    by auto
lemma lemFiniteLineVelocityUnique:
    assumes (u\inlineVelocity l)}\wedge(v\in\mathrm{ lineVelocity l)
and lineSlopeFinite l
    shows u=v
proof -
    have \existsd1\indrtn l.u=velocityJoining origin d1 using assms by
simp
    then obtain d1
        where d1:d1 \indrtn l ^u= velocityJoining origin d1 by blast
    have \existsd2 \in drtn l.v = velocityJoining origin d2 using assms by
simp
    then obtain d2
        where d2: d2 \in drtn l ^v = velocityJoining origin d2 by blast
    hence (d1 \indrtn l)}\wedge(d2\indrtn l) using d1 d2 by aut
    then obtain }a\mathrm{ where }a:(a\not=0)\wedge(d2=(a\otimesd1)
        using lemDrtn[of d1 d2 l] by blast
```

 have slopes: \((\) tval \(d 1 \neq 0) \wedge(\) tval \(d 2 \neq 0)\)
 \(\wedge(\) slopeFinite origin d1 \() \wedge(\) slopeFinite origin d2 \()\)
    ```
proof -
    obtain x y where xy: (x\not=y)^(onLine x l)}\wedge(\mathrm{ onLine y l)}
(slopeFinite x y)
            using assms(2) by blast
    hence slopeFinite x y by blast
    hence tvalnz: tval y - tval }x\not=0\mathrm{ by simp
    define yx where yx = (y\ominusx)
    hence (x\not=y)^(onLine x l)}\wedge(\mathrm{ onLine y l)}\wedge(yx=(y\ominusx)
using xy by simp
    hence }\existsxy.(x\not=y)\wedge(\mathrm{ onLine x l)}\wedge(\mathrm{ onLine y l) ^(yx = (y
\ominus x)) by blast
    hence (y\ominusx)\indrtn l using yx-def by auto
    then obtain b where b: (b\not=0) ^(d2 = (b\otimes (y\ominusx)))
        using d2 lemDrtn[of y\ominusx d2 l] by blast
    hence tval2: tval d2 }\not=\mathrm{ tval origin using tvalnz b by simp
    hence tval1: tval d1 }=\mathrm{ tval origin using a by auto
    hence finite: (slopeFinite origin d1) ^(slopeFinite origin d2)
        using tval2 by auto
    have tval origin = 0 by simp
    thus ?thesis using tval1 tval2 finite by blast
qed
    have t1nz: tval d1 }=0\mathrm{ using slopes by auto
    have anz: a \not=0 using a by blast
    hence equ: 1/(tval d1) = (1/(a*tval d1 ))*a by simp
    hence sloper origin d1 = (((1/(a*tval d1))*a)\otimesd1) using slopes
by auto
    also have ... = ((1/(tval d2)) \otimes d2)
    using lemScaleAssoc[of 1/(a*tval d1) a d1] a by auto
    finally have equalslopers: sloper origin d1 = sloper origin d2 using
slopes by auto
    thus ?thesis using d1 d2 by auto
qed
end
end
```


6 Translations

This theory describes translation maps.

```
theory Translations
    imports Functions
begin
```

```
class Translations = Functions
```

begin

```
abbreviation mkTranslation :: 'a Point }=>\mathrm{ (' a Point => 'a Point)
    where (mkTranslation t) \equiv(\lambdap.(p\oplust))
abbreviation translation :: ('a Point => 'a Point) => bool
    where translation T\equiv\existsq.}\forallp.((T p)=(p\oplusq)
lemma lemMkTrans: }\forallt\mathrm{ . translation (mkTranslation t)
    by auto
lemma lemInverseTranslation:
    assumes (T=mkTranslation t) ^(T'=mkTranslation (origin }
t))
    shows ( }\mp@subsup{T}{}{\prime}\circT=id)\wedge(T\circ\mp@subsup{T}{}{\prime}=id
using assms by auto
lemma lemTranslationSum:
    assumes translation T
    shows }T(u\oplusv)=((Tu)\oplusv
proof -
    obtain t where t: }\forallx.Tx=(x\oplust)\mathrm{ using assms(1) by auto
    thus ?thesis using add-commute add-assoc t by auto
qed
lemma lemIdIsTranslation: translation id
proof -
    have }\forallp.(id p)=(p\oplus\mathrm{ origin ) by simp
    thus ?thesis by blast
qed
lemma lemTranslationCancel:
    assumes translation T
    shows }((Tp)\ominus(T q))=(p\ominusq
```

```
proof -
    obtain t where t: }\forallx.Tx=(x\oplust)\mathrm{ using assms(1) by auto
    hence}((p\oplust)\ominus(q\oplust))=(p\ominusq) by sim
    thus ?thesis using t by auto
qed
lemma lemTranslationSwap:
    assumes translation T
    shows }(p\oplus(Tq))=((Tp)\oplusq
proof -
    obtain t where t: }\forallx.Tx=(x\oplust)\mathrm{ using assms(1) by auto
    thus ?thesis using add-commute add-assoc by simp
qed
lemma lemTranslationPreservesSep2:
    assumes translation T
    shows sep2 p q = sep2 (T p) (T q)
proof -
    obtain t where }\forallx.Tx=(x\oplust)\mathrm{ using assms(1) by auto
    thus ?thesis by force
qed
```

```
lemma lemTranslationInjective:
```

lemma lemTranslationInjective:
assumes translation T
assumes translation T
shows injective (asFunc T)
shows injective (asFunc T)
proof -
proof -
obtain t where $t: \forall x . T x=(x \oplus t)$ using $\operatorname{assms}(1)$ by auto
obtain t where $t: \forall x . T x=(x \oplus t)$ using $\operatorname{assms}(1)$ by auto
define Tinv where Tinv: Tinv $=m k$ Translation $($ origin $\ominus t)$
define Tinv where Tinv: Tinv $=m k$ Translation $($ origin $\ominus t)$
\{ fix $x y$
\{ fix $x y$
assume $T x=T y$
assume $T x=T y$
hence $($ Tinv $\circ T) x=($ Tinv $\circ T) y$ by auto
hence $($ Tinv $\circ T) x=($ Tinv $\circ T) y$ by auto
hence $x=y$ using Tinv t by auto
hence $x=y$ using Tinv t by auto
\}
\}
thus ?thesis by auto
thus ?thesis by auto
qed
qed
lemma lemTranslationSurjective:
assumes translation T
shows surjective (asFunc T)
proof -
obtain t where t: }\forallx.Tx=(x\oplust)\mathrm{ using assms(1) by auto
hence mkT:T = mkTranslation t by auto

```
```

 define Tinv where Tinv: Tinv =mkTranslation (origin \ominus t)
 hence }\forally.y=T\mathrm{ (Tinv y) using mkT lemInverseTranslation by
 auto
thus ?thesis by auto
qed
lemma lemTranslationTotalFunction:
assumes translation T
shows isTotalFunction (asFunc T)
by simp
lemma lemTranslationOfLine:
assumes translation T
shows (applyToSet (asFunc T) (line B D)) = line (T B) D
proof -
define l where l:l= line B D
{fix q
{ assume q' (applyToSet (asFunc T) l)
then obtain q}\mathrm{ where q:q}
inl\wedge(\mathrm{ asFunc T) q q' by auto
then obtain \alpha where \alpha: q=(B\oplus(\alpha\otimesD)) usingl by auto
have q}\mp@subsup{q}{}{\prime}=Tq\mathrm{ using q by auto
also have ···= ((TB)\oplus(\alpha\otimesD)) using \alpha assms lemTransla-
tionSum by blast
finally have q}\mp@subsup{q}{}{\prime}\inline (TB)D by aut
}
hence l2r: q' (applyToSet (asFunc T) l) \longrightarrow q'
by auto
{ assume q'
then obtain \alpha where \alpha: q}=(((TB)\oplus(\alpha\otimesD)) by aut
hence q' = T (B\oplus (\alpha\otimesD)) using assms lemTranslationSum[of
TB (\alpha\otimesD)] by auto
moreover have (B\oplus(\alpha\otimesD)) \inl using l by auto
ultimately have q}\mp@subsup{q}{}{\prime}\in(\mathrm{ applyToSet (asFunc T) l) by auto
}
hence q'}\mp@subsup{q}{}{\prime}\mathrm{ line (T B) D }\longleftrightarrow\mp@subsup{q}{}{\prime}\in(\mathrm{ applyToSet (asFunc T) l)
using l2r by auto
}
thus ?thesis using l by auto
qed

```
lemma lemOnLineTranslation:
    assumes (translation \(T) \wedge(\) onLine \(p l)\)
shows onLine \((T p)\) (applyToSet (asFunc \(T) l\) )
proof -
    obtain \(B D\) where \(B D: l=\) line \(B D\) using assms by auto
    hence (applyToSet (asFunc \(T\) ) \(l\) ) \(=\) line ( \(T B\) ) \(D\) using assms
```

lemTranslationOfLine by auto
moreover have T p\in(applyToSet (asFunc T) l) using assms by
auto
ultimately show ?thesis by blast
qed

```
```

lemma lemLineJoiningTranslation:

```
lemma lemLineJoiningTranslation:
    assumes translation \(T\)
    assumes translation \(T\)
    shows applyToSet (asFunc \(T\) ) (lineJoining \(p q\) ) \(=\) lineJoining \((T\)
    shows applyToSet (asFunc \(T\) ) (lineJoining \(p q\) ) \(=\) lineJoining \((T\)
p) ( \(T q\) )
p) ( \(T q\) )
proof
proof
    define \(D\) where \(D: D=(q \ominus p)\)
    define \(D\) where \(D: D=(q \ominus p)\)
    hence lineJoining \(p q=\) line \(p D\) by auto
    hence lineJoining \(p q=\) line \(p D\) by auto
    hence applyToSet (asFunc T) (lineJoining p q) \(=\) line \((T p) D\)
    hence applyToSet (asFunc T) (lineJoining p q) \(=\) line \((T p) D\)
        using assms lemTranslationOfLine by auto
        using assms lemTranslationOfLine by auto
    moreover have \(((T q) \ominus(T p))=(q \ominus p)\) using assms lemTrans-
    moreover have \(((T q) \ominus(T p))=(q \ominus p)\) using assms lemTrans-
lationCancel by auto
lationCancel by auto
    ultimately show ?thesis using \(D\) by auto
    ultimately show ?thesis using \(D\) by auto
qed
```

qed

```
lemma lemBallTranslation:
    assumes translation \(T\)
and \(\quad x\) within \(e\) of \(y\)
    shows ( \(T x\) ) within \(e\) of \((T y)\)
proof -
    have sep2 \((T x)(T y)=\operatorname{sep} 2 x y\)
        using assms(1) lemTranslationPreservesSep2[of T] by auto
    thus ?thesis using assms(2) by auto
qed
lemma lemBallTranslationWithBoundary:
    assumes translation \(T\)
and sep2 \(x y \leq \operatorname{sqr} e\)
    shows sep2 \((T x)(T y) \leq\) sqre
proof -
    have sep2 \((T x)(T y)=\operatorname{sep} 2 x y\)
        using assms(1) lemTranslationPreservesSep2[of Txy] by simp
    thus ?thesis using assms(2) by auto
qed
lemma lemTranslationIsCts:
```

 assumes translation T
 shows cts (asFunc T) x
 proof -
{ fix }\mp@subsup{x}{}{\prime
assume \mp@subsup{x}{}{\prime}:\mp@subsup{x}{}{\prime}=Tx
{fix e
assume epos: e>0
{ fix p '
assume p': p' G applyToSet (asFunc T) (ball x e)
then obtain p where p:(p\in ball x e) \wedge p'}=Tp\mathrm{ by auto
hence sep2 p x < sqr e using lemSep2Symmetry by force
hence sep2 p ' }\mp@subsup{x}{}{\prime}< sqr e using assms(1) p x' lemBallTranslation
by auto
}
hence applyToSet (asFunc T) (ball x e) \subseteq ball x' e
using lemSep2Symmetry by force
hence \existsd>0. applyToSet (asFunc T) (ball x d)\subseteqball x'e
using epos lemSep2Symmetry by auto
}
hence \foralle>0.\existsd>0. applyToSet (asFunc T) (ball x d)\subseteq ball x'e
by auto
}
thus ?thesis by auto
qed

```
lemma lemAccPointTranslation:
    assumes translation \(T\)
and accPoint \(x s\)
shows accPoint (Tx)(applyToSet (asFunc T) s)
proof -
    \{ fix \(e\)
    assume \(e>0\)
    then obtain \(q\) where \(q: q \in s \wedge(x \neq q) \wedge(\) inBall \(q\) e \(x)\)
                using assms(2) by auto
    have acc1: \(q \in s\) using \(q\) by auto
    have acc2: \(x \neq q\) using \(q\) by auto
    have acc3: inBall \(q\) ex using \(q\) by auto
    define \(q^{\prime}\) where \(q^{\prime}: q^{\prime}=T q\)
    have rtp1: \(q^{\prime} \in\) applyToSet (asFunc T) s using \(q^{\prime}\) acc1 by auto
    have rtp2: \(T x \neq q^{\prime}\) using assms(1) acc2 lemTranslationInjective[of
T] \(q^{\prime}\) by force
    have rtp3: inBall \(q^{\prime}\) e (Tx)
        using assms(1) acc3 \(q^{\prime}\) lemBallTranslation[of \(\left.T q x e\right]\) by auto
```

 hence }\exists\mp@subsup{q}{}{\prime}.(\mp@subsup{q}{}{\prime}\in\mathrm{ applyToSet (asFunc T) s)}\wedge(Tx\not=\mp@subsup{q}{}{\prime}
 \wedge(inBall q}\mp@subsup{q}{}{\prime}e(Tx)
 using rtp1 rtp2 by auto
 }
 thus ?thesis by auto
 qed
lemma lemInverseOfTransIsTrans:
assumes translation T
and }\quad\mp@subsup{T}{}{\prime}=\mathrm{ invFunc (asFunc T)
shows translation (toFunc T')
proof -
obtain t where t: }\forallp.Tp=(p\oplust)\mathrm{ using assms(1) by auto
hence mkT:T=mkTranslation t by auto
define T1 where T1:T1 = mkTranslation (origin }\ominust
hence transT1: translation T1 using lemMkTrans by blast
have TT1: (T\circT1 = id) ^(T1\circT=id) using t T1 lemInver-
seTranslation by auto
{fix pr
{ assume invFunc (asFunc T) pr
hence Tr=p by simp
hence T1 p=(T1\circT) r by auto
hence T1 p=r using TT1 by simp
}
hence l2r: invFunc (asFunc T) pr\longrightarrow(asFunc T1) pr by auto
{ assume (asFunc T1) pr
hence T'p:T1 p=r by simp
have (T\circ T1) p=Tr using T'p by auto
hence p=T r using TT1 by auto
}
hence (asFunc T1) pr\longleftrightarrow invFunc (asFunc T) pr using l2r
by force
}
hence (asFunc T1) = T' using assms(2) by fastforce
hence toFunc T'= toFunc (asFunc T1) using assms(2) by fastforce
hence toFunc T'=T1 by fastforce
thus ?thesis using transT1 by auto
qed

```
lemma lemInverseTrans:
assumes translation \(T\)
shows \(\exists T^{\prime} .\left(\right.\) translation \(\left.T^{\prime}\right) \wedge\left(\forall p q . T p=q \longleftrightarrow T^{\prime} q=p\right)\)
```

proof -
obtain t where t: }\forallp.Tp=(p\oplust)\mathrm{ using assms by auto
hence mkT:T=mkTranslation t by auto
define T' where T}\mp@subsup{T}{}{\prime}:\mp@subsup{T}{}{\prime}=mkTranslation (origin \ominus t)
hence trans': translation T' using lemMkTrans by blast
have TT': (T'\circT=id)^(T\circ}\mp@subsup{T}{}{\prime}=id)\mathrm{ using mkT T' lemInverse-
Translation by auto
{fix pq
{ assume T p=q
hence T' }q=(\mp@subsup{T}{}{\prime}\circT)p\mathrm{ by auto
hence }\mp@subsup{T}{}{\prime}q=p\mathrm{ using TT' by auto
}
hence l2r:T p=q\longrightarrow T'q=p by auto
{ assume T' }q=
hence T p=(T\circT')q by auto
hence T p=q using TT' by auto
}
hence }\mp@subsup{T}{}{\prime}q=p\longleftrightarrowTp=q\mathrm{ using l2r by blast
}
thus ?thesis using trans' by blast
qed
end
end

```

\section*{7 AXIOM: AxSelfMinus}

This theory declares the axiom AxSelfMinus.
```

theory AxSelfMinus
imports WorldView
begin

```

AxSelfMinus: The worldline of an observer is a subset of the time axis in their own worldview.
```

class axSelfMinus $=$ WorldView
begin
abbreviation axSelfMinus :: Body \Rightarrow 'a Point \Rightarrow bool
where axSelfMinus $m p \equiv(m$ sees m at $p) \longrightarrow$ onTimeAxis p
end

```
```

class AxSelfMinus = axSelfMinus +
assumes AxSelfMinus: }\forallmp\mathrm{ . axSelfMinus m p
begin
end
end

```

\section*{8 TangentLines}

This theory defines tangent lines and establishes their key properties.
```

theory TangentLines
imports Translations AxSelfMinus
begin

```

At each point along the worldline of a body, we can ask what its instantaneous direction of motion is. Unfortunately we do not know a priori that the "worldline" actually has tangents. Dealing with tangent lines is one of the more complicated aspects of the main proof.
class TangentLines \(=\) Translations + AxSelfMinus
begin
abbreviation tangentLine :: 'a Point set \(\Rightarrow\) 'a Point set \(\Rightarrow\) 'a Point \(\Rightarrow\) bool
where tangentLine ls \(x \equiv\) \((x \in s) \wedge(\) onLine \(x l) \wedge(\operatorname{accPoint} x s)\)
\(\wedge\)
\((\exists\) p. \(((\) onLine \(p l) \wedge(p \neq x) \wedge\)
\((\forall \varepsilon>0 . \exists \delta>0 . \forall y \in s .(\)
\(((y\) within \(\delta\) of \(x) \wedge(y \neq x))\)
\((\exists r .((\) onLine \(r(\) lineJoining \(x y)) \wedge(r\) within \(\varepsilon\) of \(p))))\)
        )
))
abbreviation tangentLine \(A\) :: ' \(a\) Point set \(\Rightarrow\) 'a Point set \(\Rightarrow\) ' \(a\) Point \(\Rightarrow\) bool
where tangentLineA l s \(x \equiv\)
\((x \in s) \wedge(\) onLine \(x l) \wedge(\) accPoint \(x s)\)
\(\wedge\)
\((\forall p \cdot(((\) onLine \(p l) \wedge(p \neq x)) \longrightarrow\) \((\forall \varepsilon>0 . \exists \delta>0 . \forall y \in s .(\)
\(((y\) within \(\delta\) of \(x) \wedge(y \neq x))\)
\(\longrightarrow\)
\((\exists r \cdot((\) onLine \(r(\) lineJoining \(x y)) \wedge(r\) within \(\varepsilon\) of \(p))))\)
```

)
))

```
```

abbreviation hasTangent :: 'a Point set = 'a Point }=>\mathrm{ bool
where hasTangent s p\equiv\existsl.tangentLine l s p

```

The instantaneous velocity of a body is defined to be the velocity of a co-moving body moving along the tangent line (assuming a tangent line exists).
```

fun vel :: 'a Point set => 'a Point => 'a Space = bool
where vel wl p v = (\exists l.((tangentLine l wl p)}\wedge(v\inlineVelocit
l)))

```
```

lemma lemTangentLineTranslation:
assumes translation T
and tangentLine lsx
shows tangentLine (applyToSet (asFunc T) l)
(applyToSet (asFunc T) s) (T x
proof -
define }\mp@subsup{x}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}:\mp@subsup{x}{}{\prime}=T
define l' where l':}\mp@subsup{l}{}{\prime}=\mathrm{ applyToSet (asFunc T) l
define s' where s': s' = applyToSet (asFunc T) s
have tgt1: }x\ins\mathrm{ using assms(2) by simp

```
    have tgt2: onLine \(x l\) using \(\operatorname{assms}(2)\) by simp
    hence linel: isLine \(l\) by auto
    have tgt3: accPoint \(x\) s using assms(2) by simp
    have tgt4: \(\exists p\). \((((\) onLine \(p l) \wedge(p \neq x)) \wedge\)
        \((\forall \varepsilon>0 . \exists \delta>0 . \forall y \in s .(\)
        \(((y\) within \(\delta\) of \(x) \wedge(y \neq x))\)
        \(\longrightarrow\)
        \((\exists r \cdot((\) onLine \(r(\) lineJoining \(x y)) \wedge(r\) within \(\varepsilon\) of \(p))))\)
        )
    ) using \(\operatorname{assms(2)}\) by \(\operatorname{simp}\)
    have \(\operatorname{rtp} 1: x^{\prime} \in s^{\prime}\) using \(x^{\prime} s^{\prime}\) tgt1 by auto
    have rtp2: onLine \(x^{\prime} l^{\prime}\)
        using lemOnLineTranslation[of Tlx] \(x^{\prime} l^{\prime}\) assms(1) linel tgt2
        by auto
    have rtp3: accPoint \(x^{\prime} s^{\prime}\)
        using assms(1) tgt3 lemAccPointTranslation \(x^{\prime} s^{\prime}\)
        by \(\operatorname{simp}\)
```

obtain p where p:((onLine pl)^(p\not=x))^
(}\forall\varepsilon>0.\exists\delta>0.\forally\ins.
((y within \delta of x)^(y\not=x))
(\existsr.((onLine r (lineJoining x y))^(r within \varepsilon of p))))
) using tgt4 by auto
define po}\mathrm{ where }\mp@subsup{p}{}{\prime}:\mp@subsup{p}{}{\prime}=(Tp
hence }\mp@subsup{p}{}{\prime}\mathrm{ -on-l': onLine pol}\mp@subsup{l}{}{\prime}\mathrm{ using ll'rtp2 p by auto
have p'-not-x': p
using p}\mp@subsup{p}{}{\prime}p\mathrm{ assms(1) x' lemTranslationInjective[of T] by force
{ fix e
assume epos: e>0
then obtain d where d: (d>0)\wedge(\forally\ins.(
((y within d of x)^(y\not=x))
(\existsr.((onLine r (lineJoining x y))^(r within e of p))))
) using p by blast
{ fix y'
assume \mp@subsup{y}{}{\prime}:(\mp@subsup{y}{}{\prime}\in\mp@subsup{s}{}{\prime})\wedge(\mp@subsup{y}{}{\prime}\mathrm{ within d of }\mp@subsup{x}{}{\prime})\wedge(\mp@subsup{y}{}{\prime}\not=\mp@subsup{x}{}{\prime})
then obtain y where y:y\ins\wedge y' =Ty using s' by force
hence y1:y\ins using y by auto
have y2: y within d of x
using assms(1) x' y y' lemBallTranslation by fastforce
have y3: y}\not=x\mathrm{ using y' y x' assms(1) by fastforce
then obtain r
where r: (onLine r (lineJoining x y)) ^(r within e of p)
using y1 y2 d by force
define r' where r': r' =Tr
hence }\mp@subsup{r}{}{\prime}\in\mathrm{ applyToSet (asFunc T) (lineJoining x y) using r by
auto
hence r1: onLine r' (lineJoining x' y')
using assms(1) lemLineJoiningTranslation[of T x y] x' y
by blast
have r2: r' within e of p}\mp@subsup{p}{}{\prime
using assms(1) r r r p}\mp@subsup{p}{}{\prime}\mathrm{ lemBallTranslation by auto
hence }\exists\mp@subsup{r}{}{\prime}\mathrm{ . (onLine r r'(lineJoining }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}))\wedge(\mp@subsup{r}{}{\prime}\mathrm{ within e of p}\mp@subsup{p}{}{\prime}
using r1 by auto
hence (}\mp@subsup{y}{}{\prime}\mathrm{ within d of }\mp@subsup{x}{}{\prime})\wedge(\mp@subsup{y}{}{\prime}\not=\mp@subsup{x}{}{\prime}
\longrightarrow (\exists r ^ { \prime } . (onLine r r
p`)
using y' by blast
}

```
hence \(\forall y^{\prime} \in s^{\prime} .\left(y^{\prime}\right.\) within \(d\) of \(\left.x^{\prime}\right) \wedge\left(y^{\prime} \neq x^{\prime}\right)\)
\(\longrightarrow\left(\exists r^{\prime}\right.\). (onLine \(r^{\prime}\left(\right.\) lineJoining \(\left.\left.x^{\prime} y^{\prime}\right)\right) \wedge\left(r^{\prime}\right.\) within e of \(\left.p^{\prime}\right)\) )
by auto
hence \(\exists d>0 . \forall y^{\prime} \in s^{\prime} .\left(y^{\prime}\right.\) within \(d\) of \(\left.x^{\prime}\right) \wedge\left(y^{\prime} \neq x^{\prime}\right)\) \(\longrightarrow\left(\exists r^{\prime}\right.\). (onLine \(r^{\prime}\left(\right.\) lineJoining \(\left.\left.x^{\prime} y^{\prime}\right)\right) \wedge\left(r^{\prime}\right.\) within e of \(\left.p^{\prime}\right)\) )
using \(d\) by auto
\}
hence \(\forall e>0 . \exists d>0 . \forall y^{\prime} \in s^{\prime} .\left(y^{\prime}\right.\) within \(d\) of \(\left.x^{\prime}\right) \wedge\left(y^{\prime} \neq x^{\prime}\right)\) \(\longrightarrow\left(\exists r^{\prime}\right.\). (onLine \(r^{\prime}\left(\right.\) lineJoining \(\left.\left.x^{\prime} y^{\prime}\right)\right) \wedge\left(r^{\prime}\right.\) within e of \(\left.p^{\prime}\right)\) )
by force
hence (onLine \(\left.p^{\prime} l^{\prime}\right) \wedge\left(p^{\prime} \neq x^{\prime}\right)\)
\(\wedge\left(\forall e>0 . \exists d>0 . \forall y^{\prime} \in s^{\prime} .\left(y^{\prime}\right.\right.\) within \(d\) of \(\left.x^{\prime}\right) \wedge\left(y^{\prime} \neq x^{\prime}\right)\)
\(\longrightarrow\left(\exists r^{\prime}\right.\). (onLine \(r^{\prime}\left(\right.\) lineJoining \(\left.\left.x^{\prime} y^{\prime}\right)\right) \wedge\left(r^{\prime}\right.\) within \(e\) of \(\left.p^{\prime}\right)\) )
using \(p^{\prime}\)-not- \(x^{\prime} p^{\prime}\)-on- \(l^{\prime}\) by auto
hence rtp4: \(\exists p^{\prime}\). \(\left(\left(\left(\right.\right.\right.\) onLine \(\left.\left.p^{\prime} l^{\prime}\right) \wedge\left(p^{\prime} \neq x^{\prime}\right)\right)\)
\(\wedge\left(\forall e>0 . \exists d>0 . \forall y^{\prime} \in s^{\prime} .\left(y^{\prime}\right.\right.\) within \(d\) of \(\left.x^{\prime}\right) \wedge\left(y^{\prime} \neq x^{\prime}\right)\)
\(\longrightarrow\left(\exists r^{\prime}\right.\). (onLine \(r^{\prime}\left(\right.\) lineJoining \(\left.\left.x^{\prime} y^{\prime}\right)\right) \wedge\left(r^{\prime}\right.\) within e of \(\left.\left.\left.\left.p^{\prime}\right)\right)\right)\right)\)
by auto
hence ?thesis \(\longleftrightarrow\left(x^{\prime} \in s^{\prime}\right) \wedge\left(\right.\) onLine \(\left.x^{\prime} l^{\prime}\right) \wedge\left(\right.\) accPoint \(\left.x^{\prime} s^{\prime}\right)\)
using \(x^{\prime} s^{\prime} l^{\prime}\) by \(\operatorname{simp}\)
thus ?thesis using rtp1 rtp2 rtp3 by blast
qed
```

lemma lemTangentLineA:
assumes tangentLine l s x
shows tangentLineA l s x
proof -
have 1:(x\ins)\wedge(onLine x l)^(accPoint x s) using assms by
auto
have \exists P. (onLine Pl)^(P\not=x)^
(\forall\varepsilon>0.\exists\delta>0.\forally\ins.(
((y within \delta}\mathrm{ of }x)\wedge(y\not=x)
(\existsr.((onLine r(lineJoining x y)) ^(r within \varepsilon of P))))
)
using assms by simp
then obtain P where P:(onLine Pl)\wedge (P\not=x)^
(\forall\varepsilon>0.\exists\delta>0.\forally\ins.(
((y within \delta of }x)\wedge(y\not=x)
\longrightarrow
(\existsr.((onLine r (lineJoining x y)) ^(r within \varepsilon of P))))

```
by blast
\(\{\) fix \(p\)
assume \(p\) : onLine \(p l \wedge p \neq x\)
hence onLine \(x l \wedge\) onLine \(p l \wedge x \neq p\) using 1 by auto
hence \(l x p: l=\) lineJoining \(x p\)
using 1 lemLineAndPoints[of \(x\) pll by auto
then obtain \(a\) where \(a\) : \(P=(x \oplus(a \otimes(p \ominus x)))\) using \(P\) by auto
hence \(a n z: a \neq 0\) using \(P\) by auto
\{ fix \(e\)
assume epos: \(e>0\)
hence aenz: \(a * e \neq 0\) using anz by auto
define \(e 1\) where \(e 1: e 1=a b s(a * e)\)
hence e1pos: e1 \(>0\) using aenz by auto
then obtain \(d\) where \(d:(d>0) \wedge(\forall y \in s .(\)
\(((y\) within \(d\) of \(x) \wedge(y \neq x))\)
\(\longrightarrow\)
\((\exists r \cdot((\) onLine \(r(\) lineJoining \(x y)) \wedge(r\) within e1 of \(P))))\)
)
using \(P\) by auto
\{ fix \(y\)
assume \(y:(y \in s) \wedge(y\) within \(d\) of \(x) \wedge(y \neq x)\)
then obtain \(R\)
where \(R\) : (onLine \(R(\) lineJoining \(x y)) \wedge(R\) within e1 of \(P)\) using \(d\) by blast
define \(r\) where \(r: r=(x \oplus((1 / a) \otimes(R \ominus x)))\)
hence \((r \ominus x)=((x \oplus((1 / a) \otimes(R \ominus x))) \ominus x)\) using \(r\) by auto
also have \(\ldots=((1 / a) \otimes(R \ominus x))\)
using add-commute add-assoc diff-add-cancel by auto
finally have \(n r x:(r \ominus x)=((1 / a) \otimes(R \ominus x))\) by metis
define \(T\) where \(T: T=m k T\) Tanslation (origin \(\ominus x\) )
hence transT: translation \(T\) using lemMkTrans by blast
have \(R\) within e1 of \(P\) using \(R\) by simp
hence \((T R)\) within e1 of ( \(T P\) )
using transT lemBallTranslation[of T R Pe1]
by fastforce
hence near1: \(((1 / a) \otimes(R \ominus x))\) within \((e 1 / a)\) of \(((1 / a) \otimes(P \ominus x))\) using lemScaleBall[of \(R \ominus x P \ominus x\) e1 \(1 / a]\) anz \(T\) by auto
define \(T^{\prime}\) where \(T^{\prime}: T^{\prime}=m k T r a n s l a t i o n ~ x\)
hence trans \(T^{\prime}\) : translation \(T^{\prime}\) using lemMkTrans by blast
hence near2: \(\left(T^{\prime}((1 / a) \otimes(R \ominus x))\right)\) within \((e 1 / a)\) of \(\left(T^{\prime}\right.\) \(((1 / a) \otimes(P \ominus x)))\)
using near1 transT'
lemBallTranslation \(\left[\right.\) of \(T^{\prime}(1 / a) \otimes(R \ominus x)(1 / a) \otimes(P \ominus x)\)
\(e 1 / a]\)
by blast
have term1: \(\left(T^{\prime}((1 / a) \otimes(R \ominus x))\right)=r\) using \(T^{\prime}\) add-commute \(r\) by auto
have \((P \ominus x)=(a \otimes(p \ominus x))\) using \(a\) by auto
hence \(\left(T^{\prime}((1 / a) \otimes(P \ominus x))\right)=(x \oplus((1 / a) \otimes(a \otimes(p \ominus x))))\) using \(T^{\prime}\) add-commute by auto
hence \(\left(T^{\prime}((1 / a) \otimes(P \ominus x))\right)=(x \oplus(p \ominus x))\)
using lemScaleAssoc[of \(1 /\) a a \(P \ominus x\) ] anz by auto
hence term2: \(\left(T^{\prime}((1 / a) \otimes(P \ominus x))\right)=p\)
using diff-add-cancel add-commute by auto
have \(e 1 / a=a b s(a * e) / a\) using \(e 1\) by auto
hence \(\operatorname{sqr}(e 1 / a)=(\operatorname{sqr}(a b s(a * e))) /(s q r a)\) by auto
hence \(\operatorname{sqr}(e 1 / a)=(s q r(a * e)) /(s q r a)\) by auto
hence \(\operatorname{sqr}(e 1 / a)=(\operatorname{sqr} a) *(s q r e) /(s q r a)\) using lemSqrMult by auto
hence term3: sqr \((e 1 / a)=(s q r e)\) using anz by simp
hence \(r\)-near-p: \(r\) within e of \(p\) using near2 term1 term2 term3 by auto
```

 have cases: \((R=x) \vee(R \neq x)\) by auto
 have \(x\)-on-xy: onLine \(x\) (lineJoining \(x y\))
 using \(y\) lemLineAndPoints \([\) of \(x y\) lineJoining \(x y\) by auto
 \{ assume \(R=x\)
 hence \(r=x\) using \(n r x\) anz by auto
 hence onLine \(r\) (lineJoining \(x y\)) using \(x\)-on-xy by blast
 \}
 hence case1: \((R=x) \longrightarrow\) (onLine \(r\) (lineJoining \(x y)\)) by auto
 \{ assume \(R \neq x\)
 hence lineJoining \(x\) lineJoining \(x y\)
 using \(R\) x-on-xy lemLineAndPoints[of \(x R\) lineJoining \(x y]\)
 by auto
 hence onLine \(r\) (lineJoining \(x y\)) using \(r\) by blast
 \}
 hence \((R \neq x) \longrightarrow\) (onLine \(r\) (lineJoining \(x y)\)) by auto
 hence onLine \(r\) (lineJoining \(x y\)) using cases case1 by auto
 hence \(\exists r\). (onLine \(r(\) lineJoining \(x y)) \wedge(r\) within \(e\) of \(p)\)
    ```
```

 using r-near-p by auto
 }
 hence }\forally\ins.\quad(y\mathrm{ within d of x)^(y# x)
 \longrightarrow(\existsr.(onLine r (lineJoining x y)) ^(r within e of p))
 by auto
 hence }\existsd>0.\forally\ins.(y\mathrm{ within d of }x)\wedge(y\not=x
 \longrightarrow (\exists r . (\text { onLine r (lineJoining x y))} \wedge (r \text { within e of p))}
 using d by auto
 }
 hence }\foralle>0.\existsd>0.\forally\ins.\quad(y\mathrm{ within d of }x)\wedge(y\not=x
 \longrightarrow (\exists r . (\text { onLine r (lineJoining x y)}) \wedge (r \text { within e of p))}
 by blast
 }
hence 2: }\forallp.(\mathrm{ onLine p l ^ p F=x)}
(\foralle>0.\existsd>0.\forally\ins. (y within d of }x)\wedge(y\not=x
\longrightarrow(\existsr.(onLine r (lineJoining x y)) ^(r within e of
p)))
by blast
thus ?thesis using 1 by auto
qed

```
lemma lemTangentLineE:
assumes tangentLineA lsx
and \(\quad \exists p \neq x\). onLine \(p l\)
shows tangentLine \(l\) s \(x\)
proof -
have 1: \((x \in s) \wedge(\) onLine \(x l) \wedge(\operatorname{accPoint} x s)\) using \(\operatorname{assms}(1)\) by auto
obtain \(p\) where \(p:(p \neq x) \wedge(\) onLine \(p l)\) using assms(2) by auto hence \(\forall \varepsilon>0 . \exists \delta>0 . \forall y \in s .(\) \(((y\) within \(\delta\) of \(x) \wedge(y \neq x))\)
\(\qquad\) \((\exists r \cdot((\) onLine \(r(\) lineJoining \(x y)) \wedge(r\) within \(\varepsilon\) of \(p))))\)
using assms(1) by blast
thus ?thesis using \(1 p\) by auto qed
end
end

\section*{9 Cones}

This theory defines (light)cones, regular cones, and their properties.
theory Cones
imports WorldLine TangentLines
begin
class Cones \(=\) WorldLine + TangentLines
begin
abbreviation \(t l::\) 'a Point set \(\Rightarrow\) Body \(\Rightarrow\) Body \(\Rightarrow\) 'a Point \(\Rightarrow\) bool where tllmbx \(\equiv\) tangentLine \(l(w l i n e ~ m b) ~ x ~\)

The cone of a body at a point comprises the set of points that lie on tangent lines of photons emitted by the body at that point.
```

abbreviation cone :: Body }=>\mp@subsup{)}{}{\prime}a\mathrm{ Point }=>\mp@subsup{'}{}{\prime}a\mathrm{ Point }=>\mathrm{ bool
where cone mxp
\equiv\existsl.(onLine pl)\wedge(onLine x l)}\wedge(\existsph.Phph\wedgetl
mph x)
abbreviation regularCone :: 'a Point }=>\mathrm{ 'a Point }=>\mathrm{ bool
where regularCone x p\equiv\existsl.(onLine pl)^(onLine x l)
\wedge (\existsv\inlineVelocity l.sNorm2 v=1)

```
abbreviation coneSet \(::\) Body \(\Rightarrow\) 'a Point \(\Rightarrow\) 'a Point set
    where coneSet \(m x \equiv\{p\). cone \(m x p\}\)
abbreviation regularConeSet :: 'a Point \(\Rightarrow\) ' \(a\) Point set
    where regularConeSet \(x \equiv\{p\). regularCone \(x p\}\)
end
end

\section*{10 AXIOM: AxLightMinus}

This theory declares the axiom AxLightMinus.
theory AxLightMinus
imports WorldLine TangentLines

\section*{begin}

AxLightMinus: If an observer sends out a light signal, then the speed of the light signal is 1 according to the observer. Moreover it is possible to send out a light signal in any direction.
class axLightMinus \(=\) WorldLine + TangentLines
begin
The definition of AxLightMinus used in this Isabelle proof is slightly different to the one used in the paper-based proof on which it is based. We have established elsewhere, however, that each entails the other in all relevant contexts.
```

abbreviation axLightMinusOLD :: Body $\Rightarrow{ }^{\prime}$ a Point $\Rightarrow{ }^{\prime}$ a Space \Rightarrow
bool
where axLightMinusOLD mpvミ(m sees m at $p) \longrightarrow($
$(\exists \mathrm{ph} .($ Ph ph $\wedge($ vel $($ wline $m p h) p v))) \longleftrightarrow($ sNorm2 $v=1)$
)

```
```

abbreviation axLightMinus :: Body $\Rightarrow{ }^{\prime}$ a Point \Rightarrow 'a Space \Rightarrow bool
where axLightMinus $m p v \equiv(m$ sees m at $p)$
$\longrightarrow(\forall l . \forall v \in$ lineVelocity l.
$(\exists$ ph. $($ Ph ph $\wedge($ tangentLine $l($ wline $m p h) p))) \longleftrightarrow$
$(s N o r m 2 v=1))$

```
end
class AxLightMinus \(=\) axLightMinus +
    assumes AxLightMinus: \(\forall\) mpv.axLightMinus m \(p v\)
begin
end
end

\section*{11 Proposition1}

This theory shows that observers consider their own lightcones to be upright.
theory Proposition1
imports Cones AxLightMinus
begin
class Proposition1 \(=\) Cones + AxLightMinus
begin
lemma lemProposition1:
```

 assumes }x\in\mathrm{ wline m m
 shows cone mxp= regularCone x p
 proof -
have mmx:m sees m at x using assms by simp
have axlight: }\foralll.\forallv\in\mathrm{ lineVelocity l.
(\exists ph.(Ph ph ^(tangentLine l (wline m ph) x))) \longleftrightarrow
(sNorm2 v = 1)
using AxLightMinus mmx by auto

```
    define \(a x p h\) where \(a x p h:\) axph \(=(\lambda l . \lambda p h .(P h p h \wedge(\) tangentLine
\(l(\) wline \(m p h) x))\) )
    define lhs where lhs: lhs = cone mxp
    define rhs where rhs: rhs \(=\) regularCone \(x p\)
    \{ assume lhs
    hence \(\exists l\). onLine \(p l \wedge\) onLine \(x l \wedge(\exists\) ph. axph \(l p h)\)
        using lhs axph by auto
    then obtain \(l\)
        where l: onLine \(p l \wedge\) onLine \(x l \wedge(\exists p h . a x p h l p h)\) by auto
    have xonl: onLine \(x l\) using \(l\) by auto
    have ponl: onLine \(p l\) using \(l\) by auto
    have exph: \(\exists p h\). axph \(l\) ph using \(l\) by auto
    then obtain \(p h\) where \(p h:\) axph \(l p h\) by auto
    have axlight': \(\forall v \in\) lineVelocity \(l .(\exists p h . a x p h ~ l p h) \longleftrightarrow\)
(sNorm2 \(v=1\) )
        using axph axlight by force
    hence lv1: \(\forall v \in \operatorname{lineVelocity~} l .(s N o r m 2 v=1)\) using exph by
blast
have tterm1: tl \(l m p h x\) using \(p h a x p h\) by force
hence \(\exists p .((\) onLine \(p l) \wedge(p \neq x) \wedge(\forall \varepsilon>0 . \exists \delta>0 . \forall\) \(y \in(\) wline \(m p h)\).
\(((y\) within \(\delta\) of \(x) \wedge(y \neq x)) \longrightarrow\)
\((\exists r .((\) onLine \(r(\) lineJoining \(x y)) \wedge(r\) within \(\varepsilon\) of \(p))))))\)
by auto
then obtain \(q\) where \(q\) : onLine \(q l \wedge q \neq x\) by auto
define \(q x\) where \(q x: q x=(q \ominus x)\)
hence \((x \neq q) \wedge\) onLine \(x l \wedge\) onLine \(q l \wedge(q x=(q \ominus x))\) using \(q\) xonl by auto
hence \(\exists p q .(p \neq q) \wedge\) onLine \(p l \wedge\) onLine \(q l \wedge(q x=(q \ominus\) p)) by blast
hence \(q x l: q x \in d r t n l\) by auto
define \(v\) where \(v: v=\) velocityJoining origin \(q x\)
hence \(\exists d \in \operatorname{drtn} l . v=\) velocityJoining origin \(d\) using \(q x l\) by blast
hence existsv: \(v \in\) lineVelocity \(l\) by auto
hence norm2v: sNorm2 \(v=1\) using \(l v 1\) by auto
hence \(\exists v \in\) lineVelocity \(l\). sNorm2 \(v=1\) using existsv by force
hence onLine \(p l \wedge\) onLine \(x l \wedge(\exists v \in\) lineVelocity \(l\). sNorm2 \(v=1\) )
using ponl xonl by auto
hence \(\exists l\). onLine \(p l \wedge\) onLine \(x l \wedge(\exists v \in\) lineVelocity \(l\).
sNorm2 \(v=1\) )
by blast
hence regularCone \(x p\) by auto
\}
hence \(12 r:\) lhs \(\longrightarrow r h s\) using rhs by blast
\{ assume rhs
hence \(\exists l\). onLine \(p l \wedge\) onLine \(x l \wedge(\exists v \in\) lineVelocity \(l\). sNorm2 \(v=1\) )
using rhs by auto
then obtain \(l\)
where \(l\) : (onLine \(p l) \wedge(\) onLine \(x l) \wedge(\exists v \in\) lineVelocity \(l\).
sNorm2 \(v=1\) )
by blast
have xonl: onLine \(x l\) using \(l\) by auto
have ponl: onLine \(p l\) using \(l\) by auto
have \(\exists v \in\) lineVelocity \(l\).sNorm2 \(v=1\) using \(l\) by blast
then obtain \(v\) where \(v:(v \in\) lineVelocity \(l) \wedge(s\) Norm2 \(v=1)\) by blast
define final
where final: final \(=(\lambda l\). onLine \(p l \wedge\) onLine \(x l \wedge(\exists p h\). axph \(l p h)\) )
have \(\exists p h\). axph \(l p h\) using \(v\) axlight axph by blast
hence final \(l\) using ponl xonl final by auto
hence \(\exists l\). final \(l\) by auto
hence cone \(m x p\) using final axph by auto
hence lhs using lhs by auto
```

}
hence r2l:rhs\longrightarrowlhs using lhs by blast
hence lhs \longleftrightarrowrhs using l2r by auto
thus ?thesis using lhs rhs by auto
qed
end
end

```

\section*{12 AXIOM: AxEField}

This theory defines the axiom AxEField, which states that the linearly ordered field of quantities is Euclidean, i.e. that all nonnegative values have square roots in the field.
```

theory AxEField

```
    imports Sorts
begin
class axEField \(=\) Quantities
begin
    abbreviation axEField \(::\) ' \(a \Rightarrow\) bool
        where axEField \(x \equiv(x \geq 0) \longrightarrow\) hasRoot \(x\)
end
class AxEField \(=\) axEField +
    assumes AxEField: \(\forall x\). axEField \(x\)
begin
end
end

\section*{13 Norms}

This theory defines norms, assuming that roots exist.
```

theory Norms
imports Points AxEField
begin
class Norms = Points + AxEField

```
```

begin
abbreviation norm :: 'a Point = ' a (| - |)
where norm p \equivsqrt (norm2 p)

```
```

abbreviation s Norm $::$ 'a Space $\Rightarrow{ }^{\prime} a$

```
abbreviation \(s\) Norm \(::\) 'a Space \(\Rightarrow{ }^{\prime} a\)
    where \(s\) Norm \(p \equiv \operatorname{sqrt}\) ( \(s\) Norm2 \(p\) )
```

 where \(s\) Norm \(p \equiv \operatorname{sqrt}\) (\(s\) Norm2 \(p\))
    ```

\section*{13.1 axTriangleInequality}

Given that norms exist, we can define the triangle inequality for specific cases. This will be asserted more generally as an axiom later.
abbreviation axTriangleInequality :: 'a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool where axTriangleInequality \(p q \equiv(\) norm \((p \oplus q) \leq\) norm \(p+\) norm q)
```

lemma lemNormSqrIsNorm2: norm2 $p=\operatorname{sqr}$ (norm p)
proof -
have norm2 $p \geq 0$ by simp
moreover have axEField (norm2 p) using AxEField by simp
ultimately show ?thesis using lemSquareOfSqrt[of norm2 p norm
$p]$ by force
qed
lemma lemZeroNorm:
shows $(p=$ origin $) \longleftrightarrow($ norm $p=0)$
proof -
\{ assume $p=$ origin
hence norm2 $p=0$ by auto
hence norm $p=0$ using lemSquareOfSqrt lemZeroRoot AxEField
by force
\}
hence l2r: $(p=$ origin $) \longrightarrow($ norm $p=0)$ by auto
\{ assume norm $p=0$
hence norm2 $p=0$ using lemNormSqrIsNorm2[of p] by auto
hence $p=$ origin using lemNullImpliesOrigin by auto
\}
hence $($ norm $p=0) \longrightarrow(p=$ origin $)$ by auto

```
```

 thus ?thesis using l2r by blast
 qed

```
```

lemma lemNormNonNegative: norm $p \geq 0$
proof -
have norm2 $p \geq 0$ by auto
hence unique: $\exists!r .0 \leq r \wedge$ norm2 $p=s q r r$ using AxEField
lemSqrt[of norm2 p] by auto
then obtain r where $r: 0 \leq r \wedge$ norm2 $p=s q r r \wedge(\forall x$.
isNonNegRoot (norm2 p) $x \longrightarrow x=r$)
by auto
hence $r=$ norm p using the-equality[of isNonNegRoot (norm2 p)
$r]$ by blast
moreover have $r \geq 0$ using r by blast
ultimately show ?thesis by auto
qed

```
lemma lemNotOriginImpliesPositiveNorm:
    assumes \(p \neq\) origin
    shows ( norm \(p>0\) )
proof -
    have 1: norm \(p \neq 0\) using lemZeroNorm assms(1)by auto
    have norm \(p \geq 0\) using lemNormNonNegative assms(1) by auto
    hence 2: norm \(p>0\) using 1 by auto
    thus ?thesis by auto
qed
lemma lemNormSymmetry: norm \((p \ominus q)=\) norm \((q \ominus p)\)
proof -
    have norm2 \((p \ominus q)=\) norm2 ( \(q \ominus p\) ) using lemSep2Symmetry by
simp
    thus ?thesis by presburger
qed
lemma lemNormOfScaled: norm \((\alpha \otimes p)=(\) abs \(\alpha) *(\) norm \(p)\)
proof -
    have sqr \((\operatorname{norm}(\alpha \otimes p))=\) norm2 \((\alpha \otimes p)\) using lemNormSqrIsNorm2
by presburger
    also have \(\ldots=(\) sqr \(\alpha) *(\) norm2 \(p\) ) using lemNorm2OfScaled by
auto
    also have \(\ldots=(\) sqr \(\alpha) *(\) sqr ( \(n o r m p))\) using lemNormSqrIsNorm2
by force
```

 also have ... = sqr (}\alpha*(\mathrm{ norm p)) using lemSqrMult by auto
 finally have abs (norm (\alpha\otimesp)) =abs(\alpha*(norm p)) using lemE-
 qualSquares by blast
 moreover have abs (norm (}\alpha\otimesp))=\mathrm{ norm (}\alpha\otimesp
 using lemNormNonNegative[of (}\alpha\otimesp)]\mathrm{ abs-of-nonneg by auto
 moreover have abs (\alpha*(norm p))=(abs \alpha)*(abs (norm p))
 using abs-mult by auto
ultimately show ?thesis using lemNormNonNegative[of p] abs-of-nonneg
by auto
qed
lemma lemDistancesAdd:
assumes triangle: axTriangleInequality (q\ominusp) (r\ominusq)
and distances: (x>0)\wedge (y>0) ^(sep2 p q< sqr x) ^(sep2
rq<sqr y)
shows r within (x+y) of p
proof -
define npq where npq: npq=norm (}q\ominusp
hence sqr npq< sqr x
using lemNormSqrIsNorm2 distances lemSep2Symmetry by pres-
burger
hence npqx: npq < x using lemSqrOrderedStrict distances by blast
define nqr where nqr: nqr = norm (r\ominusq)
hence sqr nqr < sqr y using lemNormSqrIsNorm2 distances by
presburger
hence nqry: nqr < y using lemSqrOrderedStrict distances by blast
have rminusp: }(r\ominusp)=((q\ominusp)\oplus(r\ominusq))\mathrm{ using lemDiffDiffAdd by
fastforce
define npr where npr: npr = norm (r\ominusp)
have nx: norm (}q\ominusp)=npq\mathrm{ using npq lemSqrt by fast
have ny: norm (r\ominusq) = nqr using nqr lemSqrt by fast
have nz: norm (r\ominusp) = npr using npr lemSqrt by fast
have norm (r\ominusp)\leq(norm (q\ominusp)+norm (r\ominusq)) using triangle
rminusp by fastforce
hence npr }\leq(npq+nqr) using nx ny nz lemSqrt npq nqr npr by
simp
hence npr < x + y using npqx nqry add-strict-mono[of npq x nqr
y]
by simp
hence sqr npr < sqr (x+y) using npr lemNormNonNegative[of
(r\ominusp)] lemSqrMonoStrict by auto
hence sep: sep2 r p< sqr (x+y) using npr lemSquareOfSqrt AxE-
Field by auto

```
```

 thus ?thesis using npr lemSep2Symmetry by auto
    ```
qed
lemma lemDistancesAddStrictR:
    assumes triangle: axTriangleInequality \((q \ominus p)(r \ominus q)\)
and distances: \((x>0) \wedge(y>0) \wedge(\) sep2 \(p q \leq s q r x) \wedge(\) sep2
\(r q<\operatorname{sqr} y\) )
    shows \(r\) within \((x+y)\) of \(p\)
proof -
    define \(n p q\) where \(n p q: n p q=\) norm \((q \ominus p)\)
    hence sqr \(n p q \leq s q r x\) using lemNormSqrIsNorm2 distances lem-
Sep2Symmetry by presburger
    hence \(n p q x: n p q \leq x\) using lemSqrOrdered \([\) of \(x n p q\) ] distances \(n p q\)
by auto
    define \(n q r\) where \(n q r: n q r=\operatorname{norm}(r \ominus q)\)
    hence sqr nqr < sqr y using lemNormSqrIsNorm2 distances by
presburger
    hence nqry: nqr \(<y\) using lemSqrOrderedStrict distances by blast
    define \(n p r\) where \(n p r: n p r=\operatorname{norm}(r \ominus p)\)
    have \(n x\) : norm \((q \ominus p)=n p q\) using npq lemSqrt by blast
    have ny: norm \((r \ominus q)=n q r\) using nqr lemSqrt by blast
    have \(n z:\) norm \((r \ominus p)=n p r\) using npr lemSqrt by blast
    have norm \((r \ominus p) \leq(\) norm \((q \ominus p)+\operatorname{norm}(r \ominus q))\) using triangle
lemDiffDiffAdd by fastforce
    hence \(n p r \leq(n p q+n q r)\) using \(n x n y n z\) by simp
    hence npr \(<x+y\) using npqx nqry add-le-less-mono[of npq x nqr
\(y]\)
            by auto
    hence sqr npr < sqr \((x+y)\) using npr lemNormNonNegative \([o f\)
\((r \ominus p)\) ] lemSqrMonoStrict by auto
    hence sep: sep2 r \(p<\operatorname{sqr}(x+y)\) using npr lemSquareOfSqrt AxE-
Field by auto
    thus ?thesis using npr lemSep2Symmetry [of r \(p\) ] by auto
qed
end
end

\section*{14 AxTriangleInequality}

This theory declares the Triangle Inequality as an axiom.
```

theory AxTriangleInequality
imports Norms
begin

```

Although AxTriangleInequality can be proven rather than asserted we have left it as an axiom to illustrate the flexibility of using Isabelle for mathematical physics: well-known mathematical results can be asserted, leaving the researcher free to concentrate on the physics. We can return later to prove the mathematical results when time permits.
```

class AxTriangleInequality = Norms +
assumes AxTriangleInequality: }\forall\textrm{p}q.axTriangleInequality p q
begin
end
end

```

\section*{15 Sublemma3}

This theory establishes how closely tangent lines approximate world lines.
theory Sublemma3
imports WorldLine AxTriangleInequality TangentLines
begin
class Sublemma3 \(=\) WorldLine + AxTriangleInequality + TangentLines
begin
```

lemma sublemma3:
assumes onLine p l
and norm2 p=1
and tangentLine l wl origin
shows
\forall\varepsilon>0.\exists\delta>0.\forall y ny.(
((y within \delta of origin)}\wedge(y\not=\mathrm{ origin)}\wedge(y\inwl)\wedge(\mathrm{ norm }y
ny))
((((1/ny)\otimesy) within \varepsilon of p)\vee (((-1/ny)\otimesy) within \varepsilon of p))
)

```
```

proof -
{fix e :: 'a
{ assume epos: e>0
hence e2pos: e/2 > 0 by simp
have prop1: origin \in wl using assms(3) by auto
have prop2: onLine origin l using assms(3) by auto
hence prop3: }\forall\varepsilon>0.\existsq\inwl.(origin \not=q)\wedge(\mathrm{ inBall q \&
origin)
using assms(3) by auto
have prop4: }\forall\textrm{p}.(((\mathrm{ onLine p l)}\wedge(p\not= origin)) \longrightarrow
(\forall\varepsilon>0.\exists\delta>0.\forally\inwl.(
((y within }\delta\mathrm{ of origin)}\wedge(y\not=\mathrm{ origin })
\longrightarrow
(\existsr.((onLine r (lineJoining origin y)) ^(r within \varepsilon of
p))))
)
) using assms(3) lemTangentLineA[of origin]
by auto
have $p \neq$ origin using assms(2) lemNullImpliesOrigin by auto
hence ballprops: $\forall \varepsilon>0 . \exists \delta>0 . \forall y \in w l .($
$((y$ within δ of origin $) \wedge(y \neq$ origin $))$
$(\exists r .(($ onLine $r($ lineJoining origin $y)) \wedge(r$ within ε of p)))
)
using assms(1) prop4 by auto
define eps where eps = (if (e/2<1/2) then (e/2) else (1/2))
hence eps-le-e2: eps \leqe/2 by auto
have epspos: eps > 0 using e2pos eps-def by simp
{ assume ass1:e/2< 1/2
hence eps = e/2 using eps-def by auto
hence eps< 1/2 using ass1 by simp
hence eps \leq 1/2 by simp
}
hence case1:(e/2<1/2) \longrightarroweps \leq 1/2 by auto
have }\neg(e/2<1/2)\longrightarroweps=1/2 using eps-def by sim

```
```

 hence case2: ᄀ(e/2<1/2)\longrightarroweps \leq 1/2 by auto
 hence (eps \leq (1/2)) using case1 case2 by auto
 hence eps-lt-1: eps < 1 using le-less-trans by auto
 hence sqr eps < eps using epspos lemMultPosLT1 by auto
 hence epssqu: sqr eps < 1 using eps-lt-1 le-less-trans by auto
 then obtain d}\mathrm{ where dprops: }(d>0)\wedge(\forally\inwl
 ((y within d of origin)}\wedge(y\not=\mathrm{ origin))
 \longrightarrow
 (\existsr.((onLine r (lineJoining origin y)) ^(r within eps of
 p))))
) using epspos ballprops by auto
{ fix y ny assume ny: ny = norm y
{ assume y: (y within d of origin)}\wedge(y\not=\mathrm{ origin) }\wedge(y\inwl
hence }\existsr.((\mathrm{ onLine r (lineJoining origin y))}\wedge(r\mathrm{ within eps
of p))
using dprops by blast
then obtain r
where r:(onLine r (lineJoining origin y)) ^(r within eps
of p)
by auto
hence }\exists\alpha.r=(\alpha\otimesy)\mathrm{ by simp
then obtain \alpha where alpha: r=(\alpha\otimesy) by auto
{ assume \alpha = 0
hence rnull: r= origin using alpha by simp
hence one: sep2 r p = 1 using assms(2) by auto
have sep2 r p<sqr eps using r by auto
hence not-one: sep2 r p<1 using epssqu by auto
hence False using one not-one by auto
}
hence anz: \alpha\not=0 by auto
define np where np=norm p
hence np:np=1 using assms(2) lemSqrt1 by auto
define npr where npr = norm (}p\ominusr\mathrm{)
hence sqr npr = sep2 p r using local.lemNormSqrIsNorm2
by presburger
hence sqr npr < sqr eps using r lemSep2Symmetry by auto
hence sqr npr < sqr eps }\wedge\mathrm{ eps > 0 using epspos by auto
hence npr: npr < eps
using lemSqrOrderedStrict[of eps npr] by auto
hence npr1: 1 - npr > 1 - eps

```
using diff-strict-left-mono by simp
have npr-lt-e2: npr \(<e / 2\) using npr eps-le-e2 le-less-trans by auto
define \(n r\) where \(n r=\) norm \(r\)
hence \(s q r n r=\) norm2 \((\alpha \otimes y)\) using alpha lemNormSqrIsNorm2 by presburger
hence \(n r\) : sqr \(n r=(\) sqr \(\alpha) *\) norm2 \(y\) using lemNorm2OfScaled by auto
have axTriangleInequality ( \(p \ominus r\) ) \(r\) using AxTriangleInequality by blast
hence ( \(n p \leq n p r+n r\) ) using \(n p\)-def npr-def \(n r\)-def by simp hence \(n r \geq 1-n p r\) using \(n p\) lemLEPlus by auto
hence triangle1: nr > 1 - eps using npr1 le-less-trans by simp
define \(n r p\) where \(n r p=n o r m(r \ominus p)\)
hence nrppr: nrp \(=n p r\) using npr-def nrp-def lemSep2Symmetry \([o f \quad p r]\) by auto
have axTriangleInequality ( \(r \ominus p\) ) \(p\) using AxTriangleInequality by blast
hence \((n r \leq n p r+1)\)
using np-def npr-def \(n r\)-def \(n p\) nrp-def \(n r p p r\) by auto
hence triangle2: \(n r<1+e p s\)
using npr add-strict-right-mono le-less-trans add-commute
by \(\operatorname{simp}\)
have range: \((1-e p s)<n r<(1+e p s)\) using triangle1 triangle2 by simp
have \((n y=0) \longrightarrow(y=\) origin \()\)
using ny lemNormSqrIsNorm2[of y] lemNullImpliesOrigin by auto
hence \(n y n z: n y \neq 0\) using \(y\) by auto
have norm \(((1 / n y) \otimes y)=((a b s(1 / n y)) * n y)\) using \(n y\) lemNormOfScaled[ of \(1 / n y y\) ] by auto
hence nyunit: norm \(((1 / n y) \otimes y)=1\) using y nynz ny lemNormNonNegative by auto
have norm \(r=((a b s \alpha) * n y)\) using ny alpha lemNormOfScaled \([\) of \(\alpha y]\) by auto
hence \(n r\)-is-any: \(n r=((\) abs \(\alpha) * n y)\) using \(n r\)-def lemSqrt by auto
hence \((1-e p s)<((a b s \alpha) * n y)<(1+e p s)\) using range by auto
hence star: abs \((((a b s \alpha) * n y)-1)<e p s\)
using epspos lemAbsRange[of eps \(1((\) abs \(\alpha) * n y)]\) by auto
have cases: \((\alpha>0) \vee(\alpha<0)\) using anz by auto
```

 { assume apos: \alpha>0
 hence abs \alpha = 人 by auto
 hence case1range: abs ((\alpha*ny) - 1) < eps using star by
 auto
define w1 where w1 = ((\alpha\otimesy)\ominus ((1/ny)\otimesy))
define nw1 where nw1 = norm w1
have}(\alpha\otimesy)=((1/ny)\otimes((\alpha*ny)\otimesy)
using nynz lemScaleAssoc by auto
hence w1 = (((1/ny)\otimes ((\alpha*ny)\otimesy))\ominus((1/ny)\otimesy))
using w1-def by simp
hence w1 = ((1/ny)\otimes (((\alpha*ny)\otimesy)\ominusy))
using lemScaleDistribDiff[of 1/ny (\alpha*ny)\otimesy y] by force
hence w1 = (((\alpha*ny) - 1)\otimes ((1/ny)\otimesy))
using lemScaleLeftDiffDistrib lemScaleCommute by auto
hence 2: norm w1 = (abs ((\alpha*ny) - 1))
using lemNormOfScaled[of ((\alpha*ny) - 1)(1/ny)\otimesy]
nyunit by auto
{
define pp where pp: pp = (p\ominus(\alpha\otimesy))
define qq where qq:qq = ((\alpha\otimesy)\ominus ((1/ny)\otimesy))
have axTriangleInequality pp qq using AxTriangleInequality
by simp
hence norm (}pp\oplusqq)\leqnorm pp+norm qq by aut
hence norm ((p\ominus ((1/ny)\otimesy))) \leq norm pp + norm qq
using lemSumDiffCancelMiddle pp qq by simp
hence norm ((p\ominus ((1/ny)\otimesy))) \leqnorm (p\ominusr) + norm w1
using alpha w1-def pp qq by auto
}
hence 3: norm ((p\ominus ((1/ny)\otimesy))) \leq npr + nw1
using nw1-def npr-def by force
define nminus where nminus = norm ((p\ominus ((1/ny)\otimesy)))
hence almost1: nminus }\leqnpr+nw1 using 3 nminus-def
by auto

```
have abs \(((n y * \alpha)-1) \geq 0\) by auto
hence \(n w 1=a b s((\alpha * n y)-1)\) using nw1-def 2 lemSqrt
by blast
hence \(n w 1<e p s\) using case1range le-less-trans by auto
hence \(n w 1<e / 2\) using eps-le-e2 le-less-trans by auto
hence nminus \(<(e / 2+e / 2)\)
using almost1 npr-lt-e2 add-strict-mono le-less-trans by simp
hence nminus \(<e\) using lemSumOfTwoHalves by simp
hence sqr nminus < sqr e
using lemSqrMonoStrict[of nminus e] nminus-def lemNormNonNegative[of \(((p \ominus((1 / n y) \otimes y)))]\)
by auto
hence norm2 \(((p \ominus((1 / n y) \otimes y)))<\operatorname{sqr} e\) using lemNormSqrIsNorm2[of \(((p \ominus((1 / n y) \otimes y)))]\) nminus-def by auto
hence \(p\) within \(e\) of \(((1 / n y) \otimes y)\) by auto
hence \(((1 / n y) \otimes y)\) within \(e\) of \(p\)
using lemSep2Symmetry \([\) of \(((1 / n y) \otimes y)]\) by auto \}
hence case \(1:(\alpha>0) \longrightarrow(((1 / n y) \otimes y)\) within \(e\) of \(p)\) by blast
\{ assume aneg: \(\alpha<0\)
hence abs \(\alpha=-\alpha\) by auto
hence abs \((-(\alpha * n y)-1)<e p s\) using star by auto
hence case2range: abs \((\alpha * n y+1)<e p s\) using lemAbsNegNeg[of \(\alpha * n y\) 1] by auto
define \(w 2\) where \(w 2=((\alpha \otimes y) \oplus((1 / n y) \otimes y))\)
define \(n w 2\) where \(n w 2=\) norm \(w 2\)
have \((\alpha \otimes y)=((1 / n y) \otimes((\alpha * n y) \otimes y))\) using nynz lemScaleAssoc by auto
hence \(w 2=(((1 / n y) \otimes((\alpha * n y) \otimes y)) \oplus((1 / n y) \otimes y))\) using w2-def by simp
also have \(\ldots=((1 / n y) \otimes(((\alpha * n y) \otimes y) \oplus y))\) using lemScaleDistribSum[of \(1 / n y(\alpha * n y) \otimes y y]\) by simp
also have \(\ldots=(((\alpha * n y)+1) \otimes((1 / n y) \otimes y))\)
using lemScaleLeftDiffDistrib[where \(b=-1\) ] lemScaleCom-
mute by auto
finally have 4 : norm \(w 2=(\) abs \(((\alpha * n y)+1))\) using lemNormOfScaled[of \(((\alpha * n y)+1)(1 / n y) \otimes y]\) nyunit by auto
```

 {
 define pp where pp: pp = (p\ominus(\alpha\otimesy))
 define qq where qq: qq = ((\alpha\otimesy)\oplus((1/ny)\otimesy))
 have axTriangleInequality pp qq using AxTriangleInequality
 by simp
hence norm (pp\oplusqq)\leqnorm pp + norm qq by auto
hence norm ((}p\oplus((1/ny)\otimesy)))\leqnorm pp + norm qq
using lemDiffSumCancelMiddle pp qq by force
hence norm ((p\oplus ((1/ny)\otimesy))) \leqnorm (p\ominusr) + norm
w2
using alpha w2-def pp qq by auto
}
hence 5: norm ((p\oplus ((1/ny)\otimesy))) \leqnpr + nw2 using
nw2-def npr-def by auto
define nplus where nplus = norm }((p\oplus((1/ny)\otimesy))
hence almost2: nplus \leqnpr + nw2 using 5 nplus-def by
auto
have abs ((ny*\alpha)-1)\geq0 by auto
hence nw2 = abs ((\alpha*ny)+1) using nw2-def 4 lemSqrt[of
norm2 w2] by auto
hence nw2 < eps using case2range le-less-trans by auto
hence nw2 < e/2 using eps-le-e2 le-less-trans by auto
hence nplus < (e/2 +e/2)
using almost2 npr-lt-e2 add-strict-mono le-less-trans by
simp
hence nplus <e using lemSumOfTwoHalves by simp
hence sqr nplus < sqr e using
lemSqrMonoStrict[of nplus e] nplus-def
lemNormNonNegative[of ((p\oplus ((1/ny)\otimesy)))]
by auto
hence norm2 ((}p\oplus((1/ny)\otimesy)))<sqr
using lemNormSqrIsNorm2[of ((p\oplus((1/ny)\otimesy)))] nplus-def
by auto
hence sep2 p ((-1/ny)\otimesy)< sqr e by simp
hence (((-1/ny)\otimesy) within e of p)
using lemSep2Symmetry[of ((-1/ny)\otimesy)] by auto
}
hence case2: (\alpha<0)\longrightarrow(((-1/ny)\otimesy) within e of p) by
blast

```
```

 hence (((1/ny)\otimesy) within e of p)\vee (((-1/ny)\otimesy) within e
 of p)
using cases case1 by auto
}
hence ((y within d of origin) ^ (y\not= origin) \wedge (y\inwl) ^
(norm y = ny))
\longrightarrow ((((1 / n y) \otimes y) ~ w i t h i n ~ e ~ o f ~ p) \vee (((- 1 / n y) \otimes y) ~ w i t h i n ~ e
of p))
by blast
}
hence }\exists\delta>0.\forallyny.((y\mathrm{ within }\delta\mathrm{ of origin)
\wedge(y\not= origin) ^(y\inwl)\wedge(norm y=ny))
\longrightarrow ((((1 / n y) \otimes y) ~ w i t h i n ~ e ~ o f ~ p) \vee (((- 1 / n y) \otimes y) ~ w i t h i n ~ e
of p))
using dprops by blast
}
hence e>0\longrightarrow
(\exists\delta>0.\forall y ny .((y within \delta of origin) ^ (y\not= origin) ^ (}y
wl)}\wedge(\mathrm{ norm }y=ny)
\longrightarrow ((((1 / n y) \otimes y) ~ w i t h i n ~ e ~ o f ~ p) \vee (((- 1 / n y) \otimes y) ~ w i t h i n ~ e
of p)))
by blast
}
thus ?thesis by blast
qed

```
lemma sublemma3Translation:
assumes onLine \(p l\)
and norm2 \((p \ominus x)=1\)
and tangentLine \(l\) wl \(x\)
shows \(\forall \varepsilon>0 . \exists \delta>0 . \forall y\) nyx .
\(((y\) within \(\delta\) of \(x) \wedge(y \neq x) \wedge(y \in w l) \wedge(\operatorname{norm}(y \ominus x)\)
\(=n y x)\) )
\[
\begin{aligned}
& (((1 / n y x) \otimes(y \ominus x)) \text { within } \varepsilon \text { of }(p \ominus x)) \\
& \vee(((-1 / n y x) \otimes(y \ominus x)) \text { within } \varepsilon \text { of }(p \ominus x))
\end{aligned}
\]
proof -
define pre
where pre: pre \(=(\lambda d\) y nyx. \((y\) within \(d\) of \(x) \wedge(y \neq x) \wedge(y \in\) \(w l) \wedge(\operatorname{norm}(y \ominus x)=n y x))\)
define post
where post: post \(=(\lambda\) e \(y n y x .(((1 / n y x) \otimes(y \ominus x))\) within \(e\) of \((p \ominus x)\) )
\(\vee(((-1 / n y x) \otimes(y \ominus x))\) within \(e\) of \((p \ominus x)))\)
define \(T\) where \(T=m k T r a n s l a t i o n(o r i g i n ~ \ominus x)\)
```

hence transT: translation T using lemMkTrans by blast
have $T: \forall p$. T $p=(p \oplus($ origin $\ominus x))$ using T-def by simp
define p^{\prime} where $p^{\prime}: p^{\prime}=T p$
define l^{\prime} where $l^{\prime}: l^{\prime}=(\operatorname{applyToSet}($ asFunc $T) l)$
define x^{\prime} where $x^{\prime}: x^{\prime}=T x$
define $w l^{\prime}$ where $w l^{\prime}: w l^{\prime}=($ applyToSet (asFunc $\left.T) w l\right)$
have 1: onLine $p^{\prime} l^{\prime}$
using assms(1) T p ${ }^{\prime} l^{\prime}$ lemOnLineTranslation[of T lp]
by blast
have $x^{\prime} 0: x^{\prime}=$ origin using $T x^{\prime}$ add-diff-eq by auto
hence sep $2 p^{\prime}$ origin $=1$
using $T \operatorname{assms}(2) p^{\prime}$ lemTranslationPreservesSep2 by simp
hence 2: norm2 $p^{\prime}=1$ by auto
have tangentLine (applyToSet (asFunc T) l)
(applyToSet (asFunc T) wl) ($T x$)
using transT assms(3) lemTangentLineTranslation[of $T x$ wl $l]$
by auto
hence 3: tangentLine $l^{\prime} w l^{\prime}$ origin using $l^{\prime} w l^{\prime} x^{\prime} x^{\prime} 0$ by auto
hence conc: $\forall \varepsilon>0 . \exists \delta>0 . \forall y^{\prime} n y^{\prime} .($
$\left(\left(y^{\prime}\right.\right.$ within δ of origin $) \wedge\left(y^{\prime} \neq\right.$ origin $) \wedge\left(y^{\prime} \in\right.$ wl $) \wedge\left(\right.$ norm y^{\prime}
$\left.=n y^{\prime}\right)$)
\longrightarrow
$\left(\left(\left(\left(1 / n y^{\prime}\right) \otimes y^{\prime}\right)\right.\right.$ within ε of $\left.p^{\prime}\right) \vee\left(\left(\left(-1 / n y^{\prime}\right) \otimes y^{\prime}\right)\right.$ within ε of
$\left.p^{\prime}\right)$)
using 123 sublemma3[of $l^{\prime} p$]
by auto
$\{$ fix e
assume epos: e>0
then obtain d where $d:(d>0) \wedge\left(\forall y^{\prime} n y^{\prime} .(\right.$
$\left(\left(y^{\prime}\right.\right.$ within d of origin $) \wedge\left(y^{\prime} \neq\right.$ origin $) \wedge\left(y^{\prime} \in\right.$ wl $) \wedge\left(\right.$ norm y^{\prime}
$\left.\left.=n y^{\prime}\right)\right)$
\longrightarrow
$\left(\left(\left(\left(1 / n y^{\prime}\right) \otimes y^{\prime}\right)\right.\right.$ within e of $\left.p^{\prime}\right) \vee\left(\left(\left(-1 / n y^{\prime}\right) \otimes y^{\prime}\right)\right.$ within e of
$\left.p^{\prime}\right)$))
using conc by blast
\{ fix $y n y x$
assume hyp: pre d y nyx
define y^{\prime} where $y^{\prime}: y^{\prime}=T y$
hence rtp1: y^{\prime} within d of origin
using transT hyp $x^{\prime} x^{\prime} 0$ lemBallTranslation pre by auto

```
```

 have \(p^{\prime} p x\) : \(p^{\prime}=(p \ominus x)\) using \(p^{\prime} T\) by simp
 have \(y^{\prime} y x\) : \(y^{\prime}=(y \ominus x)\) using \(y^{\prime} T\) by simp
 hence nyx: norm \(y^{\prime}=n y x\) using hyp pre by force
 \(\left\{\right.\) have \(\left(T x=x^{\prime}\right) \wedge\left(T y=y^{\prime}\right) \wedge(\) injective \((\) asFunc \(T))\)
 using \(x^{\prime} y^{\prime}\) lemTranslationInjective[of \(T\)] transT by blast
 moreover have \(x \neq y\) using hyp pre by auto
 ultimately have \(y^{\prime} \neq x\) by auto
 \}
 hence rtp2: \(y^{\prime} \neq\) origin using \(x^{\prime} 0\) by \(\operatorname{simp}\)
 have \(\operatorname{rtp} 3: y^{\prime} \in w l^{\prime}\) using hyp pre \(y^{\prime} w l^{\prime}\) by force
 hence \(\left(y^{\prime}\right.\) within \(d\) of origin \() \wedge\left(y^{\prime} \neq\right.\) origin \() \wedge\left(y^{\prime} \in w l^{\prime}\right) \wedge\)
 (norm $\left.y^{\prime}=n y x\right)$
using rtp1 rtp2 rtp3 nyx by blast
hence $\left(\left((1 / n y x) \otimes y^{\prime}\right)\right.$ within e of $\left.p^{\prime}\right) \vee\left(\left((-1 / n y x) \otimes y^{\prime}\right)\right.$ within e
of p^{\prime})
using d by auto
hence post e y nyx using post $y^{\prime} y x p^{\prime} p x$ by auto
\}
hence \forall y nyx . pre d y nyx \longrightarrow post e y nyx by auto
hence $\exists \delta>0 . \forall$ y nyx. pre $\delta y n y x \longrightarrow$ post e $y n y x$ using d by
auto
\}
hence $\forall \varepsilon>0 . \exists \delta>0 . \forall y n y x$. pre $\delta y n y x \longrightarrow$ post $\varepsilon y n y x$ by
auto
thus ?thesis using post pre by blast
qed

```
end
end

\section*{16 Vectors}

In this theory we define dot-products, and explain what we mean by timelike, lightlike (null), causal and spacelike vectors.
```

theory Vectors
imports Norms
begin
class Vectors = Norms
begin

```
```

fun dot :: 'a Point }=>\mp@subsup{}{}{\prime}a\mathrm{ Point }=>\mp@subsup{}{}{\prime}a(-\odot -
where dot u v = (tval u)*(tval v) + (xval u)*(xval v) +
(yval u)*(yval v) +(zval u)*(zval v)

```
fun sdot :: 'a Space \(\Rightarrow\) 'a Space \(\Rightarrow\) ' \(a(-\odot s-)\)
    where sdot \(u v=(\) svalx \(u) *(\) svalx \(v)+(\) svaly \(u) *(\) svaly \(v)+(\) svalz
\(u) *(\) svalz \(v)\)
fun mdot :: 'a Point \(\Rightarrow{ }^{\prime} a\) Point \(\Rightarrow{ }^{\prime} a(-\odot m-)\)
    where mdot \(u v=(\) tval \(u) *(\) tval \(v)-((s C o m p o n e n t u) \odot s(s C o m p o n e n t\)
\(v)\) )
abbreviation timelike :: 'a Point \(\Rightarrow\) bool where timelike \(p \equiv\) mNorm2 \(p>0\)
abbreviation lightlike :: ' \(a\) Point \(\Rightarrow\) bool where lightlike \(p \equiv(p \neq\) origin \(\wedge m\) Norm2 \(p=0)\)
abbreviation spacelike :: 'a Point \(\Rightarrow\) bool where spacelike \(p \equiv\) mNorm2 \(p<0\)
abbreviation causal \(::\) 'a Point \(\Rightarrow\) bool where causal \(p \equiv\) timelike \(p \vee\) lightlike \(p\)
abbreviation orthog :: 'a Point \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool where orthog \(p q \equiv(p \odot q)=0\)
abbreviation orthogs :: 'a Space \(\Rightarrow\) 'a Space \(\Rightarrow\) bool where orthogs \(p q \equiv(p \odot s q)=0\)
abbreviation orthogm :: 'a Point \(\Rightarrow\) ' \(a\) Point \(\Rightarrow\) bool
where orthogm p \(q \equiv(p \odot m q)=0\)
```

lemma lemDotDecomposition:
shows $(u \odot v)=($ tval $u *$ tval $v)+((s$ Component $u) \odot s(s$ Component
$v)$)
by (simp add: add-commute local.add.left-commute)
lemma lemDotCommute: $\operatorname{dot} u v=\operatorname{dot} v u$
by (simp add: mult-commute)
lemma lemDotScaleLeft: dot $(a \otimes u) v=a *(\operatorname{dot} u v)$

```
using mult-assoc distrib-left by force
lemma lemDotScaleRight: \(\operatorname{dot} u(a \otimes v)=a *(\operatorname{dot} u v)\)
using mult-assoc mult-commute distrib-left by auto
lemma lemDotSumLeft: dot \((u \oplus v) w=(\operatorname{dot} u w)+(\operatorname{dot} v w)\)
using distrib-right add-assoc add-commute by force
lemma lemDotSumRight: \(\operatorname{dot} u(v \oplus w)=(\operatorname{dot} u v)+(\operatorname{dot} u w)\)
using distrib-left add-assoc add-commute by auto
lemma lemDotDiffLeft: \(\operatorname{dot}(u \ominus v) w=(\operatorname{dot} u w)-(\operatorname{dot} v w)\) by (simp add: field-simps)
lemma lemDotDiffRight: dot \(u(v \ominus w)=(\operatorname{dot} u v)-(\operatorname{dot} u w)\) by (simp add: field-simps)
lemma lemNorm2OfSum: norm2 \((u \oplus v)=\) norm2 \(u+2 *(u \odot v)\)
+ norm2 \(v\)
proof -
have norm2 \((u \oplus v)=((u \oplus v) \odot(u \oplus v))\) by auto
also have \(\ldots=(u \odot(u \oplus v))+(v \odot(u \oplus v))\)
using lemDotSumLeft \([\) of \(u v(u \oplus v)\) ] by auto
also have \(\ldots=(u \odot u)+((u \odot v)+(v \odot u))+(v \odot v)\)
using lemDotSumRight[of \(u \quad u \quad v]\) lemDotSumRight \(\left[\begin{array}{ll}\text { of } v & u \\ v\end{array}\right]\) add-assoc by auto
finally show ?thesis using mult-2 lemDotCommute[of \(u v\) ] by auto
qed
lemma lemSDotCommute: sdot \(u v=\) sdot \(v u\)
by (simp add: mult-commute)
lemma lemSDotScaleLeft: sdot \((a \otimes s u) v=a *(s d o t u v)\)
using mult-assoc distrib-left by force
lemma lemSDotScaleRight: sdot \(u(a \otimes s v)=a *(s d o t u v)\)
using mult-assoc mult-commute distrib-left by auto
lemma lemSDotSumLeft: sdot \((u \oplus s v) w=(\operatorname{sdot} u w)+(s d o t v w)\) using distrib-right add-assoc add-commute by force
lemma lemSDotSumRight: sdot \(u(v \oplus s w)=(\operatorname{sdot} u v)+(\operatorname{sdot} u w)\) using distrib-left add-assoc add-commute by auto
lemma lemSDotDiffLeft: sdot \((u \ominus s v) w=(\operatorname{sdot} u w)-(\operatorname{sdot} v w)\) by (simp add: field-simps)
```

lemma lemSDotDiffRight: sdot u (v\ominuss w) =(sdot u v) - (sdot u w)
by (simp add: field-simps)
lemma lemMDotDiffLeft: mdot (u\ominusv) w=(mdot u w) - (mdot v w)
by (simp add: field-simps)
lemma lemMDotSumLeft: mdot (u\oplusv)w=(mdot u w)+(mdot v
w)
proof -
have mdot (u\oplusv)w=(tval (u\oplusv))*(tval w) - ((sComponent }(u\oplusv))\odots(sComponen
w))
by auto
also have ... = (tval u*tval w) +(tval v*tval w)
- (((sComponent u)\odots(sComponent w)) +
((sComponent v)\odots(sComponent w)))
using distrib lemSDotSumLeft[of (sComponent u) (sComponent v)
(sComponent w)]
by auto
also have ... = ((tval u*tval w) - ((sComponent u)\odots(sComponent
w)))
+((tval v*tval w) - ((sComponent v)\odots(sComponent
w)))
using add-diff-eq add-commute diff-diff-add by auto
finally show ?thesis by simp
qed
lemma lemMDotScaleLeft: mdot (a\otimesu)v=a*(mdot uv)
proof -
have mdot (a\otimesu)v=a*(tval u*tval v) - a*((sComponent u)\odots(sComponent
v))
using lemSDotScaleLeft[of a sComponent u sComponent v]
by (simp add: mult-assoc)
thus ?thesis by (simp add: local.right-diff-distrib')
qed
lemma lemMDotScaleRight: mdot u (a\otimesv)=a*(mdot uv)
proof -
have mdot u}(a\otimesv)=a*(tval u*tval v) - a*((sComponent u)\odots(sComponent
v))
using lemSDotScaleRight[of sComponent u a sComponent v]
by (simp add: local.mult.left-commute)
thus ?thesis by (simp add: local.right-diff-distrib')
qed

```
lemma lemSNorm2OfSum: sNorm2 \((u \oplus s v)=s N o r m 2 u+2 *(u \odot s\) \(v)+\) sNorm2 \(v\)
proof -
    have \(s\) Norm2 \((u \oplus s v)=((u \oplus s v) \odot s(u \oplus s v))\) by auto
    also have \(\ldots=(u \odot s(u \oplus s v))+(v \odot s(u \oplus s v))\)
        using lemSDotSumLeft \([\) of \(u v(u \oplus s v)\) ] by auto
    also have \(\ldots=(u \odot s u)+((u \odot s v)+(v \odot s u))+(v \odot s v)\)
        using lemSDotSumRight[of \(u \quad u \quad v]\) lemSDotSumRight[of \(v u v\) ]
            add-assoc by auto
    finally show ?thesis using mult-2 lemSDotCommute[ of \(u v\) ]
        by auto
qed
lemma lemSNormNonNeg:
    shows \(s\) Norm \(v \geq 0\)
proof -
    have hasUniqueRoot (sNorm2 v) using AxEField lemSqrt by auto
    thus ?thesis using the1-equality[of isNonNegRoot (sNorm2 \(v\) )] by
blast
qed
lemma lemMNorm2OfSum: mNorm2 \((u \oplus v)=m\) Norm2 \(u+2 *(u\)
\(\odot m v)+m N o r m 2 v\)
proof -
    define \(s u\) where \(s u\) : \(s u=s\) Component \(u\)
    define \(s v\) where \(s v: s v=s\) Component \(v\)
    have mNorm2 \((u \oplus v)=((u \oplus v) \odot m(u \oplus v))\) by auto
    also have \(\ldots=(\operatorname{sqr}(\) tval \(u)+2 *(\) tval \(u) *(\) tval \(v)+\operatorname{sqr}(\) tval \(v))\)
- sNorm2 \((s u \oplus s s v)\)
    using lemSqrSum su sv by auto
    also have \(\ldots=(\operatorname{sqr}(\) tval \(u)+2 *(\) tval \(u) *(\) tval \(v)+s q r(\) tval v) \()\)
                        \(-(s N o r m 2 s u+2 *(s u \odot s s v)+s N o r m 2 s v)\)
    using lemSNorm2OfSum by auto
    also have \(\ldots=(\) sqr \((\) tval \(u)-\) sNorm2 su \()\)
                                    \(+(2 *(\) tval \(u) *(\) tval \(v)-2 *(s u \odot s s v))\)
                        \(+(s q r(\) tval \(v)-s N o r m 2 s v)\)
            using add-commute add-assoc add-diff-eq diff-add-eq diff-diff-add
by \(\operatorname{simp}\)
    finally show ?thesis using su sv right-diff-distrib' mult-assoc by
auto
qed
```

lemma lemMNorm2OfDiff: mNorm2 (}u\ominusv)=mNorm2 u - 2*(
\odotmv) + mNorm2v
proof -
define vm where vm: vm = ((-1)\otimesv)
hence mNorm2 (}u\ominusv)=mNorm2 (u\oplusvm) by aut
hence mNorm2 (u\ominusv)=mNorm2 }u+2*(u\odotmvm)+mNorm
vm
using lemMNorm2OfSum by auto
moreover have (u\odotmvm) = -(u\odotmv)
using lemMDotScaleRight[of u(-1)v] vm by auto
moreover have mNorm2 vm = mNorm2 v using vm lemMNorm2Of-
Scaled by auto
ultimately show ?thesis
by (metis local.diff-conv-add-uminus local.mult-minus-right)
qed
lemma lemMNorm2Decomposition: mNorm2 p = (p\odotmp)
by auto
lemma lemMDecomposition:
assumes }(u\odotmv)\not=
and mNorm2 v\not=0
and }\quada=(u\odotmv)/(mNorm2 v
and }\quadup=(a\otimesv
and }\quaduo=(u\ominusup
shows }u=(up\oplusuo)\wedge parallel up v\wedge orthogm uo v^(up\odotmv
=(u\odotmv)
proof -
have anz: a\not=0 using assms by auto
have psum: }u=(up\oplusuo)\mathrm{ using assms add-diff-eq by auto
moreover have parallel upv using assms(4) anz by auto
moreover have ppdot: (up\odotmv)=(u\odotmv)
proof -
have (up\odotmv)=a*(v\odotmv) using assms lemMDotScaleLeft[of
avv] by auto
thus ?thesis using assms by auto
qed
moreover have orthogm uo v
proof -
have }(uo\odotmv)=(u\odotmv)-(up\odotmv)\mathrm{ using lemMDotSumLeft
psum by force
thus ?thesis using ppdot by auto
qed
ultimately show ?thesis by blast
qed

```
end
end

\section*{17 CauchySchwarz}

This theory defines and proves the Cauchy-Schwarz inequality for both spatial and spacetime vectors.
```

theory CauchySchwarz
imports Vectors
begin

```

We essentially prove the same result twice, once for 3-dimensional spatial points, and once for 4-dimensional spacetime points. While this is clearly inefficient, it keeps things straightforward for nonIsabelle experts.
class CauchySchwarz \(=\) Vectors
begin
```

lemma lemCauchySchwarz4:
shows abs $($ dot $u v) \leq($ norm $u) *($ norm $v)$
proof -
have vorigin: $v=$ origin $\longrightarrow a b s($ dot $u v) \leq($ norm $u) *($ norm $v)$
proof
\{ assume $v=$ origin
hence abs (dot uv)=0 by simp
also have $\ldots \leq($ norm $u) *($ norm $v)$ using lemNormNonNegative
by simp
finally have abs (dot $u v) \leq($ norm $u) *($ norm $v)$ by auto
\}
thus ?thesis by blast
qed
define a where $a=\operatorname{dot} v v$
define b where $b=2 * \operatorname{dot} u v$
define c where $c=\operatorname{dot} u u$
\{ fix $x::^{\prime} a$
define w where $w=(u \oplus(x \otimes v))$
have $w w:(\operatorname{dot} w w) \geq 0$ by simp
define $x v$ where $x v: x v=(x \otimes v)$
define middle2 where middle $2=\operatorname{dot} u x v+\operatorname{dot} x v u$

```
have dot \(x v u=\) dot \(u x v\) using lemDotCommute by blast
hence middle \(2=\operatorname{dot} u x v+\operatorname{dot} u x v\) using middle2-def by simp also have \(\ldots=2 *\) dot \(u x v\) using mult-2 by simp
finally have bterm: middle2 \(=b * x\)
using lemDotScaleRight mult-assoc mult-commute b-def xv by auto
have vxv: (dot \(v x v)=(x * \operatorname{dot} v v)\) using \(x v\) lemDotScaleRight by blast
have dot \(x v x v=x *(\operatorname{dot} v x v)\) using lemDotScaleLeft \(x v\) by blast also have \(\ldots=(\operatorname{sqr} x) *(\operatorname{dot} v v)\) using vxv mult-assoc by simp
finally have aterm: dot \(x v x v=a *(s q r x)\) using mult-commute \(a-d e f\) by simp
have \(u w\) : \(\operatorname{dot} u w=\operatorname{dot} u u+\operatorname{dot} u x v\) using lemDotSumRight \(w\)-def \(x v\) by blast
have \(v w\) : dot \(x v w=d o t x v u+d o t x v x v\) using lemDotSumRight \(w\)-def \(x v\) by blast
have \(\operatorname{dot} w w=\operatorname{dot} u w+\operatorname{dot} x v w\) using lemDotSumLeft \(w\)-def \(x v\) by blast
also have \(\ldots=(\operatorname{dot} u u+\operatorname{dot} u x v)+(\operatorname{dot} x v u+d o t x v x v)\)
using \(u w v w\) by \(\operatorname{simp}\)
also have \(\ldots=(\operatorname{dot} u u)+(\operatorname{dot} u x v+\operatorname{dot} x v u)+\operatorname{dot} x v x v\) using add-assoc by force
also have \(\ldots=(\operatorname{dot} u u)+\) middle2 + dot \(x v x v\)
using middle2-def by simp
also have \(\ldots=c+b * x+a *(s q r x)\) using \(c\)-def bterm aterm by force
finally have dot \(w w=a *(s q r x)+b * x+c\) using add-commute add-assoc by auto
hence \(a * \operatorname{sqr}(x)+b * x+c \geq 0\) using \(w w\) by simp
\}
hence quadratic: \(\forall x . a * s q r(x)+b * x+c \geq 0\) by auto
\{ assume vnot0: \(v \neq\) origin
hence \(a>0\) using \(a\)-def lemNullImpliesOrigin \([o f ~ v]\)
by (metis local.AxEField local.not-less local.not-less-iff-gr-or-eq local.not-sum-squares-lt-zero dot.simps)
hence \((s q r b) \leq 4 * a * c\) using lemQuadraticGEZero quadratic by auto
hence \((s q r b) \leq 4 *(\operatorname{dot} v v) *(\operatorname{dot} u u)\) using \(a\)-def \(c\)-def by auto
hence sqrle: \((\) sqr \((a b s b)) \leq 4 *(\) dot \(v v) *(\) dot \(u u)\) by auto
define \(n v\) where \(n v: n v=n o r m v\)
define \(n u\) where \(n u: n u=\) norm \(u\)
have nvpos: \(n v \geq 0\) using nv lemNormNonNegative by auto have nupos: \(n u \geq 0\) using \(n u\) lemNormNonNegative by auto hence \(n v n u: 2 * n v * n u \geq 0\) using nvpos by auto
have \(n 2 v\) : norm2 \(v=\) sqr \(n v\) using AxEField nv nvpos lemNormSqrIsNorm2 by presburger
have n2u: norm2 \(u=\) sqr nu using AxEField nu nupos lemNormSqrIsNorm2 by presburger
have \(4 *(\) dot \(v \quad v) *(\) dot \(u \quad u)=4 *(\) norm2 \(v) *(\) norm2 \(u)\) by auto also have \(\ldots=(s q r\) 2) \()(s q r n v) *(s q r n u)\) using \(n 2 u n 2 v\) by auto also have \(\ldots=(\operatorname{sqr}(2 * n v)) *(\) sqr \(n u)\) using lemSqrMult[of 2 \(n v\) ] by auto
also have \(\ldots=\operatorname{sqr}(2 * n v * n u)\) using lemSqrMult \([o f 2 * n v n u]\) by auto
finally have \((s q r(a b s b)) \leq s q r(2 * n v * n u)\) using sqrle by auto
hence bnvnu: abs \(b \leq 2 * n v * n u\)
using nu nv nvnu lemSqrOrdered[of \(2 * n v * n u\) ]
by auto
have pos2: \(0<2\) by \(\operatorname{simp}\)
have \(b=2 *\) dot \(u v\) using \(b\)-def by auto
hence \(a b s b=2 * a b s(\operatorname{dot} u v)\) using abs-mult by auto
hence \(2 * a b s(\) dot \(u v) \leq 2 *(n v * n u)\) using bnvnu mult-assoc by auto
hence \(2 * a b s(\) dot \(u v) \leq 2 *(n u * n v)\) using mult-commute by simp
hence \(a b s(\operatorname{dot} u v) \leq(n u * n v)\) using mult-le-cancel-left[of 2] pos2 by blast
hence ?thesis using nu nv by auto
\}
hence \((v \neq\) origin \() \longrightarrow\) ?thesis by auto
thus ?thesis using vorigin by auto
qed
lemma lemCauchySchwarzSqr4:
shows \(\operatorname{sqr}(\) dot \(u v) \leq(\) norm2 \(u) *(\) norm2 \(v)\)
proof -
have 1: abs( \(\operatorname{dot} u v) \geq 0\) by \(\operatorname{simp}\)
have \(\operatorname{sqr}(\operatorname{dot} u v)=\operatorname{sqr}(a b s(\operatorname{dot} u v))\) by \(\operatorname{simp}\)
also have \(\ldots \leq \operatorname{sqr}((\) norm \(u) *(\) norm \(v))\) using 1 lemCauchySchwarz4
lemSqrMono by blast
also have \(\ldots=\operatorname{sqr}(\) norm \(u) * \operatorname{sqr}(\) norm \(v)\) using lemSqrMult by auto
also have \(\ldots=\) norm2 \(u *\) norm2 \(v\)
using lemSquareOfSqrt lemSqrt AxEField lemNormSqrIsNorm2
by force

\section*{finally show ?thesis by simp qed}
```

lemma lemCauchySchwarz:
shows abs $($ sdot $u v) \leq($ sNorm $u) *(s N o r m v)$
proof -
have vorigin: $v=s$ Origin $\longrightarrow a b s($ sdot $u v) \leq(s N o r m u) *(s N o r m$
$v)$
proof -
\{ assume $v=$ sOrigin
hence abs (sdot $u v)=0$ by simp
also have $\ldots \leq(s N o r m ~ u) *(s N o r m v)$ using lemSNormNonNeg
by simp
finally have abs $($ sdot $u v) \leq(s N o r m ~ u) *(s N o r m v)$ by auto
\}
thus ?thesis by blast
qed
define a where $a=$ sdot $v v$
define b where $b=2 *$ sdot $u v$
define c where $c=\operatorname{sdot} u u$
\{ fix $x::^{\prime} a$
define w where $w=(u \oplus s(x \otimes s v))$
have $w w$: $(s d o t w w) \geq 0$ by simp
define $x v$ where $x v: x v=(x \otimes s v)$
define middle2 where middle2 $=$ sdot $u x v+s d o t x v u$

```
    have sdot \(x v u=s d o t u x v\) using lemSDotCommute by blast
    hence middle2 \(=\) sdot \(u x v+\) sdot \(u x v\) using middle2-def by
simp
    also have \(\ldots=2\) * sdot \(u\) xv using mult-2 by simp
    finally have bterm: middle2 \(=b * x\)
        using lemSDotScaleRight mult-assoc mult-commute b-def xv by
auto
have vxv: \((\) sdot \(v x v)=(x *\) sdot \(v v)\) using \(x v\) lemSDotScaleRight by blast
have sdot \(x v x v=x *(s d o t v x v)\) using lemSDotScaleLeft \(x v\) by blast
also have \(\ldots=(\) sqr \(x) *(s d o t v v)\) using vxv mult-assoc by simp
finally have aterm: sdot \(x v x v=a *(s q r x)\) using mult-commute \(a\)-def by simp
have uw: sdot \(u w=\) sdot \(u u+\operatorname{sdot} u x v\) using lemSDotSumRight \(w\)-def \(x v\) by blast
have vw: sdot \(x v w=s d o t x v u+s d o t x v x v\) using lemSDotSumRight \(w\)-def \(x v\) by blast
have sdot \(w w=\) sdot \(u w+\) sdot \(x v w\) using lemSDotSumLeft \(w\)-def \(x v\) by blast
also have \(\ldots=(\operatorname{sdot} u u+s \operatorname{dot} u x v)+(\operatorname{sdot} x v u+s d o t x v x v)\) using \(u w v w\) by \(\operatorname{simp}\)
also have \(\ldots=(\operatorname{sdot} u u)+(\operatorname{sdot} u x v+s \operatorname{dot} x v u)+s d o t x v x v\) using add-assoc by force
also have \(\ldots=(\) sdot \(u u)+\) middle2 + sdot \(x v x v\)
using middle2-def by simp
also have \(\ldots=c+b * x+a *(\) sqr \(x)\) using \(c\)-def bterm aterm by force
finally have sdot \(w w=a *(s q r x)+b * x+c\) using add-commute add-assoc by auto
hence \(a * \operatorname{sqr}(x)+b * x+c \geq 0\) using \(w w\) by simp
\}
hence quadratic: \(\forall x . a * \operatorname{sqr}(x)+b * x+c \geq 0\) by auto
\(\{\) assume vnot0: \(v \neq\) sOrigin
hence \(a>0\) using \(a\)-def lemSpatialNullImpliesSpatialOrigin[of \(v\) ]
by (metis local.AxEField local.not-less local.not-less-iff-gr-or-eq local.not-sum-squares-lt-zero sdot.simps)
hence \((\) sqr \(b) \leq 4 * a * c\) using lemQuadraticGEZero quadratic by auto
hence \((s q r b) \leq 4 *(\operatorname{sdot} v v) *(s \operatorname{dot} u u)\) using \(a\)-def \(c\)-def by auto
hence sqrle: \((\operatorname{sqr}(a b s b)) \leq 4 *(s \operatorname{dot} v v) *(\operatorname{sdot} u u)\) by auto
define \(n v\) where \(n v: n v=s\) Norm \(v\)
define \(n u\) where \(n u: n u=s\) Norm \(u\)
have nupos: \(n v \geq 0\) using nv lemSNormNonNeg by auto
have nupos: \(n u \geq 0\) using nu lemSNormNonNeg by auto
hence nvnu: \(2 * n v * n u \geq 0\) using nvpos by auto
have n2v: sNorm2 \(v=s q r\) nv using AxEField lemSquareOfSqrt nv nupos by auto
have n2u: sNorm2 \(u=\) sqr nu using AxEField lemSquareOfSqrt nu nvpos by auto
have \(4 *(\operatorname{sdot} v v) *(\operatorname{sdot} u u)=4 *(s N o r m 2 v) *(s N o r m 2 u)\) by auto
also have \(\ldots=(s q r 2) *(s q r n v) *(s q r n u)\) using \(n 2 u n 2 v\) by auto
also have \(\ldots=(\operatorname{sqr}(2 * n v)) *(s q r n u)\) using lemSqrMult[of 2 \(n v\) ] by auto
also have \(\ldots=\operatorname{sqr}(2 * n v * n u)\) using lemSqrMult[of \(2 * n v n u]\) by auto
finally have \((s q r(a b s b)) \leq s q r(2 * n v * n u)\) using sqrle by auto hence bnvnu: abs \(b \leq 2 * n v * n u\) using nu nv nvnu lemSqrOrdered[of \(2 * n v * n u\) ]
by auto
have pos2: \(0<2\) by simp
have \(b=2 *\) sdot \(u v\) using \(b\)-def by auto
hence \(a b s b=2 * a b s(s d o t ~ u v)\) using abs-mult by auto
hence \(2 * a b s(s d o t u v) \leq 2 *(n v * n u)\) using bnvnu mult-assoc by auto
hence \(2 * a b s(s d o t u v) \leq 2 *(n u * n v)\) using mult-commute by simp
hence \(a b s(s d o t u v) \leq(n u * n v)\) using mult-le-cancel-left[of 2] pos2 by blast
hence ?thesis using nu nv by auto
\}
hence \((v \neq s\) srigin \() \longrightarrow\) ?thesis by auto
thus ?thesis using vorigin by auto
qed
lemma lemCauchySchwarzSqr:
shows \(\operatorname{sqr}(\) sdot \(u v) \leq(\) sNorm2 \(u) *(s N o r m 2 v)\)
proof -
have 1: abs (sdot \(u v) \geq 0\) by \(\operatorname{simp}\)
have \(\operatorname{sqr}(\) sdot \(u v)=\operatorname{sqr}(a b s(\operatorname{sdot} u v))\) by \(\operatorname{simp}\)
also have \(\ldots \leq \operatorname{sqr}((s N o r m u) *(s N o r m v))\) using 1 lemCauchySchwarz lemSqrMono by blast
also have \(\ldots=\operatorname{sqr}(s N o r m u) * \operatorname{sqr}(s N o r m v)\) using lemSqrMult by auto
also have \(\ldots=\) sNorm2 \(u *\) sNorm2 \(v\) using lemSquareOfSqrt lemSqrt AxEField by auto
finally show? ?thesis by simp qed
lemma lemCauchySchwarzEquality:
assumes sqr \((\) sdot \(u v)=(s\) Norm2 \(u) *(s N o r m 2 v)\)
and \(\quad u \neq\) sOrigin \(\wedge v \neq\) sOrigin
shows \(\exists a \neq 0 . u=(a \otimes s v)\)
proof -
define \(a\) where \(a\) : \(a=(\) sdot \(u v) /(s\) Norm2 \(v)\)
have uvnz: sNorm2 \(u \neq 0 \wedge\) sNorm2 \(v \neq 0\) using assms lemSpatialNullImpliesSpatialOrigin by blast
hence sqr (sdot \(u v) \neq 0\) using assms by auto
hence \(a n z: ~ a \neq 0\) using assms uvnz \(a\) by auto
define \(u p v\) where \(u p v: u p v=(a \otimes s v)\)
hence sdotupv: sdot upv \(v=\) sdot \(u v\)
proof -
have sdot upv \(v=a *\) sNorm2 \(v\) using upv lemSDotScaleLeft by auto
thus ?thesis using a uvnz by auto
qed
have sn2upv: sNorm2 upv \(=(\) sqr a \() *\) sNorm2 \(v\) using upv lemSNorm2OfScaled by auto
define uov where uov: uov \(=(u \ominus s u p v)\)
have usum: \(u=(u p v \oplus s\) uov \()\) using uov add-diff-eq by auto
hence sdotuov: sdot uov \(v=0\) using lemSDotSumLeft sdotupv by force
hence pdoto: sdot uov upv \(=0\) using upv lemSDotScaleRight lo-cal.mult-not-zero by metis
have \(\operatorname{sqr}(\operatorname{sdot} u v)=\operatorname{sqr}(s d o t(a \otimes s v) v)\) using sdotupv upv by auto
also have \(\ldots=(s q r a) * \operatorname{sqr}(s N o r m 2 v)\)
using lemSDotScaleLeft \([\) of a \(v \quad v\) ] lemSqrMult \([o f ~ a]\) by auto
finally have lhs: sqr \((s d o t u v)=(s q r a) * s q r(s N o r m 2 v)\) by auto
have sNorm2 \(u=\) sNorm2 upv \(+2 *(u p v \odot s u o v)+s N o r m 2\) uov using lemSNorm2OfSum usum by auto
also have \(\ldots=(s q r a) * s N o r m 2 v+s N o r m 2\) uov using sn2upv pdoto lemSDotCommute by auto
finally have rhs: \((s N o r m 2 u) *(s N o r m 2 v)=(s q r a) * \operatorname{sqr}(s N o r m 2 v)\) \(+(\) sNorm2 uov \() *(s N o r m 2 v)\)
using distrib-right[of (sqr a)*sNorm2 \(v\) sNorm2 uov sNorm2 \(v\) ] mult-assoc by auto
hence \((\) sqr \(a) * \operatorname{sqr}(\) sNorm2 \(v)=(\) sqra \() * \operatorname{sqr}(s N o r m 2 v)+(s N o r m 2\) uov) \(*(\) sNorm2 \(v)\)
using lhs assms(1) by auto
hence (sNorm2 uov) \(*(s N o r m 2 v)=0\) using add-diff-eq by auto
hence \(u o v=\) sOrigin using uvnz lemSpatialNullImpliesSpatialOrigin by auto
hence \(a \neq 0 \wedge u=(a \otimes s v)\) using anz usum upv by auto
thus?thesis by auto
qed
```

lemma lemCauchySchwarzEqualityInUnitSphere:
assumes (sNorm2 }u\leq1)\wedge(sNorm2v\leq1
and sdot uv=1
shows }\quadu=
proof -
have uvnz: }u\not=s\mathrm{ sOrigin }\wedgev\not= sOrigin using assms(2) by aut
{ assume ass: (sNorm2 u<1)\vee (sNorm2 v<1)
have (sNorm2 }u>0)\wedge(sNorm2 v>0
using uvnz lemSpatialNullImpliesSpatialOrigin add-less-zeroD
less-linear not-square-less-zero
by blast
hence (sNorm2 u)*(sNorm2 v)< <
by (metis ass assms(1) local.dual-order.not-eq-order-implies-strict
local.leD
local.less-imp-le local.mult-le-one local.mult-less-cancel-left1
local.mult-less-cancel-right1)
hence False using lemCauchySchwarzSqr assms(2)
by (metis local.dual-order.strict-iff-not local.mult-cancel-right1)
}
hence norms1: sNorm2 u=1 ^sNorm2 v = 1 using assms(1) by
force
hence sqr (sdot uv)=(sNorm2 u)*(sNorm2 v) using assms(2) by
auto
hence \existsa\not=0.u=(a\otimessv) using lemCauchySchwarzEquality
uvnz by blast
then obtain a where a: a\not=0\wedgeu=(a\otimessv) by auto
hence sdot uv=a* sNorm2 v using lemSDotScaleLeft by auto
hence a=1 using assms(2) norms1 by auto
thus ?thesis using a by auto
qed
lemma lemCausalOrthogmToLightlikeImpliesParallel:
assumes causal p
and lightlike q
and orthogm p q
shows parallel p q
proof -
have tpnz: tval p\not=0
proof -
have p\not= origin using assms(1) by auto
have case1: lightlike p\longrightarrow?thesis
by (metis local.diff-add-cancel local.lemNorm2Decomposition
local.lemNullImpliesOrigin local.lemZeroRoot)
have case2: timelike p\longrightarrow? ?thesis
by (metis local.add-less-zeroD local.diff-gt-0-iff-gt
local.lemZeroRoot local.not-square-less-zero)
thus ?thesis using assms(1) case1 by blast
qed

```
have tqnz: tval \(q \neq 0\) using assms(2)
by (metis local.diff-add-cancel local.lemNorm2Decomposition local.lemNullImpliesOrigin local.lemZeroRoot)
define phat where phat: phat \(=((1 /\) tval \(p) \otimes p)\)
define qhat where qhat: qhat \(=((1 /\) tval \(q) \otimes q)\)
have phatcausal: causal phat
proof -
have n2: mNorm2 phat \(=(\) sqr \((1 /\) tval \(p)) * m\) Norm2 \(p\) using \(p h a t\) lemMNorm2OfScaled by blast
have lightlike \(p \longrightarrow\) lightlike phat using phat n2 tpnz by auto
moreover have timelike \(p \longrightarrow\) timelike phat using phat n2 tpnz
by (simp add: local.lemSquaresPositive)
ultimately show ?thesis using assms(1) by blast
qed
have qhatlightlike: lightlike qhat
proof -
have mNorm2 qhat \(=(\operatorname{sqr}(1 /\) tval \(q)) * m\) Norm2 \(q\) using qhat lemMNorm2OfScaled by blast
thus ?thesis using assms(2) tqnz qhat local.divide-eq-0-iff by force
qed
have hatsorthog: orthogm phat qhat
proof -
have \((\) phat \(\odot m\) qhat \()=(1 /\) tval \(p) *(p \odot m\) qhat \()\)
using phat lemMDotScaleLeft[of \(1 /\) tval \(p\) p qhat] by auto
thus ?thesis
using qhat lemMDotScaleRight[of p 1/tval q q] tpnz tqnz assms(3)
by auto
qed
define \(p s\) where \(p s: p s=s\) Component phat
define \(q s\) where \(q s: q s=s\) Component qhat
have \(p\) : phat \(=\) stPoint 1 ps using phat ps tpnz by auto
have \(q\) : qhat \(=s t\) Point 1 qs using qhat qs tqnz by auto
have \(s\) Norm2 \(p s \leq 1\) using \(p\) phatcausal by auto
moreover have sNorm2 \(q s=1\) using \(q\) qhatlightlike by auto
moreover have sdot \(p s q s=1\) using hatsorthog \(p q\) by auto
ultimately have \(p s=q s\)
using lemCauchySchwarzEqualityInUnitSphere by auto
hence phat \(=\) qhat using \(p q\) by auto
hence \(((1 /\) tval \(p) \otimes p)=((1 /\) tval \(q) \otimes q)\) using phat qhat by auto
```

hence $p=((($ tval $p) /($ tval $q)) \otimes q)$
using tpnz tqnz
lemScaleAssoc[of tval p 1/tval pp]
lemScaleAssoc[of tval p 1/tval q q]
by auto
thus ?thesis using tpnz tqnz using local.divide-eq-0-iff
by blast
qed

```
end
end

\section*{18 Matrices}

This theory defines \(4 \times 4\) matrices.
```

theory Matrices
imports Vectors
begin

```
```

record 'a Matrix =
trow :: 'a Point
xrow :: 'a Point
yrow :: 'a Point
zrow :: 'a Point

```
class Matrices \(=\) Vectors
begin
fun applyMatrix :: 'a Matrix \(\Rightarrow{ }^{\prime} a\) Point \(\Rightarrow\) ' \(a\) Point
    where applyMatrix \(m p=0\) tval \(=\operatorname{dot}(\) trow \(m) p\), xval \(=\operatorname{dot}(x\) row
m) \(p\),
                    yval \(=\operatorname{dot}(\) yrow \(m) p, z v a l=\operatorname{dot}(\) zrow \(m) p)\)
fun tcol :: 'a Matrix \(\Rightarrow\) ' \(a\) Point
    where tcol \(m=0\) tval \(=\) tval \((\) trow \(m), x v a l=\) tval \((\) xrow \(m)\),
                        yval \(=\) tval \((\) yrow \(m), z v a l=\) tval \((\) zrow \(m))\)
fun xcol :: 'a Matrix \(\Rightarrow{ }^{\prime} a\) Point
    where \(x\) col \(m=(\) tval \(=x v a l(\) trow \(m), x v a l=x v a l(x r o w ~ m)\),
                        yval \(=x v a l(\) yrow \(m), z v a l=x v a l(\) zrow \(m) D\)
fun ycol :: 'a Matrix \(\Rightarrow\) 'a Point
    where ycol \(m=0\) tval \(=\) yval \((\) trow \(m)\), xval \(=\) yval \((\) xrow \(m)\),
                        yval \(=\) yval \((\) yrow \(m), z v a l=y v a l(\) zrow \(m) D\)
```

fun zcol :: 'a Matrix $\Rightarrow{ }^{\prime} a$ Point
where z col $m=0$ tval $=$ zval $($ trow $m), x v a l=$ zval $($ xrow $m)$,
$y v a l=\operatorname{zval}($ yrow $m), z v a l=z v a l($ zrow $m) D$
fun transpose :: 'a Matrix \Rightarrow 'a Matrix
where transpose $m=($ trow $=($ tcol $m)$, xrow $=($ xcol $m)$,
yrow $=($ ycol $m), z$ row $=(z$ col m) $)$
fun mprod $::$ 'a Matrix \Rightarrow 'a Matrix \Rightarrow 'a Matrix
where mprod m1 m2 =
transpose (trow = applyMatrix m1 (tcol m2), xrow =
applyMatrix m1 (xcol m2),
yrow $=$ applyMatrix $m 1$ (ycol m2), zrow $=$
applyMatrix m1 (zcol m2))
end

```
end

\section*{19 LinearMaps}

This theory defines linear maps and establishes their main properties.
```

theory LinearMaps
imports Functions CauchySchwarz Matrices
begin
class LinearMaps = Functions + CauchySchwarz + Matrices
begin

```
abbreviation linear :: ('a Point \(\Rightarrow{ }^{\prime}\) 'a Point) \(\Rightarrow\) bool where
linear \(L \equiv(L\) origin \(=\) origin \()\)
\[
\begin{aligned}
& \wedge(\forall a p \cdot L(a \otimes p)=(a \otimes(L p))) \\
& \wedge(\forall p q \cdot L(p \oplus q)=((L p) \oplus(L q))) \\
& \wedge(\forall p q \cdot L(p \ominus q)=((L p) \ominus(L q)))
\end{aligned}
\]
```

lemma lemLinearProps:
assumes linear L
shows (L origin = origin) ^(L (a\otimesp) = (a\otimes (L p)))
\wedge(L(p\oplusq)=((Lp)\oplus(Lq)))
\wedge(L(p\ominusq)=((Lp)\ominus(Lq)))
using assms by simp

```
lemma lemMatrixApplicationIsLinear: linear (applyMatrix m)
    using lemDotScaleRight lemDotSumRight lemDotDiffRight
    by fastforce
```

lemma lemLinearIsMatrixApplication:
assumes linear L
shows $\exists m . L=($ applyMatrix $m)$
proof -
define $L t$ where $L t=L t U n i t$
define $L x$ where $L x=L x U n i t$
define $L y$ where $L y=L y$ Unit
define $L z$ where $L z=L z U n i t$
define M where $M=$ transpose (trow $=L t$, xrow $=L x$, yrow $=$
Ly, zrow $=L z$)

```
    have trow \(M\) : trow \(M=(\) tval \(=(\) tval \(L t)\), xval \(=(\) tval \(L x)\),
    yval \(=(\) tval \(L y), z v a l=(\) tval \(L z) D\)
    using \(M\)-def by auto
have \(\operatorname{xrow} M\) : xrow \(M=(\) tval \(=(\) xval \(L t)\), xval \(=(\) xval \(L x)\),
                                    yval \(=(x v a l L y), z v a l=(x v a l L z))\)
    using \(M\)-def by auto
have yrow \(M\) : yrow \(M=(\) tval \(=(\) yval \(L t)\), xval \(=(\) yval \(L x)\),
    yval \(=(\) yval \(L y), z v a l=(\) yval \(L z))\)
    using \(M\)-def by auto
have zrowM: zrow \(M=(\) tval \(=(\) zval \(L t)\), xval \(=(z v a l L x)\),
    yval \(=(\) zval Ly \(), z v a l=(z v a l L z) D\)
    using \(M\)-def by auto
\{ fix \(u\) :: ' \(a\) Point
    define tvu where tvu: \(t v u=((t v a l ~ u) \otimes\) tUnit \()\)
    define \(x v u\) where \(x v u: x v u=((x v a l u) \otimes x U n i t)\)
    define \(y v u\) where \(y v u: ~ y v u=((\) yval \(u) \otimes y U n i t)\)
    define \(z v u\) where \(z v u: z v u=((z v a l u) \otimes z U n i t)\)
    have \(u: u=(t v u \oplus(x v u \oplus(y v u \oplus z v u)))\)
        using tvu xvu yvu zvu lemPointDecomposition[of u] by simp

> have \(M u:\) applyMatrix \(M u=(\) tval \(=\operatorname{dot}(\) trow \(M) u\), xval \(=\operatorname{dot}(\operatorname{xrow} M) u\), yval \(=\operatorname{dot}(\) yrow \(M) u\), \(z v a l=\operatorname{dot}(\) zrow \(M) u\) by \(\operatorname{simp}\)
have tvalMu: tval (applyMatrix \(M u\) ) \(=\)
\((\) tval \(L t) *(\) tval \(u)+(\) tval Lx \() *(\) xval \(u)+(\) tval \(L y) *(\) yval \(u)+\) (tval Lz)*(zval u)
using \(M u\) trowM by force
have xvalMu: xval (applyMatrix Mu)=
\((\) xval \(L t) *(\) tval \(u)+(\) xval \(L x) *(\) xval \(u)+(\) xval \(L y) *(\) yval \(u)+\) (xval Lz)*(zval u)
using \(M u\) xrowM by force
have yvalMu: yval (applyMatrix \(M u\) ) =
\((\) yval \(L t) *(\) tval \(u)+(\) yval \(L x) *(\) xval \(u)+(\) yval \(L y) *(\) yval \(u)+\) (yval Lz)*(zval u)
using \(M u\) yrowM by force
have zvalMu: zval (applyMatrix \(M u\) ) =
\((\) zval Lt \() *(\) tval \(u)+(\) zval Lx \() *(\) xval \(u)+(\) zval Ly \() *(\) yval \(u)+\) (zval Lz)*(zval u)
using \(M u\) zrowM by force
hence \(L u: L u=((L t v u) \oplus((L x v u) \oplus((L y v u) \oplus(L z v u))))\)
using assms u
lemLinearProps[of L 0 tvu xvu \(\oplus(y v u \oplus z v u)]\)
lemLinearProps[of L 0 xvu yvu \(\oplus\) zvu]
by auto
have Ltvu: \(L\) tvu \(=((\) tval \(u) \otimes L t)\)
using tvu Lt-def assms lemLinearProps[of L tval utUnit] by auto
have Lxvu: \(L\) xvu \(=((x v a l u) \otimes L x)\)
using xvu Lx-def assms lemLinearProps[of L xval u xUnit] by auto
have Lyvu: \(L\) yvu \(=((\) yval \(u) \otimes L y)\)
using yvu Ly-def assms lemLinearProps[of \(L\) yval \(u\) yUnit] by auto
have Lzvu: \(L\) zvu \(=((z v a l u) \otimes L z)\)
using zvu Lz-def assms lemLinearProps[of \(L\) zval u zUnit] by auto
hence \(L u^{\prime}: L u=(((\) tval \(u) \otimes L t) \oplus(((\) xval \(u) \otimes L x)\)
\[
\oplus(((\text { yval } u) \otimes L y) \oplus((\text { zval } u) \otimes L z))))
\]
using Lu Ltvu Lxvu Lyvu Lzvu by force
hence \(L u=\) applyMatrix \(M u\)
using \(L u^{\prime}\) add-assoc tvalMu xvalMu yvalMu zvalMu mult-commute by \(\operatorname{simp}\)
\}
hence \(\forall u\). \(L u=\) applyMatrix \(M u\) by auto thus ?thesis by force qed
```

lemma lemLinearIffMatrix: linear $L \longleftrightarrow(\exists M . L=$ applyMatrix $M)$
using lemMatrixApplicationIsLinear lemLinearIsMatrixApplication
by auto

```
lemma lemIdIsLinear: linear id
by simp
lemma lemLinearIsBounded:
    assumes linear \(L\)
    shows bounded L
proof -
    obtain \(M\) where \(M: L=\) applyMatrix \(M\) using assms lemLinear-
IffMatrix by auto
    define \(\operatorname{tr}\) where \(t r=\) trow \(M\)
    define \(x r\) where \(x r=\) xrow \(M\)
    define \(y r\) where \(y r=\) yrow \(M\)
    define \(z r\) where \(z r=z r o w ~ M\)
    define bnd where bnd \(=(\) sqr \((\) norm \(\operatorname{tr})+s q r(\) norm xr \()+s q r(n o r m\)
\(y r)+\operatorname{sqr}(\) norm \(z r))\)
    define \(n\)

zval=norm zr )
    hence bnd \(=\) dot \(n n\) using bnd-def by auto
    hence norm2n: bnd \(=\) norm2 \(n\) by simp
    hence bndnonneg: bnd \(\geq 0\) by simp
    \{ assume bndpos: bnd \(>0\)
            \{ fix \(p::\) ' \(a\) Point
            define \(q\) where \(q=\) applyMatrix \(M p\)
            hence \(q=(\) tval \(=\) dot tr \(p\), xval \(=\operatorname{dot}\) xr \(p\),yval \(=\operatorname{dot}\) yr \(p, z v a l=d o t\)
zr \(p\) )
            using \(t r\)-def \(x r\)-def \(y r\)-def \(z r\)-def by auto
            hence 1: \(\operatorname{dot} q q=\operatorname{sqr}(\operatorname{dot} \operatorname{tr} p)+\operatorname{sqr}(\operatorname{dot} x r p)\)
                        \(+\operatorname{sqr}(\operatorname{dot} y r p)+\operatorname{sqr}(\operatorname{dot} z r p)\)
            by auto
    also have \(\ldots \leq \operatorname{sqr}(\operatorname{dot} \operatorname{tr} p)+s q r(\operatorname{dot} x r p)+s q r(\operatorname{dot} y r p)\)
                    \(+(\operatorname{sqr}(\) norm \(z r) * s q r(\) norm \(p))\)
using lemCauchySchwarzSqr4[of zr p] lemNormSqrIsNorm2 by auto
also have \(\ldots \leq \operatorname{sqr}(\operatorname{dot} \operatorname{tr} p)+\operatorname{sqr}(\operatorname{dot} \operatorname{xr} p)+(\operatorname{sqr}(\) norm \(y r) * s q r(\) norm \(p))\)
\[
+(\operatorname{sqr}(\text { norm } z r) * \operatorname{sqr}(\text { norm } p))
\]
using lemCauchySchwarzSqr4[of yr p] lemNormSqrIsNorm2

\section*{by auto}
also have \(\ldots \leq \operatorname{sqr}(\operatorname{dot} \operatorname{tr} p)+(\operatorname{sqr}(\) norm \(\operatorname{xr}) * \operatorname{sqr}(\) norm \(p))+\) (sqr(norm yr)*sqr(norm p))
\[
+(\operatorname{sqr}(\text { norm } z r) * \operatorname{sqr}(\text { norm } p))
\]
using lemCauchySchwarzSqr4[of xr p] lemNormSqrIsNorm2 by auto
also have \(\ldots \leq(\operatorname{sqr}(\) norm \(\operatorname{tr}) * \operatorname{sqr}(\) norm \(p))+(\operatorname{sqr}(\) norm \(x r) * \operatorname{sqr}(\) norm \(p))+(\operatorname{sqr}(\) norm \(y r) * \operatorname{sqr}(\) norm \(p))\) \(+(\operatorname{sqr}(\) norm \(z r) * \operatorname{sqr}(\) norm \(p))\)
using lemCauchySchwarzSqr4[of tr p] lemNormSqrIsNorm2 by auto
finally have \(\operatorname{dot} q q \leq(\operatorname{sqr}(\) norm \(t r) * s q r(\) norm \(p))+(\operatorname{sqr}(\) norm \(x r) * \operatorname{sqr}(\) norm \(p))+(\operatorname{sqr}(\) norm yr \() * \operatorname{sqr}(\) norm \(p))\)
\(+(\operatorname{sqr}(\) norm \(z r) * \operatorname{sqr}(\) norm \(p))\) by auto
hence \(\operatorname{dot} q q \leq(\operatorname{sqr}(\) norm tr \()+\operatorname{sqr}(\) norm \(x r)+\operatorname{sqr}(\) norm \(y r)+s q r(\) norm \(z r)) * s q r(\operatorname{norm} p)\)
using distrib-right by auto
hence norm2 \(q \leq b n d * \operatorname{sqr}(\) norm \(p\) ) using \(b n d-d e f\) by simp
hence norm2 (applyMatrix \(M p\) ) \(\leq\) bnd \(*\) norm2 \(p\)
using \(q\)-def lemNormSqrIsNorm2 by simp
\}
hence \(\forall\) p. norm2 (applyMatrix \(M p\) ) \(\leq b n d *\) norm2 \(p\) by auto
hence \(\exists\) bnd \(>0 . \forall\) p. norm2 (applyMatrix \(M p\) ) \(\leq\) bnd \(*\) norm2 \(p\)
using bndpos by auto
\}
hence case1: \((\) bnd \(>0) \longrightarrow\) (bounded (applyMatrix \(M\) ) ) by simp
\{ assume bnd0: bnd \(=0\)
hence \(n=\) origin using lemNullImpliesOrigin norm2n by auto
hence \((\) norm \(t r=0) \wedge(\) norm \(x r=0) \wedge(\) norm \(y r=0) \wedge(\) norm \(z r=0)\)
using \(n\) by simp
hence allzero: \((t r=\) origin \() \wedge(x r=\) origin \() \wedge(y r=\) origin \() \wedge(z r=\) origin \()\) using lemZeroNorm by auto
define one where one \(=\left(1::^{\prime} a\right)\)
hence onepos: one \(>0\) by simp
\(\{\) fix \(p::\) 'a Point
have applyMatrix \(M p=\) origin
using allzero tr-def xr-def yr-def zr-def by auto
hence norm2 (applyMatrix \(M p\) ) \(=0\) by auto
hence norm2 (applyMatrix \(M\) p) \(\leq\) one \(*(\) norm2 \(p)\) using onepos
```

by auto
}
hence }\forallp\mathrm{ . norm2(applyMatrix M p) < one * (norm2 p) by auto
hence \exists one>0.\forall p. norm2(applyMatrix M p) \leqone * (norm2
p)
using onepos by auto
hence bounded (applyMatrix M) by simp
}
hence case2: (bnd = 0) \longrightarrow (bounded (applyMatrix M)) by simp
thus ?thesis using case1 case2 bndnonneg M by auto
qed

```
lemma lemLinearIsCts:
assumes linear \(L\)
shows cts (asFunc L) x
proof -
\(\left\{\right.\) fix \(x^{\prime}\)
assume \(x^{\prime}: x^{\prime}=L x\)
have bounded \(L\) using assms (1) lemLinearIsBounded \([\) of \(L]\) by auto then obtain bnd where bnd: \((b n d>0) \wedge(\forall p\). norm2 \((L p) \leq\) \(b n d *(\) norm2 \(p))\)
by auto
then obtain \(b b\) where \(b b:(b b>0) \wedge(s q r b b)>b n d\) using bnd lemSquareExistsAbove[of bnd] by auto
\(\{\) fix \(p\)
have \(p\) 1: norm2 \((L p) \leq b n d *(\) norm2 \(p)\) using \(b n d\) by simp
have \(b n d *(\) norm2 \(p) \leq(s q r b b) *(\) norm2 \(p)\) using \(b b\) mult-mono
by auto
hence norm2 \((L p) \leq(s q r b b) *(\) norm2 \(p)\) using \(p 1\) by simp
\}
hence bbbnd: \(\forall p\). norm2 \((L p) \leq(s q r b b) *(\) norm2 \(p)\) by auto
\{ fix \(e\)
assume epos: e>0
define \(d\) where \(d: d=e / b b\)
hence dpos: \(d>0\) using epos bb by simp
have \((d=e / b b) \wedge(b b \neq 0)\) using \(d b b\) by auto
hence esqr: \((s q r d) *(s q r b b)=s q r e\) by \(\operatorname{simp}\)
\(\left\{\operatorname{fix} p^{\prime}\right.\)
assume \(p^{\prime}: p^{\prime} \in\) applyToSet (asFunc L) (ball xd)
then obtain \(p\) where \(p:(p \in\) ball \(x d) \wedge\left(p^{\prime}=L p\right)\) by auto hence \(p\)-near- \(x: p\) within \(d\) of \(x\) using lemSep2Symmetry[of \(p\)

\section*{\(x]\) by force}
have norm2 \((L(p \ominus x)) \leq(s q r b b) *\) norm2 \((p \ominus x)\) using bbbnd by blast
hence 1: norm2 \((L(p \ominus x)) \leq(s q r b b) *(\operatorname{sep} 2 p x)\) by auto have \((s q r b b) *(s e p 2 p x)<(s q r b b) *(s q r d)\)
using lemMultPosLT bb p-near-x by auto
hence 2: norm2 \((L(p \ominus x))<(s q r b b) *(s q r d)\) using 1 by simp
```

 have }(L(p\ominusx))=((L p)\ominus(L x)) using assms(1) by aut
 hence norm2 (L (p\ominusx)) = sep2 p' x' using p x' by force
 hence sep2 p' }\mp@subsup{x}{}{\prime}<(sqr bb)*(sqr d) using 2 by sim
 hence sep2 p}\mp@subsup{p}{}{\prime}\mp@subsup{x}{}{\prime}< sqr e using d bb by aut
 hence }\mp@subsup{p}{}{\prime}\in\mathrm{ ball }\mp@subsup{x}{}{\prime}e\mathrm{ using lemSep2Symmetry by auto
 }
 hence applyToSet (asFunc L) (ball x d) \subseteq ball x' e by auto
 hence \existsd>0. applyToSet (asFunc L) (ball x d)\subseteq ball x'e
 using dpos by auto
 }
 hence }\foralle>0.\existsd>0. applyToSet (asFunc L) (ball x d)\subseteqball x'
 by auto
 }
 thus ?thesis by auto
 qed

```
lemma lemLinOfLinIsLin:
assumes \((\) linear \(A) \wedge(\) linear \(B)\)
shows linear \((B \circ A)\)
proof -
    have 1: \((B \circ A)\) origin \(=\) origin using assms by auto
    have 2: \(\forall a p \cdot(B \circ A)(a \otimes p)=(a \otimes((B \circ A) p))\) using assms
by auto
    have 3: \(\forall p q \cdot(B \circ A)(p \oplus q)=(((B \circ A) p) \oplus((B \circ A) q))\)
using assms by auto
    have 4: \(\forall p q \cdot(B \circ A)(p \ominus q)=(((B \circ A) p) \ominus((B \circ A) q))\)
using assms by auto
    thus ?thesis using 123 by force
qed
lemma lemInverseLinear:
assumes linear \(A\)
and invertible \(A\)
shows \(\quad \exists A^{\prime} .\left(\right.\) linear \(\left.A^{\prime}\right) \wedge\left(\forall p q . A p=q \longleftrightarrow A^{\prime} q=p\right)\)
proof -
obtain \(L\) where \(L:(\forall p q . A p=q \longleftrightarrow L q=p)\)
using assms(2) by metis
have \(1: L\) origin \(=\) origin using assms \(L\) by auto
\(\left\{\right.\) fix \(p^{\prime} q^{\prime} a\)
obtain \(p\) where \(p:\left(A p=p^{\prime}\right) \wedge\left(\forall z . A z=p^{\prime} \longrightarrow z=p\right)\) using assms(2) by blast
obtain \(q\) where \(q:\left(A q=q^{\prime}\right) \wedge\left(\forall z . A z=q^{\prime} \longrightarrow z=q\right)\) using assms(2) by blast
have \(L\left(a \otimes p^{\prime}\right)=L(a \otimes(A p))\) using \(p\) by auto
also have \(\ldots=L(A(a \otimes p))\) using assms(1) by auto
also have \(\ldots=(a \otimes p)\) using \(L\) by blast
finally have 2: \(L\left(a \otimes p^{\prime}\right)=\left(a \otimes\left(L p^{\prime}\right)\right)\) using \(p L\) by auto
have \(L\left(p^{\prime} \oplus q^{\prime}\right)=L((A p) \oplus(A q))\) using \(p q\) by auto
also have \(\ldots=L(A(p \oplus q))\) using assms(1) by auto
also have \(\ldots=(p \oplus q)\) using \(p q L\) by auto
finally have 3: \(L\left(p^{\prime} \oplus q^{\prime}\right)=\left(\left(L p^{\prime}\right) \oplus\left(L q^{\prime}\right)\right)\) using \(p q L\) by auto
have \(L\left(p^{\prime} \ominus q^{\prime}\right)=L((A p) \ominus(A q))\) using \(p q\) by auto
also have \(\ldots=L(A(p \ominus q))\) using assms(1) by auto
also have \(\ldots=(p \ominus q)\) using \(p q L\) by auto
finally have 4: \(L\left(p^{\prime} \ominus q^{\prime}\right)=\left(\left(L p^{\prime}\right) \ominus\left(L q^{\prime}\right)\right)\) using \(p q L\) by auto
\[
\begin{aligned}
& \text { hence }(L \text { origin }=\text { origin }) \wedge \\
& \begin{aligned}
\left(L\left(a \otimes p^{\prime}\right)\right. & \left.=\left(a \otimes\left(L p^{\prime}\right)\right)\right) \wedge \\
\left(L\left(p^{\prime} \oplus q^{\prime}\right)\right. & \left.=\left(\left(L p^{\prime}\right) \oplus\left(L q^{\prime}\right)\right)\right) \wedge \\
\left(L\left(p^{\prime} \ominus q^{\prime}\right)\right. & \left.=\left(\left(L p^{\prime}\right) \ominus\left(L q^{\prime}\right)\right)\right)
\end{aligned}
\end{aligned}
\]
        using 123 by auto
\}
hence linear \(L\) by auto
thus ?thesis using \(L\) by auto
qed
end
end

\section*{20 Affine}

This theory defines affine transformations and established their key properties.
```

theory Affine
imports Translations LinearMaps
begin
class Affine = Translations + LinearMaps
begin

```
abbreviation affine :: ('a Point \(\Rightarrow{ }^{\prime} a\) Point \() \Rightarrow\) bool
    where affine \(A \equiv \exists L T\). (linear \(L) \wedge(\) translation \(T) \wedge(A=T \circ\)
L)
```

abbreviation affInvertible :: ('a Point $\Rightarrow{ }^{\prime} a$ Point) \Rightarrow bool
where affInvertible $A \equiv$ affine $A \wedge$ invertible A

```
abbreviation isLinearPart :: ('a Point \(\Rightarrow{ }^{\prime} a\) Point \() \Rightarrow\left({ }^{\prime} a\right.\) Point \(\Rightarrow\)
'a Point) \(\Rightarrow\) bool
    where isLinearPart \(A L \equiv(\) affine \(A) \wedge(\) linear \(L) \wedge\)
            \((\exists T .(\) translation \(T \wedge A=T \circ L))\)
abbreviation isTranslationPart :: ('a Point \(\Rightarrow{ }^{\prime} a\) Point \() \Rightarrow\left({ }^{\prime} a\right.\) Point
\(\Rightarrow{ }^{\prime}\) a Point) \(\Rightarrow\) bool
    where isTranslationPart \(A T \equiv(\) affine \(A) \wedge(\) translation \(T) \wedge\)
    \((\exists L .(\) linear \(L \wedge A=T \circ L))\)

\subsection*{20.1 Affine approximation}

A key concept in the proof is affine approximation. We will eventually assert that worldview transformation can be approximated by invertible affine transformations.
```

abbreviation affineApprox :: ('a Point => 'a Point) =>
('a Point = 'a Point => bool) =>
'a Point }=>\mathrm{ bool
where affineApprox A fx\equiv(isFunction f) ^
(affInvertible A) ^(diffApprox (asFunc A) fx)
fun applyAffineToLine :: ('a Point }=>\mp@subsup{}{}{\prime}'a Point
=>'a Point set }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}\mathrm{ ' Point set }=>\mathrm{ bool
where applyAffineToLine A l l'}\longleftrightarrow(\mathrm{ affine A) ^

```
\((\exists\) TLbd. \(((\) linear \(L) \wedge(\) translation \(T) \wedge(A=T \circ L) \wedge\) \((l=\) line \(b d) \wedge\left(l^{\prime}=\left(\right.\right.\) line \(\left.\left.\left.\left.\left(\begin{array}{ll}A & b\end{array}\right)(L d)\right)\right)\right)\right)\)
```

abbreviation affConstantOn :: ('a Point }=>\mp@subsup{}{}{\prime}\mathrm{ 'Point) }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}a\mathrm{ Point }
'a Point set }=>\mathrm{ bool
where affConstantOn A x s \equiv(\exists\varepsilon>0.\forally\ins. (y within \varepsilon of x)}
((A y) = (A x)))

```
lemma lemTranslationPartIsUnique:
    assumes isTranslationPart A T1
and isTranslationPart A T2
shows \(\quad T 1=T 2\)
proof -
    obtain L1 where T1: linear L1 \(\wedge A=T 1 \circ L 1\) using \(\operatorname{assms}(1)\)
by auto
    obtain L2 where T2: linear L2 \(\wedge A=T 2 \circ L 2\) using \(\operatorname{assms}(2)\)
by auto
    obtain \(t 1\) where \(t 1: \forall x . T 1 x=(x \oplus t 1)\) using \(\operatorname{assms}(1)\) by auto
    obtain t2 where t2: \(\forall x\). T2 \(x=(x \oplus\) t2) using assms(2) by auto
    have \(T 1\) origin \(=A\) origin using \(T 1\) assms(1) by auto
    also have \(\ldots=\) T2 origin using T2 assms(2) by auto
    finally have \(T 1\) origin \(=T 2\) origin by auto
    hence \(t 1=\) t2 using \(t 1\) t2 by auto
    hence \(\forall x\). \((T 1 x=T 2 x)\) using \(t 1\) t2 by auto
    thus ?thesis by auto
qed
lemma lemLinearPartIsUnique:
    assumes isLinearPart A L1
and isLinearPart A L2
shows \(\quad L 1=L 2\)
proof -
    obtain \(T 1\) where T1: translation \(T 1 \wedge A=T 1 \circ L 1\) using
assms(1) by auto
    obtain T2 where T2: translation T2 \(\wedge A=\) T2 ○ L2 using
\(\operatorname{assms}(2)\) by auto
have 1: isTranslationPart A T1 using assms(1) T1 by auto
have 2: isTranslationPart A T2 using assms(2) T2 by auto
hence T1T2: T1 = T2 using 12 lemTranslationPartIsUnique \([\) of \(A\) T1 T2] by auto
obtain \(t\) where \(t: \forall x\). T1 \(x=(x \oplus t)\) using T1 by auto define \(T\) where \(T=m k T r a n s l a t i o n ~(o r i g i n ~ \ominus t) ~\)
hence 3: \(T \circ A=L 1\) using \(T 1\) temInverseTranslation by auto
have \(T \circ A=L 2\) using T-def T2 \(t\) T1T2 lemInverseTranslation by auto
thus ?thesis using 3 by auto qed
```

lemma lemLinearImpliesAffine:
assumes linear L
shows affine L
proof -
have $1: L=i d \circ L$ by fastforce
thus ?thesis using assms lemIdIsTranslation by blast
qed

```
lemma lemTranslationImpliesAffine:
assumes translation \(T\)
shows affine \(T\)
proof -
    have \(T=T \circ i d\) by force
    thus ?thesis using assms lemIdIsLinear by blast
qed
lemma lemAffineDiff:
    assumes linear \(L\)
and \(\quad \exists T \cdot((\) translation \(T) \wedge(A=T \circ L))\)
    shows \(((A p) \ominus(A q))=L(p \ominus q)\)
proof -
    obtain \(T\) where \(T:(\) translation \(T) \wedge(A=T \circ L)\) using \(\operatorname{assms}(\) (2)
by auto
    thus ?thesis using assms(1) by auto
qed
lemma lemAffineImpliesTotalFunction:
    assumes affine \(A\)
    shows isTotalFunction (asFunc A)
    by \(\operatorname{simp}\)
lemma lemAffineEqualAtBase:
```

 assumes affineApprox A f x
 shows }\forally.(fxy)\longleftrightarrow(y=Ax
 proof -
have diff: diffApprox (asFunc A) fx using assms(1) by simp
{ fix y
assume y: f x y
hence f x y ^(asFunc A) x (A x) by auto
hence A x = y using diff lemApproxEqualAtBase[of f x asFunc A
y]
by auto
}
hence l2r: \forally.fxy\longrightarrowy=A x by auto
{ obtain y where y: fxy using diff by auto
hence }y=Ax\mathrm{ using l2r by auto
hence f}x(Ax)\mathrm{ using }y\mathrm{ by auto
}
thus ?thesis using l2r by blast
qed
lemma lemAffineOfPointOnLine:
assumes (linear L) ^(translation T) ^(A=T\circL)
and }\quadx=(b\oplus(a\otimesd)
shows Ax=((A b) }\otimes(a\otimes(Ld))
proof -
have (Lx=((Lb)\oplus(L(a\otimesd))))\wedge(L(a\otimesd)=(a\otimes(Ld)))
using assms by blast
hence Ax=T((Lb)\oplus(a\otimes(Ld))) using assms(1) by auto
also have ... = ((T (L b)) \oplus(a\otimes(Ld)))
using assms(1) lemTranslationSum[of TL ba\otimes (Ld)] by auto
finally show ?thesis using assms(1) by auto
qed

```
```

lemma lemAffineOfLineIsLine
assumes isLine l
shows (applyAffineToLine All$\left.l^{\prime}\right) \longleftrightarrow$ (affine $A \wedge l^{\prime}=$ applyToSet
(asFunc A) l)
proof -
\{ assume lhs: applyAffineToLine A ll'
hence affA: affine A by fastforce
have $\exists T L b d .($ linear $L) \wedge($ translation $T) \wedge(A=T \circ L) \wedge$
$(l=$ line $b d) \wedge\left(l^{\prime}=(\right.$ line $\left.(A b)(L d))\right)$ using lhs by auto
then obtain $T L b d$ where $T L$: (linear $L) \wedge($ translation $T) \wedge$
$(A=T \circ L) \wedge$
$(l=$ line $b d) \wedge\left(l^{\prime}=(\right.$ line $\left.(A b)(L d))\right)$

```
using lhs by blast
\(\left\{\right.\) fix \(p^{\prime}\)
\(\left\{\right.\) assume \(p^{\prime} \in l^{\prime}\)
then obtain \(a\) where \(a\) : \(p^{\prime}=\left(\left(\begin{array}{ll}A & b\end{array} \oplus(a \otimes(L d))\right)\right.\) using
\(T L\) by auto
define \(p\) where \(p: p=(b \oplus(a \otimes d))\)
hence \(p^{\prime} \in\) applyToSet (asFunc A) \(l\) using a TL lemAffineOf-
PointOnLine by auto
\}
hence \(\left(p^{\prime} \in l^{\prime}\right) \longrightarrow\left(p^{\prime} \in\right.\) applyToSet (asFunc A) \(l\) ) by auto
\}
hence \(12 r: l^{\prime} \subseteq(\) applyToSet \((\) asFunc A) \(l\) ) by auto
\(\left\{\right.\) fix \(p^{\prime}\)
\{ assume \(p^{\prime} \in\) applyToSet (asFunc A) \(l\)
then obtain \(p\) where \(p: p \in l \wedge p^{\prime}=A p\) by auto then obtain \(a\) where \(a: p=(b \oplus(a \otimes d))\) using TL by auto hence \(A p=((A b) \oplus(a \otimes(L d)))\) using TL lemAffineOf-
PointOnLine by auto
hence \(p^{\prime} \in l^{\prime}\) using \(T L p\) by auto
\}
hence \(\left(p^{\prime} \in\right.\) applyToSet (asFunc A) \(\left.l\right) \longrightarrow\left(p^{\prime} \in l^{\prime}\right)\) using \(l 2 r\) by auto
\}
hence (applyToSet (asFunc A) \(l\) ) \(\subseteq l^{\prime}\) by auto
hence affine \(A \wedge l^{\prime}=\) applyToSet (asFunc A) \(l\) using aff \(A l 2 r\) by auto
\}
hence rtp1: (applyAffineToLine All\(\left.l^{\prime}\right) \longrightarrow\) (affine \(A \wedge l^{\prime}=\) applyToSet (asFunc A) l)
by blast
\(\left\{\right.\) assume rhs: \((\) affine \(A) \wedge\left(l^{\prime}=\operatorname{applyToSet}(\operatorname{asFunc} A) l\right)\)
obtain \(b d\) where \(b d: l=\) line \(b d\) using assms(1) by auto
obtain \(T L\) where \(T L\) : (linear \(L) \wedge(\) translation \(T) \wedge(A=T \circ\)
L)
using rhs by auto
\(\left\{\right.\) fix \(p^{\prime}\)
assume \(p^{\prime} \in l^{\prime}\)
then obtain \(p\) where \(p:(p \in l) \wedge\left(A p=p^{\prime}\right)\) using rhs by auto then obtain \(a\) where \(a: p=(b \oplus(a \otimes d))\) using \(b d\) by auto hence \(A p=\left(\left(\begin{array}{ll}A & b\end{array}\right) \oplus\left(a \otimes\left(\begin{array}{ll}L\end{array}\right)\right)\right)\)
using TL lemAffineOfPointOnLine by auto
hence \(p^{\prime} \in\) line \((A b)(L d)\) using \(p\) by auto
\}
hence \(l 2 r: l^{\prime} \subseteq\) line \(\left(\begin{array}{ll}A b\end{array}\right)\left(\begin{array}{ll}L d\end{array}\right)\) by force
```

 { fix p '
 assume p}\mp@subsup{p}{}{\prime}\inline (Ab) (Ld
 then obtain a where a: p' = ((A b)\oplus(a\otimes(Ld))) using
 TL by auto
define p where p: p=(b\oplus(a\otimesd))
hence A p = ((A b) \oplus(a\otimes (Ld)))
using TL lemAffineOfPointOnLine by auto
hence A p= p' using a by simp
hence p}\mp@subsup{p}{}{\prime}\in\mathrm{ applyToSet (asFunc A) l using p bd by auto
}
hence line (A b) (Ld) = l' using rhs l2r by blast
hence applyAffineToLine A l l' using TL bd by auto
}
hence (affine A) ^(l'= applyToSet (asFunc A) l)
(applyAffineToLine A l l')
by blast
thus ?thesis using rtp1 by blast
qed
lemma lemOnLineUnderAffine:
assumes (affine A) ^(onLine p l)
shows onLine (A p)(applyToSet (asFunc A)l)
proof -
define l' where l':}\mp@subsup{l}{}{\prime}=\mathrm{ applyToSet (asFunc A) l
have lineL: isLine l using assms by auto
hence Tll': applyAffineToLine A l l'
using lemAffineOfLineIsLine[of l A ll] assms l'
by blast
hence \exists T'Lbd. (linear L)^(translation T')^(A= T'\circL)^
(l= line b d)\wedge (l'=(line (A b) (Ld))) by force
then obtain T' Lbd
where TLbd: (linear L) ^(translation T') ^(A= T'\circL)^
(l= line b d) ^(l'= (line (A b) (L d))) by blast
then obtain a where a: p=(b\oplus(a\otimesd)) using assms by auto
hence A p = ((Ab) \oplus(a\otimes(Ld))) using lemAffineOfPointOnLine
TLbd by auto
thus ?thesis using l' TLbd by blast
qed

```
lemma lemLineJoiningUnderAffine:

\section*{assumes affine \(A\)}
shows applyToSet (asFunc A) (lineJoining \(p q)=\operatorname{lineJoining}(A\) p) \((A q)\) proof -
obtain \(T L\) where \(T L\) : translation \(T \wedge\) linear \(L \wedge A=T \circ L\) using assms(1) by auto
hence \(((A q) \ominus(A p))=L(q \ominus p)\) by auto
\(\{\) fix \(a\)
have \((a \otimes((A q) \ominus(A p)))=L(a \otimes(q \ominus p))\)
using TL lemLinearProps[of \(L\) a \(q \ominus p]\) by force
\}
hence as: \(\forall a .(a \otimes((A q) \ominus(A p)))=L(a \otimes(q \ominus p))\) by auto
\(\left\{\operatorname{fix} x^{\prime}\right.\)
assume \(x^{\prime} \in\) applyToSet (asFunc A) (lineJoining \(p q\) )
then obtain \(x\) where \(x: x \in(\) lineJoining \(p q) \wedge x^{\prime}=A x\) by force
then obtain \(a\) where \(a\) : \(x=(p \oplus(a \otimes(q \ominus p)))\) by force
have expandL: \(L(p \oplus(a \otimes(q \ominus p)))=((L p) \oplus(L(a \otimes(q \ominus p))))\)
using TL lemLinearProps[of L \(0 p(a \otimes(q \ominus p))\) ]
by fast
have \(x^{\prime}=A(p \oplus(a \otimes(q \ominus p)))\) using \(x\) a by fast also have \(\ldots=(T(L(p \oplus(a \otimes(q \ominus p)))))\) using \(T L\) by force also have \(\ldots=T((L p) \oplus(L(a \otimes(q \ominus p))))\) using expandL by force
finally have \(x^{\prime}=((T(L p)) \oplus(L(a \otimes(q \ominus p))))\)
using TL lemTranslationSum[of T L pL \((a \otimes(q \ominus p))\) ] by auto
hence \(x^{\prime} \in\) lineJoining \((A p)(A q)\) using \(T L\) as by auto
\}
hence l2r: applyToSet (asFunc A) (lineJoining p q) \(\subseteq\) lineJoining \((A p)(A q)\)
by force
\(\left\{\operatorname{fix} x^{\prime}\right.\)
assume \(x^{\prime} \in \operatorname{lineJoining}(A p)(A q)\)
hence \(\exists a \cdot x^{\prime}=((T(L p)) \oplus(a \otimes((A q) \ominus(A p))))\)
using \(T L\) by auto
then obtain \(a\) where \(a: x^{\prime}=((T(L p)) \oplus(a \otimes((A q) \ominus(A p))))\) using \(T L\) by fast
hence \(x^{\prime}=((T(L p)) \oplus(L(a \otimes(q \ominus p))))\) using as by force also have \(\ldots=T((L p) \oplus(L(a \otimes(q \ominus p))))\) using TL lemTranslationSum[of T L p \(L(a \otimes(q \ominus p))]\) by simp also have \(\ldots=T(L(p \oplus(a \otimes(q \ominus p))))\)
using TL lemLinearProps \([\) of \(L 0 p a \otimes(q \ominus p)]\) by auto
finally have \(x^{\prime}=A(p \oplus(a \otimes(q \ominus p)))\) using \(T L\) by auto
```

 hence \mp@subsup{x}{}{\prime}\in\mathrm{ applyToSet (asFunc A) (lineJoining p q) by auto}
 }
 thus ?thesis using l2r by auto
 qed

```
lemma lemAffineIsCts:
    assumes affine \(A\)
    shows cts (asFunc A) \(x\)
proof -
have \(\exists T L .(\) translation \(T) \wedge(\) linear \(L) \wedge(A=T \circ L)\) using assms by auto
then obtain \(T L\) where \(T L:(\) translation \(T) \wedge(\) linear \(L) \wedge(A=T \circ\) \(L)\) by auto
define \(f\) where \(f: f=\) asFunc \(L\)
define \(g\) where \(g: g=\) asFunc \(T\)
have 1: cts \(f x\) using \(f\) TL lemLinearIsCts \([o f ~ L x]\) by auto
have 2: \(\forall y .(f x y) \longrightarrow(\) cts \(g y)\)
using \(f g\) TL lemTranslationIsCts[of \(T x]\) by auto
have cts (composeRel \(g f\) ) \(x\) using 12 lemCtsOfCtsIsCts[of \(f x g\) ] by \(\operatorname{simp}\)
thus ?thesis using \(f g T L\) by auto
qed
lemma lemAffineContinuity:
assumes affine \(A\)
shows \(\forall x . \forall \varepsilon>0 . \exists \delta>0 . \forall p .(p\) within \(\delta\) of \(x) \longrightarrow((A p)\) within
\(\varepsilon\) of \((A x)\) )
proof -
\(\{\) fix \(x\)
\{ fix \(e\)
assume epos: \(e>0\)
have \((\) asFunc \(A) x(A x) \wedge(\) cts \((\) asFunc \(A) x)\)
using assms lemAffineIsCts[of \(A x]\) by auto
hence \(u\) : \((\forall \varepsilon>0 . \exists \delta>0\). (applyToSet (asFunc A) \((\) ball \(x \delta)) \subseteq\)
ball (Ax) \(\varepsilon\) )
by force
then obtain \(d\) where \(d:(d>0) \wedge\)
\((\) applyToSet \((\) asFunc \(A)(\) ball \(x d)) \subseteq\) ball \((A\)
x) \(e\)
using epos by force
\(\{\operatorname{fix} p\)
```

 assume p within d of x
 hence (A p) within e of (A x) using d lemSep2Symmetry by
 force
}
hence }\existsd>0.\forallp.(p\mathrm{ within d of }x)\longrightarrow((A p)\mathrm{ within e of (A
x))
using d by auto
}
hence }\foralle>0.\existsd>0.\forallp.(p\mathrm{ within d of x)}\longrightarrow((A p) within e of
(A x))
by auto
}
thus ?thesis by auto
qed
lemma lemAffOfAffIsAff:
assumes (affine A)}\wedge(affine B
shows affine (}B\circA\mathrm{)
proof -
obtain TA LA TB LB where props:
translation TA ^ linear LA ^ translation TB ^ linear LB ^
A = TA\circLA ^ B=TB\circLB using assms by blast
then obtain ta tb where ts: (}\forall\textrm{p}.TA p=(p\oplusta))\wedge(\forallp.TB
=(p\oplustb)) by auto
{ fix p
have (B\circA) p=((LB ((LA p)\oplusta))\oplustb) using props ts by
force
also have ... = (((LB (LA p)) \oplus(LB ta)) \oplustb) using props by
force
also have ... = (((LB\circLA) p)\oplus((LB ta)\oplustb)) using add-assoc
by force
finally have (B\circA) p=((mkTranslation }((LBta)\oplustb))\circ(LB\circLA)
p by force
}
hence BA: (B\circA)=(mkTranslation }((LBta)\oplustb))\circ(LB\circLA) b
auto
define T where T:T=mkTranslation ((LB ta)\oplustb)
hence trans: translation T using lemMkTrans by blast
define L where L:L}=(LB\circLA
hence lin: linear L using lemLinOfLinIsLin[of LA LB] props by
auto
hence (translation T) ^(linear L) ^((B\circA)=(T\circL)) using T L
trans lin BA by auto
thus ?thesis by auto
qed

```

\section*{lemma lemInverseAffine:}
assumes affInvertible \(A\)
shows \(\quad \exists A^{\prime} .\left(\right.\) affine \(\left.A^{\prime}\right) \wedge\left(\forall p q . A p=q \longleftrightarrow A^{\prime} q=p\right)\)
proof -
obtain \(A^{\prime}\) where \(A^{\prime}:\left(\forall p q . A p=q \longleftrightarrow A^{\prime} q=p\right)\)
using assms by metis
obtain \(T L\) where \(T L\) : translation \(T \wedge\) linear \(L \wedge(A=T \circ L)\) using assms(1) by auto
obtain \(T^{\prime}\) where \(T^{\prime}:\left(\right.\) translation \(\left.T^{\prime}\right) \wedge\left(\forall p q . T p=q \longleftrightarrow T^{\prime}\right.\) \(q=p\) )
using TL lemInverseTrans[of \(T]\) by auto
\(\{\operatorname{fix} p\)
\{ fix \(q\)
assume \(A p: A p=q\)
hence \(T(L p)=q\) using \(T L\) by auto
hence \(L p=T^{\prime} q\) using \(T^{\prime}\) by auto hence \(L \quad p=\left(T^{\prime} \circ A\right) p\) using \(A p\) by auto
\}
\}
hence \(L: L=\left(T^{\prime} \circ A\right)\) by auto
\(\{\operatorname{fix} q\)
obtain \(r\) where \(r:\left(T^{\prime} r=q\right)\) using \(T^{\prime}\) by auto
then obtain \(p\) where \(p:(A p=r) \wedge(\forall x . A x=r \longrightarrow x=p)\)
using \(A^{\prime}\) by auto
hence 1: \(L p=q\) using \(L r\) by auto
\(\{\) fix \(x\)
assume \(L x=q\)
hence \(T^{\prime}(A x)=q\) using \(L\) by auto
hence \(A x=r\) using \(r T^{\prime}\) lemTranslationInjective[of \(\left.T\right\rceil\) by
force
hence \(x=p\) using \(p A^{\prime}\) by blast
\(\}\) hence \(\exists p .(L p=q) \wedge(\forall x . L x=q \longrightarrow x=p)\) using 1 by auto
\}
hence invL: invertible \(L\) by blast
then obtain \(L^{\prime}\) where \(L^{\prime}:\left(\right.\) linear \(\left.L^{\prime}\right) \wedge\left(\forall p q . L p=q \longleftrightarrow L^{\prime} q\right.\) \(=p\) )
using TL lemInverseLinear [of L] by blast
```

 \(\{\operatorname{fix} p q\)
 have \(A^{\prime} q=p \longleftrightarrow T(L p)=q\) using \(A^{\prime} T L\) by auto
 also have \(\ldots \longleftrightarrow T^{\prime} q=L p\) using \(T^{\prime}\) by auto
 also have \(\ldots \longleftrightarrow L p=T^{\prime} q\) by auto
 also have \(\ldots \longleftrightarrow L^{\prime}\left(T^{\prime} q\right)=p\) using \(L^{\prime}\) by auto
 finally have \(A^{\prime} q=p \longleftrightarrow\left(L^{\prime} \circ T^{\prime}\right) q=p\) by auto
 \}
 hence \(A^{\prime}=L^{\prime} \circ T^{\prime}\) by auto
 hence affine \(A^{\prime}\) using lemAffOfAffIsAff[of \(\left.T^{\prime} L^{\prime}\right]\)
 lemTranslationImpliesAffine[of T] \(T^{\prime}\)
 lemLinearImpliesAffine[of \(\left.L^{\prime}\right] L^{\prime}\)
 by auto
 thus ?thesis using \(A^{\prime}\) by auto
 qed
lemma lemAffineApproxDomainTranslation:
assumes translation T
and affineApprox A fx
and $\quad \forall p q \cdot T p=q \longleftrightarrow T^{\prime} q=p$
shows affineApprox $(A \circ T)($ composeRel $f($ asFunc $T))\left(T^{\prime} x\right)$
proof -
define $A 0$ where $A 0: A 0=A \circ T$
define g where $g: g=$ composeRel f (asFunc T)
have $T o T^{\prime}: \forall p . T\left(T^{\prime} p\right)=p$ using $\operatorname{assms}(3)$ by force
have $T^{\prime} o T: \forall p . T^{\prime}(T p)=p$ using $\operatorname{assms}(3)$ by force
obtain t where $t: \forall p . T p=(p \oplus t)$ using $\operatorname{assms}(1)$ by force
hence $m k T: T=m k T r a n s l a t i o n ~ t ~ b y ~ f o r c e ~$
$\{\operatorname{fix} p q$
have $T^{\prime} p=q \longleftrightarrow T q=p$ using $\operatorname{assms}(3)$ by auto
also have $\ldots \longleftrightarrow(q \oplus t)=p$ using t by auto
also have $\ldots \longleftrightarrow q=(p \oplus($ origin $\ominus t))$ by force
finally have $T^{\prime} p=q \longleftrightarrow q=(p \oplus($ origin $\ominus t))$ by force
hence $T^{\prime} p=q \longleftrightarrow q=m k T$ Tanslation (origin $\ominus t$) p by force
\}
hence $m k T^{\prime}: T^{\prime}=m k T r a n s l a t i o n ~(o r i g i n ~ \ominus t$) by force
hence trans T^{\prime} : translation T^{\prime} using lemMkTrans by blast
have funcF: isFunction f using assms(2) by auto hence rtp3a: isFunction g using g by auto
have aff A : affine A using assms(2) by auto

```
```

hence rtp3b: affine A0
using lemAffOfAffIsAff[of T A] lemTranslationImpliesAffine[of T]
A0 affA assms(1)
by blast
{fix q

```

```

assms(2) by blast
define p0 where p0: p0= T'p
hence Tp0:T p0=p using assms(3) by blast
hence 1: A0 p0 = q using A0 p by auto
{fix }
assume A0 x = q
hence T x = p using A0 p by fastforce
hence x = p0 using Tp0 assms(1) lemTranslationInjective[of
T] by force
}
hence }\forallx.A0x=q\longrightarrowx=p0 by aut
hence \existsp0. (A0 p0=q)\wedge(\forallx.A0 x=q\longrightarrow 位的0) using 1
by auto
}
hence rtp3c: invertible AO by auto

```
    have diffApprox (asFunc A) fx using assms(2) by auto
    hence \(d A x\) : (definedAt \(f x) \wedge\)
    \((\forall \varepsilon>0 .(\exists \delta>0 .(\forall y\).
        ( ( \(y\) within \(\delta\) of \(x\) )
        \(\longrightarrow\)
        \(((\) definedAt \(f y) \wedge(\forall u v \cdot(f y u \wedge(\) asFunc \(A) y v) \longrightarrow\)
        \((\operatorname{sep2} v u) \leq(s q r \varepsilon) * \operatorname{sep} 2 y x)))\) )
    )) by blast
    hence (definedAt \(f x) \wedge\left(x=T\left(T^{\prime} x\right)\right)\) using \(\operatorname{assms}(1) T o T^{\prime}\) by
auto
    hence rtp3d1: (definedAt \(g\left(T^{\prime} x\right)\) ) using \(g\) by auto
    \{ fix \(e\)
    assume epos: \(e>0\)
    then obtain \(d\) where \(d:(d>0) \wedge(\forall y\).
                ( \((y\) within \(d\) of \(x)\)
            \(((\) definedAt \(f y) \wedge(\forall u v .(f y u \wedge(\) asFunc \(A) y v) \longrightarrow\)
                \((\operatorname{sep2} v u) \leq(s q r e) *\) sep2 \(y x)))\) )
        using \(d A x\) by force
    \{ fix \(y\)
        assume \(y\) within \(d\) of \(\left(T^{\prime} x\right)\)
        hence ( \(T y\) ) within \(d\) of ( \(T\left(T^{\prime} x\right)\) ) using assms(1) lemBall-

\section*{Translation by auto}
hence ( \(T y\) ) within \(d\) of \(x\) using To \(T^{\prime}\) by auto
hence (definedAt \(f(T y)) \wedge(\forall u v .(f(T y) u \wedge(\) asFunc \(A)\) \((T y) v) \longrightarrow\) \((\operatorname{sep} 2 v u) \leq(s q r e) * \operatorname{sep} 2(T y) x)\) using \(d\) by blast
hence (definedAt \(g y) \wedge(\forall u v \cdot(g y u \wedge(\) asFunc AO) \(y v) \longrightarrow\) ( sep2 \(v u) \leq(\) sqr e) * sep2 \((T y) x)\) using \(g A 0\) by auto
hence (definedAt \(g y) \wedge(\forall u v .(g y u \wedge(\) asFunc A0) \(y v) \longrightarrow\) ( sep2 v u ) \(\leq\left(\right.\) sqr e) \(*\) sep2 \(\left.y\left(T^{\prime} x\right)\right)\)
using transT' lemTranslationPreservesSep2[of \(\left.T^{\prime} T y x\right] \quad T^{\prime} o T\) by auto
\}
hence \(\exists d>0 . \forall y .\left(y\right.\) within \(d\) of \(\left.\left(T^{\prime} x\right)\right) \longrightarrow\)
(definedAt \(g y) \wedge(\forall u v \cdot(g y u \wedge(\) asFunc A0) \(y v) \longrightarrow\) ( sep2 vu) \(\leq\left(\right.\) sqr e) * sep2 \(\left.y\left(T^{\prime} x\right)\right)\)
using \(d\) by fast
\}
hence \(\operatorname{rtp} 3 d 2: \forall e>0 . \exists d>0 . \forall y .\left(y\right.\) within \(d\) of \(\left.\left(T^{\prime} x\right)\right) \longrightarrow\) \((\) definedAt \(g y) \wedge(\forall u v \cdot(g y u \wedge(\) asFunc A0) \(y v) \longrightarrow\) ( sep2 v \(u) \leq\left(\right.\) sqr e) * sep2 \(\left.y\left(T^{\prime} x\right)\right)\)
by auto
hence rtp3d: diffApprox (asFunc A0) \(g\left(T^{\prime} x\right)\) using rtp3d1 by fast
have rtp3: affineApprox \(A 0 g\left(T^{\prime} x\right)\) using rtp3a rtp3b rtp3c rtp3d by blast
thus ?thesis using \(A 0 g\) by fast qed
```

lemma lemAffineApproxRangeTranslation:
assumes translation T
and affineApprox $A f x$
shows affineApprox $(T \circ A)($ composeRel (asFunc $T) f) x$
proof -
define $A 0$ where $A 0: A 0=T \circ A$
define g where $g: g=$ composeRel (asFunc T) f
obtain T^{\prime} where $T^{\prime}:\left(\right.$ translation $\left.T^{\prime}\right) \wedge\left(\forall p q . T p=q \longleftrightarrow T^{\prime}\right.$
$q=p$)
using assms(1) lemInverseTrans[of $T]$ by auto

```
    have \(T o T^{\prime}: \forall p . T\left(T^{\prime} p\right)=p\) using \(T^{\prime}\) by force
    have \(T^{\prime} o T\) : \(\forall p . T^{\prime}(T p)=p\) using \(T^{\prime}\) by force
    obtain \(t\) where \(t: \forall p . T p=(p \oplus t)\) using assms(1) by auto
hence \(m k T: T=m k T r a n s l a t i o n ~ t ~ b y ~ a u t o ~\)
```

{fix pq
have T'
also have }···\longleftrightarrow(q\oplust)=p\mathrm{ using t by auto
also have ...\longleftrightarrowq=(p\oplus(origin}\ominust))\mathrm{ by force
finally have T}\mp@subsup{T}{}{\prime}p=q\longleftrightarrowq=(p\oplus(\mathrm{ origin }\ominust)) by force
hence T'}p=q\longleftrightarrowq=mkTranslation (origin \ominust) p by force
}
hence mkT':}\mp@subsup{T}{}{\prime}=mkTranslation (origin \ominust) by aut
hence transT': translation T' using lemMkTrans by blast

```
have funcF: isFunction \(f\) using assms(2) by auto hence rtp3a: isFunction \(g\) using \(g\) by auto
have aff A: affine \(A\) using assms(2) by auto hence rtp3b: affine \(A 0\)
using lemAffOfAffIsAff[ of A T] lemTranslationImpliesAffine[of T] A0 aff \(A \operatorname{assms}(1)\)
by blast
\(\{\) fix \(q\)
obtain \(p\) where \(p:\left(A p=T^{\prime} q\right) \wedge\left(\forall x . A x=T^{\prime} q \longrightarrow x=p\right)\)
using assms(2) by blast
hence \(T^{\prime} q=A p\) by auto
hence \(T(A p)=q\) using \(T^{\prime} T o T^{\prime}\) by auto
hence 1: \(A 0 p=q\) using \(A 0\) by auto
\(\{\) fix \(x\)
assume \(A 0 x=q\)
hence \(T(A x)=q\) using \(A 0\) by auto
hence \(T^{\prime}(T(A x))=T^{\prime} q\) by auto
hence \(A x=T^{\prime} q\) using \(T^{\prime} o T\) by auto
hence \(x=p\) using \(p\) by auto
\}
hence \(\forall x\). A0 \(x=q \longrightarrow x=p\) by auto
hence \(\exists p 0 .(A 0 p 0=q) \wedge(\forall x . A 0 x=q \longrightarrow x=p 0)\) using 1 by auto
\}
hence rtp3c: invertible A0 by auto
have diffApprox (asFunc A) \(f x\) using assms(2) by auto
hence \(d A x\) : (definedAt \(f x) \wedge\)
\[
(\forall \varepsilon>0 .(\exists \delta>0 \cdot(\forall y
\]
```

((y within δ of $x)$
$(($ definedAt $f y) \wedge(\forall u v \cdot(f y u \wedge($ asFunc $A) y v) \longrightarrow$
(sep2 $v u) \leq(s q r \varepsilon) * \operatorname{sep} 2 y x)))$)

```
    )) by blast
    hence rtp3d1: definedAt \(g x\) using \(g\) by auto
    \{ fix \(e\)
    assume epos: \(e>0\)
    then obtain \(d\) where \(d:(d>0) \wedge(\forall y\).
        ( \((y\) within \(d\) of \(x)\)
            \(\overrightarrow{((\text { definedAt } f y)} \wedge(\forall u v \cdot(f y u \wedge(\) asFunc \(A) y v) \longrightarrow\)
                \((\operatorname{sep2} v u) \leq(s q r e) * \operatorname{sep} 2 y x)))\) )
        using \(d A x\) by auto
    \{ fix \(y\)
        assume \(y\) within \(d\) of \(x\)
        hence (definedAt fy) \(\wedge(\forall u v .(f y u \wedge(\) asFunc \(A) y v) \longrightarrow\)
            ( sep2 \(v u) \leq(\) sqr e) * sep2 y \(x)\) using \(d\) by force
        hence (definedAt \(g y) \wedge(\forall u v .(f y u \wedge(\) asFunc \(A) y v) \longrightarrow\)
                ( sep2 vu) \(\leq(\) sqr e) * sep2 y \(x\) ) using \(g\) by force
            hence (definedAt \(g y) \wedge(\forall u v .(g y u \wedge(\) asFunc A0) \(y v) \longrightarrow\)
                ( sep2 vu) \(\leq(\) sqr e) * sep2 y \(x\) )
            using \(g\) A0 assms(1) lemBallTranslation by force
    \}
    hence \(\exists d>0 . \forall y .(y\) within \(d\) of \(x) \longrightarrow\)
                \((\) definedAt \(g\) y) \(\wedge(\forall u v .(g y u \wedge(\) asFunc A0) \(y v) \longrightarrow\)
                \((\operatorname{sep2} v u) \leq(s q r e) * \operatorname{sep} 2 y x)\)
        using \(d\) by force
\}
hence rtp3d2: \(\forall e>0 . \exists d>0 . \forall y .(y\) within \(d\) of \(x) \longrightarrow\)
                        \((\) definedAt \(g y) \wedge(\forall u v \cdot(g y u \wedge(\) asFunc A0) \(y v) \longrightarrow\)
                ( sep2 vu) \(\leq(s q r e) * \operatorname{sep2} y x)\)
    by auto
    hence rtp3d: diffApprox (asFunc A0) \(g x\) using rtp3d1 by auto
    hence rtp3: affineApprox A0 g x using rtp3a rtp3b rtp3c rtp3d by
auto
thus ?thesis using \(g A 0 m k T\) by best
qed
lemma lemAffineIdentity:
    assumes affine \(A\)
and \(\quad e>0\)
```

and $\quad \forall y .(y$ within e of $x) \longrightarrow(A y=y)$
shows $\quad A=i d$
proof -

```
obtain \(T L\) where \(T L\) : translation \(T \wedge\) linear \(L \wedge A=T \circ L\) using \(\operatorname{assms}(1)\) by auto
have \(x\) within \(e\) of \(x\) using assms(2) by auto hence xfixed: \(A x=x\) using assms(3) by auto
\(\{\operatorname{fix} p\)
define \(d\) where \(d: d=(p \ominus x)\)
then obtain \(a\) where \(a:(a>0) \wedge(\) norm2 \((a \otimes d)<\) sqr e) using assms(2) lemSmallPoints \([\) of ed] by auto
define \(p^{\prime}\) where \(p^{\prime}: p^{\prime}=((a \otimes d) \oplus x)\)
hence \(p^{\prime}\) fixed: \(A p^{\prime}=p^{\prime}\) using \(a \operatorname{assms}(3)\) lemSep2Symmetry by auto
have \(p^{\prime} x:\left(p^{\prime} \ominus x\right)=(a \otimes(p \ominus x))\) using \(p^{\prime} d\) by auto
hence \(\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)=(p \ominus x)\) using a lemScaleAssoc[of 1/a a \(p \ominus x]\) by auto
hence \(p: p=\left(\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right) \oplus x\right)\) by auto
hence \(L p=L\left(\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right) \oplus x\right)\) by auto
also have \(\ldots=\left(\left(L\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\right) \oplus(L x)\right)\) using TL by blast
also have \(\ldots=\left((L x) \oplus\left(L\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\right)\right)\) using add-commute by \(\operatorname{simp}\)
finally have \(A p=\left((A x) \oplus\left(L\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\right)\right)\) using TL lemTranslationSum by auto
hence 1: A \(p=\left(x \oplus\left(L\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\right)\right)\) using xfixed by auto
have \(\left(L\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\right)=\left((1 / a) \otimes\left(L\left(p^{\prime} \ominus x\right)\right)\right)\) using \(T L\) by blast
also have \(\ldots=\left((1 / a) \otimes\left(\left(L p^{\prime}\right) \ominus(L x)\right)\right)\) using \(T L\) by auto
also have \(\ldots=\left((1 / a) \otimes\left(\left(A p^{\prime}\right) \ominus(A x)\right)\right)\) using TL by auto
also have \(\ldots=\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\) using \(p^{\prime}\) fixed xfixed by auto
finally have \(\left(L\left((1 / a) \otimes\left(p^{\prime} \ominus x\right)\right)\right)=(p \ominus x)\) using \(p\) by auto
hence \(A p=(x \oplus(p \ominus x))\) using 1 by auto
hence \(A p=p\) using add-diff-eq by auto
\}
thus ?thesis by auto qed
end
end

\section*{21 Sublemma4}

This theory shows that functions with affine approximations are continuous where approximated.
```

theory Sublemma4
imports Affine AxTriangleInequality
begin

```

Our naming of lemmas, propositions, etc., is sometimes counterintuitive. This is because the proof follows a hand-written proof, and we need to maintain the link between the paper-based and Isabelle versions. We will specifically be discussing how we translated from one to the other in a forthcoming paper (under construction). In fact, sublemmas 1 and 2 were eventually found to be unnecessary during construction of the Isabelle proof, and so do not appear in this documentation.
```

class Sublemma4 = Affine + AxTriangleInequality
begin
lemma sublemma4:
assumes affineApprox A f x
shows}(\exists\delta>0.\forallp.(p\mathrm{ within }\delta\mathrm{ of }x)\longrightarrow(\mathrm{ definedAt f p))}\wedge(\mathrm{ cts f x)
proof -

```
    have diff: (definedAt \(f x) \wedge\)
        \((\forall \varepsilon>0 .(\exists \delta>0 .(\forall y\).
            ( ( \(y\) within \(\delta\) of \(x\) )
                (definedAt \(f y) \wedge(\forall u v .(f y u \wedge(\) asFunc \(A) y v) \longrightarrow\)
                \((\operatorname{sep} 2 v u) \leq(s q r \varepsilon) * \operatorname{sep} 2 y x))\) )
    )) using assms by simp
    have \(0<1\) by simp
    then obtain \(d\) where \(d:(d>0) \wedge(\forall y\).
        ( \((y\) within \(d\) of \(x)\)
                \(((\) definedAt \(f y) \wedge(\forall u v \cdot(f y u \wedge(\) asFunc A) \(y v) \longrightarrow\)
                ( sep2 vu \(\leq(\) sqr 1) * sep2 \(y\) x ))))) using diff by blast
    hence \(\forall p .(p\) within \(d\) of \(x) \longrightarrow(\) definedAt \(f p)\) by blast
    hence rtp1: \(\exists \delta>0 . \forall p .(p\) within \(\delta\) of \(x) \longrightarrow(\) definedAt \(f p)\)
        using \(d\) by auto
```

have funcF: isFunction f using assms by simp
have affA: affine A using assms by simp
have funcA: isFunction (asFunc A) using assms by simp
{ fix }\mp@subsup{x}{}{\prime
assume x': fx x '
hence ax: 和 = A x
using assms lemAffineEqualAtBase[of f A x] by blast
{ fix e
assume epos: e>0
hence e2pos: e/2 > 0 by simp

```
        obtain \(d 1\) where \(d 1:(d 1>0) \wedge(\forall y\).
            \(((y\) within d1 of \(x) \longrightarrow((A\) y) within (e/2) of \((A x))))\)
            using e2pos affA lemAffineContinuity by blast
    obtain \(d 2^{\prime}\) where \(d 2^{\prime}:\left(d 2^{\prime}>0\right) \wedge(\forall y\).
    \(\left(\left(y\right.\right.\) within d2' \(^{\prime}\) of \(\left.x\right) \longrightarrow((\) definedAt \(f y) \wedge\)
        \((\forall f y A y .(f y f y \wedge(\) asFunc \(A) y A y) \longrightarrow\)
        \((\operatorname{sep} 2\) Ay fy \() \leq(\operatorname{sqr}(e / 2)) * \operatorname{sep2} y x))))\)
        using e2pos assms by auto
    then obtain \(d 2\)
        where d2: \((d 2>0) \wedge\left(d 2<d 2^{\prime}\right) \wedge(s q r d 2<d 2) \wedge(d 2<1)\)
        using lemReducedBound[of d2] by auto
    define \(d\) where \(d: d=\min d 1 d 2\)
    have \(d d 1: d \leq d 1\) using \(d\) by auto
    have \(d d 2: d \leq d 2\) using \(d\) by auto
    have dpos: \(d>0\) using \(d 1 d 2 d\) by auto
    \(\left\{\right.\) fix \(y^{\prime}\)
        assume \(y^{\prime}: y^{\prime} \in\) applyToSet \(f(\) ball \(x d)\)
        then obtain \(y\) where \(y:(y \in\) ball \(x d) \wedge\left(f y y^{\prime}\right)\) by auto
        hence \(y\)-near-x: \(y\) within \(d\) of \(x\) using lemSep2Symmetry by
auto
    have \(y\) within d1 of \(x\) using lemBallInBall \(y\)-near- \(x\) dpos dd1
        by auto
            hence dist1: ( \(A\) y) within (e/2) of ( \(A x\) ) using d1 by auto
            have \(y d 2^{\prime} x: y\) within \(d 2^{\prime}\) of \(x\) using lemBallInBall \(y\)-near- \(x\)
                dpos d2 dd2 by auto
    hence \(\forall f y A y .(f y f y \wedge(\) asFunc \(A) y A y) \longrightarrow\)
( sep2 Ay fy \(\leq(\operatorname{sqr}(e / 2)) * \operatorname{sep2} y x)\)
using \(d 2^{\prime}\) by auto
hence conc2: sep2 (Ay) \(y^{\prime} \leq(\operatorname{sqr}(e / 2)) *\) sep2 \(y x\) using \(y\) by auto
have \(y\) within d2 of \(x\) using lemBallInBall \(y\)-near-x dpos d2 dd2 by auto
hence \(y x 1: y\) within 1 of \(x\) using lemBallInBall d2 by auto
have \(\operatorname{sqr}(e / 2)>0\) using e2pos lemSqrMonoStrict[of 0 e/2] by auto
hence \((\operatorname{sqr}(e / 2)) * \operatorname{sep} 2 y x<\operatorname{sqr}(e / 2)\)
using mult-strict-left-mono[of sep2 y x 1 sqr (e/2)]
lemNorm2NonNeg[of \(y \ominus x] y x 1\)
by auto
hence dist2: sep2 (A y) \(y^{\prime}<\operatorname{sqr}(e / 2)\) using conc2 by auto
define \(p\) where \(p: p=(A x)\)
define \(q\) where \(q: q=(A y)\)
define \(r\) where \(r: r=y^{\prime}\)
have tri: axTriangleInequality \((q \ominus p)(r \ominus q)\)
using AxTriangleInequality by blast
have Dist1: \(p\) within (e/Z) of \(q\)
using dist1 \(p\) q lemSep2Symmetry by auto
have Dist2: \(r\) within ( \(e / 2\) ) of \(q\)
using dist2 \(q\) r lemSep2Symmetry by auto
have \(r\) within \(((e / 2)+(e / 2))\) of \(p\)
using e2pos Dist1 Dist2 tri
lemDistancesAdd[of q pre/2e/2]
by blast
hence \(r\) within \(e\) of \(p\) using lemSumOfTwoHalves by auto
hence \(y^{\prime} \in\) ball \(x^{\prime} e\) using \(p r\) ax lemSep2Symmetry by auto \}
hence \(\exists d>0\). applyToSet \(f(\) ball \(x d) \subseteq\left(\right.\) ball \(\left.x^{\prime} e\right)\) using dpos by auto
\}
hence \(\left(\forall e>0 . \exists d>0\right.\). applyToSet \(f(\) ball \(x d) \subseteq\left(\right.\) ball \(\left.\left.x^{\prime} e\right)\right)\)
by auto
\}
hence \(\forall x^{\prime} .\left(\begin{array}{ll}f & \left.x^{\prime}\right) \longrightarrow(\forall e>0 . \exists d>0 \text {. applyToSet } f(\text { ball } x d) \subseteq \\ \hline\end{array}\right.\) (ball \(\left.x^{\prime} e\right)\) )
by auto
hence rtp2: cts \(f x\) by simp
thus ?thesis using rtp1 by auto qed

\section*{end}
end

\section*{22 MainLemma}

This theory establishes conditions under which a function maps tangent lines to tangent lines.
```

theory MainLemma
imports Sublemma3 Sublemma4
begin

```
class MainLemma \(=\) Sublemma3 + Sublemma 4
begin
lemma lemMainLemmaBasic:
assumes tgt: tangentLine \(l\) wl origin
and injf: injective \(f\)
and affapp: affineApprox A forigin
and f00: \(f\) origin origin
and ctsf' 0 : cts (invFunc f) origin
and affine: applyAffineToLine A ll'
shows tangentLine \(l^{\prime}\) (applyToSet \(f w l\) ) origin
proof -
define goal1 where
goal1: goal1 \(\equiv\) origin \(\in(\) applyToSet \(f w l)\)
define goal2 where
goal2: goal2 \(\equiv\) onLine origin \(l^{\prime}\)
define goal3 where
goal3: goal3 \(\equiv\) accPoint origin \((\) applyToSet \(f w l)\)
define subgoal4a where subgoal4a: subgoal4 \(a \equiv\left(\lambda p^{\prime}\right.\). onLine \(\left.p^{\prime} l^{\prime}\right)\)
define subgoal4b where subgoal4b: subgoal \(4 b \equiv\left(\lambda p^{\prime} \cdot p^{\prime} \neq\right.\) origin \()\)
define subgoal4c1 where
subgoal4c1: subgoal4c1 \(\equiv\left(\lambda p^{\prime} d e\right.\).
\(\left(\forall y^{\prime} \in(\right.\) applyToSet \(f w l) \cdot\left(y^{\prime}\right.\) within \(d\) of origin \() \wedge\left(y^{\prime} \neq\right.\) origin \()\)
\(\longrightarrow\left(\exists r\right.\). (onLine \(r\left(\right.\) lineJoining origin \(\left.\left.y^{\prime}\right)\right) \wedge\left(r\right.\) within e of \(\left.\left.\left.\left.p^{\prime}\right)\right)\right)\right)\)
define subgoal4c where
subgoal4c: subgoal4 \(c \equiv\left(\lambda p^{\prime} . \forall e>0 . \exists d>0\right.\). subgoal4c1 \(\left.p^{\prime} d e\right)\)
define goal4 where
```

 goal4:goal4 \equiv(\exists\mp@subsup{p}{}{\prime}.(\mathrm{ subgoal4a p})\wedge(subgoal4b p
 p'))
have GOAL: goal1 ^ goal2 ^ goal3 ^ goal4
\longrightarrow tangentLine l' (applyToSet f wl) origin
using goal1 goal2 goal3 goal4 subgoal4a subgoal4b subgoal4c1 sub-
goal4c
by force

```
have affA: affine \(A\) using affapp by auto
then obtain \(T L\) where \(T L\) : translation \(T \wedge\) linear \(L \wedge A=T \circ L\) by auto
then obtain \(t\) where \(t: \forall u . T u=(u \oplus t)\) by auto
define Tinv where Tinv: Tinv \(=\) mkTranslation (origin \(\ominus t\) )
hence transTinv: translation Tinv using lemMkTrans by blast
have linel: isLine l using tgt by auto
hence linel': isLine l'
using affA affline lemAffineOfLineIsLine
by auto
have funcF: isFunction \(f\) using affapp by auto
have A00: A origin \(=\) origin
using lemAffineEqualAtBase[of f A origin] affapp f00
by auto
have \(A\) origin \(=((L\) origin \() \oplus t)\) using \(T L t\) by auto
also have \(\ldots=(\) origin \(\oplus t)\) using \(T L\) by auto
finally have origin \(=t\) using A00 by auto
hence \(\forall p\). Tp=p using \(t\) by auto
hence \(T=i d\) by auto
hence \(A=L\) using \(T L\) by auto
hence \(\operatorname{lin} A\) : linear \(A\) using \(T L\) by auto
have ((invFunc \(f)\) origin origin \()\)
\(\wedge(\forall x .((\) invFunc \(f)\) origin \(x) \longrightarrow(\forall \varepsilon>0 . \exists \delta>0\).
\((\) applyToSet \((\) invFunc \(f)(\) ball origin \(\delta)) \subseteq\) ball \(x \varepsilon))\)
using f00 ctsf'0 by auto
```

hence ctsfinv: (\forall\varepsilon>0.\exists\delta>0.
(applyToSet (invFunc f)(ball origin \delta))\subseteq ball origin \varepsilon)
by blast

```
have ctsA: \(\forall x . \forall \varepsilon>0 . \exists \delta>0 . \forall p\).
    \((p\) within \(\delta\) of \(x) \longrightarrow((A p)\) within \(\varepsilon\) of \((A x))\)
    using aff A lemAffineContinuity by auto
have tgt1: origin \(\in w l\) using tgt by auto
have tgt2: onLine origin \(l\) using tgt by auto
have tgt3: \(\forall \varepsilon>0 . \exists q \in\) wl. \((\) origin \(\neq q) \wedge(\) inBall \(q \varepsilon\) origin \()\)
    using tgt by auto
have sub4: \((\exists \delta>0 . \forall p\). ( \(p\) within \(\delta\) of origin \()\)
        \(\longrightarrow(\) definedAt \(f p)) \wedge(\) cts \(f\) origin \()\)
    using affapp sublemma4[of \(f\) A origin] by auto
    hence ctsfx: \((\forall \varepsilon>0 . \exists \delta>0 .(\) applyToSet \(f(\) ball origin \(\delta)) \subseteq\) ball
origin \(\varepsilon\) )
    using f00 by auto
    obtain ddef where ddef: \((\) ddef \(>0) \wedge\)
                            \((\forall p .(p\) within ddef of origin \() \longrightarrow(\) definedAt \(f\)
p))
    using sub4 by auto
have rtp 1: goal1 using tgt1 f00 goal1 by auto
have \(l^{\prime}\)-from-l: \(l^{\prime}=\) applyToSet (asFunc A) \(l\)
using tgt affline lemAffineOfLineIsLine by auto
have (asFunc A) origin origin using \(\operatorname{lin} A\) by auto
hence rtp2: goal2 using \(l^{\prime}\)-from-l tgt2 affline goal2 by auto

\section*{\(\{\) fix \(e\)}
assume epos: \(e>0\)
then obtain \(d d^{\prime}\)
where \(d d^{\prime}:\left(d d^{\prime}>0\right) \wedge\left(\left(\right.\right.\) applyToSet \(f\left(\right.\) ball origin \(\left.\left.d d^{\prime}\right)\right) \subseteq\) ball
```

origin e)
using ctsfx by auto
define }dd\mathrm{ where }dd:dd=m\mathrm{ min }d\mp@subsup{d}{}{\prime}dde
hence ddpos: dd > 0 using dd' ddef by simp
then obtain q}\mathrm{ where q: (q|wl)^(origin }\not=q)\wedge(q\mathrm{ within dd
of origin)
using tgt3 by auto
have }dd\leqddef using dd by aut
hence q within ddef of origin
using ddpos q lemBallInBall[of q origin dd ddef] by auto
then obtain }\mp@subsup{q}{}{\prime}\mathrm{ where }\mp@subsup{q}{}{\prime}:(fq\mp@subsup{q}{}{\prime})\mathrm{ using ddef by auto
hence fact3a: q}\mp@subsup{q}{}{\prime}\in(\mathrm{ applyToSet f) wl using q by auto
have q}\not=\mathrm{ origin using q by auto
hence fact3b: q}\mp@subsup{q}{}{\prime}\not=\mathrm{ origin using injf q}\mp@subsup{q}{}{\prime}f00\mathrm{ by auto
have }dd\leqd\mp@subsup{d}{}{\prime}\mathrm{ using }dd\mathrm{ by auto
hence q}\in\mathrm{ ball origin dd'
using q lemBallInBall[of q origin dd dd] ddpos by auto
hence }\mp@subsup{q}{}{\prime}\in\mathrm{ ball origin e using dd' }\mp@subsup{q}{}{\prime}\mathrm{ by auto
hence fact3c: q' within e of origin using lemSep2Symmetry by
auto
hence }\exists\mp@subsup{y}{}{\prime}\in((\mathrm{ applyToSet f) wl). (origin }\not=\mp@subsup{y}{}{\prime})\wedge(\mp@subsup{y}{}{\prime}\mathrm{ within e of
origin)
using fact3a fact3b q' by auto
}
hence rtp3: goal3 using goal3 by auto

```
```

obtain P where P : (onLine $P l) \wedge(P \neq$ origin $) \wedge$

```
obtain \(P\) where \(P\) : (onLine \(P l) \wedge(P \neq\) origin \() \wedge\)
        \((\forall \varepsilon>0 . \exists \delta>0 . \forall y \in w l\). \((\)
        \((\forall \varepsilon>0 . \exists \delta>0 . \forall y \in w l\). \((\)
            \(((y\) within \(\delta\) of origin \() \wedge(y \neq\) origin \())\)
            \(((y\) within \(\delta\) of origin \() \wedge(y \neq\) origin \())\)
            \(\longrightarrow\)
            \(\longrightarrow\)
        \((\exists r .((\) onLine \(r(\) lineJoining origin \(y)) \wedge(r\) within \(\varepsilon\) of \(P)))))\)
        \((\exists r .((\) onLine \(r(\) lineJoining origin \(y)) \wedge(r\) within \(\varepsilon\) of \(P)))))\)
    using tgt by auto
    using tgt by auto
define \(n P\) where \(n P: n P=\) norm \(P\)
define \(n P\) where \(n P: n P=\) norm \(P\)
have \(P \neq\) origin using \(P\) by auto
have \(P \neq\) origin using \(P\) by auto
hence \(n\) Ppos: \(n P>0\) using \(P n P\) lemNotOriginImpliesPositiveNorm \([o f\)
hence \(n\) Ppos: \(n P>0\) using \(P n P\) lemNotOriginImpliesPositiveNorm \([o f\)
\(P]\)
\(P]\)
    by auto
    by auto
define \(a\) where \(a: a=1 / n P\)
define \(a\) where \(a: a=1 / n P\)
hence apos: \(a>0\) using \(n P p o s\) by auto
```

hence apos: $a>0$ using $n P p o s$ by auto

```
define \(p\) where \(p: p=(a \otimes P)\)
\{ assume \(p=\) origin
hence \((a \otimes P)=\) origin using \(p\) by auto
hence \((n P \otimes(a \otimes P))=(n P \otimes\) origin \()\) by simp
hence \(P=\) origin using a apos lemScaleAssoc by auto
\}
hence \(p\)-not- \(0: p \neq\) origin using \(P\) by auto
define \(p^{\prime}\) where \(p^{\prime}: p^{\prime}=A p\)
obtain \(A^{\prime}\) where \(A^{\prime}:\left(\right.\) affine \(\left.A^{\prime}\right) \wedge\left(\left(\right.\right.\) affine \(\left.A^{\prime}\right) \wedge(\forall p q \cdot A p=q\)
\(\left.\longleftrightarrow A^{\prime} q=p\right)\) )
using affapp lemInverseAffine[of \(A\) ] by auto
hence \(A^{\prime}\) origin \(=\) origin \(\wedge A^{\prime} p^{\prime}=p\) using \(A 00 p^{\prime}\) by blast
hence \(p^{\prime}\)-not-0: \(p^{\prime} \neq\) origin using \(p\)-not-0 by auto
have \((\) onLine origin \(l) \wedge(\) onLine \(P l) \wedge(\) origin \(\neq P)\) using \(P\) tgt2 by auto
hence \(l\)-is-0P: \(l=\) lineJoining origin \(P\)
using lemLineAndPoints[of origin \(P l]\) by auto
have \(p=(\) origin \(\oplus(a \otimes(P \ominus\) origin \()))\) using \(p\) by auto
hence onLine \(p\) (lineJoining origin \(P\) ) by blast
hence \(p\)-on-l: onLine \(p l\) using \(l\)-is- \(0 P\) by auto
moreover have \(l^{\prime}=\) applyToSet (asFunc \(A\) ) \(l \wedge\) isLine \(l^{\prime}\)
using lemAffineOfLineIsLine \(\left[\begin{array}{lll}\text { of } & l & A\end{array} l^{\prime}\right.\) ]
affline
by auto
ultimately have \(p^{\prime}\)-on-l': onLine \(p^{\prime} l^{\prime}\) using \(p\)-on-l \(p^{\prime}\) by auto
have \(p=(a \otimes P)\) using \(p\) by auto
hence norm2 \(p=(\) sqr a) \(*(\) norm2 \(P)\)
using lemNorm2OfScaled \([\) of a \(P\) ] by auto
hence norm2 \(p=(\) sqr \(a) *(s q r n P)\)
using \(n P\) lemNormSqrIsNorm2 \([\) of \(P]\) by auto
hence np1: norm2 \(p=1\) using a nPpos apos mult-assoc mult-commute by auto
have (onLine pl) \(\wedge(\) norm2 \(p=1) \wedge(\) tangentLine \(l\) wl origin \()\)
using \(p\)-on-l np1 tgt by auto
hence sub3: \(\forall \varepsilon>0 . \exists \delta>0 . \forall y n y .(\)
\(((y\) within \(\delta\) of origin \() \wedge(y \neq\) origin \() \wedge(y \in w l) \wedge(\) norm \(y=\)
\(n y)\) )
\[
((((1 / n y) \otimes y) \text { within } \varepsilon \text { of } p) \vee(((-1 / n y) \otimes y) \text { within } \varepsilon \text { of } p)))
\]
using sublemma3[of l pwl]
by auto
\(\{\) fix \(e\)
assume epos: \(e>0\)
define \(e 1\) where \(e 1: e 1=n P * e\)
hence e1pos: e1 \(>0\) using nPpos epos by auto
define \(e 2\) where \(e 2\) : \(e 2=e / 2\)
hence e2pos: e2 \(>0\) using epos by auto
obtain \(\operatorname{dctsA0}\) where \((d c t s A 0>0) \wedge(\forall q\).
\((q\) within dctsA0 of origin \() \longrightarrow((A q)\) within e2 of \((A\) origin \()))\)
using ctsA e2pos A00 by blast
hence dctsA0: \((d c t s A 0>0) \wedge(\forall q\).
\((q\) within dctsA0 of origin \() \longrightarrow((A q)\) within e2 of origin \())\)
using \(A 00\) by auto
obtain \(d c t s A p\) where \(d c t s A p:(d c t s A p>0) \wedge(\forall q\). \((q\) within dctsAp of \(p) \longrightarrow((A q)\) within e2 of \((A p)))\)
using ctsA e2pos by blast
obtain dsub where dsub: \((d s u b>0) \wedge(\forall y n y\).
\(((y\) within dsub of origin \() \wedge(y \neq\) origin \() \wedge(y \in w l) \wedge(\) norm \(y\)
\(=n y))\)
\[
\begin{aligned}
& (((1 / n y) \otimes y) \text { within }(d c t s A p) \text { of } p) \\
& \vee(((-1 / n y) \otimes y) \text { within }(\text { dcts } A p) \text { of } p))
\end{aligned}
\]
using apos dctsAp sub3 by blast
obtain daff where daff: \((\) daff \(>0) \wedge(\forall y\).
( ( \(y\) within daff of origin)
\(\longrightarrow\)
\(((\) definedAt \(f y) \wedge(\forall f y A y .(f y f y \wedge(\) asFunc \(A)\) y \(A y) \longrightarrow\) \((\) sep2 \(A y f y) \leq(\) sqr e2 \() *\) sep2 \(y\) origin \()))\) )
using e2pos affapp by auto
define \(d m i n\) where \(d m i n: d m i n=\min d s u b d a f f\)
hence dminsub: dmin \(\leq d s u b\) by auto
have dminaff: dmin \(\leq\) daff using dmin by auto
have dminpos: dmin \(>0\) using dmin dsub daff by auto
obtain dfinv
where dfinv: \((d f i n v>0)\)
\(\wedge((\) applyToSet \((\) invFunc \(f)(\) ball origin dfinv \())\)
using ctsfinv \({ }^{-}\)dminpos by auto
\(\left\{\operatorname{fix} y^{\prime}\right.\)
assume \(y^{\prime}:\left(y^{\prime} \in(\right.\) applyToSet \(\left.f w l)\right) \wedge\left(y^{\prime} \neq\right.\) origin \()\)
then obtain \(y\) where \(y:\left(f y y^{\prime}\right) \wedge(y \in w l)\) by auto
have \(y\)-not- \(0: y \neq\) origin using \(y y^{\prime}\) f00 funcF by auto
obtain \(n y\) where \(n y\) : norm \(y=n y\) by auto
hence nypos: \(n y>0\)
using \(y\)-not-0 lemNotOriginImpliesPositiveNorm[of \(y] n y\) by
auto
define \(p 1\) where \(p 1: p 1=\left((1 / n y) \otimes y^{\prime}\right)\)
define \(q 1\) where \(q 1: q 1=(A((1 / n y) \otimes y))\)
define \(p 2\) where \(p 2: p 2=\left((-1 / n y) \otimes y^{\prime}\right)\)
define \(q 2\) where \(q 2: q 2=(A((-1 / n y) \otimes y))\)
define \(r\) where \(r: r=(A p)\)
assume \(y^{\prime}\) : : ( \(y^{\prime}\) within dfinv of origin)
hence \(y^{\prime} \in\) ball origin dfinv using lemSep2Symmetry by auto
hence \(y \in\) applyToSet (invFuncf) (ball origin dfinv) using \(y\) by auto
hence \(y d m i n: y \in\) ball origin dmin using dfinv by auto
have \(d\) min \(\leq\) dsub using \(d m i n\) by auto
hence \(y d s u b\) : \(y\) within dsub of origin using lemBallInBall[of y origin dmin dsub] dminpos ydmin by auto
hence \((y\) within dsub of origin \() \wedge(y \neq\) origin \()\)
\(\wedge(y \in w l) \wedge(\) norm \(y=n y)\)
using ydsub \(y\)-not-0 \(y\) ny by force
hence cases: \((((1 / n y) \otimes y)\) within dctsAp of \(p)\) \(\vee(((-1 / n y) \otimes y)\) within dctsAp of \(p)\)
using dsub by blast
hence casesA: (q1 within e2 of \(r) \vee(q 2\) within e2 of \(r)\) using dctsAp q1 q2 \(r\) by auto
have dmin \(\leq\) daff using dmin by auto
hence \(y\) within daff of origin
using lemBallInBall[of y origin dmin daff] dminpos ydmin by auto
hence (definedAt \(f y) \wedge(\forall f y A y .(f y f y \wedge(\) asFunc \(A) y A y)\)
( sep2 \(A y f y) \leq(s q r e 2) *\) sep2 \(y\) origin \()\)
using daff by auto
hence \(\operatorname{sep2}\left(\begin{array}{ll}A & y\end{array}\right) y^{\prime} \leq(s q r n y) *(s q r ~ e 2) ~\)
using y ny lemNormSqrIsNorm2 mult-commute by auto
hence sep2 \(\left(A\right.\) y) \(y^{\prime} \leq s q r(n y * e \mathcal{Z})\) using lemSqrMult[of ny e2] by auto
hence sep2 \(((1 / n y) \otimes(A y))\left((1 / n y) \otimes y^{\prime}\right) \leq\) sqr e2 using nypos
lemScaleBallAndBoundary[of A y \(\left.y^{\prime} n y * e 2 ~ 1 / n y\right]\)
by auto
hence part1: sep2 \((A((1 / n y) \otimes y))\left((1 / n y) \otimes y^{\prime}\right) \leq\) sqr e2 using \(\operatorname{lin} A\) lemLinearProps \([\) of \(A 1 / n y y]\) by auto

\section*{\{}
assume case1: q1 within e2 of \(r\)
have \(p q\) : sep2 \(p 1 q 1 \leq s q r e 2\)
using part1 lemSep2Symmetry[of p1 q1] p1 q1 by auto
hence rq: sep2 r q1 < sqr e2 using case1 lemSep2Symmetry
\(r q 1\) by auto
\{ define \(p p\) where \(p p: p p=(q 1 \ominus p 1)\)
define \(q q\) where \(q q: q q=(r \ominus q 1)\)
have tri1: axTriangleInequality \(p p q q\) using AxTriangleInequality by simp
hence \(r\) within \((e 2+e 2)\) of \(p 1\)
using \(p p\) qq pq rq e2pos lemDistancesAddStrictR[of q1 \(p 1 r]\) by blast
\}
hence done1: p1 within e of \(r\) using lemSep2Symmetry lemSumOfTwoHalves e2 by auto
have \(p 1=\left(\right.\) origin \(\oplus\left((1 / n y) \otimes\left(y^{\prime} \ominus\right.\right.\) origin \(\left.\left.)\right)\right)\) using \(p 1\) by auto hence onLine p1 (lineJoining origin \(y^{\prime}\) ) by fastforce
hence onLine p1 (lineJoining origin \(\left.y^{\prime}\right) \wedge\left(p 1\right.\) within e of \(\left.p^{\prime}\right)\) using \(p^{\prime} r\) done1 by blast
\}
hence case1: ( \(q 1\) within e2 of \(r\) )
\(\longrightarrow\left(\right.\) onLine \(p 1\) (lineJoining origin \(\left.y^{\prime}\right) \wedge(p 1\) within e of \(\left.p^{\prime}\right)\) )
by blast
\{
assume case2: q2 within e2 of \(r\)
have \(p 2=\left(((-1) *(1 / n y)) \otimes y^{\prime}\right)\) using \(p 2\) by auto
```

 hence p2': p2 = ((-1)\otimesp1) using lemScaleAssoc[of -1 1/ny
 y] p1 by auto
have q2 = (A (((-1)*(1/ny))\otimesy)) using q2 by auto
hence q2q1: q2 = ((-1)\otimesq1)
using linA lemLinearProps[of A -1 ((1/ny)\otimesy)] q1
by auto
hence sep2 p2 q2 = sep2 p1 q1 using lemScaleSep2[of - 1]
p2' by auto
hence pq: sep2 p2 q2 \leq sqr e2
using part1 lemSep2Symmetry[of p1 q1] p1 q1 by auto
hence rq: sep2 r q2 < sqr e2 using case2 lemSep2Symmetry
r q2 by auto
{ define pp where pp: pp=(q2\ominusp2)
define qq where qq: qq = (r\ominusq2)
have tri2: axTriangleInequality pp qq using AxTriangleInequal-
ity by simp
hence r within (e2 + e2) of p2
using pp qq pq rq e2pos lemDistancesAddStrictR[of q2 p2 r]
by blast
}
hence p2 within e of r using lemSep2Symmetry lemSumOfT-
woHalves e2 by auto
hence done2: p2 within e of p}\mp@subsup{p}{}{\prime}\mathrm{ using r p' by simp
have p2 = (origin }\oplus((-1/ny)\otimes(\mp@subsup{y}{}{\prime}\ominus\mathrm{ origin })))\mathrm{ using p2 by
auto
hence onLine p2 (lineJoining origin y') by blast
hence onLine p2 (lineJoining origin y') ^(p2 within e of p
using p' done2 by blast
}
hence case2: (q2 within e2 of r)
\longrightarrow (onLine p2 (lineJoining origin y y ^ { \prime }) \wedge (p 2 ~ w i t h i n ~ e ~ o f ~ p '))
by blast
hence \existsr.(onLine r (lineJoining origin }\mp@subsup{y}{}{\prime}))\wedge(r\mathrm{ within e of p
using casesA case1 case2 by blast
hence ((}\mp@subsup{y}{}{\prime}\in\mathrm{ applyToSet f wl)}\wedge(\mp@subsup{y}{}{\prime}\mathrm{ within dfinv of origin)}\wedge(\mp@subsup{y}{}{\prime
\not= origin))
\longrightarrow (\exists r . (onLine r (lineJoining origin y')) \wedge (r within e of p
using dfinv by blast
}
hence subgoal4c1 p' dfinv e using dfinv subgoal4c1 by blast
hence \existsd>0 . subgoal4c1 p'd e using dfinv by auto
}
hence }\foralle>0.\existsd>0.subgoal4c1 p' d e by aut

```
```

hence subgoal4c p^{\prime} using subgoal4c subgoal4c1 by force
hence (subgoal4a $\left.p^{\prime}\right) \wedge\left(\right.$ subgoal4b $\left.^{\prime} p^{\prime}\right) \wedge\left(\right.$ subgoal4c $\left.^{\prime} p^{\prime}\right)$
using p^{\prime}-not-0 p^{\prime}-on-l' subgoal4a subgoal4b by auto

```
    hence \(\operatorname{rtp}_{4}\) : goal4 using goal4 subgoal4a subgoal4b subgoal4c by blast
    thus ?thesis using rtp1 rtp2 rtp3 GOAL by fastforce
qed
lemma lemMainLemmaOrigin:
assumes tgtx: tangentLine lwl x
and injf: injective \(f\)
and affappx: affineApprox \(A f x\)
and \(\quad f x 0: \quad f x\) origin
and ctsf'0: cts (invFunc f) origin
and affline: applyAffineToLine A ll'
shows tangentLine l' (applyToSet \(f w l\) ) origin
proof -
define \(T\) where \(T: T=m k T r a n s l a t i o n ~ x\)
hence transT: translation \(T\) using lemMkTrans by blast
define \(T^{\prime}\) where \(T^{\prime}: T^{\prime}=m k T r a n s l a t i o n ~(o r i g i n ~ \ominus x)\)
hence trans \(T^{\prime}\) : translation \(T^{\prime}\) using lemMkTrans by blast
have \(T T^{\prime}: \forall p q . T p=q \longleftrightarrow T^{\prime} q=p\) using \(T T^{\prime}\) by auto
define \(g\) where \(g: g=\) composeRel \(f\) (asFunc \(T\) )
define \(l 0\) where \(l 0: l 0=\) applyToSet (asFunc \(T^{\prime}\) ) \(l\)
define \(w l 0\) where \(w l 0: w l 0=\) applyToSet (asFunc \(\left.T^{\prime}\right) w l\)
define \(A 0\) where \(A 0: A 0=A \circ T\)
have \(T^{\prime} x=\) origin using \(T^{\prime}\) by auto
hence rtp1: tangentLine l0 wl0 origin
using \(l 0\) wl0 trans \(T^{\prime}\) tgtx lemTangentLineTranslation \(\left[o f ~ T T^{\prime} x \mathrm{wl} l\right]\) by auto
have rtp2: injective \(g\)
using transT lemTranslationInjective[of T] lemInjOfInjIsInj[of asFunc \(T\) f]
injf \(g\)
by blast
have \(T^{\prime} x=\) origin using \(T^{\prime}\) by auto
hence rtp3: affineApprox A0 g origin
using transT TT'
lemAffineApproxDomainTranslation[of \(\left.T f A x T^{\prime}\right]\)
affappx g AO
by auto
have \((T\) origin \(=x) \wedge(f x\) origin \()\) using \(T f 0\) by auto hence \(\exists x .((\) asFunc \(T)\) origin \(x) \wedge(f x\) origin \()\) by auto hence rtp \(4: g\) origin origin using \(g T f x 0\) by auto
define \(h\) where \(h: h=(\) invFunc (asFunc T) \()\)
hence invcomp: composeRel \(h\) (invFunc \(f\) ) \(=\) invFunc \(g\) using lemInverseComposition \([\) of \(g\) asFunc \(T f] g\) by auto
\(\{\) fix \(p r\)
have inv1: invFunc (asFunc T) \(p r \longleftrightarrow\left(T^{\prime} \circ T\right) r=T^{\prime} p\) using trans \(T^{\prime}\) lemTranslationInjective by auto
henceinvFunc (asFunc T) pr \(\longleftrightarrow r=T^{\prime} p\) using \(T T^{\prime}\) lemInverseTranslation \(\left[\right.\) of \(\left.T x T^{\prime}\right]\) by auto
\}
hence \(h T: h=\) asFunc \(T^{\prime}\) using \(h\) by force
hence \(\forall y\). cts \(h y\)
using transT' lemTranslationImpliesAffine[of \(\left.T^{\prime}\right]\)
lemAffineIsCts[of T]
by blast
hence ctsh: \(\forall y\). (invFunc f) origin \(y \longrightarrow c t s h y\) by auto
define \(g^{\prime}\) where \(g^{\prime}: g^{\prime}=\) composeRel \(h(\) invFunc \(f\) )
hence invg: \(g^{\prime}=\) invFunc \(g\) using \(h T\) invcomp by simp
have cts \(g^{\prime}\) origin
using ctsf'0 ctsh lemCtsOfCtsIsCts[of invFunc forigin h] \(g^{\prime}\) by auto
hence rtp5: cts (invFunc g) origin using invg by auto
have affA: affine \(A\) using \(\operatorname{assms}(3)\) by auto
hence rtp3b: affine A0
using lemAffOfAffIsAff[of T A] lemTranslationImpliesAffine[of T] A0 aff A transT
by auto
define \(l 0^{\prime}\) where \(l 0^{\prime}: l 0^{\prime}=\) applyToSet (asFunc AO) \(l 0\) hence rtp6: applyAffineToLine AO l0 l0'
using rtp1 rtp3b lemAffineOfLineIsLine[of l0 A0 l0]
by auto
```

have (tangentLine l0 wl0 origin) \longrightarrow (
(injective g) \longrightarrow
(affineApprox A0 g origin) \longrightarrow
(g origin origin $) \longrightarrow$
((cts (invFunc g) origin) \longrightarrow
((applyAffineToLine A0 l0 l0') \longrightarrow
(tangentLine l0' (applyToSet g wl0) origin))))
using lemMainLemmaBasic[of wl0 l0 g A0 l0 ']
by blast

```
hence basic: (tangentLine \(10^{\prime}\) (applyToSet g wl0) origin)
    using rtp1 rtp2 rtp3 rtp4 rtp5 rtp6 by meson
obtain \(A^{\prime}\) where \(A^{\prime}: \forall p q . A p=q \longleftrightarrow A^{\prime} q=p\)
    using affappx by metis
have \(T o T^{\prime}: T \circ T^{\prime}=i d\) using \(T T^{\prime}\) by auto
have \(A 0 \circ T^{\prime}=(A \circ T) \circ T^{\prime}\) using \(A 0\) by auto
also have \(\ldots=A \circ\left(T \circ T^{\prime}\right)\) by auto
finally have \(A 0 T^{\prime}: A 0 \circ T^{\prime}=A\) using \(T o T^{\prime}\) by auto
have \(l 0^{\prime}=\) applyToSet (asFunc \(\left.\left(A 0 \circ T^{\prime}\right)\right) l\) using \(l 0 l 0^{\prime}\) by auto
hence \(l 0^{\prime}=\) applyToSet (asFunc A) \(l\) using \(A 0 T^{\prime}\) by auto
hence \(l 0^{\prime} l: l 0^{\prime}=l^{\prime}\) using tgtx affline lemAffineOfLineIsLine[of \(l\) A
\(l\) ] by auto
have applyToSet \(g w l 0=\) applyToSet \(\left(\operatorname{composeRel} f\left(\operatorname{asFunc}\left(T \circ T^{\prime}\right)\right)\right)\)
wl using wl0 \(g\) by auto
    also have \(\ldots=\) applyToSet (composeRel \(f\) (asFunc id)) wl using
To T' by auto
    also have \(\ldots=\) applyToSet \(f\) wl by auto
    finally have applyToSet \(g\) wl0 \(=\) applyToSet \(f w l\) by auto
    hence tangentLine \(l^{\prime}\) (applyToSet \(f w l\) ) origin using basic \(l 0^{\prime} l\) by
auto
    thus ?thesis by auto
lemma lemMainLemma:
assumes tgtx: tangentLine \(l\) wl \(x\)
and injf: injective \(f\)
and affappx: affineApprox \(A f x\)
and fxy: fxy
and ctsf'y: cts (invFunc f) y
and affline: applyAffineToLine A ll'
shows tangentLine \(l^{\prime}(\) applyToSet \(f w l) y\)
proof -
define \(T y\) where \(T y: T y=m k T r a n s l a t i o n ~ y ~\)
hence transTy: translation Ty using lemMkTrans by auto
define \(T y^{\prime}\) where \(T y^{\prime}: T y^{\prime}=m k\) Translation (origin \(\ominus y\) )
hence transTy': translation \(T y^{\prime}\) using lemMkTrans by blast
define \(g\) where \(g: g=\) composeRel (asFunc Ty') \(f\)
define \(A y\) where \(A y: A y=T y^{\prime} \circ A\)
define \(l y^{\prime}\) where \(l y^{\prime}: l y^{\prime}=\) applyToSet (asFunc \(\left.T y^{\prime}\right) l^{\prime}\)
have lineL: isLine \(l\) using tgtx by auto
have aff \(A\) : affine \(A\) using affappx by auto
have \(T T^{\prime}: \forall p q . T y p=q \longleftrightarrow T y^{\prime} q=p\) using \(T y T y^{\prime}\) by auto
have rtp1: tangentLine \(l w l x\) by (rule tgtx)
have rtp2: injective \(g\)
using transTy' lemTranslationInjective[of Ty] lemInjOfInjIsInj[of \(f\) asFunc Ty ]
injf \(g\)
by blast
have (translation \(\left.T y^{\prime}\right) \longrightarrow(\) affineApprox A f \(x\) )
\(\longrightarrow\left(\right.\) affineApprox \(\left(T y^{\prime} \circ A\right)\left(\right.\) composeRel \(\left(\right.\) asFunc \(\left.\left.\left.T y^{\prime}\right) f\right) x\right)\)
using lemAffineApproxRangeTranslation[of \(\left.T y^{\prime} f A x\right]\)
by blast
hence rtp3: affineApprox Ay g x using Ay g transTy' affappx by meson
have rtp4: \(g\) x origin using \(g T y^{\prime} f x y\) by auto
```

define f^{\prime} where $f^{\prime}: f^{\prime}=$ invFunc f
define h where $h: h=($ invFunc (asFunc Ty'))
define g^{\prime} where $g^{\prime}: g^{\prime}=$ invFunc g
hence invcomp: $g^{\prime}=$ composeRel $f^{\prime} h$
using lemInverseComposition $g f^{\prime} h$ by auto
\{ fix $p r$
have inv1: invFunc (asFunc Ty') pr $\longleftrightarrow\left(T y \circ T y^{\prime}\right) r=T y p$
using transTy lemTranslationInjective by auto
hence invFunc (asFunc Ty') pr $\longleftrightarrow r=T y p$ using $T y T y^{\prime}$ by
auto
\}
hence $h T$: $h=$ asFunc Ty using h by force
hence ctsh0: cts h origin
using transTy lemTranslationImpliesAffine[of Ty]
lemAffineIsCts[of Ty]
by blast
$\{$ fix p
assume h origin p
hence (asFunc Ty) origin p using $h T$ by auto
hence $p=y$ using Ty by auto
hence cts (invFunc f) p using ctsf'y by auto
\}
hence ctsf: $\forall p$. h origin $p \longrightarrow$ cts $f^{\prime} p$ using f^{\prime} by auto
have cts g^{\prime} origin
using invcomp ctsh0 ctsf lemCtsOfCtsIsCts[of h origin $\left.f^{\prime}\right]$
by blast
hence rtp5: cts (invFunc g) origin using g^{\prime} by auto
have affAy: affine Ay
using affA lemTranslationImpliesAffine[of Ty'] transTy'
lemAffOfAffisAff[of A Ty $]$ Ay
by auto
have $l^{\prime}=$ applyToSet (asFunc A) l
using affline lineL affA lemAffineOfLineIsLine[of l A l'] by auto
hence $l y^{\prime}=$ applyToSet (asFunc Ay) l using $l y^{\prime} A y$ by auto
hence rtp6: applyAffineToLine Ay l ly'
using lineL affAy lemAffineOfLineIsLine[of l Ay ly']
by auto

```
```

have (tangentLine l wl x)}
(injective g)}
(affineApprox Ay g x)}
(g x origin) \longrightarrow
(cts (invFunc g) origin) }
(applyAffineToLine Ay l ly')}
(tangentLine ly' (applyToSet g wl) origin)
using lemMainLemmaOrigin[of x wl l g Ay ly']
by fastforce
hence tgt': tangentLine ly' (applyToSet g wl) origin
using rtp1 rtp2 rtp3 rtp4 rtp5 rtp6 by meson
define }w\mp@subsup{l}{}{\prime}\mathrm{ where }w\mp@subsup{l}{}{\prime}:w\mp@subsup{l}{}{\prime}=(\mathrm{ applyToSet g wl)
define Term1 where Term1: Term1 = applyToSet (asFunc Ty)ly'
define Term2 where Term2: Term2 = applyToSet (asFunc Ty) wl'
define Term3 where Term3:Term3 = Ty origin
have tangentLine ly' wl' origin using tgt' wl' by auto
hence goal: tangentLine (applyToSet (asFunc Ty) ly')
(applyToSet (asFunc Ty)wl')
(Ty origin)
using transTy lemTangentLineTranslation[of Ty origin wl' ly']
by fastforce
hence goal: tangentLine Term1 Term2 Term3
using Term1 Term2 Term3 by auto
have ToT':Ty\circTy'=id using TT' by auto
have Term1 = applyToSet (asFunc Ty) (applyToSet (asFunc Ty')
l')
using ly' Term1 by auto
also have ... = applyToSet (asFunc (Ty\circTy')) l' by auto
also have ... = applyToSet (asFunc id) l' using ToT' by auto
finally have term1: Term1 = l' by auto
have composeRel (asFunc Ty) g= composeRel (asFunc Ty) (composeRel
(asFunc Ty') f)
using g}\mathrm{ by auto
also have ... = composeRel (asFunc (Ty\circTy')) f by auto
also have ... = composeRel (asFunc id) f using ToT' by auto
finally have Tog: composeRel (asFunc Ty) g=f by auto
have Term2 = applyToSet (asFunc Ty) (applyToSet g wl)
using wl' Term2 by auto
also have ... = applyToSet (composeRel (asFunc Ty)g) wl by auto
finally have term2: Term2 = applyToSet f wl using Tog by auto
have term3: Term3 = y using Ty Term3 by auto

```
```

 thus ?thesis using goal term1 term2 term3
 by fastforce
 qed
end
end

```

\section*{23 AXIOM: AxDiff}

This theory declares the axiom AxDiff.
```

theory AxDiff
imports Affine WorldView
begin

```

AxDiff: Worldview transformations are differentiable wherever they are defined - they can be approximated locally by affine transformations.
class axDiff \(=\) Affine + WorldView
begin
abbreviation axDiff \(::\) Body \(\Rightarrow\) Body \(\Rightarrow{ }^{\prime}\) a Point \(\Rightarrow\) bool
where axDiff \(m k p \equiv(\) definedAt (wvtFunc mk) \(p\) )
\(\longrightarrow(\exists A .(\) affineApprox \(A(\) wvtFunc \(m k) p))\)
end
```

class AxDiff = axDiff +
assumes AxDiff: \forall m k p .axDiff m k p
begin
end
end

```

\section*{24 TangentLineLemma}

This theory shows that affine approximations map tangent lines to tangent lines.
```

theory TangentLineLemma
imports MainLemma AxDiff Cones
begin
class TangentLineLemma = MainLemma + AxDiff + Cones

```
```

begin
lemma lemWVTImpliesFunction: isFunction (wvtFunc k h)
proof -
{fix }xp
assume hyp:wvtFunc khxp}\wedge\mathrm{ wvtFunc khxq
have axDiff kh x using AxDiff by blast
hence axdiff:(}\exists\mathrm{ r . wvtFunc k h x r)
\longrightarrow(\exists A . (affineApprox A (wvtFunc k h) x))
by auto
then obtain A where A: affineApprox A (wvtFunc kh) x using
hyp by auto
hence }\forallz\mathrm{ . (wvtFunc khxz) «(z=A x)
using lemAffineEqualAtBase[of wvtFunc k h A x]
by auto
hence }p=Ax\wedgeq=Ax\mathrm{ using hyp by blast
moreover have affine }A\mathrm{ using }A\mathrm{ by auto
ultimately have }p=q\mathrm{ by auto
}
thus ?thesis by force
qed
lemma lemWVTCts:
assumes definedAt (wvtFunc hk)p
shows cts (wvtFunc h k)p
proof -
have axDiff h k p using AxDiff by blast
hence axdiff:(\exists r . wvtFunc h k p r) \longrightarrow(\exists A . (affineApprox A
(wvtFunc h k) p))
by auto
then obtain A where A: affineApprox A (wvtFunc h k) p using
assms by auto
thus ?thesis using sublemma4[of wvtFunc hkA p] by auto
qed
lemma lemWVTInverse: invFunc (wvtFunc k h)=wvtFunc h k
by force
lemma lemWVTInverseCts:
assumes wvtFunc khpq
shows cts (wvtFunc h k)q
proof -

```
define \(w h k\) where \(w h k:\) whk \(=\) wvtFunc \(h k\) have definedAt whk \(q \longrightarrow\) cts whk \(q\)
using lemWVTCts[of \(h k q\) ] whk by fast moreover have definedAt whk \(q\) using whk assms by auto ultimately have cts whk \(q\) by auto thus ?thesis using whk by auto qed
lemma lemWVTInjective: injective (wvtFunc \(k h\) ) proof -
define \(w k h\) where \(w k h: w k h=w v t F u n c ~ k h\)
define inv where inv: inv = invFunc whh
define inv2 where inv2: inv2 \(=\) invFunc inv
define \(w h k\) where \(w h k\) : whk \(=\) wvtFunc \(h k\)
have 1: inv = whk using inv whk wkh by force
have 2: inv2 \(=w k h\) using inv2 inv whh by force
have isFunction whk using lemWVTImpliesFunction whk by auto
hence isFunction inv using 1 by auto
hence injective inv2 using inv2 by auto
hence injective whh using 2 by auto
thus ?thesis using wkh by auto
qed
lemma lemPresentation:
assumes \(x \in\) wline \(m b\)
and tangentLine \(l\) (wline \(m b\) ) \(x\)
and affineApprox \(A(\) wvtFunc \(m k) x\)
and wvtFunc mkxy
and applyAffineToLine All \(l^{\prime}\)
shows tangentLine \(l^{\prime}(\) wline \(k b) y\)
proof -
have main: (tangentLine \(l(\) wline \(m b) x) \longrightarrow\)
(injective (wvtFunc m \(k\) )) \(\longrightarrow\)
(affineApprox A (wvtFunc mk) \(x\) ) \(\longrightarrow\)
((wvtFunc mk) \(x y\) ) \(\longrightarrow\)
(cts (invFunc (wvtFunc mk)) y) \(\longrightarrow\)
(applyAffineToLine All') \(\longrightarrow\)
(tangentLine l' (applyToSet (wvtFunc m \(k\) ) (wline \(m b)\) ) y)
using lemMainLemma[of \(x\) wline \(m b l\) wvtFunc \(m k A y l l\)
by blast
have 1: (tangentLine \(l\) (wline \(m b\) ) \(x\) ) using assms(2) by auto
have 2: injective (wvtFunc \(m k\) ) using lemWVTInjective by auto
have 3: affineApprox A (wvtFunc \(m k\) ) \(x\) using assms(3) by auto have 4: (wvtFunc mk) \(x y\) using assms(4) by auto
have invFunc (wvtFunc \(m k\) ) \(=\) wvtFunc \(k m\) using lemWVTInverse by auto
moreover have cts (wvtFunc \(k\) m) y
using assms(4) lemWVTInverseCts[of y mkx] by auto
ultimately have 5: cts (invFunc (wvtFunc mk) y by force
have 6: applyAffineToLine A ll'using assms(5) by auto
hence tgt: tangentLine \(l^{\prime}(\) applyToSet (wvtFunc \(m k)(\) wline \(\left.m b)\right) y\) using main 12345 by meson
have axdiff: axDiff \(k m y\) using AxDiff by blast hence \((\exists r\). wvtFunc \(k m\) y \(r)\)
\(\longrightarrow\left(\exists A^{\prime}\right.\). (affineApprox \(A^{\prime}(\) wvtFunc \(\left.\left.k m) y\right)\right)\) by blast
then obtain \(A^{\prime}\) where \(A^{\prime}\) : affineApprox \(A^{\prime}(\) wvtFunc \(k m) y\) using assms(4) by auto
hence \((\exists \delta>0 . \forall p .(p\) within \(\delta\) of \(y) \longrightarrow(\) definedAt \((\) wvtFunc \(k m)\) p))
using sublemma4 [of wvtFunc \(\left.k m A^{\prime} y\right]\) by auto
then obtain \(d\) where \(d:(d>0) \wedge(\forall p\).
( \(p\) within d of \(y\) ) \(\longrightarrow\) (definedAt (wvtFunc \(k\)
m) \(p\) )
by auto
hence dpos: \(d>0\) by auto
define Ball where Ball: Ball = ball y d
have l2r: \((\) applyToSet \((\) wvtFunc \(m k)(\) wline \(m b)) \cap\) Ball \(\subseteq(\) wline \(k\) b) \(\cap\) Ball
using Ball by auto

\section*{\(\{\operatorname{fix} q\)}
assume \(q: q \in(\) wline \(k b) \cap\) Ball
hence \(q\) within \(d\) of \(y\) using Ball lemSep2Symmetry by auto
hence definedAt (wvtFunc \(k m\) ) \(q\) using \(d\) by auto
hence qset: \(q \in\) applyToSet (wvtFunc \(m k\) ) (wvt \(k m q\) ) by auto
have wvt \(k m q \subseteq\) applyToSet (wvtFunc \(k m\) ) (wline \(k\) b) using \(q\) by auto
hence wvt \(k m q \subseteq\) wline \(m b\) by auto
hence applyToSet (wvtFunc mk) (wvt \(k m q\) )
```

 \subseteq \text { applyToSet (wvtFunc m k) (wline mb) by auto}
 hence q\in applyToSet (wvtFunc m k) (wline m b) using qset by
 auto
hence q\in(applyToSet (wvtFunc m k) (wline m b)) \cap Ball using
qset q by auto
}
hence r2l: (wline kb)\cap Ball \subseteq(applyToSet (wvtFunc m k) (wline
mb)) \cap Ball
by auto
define lBall where lBall: lBall = (applyToSet (wvtFunc m k) (wline
mb)) \cap Ball
define rBall where rBall: rBall = (wline k b) \cap Ball
hence equ:lBall = rBall using l2r r2l lBall rBall by auto

```
    have yinBall: \(y \in\) Ball using Ball \(d\) by auto
    have tgt1: \(y \in(\) applyToSet (wvtFunc \(m k)(w l i n e ~ m b))\) using tgt
by auto
    hence \(y \in l\) Ball using yinBall lBall by auto
    hence \(\operatorname{rtp} 1: y \in\) wline \(k b\) using equ rBall by auto
    have rtp2: onLine \(y l^{\prime}\) using tgt by auto
    have tgt3: accPoint \(y\) (applyToSet (wvtFunc \(m k\) ) (wline \(m b\) )) using
tgt by auto
    hence tgt3': \(\forall \varepsilon>0 . \exists q \in\) (applyToSet (wvtFunc \(m k\) ) (wline \(m\)
b)) . \((y \neq q) \wedge(\) inBall \(q \in y)\)
    by auto
    \{ fix \(e\)
    assume epos: \(e>0\)
    define \(d 1\) where \(d^{\prime}: d 1=\min d e\)
    have \(d d: d 1 \leq d\) using \(d^{\prime}\) by auto
    have \(d e\) : \(d 1 \leq e\) using \(d^{\prime}\) by auto
    have \(d^{\prime}\) pos: \(d 1>0\) using dpos epos \(d^{\prime}\) by auto
    then obtain \(q\)
    where \(q: q \in(\) applyToSet \((w v t F u n c ~ m k)(\) wline \(m b)) \wedge(y \neq\)
    q) \(\wedge(\) inBall \(q d 1\) \(y)\)
        using tgt3' by blast
    hence \(q \in(\) applyToSet \((\) wvtFunc \(m k)(\) wline \(m b)) \wedge(\) inBall \(q d\)
y) \(\wedge(y \neq q)\)
        using lemBallInBall[of q y d1 d] d'pos dd by auto
    hence \(q \in l\) Ball \(\wedge(y \neq q) \wedge(\) inBall \(q d 1 y)\)
using \(q\) Ball lemSep2Symmetry lBall by auto
hence \(q \in \operatorname{rBall} \wedge(y \neq q) \wedge(\) inBall \(q\) e \(y)\)
using lemBallInBall[of q y d1 e] d'pos de equ by auto
hence \(\exists q \in\) rBall.\((y \neq q) \wedge(\) inBall \(q\) e \(y)\) by auto \}
hence rtp3: \(\forall e>0 . \exists q \in\) wline \(k b .(y \neq q) \wedge(\) inBall \(q\) e \(y)\) using rBall by auto
have tgtt: \(\left(\exists p \cdot\left(\left(\right.\right.\right.\) onLine \(\left.p l^{\prime}\right) \wedge(p \neq y) \wedge\)
\(\left(\forall \varepsilon>0 . \exists \delta>0 . \forall y^{\prime} \in(\right.\) applyToSet (wvtFunc \(m k)(\) wline \(m b)\) ).
\(\left(\left(y^{\prime}\right.\right.\) within \(\delta\) of \(\left.\left.y\right) \wedge\left(y^{\prime} \neq y\right)\right)\)
\(\longrightarrow\)
\(\left(\exists r \cdot\left(\left(\right.\right.\right.\) onLine \(r\left(\right.\) lineJoining \(\left.\left.y y^{\prime}\right)\right) \wedge(r\) within \(\varepsilon\) of \(\left.\left.\left.p)\right)\right)\right)\)
)
)) using tgt by auto
then obtain \(p\) where \(p:\left(\left(\right.\right.\) onLine \(\left.p l^{\prime}\right) \wedge(p \neq y) \wedge\)
\(\left(\forall \varepsilon>0 . \exists \delta>0 . \forall y^{\prime} \in(\right.\) applyToSet (wvtFunc m \(k\) ) (wline \(m b)\) ).
\(\left(\left(y^{\prime}\right.\right.\) within \(\delta\) of \(\left.\left.y\right) \wedge\left(y^{\prime} \neq y\right)\right)\)
\(\longrightarrow\)
\(\left(\exists r \cdot\left(\left(\right.\right.\right.\) onLine \(r\left(\right.\) lineJoining \(\left.\left.y y^{\prime}\right)\right) \wedge(r\) within \(\varepsilon\) of \(\left.\left.\left.p)\right)\right)\right)\)
)) by auto
have \(p 1\) : onLine \(p l^{\prime}\) using \(p\) by auto
have \(p 2: p \neq y\) using \(p\) by auto
\(\{\) fix \(e\)
assume epos: \(e>0\)
then obtain \(d 2\) where \(d 2:(d 2>0) \wedge\)
\(\left(\forall y^{\prime} \in(\right.\) applyToSet \((\) wvtFunc \(m k)\) (wline \(m b)\) ).
\(\left(\left(y^{\prime}\right.\right.\) within d2 of \(\left.\left.y\right) \wedge\left(y^{\prime} \neq y\right)\right)\)
\(\left(\exists r \cdot\left(\left(\right.\right.\right.\) onLine \(r\left(\right.\) lineJoining \(\left.\left.y y^{\prime}\right)\right) \wedge(r\) within e of \(\left.\left.\left.p)\right)\right)\right)\)
) using \(p\) by auto
hence d2pos: \(d 2>0\) by auto
define \(d m\) where \(d m: d m=\min d 2 d\)
have \(d m d 2: d m \leq d 2\) using \(d m\) by auto
have \(d m d: d m \leq d\) using \(d m\) by auto
have dmpos: \(d m>0\) using dpos d2pos \(d m\) by auto
\(\left\{\right.\) fix \(y^{\prime}\)
assume \(y^{\prime}:\left(y^{\prime} \in\right.\) wline \(\left.k b\right) \wedge\left(y^{\prime}\right.\) within dm of \(\left.y\right) \wedge\left(y^{\prime} \neq y\right)\)
hence \(y d m: y^{\prime}\) within \(d m\) of \(y\) by auto
hence \(y^{\prime}\) within \(d\) of \(y\) using dmpos dmd lemBallInBall[of \(y^{\prime} y\) \(d m d]\) by auto
hence \(y^{\prime} \in\) Ball using Ball lemSep2Symmetry by auto
hence \(y^{\prime} \in\) rBall using \(y^{\prime} r\) Ball by auto
```

 hence yL: y' \inlBall using equ by auto
 have }\mp@subsup{y}{}{\prime}\mathrm{ within d2 of y
 using ydm dmpos dmd2 lemBallInBall[of y' y dm d2] by auto
 hence }\mp@subsup{y}{}{\prime}\in(\mathrm{ applyToSet (wvtFunc m k) (wline mb))}\wedge(\mp@subsup{y}{}{\prime}\mathrm{ within
 d2 of y)}\wedge(\mp@subsup{y}{}{\prime}\not=y
using \mp@subsup{y}{}{\prime}yL lBall by auto
hence }\existsr.((\mathrm{ onLine r (lineJoining y y'))}\wedge(r\mathrm{ within e of p))
using d2 by auto
}
hence }\existsdm>0.\forall\mp@subsup{y}{}{\prime}\in(\mathrm{ wline k b).
(}\mp@subsup{y}{}{\prime}\mathrm{ within dm of y)}\wedge(\mp@subsup{y}{}{\prime}\not=y
\longrightarrow (\exists r . ((onLine r (lineJoining y y'))^(r within e
of p)))
using dmpos by blast
}
hence }\foralle>0.\existsdm>0.\forall\mp@subsup{y}{}{\prime}\in(\mathrm{ wline k b).
(y' within dm of y)}\wedge(\mp@subsup{y}{}{\prime}\not=y
\longrightarrow (\exists r . ((o n L i n e ~ r ~ (l i n e J o i n i n g ~ y ~ y ')) \wedge (r ~ w i t h i n ~ e
of p)))
by auto
hence rtp4: \existsp.((onLine p l')^(p\not=y)\wedge(\foralle>0.\existsdm>
0.}\forall\mp@subsup{y}{}{\prime}\in(\mathrm{ wline kb).
(}\mp@subsup{y}{}{\prime}\mathrm{ within dm of y)}\wedge(\mp@subsup{y}{}{\prime}\not=y
\longrightarrow (\exists r . ((o n L i n e ~ r ~ (l i n e J o i n i n g ~ y ~ y ')) \wedge (r ~ w i t h i n ~ e ~
of p))\))
using p1 p2 by auto
hence tangentLine l' (wline k b) y using rtp1 rtp2 rtp3 rtp4 by
blast
thus ?thesis by auto
qed
lemma lemTangentLines:
assumes affineApprox A(wvtFunc m k) x
and tllmbx
and applyAffineToLine All'
and wvtFunc m kxy
shows tl l' kby
proof -
have pres: x f wline m b
\longrightarrow t a n g e n t L i n e ~ l ~ (w l i n e ~ m b) ~ x ~
\longrightarrow a f f i n e A p p r o x ~ A ~ (w v t F u n c ~ m ~ k) x
\longrightarrow wvtFunc m kx y
\longrightarrow ~ a p p l y A f f i n e T o L i n e ~ A ~ l ~ l ' , ~
tangentLine l' (wline k b) y

```
\[
\text { using lemPresentation[of } x m b l k A y l]
\]
by blast
have 1: \(x \in\) wline \(m b\) using assms(2) by auto
have 2: tangentLine \(l\) (wline \(m\) b) \(x\) using assms(2) by auto
have 3: affineApprox \(A\) (wvtFunc \(m k\) ) \(x\) using \(\operatorname{assms(1)~by~simp~}\)
have 4: wvtFunc m \(k x y\) using assms(4) by simp
have 5: applyAffineToLine Al l'using assms(3) by simp
have tangentLine \(l^{\prime}(\) wline \(k b) y\) using pres 12345 by meson thus ?thesis by auto qed
lemma lemSelfTangentIsTimeAxis:
assumes tangentLine \(l\) (wline \(k k\) ) \(x\)
shows \(\quad l=\) timeAxis
proof -
define \(s\) where \(s: s=\) wline \(k k\)
hence \(s \subseteq\) timeAxis using \(s\) AxSelfMinus by blast
hence \(x\) OnAxis: onTimeAxis \(x\) using assms(1) s by auto
have \(x:(x \in s) \wedge(\) onLine \(x l) \wedge(\) accPoint \(x s)\)
\(\wedge(\exists p .((\) onLine \(p l) \wedge(p \neq x) \wedge\)
\((\forall \varepsilon>0 . \exists \delta>0 . \forall z \in s .(\)
\(((z\) within \(\delta\) of \(x) \wedge(z \neq x))\)
\(\longrightarrow\)
\((\exists r .((\) onLine \(r(\) lineJoining \(x z)) \wedge(r\) within \(\varepsilon\) of
\(p)\) ))
))) using \(s\) assms(1) by auto
then obtain \(p\) where
```

$p:(($ onLine $p l) \wedge(p \neq x) \wedge$
$(\forall \varepsilon>0 . \exists \delta>0 . \forall z \in s$.
$((z$ within δ of $x) \wedge(z \neq x))$
\longrightarrow
$(\exists r \cdot(($ onLine $r($ lineJoining $x z)) \wedge(r$ within ε of $p))))$
)) by auto

```
have accxs: accPoint \(x s\) using \(x\) by auto
define \(p 0\) where
\[
p 0: p 0=0 \text { tval }=\text { tval } p, x v a l=0, y v a l=0, z v a l=0 \text { ) }
\]
hence p0OnAxis: onTimeAxis p0 by auto
define \(d p\) where \(d p: d p=\operatorname{sep} 2 p p 0\)
```

have $p p 0: d p=\operatorname{sqr}($ tval $p 0-$ tval $p)+\operatorname{sqr}(x v a l p 0-x v a l p)+$
sqr (yval p0 - yval $p)+\operatorname{sqr}(z v a l p 0-z v a l p)$
using $d p p 0$ by simp
moreover have $\ldots=\operatorname{sqr}($ xval $p)+\operatorname{sqr}($ yval $p)+\operatorname{sqr}(z v a l p)$
using $p 0$ by auto
ultimately have $d p v a l: d p=\operatorname{sqr}($ xval $p)+\operatorname{sqr}($ yval $p)+\operatorname{sqr}(z v a l$
p)
using $d p$ by simp
define e where $e: e=(\min d p 1) / 2$
define $e 2$ where $e 2: e 2=s q r e$
have e2ledp: $e 2 \leq d p$
proof -
have msmall: $0 \leq(\min d p 1) \leq 1$ using lemNorm2NonNeg $d p$
by auto
hence esmall: $0 \leq e<1$ using e leI by force
hence e2lte: $e 2 \leq e$ using $e 2$ mult-left-le by force
have mrange: $0 \leq(\min d p 1) \leq d p$ using lemNorm2NonNeg $d p$
by auto
hence $e \leq d p / 2$ using e divide-right-mono zero-le-numeral by
blast
hence $e \leq d p$ using msmall e add-increasing2 divide-nonneg-nonneg
le-cases lemSumOfTwoHalves min-def zero-le-numeral
by metis
thus ?thesis using e2lte by auto
qed

```
have offaxis: \(\forall z .(d p>0) \wedge\) onTimeAxis \(z \longrightarrow \neg(z\) within \(e\) of
p)
    proof -
    \{ fix \(z\)
        \{ assume \(z:(d p>0) \wedge\) onTimeAxis \(z\)
            have sep2 \(z p=\operatorname{sqr}(\) tval \(z-\) tval \(p)\)
                    \(+\operatorname{sqr}(x v a l z-x v a l p)\)
                            \(+\operatorname{sqr}(\) yval \(z-\) yval \(p)\)
                            \(+\operatorname{sqr}(z v a l z-z v a l p)\) using \(p 0\) by \(\operatorname{simp}\)
            moreover have \(\ldots=\operatorname{sep} 2\) z p0
                    \(+\operatorname{sqr}(\) xval \(p)+s q r(\) yval \(p)+\operatorname{sqr}(z v a l p)\)
                    using \(p 0 z\) by auto
            moreover have \(\ldots=\operatorname{sep} 2\) z p0 \(+d p\)
                    using dpval add-assoc
                    by presburger
            moreover have \(\ldots \geq d p\) using lemNorm2NonNeg by simp
            ultimately have sep2 \(z p \geq e 2\)
```

 using e2ledp dual-order.trans by presburger
 }
 hence (0<dp)\wedge onTimeAxis z\longrightarrow\neg(z within e of p)
 using e2 by auto
 }
 thus ?thesis by auto
 qed
{ assume dpnz:dp>0
hence enz: e>0 using e by auto
then obtain d}\mathrm{ where d: (d>0)}\wedge(\forallz\ins.
((z within d of x)^(z\not=x))
(\existsr.((onLine r (lineJoining x z))}\wedge(r\mathrm{ within e of p)))))
using p by blast
obtain q}\mathrm{ where q:(q|s)^(x*=q)^(inBall qd x)
using accxs dpnz enz d by blast
hence qOnAxis: q \in timeAxis using s AxSelfMinus by blast
have qprops: (}q\mathrm{ within d of x) ^(}q\not=x)\mathrm{ using q by auto
then obtain r wherer:(onLine r (lineJoining xq)) ^(r within
e of p)
using d q by blast
have }x\not=q\mathrm{ using q by auto
moreover have onLine x timeAxis using xOnAxis lemTimeAxi-
sIsLine by auto
moreover have onLine q timeAxis using qOnAxis lemTimeAxi-
sIsLine by auto
ultimately have timeAxis=lineJoining x q
using lemLineAndPoints[of x q timeAxis]
by auto
hence rOnAxis: (onTimeAxis r) using r by auto
hence }\neg(r\mathrm{ within e of p) using offaxis dpnz by blast
hence False using r by blast
}
hence }\neg(dp>0)\wedge(dp\geq0) using lemNorm2NonNeg dp by aut
hence }dp=0\mathrm{ by auto
hence }p=p0\mathrm{ using dp lemNullImpliesOrigin[of p }\ominusp0] by aut
hence onLine p timeAxis using p0OnAxis lemTimeAxisIsLine by
auto

```
moreover have onLine \(x\) timeAxis using \(x\) OnAxis lemTimeAxisIs-
Line by auto
moreover have pnotx: \(p \neq x\) using \(p\) by blast
ultimately have \(x p\) : timeAxis \(=\) lineJoining \(x p\)
using lemLineAndPoints[of x p timeAxis]
by auto
have onLine \(p l\) using \(p\) by auto
moreover have onLine \(x l\) using \(x\) by auto
ultimately have \(l=\) lineJoining \(x p\)
using lemLineAndPoints \([\) of \(x\) pll pnotx
by auto
hence timeAxis \(=l\) using \(x p\) by auto
thus ?thesis using \(s\) by blast
qed
```

lemma lemTangentLineUnique:
assumes tl l1 mkx
and tl l2 m kx
and affineApprox A (wvtFunc m k)x
and wvtFunc m k x y
and }\quadx\in\mathrm{ wline m k
shows ll = l2
proof -
define L1 where L1:L1 = applyToSet (asFunc A) l1
define L2 where L2: L2 = applyToSet (asFunc A) l2
define p1 where p1: p1 = (x\in wline m k)
define p2a where p2a: p2a=tangentLine l1 (wline m k)x
define p2b where p2b: p2b = tangentLine l2 (wline m k)x
define p3 where p3: p3 = affineApprox A (wvtFunc m k)x
define p4 where p4: p4 = wvtFunc m k x y
define p5a}\mathrm{ where p5a: p5a= applyAffineToLine A l1 L1
define p5b where p5b: p5b = applyAffineToLine A l2 L2
define tgt1 where tgt1: tgt1 = tangentLine L1 (wline k k) y
define tgt2 where tgt2: tgt2 = tangentLine L2 (wline k k) y
have pre1: p1 using p1 assms(5) by auto
have pre2a: p2a using p2a assms(1) by auto
have pre2b: p2b using p2b assms(2) by auto
have pre3: p3 using p3 assms(4) using assms(3) by auto
have pre4: p4 using p4 assms(4) by auto
have isLine l1 using assms(1) by auto
hence pre5a: p5a using p5a L1 assms(3) lemAffineOfLineIsLine[of

```

\section*{11 A L1] by auto}
have isLine 12 using \(\operatorname{assms}(2)\) by auto
hence pre5b: p5b using p5b L2 assms(3) lemAffineOfLineIsLine[of 12 A L2] by auto
have \(\llbracket p 1 ; p 2 a ; p 3 ; p 4 ; p 5 a \rrbracket \Longrightarrow t g t 1\)
using p1 p2a p3 p4 p5a tgt1 lemPresentation[of \(x m k l 1 k A y L 1]\) by fast
hence tgt1 using pre1 pre2a pre3 pre4 pre5a by auto
hence L1axis: \(L 1=\) timeAxis using tgt1 lemSelfTangentIsTimeAxis by auto
have \(\llbracket p 1 ; p 2 b ; p 3 ; p 4 ; p 5 b \rrbracket \Longrightarrow t g t 2\)
using \(p 1\) p2b p3 \(p 4\) p5b tgt2 lemPresentation[of \(x m k l 2 k A y L 2]\) by fast
hence tgt2 using pre1 pre2b pre3 pre4 pre5b by auto
hence \(L 2=\) timeAxis using tgt2 lemSelfTangentIsTimeAxis by auto
hence L1L2: L1 = L2 using L1axis by auto
obtain \(A^{\prime}\) where \(A^{\prime}:\left(\right.\) affine \(\left.A^{\prime}\right) \wedge\left(\forall p q . A p=q \longleftrightarrow A^{\prime} q=p\right)\) using assms(3) lemInverseAffine[of \(A\) ] by auto
\(\{\) fix \(p\)
define \(q\) where \(q: q=A p\)
hence \(A^{\prime} q: A^{\prime} q=p\) using \(A^{\prime}\) by auto
\{ assume \(p \in l 1\)
hence \(q \in L 2\) using \(q\) L1 L1L2 by auto
then obtain \(p 2\) where \(p 2: q=A p 2 \wedge p 2 \in 12\) using \(L 2\) by auto
hence \(A^{\prime} q=p 2\) using \(A^{\prime}\) by auto
hence \(p=p 2\) using \(A^{\prime} q\) by auto
hence \(p \in l 2\) using \(p 2\) by auto
\}
hence \(12 r: p \in l 1 \longrightarrow p \in 12\) by blast
\{ assume \(p \in l 2\)
hence \(q \in L 1\) using \(q\) L2 L1L2 by auto
then obtain \(p 1\) where \(p 1: q=A p 1 \wedge p 1 \in l 1\) using \(L 1\) by auto
hence \(A^{\prime} q=p 1\) using \(A^{\prime}\) by auto
hence \(p=p 1\) using \(A^{\prime} q\) by auto
hence \(p \in l 1\) using \(p 1\) by auto
\}
hence \(p \in l 2 \longrightarrow p \in l 1\) by blast
```

 hence }p\inl1\longleftrightarrowp\inl2 using l2r by aut
 }
 thus ?thesis by blast
 qed

```
end
end

\section*{25 Proposition2}

This theory shows that affine approximations map surfaces of cones to (subsets of) surfaces of cones.
```

theory Proposition2
imports TangentLineLemma
begin
class Proposition2 = TangentLineLemma
begin
lemma lemProposition2:
assumes affineApprox A (wvtFunc m k) x
shows applyToSet (asFunc A) (coneSet m x)\subseteq coneSet k (Ax)
proof -
define y where y:y=A x
define lhs where lhs:lhs = applyToSet (asFunc A) (coneSet m x)
define rhs where rhs: rhs = coneSet k y
have mkxy: wvtFunc m k x y
using assms lemAffineEqualAtBase[of wvtFunc m k A x] y
by auto
have affA: affine A using assms by auto
{ fix q
{ assume q:q\inlhs
hence \exists p. (p\in coneSet mx)^(asFunc A) pq using lhs by
auto
then obtain p where
p:(p\in coneSet m x) ^(asFunc A) pq
by presburger

```
```

 hence qAp:q=A p using affA by auto
 have cone mxp using p by auto
 then obtain l where
 l:(onLine pl)^(onLine x l)}\wedge(\existsph.Ph ph\wedgetllmphx
 by auto
 then obtain ph where ph: Ph ph\wedgetl lm ph x by auto
 have lineL: isLine l using l by auto
 have tll: tl l m ph x using ph by auto
 define l' where l':}\mp@subsup{l}{}{\prime}=\mathrm{ applyToSet (asFunc A) l
 hence aatl: applyAffineToLine Al l'
 using lineL affA lemAffineOfLineIsLine[of l A l}
 by simp
 hence tll': tl l' k phy
 using assms(1) tll mkxy
 lemTangentLines[of m k A x phl l' y]
 by simp
 hence (Phph ^tl l' kphy)
 using ph by auto
 hence exPh:\exists ph. (Ph ph\wedgetl l' kphy)
 using exI[of \lambda b. (Phb\wedgetl l' kby)ph]
 by auto
 have p\inl using l by auto
 hence q}\in\mp@subsup{l}{}{\prime}\mathrm{ using qAp q l' by auto
 moreover have lineL': isLine l' using tll' by auto
 ultimately have qonl': onLine q l' by auto
 hence (onLine q l')^(onLine y l')}\wedge(\existsph.Phph\wedgetl l' k p
 y)
using exPh tll' by blast
hence q\inrhs using y tll' rhs by auto
}
hence q}\inlhs\longrightarrowq\in rhs by aut
}
hence l2r:lhs\subseteqrhs by auto
thus ?thesis using lhs rhs y by auto
qed
end

```

\section*{26 AXIOM: AxEventMinus}

This theory declares the axiom AxEventMinus
```

theory AxEventMinus
imports WorldView
begin

```

AxEventMinus: An observer encounters the events in which they are observed.
class axEventMinus \(=\) WorldView
begin
\[
\begin{aligned}
& \text { abbreviation axEventMinus }:: \text { Bod } \Rightarrow \text { Body } \Rightarrow{ }^{\prime} \text { 'a Point } \Rightarrow \text { bool } \\
& \text { where axEventMinus } m k \equiv(m \text { sees } k \text { at } p) \\
& \longrightarrow(\exists q \cdot \forall b \cdot((m \text { sees } b \text { at } p) \longleftrightarrow(k \text { sees } b \text { at } q)))
\end{aligned}
\]
end
```

class AxEventMinus = axEventMinus +
assumes AxEventMinus: }\forallmkp.axEventMinus m k
begin
end
end

```

\section*{27 Proposition3}

This theory collects together earlier results to show that worldview transformations can be approximated by affine transformations that have various useful properties.
theory Proposition3
imports Proposition1 Proposition2 AxEventMinus
begin
class Proposition3 \(=\) Proposition1 + Proposition2 + AxEventMinus begin

\section*{lemma lemProposition3:}
assumes \(m\) sees \(k\) at \(x\)
shows \(\exists A y .(\) wvtFunc \(m k x y)\)
\(\wedge\) (affineApprox A (wvtFunc mk) x)
\(\wedge \quad(\) applyToSet \((\) asFunc \(A)(\) coneSet \(m x) \subseteq\) coneSet \(k y)\) \(\wedge \quad(\) coneSet \(k y=\) regularConeSet \(y)\)
proof -
define \(g 1\) where \(g 1: g 1=(\lambda y\). wutFunc \(m k x y)\)
define \(g 2\) where \(g 2: g 2=(\lambda A\). affineApprox \(A(\) wvtFunc \(m k) x)\)
define \(g 3\) where \(g 3: g 3=(\lambda A y\). applyToSet \((\) asFunc \(A)(\) coneSet
\(m x) \subseteq\) coneSet \(k y\) )
define \(g_{4}\) where \(g_{4}: g_{4}=(\lambda y\). coneSet \(k y=\) regularConeSet \(y)\)
have axEventMinus \(m k x\) using AxEventMinus by simp
hence \((\exists q . \forall b \cdot((m\) sees \(b\) at \(x) \longleftrightarrow(k\) sees \(b\) at \(q)))\)
using assms by simp
then obtain \(y\) where \(y: \forall b .((m\) sees \(b\) at \(x) \longleftrightarrow(k\) sees \(b\) at \(y)\) ) by auto
hence ev m \(x=e v k y\) by blast
hence goal1: g1 \(y\) using assms g1 by auto
have axDiff \(m k x\) using AxDiff by simp
hence \(\exists A\). affineApprox \(A\) (wvtFunc \(m k\) ) \(x\) using g1 goal1 by blast
then obtain \(A\) where goal2: g2 \(A\) using \(g^{2}\) by auto
have applyToSet (asFunc A) (coneSet ma) coneSet \(k(A x)\)
using g2 goal2 lemProposition2[of m \(k\) A \(x\) ]
by auto
moreover have \(A x=y\)
using goal1 goal2 g1 g2 lemAffineEqualAtBase[of wvtFunc m \(k\) A
\(x]\)
by blast
ultimately have goal3: g3 A y using g3 by auto
have \(k\) sees \(k\) at \(y\) using assms(1) g1 goal1 by fastforce
hence \(\forall p\). cone \(k\) y \(p=\) regularCone y \(p\)
using lemProposition \(1[\) of \(y k\) by auto
hence goal4: \(g 4 y\) using \(g 4\) by force
hence \(\exists A \quad y .(g 1 y) \wedge(g 2 A) \wedge(g 3 A y) \wedge(g 4 y)\)
using goal1 goal2 goal3 goal4 by blast
thus ?thesis using \(g 1\) g2 \(g 3\) g4 by fastforce qed
end
end

\section*{28 ObserverConeLemma}

This theory gives sufficient conditions for an observed observer's cone to appear upright to that observer.
```

theory ObserverConeLemma
imports Proposition3
begin
class ObserverConeLemma = Proposition3
begin

```
```

lemma lemConeOfObserved:

```
lemma lemConeOfObserved:
    assumes affineApprox \(A\) (wvtFunc m \(k\) ) \(x\)
    assumes affineApprox \(A\) (wvtFunc m \(k\) ) \(x\)
and \(\quad m\) sees \(k\) at \(x\)
and \(\quad m\) sees \(k\) at \(x\)
shows coneSet \(k(A x)=\) regularConeSet \((A x)\)
shows coneSet \(k(A x)=\) regularConeSet \((A x)\)
proof -
proof -
    have \(A x\) : \(\forall y\). \((w v t F u n c m k x y) \longleftrightarrow(y=A x)\)
    have \(A x\) : \(\forall y\). \((w v t F u n c m k x y) \longleftrightarrow(y=A x)\)
        using assms(1) lemAffineEqualAtBase[of (wvtFunc mk) A \(x\) ]
        using assms(1) lemAffineEqualAtBase[of (wvtFunc mk) A \(x\) ]
        by auto
        by auto
    define set1 where set1: set1 \(=\) coneSet \(k(A x)\)
    define set1 where set1: set1 \(=\) coneSet \(k(A x)\)
    define set2 where set2: set2 \(=\) regularConeSet \(\left(\begin{array}{ll}A & x\end{array}\right)\)
    define set2 where set2: set2 \(=\) regularConeSet \(\left(\begin{array}{ll}A & x\end{array}\right)\)
    define \(P\) where \(P: P=\left(\lambda A^{\prime} y .(\right.\) wvtFunc \(m k x y)\)
    define \(P\) where \(P: P=\left(\lambda A^{\prime} y .(\right.\) wvtFunc \(m k x y)\)
                            \(\wedge \quad\) (affineApprox \(A^{\prime}(\) wvtFunc \(\left.m k) x\right)\)
                            \(\wedge \quad\) (affineApprox \(A^{\prime}(\) wvtFunc \(\left.m k) x\right)\)
                            \(\wedge \quad\left(\right.\) applyToSet \(\left(\right.\) asFunc \(\left.A^{\prime}\right)(\) coneSet \(m x) \subseteq\) coneSet \(k\)
                            \(\wedge \quad\left(\right.\) applyToSet \(\left(\right.\) asFunc \(\left.A^{\prime}\right)(\) coneSet \(m x) \subseteq\) coneSet \(k\)
y)
y)
    \(\wedge \quad(\) coneSet \(k y=\) regularConeSet \(y))\)
    \(\wedge \quad(\) coneSet \(k y=\) regularConeSet \(y))\)
    have \(m\) sees \(k\) at \(x\) using assms(2) by auto
    have \(m\) sees \(k\) at \(x\) using assms(2) by auto
    hence \(\exists A^{\prime} y . P A^{\prime} y\) using \(P\) lemProposition3[of \(m k x\) by fast
    hence \(\exists A^{\prime} y . P A^{\prime} y\) using \(P\) lemProposition3[of \(m k x\) by fast
    then obtain \(A^{\prime} y\) where \(A^{\prime} y: P A^{\prime} y\) by auto
    then obtain \(A^{\prime} y\) where \(A^{\prime} y: P A^{\prime} y\) by auto
    have wutFunc \(m k x y\) using \(P A^{\prime} y\) by auto
    have wutFunc \(m k x y\) using \(P A^{\prime} y\) by auto
    hence \(y=A x\) using \(A x\) by auto
    hence \(y=A x\) using \(A x\) by auto
    moreover have coneSet \(k y=\) regularConeSet \(y\) using \(A^{\prime} y P\) by
    moreover have coneSet \(k y=\) regularConeSet \(y\) using \(A^{\prime} y P\) by
auto
auto
    ultimately show ?thesis using set1 set2 by auto
    ultimately show ?thesis using set1 set2 by auto
qed
```

qed

```
end
end

\section*{29 Quadratics}

This theory shows how to find the roots of a quadratic，assuming that roots exist（AxEField）．
```

theory Quadratics
imports Functions AxEField
begin
class Quadratics $=$ Functions + AxEField
begin

```
abbreviation quadratic :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right)\)
```

abbreviation quadratic :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right)$
where quadratic a $b c \equiv \lambda x . a *(s q r x)+b * x+c$
where quadratic a $b c \equiv \lambda x . a *(s q r x)+b * x+c$
abbreviation qroot $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qroot abcr
abbreviation qroots :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ ' a set
where qroots abcミ\{r. qroot abcr\}
abbreviation discriminant $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
where discriminant $a b c \equiv(s q r b)-4 * a * c$
abbreviation qcase1 $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qcase1 $a b c \equiv(a=0 \wedge b=0 \wedge c=0)$
abbreviation qcase2 $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qcase2 $a b c \equiv(a=0 \wedge b=0 \wedge c \neq 0)$
abbreviation qcase 3 :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qcase3 a $b c \equiv(a=0 \wedge b \neq 0 \wedge(c=0 \vee c \neq 0))$
abbreviation qcase4 :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qcase4 abc三(aキ0^discriminant abc<0)
abbreviation qcase $5:: ' a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qcase5 abcミ($a \neq 0 \wedge$ discriminant $a b c=0)$
abbreviation qcase $6:: ' a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
where qcase6 abcミ(aキ0^discriminant abc>0)

```
lemma lemQuadRootCondition:
assumes \(a \neq 0\)
shows \((s q r(2 * a * r+b)=\) discriminant \(a b c) \longleftrightarrow\) qroot \(a b c r\)
```

proof -
have sqr (2*a*r)=(4*a)*(a*sqr r)
using lemSqrMult local.numeral-sqr mult-assoc sqr.simps(1) sqr.simps(2)
by metis
moreover have 2*(2*a*r)*b=(4*a)*(b*r)
by (metis dbl-def dbl-simps(5) mult.left-commute mult-2 mult-2-right
mult-assoc)
ultimately have s: sqr (2*a*r) +2*(2*a*r)*b=(4*a)*((a*
sqr r) + b*r)
by (simp add: local.distrib-left)
have sqr (2*a*r + b) =sqr (2*a*r) +2*(2*a*r)*b+sqr b
using lemSqrSum by auto
moreover have ···= (4*a)*((a*sqr r)+b*r)+sqr b using
s by auto
moreover have ···. = (4*a)*((a*sqr r) +b*r +c)-(4*a)*c

+ sqr b
by (simp add: distrib-left)
ultimately have eqn1: sqr (2*a*r + b)=(4*a)*(quadratic a b cr r)
+(discriminant a b c)
by (simp add: add-diff-eq diff-add-eq)
{ assume qroot a b cr
hence sqr (2*a*r + b) = discriminant a b c using eqn1 by simp
}
hence l2r:qroot a b c r \longrightarrow sqr (2*a*r + b)= discriminant a b c
by auto
{ assume sqr (2*a*r + b)= discriminant a b c
hence 0}=(4*a)*(quadratic a b c r) using eqn1 by aut
hence qroot a b cr by (metis assms divisors-zero zero-neq-numeral)
}
hence (sqr (2*a*r + b)= discriminant a b c) \longrightarrowqroot a b cr by
blast
thus ?thesis using l2r by blast
qed
lemma lemQuadraticCasesComplete:
shows qcase1 abc\vee qcase2 abc\veeqcase3 abc\vee qcase4 abc\vee
qcase5 a b c \vee qcase6 a b c
using not-less-iff-gr-or-eq by blast
lemma lemQCase1:
assumes qcase1 a b c

```

```

 using assms by simp
    ```
```

lemma lemQCase2:
assumes qcase2 a b c
shows }\neg(\exists)r.qroot a b cr
by (simp add: assms)
lemma lemQCase3:
assumes qcase3 a b c
shows qroot a b cr \longleftrightarrow <r=-c/b
proof -
have qroot a b crr\longrightarrowr=-c/b
proof -
{ assume hyp: qroot a b c r
hence b*r + c=0 using assms by auto
hence }b*r=-c\mathrm{ by (simp add: local.eq-neg-iff-add-eq-0)
hence }r=-c/b\mathrm{ by (metis assms local.nonzero-mult-div-cancel-left)
}
thus ?thesis by auto
qed
moreover have r=-c/b\longrightarrowqroot a b c r by (simp add: assms)
ultimately show ?thesis by blast
qed
lemma lemQCase4:
assumes qcase4 a b c
shows }\neg(\exists)r.qroot a b c r
proof -
have props: (a = 0 ^ discriminant a b c<0) using assms by auto
{ assume hyp: \exists r. qroot a b c r
then obtain r where r: qroot a b cr by auto
hence sqr (2*a*r+b)=discriminant a b c
using props lemQuadRootCondition[of a r b c] by auto
hence sqr (2*a*r + b)<0 using props by auto
hence False using lemSquaresPositive by auto
}
thus ?thesis by auto
qed

```
lemma lemQCase5:
    assumes qcase5 abc
    shows qroot absr \(c\) r \(=-b /(2 * a)\)
proof -
```

 have qroot a b cr r\longrightarrowr=-b/(2*a)
 proof -
 { assume hyp: qroot a b cr
 hence sqr (2*a*r+b) = 0
 using assms lemQuadRootCondition[of a r b c] by auto
 hence 2*a*r + b=0 by simp
 hence 2*a*r=-b using local.eq-neg-iff-add-eq-0 by auto
 moreover have 2*a}\not=0\mathrm{ using assms by auto
 ultimately have r=((-b)/(2*a)) by (metis local.nonzero-mult-div-cancel-left)
 }
 thus ?thesis by auto
 qed
moreover have r= -b/(2*a)\longrightarrowqroot a b cr
proof -
{ assume hyp: r= -b/(2*a)
hence (2*a)*r + b = discriminant a b c by (simp add: assms)
hence qroot a b crr using lemQuadRootCondition[of a r bl
assms by auto
}
thus ?thesis by auto
qed
ultimately show ?thesis by blast
qed
lemma lemQCase6:
assumes qcase6 a b c
and rd = sqrt (discriminant a b c)
and rp = ((-b)+rd)/(2*a)
and}rm=((-b)-rd)/(2*a
shows (rp\not= rm)^ qroots a b c = {rp,rm }
proof -
define d}\mathrm{ where d:d= discriminant a b c
have dpos: d>0 using assms d by auto
hence rootd: hasUniqueRoot d using AxEField lemSqrt[of d] by
auto
hence rdprops: 0\leqrd ^d= sqr rd
using assms(2) d theI'[of isNonNegRoot d] by auto
hence rdnot0: rd \not=0 using assms dpos mult-nonneg-nonpos by
auto
hence rdpos: rd > 0 using rdprops by auto
define pp where pp: pp = (-b)+rd
define mm where mm: mm}=(-b)-r
have rd}\not=-rd\mathrm{ using rdnot0 by simp
hence pp}\not=mm\mathrm{ using pp mm add-left-imp-eq[of -b rd -rd] by

```
```

auto
moreover have aa: 2*a\not=0 using assms by auto
ultimately have pp/(2*a)\not=mm/(2*a) by auto
hence conj1: rp}\not=rm\mathrm{ using assms pp mm by simp
have conj2: qroots a b c={rp,rm}
proof -
{ fix r assume r qroots a b c
hence sqr (2*a*r+b)=d
using assms lemQuadRootCondition d by auto
hence sqrt d =abs (2*a*r +b) using lemSqrtOfSquare by blast
moreover have sqrt d=rd using d assms by auto
ultimately have rdprops: rd =abs (2*a*r+b) by auto
define v :: 'a}\mathrm{ where v: v=2*a*r + b
hence vnot0:v}=0\mathrm{ using rdprops rdnot0 by simp
hence cases: (v<0)\vee (v>0) by auto
{ assume v<0
hence 2*a*r + b = -rd using v rdprops
by (metis local.abs-if local.minus-minus)
hence 2*a*r=(-b) - rd
by (metis local.add-diff-cancel-right' local.minus-diff-commute)
hence r=rm using aa assms(4)
by (metis local.nonzero-mult-div-cancel-left)
}
hence case1:v<0\longrightarrowr=rm by auto
{ assume v>0
hence 2*a*r + b=rd using v rdprops by simp
hence 2*a*r = (-b)+rd by auto
hence r = rp using aa assms(3)
by (metis local.nonzero-mult-div-cancel-left)
}
hence }v>0\longrightarrowr=rp\mathrm{ by auto
hence }r=rm\veer=rp\mathrm{ using case1 cases by blast
hence }r\in{rm,rp}\mathrm{ by blast
}
hence }\forallr.r\inqroots a bc\longrightarrowr\in{rm,rp} by blas
hence l2r: qroots a b c\subseteq{rm,rp} by auto
have rootm: qroot a b c rm
proof -
have rm = ((-b) - rd) / (2*a) using assms by auto
hence (2*a)*rm = (-b) - rd using aa by simp
hence (2*a)*rm + b=-rd by (simp add: local.diff-add-eq)
hence sqr ((2*a)*rm + b) = sqr rd by simp
moreover have ...= discriminant a b c

```
using assms(2) rootd d lemSquareOfSqrt[of discriminant abc \(r d]\) by auto
ultimately show ?thesis
using assms lemQuadRootCondition[of a rm b c] by auto qed
```

 have rootp: qroot a b c rp
    ```
    proof -
    have \(r p=((-b)+r d) /(2 * a)\) using assms by auto
    hence \((2 * a) * r p=(-b)+r d\) using \(a a\) by \(\operatorname{simp}\)
    hence \((2 * a) * r p+b=r d\) by (simp add: local.diff-add-eq)
    hence \(\operatorname{sqr}((2 * a) * r p+b)=s q r r d\) by \(\operatorname{simp}\)
    moreover have \(\ldots=\) discriminant \(a b c\)
            using assms(2) rootd d lemSquareOfSqrt[of discriminant abc
\(r d]\) by auto
    ultimately show ?thesis
            using assms lemQuadRootCondition \(\left[\begin{array}{llll}o f & \text { a rp } & b & c\end{array}\right]\) by auto
    qed
    hence \(\{r m, r p\} \subseteq q\) roots a b c using rootm rootp by auto
    thus ?thesis using \(l 2 r\) by blast
    qed
    thus ?thesis using conj1 by blast
qed
lemma lemQuadraticRootCount:
    assumes \(\neg\) (qcase1 abc)
    shows finite (qroots abc) \(\operatorname{card}(\) qroots \(a b c) \leq 2\)
proof -
    define \(d\) where \(d: d=\) discriminant \(a b c\)
    have case1: qcase1 a b c ? ?thesis using assms by auto
    moreover have case2: qcase2 a bc ? thesis using lemQCase2
by auto
    moreover have case3: qcase3 a b c ? ?thesis using lemQCase3
by auto
    moreover have case4: qcase4 abc \(c \longrightarrow\) ?thesis using lemQCase 4
by auto
    moreover have case5: qcase5 abc\(\longrightarrow\) ?thesis using lemQCase5
by auto
    moreover have case6: qcase6 a b c \(\longrightarrow\) ?thesis using lemQCase6
card-2-iff by auto
    ultimately show ?thesis using lemQuadraticCasesComplete by
blast
qed
end
end

\section*{30 Classification}

This theory explains how to establish whether a point lies inside, on or outside a cone.
```

theory Classification
imports Cones Quadratics CauchySchwarz
begin

```

We want to establish where a point lies in relation to a cone, and will later show that this relationship is preserved under relevant affine transformations. We therefore need a classification scheme that relies on purely affine concepts. To do this we consider lines that can be drawn through the point, and ask how many points lie in the intersection of such a line and the cone.
```

class Classification = Cones + Quadratics + CauchySchwarz
begin

```
```

abbreviation vertex :: 'a Point $\Rightarrow{ }^{\prime} a$ Point \Rightarrow bool
where vertex $x p \equiv(x=p)$
abbreviation insideRegularCone :: 'a Point $\Rightarrow{ }^{\prime}$ a Point \Rightarrow bool
where insideRegularCone x $p \equiv$
(slopeFinite $x p) \wedge(\exists v \in$ lineVelocity (lineJoining $x p$). sNorm2
$v<1$)

```
```

abbreviation outsideRegularCone :: 'a Point \Rightarrow 'a Point \Rightarrow bool
where outsideRegularCone x p \equiv
$(x \neq p) \wedge$
$(($ slopeInfinite $x p) \vee(\exists v \in$ lineVelocity (lineJoining $x p)$.
sNorm2 $v>1)$)

```
```

abbreviation onRegularCone :: 'a Point \Rightarrow ' a Point \Rightarrow bool
where onRegularCone $x p(x=p) \vee(\exists v \in$ lineVelocity (lineJoining
$x p) . s$ Norm2 $v=1$)

```
```

lemma lemDrtnLineJoining:
assumes $l=$ lineJoining $x p$
and $\quad x \neq p$
shows $\quad(p \ominus x) \in d r t n l$
proof -
define d where $d: d=(p \ominus x)$
have lprops: onLine $x l \wedge$ onLine $p l$
using assms(1) lemLineJoiningContainsEndPoints by blast
hence $\exists x p .(x \neq p) \wedge($ onLine $x l) \wedge($ onLine $p l) \wedge(d=(p \ominus$
$x)$)
using assms(2) d by blast
thus ?thesis using d by auto
qed
lemma lemVelocityLineJoining:
assumes $l=$ lineJoining $x p$
and $\quad v=$ velocityJoining origin $(p \ominus x)$
and $\quad x \neq p$
shows $\quad v \in$ lineVelocity l
proof -
define d where $d: d=(p \ominus x)$
hence $d \in d r t n l$ using assms lemDrtnLineJoining by auto
hence $\exists d \in d r t n l . v=$ velocityJoining origin d using assms d
by blast
thus ?thesis by auto
qed
lemma lemSlopeLineJoining:
assumes $l=$ lineJoining $p q$
and $\quad p \neq q$
shows lineSlopeFinite $l \longleftrightarrow$ slopeFinite $p q$
proof -
have $p q l$: onLine $p l \wedge$ onLine $q l$
using assms(1) lemLineJoiningContainsEndPoints by auto
have l2r: lineSlopeFinite $l \longrightarrow$ slopeFinite p q
proof -
\{ assume lineSlopeFinite l
then obtain $x y$
where $x y$: $($ onLine $x l) \wedge($ onLine $y l) \wedge(x \neq y) \wedge($ slopeFinite
$x y)$ by blast
hence $l x y$: $l=$ lineJoining x y using lemLineAndPoints $\left[\begin{array}{lll}\text { of } & x & y\end{array}\right]$

```
define tdiff where tdiff: tdiff \(=\) tval \(y-\) tval \(x\)
hence tdnot 0 : tdiff \(\neq 0\) using \(x y\) by auto
obtain \(a\) where \(a\) : \(p=(x \oplus(a \otimes(y \ominus x)))\) using pql lxy by auto
hence tvalp: tval \(p=\) tval \(x+a *(\) tval \(y-\) tval \(x)\) by simp
obtain \(b\) where \(b: q=(x \oplus(b \otimes(y \ominus x)))\) using pql lxy by auto
hence tvalq: tval \(q=\) tval \(x+b *(\) tval \(y-\) tval \(x)\) by \(\operatorname{simp}\)
have anotb: \(b-a \neq 0\) using \(a b \operatorname{assms}(2)\) by auto
have tval \(q-\) tval \(p=(b-a) *\) tdiff using tdiff tvalp tvalq by (simp add: local.left-diff-distrib')
hence slopeFinite \(p q\) using anotb tdnot0
by (metis local.diff-self local.divisors-zero)
\}
thus ?thesis by auto
qed
have r2l: slopeFinite \(p q \longrightarrow\) lineSlopeFinite \(l\) using pql assms(2) by blast
thus ?thesis using \(l 2 r\) by blast
qed
```

lemma lemVelocityJoiningUsingPoints:
assumes $p \neq q$
shows velocityJoining $p q=$ velocityJoining origin ($q \ominus p$)
proof -
define $t 1$ where $t 1: t 1=$ tval $p-$ tval q
define t2 where t2: t2 $=$ tval origin - tval $(q \ominus p)$
define $v 1$ where $v 1: v 1=(p \ominus q)$
define $v 2$ where $v 2: v_{2}=(\operatorname{origin} \ominus(q \ominus p))$
have $t s$: $t 1=$ t2 using $t 1$ t2 by simp
\{ assume slopeFinite $p q$
hence $($ tval origin $)-($ tval $(q \ominus p)) \neq 0$ by simp
hence sf2: slopeFinite origin ($q \ominus p$) using diff-self by metis
hence sloper p q sloper origin ($q \ominus p$) using t2 v2 sloper.simps
by auto
hence ?thesis by auto
\}
hence sf: slopeFinite $p q \longrightarrow$?thesis by auto
\{ assume hyp: $\neg($ slopeFinite $p q)$

```
```

 hence }\neg(\mathrm{ slopeFinite origin (}q\ominusp))\mathrm{ using t1 t2 ts by simp
 hence sloper p q= sloper origin (}q\ominusp)\mathrm{ using hyp by simp
 hence ?thesis by auto
 }
 thus ?thesis using sf by blast
 qed

```
lemma lemLineVelocityNonZeroImpliesFinite:
    assumes \(u \in\) lineVelocity \(l\)
and sNorm2 \(u \neq 0\)
shows lineSlopeFinite \(l\)
proof -
    have \(u \in\{u . \exists d \in d r t n l . u=\) velocityJoining origin \(d\}\) using
\(\operatorname{assms}(1)\) by auto
    then obtain \(d\) where \(d: d \in d r t n l \wedge u=\) velocityJoining origin \(d\)
by blast
    hence \(d \in\{d . \exists p q .(p \neq q) \wedge(\) onLine \(p l) \wedge(\) onLine \(q l) \wedge(d\)
\(=(q \ominus p))\}\)
            by auto
    then obtain \(p q\) where \(p q:(p \neq q) \wedge(\) onLine \(p l) \wedge(\) onLine \(q l)\)
\(\wedge(d=(q \ominus p))\)
            by blast
    hence upq: \(u=\) velocityJoining \(p q\) using lemVelocityJoiningUsing-
Points d by auto
    \{ assume slopeInfinite \(p q\)
        hence sloper \(p q=\) origin by simp
        hence \(u=s\) Origin using upq by simp
        hence False using assms(2) by auto
    \}
    hence slopeFinite \(p q\) by auto
    thus ?thesis using \(p q\) by blast
qed
lemma lemLineVelocityUsingPoints:
    assumes slopeFinite \(p q\)
and onLine \(p l \wedge\) onLine \(q l\)
shows lineVelocity \(l=\{\) velocityJoining \(p q\}\)
proof -
    define \(v\) where \(v: v=\) velocityJoining \(p q\)
    hence \(v^{\prime}: v=\) velocityJoining origin \((q \ominus p)\)
        using lemVelocityJoiningUsingPoints[of p q] assms(1) by blast
    have pnotq: \(p \neq q\) using assms(1) by auto
    hence \(l: l=\) lineJoining \(p q\) using lemLineAndPoints \([o f ~ p q l]\) assms
        by auto
hence vinlv: \(v \in\) lineVelocity \(l\)
using lemVelocityLineJoining \(\left[\begin{array}{llll}o f & l & p & q\end{array} v v^{\prime}\right.\) assms by blast
hence r2l: \(\{v\} \subseteq\) lineVelocity \(l\) by blast
\{ fix \(u\) assume \(u: u \in\) lineVelocity \(l\)
hence \(u=v\)
using vinlv pnotq assms lemFiniteLineVelocityUnique[of ulv] by blast
\}
hence lineVelocity \(l \subseteq\{v\}\) by blast
thus ?thesis using r2l \(v\) by blast
qed
lemma lemSNorm2VelocityJoining:
assumes slopeFinite \(x p\)
and \(\quad v=\) velocityJoining \(x p\)
shows sqr \((\) tval \(p-\) tval \(x) * s\) Norm2 \(v=s\) Norm2 (sComponent ( \(p \ominus x)\) )
proof -
have sloper \(x p=((1 /(\) tval \(x-t v a l p)) \otimes(x \ominus p))\) using \(\operatorname{assms}(1)\) by auto
hence \(v=((1 /(\) tval \(x-\) tval \(p)) \otimes s(s C o m p o n e n t(x \ominus p)))\) using \(\operatorname{assms}(2)\) by \(\operatorname{simp}\)
hence \(s\) Norm2 \(v=\operatorname{sqr}(1 /(\) tval \(x-\) tval \(p)) * s\) Norm2 \((s C o m p o n e n t ~\) \((x \ominus p)\) )
using lemSNorm2OfScaled assms(1) by blast
also have \(\ldots=\operatorname{sqr}(1 /(\) tval \(p-\) tval \(x)) *\) sNorm2 (sComponent \((p \ominus x)\) )
using lemSSep2Symmetry assms(1) lemSqrDiffSymmetrical by simp
finally show ?thesis using assms(1) by simp qed
lemma lemOrthogalSpaceVectorExists:
shows \(\exists w \cdot(w \neq s\) Origin \() \wedge(w \odot s v)=0\)
proof -
obtain \(x y z\) where \(x y z: v=m k S p a c e ~ x y z\) using Space.cases by blast
define \(w\) where \(w: w=(\) if \(x=0\) then \((m k S p a c e 100)\)
else (mkSpace \((y / x)(-1) 0))\)
have wnot 0 : \((w \neq\) sOrigin \()\) using \(w\) by simp
moreover have orth: \((w \odot s v)=0\)
proof -
```

 { assume x0: x=0
 hence w= mkSpace 100 using w by simp
 hence (w\odotsv)=0 using x0 xyz by simp
 }
 hence case0: }x=0\longrightarrow\mathrm{ ?thesis by blast
 { assume xnot0: x = 0
 hence w=mkSpace (y/x)(-1)0 using w by simp
 hence (w\odotsv)=0 using xnot0 xyz by simp
 }
 hence }x\not=0\longrightarrow\mathrm{ ?thesis by blast
 thus ?thesis using case0 by blast
 qed
 ultimately show ?thesis by force
 qed
lemma lemNonParallelVectorsExist:
shows \exists w. ((w\not= origin)}\wedge(\mathrm{ tval v = tval w))}\wedge(\neg(\exists\alpha.(\alpha\not
0) }\wedgev=(\alpha\otimesw))
proof -
have cases: xval v=0 \vee xval v\not=0 by auto
{ assume case1: xval v=0
define diff where diff: diff =(if ((v\oplusxUnit) = origin) then
(2\otimesxUnit) else xUnit)
define w where w: w}=(v\oplus\mathrm{ diff }
hence w1:(xval w)=1 using case1 diff by auto
{ assume }\exists\alpha|.(\alpha\not=0)^v=(\alpha\otimesw
then obtain }a\mathrm{ where }a:(a\not=0)\wedgev=(a\otimesw)\mathrm{ by auto
hence xval v=a* xval w by simp
hence 0=a*1 using case1 w1 by auto
hence a=0 by auto
hence False using a by blast
}
hence }(\neg(\exists\alpha.(\alpha\not=0)\wedgev=(\alpha\otimesw)))\mathrm{ by auto
moreover have tval v= tval w using w diff by auto
ultimately have (w\not= origin)}\wedge(\mathrm{ tval v = tval w) ^(}\neg(\exists\alpha.(
F0)}\wedgev=(\alpha\otimesw))
using w1 by auto
}
hence lhs: xval v=0 \longrightarrow?thesis by blast
{ assume case2: xval v\not=0
define w where w: w}=(v\oplusyUnit
hence wx: xval w = xval v using case2 by auto
have wy: yval w = yval v+1 using w by auto
{ assume \exists \alpha. (\alpha\not=0)^v=(\alpha\otimesw)

```
```

 then obtain }a\mathrm{ where }a:(a\not=0)\wedgev=(a\otimesw)\mathrm{ by auto
 hence xv: xval v=a*xval w by simp
 hence a1: xval v=a* xval v using wx by simp
 hence }a=1\mathrm{ using case2 by simp
 hence yval v = yval w using a by auto
 hence False using wy by auto
 }
 hence }(\neg(\exists\alpha.(\alpha\not=0)\wedgev=(\alpha\otimesw)))\mathrm{ by auto
 moreover have tval v= tval w using w by auto
 moreover have xval w\not=0 using w case2 by auto
 ultimately have (w\not= origin)}\wedge(\mathrm{ tval v = tval w) ^(}\neg(\exists\alpha.(
 \#0)}\wedgev=(\alpha\otimesw))
by auto
}
hence rhs: xval v}\not=0\longrightarrow\mathrm{ ?thesis by blast
thus ?thesis using cases lhs by auto
qed
lemma lemConeContainsVertex:
shows regularCone x x
proof -
define d}\mathrm{ where d:d=(tUnit }\oplusxUnit
define p where p: p=(d\oplusx)
define l}\mathrm{ where l:l= lineJoining x p
define v}\mathrm{ where v:v= velocityJoining origin d
have xnotp: x}\not=
proof -
{ assume x = p
hence (d\oplusx)=x using p by auto
hence d}=\mathrm{ origin using add-cancel-left-left
by (metis dot.simps lemDotSumRight lemNullImpliesOrigin)
hence False using d by auto
}
thus ?thesis by auto
qed
moreover have d=(}p\ominusx)\mathrm{ using p by auto
ultimately have vel:}v\in\mathrm{ lineVelocity }
using l v d lemVelocityLineJoining[of l x p v] by blast
have lprops:onLine x l^ onLine pl
using xnotp l lemLineAndPoints[of x pl] by auto
have slope: sNorm2 v=1
proof -
define sx where sx: sx = (svalx = 1, svaly = 0, svalz = 0)
have slopeFinite origin d using d by auto

```
hence sloper origin \(d=((1 /((\) tval origin \()-(\) tval \(d))) \otimes(\) origin \(\ominus d)\) ) by simp
moreover have \(\ldots=((-1) \otimes(\) origin \(\ominus d))\) using \(d\) by auto moreover have \(\ldots=d\) by auto ultimately have sloper origin \(d=d\) by simp
hence velocityJoining origin \(d=s\) Component \(d\) by simp
hence \(v=s x\) using \(v d s x\) by auto
thus ?thesis using \(s x\) by auto
qed
hence \(v \in\) lineVelocity \(l \wedge\) sNorm2 \(v=1\) using vel by auto
hence \(\exists l\). (onLine \(x l) \wedge(\exists v \in\) lineVelocity \(l\). sNorm2 \(v=1)\)
using lprops by blast
thus ?thesis by blast
qed
```

lemma lemConesExist:
shows regularConeSet $x \neq\{ \}$
proof -
have $x \in$ regularConeSet x using lemConeContains Vertex by auto
thus ?thesis by blast
qed
lemma lemRegularCone:
shows $\quad((x=p) \vee$ onRegularCone $x p) \longleftrightarrow$ regularCone x p
proof -
define l where $l: l=$ lineJoining $x p$
hence lprops: onLine $p l \wedge$ onLine $x l$
using lemLineJoiningContainsEndPoints by auto
define LHS where LHS: LHS $=((x=p) \vee($ onRegularCone x $p))$
define $R H S$ where $R H S: R H S=($ regularCone x $p)$
have $L H S \longrightarrow R H S$
proof -
\{ assume $x=p$
hence ?thesis using RHS lemConeContainsVertex by auto
\}
hence case1: $x=p \longrightarrow$ regularCone $x p$ using LHS RHS by auto
\{ assume $x \neq p \wedge$ onRegularCone $x p$
then obtain v where $v: v \in \operatorname{lineVelocity~} l \wedge$ sNorm2 $v=1$
using l by blast
hence $\exists l$. (onLine $p l) \wedge($ onLine $x l) \wedge(\exists v \in$ lineVelocity l.
sNorm2 $v=1$)
using lprops by blast
\}
thus ?thesis using case1 LHS RHS by blast

```

\section*{qed}
moreover have \(R H S \longrightarrow L H S\)
proof -
\{ assume rhs: RHS
have cases: \(x=p \vee x \neq p\) by auto
have case1: \(x=p \longrightarrow(x=p \vee\) onRegularCone \(x p)\) by auto
\(\{\) assume xnotp: \(x \neq p\)
then obtain \(l 1\) where
\[
\text { l1: }(\text { onLine } x l 1) \wedge(\text { onLine } p l 1)
\]
\(\wedge(\exists v \in\) lineVelocity l1.sNorm2 \(v=1)\)
using rhs RHS by blast
hence \(l 1=l\) using xnotp \(l\) l1 lemLineAndPoints[of \(x p l 1]\) by
auto
hence \(\exists v \in\) lineVelocity \(l\). sNorm2 \(v=1\) using \(l 1\) by blast hence onRegularCone \(x p\) using \(l\) by blast hence ( \(x=p \vee\) onRegularCone \(x p\) ) by blast
        \}
        hence case2: \(x \neq p \longrightarrow L H S\)
                using l lprops LHS by blast
            hence \((x=p \vee\) onRegularCone \(x p)\) using cases case1 LHS by
blast
        \}
        thus ?thesis using LHS RHS by auto
    qed
ultimately have \(L H S \longleftrightarrow R H S\) by blast thus ?thesis using LHS RHS by fastforce qed
lemma lemSlopeInfiniteImpliesOutside:
assumes \(x \neq p\)
and slopeInfinite \(x p\)
shows \(\quad \exists l p^{\prime} .\left(p^{\prime} \neq p\right) \wedge\) onLine \(p^{\prime} l \wedge\) onLine \(p l\)
\(\wedge(l \cap\) regularConeSet \(x=\{ \})\)
proof -
define \(d x p\) where \(d x p\) : \(d x p=(x \ominus p)\)
hence \(x=(d x p \oplus p)\) by simp
hence \(x d x p: x=(p \oplus d x p)\) using add-commute by blast
have \(x p\) : tval \(x=\) tval \(p\) using assms(2) by blast
hence tvaldxp: tval \(d x p=0\) using \(d x p\) by simp
obtain dnew where
dnew: \((\) dnew \(\neq\) origin \() \wedge(\) tval dnew \(=\) tval \(d x p) \wedge \neg(\exists \alpha . \alpha \neq 0\)
\(\wedge d x p=(\alpha \otimes d n e w))\)
```

 using lemNonParallelVectorsExist[of dxp]
    ```
    by auto
    hence tvaldnew: tval dnew \(=0\) using tvaldxp by simp
    define \(w\) where \(w: w=(p \oplus\) dnew \()\)
hence wmp: \((w \ominus p)=\) dnew by simp
have \(w x\) : tval \(w=\) tval \(x\)
proof -
    have tval dnew \(=\) tval \(x-\) tval \(p\) using dnew \(d x p\) by auto
    hence tval \(w=\) tval \(p+(\) tval \(x-\) tval \(p)\) using \(w\) by auto
    thus ?thesis using add-commute diff-add-cancel by auto
qed
define \(l w\) where \(l w: l w=\) lineJoining \(w p\)
```

have xNotOnLw: \neg(x\inlw)

```
proof -
    \{ assume \(x \in l w\)
        then obtain \(a\) where \(a\) : \(x=(w \oplus(a \otimes(p \ominus w)))\) using \(l w\) by
auto
    hence \((p \oplus d x p)=((p \oplus\) dnew \() \oplus(a \otimes(p \ominus w)))\) using \(x d x p w\)
by auto
    hence \(d x p=(\) dnew \(\oplus(a \otimes(p \ominus w)))\) using add-assoc by auto
    moreover have \((p \ominus w)=((-1) \otimes(w \ominus p))\) by simp
    hence \((a \otimes(p \ominus w))=((-a) \otimes(w \ominus p))\) using lemScaleAssoc \([o f\)
\(a-1 w \ominus p]\) by \(\operatorname{simp}\)
    ultimately have \(d x p=(\) dnew \(\oplus((-a) \otimes(w \ominus p)))\) by auto
            hence \(d x p=((1 \otimes\) dnew \() \oplus((-a) \otimes\) dnew \())\) using wmp by
auto
        hence \(d x p=((1-a) \otimes\) dnew \()\) using left-diff-distrib' by fastforce
        hence \((1-a)=0\) using dnew by blast
        hence \(a=1\) by \(\operatorname{simp}\)
        hence \(x=(w \oplus(p \ominus w))\) using \(a\) by auto
        hence \(x=p\) by (simp add: local.add-diff-eq)
    \}
    thus ?thesis using assms(1) by auto
qed
have dnew \(\neq\) origin using dnew by auto
hence \(w\) Notp: \(w \neq p\) using \(w\) diff-self \(w m p\) by blast
hence \(p w O n L w\) : onLine \(p l w \wedge\) onLine \(w l w\)
using lw lemLineAndPoints \([o f\) w \(p l w]\) by auto
hence target1: \(w \neq p \wedge\) onLine \(w l w \wedge\) onLine \(p l w\) using \(w N o t p\) by auto
define \(\operatorname{Meet} W\) where \(\operatorname{Meet} W:\) Meet \(W=l w \cap\) regularConeSet \(x\) \{ assume nonempty: \(\neg(\operatorname{Meet} W=\{ \})\)
```

 then obtain z where z:z\in MeetW by blast
 have zx: tval z= tval x
 proof -
 have z\in lineJoining w p using z MeetW lw by auto
 then obtain a where a:z=(w\oplus(a\otimes(p\ominusw))) by blast
 have tval (}p\ominusw)=0\mathrm{ using w tvaldnew by auto
 hence tval z= tval w using a by auto
 thus ?thesis using wx by auto
 qed
 have regularCone x z using z MeetW by auto
 then obtain l1 where l1:(onLine z l1) ^(onLine x l1)
 \wedge (\existsv\in lineVelocity l1 . sNorm2 v =
 1) by blast
then obtain v}\mathrm{ where v:v lineVelocity l1 }\wedge\mathrm{ sNorm2 v=1 by
blast
hence \existsd\indrtn l1 . v= velocityJoining origin d ^ sNorm2 v =
1 by auto
then obtain d1 where d1:d1\indrtn l1 ^ v=velocityJoining
origin d1 ^ sNorm2 v = 1
by blast
hence v}\not=s\mathrm{ sOrigin by fastforce
hence velocityJoining origin d1 }\not=\mathrm{ sOrigin using d1 by auto
hence drtnNotZero: tval d1 }=0\mathrm{ by auto
define d2 where d2: d2 = (z\ominus 诺
hence tvald2: tval d2 = 0 using zx by simp
have zNotz: }x\not=z\mathrm{ using xNotOnLw z MeetW by blast
hence (x\not=z)\wedge(onLine zl1)^(onLine x l1) ^(d2 = (z\ominus 片)
using l1 d2 by auto
hence \existsxz. (x\not=z)^(onLine x l1) ^(onLine zl1)^(d2 = (z
\ominus x)) by blast
hence d2 \in drtn l1 by auto
then obtain b where b:b\not=0\wedged1=(b\otimesd2)
using lemDrtn[of d2 d1 l1] d1 by blast
hence tval d1 = b* tval d2 by simp
hence tval d1 = 0 using tvald2 by simp
hence False using drtnNotZero by auto
}
hence MeetW = {} by auto
hence (w\not=p)\wedge onLine wlw}\wedge\mathrm{ onLine plw^(lw \ regularConeSet
x={})
using target1 MeetW by auto
```
thus ?thesis by blast
qed
```

lemma lemClassification:
shows (insideRegularCone x p) \vee (vertex x $p \vee$ outsideRegularCone
$x p \vee$ onRegularCone $x p$)
proof -
define l where $l: l=$ lineJoining $x p$
define v where $v: v=$ velocityJoining origin $(p \ominus x)$
\{ assume xnotp: $x \neq p$
hence vel: $v \in$ lineVelocity l
using $l v$ lemVelocityLineJoining $[o f l x p l]$ by auto
have $(s$ Norm2 $v<1) \vee(s N o r m 2 v>1) \vee(s N o r m 2 v=1)$ by
auto
hence ?thesis using xnotp $l v$ vel by blast
\}
hence $x \neq p \longrightarrow$?thesis by auto
moreover have $x=p \longrightarrow$?thesis by auto
ultimately show ?thesis by blast
qed
lemma lemQuadCoordinates:
assumes $p=(B \oplus(\alpha \otimes D))$
and $a=m$ Norm2 D
and $b=2 *($ tval $(B \ominus x)) *($ tval $D)-2 *((s C o m p o n e n t ~ D) \odot s(s C o m p o n e n t$
$(B \ominus x))$)
and $c=m$ Norm2 $(B \ominus x)$
shows $\operatorname{sqr}($ tval $(p \ominus x))-s N o r m 2(s C o m p o n e n t ~(p \ominus x))=a *(\operatorname{sqr} \alpha)$
$+b * \alpha+c$
proof -
define X where $X: X=(B \ominus x)$
have $p m x:(p \ominus x)=(X \oplus(\alpha \otimes D))$ using diff-add-eq assms X by
simp

```
    have \(p m x t\) : tval \(p-\) tval \(x=\) tval \(X+\alpha *\) tval \(D\) using \(p m x\) by simp
    have pmxs: sComponent \((p \ominus x)=((s C o m p o n e n t X) \oplus s(\alpha \otimes s\) (sComponent
D))
    using \(p m x\) by \(\operatorname{simp}\)
    have tsqr: sqr (tval \((p \ominus x))\)
        \(=\operatorname{sqr}(\) tval \(X)+\alpha *(2 *(\) tval \(X) *(\) tval \(D))+(\operatorname{sqr} \alpha) *(s q r\)
(tval D))
    using pmxt lemSqrSum [of tval \(X \alpha *(\) tval \(D)]\) mult-assoc mult-commute
by auto
have ssqr: sNorm2 (sComponent \((p \ominus x)\) )
\[
\begin{aligned}
&=(\text { sNorm2 }(\text { sComponent } X)) \\
&+\alpha *(2 *((\text { sComponent } X) \odot s(\text { sComponent } D))) \\
&+(\text { sqr } \alpha) *(\text { sNorm2 }(\text { sComponent } D))
\end{aligned}
\]
using lemSDotScaleRight lemSNorm2OfScaled lemSNorm2OfSum mult.left-commute pmxs
by presburger
hence sqr (tval \((p \ominus x))-s N o r m 2(s C o m p o n e n t(p \ominus x))\)
\(=(\operatorname{sqr}(\) tval \(X)+\alpha *(2 *(\) tval \(X) *(\) tval \(D))+(\) sqr \(\alpha) *(\) sqr \((\) tval D)) )
- ((sNorm2 (sComponent X))
\[
\begin{aligned}
& +\alpha *(2 *((\text { sComponent } X) \odot s(\text { sComponent } D))) \\
& +(\text { sqr } \alpha) *(\text { sNorm } 2(\text { sComponent } D)))
\end{aligned}
\]
using tsqr by auto
also have ...
```

$=(\operatorname{sqr}($ tval $X)+\alpha *(2 *($ tval $X) *($ tval $D)))$
$+((s q r \alpha) *(s q r($ tval $D))-(s q r \alpha) *(s N o r m 2$ (sComponent

```
D)) )
```

- ((sNorm2 (sComponent X))
$+\alpha *(2 *((s C o m p o n e n t X) \odot s(s C o m p o n e n t D))))$

```
using diff-add-eq add-diff-eq diff-add-eq-diff-diff-swap by fastforce also have ...
\[
=\operatorname{sqr}(\text { tval } X)+
\]
\[
(\alpha *(2 *(\text { tval } X) *(\text { tval } D))-\alpha *(2 *((s C o m p o n e n t X) \odot s
\] \((s\) Component \(D)))\) )
\[
+\left(\left(\begin{array}{l}
\text { sqr }
\end{array}\right) *(\text { sqr }(\text { tval } D))-(\text { sqr } \alpha) *(\text { sNorm2 }(\text { sComponent }\right.
\] D)) )
- (sNorm2 (sComponent X))
using diff-add-eq add-diff-eq diff-add-eq-diff-diff-swap add-commute by \(\operatorname{simp}\)
also have...
\(=\operatorname{sqr}(\) tval \(X)+\alpha * b+(\) sqr \(\alpha) * a-(\) sNorm2 2 (sComponent
X))
using right-diff-distrib' assms(2) assms(3) X lemSDotCommute by presburger
also have \(\ldots=c+\alpha * b+(\) sqr \(\alpha) * a\)
using right-diff-distrib' assms(4) X add-commute add-diff-eq by simp
finally show ?thesis using add-commute mult-commute add-assoc by auto qed
lemma lemConeCoordinates:
shows (onRegularCone \(x\) p sqr (tval \(p-\) tval \(x\) ) \(=\) sNorm2 (sComponent \((p \ominus x))\) )
```

 ^(insideRegularCone x p \longleftrightarrow sqr (tval p - tval x)> sNorm2
 (sComponent (p\ominusx)))
\wedge(outsideRegularCone x p}\longleftrightarrow\mathrm{ sqr (tval p-tval x)<sNorm2
(sComponent (}p\ominusx)\mathrm{))
proof -
define tdiff where tdiff: tdiff = tval p - tval x
define sdiff where sdiff: sdiff =sComponent (}p\ominusx
have cases: }x=p\veex\not=p\mathrm{ by simp
have case1: }x=p\longrightarrow\mathrm{ ?thesis
proof -
{ assume xisp: x=p
hence on: onRegularCone x p by auto
moreover have both0: sqr tdiff = 0 ^ sNorm2 sdiff = 0
using xisp tdiff sdiff by simp
ultimately have onRegularCone x p}\longleftrightarrowsqr tdiff = sNorm
sdiff by simp
moreover have outsideRegularCone x }p\longleftrightarrow\mathrm{ sqr tdiff > sNorm2
sdiff
proof -
have \negoutsideRegularCone x p using xisp by simp
moreover have }\neg\mathrm{ (sqr tdiff > sNorm2 sdiff) using both0 by
simp
ultimately show ?thesis by blast
qed
moreover have insideRegularCone x p}\longleftrightarrow\mathrm{ sqr tdiff < sNorm2
sdiff
proof -
have \neginsideRegularCone x p using xisp by simp
moreover have }\neg\mathrm{ (sqr tdiff < sNorm2 sdiff) using both0 by
simp
ultimately show ?thesis by blast
qed
ultimately have ?thesis using tdiff sdiff by blast
}
thus ?thesis by blast
qed
have case2: }x\not=p\longrightarrow\mathrm{ ?thesis
proof -
define l where l:l= lineJoining x p
hence onl: onLine x l ^ onLine pl using lemLineJoiningContain-
sEndPoints by blast
define v}\mathrm{ where v: v= velocityJoining x p

```
```

 { assume xnotp: x\not=p
 { assume sinf: slopeInfinite x p
 hence t0: sqr tdiff = 0 using tdiff by simp
 hence sdiff }\not=\mathrm{ sOrigin using xnotp sdiff tdiff by auto
 hence sNorm2 sdiff }\not=0\mathrm{ using lemSpatialNullImpliesSpatialO-
 rigin by blast
moreover have sNorm2 sdiff \geq0 by simp
ultimately have sNorm2 sdiff > 0 using lemGENZGT by
auto
hence eqn: sqr tdiff < sNorm2 sdiff using t0 by auto
have out:outsideRegularCone x p using sinf xnotp by blast
have notin: \neg insideRegularCone x p using sinf by blast
have notgt: ᄀ(sqr tdiff > sNorm2 sdiff) using eqn by auto
have noton: \neg onRegularCone x p
proof -
{ assume onRegularCone x p
then obtain }u\mathrm{ where }u:u\in\mathrm{ lineVelocity l ^ sNorm2 u=
using l xnotp by blast
hence slopeFinite x p
using xnotp lemLineVelocityNonZeroImpliesFinite[of u l]
zero-neq-one l
by fastforce
hence False using sinf by auto
}
thus ?thesis by blast
qed
have noteq:\neg (sqr tdiff = sNorm2 sdiff) using eqn by auto
have outs: (outsideRegularCone x p) \longleftrightarrow (sqr tdiff < sNorm2
sdiff)
using out eqn by blast
have ins:(insideRegularCone x p) \longleftrightarrow(sqr tdiff > sNorm2
sdiff)
using notin notgt by blast
have ons: (onRegularCone x p) \longleftrightarrow(sqr tdiff = sNorm2 sdiff)
using noton noteq by blast
hence ?thesis using ins outs ons tdiff sdiff by blast
}
hence ifsinf: slopeInfinite x p}\longrightarrow\mathrm{ ?thesis by blast

```
```

 { assume sf: slopeFinite x p
 hence lv: lineVelocity l={v}
 using lemLineVelocityUsingPoints[of x p l l v onl xnotp by
 auto
have formula: sqr tdiff *(sNorm2 v) = sNorm2 sdiff
using lemSNorm2VelocityJoining[of x p v
auto

```
    \{ assume onRegularCone \(x p\)
        hence ( \(\exists v \in\) lineVelocity \(l\). sNorm2 \(v=1\) ) using xnotp \(l\)
by auto
    then obtain \(u\) where \(u: u \in\) lineVelocity \(l \wedge\) sNorm2 \(u=1\)
by blast
    hence \(u=v\) using \(l v\) by blast
    hence sNorm2 \(v=1\) using \(u\) by auto
    hence sqr tdiff \(=\) sNorm2 sdiff using formula by auto
    \}
    hence on1: (onRegularCone \(x p) \longrightarrow(\) sqr tdiff \(=s\) Norm2 sdiff \()\)
by auto
\{ assume insideRegularCone \(x\) p
    hence ( \(\exists v \in\) lineVelocity \(l\). sNorm2 \(v<1\) ) using xnotp \(l\)
by auto
    then obtain \(u\) where \(u: u \in\) lineVelocity \(l \wedge\) sNorm2 \(u<1\)
by blast
    hence \(u=v\) using \(l v\) by blast
    hence vlt1: sNorm2 \(v<1\) using \(u\) by auto
    \{ assume \(s\) Norm2 \(v=0\)
            hence \(v 0: v=\) sOrigin using lemSpatialNullImpliesSpa-
tialOrigin by auto
        have sloper \(x p=((1 /(\) tval \(x-\) tval \(p)) \otimes(x \ominus p))\) using \(s f\)
by auto
    hence \(v=((1 /(\) tval \(x-\) tval \(p)) \otimes s(s C o m p o n e n t ~(x \ominus p)))\)
using \(v\) by \(\operatorname{simp}\)
                hence \(s\) Origin \(=((1 /(\) tval \(x-\) tval \(p)) \otimes s(s\) Component
\((x \ominus p)))\)
                using v0 by force
            hence \(((\) tval \(x-\) tval \(p) \otimes s\) sOrigin \()=s\) Component \((x \ominus p)\)
                using lemSScaleAssoc[of (tval \(x-\) tval \(p\) ) \(1 /(\) tval \(x-\) tval
p)
                                    (sComponent \((x \ominus p))] s f\)
                                    mult-eq-O-iff right-minus-eq by auto
            hence \(s 0\) : sComponent \((x \ominus p)=s\) Origin by auto
            hence pmxs: sNorm2 sdiff \(=0\) using sdiff lemSSep2Symmetry
by auto
have tdiff \(\neq 0\) using tdiff xnotp s0 by auto
hence sqr tdiff > sNorm2 sdiff using pmxs lemSquaresPositive by auto
            \}
            hence ifv0: sNorm2 \(v=0 \longrightarrow\) sqr tdiff \(>\) sNorm2 sdiff by
blast
\{ assume vne0: sNorm2 \(v \neq 0\)
hence sNorm2 \(v>0\) using lemGENZGT by auto
moreover have tpos: sqr tdiff \(>0\) using sf lemSquaresPositive tdiff by auto
ultimately have lpos: (sqr tdiff \() *(s N o r m 2 v)>0\) by auto
hence rpos: sNorm2 sdiff \(>0\) using formula by auto
hence \((\) sqr tdiff \() *(\) sNorm2 \(v)<(\) sqr tdiff \()\) using tpos lpos vlt1 using lemMultPosLT1[of sqr tdiff sNorm2 v] tpos by auto hence sqr tdiff > sNorm2 sdiff using formula by auto \}
hence sNorm2 \(v \neq 0 \longrightarrow\) sqr tdiff \(>\) sNorm2 sdiff by auto
hence sqr tdiff > sNorm2 sdiff using ifv0 by blast
\}
hence in1: insideRegularCone x \(p \longrightarrow\) sqr tdiff \(>\) sNorm2 sdiff by auto
\{ assume out: outsideRegularCone x \(p\)
have xnotp: \((x \neq p)\) using out by simp
have \((\exists v \in\) lineVelocity (lineJoining \(x p\) ). sNorm2 \(v>1\) ) using sf out by blast
then obtain \(u\) where \(u: u \in\) lineVelocity (lineJoining \(x p) \wedge\) (sNorm2 \(u>1\) ) by blast
hence \(u=v\) using \(l v l\) by blast
hence sNorm2 \(v>1\) using \(u\) by auto
moreover have sqr tdiff \(>0\) using sf tdiff lemSquaresPositive by auto
ultimately have (sqr tdiff) \(*(\) sNorm2 \(v)>(\) sqr tdiff \()\) using local.mult-strict-left-mono by fastforce
hence sqr tdiff \(<\) sNorm2 sdiff using formula by auto \}
hence out1: (outsideRegularCone x \(p) \longrightarrow(\) sqr tdiff \(<\) sNorm2 sdiff) by auto
have in2: \((\) sqr tdiff \(>\) sNorm2 sdiff \() \longrightarrow\) (insideRegularCone \(x\) p)
    proof -
        \{ assume lhs: sqr tdiff > sNorm2 sdiff
            \{ assume \(\neg\) insideRegularCone x \(p\)
blast

\section*{proof -}
\{ assume lhs: sqr tdiff < sNorm2 sdiff
\{ assume \(\neg\) outsideRegularCone x \(p\)
hence options: onRegularCone \(x p \vee\) insideRegularCone \(x\) using lemClassification xnotp by blast
\{ assume onRegularCone \(x p\)
hence sqr tdiff \(=\) sNorm2 sdiff using mnotp on1 by blast hence False using lhs by auto
\}
hence notOn: \(\neg\) onRegularCone \(x\) p by blast
\{ assume insideRegularCone \(x\) p
hence sqr tdiff \(>\) sNorm2 sdiff using xnotp in1 by blast hence False using lhs by auto
\}
hence notIn: \(\neg\) insideRegularCone \(x p\) by blast
hence False using notOn options by blast \} hence outsideRegularCone \(x p\) by blast
\}
```

 thus ?thesis by blast
 qed
 have on2: (sqr tdiff = sNorm2 sdiff)}\longrightarrow(\mathrm{ onRegularCone x p)
 proof -
 { assume lhs: sqr tdiff = sNorm2 sdiff
 { assume }\neg\mathrm{ onRegularCone x p
 hence options: outsideRegularCone x p\vee insideRegularCone
 x p
using lemClassification xnotp by blast
{ assume outsideRegularCone x p
hence sqr tdiff < sNorm2 sdiff using xnotp out1 by
blast
hence False using lhs by auto
}
hence notOut: \negoutsideRegularCone x p by blast
{ assume insideRegularCone x p
hence sqr tdiff > sNorm2 sdiff using xnotp in1 by blast
hence False using lhs by auto
}
hence notIn: \neginsideRegularCone x p by blast
hence False using notOut options by blast
}
hence onRegularCone x p by blast
}
thus ?thesis by blast
qed
hence ?thesis using in1 in2 out1 out2 on1 on2 tdiff sdiff by
blast
}
hence slopeFinite x p}\longrightarrow\mathrm{ ?thesis by blast
hence ?thesis using ifsinf by blast
}
thus ?thesis by blast
qed
thus ?thesis using cases case1 by blast
qed
lemma lemConeCoordinates1:
shows p}\in\mathrm{ regularConeSet }x\longleftrightarrow\mathrm{ norm2 (}p\ominusx\mathrm{) =2*sqr (tval p-
tval x)

```
```

proof -
define tdiff where tdiff: tdiff = tval p - tval x
hence tdiff': tdiff = tval (}p\ominusx)\mathrm{ by simp
define sdiff where sdiff: sdiff =(sComponent (}p\ominusx)
have n: norm2 (}p\ominusx)=\mathrm{ sqr tdiff + sNorm2 sdiff
using lemNorm2Decomposition sdiff tdiff' by blast

```
    have reg: onRegularCone \(x p \longleftrightarrow\) sqr tdiff \(=\) sNorm2 sdiff
        using lemConeCoordinates tdiff sdiff by blast
    \{ assume \(p \in\) regularConeSet \(x\)
        hence onRegularCone \(x p\) using lemRegularCone \([\) of \(x p]\) by auto
        hence sqr tdiff \(=\) sNorm2 sdiff using reg by blast
        hence norm2 \((p \ominus x)=2 *\) sqr tdiff using \(n\) mult-2 by force
    \}
    hence \(12 r: p \in\) regularConeSet \(x \longrightarrow\) norm2 \((p \ominus x)=2 *\) sqr tdiff
by auto
    \{ assume norm2 \((p \ominus x)=2 *\) sqr tdiff
    hence sqr tdiff + sNorm2 sdiff \(=2 *\) sqr tdiff using \(n\) by auto
    hence sNorm2 sdiff \(=\) sqr tdiff using mult-2 add-diff-eq by auto
    hence onRegularCone \(x p\) using reg by auto
    hence \(p \in\) regularConeSet \(x\)
        using lemConeContainsVertex lemRegularCone \([\) of \(x p]\) by blast
    \}
    hence norm2 \((p \ominus x)=2 *\) sqr tdiff \(\longrightarrow p \in\) regularConeSet \(x\) by
blast
    thus ?thesis using l2r tdiff by blast
qed
lemma lem WhereLineMeetsCone:
    assumes \(a=m\) Norm2 \(D\)
and \(\quad b=2 *(\) tval \((B \ominus x)) *(\) tval \(D)-2 *((s C o m p o n e n t D) \odot s\)
(sComponent \((B \ominus x))\) )
and \(\quad c=m\) Norm2 \((B \ominus x)\)
shows \(\quad\) qroot \(a b\) c \(\alpha \longleftrightarrow\) regularCone \(x(B \oplus(\alpha \otimes D))\)
proof -
    \{ fix \(\alpha\) assume \(\alpha\) : qroot \(a b c \alpha\)
        define \(p\) where \(p: p=(B \oplus(\alpha \otimes D))\)
        hence mNorm2 \((p \ominus x)=a *(s q r \alpha)+b * \alpha+c\)
            using lemQuadCoordinates[of \(p B \alpha D a b x c] a s s m s\) by auto
    hence \(\operatorname{sqr}(\) tval \((p \ominus x))-s N o r m 2(s C o m p o n e n t ~(p \ominus x))=0\) using
\(\alpha\) by auto
    hence onRegularCone \(x p\) using lemConeCoordinates \([o f x p]\) by
auto
    hence regularCone \(x(B \oplus(\alpha \otimes D))\) using lemRegularCone \(p\) by
```

blast
}
hence l2r: qroot a b c \alpha \longrightarrow regularCone x (B\oplus(\alpha\otimesD)) by blast
{ assume reg: regularCone x (B\oplus(\alpha\otimesD))
define p where p: p=(B\oplus(\alpha\otimesD))
hence onRegularCone x p using lemRegularCone reg by blast
hence sqr (tval (}p\ominusx))-sNorm2 (sComponent (p\ominusx))=
using lemConeCoordinates[of x p] by auto
hence}a*(sqr \alpha)+b*\alpha+c=
using lemQuadCoordinates[of p B 人 D ab x c] p assms
by auto
hence qroot a b c \alpha by auto
}
hence regularCone x (B\oplus(\alpha\otimesD))\longrightarrow qroot a b c \alpha by auto
thus ?thesis using l2r by blast
qed
lemma lemLineMeetsCone1:
assumes }\neg(x\inl
and isLine l
and }S=l\cap\mathrm{ regularConeSet x
and l:l= line B D
and }X:X=(B\ominusx
and a: a=mNorm2 D
and b:b=2*(tval X)*(tval D) - 2*((sComponent D) \odots(sComponent
X))
and c:c=mNorm2 X
shows (qcase1 a b c\longrightarrow}\longrightarrow={B}
proof -
{ assume hyp1:qcase1 a b c
have impa: norm2 D = 2*sqr (tval D)
proof -
have }a=0\mathrm{ using hyp1 by simp
hence sqr (tval D) = sNorm2 (sComponent D) using a by auto
hence onRegularCone origin D
using lemConeCoordinates[of origin D] by auto
hence regularCone origin D using lemRegularCone by blast
thus ?thesis using lemConeCoordinates1 by auto
qed
have impb:}(D\odotX)=2*\mathrm{ tval X * tval D
proof -
have}2*(tval X)*(tval D)=2*((sComponent D) \odots(sComponent
X))
using hyp1 b by auto

```
```

 hence (tval X)*(tval D) =((sComponent D) \odots (sComponent
 X))
by (simp add: mult-assoc)
thus ?thesis using mult-2 lemDotDecomposition[of X D]
lemSDotCommute mult-assoc lemDotCommute by metis
qed
have impc: norm2 X = 2*sqr (tval X)
proof -
have sqr (tval X) = sNorm2 (sComponent X) using hyp1 c by
auto
hence onRegularCone x B using X lemConeCoordinates by auto
hence regularCone x B using lemRegularCone by blast
thus ?thesis using X lemConeCoordinates1 by auto
qed
have allOnCone: }\forall\alpha\mathrm{ . regularCone x (B}\oplus(\alpha\otimesD)
proof -
{fix \alpha
define y where y:y=(B\oplus(\alpha\otimesD))
have qroot a b c \alpha using hyp1 by simp
hence regularCone x y
using lemWhereLineMeetsCone[of a D b B x
assms by auto
}
thus ?thesis by auto
qed
have tval D=0
proof -
{ assume Dnot0: tval D}\not=
define }\alpha\mathrm{ where }\alpha\mathrm{ : }\alpha=(\mathrm{ tval }x-\mathrm{ tval B)/(tval D)
define }y\mathrm{ where y:}y=(B\oplus(\alpha\otimesD)
hence yOnl:y\inl using l by blast
hence ty0: tval }y=\mathrm{ tval }
proof -
have tval y = tval ((B\oplus(\alpha\otimesD))) using y by auto
also have ···= tval B + \alpha*(tval D) by simp
also have ... = tval B + (tval x - tval B)/(tval D)*(tval D)
using \alpha by simp
also have ... = tval B + (tval x - tval B) using Dnot0 by
simp
finally show ?thesis using add-commute local.diff-add-cancel
by auto
qed
have regularCone x y using y allOnCone by blast
hence norm2 (y\ominusx) = 2*sqr (tval y - tval x)

```
```

 using lemConeCoordinates1 by auto
 hence norm2 (y\ominusx) = 0 using ty0 by auto
 hence}(y\ominusx)=origin using lemNullImpliesOrigin by blas
 hence }y=x\mathrm{ by simp
 hence False using yOnl assms by blast
 }
 thus ?thesis by blast
 qed
 hence norm2 D = 0 using impa by auto
 hence D0: D = origin using lemNullImpliesOrigin by auto
 have B0: B=(B\oplus(0\otimesD)) by simp
 have regularCone x (B\oplus(0\otimesD)) using allOnCone by blast
 hence BonCone: regularCone x B
 using B0 by (metis (mono-tags, lifting))
 hence BinS: B\inS using assms BonCone B0 l by blast
 hence SisB: S={B}
 proof -
 { fix y assume y: y\inS
 then obtain \alpha where y=(B\oplus(\alpha\otimesD)) using assms l by
 blast
hence }y=B\mathrm{ using D0 by simp
hence }y\in{B}\mathrm{ by blast
}
hence }S\subseteq{B}\mathrm{ by blast
thus ?thesis using BinS by blast
qed
}
thus ?thesis by auto
qed
lemma lemLineMeetsCone2:
assumes }\neg(x\inl
and isLinel
and }\quadS=l\cap\mathrm{ regularConeSet x
and l:l= line B D
and }X:X=(B\ominusx
and }a=mNorm2
and b=2*(tval (B\ominusx))*(tval D) - 2*((sComponent D) \odots(sComponent
(B\ominusx)))
and c=mNorm2 (}B\ominusx\mathrm{)
shows qcase2 a b c \longrightarrow S={}

```
```

proof -
{ assume hyp2: qcase2 a b c
{ assume S\not={}
then obtain }y\mathrm{ where }y:y\inS\mathrm{ by auto
then obtain \alpha where \alpha: y=(B\oplus(\alpha\otimesD)) using assms by
blast
hence regularCone x (B\oplus(\alpha\otimesD)) using y assms by blast
hence qroot a b c \alpha
using lemWhereLineMeetsCone[of a D b B x c \alpha] assms
by auto
hence False using lemQCase2[of a b c] hyp2 by auto
}
hence S = {} by auto
}
thus ?thesis by auto
qed

```
```

lemma lemLineMeetsCone3:
assumes $\neg(x \in l)$
and isLine l
and $\quad S=l \cap$ regularConeSet x
and $l: l=$ line $B D$
and $X: X=(B \ominus x)$
and $a: a=m$ Norm2 D
and $b: b=2 *($ tval $X) *($ tval $D)-2 *((s C o m p o n e n t ~ D) \odot s(s C o m p o n e n t$
$X)$)
and $c: c=s q r($ tval $X)-s N o r m 2(s C o m p o n e n t ~ X)$
and $y 3: y 3=(B \oplus((-c / b) \otimes D))$
shows qcase3 a b c $\longrightarrow S=\{y 3\}$
proof -
\{ assume hyp3: qcase3 abc
define T where $T: T=\{y 3\}$
have $S \subseteq T$
proof -
\{ fix y assume $y: y \in S$
then obtain r where $r: y=(B \oplus(r \otimes D))$ using l assms by
blast
hence regularCone $x y$ using y assms by auto
hence abcr: qroot a b cr
using $a b c r X$
lemWhereLineMeetsCone[of a D b B x c r $]$
by auto
hence $r=-c / b$ using lemQCase3[of abcr] abcr hyp3 by
blast
hence $y=y 3$ using $y 3 r$ by auto

```
```

 hence }y\inT\mathrm{ using T by blast
 }
 thus ?thesis by auto
 qed
 moreover have T\subseteqS
 proof -
 { fix y assume y f T
 hence y: y=(B\oplus((-c/b)\otimesD)) using T assms by blast
 have qroot a b c (-c/b) using lemQCase3 hyp3 by auto
 hence rc: regularCone x y
 using hyp3 assms y lemWhereLineMeetsCone[of a D b B x c
 (-c/b)]
by auto
have }y\inl\mathrm{ using assms y by blast
hence }y\inS\mathrm{ using rc assms by auto
}
thus ?thesis by blast
qed
ultimately have S={y}} using T by auto
}
thus ?thesis by blast
qed

```
```

lemma lemLineMeetsCone4:

```
lemma lemLineMeetsCone4:
    assumes \(\neg(x \in l)\)
    assumes \(\neg(x \in l)\)
and isLine \(l\)
and isLine \(l\)
and \(\quad S=l \cap\) regularConeSet \(x\)
and \(\quad S=l \cap\) regularConeSet \(x\)
and \(l: l=\) line \(B D\)
and \(l: l=\) line \(B D\)
and \(X: X=(B \ominus x)\)
and \(X: X=(B \ominus x)\)
and \(a: a=m\) Norm2 \(D\)
and \(a: a=m\) Norm2 \(D\)
and \(b\) : \(b=2 *(\) tval \(X) *(\) tval \(D)-2 *((s C o m p o n e n t ~ D) \odot s(s C o m p o n e n t\)
and \(b\) : \(b=2 *(\) tval \(X) *(\) tval \(D)-2 *((s C o m p o n e n t ~ D) \odot s(s C o m p o n e n t\)
\(X)\) )
\(X)\) )
and \(c: c=s q r(\) tval \(X)-s N o r m 2(s C o m p o n e n t ~ X) ~\)
and \(c: c=s q r(\) tval \(X)-s N o r m 2(s C o m p o n e n t ~ X) ~\)
shows (qcase4 a b c \(\longrightarrow S=\{ \})\)
shows (qcase4 a b c \(\longrightarrow S=\{ \})\)
proof -
proof -
    \{ assume hyp 4: qcase4 abc
    \{ assume hyp 4: qcase4 abc
    \{ assume \(S \neq\{ \}\)
    \{ assume \(S \neq\{ \}\)
            then obtain \(y\) where \(y: y \in S\) by blast
            then obtain \(y\) where \(y: y \in S\) by blast
            then obtain \(r\) where \(r: y=(B \oplus(r \otimes D))\) using \(l\) assms by
            then obtain \(r\) where \(r: y=(B \oplus(r \otimes D))\) using \(l\) assms by
blast
blast
            hence regularCone \(x y\) using \(y\) assms by auto
            hence regularCone \(x y\) using \(y\) assms by auto
            hence abcr: qroot abcr
            hence abcr: qroot abcr
                using \(a b c r X\)
                using \(a b c r X\)
                    lemWhereLineMeetsCone[of a DbBxcr]
```

 lemWhereLineMeetsCone[of a DbBxcr]
    ```
```

 by auto
 hence False using lemQCase& hyp& by auto
 }
 hence S={} by auto
 }
thus ?thesis by blast
qed

```
lemma lemLineMeetsCone5:
    assumes \(\neg(x \in l)\)
and isLine \(l\)
and \(\quad S=l \cap\) regularConeSet \(x\)
and \(l: l=\) line \(B D\)
and \(X: X=(B \ominus x)\)
and \(a: a=m\) Norm2 \(D\)
and \(b: b=2 *(\) tval \(X) *(\) tval \(D)-2 *((s\) Component \(D) \odot s(s C o m p o n e n t\)
X))
and \(c: c=s q r(\) tval \(X)-s N o r m 2(s C o m p o n e n t ~ X)\)
and \(y 5: y 5=(B \oplus((-b /(2 * a)) \otimes D))\)
shows (qcase5 a b c \(\longrightarrow S=\{y 5\}\) )
proof -
    \{ assume hyp5: qcase5 abc
    define \(T\) where \(T: T=\{y 5\}\)
    have \(S \subseteq T\)
    proof -
        \{ fix \(y\) assume \(y: y \in S\)
            then obtain \(r\) where \(r: y=(B \oplus(r \otimes D))\) using \(l\) assms by
blast
            hence regularCone \(x y\) using \(y\) assms by auto
            hence abcr: qroot a bcr
                using \(a b c r X\)
                    lemWhereLineMeetsCone[of a D b B x c r \(]\)
                by auto
            hence \(r=-b /(2 * a)\) using lemQCase5 abcr hyp5 by blast
            hence \(y=y 5\) using \(r y 5\) by auto
            hence \(y \in T\) using \(T\) by blast
        \}
        thus ?thesis by blast
    qed
    moreover have \(T \subseteq S\)
    proof -
    \{ fix \(y\) assume \(y \in T\)
            hence \(y: y=(B \oplus((-b /(2 * a)) \otimes D))\) using \(T\) assms by blast
            have qroot a bc(-b/(2*a)) using lemQCase5 hyp5 by blast
            hence rc: regularCone \(x y\)
using hyp5 assms y lemWhereLineMeetsCone[of a DbBxc \((-b /(2 * a))]\)
by auto
have \(y \in l\) using assms \(y\) by blast
hence \(y \in S\) using rc assms by auto
\}
thus ?thesis by blast
qed
ultimately have \(S=\{y 5\}\) using \(T\) by auto
\}
thus ?thesis by blast
qed
```

lemma lemLineMeetsCone6:
assumes $\neg(x \in l)$
and isLine l
and $\quad S=l \cap$ regularConeSet x
and $l: l=$ line $B D$
and $X: X=(B \ominus x)$
and $a: a=m$ Norm2 D
and b : $b=2 *($ tval $X) *($ tval $D)-2 *((s C o m p o n e n t ~ D) \odot s(s C o m p o n e n t$
X))
and $c: c=s q r($ tval $X)-s$ Norm2 (sComponent $X)$
and $y m: y m=(B \oplus(((-b-($ sqrt $($ discriminant $a b c))) /(2 * a)) \otimes$
D))
and $y p: y p=(B \oplus(((-b+($ sqrt $($ discriminant $a b c))) /(2 * a)) \otimes$
D))
shows $(q$ case 6 a $b c \longrightarrow(y m \neq y p) \wedge S=\{y m, y p\})$
proof -
\{ assume hyp6: qcase6 abc
define T where $T: T=\{y m, y p\}$
define $r m$ where $r m: r m=(-b-($ sqrt $($ discriminant $a b c))) /$
($2 * a$)
define $r p$ where $r p: r p=(-b+($ sqrt $($ discriminant $a b c))) /$
($2 * a$)
have ymnotyp: $y m \neq y p$
proof -
define d where $d: d=$ discriminant $a b c$
define $s d$ where $s d: s d=s q r t d$
have sdnot0: sqrt $d \neq 0$
proof -
have dpos: $d>0$ using d hyp6 by simp

```
```

 hence hasRoot d using AxEField by auto
 thus ?thesis using lemSquareOfSqrt \([\) of \(d]\) dpos by auto
 qed
 have Dnot0: \(D \neq\) origin
 proof -
 \{ assume \(D=\) origin
 hence \(a=0\) using \(a\) by simp
 hence False using hyp6 by simp
 \}
 thus ?thesis by auto
 qed
 have \(r m n o t r p: ~ r m \neq r p\)
 proof -
 \{ assume \(r m=r p\)
 hence \((-b-s d) /(2 * a)=(-b+s d) /(2 * a)\) using \(s d d r m\)
 $r p$ by simp
hence $-b-s d=-b+s d$ using hyp 6 by simp
hence $-s d=s d$ using add-left-imp-eq diff-conv-add-uminus
by metis
hence False using sdnot0 sd by simp
\}
thus ?thesis by auto
qed
\{ assume $y m=y p$
hence $(B \oplus(r m \otimes D))=(B \oplus(r p \otimes D))$ using ym yp rm rp
by auto
hence $(r m \otimes D)=(r p \otimes D)$ by simp
hence $((r m-r p) \otimes D)=$ origin by auto
hence $r m-r p=0$ using $\operatorname{Dnot0} 0$ by auto
hence False using rmnotrp by auto
\}
thus ?thesis by auto
qed
have $S \subseteq T$
proof -
\{ fix y assume $y: y \in S$
then obtain r where $r: y=(B \oplus(r \otimes D))$ using l assms by
blast
hence regularCone $x y$ using y assms by auto
hence abcr: qroot a bcr
using $a b c r X$
lemWhereLineMeetsCone[of a D b B x c r $]$
by auto
hence qroots a bc=\{rp,rm\}

```
```

 using lemQCase6[of a b c sqrt (discriminant a b c) rp rm]
 rp rm hyp6 by auto
 hence rchoice: (r=rm\veer=rp) using abcr by blast
 hence ychoice: (y=ym\vee \=yp) using r ym yp rm rp by
 blast
hence yinT: y \in T using T by blast
}
thus ?thesis by auto
qed
moreover have T\subseteqS
proof -
{ fix y assume y\inT
hence y:}y=ym\veey=yp\mathrm{ using T assms by blast
have qroot a b c rm using rm lemQCase6 hyp6 by blast
hence rcm: regularCone x ym
using hyp6 assms ym rm lemWhereLineMeetsCone[of a D b
B x crm]
by auto
have qroot a b c rp using rp lemQCase6 hyp6 by blast
hence rcp: regularCone x yp
using hyp6 assms yp rp lemWhereLineMeetsCone[of a D b B
x c rp]
by auto
hence regularCone x y using rcm y by blast
moreover have y}\inl\mathrm{ using assms y by blast
ultimately have y}\inS\mathrm{ using assms by blast
}
thus ?thesis by blast
qed
ultimately have (ym f=yp)\wedgeS={ym,yp} using T ymnotyp
by auto
}
thus ?thesis by blast
qed
lemma lemConeLemma1:
assumes }\neg(x\inl
and isLinel
and }\quadS=l\cap\mathrm{ regularConeSet x
shows finite S^ card S\leq2
proof -
obtain B D where BD:l=line B D using assms(2) by auto
define }X\mathrm{ where X: X=(BӨx)
define a where a: a=mNorm2 D

```
define \(b\) where \(b: b=2 *(\) tval \(X) *(\) tval \(D)-2 *((s C o m p o n e n t ~ D)\) \(\odot s(s C o m p o n e n t X))\)
define \(c\) where \(c: c=s q r(\) tval \(X)-s\) Norm2 \((s C o m p o n e n t ~ X) ~\)
have qcase1 abc\(\longrightarrow\) ?thesis
using assms \(X a b c\) lemLineMeetsCone1[ \(0 f x l S B D X a b c] B D\)
by auto
moreover have qcase2 \(a b c \longrightarrow\) ?thesis
using assms X abclemLineMeetsCone2[of xlSBDXabc]BD
by auto
moreover have qcase3 abc\(\longrightarrow\) ?thesis
 by auto
moreover have qcase \(4 a b c \longrightarrow\) ?thesis
using assms \(X a b c\) lemLineMeetsCone4[ of x lSBDXabc]BD by auto
moreover have qcase5 abc\(\longrightarrow\) ?thesis
using assms \(X\) abclemLineMeetsCone \(5[o f x l S B D X a b c] B D\) by auto
moreover have qcase6 abc\(\longrightarrow\) ?thesis
proof -
\{ assume hyp6: qcase6 abc
define \(y m\) where \(y m\) : \(y m=(B \oplus(((-b-\) (sqrt (discriminant \(a b c))) /(2 * a)) \otimes D))\)
define \(y p\) where \(y p: y p=(B \oplus(((-b+(\) sqrt (discriminant \(a\) \(b c))) /(2 * a)) \otimes D))\)
have \((y m \neq y p) \wedge S=\{y m, y p\}\) using assms \(X\) a b c ym yp hyp 6
lemLineMeetsCone6[of x lSBDXabcymyp]BD by auto
hence card \(S=2\) using card-2-iff by blast
hence finite \(S \wedge\) card \(S \leq 2\) using card.infinite by fastforce
\}
thus ?thesis by auto
qed
ultimately show ?thesis using lemQuadraticCasesComplete by blast
qed
lemma lemConeLemma2:
assumes \(\neg(\) regularCone \(x w)\)
shows \(\exists l\). (onLine \(w l) \wedge(\neg(x \in l)) \wedge(\) card \((l \cap(\) regularConeSet x)) \(=2\) )
proof -
have xnotw: \(x \neq w\) using assms lemConeContainsVertex by blast
```

have iftvalsequal: tval }x=\mathrm{ tval w}\longrightarrow\mathrm{ ?thesis
proof -
{ assume ts: tval x= tval w
define l}\mathrm{ where l:l= line wtUnit
hence wonl: onLine w l
proof -
have w=(w\oplus(0\otimestUnit)) by simp
thus ?thesis using l by blast
qed
have xnotinl:}\neg(x\inl
proof -
{ assume x fl
then obtain a where a:x = (w\oplus(a\otimestUnit)) using l by
blast
hence tval }x=\mathrm{ tval w+a by simp
hence }a=0\mathrm{ using ts by simp
hence }x=w\mathrm{ using a by simp
hence False using xnotw by simp
}
thus ?thesis by blast
qed
have card (l\cap(regularConeSet }x))=
proof -
define S where S:S=l\cap regularConeSet x
hence cardS: finite S ^ card S \leq2
using xnotinl l lemConeLemma1[of x l S] by blast
have (sNorm2 (sComponent (w\ominusx))) \geq0 by simp
hence sExists: hasRoot (sNorm2 (sComponent (w\ominusx))) using
AxEField by auto
define s where s:s=sqrt (sNorm2 (sComponent (w\ominusx)))
define yp where yp:yp}=(w\oplus(s\otimestUnit)
define ym where ym: ym = (w\ominus (s\otimestUnit))
have ypnotym: yp \not= ym
proof -
{ assume yp = ym
hence }(w\oplus(s\otimestUnit))=(w\ominus(s\otimestUnit))\mathrm{ using yp ym
by auto
hence tval w+s= tval w-s by simp
hence }s=
by (metis local.add-cancel-right-right
local.double-zero-sym local.lemDiffSumCancelMiddle)
hence sNorm2 (sComponent (w\ominusx)) = sqr 0
using s lemSquareOfSqrt[of sNorm2 (sComponent (w\ominusx))

```
s] sExists
by auto
hence norm2 \((w \ominus x)=0\) using lemNorm2Decomposition
ts by auto
hence \((w \ominus x)=\) origin using lemNullImpliesOrigin by blast
hence \(w=x\) by \(\operatorname{simp}\)
hence False using xnotw by simp
\}
thus ?thesis by auto
qed
have ypinl: \(y p \in l\) using \(y p l\) by blast
have yminl: \(y m \in l\)
proof -
have \(y m=(w \oplus((-s) \otimes t U n i t))\) using \(y m\) by simp
thus ?thesis using \(l\) by blast
qed
have ypcone: \(y p \in\) regularConeSet \(x\)
proof -
have \((y p \ominus x)=((w \oplus(s \otimes t U n i t)) \ominus x)\) using yp by auto
hence tval \((y p \ominus x)=s\) using ts by simp
hence tsqr: sqr (tval \((y p \ominus x))=\) (sNorm2 (sComponent \((w \ominus x)))\)
using \(s\) sExists lemSquareOfSqrt AxEField by blast
hence \(s\) Component \((y p \ominus x)=s\) Component \(((w \oplus(s \otimes t U n i t))\)
\(\ominus x)\) using \(y p\) by auto
also have \(\ldots=((s\) Component \((w \oplus(s \otimes t U n i t))) \ominus s\) (sComponent
x)) by \(\operatorname{simp}\)
also have \(\ldots=(((s\) Component \(w) \oplus s(s C o m p o n e n t(s \otimes t\) Unit \()))\) \(\ominus s(s\) Component \(x))\) by \(\operatorname{simp}\)
also have \(\ldots=((s\) Component \(w) \ominus s(s C o m p o n e n t ~ x))\) by simp
finally have sComponent \((y p \ominus x)=s\) Component \((w \ominus x)\) by simp
hence ssqr: sNorm2 (sComponent \((y p \ominus x))=(s N o r m 2\) (sComponent \((w \ominus x))\) )
by auto
hence sqr \((\) tval \((y p \ominus x))=(s N o r m 2(s C o m p o n e n t ~(y p \ominus x)))\) using tsqr by auto
hence onRegularCone \(x\) yp using lemConeCoordinates[of \(x\) \(y p]\) by auto
thus ?thesis using lemRegularCone by blast
qed
have ymcone: \(y m \in\) regularConeSet \(x\)
proof -
have \((y m \ominus x)=((w \ominus(s \otimes t U n i t)) \ominus x)\) using ym by auto
hence tval \((y m \ominus x)=\) tval \((w \ominus(s \otimes t U n i t))-t v a l x\) by
also have \(\ldots=(\) tval \(w-\operatorname{tval}(s \otimes t U n i t))-\operatorname{tval} x\) by simp
also have \(\ldots=(\) tval \(w-s)-\) tval \(w\) using ts by simp
finally have tval \((y m \ominus x)=-s\) using diff-right-commute
by (metis local.add-implies-diff local.uminus-add-conv-diff)
hence \(\operatorname{sqr}(\) tval \((y m \ominus x))=s q r s\) by \(\operatorname{simp}\)
hence tsqr: sqr \((\) tval \((y m \ominus x))=(s N o r m 2\) (sComponent \((w \ominus x)))\)
using \(s\) sExists lemSquareOfSqrt AxEField by force
hence \(s\) Component \((y m \ominus x)=s\) Component \(((w \ominus(s \otimes t U n i t))\) \(\ominus x)\) using \(y m\) by auto
also have \(\ldots=((s\) Component \((w \ominus(s \otimes t U n i t))) \ominus s(s C o m p o n e n t\) \(x)\) ) by \(\operatorname{simp}\)
also have \(\ldots=(((s\) Component \(w) \ominus s(s C o m p o n e n t ~(s \otimes t\) Unit \()))\) \(\ominus s(s\) Component \(x))\) by \(\operatorname{simp}\)
also have \(\ldots=((s\) Component \(w) \ominus s(s\) Component \(x))\) by simp
finally have \(s\) Component \((y m \ominus x)=s\) Component \((w \ominus x)\) by simp
hence ssqr: sNorm2 (sComponent \((y m \ominus x))=(\) sNorm2 (sComponent \((w \ominus x))\) )
by auto
hence \(\operatorname{sqr}(\) tval \((y m \ominus x))=(s N o r m 2(s C o m p o n e n t(y m \ominus x)))\) using tsqr by auto
hence onRegularCone \(x\) ym using lemConeCoordinates[of \(x\) \(y m]\) by auto
thus ?thesis using lemRegularCone by blast
qed
define \(T\) where \(T: T=\{y p, y m\}\)
hence \(T \subseteq S\) using ypinl ypcone yminl ymcone \(S\) by auto
hence TleS: card \(T \leq\) card \(S\) using cardS card-mono by blast
have cardT: card \(T=2\) using \(T\) ypnotym card-2-iff by blast
hence \((2 \leq \operatorname{card} S) \wedge\) finite \(S \wedge\) card \(S \leq 2\) using TleS card \(S\) by auto
thus ?thesis using \(S\) by simp
qed
hence ?thesis using xnotinl wonl by blast
\}
thus?thesis by auto
qed
have iftvalsne: tval \(x \neq\) tval \(w \longrightarrow\) ?thesis
```

proof -

```
\{ assume ts: tval \(x \neq\) tval \(w\)
define \(x 0\) where \(x 0: x 0=m k P o i n t(\) tval \(w)(x v a l x)(\) yval \(x)\) (zval x)
have xnotx0: \(x \neq x 0\) using \(x 0\) ts by (metis Point.select-convs(1))
have tdiff0: tval \(w=\) tval \(x 0\) using \(x 0\) by simp
define dir where dir: dir \(=(\) if \((w \neq x 0)\) then \((w \ominus x 0)\) else \(x U n i t)\)
hence tdir0: tval dir \(=0\)
proof -
\{ assume \(w \neq x 0\)
hence \(\operatorname{dir}=(w \ominus x 0)\) using dir by simp
\}
hence wnotx0: \((w \neq x 0) \longrightarrow\) ?thesis using tdiff0 by auto
\{ assume \(w=x 0\)
hence dir \(=x\) Unit using dir by \(\operatorname{simp}\)
\}
hence \((w=x 0) \longrightarrow\) ?thesis by simp
thus ?thesis using wnotx0 by auto
qed
define \(l\) where \(l: l=\) lineJoining \(x 0(\operatorname{dir} \oplus x 0)\)
hence lprops: \(l=\) line \(x 0\) dir using dir by auto
hence wonl: onLine \(w l\)
proof -
\{ assume wnotx0: \(w \neq x 0\)
hence \(\operatorname{dir}=(w \ominus x 0)\) using dir by simp
hence \((\operatorname{dir} \oplus x 0)=((w \ominus x 0) \oplus x 0)\) by simp
hence \(w=(\operatorname{dir} \oplus x 0)\) using diff-add-eq by auto
hence ?thesis using dir lemLineJoiningContainsEndPoints l
by blast
\}
moreover have \((w=x 0) \longrightarrow\) ?thesis using lemLineJoiningContainsEndPoints \(l\) by blast
ultimately show ?thesis by auto
qed
then obtain \(A\) where \(A: w=(x 0 \oplus(A \otimes \operatorname{dir}))\) using \(l\) by auto
have xnotinl: \(\neg(x \in l)\)
proof -
\{ assume \(x \in l\)
then obtain \(a\) where \(a: x=(x 0 \oplus(a \otimes d i r))\) using \(l\) by auto hence tval \(x=\) tval \(x 0\) using tdir0 by simp
hence False using ts tdiff0 by auto
```

 }
 thus ?thesis by blast
 qed
 have card (l \cap(regularConeSet x)) =2
 proof -
 define S where S:S=l\cap regularConeSet x
 hence cardS: finite S ^ card S \leq2
 using nnotinl l lemConeLemma1[of x l S] by blast
 have (sNorm2 (sComponent (w\ominusx0))) \geq0 by simp
 hence sExists: hasRoot (sNorm2 (sComponent (w\ominusx0))) using
 AxEField by auto
define s where s:s=sqrt (sNorm2 (sComponent (w\ominusxO)))
define unit where unit: unit =(if (w=x0) then xUnit else
((1/s)\otimes(w\ominusx0)))
have tunit0: tval unit = 0
proof -
{ assume w=x0
hence unit = xUnit using unit by simp
}
hence w=x0 \longrightarrow? ?thesis by auto
moreover have w\not=x0\longrightarrow?thesis
proof -
{ assume wnotx0: w\not= x0
hence unit = ((1/s)\otimesdir) using unit dir by simp
}
thus ?thesis using tdir0 by auto
qed
ultimately show ?thesis by auto
qed
have snot0: w\not=x0\longrightarrows\not=0
proof -
{ assume wnotx0: w}\not=x
hence norm2 (w\ominusx0)>0
using local.lemNotEqualImpliesSep2Pos by presburger
also have norm2 (w\ominusx0) = sNorm2 (sComponent (w\ominusx0))
using tdiffo lemNorm2Decomposition[of w\ominusx0] by auto
finally have s2pos: sNorm2 (sComponent (w\ominusx0))>0 by
auto
{ assume s=0
hence False using lemSquareOfSqrt[of sNorm2 (sComponent
(w\ominusxO))s]
s2pos s sExists by auto
}
hence s\not=0 by auto

```
```

 }
 thus ?thesis by auto
 qed
 hence unit1: sNorm2 (sComponent unit) = 1
 proof -
 have case0: w=x0\longrightarrow ?thesis using unit by auto
 have case1: w\not=x0\longrightarrow ?thesis
 proof -
 { assume case1: w = x0
 have unit = ((1/s)\otimes(w\ominusx0)) using unit case1 by simp
 hence sComponent unit =((1/s)\otimess(sComponent (w\ominusx0)))
 by }\operatorname{simp
hence sNorm2 (sComponent unit)}=sqr(1/s)*sNorm2
(sComponent (w\ominusx0))
using lemSNorm2OfScaled[of (1/s) sComponent (w\ominusx0)]
by auto
also have ···. = sqr (1/s)*sqr s
using lemSquareOfSqrt[of sNorm2 (sComponent (w\ominusx0))
s] sExists s
by auto
finally have sNorm2 (sComponent unit) = 1 using snot0
case1 by simp
}
thus ?thesis by auto
qed
thus ?thesis using case0 by blast
qed
define dt where dt:dt = tval w - tval x
define }mdt\mathrm{ where mdt: mdt = -dt
define yp where yp:yp=(x0\oplus(dt\otimesunit))
define ym where ym: ym = (x0\ominus (dt\otimes unit))
hence ymalt: ym = (x0\oplus(mdt \otimesunit)) using mdt by simp
have ypnotym: yp}\not=y
proof -
{ assume yp = ym
hence }(x0\oplus(dt\otimesunit))=(x0\ominus(dt\otimesunit))\mathrm{ using yp ym by
auto
hence}((x0\oplus(dt\otimesunit))\oplus(dt\otimesunit))=x0 by aut
hence }(x0\oplus(2\otimes(dt\otimesunit)))=x0 using add-assoc mult-2
by auto
hence }((x0\oplus(2\otimes(dt\otimesunit)))\ominusx0)=origin by sim
hence}(2\otimes(dt\otimesunit))=origin using add-diff-eq by aut
hence False using unit1 ts dt by simp
}
thus ?thesis by auto
qed

```
```

 have ypinl: yp \inl
 proof -
 { assume w = x0
 hence yp}=(w\oplus(dt\otimesdir)) using dir unit yp by sim
 hence }\existsa.yp=(w\oplus(a\otimesdir))\mathrm{ using yp by auto
 }
 hence wx0:w=x0\longrightarrow ?thesis using l by auto
 { assume wnotx0:w w x0
 hence u: unit = ((1/s)\otimesdir) using unit dir by auto
 hence yp}=(x0\oplus((dt/s)\otimesdir)) using lemScaleAssoc yp by
 auto
hence }\existsa.yp=(x0\oplus(a\otimesdir))\mathrm{ using snot0 by blast
}
hence w\not=x0 \longrightarrow? ?thesis using l by auto
thus ?thesis using wx0 by blast
qed
have yminl: ym }\in
proof -
{ assume w = x0
hence ym}=(x0\oplus(mdt\otimesdir)) using dir unit ymalt by simp
hence }\existsa.ym=(x0\oplus(a\otimesdir))\mathrm{ using ym by auto
}
hence wx0:w=x0 \longrightarrow?thesis using l by auto
{ assume wnotx0: w = x0
hence u: unit = ((1/s)\otimesdir) using unit dir by auto
hence ym}=(x0\oplus((mdt/s)\otimesdir)) using lemScaleAssoc ymalt
by auto
hence \existsa.ym=(x0\oplus(a\otimesdir)) using snot0 by blast
}
hence }w\not=x0\longrightarrow\mathrm{ ?thesis using l by auto
thus ?thesis using wx0 by blast
qed
have ypcone: yp \in regularConeSet x
proof -
have sNorm2 (sComponent (yp\ominusx0)) = sqr dt
proof -
have yp =(x0\oplus(dt \otimes unit)) using yp by simp
hence (yp}\ominusx0)=(dt\otimesunit) using add-diff-eq diff-add-eq
by auto
hence sComponent (yp \ominusx0) =(dt \otimess (sComponent unit))
by auto
thus ?thesis
using lemSNorm2OfScaled[of dt sComponent unit] unit1 by
auto

```
```

 qed
 hence sNorm2 (sComponent (yp\ominusx)) =sqr dt using x0 by
 simp
also have ... = sqr (tval (yp\ominusx)) using dt tunit0 yp tdiff0 by
simp
finally have sNorm2 (sComponent (yp\ominusx))=sqr (tval (yp\ominusx))

```
by blast
    hence onRegularCone \(x\) yp using lemConeCoordinates \([\) of \(x\) yp]
by auto
        thus ?thesis using lemRegularCone by blast
    qed
    have ymcone: \(y m \in\) regularConeSet \(x\)
    proof -
    have \(s\) Norm2 \((s C o m p o n e n t ~(y m \ominus x 0))=s q r d t\)
    proof -
        have \(y m=(x 0 \oplus(m d t \otimes\) unit \())\) using ymalt by simp
    hence \((y m \ominus x 0)=(m d t \otimes u n i t)\) using add-diff-eq diff-add-eq
by auto
    hence \(s\) Component \((y m \ominus x 0)=(m d t \otimes s(s C o m p o n e n t ~ u n i t))\)
by auto
    thus ?thesis
        using lemSNorm2OfScaled[of mdt sComponent unit] unit1
\(m d t\) by auto
    qed
    hence \(s\) Norm2 \((s C o m p o n e n t ~(y m \ominus x))=s q r d t\) using \(x 0\) by
simp
    also have \(\ldots=\operatorname{sqr}(\) tval \((y m \ominus x))\) using ym mdt dt tunit0
tdiffo by auto
            finally have sNorm2 (sComponent \((y m \ominus x))=s q r\) (tval
\((y m \ominus x))\) by blast
            hence onRegularCone \(x\) ym using lemConeCoordinates[of \(x\)
\(y m\) ] by auto
    thus ?thesis using lemRegularCone by blast
    qed
    define \(T\) where \(T: T=\{y p, y m\}\)
    hence \(T \subseteq S\) using ypinl ypcone yminl ymcone \(S\) by auto
    hence TleS: card \(T \leq\) card \(S\) using cardS card-mono by blast
    have cardT: card \(T=2\) using \(T\) ypnotym card-2-iff by blast
    hence \((2 \leq \operatorname{card} S) \wedge\) finite \(S \wedge\) card \(S \leq 2\) using Tle \(S\) card \(S\)
by auto
            thus ?thesis using \(S\) by simp
    qed
    hence ?thesis using xnotinl wonl by blast
    \}
```

 thus ?thesis by auto
 qed
 thus ?thesis using iftvalsequal by blast
 qed

```
```

lemma lemLineInsideRegularConeHasFiniteSlope:

```
lemma lemLineInsideRegularConeHasFiniteSlope:
    assumes insideRegularCone x p
    assumes insideRegularCone x p
and l}\quadl=lineJoining x p
and l}\quadl=lineJoining x p
shows lineSlopeFinite l
shows lineSlopeFinite l
proof -
proof -
    { assume converse: }\neg(\mathrm{ lineSlopeFinite l)
    { assume converse: }\neg(\mathrm{ lineSlopeFinite l)
        hence slope: slopeInfinite x p
        hence slope: slopeInfinite x p
                using assms lemSlopeLineJoining[of l] by blast
                using assms lemSlopeLineJoining[of l] by blast
            hence False using assms(1) assms(2) slope by simp
            hence False using assms(1) assms(2) slope by simp
    }
    }
    thus ?thesis by auto
    thus ?thesis by auto
qed
```

qed

```
```

lemma lemInvertibleOnMeet:
assumes invertible f
and $\quad S=A \cap B$
shows applyToSet (asFunc f) $S=($ applyToSet (asFunc f) A) \cap
(applyToSet (asFunc f) B)
proof -
define S^{\prime} where $S^{\prime}: S^{\prime}=$ applyToSet (asFunc f) S
define A^{\prime} where $A^{\prime}: A^{\prime}=$ applyToSet (asFunc f) A
define B^{\prime} where $B^{\prime}: B^{\prime}=$ applyToSet (asFunc f) B
have $S^{\prime} \subseteq A^{\prime} \cap B^{\prime}$
proof -
\{ fix s^{\prime} assume $s^{\prime} \in S^{\prime}$
then obtain s where $s: s \in S \wedge f s=s^{\prime}$ using S^{\prime} by auto
have inA: $s^{\prime} \in A^{\prime}$
proof -
have $s \in A$ using assms s by auto
thus ?thesis using $s A^{\prime}$ by auto
qed
have $i n B: s^{\prime} \in B^{\prime}$
proof -
have $s \in B$ using assms s by auto
thus ?thesis using $s B^{\prime}$ by auto
qed
hence $s^{\prime} \in A^{\prime} \cap B^{\prime}$ using in A by auto
\}

```
```

 thus ?thesis by auto
 qed
    ```
    moreover have \(A^{\prime} \cap B^{\prime} \subseteq S^{\prime}\)
    proof -
    \(\left\{\right.\) fix \(s^{\prime}\) assume \(s^{\prime}: s^{\prime} \in A^{\prime} \cap B^{\prime}\)
        then obtain \(a\) where \(a: a \in A \wedge f a=s^{\prime}\) using \(A^{\prime}\) by auto
        obtain \(b\) where \(b: b \in B \wedge f b=s^{\prime}\) using \(s^{\prime} B^{\prime}\) by auto
        have \(\left(\exists p .\left(f p=s^{\prime}\right) \wedge\left(\forall x . f x=s^{\prime} \longrightarrow x=p\right)\right)\) using \(\operatorname{assms}(1)\)
by auto
            then obtain \(p\) where \(p:\left(f p=s^{\prime}\right) \wedge\left(\forall x . f x=s^{\prime} \longrightarrow x=p\right)\)
by auto
            hence \(a=b\) using \(a b\) by blast
            hence \(a \in S \wedge f a=s^{\prime}\) using \(a b\) assms(2) by auto
            hence \(s^{\prime} \in S^{\prime}\) using \(S^{\prime}\) by auto
    \}
    thus ?thesis by auto
    qed
    ultimately show ?thesis using \(S^{\prime} A^{\prime} B^{\prime}\) by auto
qed
lemma lemInsideCone:
    shows insideRegularCone \(x\) p \(\longleftrightarrow\)
                            \(\neg(\) vertex \(x\) p \(p \vee\) outsideRegularCone \(x p \vee\) onRegularCone \(x\)
p)
proof -
    \{ assume lhs: insideRegularCone \(x p\)
        hence (slopeFinite \(x p) \wedge(\exists v \in\) lineVelocity (lineJoining \(x p)\).
sNorm2 \(v<1\) )
            by auto
            hence \(\operatorname{rtp} 1: \neg(\) vertex \(x p)\) by blast
            define \(l\) where \(l: l=\) lineJoining \(x p\)
            obtain vin where vin: vin \(\in\) lineVelocity \(l \wedge\) sNorm2 vin \(<1\)
using \(l\) lhs by blast
    hence vs: \(\forall v . v \in\) lineVelocity \(l \longrightarrow s\) Norm2 \(v<1\)
    proof -
            \{ fix \(v\) assume \(v: v \in\) lineVelocity \(l\)
                have slopeFinite \(x p\) using lhs by blast
                moreover have onLine \(x l \wedge\) onLine plusing lemLineJoin-
ingContainsEndPoints
            by auto
            ultimately have \(v=\) vin
                    using rtp1 \(v\) vin lemFiniteLineVelocityUnique[of \(v l\) vin] by
blast
```

 }
 thus ?thesis using vin by blast
 qed
 { assume outsideRegularCone x p
 then obtain v where v:v\inlineVelocity l ^sNorm2 v>1
 using l lhs by blast
hence sNorm2 v<1 using vs by blast
hence False using v by force
}
hence rtp2: ᄀ outsideRegularCone x p by blast
{ assume onRegularCone x p
then obtain v where v:v\inlineVelocity l ^sNorm2 v=1
using l lhs by blast
hence sNorm2 v<1 using vs by blast
hence False using v by force
}
hence rtp3: ᄀ onRegularCone x p by blast
hence }\neg\mathrm{ (vertex x p}\vee\mathrm{ outsideRegularCone x p}\vee\mathrm{ onRegularCone }
p)
using rtp1 rtp2 by blast
}
hence l2r: insideRegularCone x p}
\neg (vertex x p v outsideRegularCone x p V onRegularCone x
p)
by blast
{ assume rhs: \neg(vertex x p\vee outsideRegularCone x p\vee onRegular-
Cone x p)
define v}\mathrm{ where v:v=(insideRegularCone x p)
define z where z:z=(vertex x p\vee outsideRegularCone x p\vee
onRegularCone x p)
hence v\veez using vz lemClassification[of x p] by auto
hence insideRegularCone x p using rhs vz by blast
}
thus ?thesis using l2r by blast
qed
lemma lemOnRegularConeIff:
assumes l= lineJoining x p
shows onRegularCone x p}\longleftrightarrow<(l\cap\mathrm{ regularConeSet }x=l
proof -
{ assume rc:onRegularCone x p
hence reg: regularCone x p using lemRegularCone by blast
define S where S:S=l\cap regularConeSet x
have SinL: S\subseteql using S by blast

```
```

have $l \subseteq S$

```
proof -
\{ fix \(q\) assume \(q: q \in l\)
then obtain \(a\) where \(a: q=(x \oplus(a \otimes(p \ominus x)))\) using assms by blast
hence \(q m x:(q \ominus x)=(a \otimes(p \ominus x))\) by simp
hence \(\operatorname{sqr}(\) tval \((q \ominus x))=\operatorname{sqr}(\) tval \((a \otimes(p \ominus x)))\) by auto
also have \(\ldots=(\) sqr \(a) *(\) sqr \((\) tval \(p-t v a l x))\) using lemSqrMult by auto
also have \(\ldots=(\) sqr \(a) *(\) sNorm2 \((s C o m p o n e n t ~(~ p \ominus x)))\)
using rc lemConeCoordinates \([\) of \(x p\) ] by auto
also have \(\ldots=s\) Norm2 \((a \otimes s(s C o m p o n e n t(p \ominus x)))\)
using lemSNorm2OfScaled[of a (sComponent \((p \ominus x))\) ] by auto
also have \(\ldots=\) sNorm2 (sComponent \((a \otimes(p \ominus x))\) ) by simp
finally have \(\operatorname{sqr}(\) tval \((q \ominus x))=s N o r m 2(s C o m p o n e n t(~ q \ominus x)\)
) using \(q m x\) by \(\operatorname{simp}\)
hence onRegularCone \(x\) q using lemConeCoordinates[of \(x q]\) by auto
hence regularCone \(x q\) using lemRegularCone by blast
hence \(q \in S\) using \(S q\) by auto
\}
hence \(\forall q . q \in l \longrightarrow q \in S\) by blast
thus ?thesis by blast
qed
hence ( \(l \cap\) regularConeSet \(x=l\) ) using \(S \operatorname{SinL}\) by blast
\}
hence l2r: onRegularCone \(x \quad p \longrightarrow(l \cap\) regularConeSet \(x=l)\) by blast
```

 \{ assume rhs: \((l \cap\) regularConeSet \(x=l)\)
 have \(p \in l\)
 using lemLineJoiningContainsEndPoints[of \(l x p] \operatorname{assms}(1)\) by
 auto
hence regularCone x p using rhs by blast
hence onRegularCone x p using lemRegularCone by blast
\}
thus ?thesis using l2r by blast
qed

```
lemma lemOutsideRegularConeImplies:
    shows outsideRegularCone x \(p\)
        \(\longrightarrow\left(\exists l p^{\prime} .\left(p^{\prime} \neq p\right) \wedge\right.\) onLine \(p^{\prime} l \wedge\) onLine \(p l\)
                                    \(\wedge(l \cap\) regularConeSet \(x=\{ \}))\)
proof -
    \{ assume lhs: outsideRegularCone \(x\) p
```

 hence xnotp: (x\not=p) by auto
 hence formula: sqr (tval p - tval x) < sNorm2 (sComponent
 (p\ominusx))
using lemConeCoordinates[of x p] using lhs by auto
have cases: (slopeInfinite x p) \vee
((slopeFinite x p)^
(\existsv\inlineVelocity (lineJoining x p).sNorm2 v>
1))
using lhs by blast

```
    have case1: slopeInfinite \(x p \longrightarrow\)
                    \(\left(\exists l p^{\prime} .\left(p^{\prime} \neq p\right) \wedge\right.\) onLine \(p^{\prime} l \wedge\) onLine \(p l\)
                                    \(\wedge(l \cap\) regularConeSet \(x=\{ \}))\)
        using xnotp lemSlopeInfiniteImpliesOutside
        by blast
    have case2:
    \(((\) slopeFinite \(x p) \wedge(\exists v \in\) lineVelocity (lineJoining \(x p)\).sNorm2
\(v>1)\) )
            \(\longrightarrow\left(\exists l p^{\prime} .\left(p^{\prime} \neq p\right) \wedge\right.\) onLine \(p^{\prime} l \wedge\) onLine \(p l\)
                                    \(\wedge(l \cap\) regularConeSet \(x=\{ \}))\)
    proof -
        define \(l\) where \(l: l=\) lineJoining \(x p\)
        hence onl: onLine x \(l \wedge\) onLine \(p l\) using lemLineJoiningCon-
tainsEndPoints by blast
    \{ assume hyp: (slopeFinite \(x p) \wedge\)
                                    \((\exists v \in \operatorname{lineVelocity}\) (lineJoining x \(p\) ) .sNorm2 \(v\)
> 1)
            then obtain \(v\) where \(v: v \in \operatorname{lineVelocity~} l \wedge \operatorname{sNorm2} v>1\)
            using \(l\) by blast
            define \(x 0\) where \(x 0: x 0=m k P o i n t(\) tval \(p)(x v a l x)(y v a l ~ x)\)
(zval \(x\) )
            define \(d s q r\) where \(d s q r: d s q r=\operatorname{norm2}(p \ominus x 0)\)
            define \(d\) where \(d: d=\) sqrt \(d s q r\)
                have dExists: hasRoot dsqr using dsqr lemNorm2NonNeg
AxEField by auto
have xnotp: \(x \neq p\) using hyp by auto
have \(\operatorname{dnot} 0: d \neq 0\)
proof -
\{ assume \(d 0: d=0\)
hence \(d s q r=0\) using lemSquareOfSqrt \([o f\) dsqr \(d] d\) Exists \(d\) by auto
hence \((p \ominus x 0)=\) origin using dsqr lemNullImpliesOrigin[of ( \(p \ominus x 0\) )] by auto
hence \(p=x 0\) by simp
hence sloper \(x\) p \(=((1 /(\) tval \(x-\) tval \(p)) \otimes(x \ominus x 0))\) using \(x 0\) by auto
moreover have \(s\) Component \((x \ominus x 0)=s\) Origin using \(x 0\) by \(\operatorname{simp}\)
ultimately have velocityJoining \(x p=s\) Origin using hyp by auto
hence sOrigin \(\in\) lineVelocity \(l\)
using lemLineVelocityUsingPoints[of \(x\) p \(\quad l\) l l hyp xnotp onl by auto
hence sOrigin \(=v\)
using lemFiniteLineVelocityUnique[of sOrigin l \(v\) ]
hyp \(v\) onl xnotp by blast
hence sNorm2 \(v=0\) by auto
hence False using \(v\) by auto
\}
thus ?thesis by auto
qed
hence dsqrnot0: \(d s q r \neq 0\)
using \(d\) dExists lemSquareOfSqrt[of dsqr \(d\) ] lemZeroRoot by blast
have dpos: \(d>0\)
using \(d\) theI'[of isNonNegRoot dsqr] lemSqrt dExists dnot0 by auto
define \(T \quad\) where \(\quad T: T \quad=\) tval \(p\)
define radius where radius: radius \(=\) tval \(p-\) tval \(x\) define R0 where \(\quad R 0: R 0 \quad=s\) Component \((p \ominus x)\)
have R0gtRadius: sqr radius < sNorm2 R0 using formula radius \(R 0\) by auto
```

 have \(d s q r^{\prime}: d s q r=s N o r m 2\) R0
 proof -
 have sComponent \(x=s\) Component \(x 0\) using \(x 0\) by simp
 hence \(R 0=s\) Component (\(p \ominus x 0\)) using \(R 0\) by auto
 moreover have tval \((p \ominus x 0)=0\) using \(x 0\) by simp
 ultimately show ?thesis using lemNorm2Decomposition dsqr
    ```
by auto
    qed
hence radialnot0: \(R 0 \neq\) sOrigin using dsqrnot0 by auto
obtain \(D 0\) where \(D 0: D 0 \neq s\) Origin \(\wedge((D 0 \odot s R 0)=0)\)
using lemOrthogalSpaceVectorExists[of R0] by auto
define \(D\) where \(D: D=\) stPoint \(0 D 0\)
define \(L\) where \(L: L=\) line p \(D\)
hence \(p\) OnLine: onLine \(p L\)
using lemLineJoiningContainsEndPoints[of Lp( \(p \oplus D)\) ] by auto
have meetEmpty: \(L \cap\) regularConeSet \(x=\{ \}\)
proof -
\{ assume \(L \cap\) regularConeSet \(x \neq\{ \}\)
then obtain \(Q\) where \(Q: Q \in L \cap\) regularConeSet \(x\) by blast
then obtain \(\alpha\) where \(\alpha\) : \(Q=(p \oplus(\alpha \otimes D))\) using \(L\) by blast
have \(((p \oplus(\alpha \otimes D)) \ominus x)=((p \ominus x) \oplus(\alpha \otimes D))\)
using add-diff-eq diff-add-eq by auto
hence \(Q m x:(Q \ominus x)=((p \ominus x) \oplus(\alpha \otimes D))\) using \(\alpha\) by simp
hence \(Q m x t:\) tval \(Q-\) tval \(x=\) tval \((p \ominus x)\) using \(D\) by simp
have \(s\) Component \((Q \ominus x)=s\) Component \(((p \ominus x) \oplus(\alpha \otimes D))\) using \(Q m x\) by \(\operatorname{simp}\)
also have \(\ldots=((s C o m p o n e n t)(p \ominus x)) \oplus s\) (sComponent \((\alpha \otimes D))\) ) by \(\operatorname{simp}\)
finally have sNorm2 (sComponent \((Q \ominus x)\) )
\(=s\) Norm2 \(((s C o m p o n e n t(p \ominus x)) \oplus s(s C o m p o n e n t(\alpha \otimes D)))\)
by \(\operatorname{simp}\)
also have \(\ldots=s\) Norm2 \((R 0 \oplus s(\alpha \otimes s D 0))\) using \(R 0 D\) by auto
also have \(\ldots=s N o r m 2 R 0+2 *(R 0 \odot s(\alpha \otimes s D 0))+\) sNorm2 \((\alpha \otimes s\) DO)
using lemSNorm2OfSum[of R0 ( \(\alpha \otimes s\) D0)] by auto finally have
sNorm2 \((s C o m p o n e n t ~(Q \ominus x))=s N o r m 2 R 0+2 *(R 0 \odot s\) \((\alpha \otimes s D 0))+s\) Norm2 \((\alpha \otimes s D 0)\)
by auto
moreover have \((R 0 \odot s(\alpha \otimes s D 0))=0\)
using D0 lemSDotCommute lemSDotScaleRight by simp
moreover have \(s\) Norm2 \((\alpha \otimes s\) D0) \(\geq 0\) by simp ultimately have \(s\) Norm2 (sComponent \((Q \ominus x)) \geq\) sNorm2 \(R 0\) by simp
hence Qmxs: sNorm2 (sComponent \((Q \ominus x))>\) sqr radius using R0gtRadius by simp
hence sqr (tval \(Q-\) tval \(x)<\) sNorm2 \((s C o m p o n e n t ~(~ Q \ominus x))\) using radius Qmxt by simp
hence \(\neg(\) onRegularCone \(x Q)\) using lemConeCoordinates \([\) of \(x Q\) ] by force
hence \(\neg(\) regularCone \(x Q)\) using lemRegularCone by blast hence False using \(Q\) by blast
\}
thus ?thesis by blast
qed
define \(p^{\prime}\) where \(p^{\prime}: p^{\prime}=(p \oplus D)\)
have Dnot0: \(D \neq\) origin using \(D D 0\) by auto
hence \(p^{\prime} \neq p\)
proof -
\{ assume \(p^{\prime}=p\)
hence \((p \oplus D)=p\) using \(p^{\prime}\) by auto
hence \(((p \oplus D) \ominus p)=\) origin by simp
hence \(D=\) origin using add-diff-cancel by auto
hence False using Dnot0 by auto
\}
thus ?thesis by blast
qed
moreover have onLine \(p^{\prime} L\) using \(L p^{\prime}\) by auto
ultimately have target1: \(p^{\prime} \neq p \wedge\) onLine \(p^{\prime} L\) by blast
hence \(\left(\exists l p^{\prime} .\left(p^{\prime} \neq p\right) \wedge\right.\) onLine \(p^{\prime} l \wedge\) onLine \(p l\) \(\wedge(l \cap\) regularConeSet \(x=\{ \}))\) using meetEmpty
pOnLine by blast
\}
thus ?thesis by blast
qed
hence \(\left(\exists l p^{\prime} .\left(p^{\prime} \neq p\right) \wedge\right.\) onLine \(p^{\prime} l \wedge\) onLine \(p l\)
\(\wedge(l \cap\) regularConeSet \(x=\{ \}))\)
using cases case1 by blast
\}
hence 12r: outsideRegularCone \(x p \longrightarrow\)
\(\left(\exists l p^{\prime} \cdot\left(p^{\prime} \neq p\right) \wedge\right.\) onLine \(p^{\prime} l \wedge\) onLine \(p l\)
\(\wedge(l \cap\) regularConeSet \(x=\{ \}))\)
```

 by blast
 thus ?thesis by blast
 qed
lemma lemTimelikeInsideCone:
assumes insideRegularCone x p
shows timelike (}p\ominusx\mathrm{)
proof -
have tval p - tval }x\not=0\mathrm{ using assms by auto
hence tdiffpos: sqr (tval p-tval x) >0 using lemSquaresPositive
by auto
define l where l:l=lineJoining x p
hence slopeFinite x p}\wedge(\existsv.v\inlineVelocityl \ sNorm2 v<1
using assms by auto
then obtain v}\mathrm{ where v:}v\inlineVelocity l ^sNorm2 v<
using assms by blast
have lineVelocity l={ velocityJoining x p }
using lemLineVelocityUsingPoints[of x p l] assms
lemLineJoiningContainsEndPoints l
by blast
hence vv:v= velocityJoining x p ^ sNorm2 v<1 using v by auto
hence formula: sqr (tval p-tval x)*(sNorm2 v)=sNorm2 (sComponent
(p\ominusx))
using lemSNorm2VelocityJoining[of x p v l assms by blast
have cases: sNorm2 v=0\vee sNorm2 v>0
using local.add-less-zeroD local.not-less-iff-gr-or-eq
local.not-square-less-zero
by blast

```
    have case1: sNorm2 \(v>0 \longrightarrow\) timelike \((p \ominus x)\)
    proof -
    define snv where snv: snv \(=s\) Norm2 \(v\)
    \{ assume sNorm2 \(v>0\)
            hence \(0<s n v<1\) using \(v v\) snv by auto
            moreover have sqr (tval \(p-t v a l x) * s n v=s\) Norm2 (sComponent
\((p \ominus x)\) )
            using formula snv by simp
            ultimately have \(s q r(\) tval \(p-\) tval \(x)>s N o r m 2\) (sComponent
( \(p \ominus x)\) )
            using lemMultPosLT[of sqr (tval p-tval x) snv]
                        tdiffpos by force
            hence timelike ( \(p \ominus x\) ) by auto
        \}
        thus ?thesis using snv by auto
    qed
```

 \{ assume sNorm2 \(v=0\)
 hence sNorm2 (sComponent \((p \ominus x)\)) \(=0\) using formula by auto
 hence timelike (\(p \ominus x\)) using tdiffpos by auto
 \}
 hence case2: sNorm2 \(v=0 \longrightarrow\) timelike \((p \ominus x)\) by auto
 thus ?thesis using case1 cases by auto
 qed

```
end
end

\section*{31 ReverseCauchySchwarz}

This theory defines and proves the "reverse" Cauchy-Schwarz inequality for timelike vectors in the Minkowski metric.
```

theory ReverseCauchySchwarz
imports CauchySchwarz
begin

```

Rather than construct the proof, one could simply have asserted the claim as an axiom. We did this during development of the main proof, and then returned to this section later. In practice the axiom we chose to assert contained far more information than required, because we eventually found a proof that only required consideration of timelike vectors (our axiom considered lightlike vectors as well).
```

class ReverseCauchySchwarz = CauchySchwarz

```
begin
lemma lemTimelikeNotZeroTime:
assumes timelike \(v\)
shows tval \(v \neq 0\)
proof -
\{ assume converse: tval \(v=0\)
have sNorm2 (sComponent \(v\) ) < sqr (tval \(v\) ) using assms by auto hence \(s\) Norm 2 (sComponent \(v\) ) < 0 using converse by auto
hence False using local.add-less-zeroD local.not-square-less-zero by blast
\}
thus ? thesis by auto
qed
```

lemma lemOrthogmToTimelike:
assumes timelike u
and orthogm uv
and v\not= origin
shows spacelike v
proof -
have tvalu: tval }u\not=0\mathrm{ using assms(1) lemTimelikeNotZeroTime

```
by auto
    define \(u s\) where \(u s: u s=s\) Component \(u\)
    define \(v s\) where \(v s\) : \(v s=s\) Component \(v\)
    have \(\operatorname{sqr}((\) tval \(u) *(\) tval \(v))=\operatorname{sqr}(u s \odot s v s)\) using assms(2) us
vs by auto
    also have \(\ldots \leq\) sNorm2 us \(*\) sNorm2 vs using lemCauchySchwarzSqr
by auto
    finally have inequ: sqr \((\) tval \(u) * s q r(\) tval \(v) \leq s N o r m 2 ~ u s * s N o r m 2 ~\)
vs
    using mult-assoc mult-commute by auto
    have ifvsnz: vs \(\neq\) sOrigin \(\longrightarrow\) sNorm2 vs \(>0\)
    by (meson local.add-less-zeroD local.antisym-conv3
    local.lemSpatialNullImpliesSpatialOrigin local.not-square-less-zero)
    have iftv0: tval \(v=0 \longrightarrow\) spacelike \(v\)
    proof -
    \{ assume v0: tval \(v=0\)
            hence \(v s \neq\) sOrigin using assms vs by auto
            hence sNorm2 vs \(>0\) using ifusnz by auto
            hence spacelike \(v\) using \(v 0\) vs
            by (metis local.less-iff-diff-less-0 local.mult-not-zero)
        \}
        thus ?thesis by auto
        qed
        moreover have \((\) tval \(v \neq 0 \wedge v s \neq s\) Origin \() \longrightarrow\) spacelike \(v\)
        proof -
            \{ assume vnz: \((\) tval \(v \neq 0 \wedge v s \neq s\) Origin \()\)
            have utpos: sqr (tval \(u)>0\) using tvalu lemSquaresPositive by
simp
            have vspos: sNorm2 vs \(>0\) using vnz ifvsnz by auto

inequ by simp
    hence sqr (tval v) \(\leq\) sNorm2 \(u s *\) sNorm2 vs / sqr (tval u)
        using utpos
    by (metis local.divide-right-mono local.divisors-zero local.dual-order.strict-implies-order
```

 local.nonzero-mult-div-cancel-left tvalu)
 hence sqr (tval v) / sNorm2 vs \leq sNorm2 us / sqr (tval u)
 using vspos mult-commute by (simp add: local.mult-imp-div-pos-le)
 moreover have sNorm2 us / sqr (tval u) < 1 using assms(1)
 us utpos by auto
ultimately have sqr (tval v) / sNorm2 vs < 1 by simp
hence spacelike v}\mathrm{ using vs vspos by auto
}
thus ?thesis by auto
qed
moreover have }\neg(\mathrm{ tval v}\not=0\wedgevs=s\mathrm{ Origin)
proof -
{ assume (tval v\not=0^vs=sOrigin)
hence (u\odotmv)\not=0 using tvalu vs by auto
hence False using assms by auto
}
thus ?thesis by auto
qed
ultimately show ?thesis by blast
qed
lemma lemNormaliseTimelike:
assumes timelike v
and }\quads=sComponent ((1/tval v)\otimesv
shows }\quad(0\leqsNorm2 s < 1) ^(tval ((1/tval v)\otimesv)=1
proof -
have sqr (tval v) > sNorm2 (sComponent v) using assms by auto
hence 1 > sqr (1/tval v) * sNorm2 (sComponent v)
using local.divide-less-eq by force
hence sNorm2 s < 1 using lemSNorm2OfScaled[of 1/tval v sCom-
ponent v] assms
by auto
hence (0 \leq sNorm2 s < 1) by simp
moreover have (tval ((1/tval v)\otimesv)=1)
proof -
have sqr (tval v)> sNorm2 (sComponent v) using assms by auto
hence sqr (tval v)}\not=
by (metis local.add-less-zeroD local.not-square-less-zero)
hence tval v\not=0 by auto
thus ?thesis by auto
qed
ultimately show ?thesis by blast
qed

```
```

lemma lemReverseCauchySchwarz:
assumes timelike $X \wedge$ timelike D
shows $\quad \operatorname{sqr}(X \odot m D) \geq(m$ Norm2 $X) *(m$ Norm2 $D)$
proof -
have case1: parallel $X D \longrightarrow$?thesis
proof -
\{ assume parallel $X D$
then obtain a where $a: X=(a \otimes D)$ by auto
hence $(X \odot m D)=a * m N o r m 2 D$ using lemMDotScaleLeft by
auto
moreover have mNorm2 $X=\left(\begin{array}{ll}s q r & a\end{array}\right) * m N o r m 2 D$ using
lemMNorm2OfScaled a by auto
ultimately have sqr $(X \odot m D)=(m$ Norm2 $X) *(m$ Norm2 $D)$
using local.lemSqrMult mult-assoc by auto
\}
thus ?thesis by simp
qed
have $(\neg$ parallel $X D) \longrightarrow$?thesis
proof -
\{ assume case2: $ᄀ($ parallel X D)
define u where $u: u=((1 /$ tval $X) \otimes X)$
define v where $v: v=((1 /$ tval $D) \otimes D)$
define $s u$ where $s u$: $s u=(s$ Component $u)$
define $s v$ where $s v: s v=(s$ Component $v)$
have sphere: $(0 \leq$ sNorm2 su $<1) \wedge(0 \leq$ sNorm2 sv $<1)$
using lemNormaliseTimelike u su v sv assms by blast
have tvals1: tval $u=1 \wedge$ tval $v=1$
using lemNormaliseTimelike u su v sv assms by blast

```
            have worksuv: sqr \((u \odot m v)>(m\) Norm2 \(u) *(m\) Norm2 \(v)\)
            proof -
have uupos: mNorm2 \(u>0\) using assms \(u\) lemNormaliseTimelike by auto
have vvpos: mNorm2 \(v>0\) using assms \(v\) lemNormaliseTimelike by auto
            have uvpos: \((u \odot m v)>0\)
            proof -
            have \(\operatorname{sqr}(\) sdot su sv \() \leq(s N o r m 2 ~ s u) *(s N o r m 2 ~ s v)\)
                using lemCauchySchwarzSqr by auto
            also have \(\ldots<1\)
                    using mult-le-one sphere local.mult-strict-mono by fastforce
                    finally have \(s q r(s d o t ~ s u ~ s v)<1\) by auto
                    hence (sdot su sv) < 1
                    using local.less-1-mult local.not-less-iff-gr-or-eq by fastforce
                    thus ?thesis using \(u\) v su sv tvals1 by auto
qed
define \(a\) where \(a: a=(u \odot m v) /(m N o r m 2 v)\)
define \(u p\) where \(u p: u p=(a \otimes v)\)
define \(u o\) where \(u o: u o=(u \ominus u p)\)
have apos: \(a>0\) using a uvpos vvpos by auto
have updotup: mNorm2 up \(>0\)
proof -
have mNorm2 up \(=\left(\begin{array}{ll}\text { sqr } & a\end{array}\right) * m\) Norm2 \(v\) using up lemM-
Norm2OfScaled by auto
thus ?thesis using apos lemSquaresPositive vvpos by auto qed
have uparts: \(u=(u p \oplus u o) \wedge\) parallel \(u p v \wedge\) orthogm uo \(v \wedge\) \((u p \odot m v)=(u \odot m v)\)
using lemMDecomposition a up uo vvpos uvpos by auto
have updotuo: \((u p \odot m u o)=0\)
proof -
have \((u p \odot m u o)=a *(v \odot m u o)\) using up lemMDotScaleLeft
by auto
moreover have \((v \odot m u o)=(u o \odot m v)\) using mult-commute by auto
ultimately have \((u p \odot m u o)=0\) using uparts by force
thus ?thesis by auto
qed
have udotu: mNorm2 \(u=m\) Norm2 \(u p+m N o r m 2 ~ u o\) proof -
have mNorm2 \(u=m N o r m 2(u p \oplus u o)\) using uparts by auto also have \(\ldots=m\) Norm2 \(u p+2 *(u p \odot m\) uo \()+m\) Norm2 uo using lemMNorm2OfSum by auto
finally show ?thesis using updotuo by auto
qed
moreover have uodotuo: mNorm2 uo \(<0\)
proof -
have timelike up using updotup by auto
moreover have orthogm up uo using updotuo by auto
moreover have uo \(\neq\) origin
proof -
define \(\alpha\) where \(\alpha\) : \(\alpha=(\) tval \(X) * a *(1 /\) tval \(D)\)
have \(\alpha\) pos: \(\alpha \neq 0\) using apos lemTimelikeNotZeroTime assms \(\alpha\) by simp
\{ assume \(u o=\) origin
hence \(u=(a \otimes v)\) using uo up by auto
        moreover have \(X=((\) tval \(X) \otimes u)\)
        using u lemScaleAssoc assms lemTimelikeNotZeroTime
    by auto
            ultimately have \(X=((\) tval \(X) \otimes(a \otimes v))\) by auto
            hence \(X=((\) tval \(X) \otimes(a \otimes((1 /\) tval \(D) \otimes D)))\) using \(v\) by
auto
                            hence \(X=(\alpha \otimes D)\) using \(\alpha\) lemScaleAssoc mult-assoc
                        by (metis Point.select-convs(3-4))
                            hence False using case2 apos by blast
            \}
            thus?thesis by auto
            qed
            ultimately show ?thesis using lemOrthogmToTimelike by
auto
            qed
ultimately have upgeu: mNorm2 up \(>\) mNorm2 \(u\) by auto
have \((u \odot m v)=(u p \odot m v)\) using uparts by auto
also have \(\ldots=a *\) mNorm2 \(v\) using up lemMDotScaleLeft by auto
finally have final: sqr \((u \odot m v)=((s q r a) * m N o r m 2 v) *\) (mNorm2 \(v\) )
using lemSqrMult[of a mNorm2 \(v\) ] mult-assoc by auto
hence \(\operatorname{sqr}(u \odot m v)=(m N o r m 2 u p) *(m N o r m 2 v)\) using lemMNorm2OfScaled up by auto
thus ?thesis
using upgeu vvpos local.mult-strict-right-mono by simp
qed
have \((u \odot m v)=(((1 /\) tval \(X) \otimes X) \odot m((1 /\) tval \(D) \otimes D))\) using \(u v\) by auto
hence udotv: \((u \odot m v)=(1 /\) tval \(X) *(1 /\) tval \(D) *(X \odot m D)\)
using lemMDotScaleRight lemMDotScaleLeft mult-assoc mult-commute by metis
have udotu: mNorm2 \(u=s q r(1 /\) tval \(X) * m N o r m 2 X\) using \(u\) lemMNorm2OfScaled by blast
moreover have vdotv: mNorm2 \(v=\operatorname{sqr}(1 /\) tval \(D) * m N o r m 2\) \(D\) using \(v\) lemMNorm2OfScaled by blast
ultimately have ( \(m\) Norm2 \(u) *(m\) Norm2 \(v)=s q r((1 /\) tval \(X) *(1 /\) tval \(D)) * m N o r m 2 X * m N o r m 2 ~ D\)
using mult-commute mult-assoc by auto
hence
\[
\begin{aligned}
& \operatorname{sqr}((1 / \text { tval } X) *(1 / \text { tval } D) *(X \odot m \text { } D))> \\
& \quad \operatorname{sqr}((1 / \text { tval } X) *(1 / \text { tval } D)) * m N o r m 2 ~ X *
\end{aligned}
\]
```

mNorm2 D
using worksuv udotv by auto
moreover have sqr ((1/tval X)*(1/tval D)) >0
using lemTimelikeNotZeroTime
by (metis calculation local.lemSquaresPositive local.mult-cancel-left1)
ultimately have ?thesis
using mult-less-cancel-left-pos[of sqr ((1/tval X)*(1/tval D))]
by auto
}
thus ?thesis by auto
qed
thus ?thesis using case1 by auto
qed
end
end

```

\section*{32 KeyLemma}

This theory establishes a "key lemma": if you draw a line through a point inside a cone, that line will intersect the cone in no fewer than 1 and no more than 2 points.
```

theory KeyLemma
imports Classification ReverseCauchySchwarz
begin
class KeyLemma = Classification + ReverseCauchySchwarz
begin

```
lemma lemInsideRegularConeImplies:
    assumes insideRegularCone x \(p\)
and \(\quad D \neq\) origin
and \(\quad l=\) line \(p D\)
shows \(\quad 0<\operatorname{card}(l \cap\) regularConeSet \(x) \leq 2\)
proof -
    define \(S\) where \(S: S=(l \cap\) regularConeSet \(x)\)
    define \(X\) where \(X: X=(p \ominus x)\)
    define \(a\) where \(a: a=m\) Norm2 \(D\)
    define \(b\) where \(b: b=2 *(\) tval \(X) *(\) tval \(D)-2 *((s C o m p o n e n t ~ D)\)
\(\odot s(s C o m p o n e n t X))\)
define \(c\) where \(c: c=m\) Norm2 \(X\)
define \(d\) where \(d: d=(s q r b)-(4 * a * c)\)
have tlX: timelike \(X\) using lemTimelikeInsideCone assms(1) \(X\) by auto
hence cpos: \(c>0\) using \(c\) by auto
have xnotp: \(x \neq p\) using assms(1) by auto
have aval: \(a=m\) Norm2 \(D\) using \(a\) by auto
have bval: \(b=2 *(X \odot m D)\)
using b local.lemSDotCommute local.right-diff-distrib' mult-assoc
using local.mdot.simps by presburger
have cval: \(c=m\) Norm2 \(X\) using \(c\) by auto
have dval: \(d=4 *((\operatorname{sqr}(X \odot m D))-(m N o r m 2 X) *(m N o r m 2\) D) )
proof -
have \(d=(s q r b)-(4 * a * c)\) using \(d\) by simp
moreover have \((s q r b)=4 *(s q r(X \odot m D))\)
using lemSqrMult \([\) of \(2(X \odot m D)\) ] bval by auto
moreover have \(4 * a * c=4 *(m\) Norm2 \(X) *(m N o r m 2 D)\)
using aval cval mult-commute mult-assoc by auto
ultimately show ?thesis using right-diff-distrib' mult-assoc by metis
qed
define \(r 2 p\) where \(r 2 p: r 2 p=(\lambda r .(p \oplus(r \otimes D)))\)
define \(p 2 r\) where \(p 2 r: p 2 r=(\lambda q \cdot(\) THE \(a \cdot q=(p \oplus(a \otimes D))))\)
have \(b i j: \forall r q \cdot r 2 p r=q \longleftrightarrow(\exists w \cdot(r 2 p w=q)) \wedge(p 2 r q=r)\)
proof -
have uniqueroots: \(\forall a r . r 2 p a=r 2 p r \longrightarrow a=r\)
proof -
\{ fix \(a r\) assume \(r 2 p a=r 2 p r\)
hence \((a \otimes D)=(r \otimes D)\) using r2p add-diff-eq by auto
hence \(((a-r) \otimes D)=\) origin using lemScaleDistribDiff by auto
hence \((a-r)=0\) using assms(2) by auto
hence \(a=r\) by \(\operatorname{simp}\)
\}
thus ?thesis by blast
qed
\{ fix \(q r\) assume lhs: \(r 2 p r=q\)
have (THE \(a \cdot q=r 2 p a)=r\)
proof -
\{ fix \(a\) assume \(q=r 2 p a\)
hence \(a=r\) using uniqueroots lhs \(r 2 p\) by blast
\}
hence \(\forall a \cdot q=r 2 p a \longrightarrow a=r\) by auto
```

 thus ?thesis using lhs the-equality[of \lambdaa.q=r2p a r]
 by force
 qed
 }
 hence l2r: \forallqr.r2pr=q\longrightarrow(\existsw.(r2pw=q))^(p2r q=
 r)
using p2r r2p by blast
{ fix r q assume ass: (\exists w. (r2p w = q)) ^(p2r q=r)
then obtain w where w: r2p w=q by blast
hence unique: }\foralla.q=r2pa\longrightarrowa=w using uniqueroots by
auto
have rdef:r=(THE a.q=r2pa) using ass r2p p2r by simp
have q=r2p w using w by simp
hence q=r2p r using theI[of \lambdaa.q=r2p a w] rdef unique
by blast
}
hence }\forallqr.(\existsw.(r2pw=q))\wedge(p2rq=r)\longrightarrowq=r2p
by blast
thus ?thesis using l2r by blast
qed
have equalr2p: }\forallxy.r2px=r2py\longrightarrowx=y using bij by meti
have SbijRoots: S={y.\existsx\inqroots a b c.y=r2p x }
proof -
{ fix y assume y: y\inS
then obtain r where r:y=r2p r using r2p S assms by blast
hence regularCone x (p\oplus(r\otimesD)) using r2p y S by auto
hence }r\in\mathrm{ qroots a b c
using lemWhereLineMeetsCone[of a D b p x c r]
abc X by auto
hence }\existsr\in\mathrm{ qroots a b c.y =r2pr using r by blast
}
hence l2r:S\subseteq{y.\existsx\inqroots a b c.y = r2p x } by blast
{ fix y assume y:y\in{y.\existsx\inqroots abc.y=r2p x }
then obtain r where r:r\in qroots a b c\wedgey=r2p r by blast
hence regularCone x (r2p r)
using lemWhereLineMeetsCone[of a D b p
abc X r2p by auto
moreover have r2p r l using assms(3) r2p by auto
ultimately have y}\inS\mathrm{ using S r by auto
}
thus ?thesis using l2r by blast
qed

```
```

have equalcard: ((card (qroots a b c)=1)\vee (card (qroots a b c)=
2))
\longrightarrow(card S = card (qroots a b c))
proof -
{ assume cases:card (qroots a b c)=1\vee card (qroots a b c)=2
have case1: card (qroots a b c)=1 \longrightarrow (card S = card (qroots
abc))
proof -
{ assume card1: card (qroots a b c)=1
hence \existsr.(qroots a b c)={r} by (meson card-1-singletonE)
then obtain r where r:(qroots a b c)={r} by blast
hence l2r: {r2pr}\subseteqS using SbijRoots by auto
{ fix y assume y: y\inS
then obtain x where x:x\in qroots a b c ^ y=r2p x
using SbijRoots by blast
hence r2p r=y using bij using r by auto
}
hence }\forally.y\inS\longrightarrowy\in{r2pr} by aut
hence}S={r2pr} using l2r by blas
hence }\existsr.S={r}\mathrm{ by blast
hence card S=1
using card-1-singleton-iff[of S] by auto
}
thus ?thesis by auto
qed
have case2: card (qroots a b c)=2 }\longrightarrow(\mathrm{ card S = card (qroots
abc))
proof -
{ assume card2: card (qroots a b c)=2
hence \existsr1 r2 . (qroots a b c)={r1,r2} ^r1 f r2
using card-2-iff by blast
then obtain r1 r2 where rs: (qroots a b c)={r1,r2} ^
r1\not=r2 by blast
hence l2r: { r2p r1, r2p r2} \subseteqS using SbijRoots by auto
{ fix y assume y:y\inS
then obtain x where x:x\in qroots a b c\wedge y=r2p x
using SbijRoots by blast
hence }x=r1\veex=r2 using rs by aut
hence r2p r1 = y\veer2pr2 = y using x by blast
}
hence }\forally.y\inS\longrightarrowy\in{r2p r1,r2p r2 } by aut
hence S2: S = {r2p r1, r2p r2 } using l2r by blast
moreover have r2p r1 \# r2p r2 using rs bij by metis
ultimately have \existsy1 y2. S={y1,y2} ^ y1\not=y2 by blast
hence card S = 2 using card-2-iff by blast
}
thus ?thesis by auto

```

\section*{qed}
hence (card \(S=\) card (qroots abc)) using case1 cases by auto \} thus?thesis by auto qed
have qc1: \(\neg q c a s e 1 ~ a b c\) using cpos by auto
```

have qc2: ᄀ qcase2 a b c
proof -
{ assume qcase2 a b c
hence qc2: a = 0^b=0^c>0 using d cpos by auto
have llD: lightlike D using qc2 aval assms(2) by simp
have sqr (X\odotmD)=(mNorm2 X)*(mNorm2 D)
using qc2 bval aval by simp
hence orthogm X D using llD lemSqrt0 by auto
hence parXD: parallel X D
using lemCausalOrthogmToLightlikeImpliesParallel tlX llD by
auto

```
    then obtain \(\alpha\) where \(\alpha: \alpha \neq 0 \wedge X=(\alpha \otimes D)\) by blast
    have Dnot0: origin \(\neq D\) using \(\operatorname{assms}(2)\) by simp
    hence lightlike \(X\)
    proof -
        have tsqr: sqr \((\) tval \(X)=(\) sqr \(\alpha) *\) sqr \((\) tval \(D)\)
            using lemSqrMult \(\alpha\) by simp
            have \(s\) Component \(X=(\alpha \otimes s(s C o m p o n e n t ~ D))\) using \(\alpha\) by
simp

D)
                using lemSNorm2OfScaled[of \(\alpha\) sComponent \(D]\) by auto
                hence \(m\) Norm2 \(X=(s q r \alpha) * m N o r m 2 ~ D\)
                    using lemMNorm2Decomposition[of X] tsqr
                by (simp add: local.right-diff-distrib')
            thus ?thesis using llD qc2 xnotp \(X\) by auto
            qed
            hence False using tlX by auto
    \}
    thus ?thesis by auto
qed
```

have qc3: qcase3 a b c \longrightarrow card S=1
proof -
{ assume qcase3 a b c
hence qc3: qroots a b c={(-c/b)} using lemQCase3 by auto
hence \exists val. (qroots a b c={val}) by simp
hence card (qroots a b c) =1 using card-1-singleton-iff by auto
hence card S=1 using equalcard by auto
}
thus ?thesis by auto
qed
have qc4: ᄀqcase4 a b c
proof -
{ assume qcase4 a b c
hence qc4: a\not=0^d<0 using d by auto
{ assume a>0
hence tlD: timelike D using aval by auto
hence sqr }(X\odotmD)\geq(mNorm2 X)*(mNorm2 D)
using lemReverseCauchySchwarz[of X D] tlX
using local.dual-order.order-iff-strict by blast
hence EQN:4*sqr (X\odotmD)\geq4*(mNorm2 X)*(mNorm2
D)
using qc4 d dval local.leD by fastforce
have (sqr b)<4*a*c using d qc4 by simp
hence 4*sqr (X\odotmD)<4*(mNorm2 X)*(mNorm2 D)
using aval bval cval mult-assoc mult-commute
lemSqrMult[of 2 (}X\odotmD)]\mathrm{ by auto
hence False using EQN by force
}
hence aneg: a<0 using qc4 by force
hence }4*a*c<0\mathrm{ using cpos
by (simp add: local.mult-pos-neg local.mult-pos-neg2)
hence d> sqr b using d
by (metis add-commute local.add-less-same-cancel2 local.diff-add-cancel)
hence d>0
using local.less-trans local.not-square-less-zero qc4 by blast
hence False using qc4 by auto
}
thus ?thesis by auto
qed
have qc5: qcase5 a b c \longrightarrow card S=1
proof -
{

```
```

 assume qc5: qcase5 a b c
 hence qroots a b c={(-b/(2*a))} using lemQCase5 by auto
 hence }\exists\mathrm{ val. qroots a b c={val} by simp
 hence card (qroots a b c) = 1 using card-1-singleton-iff by auto
 hence card S = 1 using equalcard by simp
 }
 thus ?thesis by simp
 qed
have qc6: qcase6 a b c }\longrightarrow\mathrm{ card S=2
proof -
{ define rd where rd: rd = sqrt (discriminant a b c)
define rp where rp: rp = (-b+rd)/(2*a)
define rm where rm: rm = (-b-rd)/(2*a)
assume qc6: qcase6 a b c
hence rp}\not=rm\wedge qroots a b c={rp,rm
using lemQCase6[of a b c rd rp rm] a b c rd rm rp
by auto
hence \exists v1 v2 . qroots a b c = { v1, v2 } ^ (v1 = v2) by blast
hence card (qroots a b c) =2 using card-2-iff[of qroots a b c]
by blast
hence card S = 2 using equalcard by simp
}
thus ?thesis by simp
qed
define n where n: n = card S
hence (}n=1\veen=2
using qc1 qc2 qc3 qc4 qc5 qc6 lemQuadraticCasesComplete
by blast
hence 0<n\leq2 by auto
thus ?thesis using n S by auto
qed
end
end

```

\section*{33 Cardinalities}

For our purposes the only relevant cardinalities are \(0,1,2\) and more-than-2 (a proxy for "infinite"). We will use these cardinalities when looking at how lines intersect cones, using the size of the intersection set to characterise whether points are inside, on or outside of lightcones.

\footnotetext{
theory Cardinalities
imports Functions
}
```

begin
class Cardinalities = Functions
begin
lemma lemInjectiveValueUnique:
assumes injective f
and isFunction f
and \quadfxy
shows {q.fxq}={y}
using assms(2) assms(3) by force
lemma lemBijectionOnTwo:
assumes bijective f
and isFunction f
and}\quads\subseteqdomain
and \quadcard s=2
shows card (applyToSet fs)=2
proof -
obtain x y where xy: s={x,y}\wedgex\not=y using assms(4)
by (meson card-2-iff)
obtain fx where fx: fx fx using xy assms(1) assms(3) by blast
obtain fy where fy: fy fy using xy assms(1) assms(3) by blast
have applyToSet fs={q.\exists p\ins.fpq} by simp
moreover have ... ={q.fxq\vee fyq} using xy by auto
moreover have ... ={q. fxq}}\cup{q.fyq} by aut
ultimately have applyToSet fs={fx}}\cup{fy
using fx fy assms(1) assms(2) lemInjectiveValueUnique by force
moreover have fx\not=fy using fx fy assms(1) xy by blast
thus ?thesis using calculation by force
qed
lemma lemElementsOfSet2:
assumes card S=2
shows \exists pq. (p\not=q)\wedgep\inS\wedgeq\inS
by (meson assms card-2-iff')
lemma lemThirdElementOfSet2:
assumes (p\not=q)^p\inS\wedgeq\inS\wedge(card S=2)
and }r\in
shows }\quadp=r\veeq=
proof -
have card S = 2 using assms(1) by auto

```
then obtain \(x y\) where \(x y:(x \in S) \wedge(y \in S) \wedge(x \neq y) \wedge(\forall z \in S\).
```

z=x\veez=y)
using card-2-iff'[of S] by auto
have p: p=x\veep=y using xy assms(1) by auto
have q:q=x\veeq=y using xy assms(1) by auto
hence pq:(p=x\wedgeq=y)\vee(p=y\wedgeq=x) using assms(1)p
by blast
moreover have r=x\veer=y using xy assms(2) by auto
ultimately show ?thesis by auto
qed
lemma lemSmallCardUnderInvertible:
assumes invertible f
and }\quad0<\operatorname{card}S\leq
shows card S = card (applyToSet (asFunc f) S)
proof -
have cases: card S=1\vee card S=2 using assms(2) by auto
have case1: card S=1 \longrightarrow?thesis
proof -
{ assume card1: card S=1
hence }\existsa.S={a}\mathrm{ by (meson card-1-singletonE)
then obtain a where a:S={a} by blast
define b where b:b=fa
hence applyToSet (asFunc f) S={b}
proof -
have {b}\subseteq applyToSet (asFunc f) S using a b by auto
moreover have applyToSet (asFunc f)S\subseteq{b}
proof -
{ fix c assume c:c f applyToSet (asFunc f)S
hence c}\in{c.\exists\mp@subsup{a}{}{\prime}\inS.(asFunc f) a'c } by aut
then obtain }\mp@subsup{a}{}{\prime}\mathrm{ where }\mp@subsup{a}{}{\prime}:\mp@subsup{a}{}{\prime}\inS\wedge(asFunc f) a'c by blas
hence }\mp@subsup{a}{}{\prime}=a\wedgefa=c\mathrm{ using a by auto
hence c\in{b} using b by auto
}
thus ?thesis by blast
qed
ultimately show ?thesis by blast
qed
hence \existsb . applyToSet (asFunc f) S={ b } by blast
hence card (applyToSet (asFunc f)S)=1 by auto
}
thus ?thesis by auto
qed
have case2: card S=2 \longrightarrow?thesis
proof -

```
```

 \{ assume card2: card \(S=2\)
 hence \(\exists a u . a \neq u \wedge S=\{a, u\}\) by (meson card-2-iff)
 then obtain \(a u\) where \(a u\) : \(a \neq u \wedge S=\{a, u\}\) by blast
 define \(b\) where \(b: b=f a\)
 define \(v\) where \(v: v=f u\)
 hence applyToSet (asFunc f) \(S=\{b, v\}\)
 proof -
 have \(\{b, v\} \subseteq\) applyToSet (asFunc f) \(S\) using au \(b v\) by auto
 moreover have applyToSet (asFunc f) \(S \subseteq\{b, v\}\)
 proof -
 \{ fix \(c\) assume \(c: c \in\) applyToSet (asFunc f) \(S\)
 hence \(c \in\left\{c . \exists a^{\prime} \in S .(\right.\) asFunc \(\left.f) a^{\prime} c\right\}\) by auto
 then obtain \(a^{\prime}\) where \(a^{\prime}: a^{\prime} \in S \wedge\left(\right.\) asFunc f) \(a^{\prime} c\) by blast
 hence \(\left(a^{\prime}=a \wedge f a=c\right) \vee\left(a^{\prime}=u \wedge f u=c\right)\) using \(a u\)
 by auto
hence $c \in\{b, v\}$ using $b v$ by auto
\}
thus ?thesis by blast
qed
ultimately show ?thesis by blast
qed
moreover have $b \neq v$
proof -
\{ assume $b=v$
hence $f a=f u$ using $b v$ by simp
hence $a=u$ using assms(1) by blast
hence False using au by auto
\}
thus ?thesis by auto
qed
ultimately have $\exists b v . b \neq v \wedge$ applyToSet (asFuncf) $S=\{b$,
$v\}$ by blast
hence card (applyToSet (asFunc f) S) = 2 using card-2-iff by
auto
\}
thus ?thesis by auto
qed
thus ?thesis using cases case1 by blast
qed
lemma lemCardOfLineIsBig:
assumes $x \neq p$
and onLine $x l \wedge$ onLine $p l$
shows $\quad \exists p 1$ p2 p3. (onLine p1 $l \wedge$ onLine p2 $l \wedge$ onLine p3 $l)$
$\wedge(p 1 \neq p 2 \wedge p 2 \neq p 3 \wedge p 3 \neq p 1)$
proof -

```
obtain \(b d\) where \(b d\) : \(l=\) line \(b d\) using assms(2) by blast
hence \(d n o t 0: d \neq\) origin using assms by auto
have lpd: l= line \(p d\) using lemSameLine \([o f p b d] b d \operatorname{assms(2)by}\) auto
define \(p 1\) where \(p 1: p 1=(p \oplus(1 \otimes d))\)
define \(p 2\) where \(p 2: p 2=(p \oplus(2 \otimes d))\)
define \(p 3\) where \(p 3: p 3=(p \oplus(3 \otimes d))\)
have onl: onLine p1 \(l \wedge\) onLine p2 \(l \wedge\) onLine p3 \(l\) using \(l p d p 1\) p2 p3 by auto
have psdiff: \(p 1 \neq p 2 \wedge p 2 \neq p 3 \wedge p 3 \neq p 1\)
proof -
have \(p 1 \neq p 2\) using \(p 1 p 2\) dnot0 by auto
moreover have \(p 2 \neq p 3\) using \(p 2\) p3 dnot0 by auto
moreover have \(p 3 \neq p 1\) using \(p 3 p 1\) dnot0 by auto
ultimately show ?thesis by blast
qed
hence (onLine p1 \(l \wedge\) onLine p2 \(l \wedge\) onLine \(p 3 l) \wedge(p 1 \neq p 2 \wedge p 2 \neq p 3\) \(\wedge p 3 \neq p 1)\)
using onl by blast
thus ?thesis using \(p 1\) p2 p3 by meson
qed
end
end

\section*{34 AffineConeLemma}

This theory shows that affine approximations preserve "insideness" of points relative to cones.
theory AffineConeLemma
imports KeyLemma TangentLineLemma Cardinalities
begin
class AffineConeLemma \(=\) KeyLemma + TangentLineLemma + Car dinalities
begin
lemma lemInverseOfAffInvertibleIsAffInvertible:
assumes affInvertible \(A\)
and \(\quad \forall x y . A x=y \longleftrightarrow A^{\prime} y=x\)
shows affInvertible \(A^{\prime}\)
proof -
have inv \(A^{\prime}\) : invertible \(A^{\prime}\) using assms(2) by force
moreover have affine \(A^{\prime}\)
proof -
obtain \(L T\) where \(L T:(\) linear \(L) \wedge(\) translation \(T) \wedge(A=T \circ\) L)
using assms(1) by blast
then obtain \(t\) where \(t: \forall x . T x=(x \oplus t)\) using \(L T\) by auto
```

have invertible L
proof -
{fix q
define p where p: p=\mp@subsup{A}{}{\prime}(Tq)
hence Lpq:(L p=q)
proof -
have A p=Tqusing passms(2) by simp
thus ?thesis using LT by auto
qed
moreover have (}\forallx.Lx=q\longrightarrowx=p
proof -
{ fix x assume L x = q
hence Lx=L p using Lpq by simp
hence A x = A p using LT by auto
hence }x=p\mathrm{ using assms(2) by force
}
thus ?thesis by auto
qed
ultimately have }\exists>.(Lp=q)\wedge(\forallx.L x=q\longrightarrow < = p

```
by blast
    \}
        thus ?thesis by blast
    qed
    then obtain \(L^{\prime}\) where \(L^{\prime}: \forall x y . L x=y \longleftrightarrow L^{\prime} y=x\) by metis
    have linL: linear \(L\) using \(L T\) by auto
    have \(\operatorname{lin} L^{\prime}\) : linear \(L^{\prime}\)
    proof -
        have part1: \(L^{\prime}\) origin \(=\) origin using \(\operatorname{lin} L L^{\prime}\) by auto
        have part2: \(\forall a p . L^{\prime}(a \otimes p)=\left(a \otimes\left(L^{\prime} p\right)\right)\)
        proof -
            \(\{\) fix \(a p\)
            have \(L\left(L^{\prime} p\right)=p\) using \(L^{\prime}\) by auto
            hence \(L\left(a \otimes\left(L^{\prime} p\right)\right)=(a \otimes p)\)
                using linL lemLinearProps \(\left[o f L a\left(L^{\prime} p\right)\right]\) by auto
            hence \(\left(a \otimes\left(L^{\prime} p\right)\right)=\left(L^{\prime}(a \otimes p)\right)\) using \(L^{\prime}\) by auto
        \}
        thus ?thesis by auto
    qed
    have \(\forall p q .\left(L^{\prime}(p \oplus q)=\left(\left(L^{\prime} p\right) \oplus\left(L^{\prime} q\right)\right)\right) \wedge\left(L^{\prime}(p \ominus q)=\right.\)
\(\left.\left(\left(L^{\prime} p\right) \ominus\left(L^{\prime} q\right)\right)\right)\)
```

 proof -
 {fix pq
 have }(L((\mp@subsup{L}{}{\prime}p)\oplus(\mp@subsup{L}{}{\prime}q))=((L(\mp@subsup{L}{}{\prime}p))\oplus(L(\mp@subsup{L}{}{\prime}q)))
 \wedge (L ((L'p)\ominus (L'q)) = ((L (L'p))\ominus (L(L' q))))
 using linL lemLinearProps[of L 0 (L' p) (L' q)] by auto
 moreover have L (L' p) = p\wedgeL(L'q) =qusing L' by
 auto
ultimately have (L ((\mp@subsup{L}{}{\prime}p)\oplus(\mp@subsup{L}{}{\prime}q))=(p\oplusq))\wedge(L}((\mp@subsup{L}{}{\prime
p)}\ominus(\mp@subsup{L}{}{\prime}q))=(p\ominusq)
using L' by auto
hence }((\mp@subsup{L}{}{\prime}p)\oplus(\mp@subsup{L}{}{\prime}q))=\mp@subsup{L}{}{\prime}(p\oplusq)\wedge((\mp@subsup{L}{}{\prime}p)\ominus(\mp@subsup{L}{}{\prime}q))
L'(p\ominusq)
using L' by force
}
thus ?thesis by force
qed
thus ?thesis using part1 part2 by blast
qed
define t' where t': t'=(origin }\ominus(\mp@subsup{L}{}{\prime}t)

```

```

 have transT': translation T' using T' }\mp@subsup{T}{}{\prime}\mathrm{ by fastforce
 have }\mp@subsup{A}{}{\prime}=\mp@subsup{T}{}{\prime}\mathrm{ o }\mp@subsup{L}{}{\prime
 proof -
 { fix q define p where p:p=\mp@subsup{A}{}{\prime}q
 hence A p=q using assms(2) by force
 hence }((Lp)\oplust)=q\mathrm{ using LT t by auto
 hence L p = (q\ominust) using add-diff-eq by auto
 hence p= L'(q\ominust) using L' by auto
 hence p=((\mp@subsup{L}{}{\prime}q)\ominus(\mp@subsup{L}{}{\prime}t)) using lemLinearProps[of L\ linL'
 by auto
hence }p=\mp@subsup{T}{}{\prime}(\mp@subsup{L}{}{\prime}q)\mathrm{ using }\mp@subsup{T}{}{\prime}\mp@subsup{t}{}{\prime}\mathrm{ by auto
hence }\mp@subsup{A}{}{\prime}q=(\mp@subsup{T}{}{\prime}o\mp@subsup{L}{}{\prime})q\mathrm{ using }p\mathrm{ by auto
}
thus ?thesis by blast
qed
thus ?thesis using linL' transT' by blast
qed
ultimately show ?thesis by blast
qed

```
```

lemma lemInsideRegularConeUnderAffInvertible:
assumes affInvertible A
and insideRegularCone x p
and regularConeSet (A x) = applyToSet (asFunc A) (regularConeSet
x)
shows insideRegularCone (A x) (A p)
proof -
define y where y:y=A x
define q where q: q = A p
define cx where cx:cx = regularConeSet }
define cy where cy:cy = regularConeSet y
obtain }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}:\forallxy.Ax=y\longleftrightarrow\mp@subsup{A}{}{\prime}y=x\mathrm{ using assms(1)
by metis
hence invA': invertible A' by force
have aff A': affine A'
using A' assms(1) lemInverseOfAffInvertibleIsAffInvertible
by auto
have }\mp@subsup{p}{}{\prime}:\mp@subsup{A}{}{\prime}q=p\mathrm{ using }\mp@subsup{A}{}{\prime}q\mathrm{ by auto
have }\mp@subsup{x}{}{\prime}:\mp@subsup{A}{}{\prime}y=x\mathrm{ using }\mp@subsup{A}{}{\prime}y\mathrm{ by auto
have xnotp: }x\not=p\mathrm{ using assms(2) by auto
have ynotq: y}\not=q\mathrm{ using }\mp@subsup{p}{}{\prime}\mp@subsup{x}{}{\prime}\mathrm{ xnotp by auto
have cy':cy = applyToSet (asFunc A) cx using y cx cy assms(3)
by auto
have cx': cx = applyToSet (asFunc A') cy
proof -
{ fix z assume z c cx
hence (Az)\incy using cy' by auto
hence }\mp@subsup{A}{}{\prime}(Az)\in\mathrm{ applyToSet (asFunc A') cy by auto
hence z}\in\mathrm{ applyToSet (asFunc A') cy using A' by metis
}
hence l2r:cx \subseteqapplyToSet (asFunc A') cy by blast
{ fix z assume rhs: z\in applyToSet (asFunc A') cy
hence }z\in{z.\exists\mp@subsup{z}{}{\prime}.\mp@subsup{z}{}{\prime}\incy\wedge(\mathrm{ asFunc }\mp@subsup{A}{}{\prime})\mp@subsup{z}{}{\prime}z}\mathrm{ by auto
then obtain z1 where z1:z1 \incy ^(asFunc A') z1 z by blast
hence z1 \in{z1.\existsz2.z2 \incx^(asFunc A) z2 z1 } using
cy' by auto
then obtain z2 where z2:z2 \incx ^ (asFunc A) z2 z1 by blast
hence z=z2 using z1 A' by auto
hence z\incx using z2 by auto
}
thus ?thesis using l2r by blast
qed

```
```

have noton: \neg onRegularCone y q
proof -
{ assume on: onRegularCone y q
define lx where lx: lx = lineJoining x p
define ly where ly':ly = applyToSet (asFunc A) lx
have onlx: onLine x lx}^\mathrm{ onLine plx
using lemLineJoiningContainsEndPoints[of lx x p] lx by auto
have linelx: isLine lx using lx by blast
have linely: applyAffineToLine A lx ly
using lemAffineOfLineIsLine[of lx A ly] assms(1) ly' linelx by
auto
have }\existsD.lx= line p
proof -
obtain bd where lx = line b d using linelx by blast
hence lx = line p d using lemSameLine[of p b d] onlx by auto
thus?thesis by auto
qed
then obtain D where D:lx = line p D by auto
have Dnot0: D \# origin
proof -
{ assume D = origin
hence False using D onlx xnotp by auto
}
thus ?thesis by auto
qed
have ly:ly= lineJoining y q
proof -
have applyToSet (asFunc A) {x,p}\subseteq applyToSet (asFunc A)
lx using onlx by auto
hence {y,q}\subseteqly using y q ly' by auto
moreover have isLine ly using linely by auto
ultimately show ?thesis using lemLineAndPoints[of y q ly]
by (simp add: ynotq)
qed
hence only: { y,q}\subseteqly
using lemLineJoiningContainsEndPoints[of ly y q] ly' by auto
have SxSy: applyToSet (asFunc A) (lx \capcx) = (ly\capcy)
using lemInvertibleOnMeet[of A lx \cap cx lx cx] assms(1) ly' cy'
by auto

```
    have cardx: \(0<\operatorname{card}(l x \cap c x) \leq 2\)
using lemInsideRegularConeImplies \([\) of \(x\) p \(D\) lx] \(\operatorname{assms}(2) \operatorname{Dnot0} l x D c x\)
by fastforce
hence cardy: card \((l y \cap c y)=\operatorname{card}(l x \cap c x)\)
using lemSmallCardUnderInvertible[of \(A l x \cap c x] \operatorname{assms}(1)\)
\(S x S y\) by auto
hence lycy: \(l y \cap c y=l y\)
using lemOnRegularConeIff [of ly \(y q]\) ly ynotq cy on by blast
hence \(\exists p 1 p 2 p 3 .(p 1 \in l y \wedge p 2 \in l y \wedge p 3 \in l y)\)
\(\wedge(p 1 \neq p 2 \wedge p 2 \neq p 3 \wedge p 3 \neq p 1)\)
using lemCardOfLineIsBig[of y q ly] ynotq only linely by auto
then obtain p1 p2 p3
where \(p s:(p 1 \in l y \wedge p 2 \in l y \wedge p 3 \in l y) \wedge(p 1 \neq p 2 \wedge p 2 \neq p 3\) \(\wedge p 3 \neq p 1)\)
by auto
have not1: card ly \(\neq 1\) using ps card-1-singleton-iff[of ly] by auto
have not2: card ly \(\neq 2\) using ps card-2-iff[of ly] by auto
hence \(\neg(0<\operatorname{card}(l y \cap c y) \leq 2)\) using lycy not1 by auto
hence False using cardy cardx by auto
\}
thus ?thesis by blast
qed
have notout: \(\neg\) outsideRegularCone y \(q\)
proof -
\{ assume out: outsideRegularCone y \(q\)
hence \(\left(\exists l q^{\prime} .\left(q^{\prime} \neq q\right) \wedge\right.\) onLine \(q^{\prime} l \wedge\) onLine \(q l\) \(\wedge(l \cap c y=\{ \}))\)
using lemOutsideRegularConeImplies[of \(y q] c y\) by auto
then obtain \(l q^{\prime}\)
where \(l:\left(q^{\prime} \neq q\right) \wedge\) onLine \(q^{\prime} l \wedge\) onLine \(q l \wedge(l \cap c y=\{ \})\) by blast
define \(l x\) where \(l x: l x=\) applyToSet (asFunc \(\left.A^{\prime}\right) l\)
have \((l x \cap c x)=\) applyToSet (asFunc \(\left.A^{\prime}\right)(l \cap c y)\) using lemInvertibleOnMeet[of \(\left.A^{\prime} l \cap c y l c y\right]\)
invA' \(l x c x^{\prime}\) by auto
hence \((l x \cap c x)=\) applyToSet (asFunc \(\left.A^{\prime}\right)\}\) using \(l\) by auto
hence int0: \((l x \cap c x)=\{ \}\) by \(\operatorname{simp}\)
hence \(\operatorname{card0:~card~}(l x \cap c x)=0\) by \(\operatorname{simp}\)
```

 have linelx: isLine lx
 proof -
 have isLine l using l by blast
 thus ?thesis using lemAffineOfLineIsLine[of l A' lx] lx aff A'
 by auto
 qed
 have ponlx: onLine p lx
 proof -
 have q}\inl\mathrm{ using l by simp
 thus ?thesis using lx p' linelx by auto
 qed
 have }\existsD.lx= line p D
 proof -
 obtain bd where lx = line bd using linelx by blast
 hence lx = line pd using lemSameLine[of p b d] ponlx by auto
 thus ?thesis by auto
 qed
 then obtain D where D:lx= line p D by auto
 have Dnot0: D}\not=\mathrm{ origin
 proof -
 { assume D0: D = origin
 have allp: }\forall\mathrm{ pt. onLine pt lx }\longrightarrowpt=
 proof -
 { fix pt assume onLine pt lx
 then obtain a where pt=(p\oplus(a\otimesD)) using D by
 auto
hence pt = p using D0 by simp
}
thus ?thesis by blast
qed
define p1 where p1:p1= 挂 q
have }A\mp@subsup{A}{}{\prime}:\forallpt.A(\mp@subsup{A}{}{\prime}pt)=pt by (simp add: A'
hence p1 f=p
proof -
{ assume pp: p1 = p
hence }A(\mp@subsup{A}{}{\prime}\mp@subsup{q}{}{\prime})=A(\mp@subsup{A}{}{\prime}q)\mathrm{ using }\mp@subsup{p}{}{\prime}p1\mathrm{ by auto
hence }\mp@subsup{q}{}{\prime}=q\mathrm{ using }A\mp@subsup{A}{}{\prime}\mathrm{ by simp
hence False using l by auto
}
thus ?thesis by auto
qed

```
```

 moreover have onLine p1 lx
 proof -
 have p1=\mp@subsup{A}{}{\prime}\mp@subsup{q}{}{\prime}}\mathbf{using}lp1 by blas
 hence p1\in applyToSet (asFunc A') l using l by auto
 hence p1\inlx by (simp add:lx)
 thus ?thesis using linelx by auto
 qed
 ultimately have False using l allp by blast
 }
 thus ?thesis by auto
 qed
 have 0<card (lx\capcx)\leq2
 using lemInsideRegularConeImplies[of x p D lx]
 assms(2) Dnot0 D cx
 by blast
 hence False using card0 by simp
 }
 thus ?thesis by blast
 qed
 hence }\neg(\mathrm{ vertex y q)}\wedge\neg(\mathrm{ onRegularCone y q)}\wedge\neg(\mathrm{ outsideRegularCone
 y q)
using ynotq noton notout by blast
hence insideRegularCone y q using lemInsideCone[of y q]
by fastforce
thus ?thesis using y q by blast
qed

```
end
end

\section*{35 NoFTLGR}

This theory completes the proof of NoFTLGR.
```

theory NoFTLGR
imports ObserverConeLemma AffineConeLemma
begin
class NoFTLGR = ObserverConeLemma + AffineConeLemma
begin

```

The theorem says: if observer m encounters observer k (so that
they are both present at the same spacetime point x ), then k is moving at sub-light speed relative to m . In other words, no observer ever encounters another observer who appears to be moving at or above lightspeed.
theorem lemNoFTLGR:
assumes ass1: \(x \in\) wline \(m m\) wline \(m k\)
and ass2: tl lmkx
and ass3: \(v \in\) lineVelocity \(l\)
and ass \(: ~ \exists p .(p \neq x) \wedge(p \in l)\)
shows \(\quad(\) lineSlopeFinite \(l) \wedge(s\) Norm2 \(v<1)\)
proof -
define \(s\) where \(s: s=(\) wline \(k k)\)
have axEventMinus \(m k x\) using AxEventMinus by force
hence \((\exists q . \forall b .((m\) sees \(b\) at \(x) \longleftrightarrow(k\) sees \(b\) at \(q)))\)
using ass1 by blast
then obtain \(y\) where \(y: \forall b .((m\) sees \(b\) at \(x) \longleftrightarrow(k\) sees \(b\) at
y)) by auto
hence mkxy: wvtFunc \(m k x y\) using ass1 by auto
have axDiff \(m k x\) using AxDiff by simp
hence \(\exists A\). (affineApprox \(A\) (wvtFunc \(m k\) ) \(x\) ) using mkxy by fast then obtain \(A\) where \(A\) : affineApprox \(A(w v t F u n c ~ m k\) ) \(x\) by auto
hence aff A: affine \(A\) by auto
have lineL: isLine \(l\) using ass2 by auto
define \(l^{\prime}\) where \(l^{\prime}: l^{\prime}=\) applyToSet (asFunc A) \(l\)
hence line \(L^{\prime}\) : isLine \(l^{\prime}\)
using lineL aff A lemAffineOfLineIsLine \(\left[\begin{array}{lll}l & A & l\end{array}\right]\)
by auto
have tgtl': tangentLine l's y
proof -
define \(g 1\) where \(g 1: g 1 \equiv x \in\) wline \(m k\)
define \(g 2\) where \(g 2: g 2 \equiv\) tangentLine \(l(\) wline \(m k) x\)
define \(g 3\) where \(g 3: g 3 \equiv\) affineApprox \(A(\) wvtFunc \(m k) x\)
define \(g_{4}\) where \(g_{4}: g_{4} \equiv\) wvtFunc \(m k x y\)
define \(g 5\) where \(g 5: g 5 \equiv\) applyAffineToLine A \(l l^{\prime}\)
define \(g 6\) where \(g 6: g 6 \equiv\) tangentLine \(l^{\prime}(\) wline \(k k) y\)
have \(x \in\) wline \(m k\)
\(\longrightarrow\) tangentLine \(l(\) wline \(m k) x\)
\(\longrightarrow\) affineApprox \(A(\) wvtFunc \(m k) x\)
\(\longrightarrow\) wvtFunc \(m k x y\)
\(\longrightarrow\) applyAffineToLine A \(l l^{\prime}\)
    using lemPresentation[of \(x m k l k A y l l]\)
    by blast
    hence pres: \(g 1 \longrightarrow g 2 \longrightarrow g 3 \longrightarrow g 4 \longrightarrow g 5 \longrightarrow g 6\)
        using \(g 1\) g2 g3 g4 g5 g6 by fastforce
    have 1: g1 using ass1 \(g 1\) by auto
    have 2: g2 using ass2 g2 by fast
    have 3: g3 using A g3 by fast
    have 4: g4 using mkxy 94 by fast
    have 5: g5 using 1 lineL \(l^{\prime}\) affA lemAffineOfLineIsLine[ of \(l\) A \(\left.l l\right]\)
g5
        by auto
    hence g6 using 12345 pres by meson
    thus ?thesis using \(s\) g6 by auto
qed
have \(y k k: y \in\) wline \(k k\) using ass1 \(y\) by auto
```

have c 2: $l^{\prime}=$ timeAxis
proof -
have $t l l^{\prime} k k y$ using $t g t l^{\prime} l^{\prime} s$ by auto
thus ?thesis
using lemSelfTangentIsTimeAxis[of y $\left.k l^{\prime}\right]$ by auto
qed
have yOnAxis: onLine y timeAxis
using lemTimeAxisIsLine ykk AxSelfMinus by blast
hence $y O n l^{\prime}$: onLine $y l^{\prime}$ using $c 2$ by auto
have $\forall p$. cone k y $p \longleftrightarrow$ regularCone y p
using ykk lemProposition 1 [of $y k$] by auto
hence ycone: coneSet $k y=$ regularConeSet y by auto
have xcone: coneSet $m x=$ regularConeSet x
proof -
have $x \in$ wline $m m$ using ass1 by auto
hence $\forall p$. cone $m x p \longleftrightarrow$ regularCone $x p$
using lemProposition 1 [of $x \mathrm{~m}$] by auto
thus ?thesis by auto
qed

```
```

 have assm1':}y\in\mathrm{ wline }kk\cap\mathrm{ wline k m
 using ass1 y by auto
 have axEventMinus k m y using AxEventMinus by force
 hence }(\existsq.\forallb.((k\mathrm{ sees b at y) }\longleftrightarrow(m\mathrm{ sees b at q)))
 using assm1' by blast
 then obtain z where z:\forallb.((}k\mathrm{ sees b at y)}\longleftrightarrow(m\mathrm{ sees b at z))
 by auto
hence kmyz: wvtFunc k m y z using assm1' by auto
have axDiff k m y using AxDiff by simp
hence }\existsA.(affineApprox A (wvtFunc km) y) using kmyz by fas
then obtain Akmy where Akmy: affineApprox Akmy (wvtFunc k
m) y by auto
hence aff A': affine Akmy by auto
have invA': invertible Akmy using Akmy by auto
then obtain Amkx where
Amkx:(affine Amkx)}\wedge(\forallpq.Akmy p=q\longleftrightarrowAmkx q=p
using lemInverseAffine[of Akmy] aff A' by blast
have wvtFunc m k x y using mkxy by auto
hence kmyx: wvtFunc k m y x by auto
hence xisz: }x=z\mathrm{ using kmyz lemWVTImpliesFunction by blast
moreover have z=Akmy y
using lemAffineEqualAtBase[of wvtFunc k m Akmy y] Akmy kmyz
by blast
ultimately have }x\mp@subsup{A}{}{\prime}y:x=Akmy y by aut
hence p35a: applyToSet (asFunc Akmy) (coneSet k y)\subseteq coneSet m
x
using Akmy lemProposition2[of k m Akmy y]
by simp
have p35aRegular: applyToSet (asFunc Akmy) (regularConeSet y)
= regularConeSet x
proof -
have applyToSet (asFunc Akmy) (regularConeSet y)\subseteqconeSet m
x
using ycone p35a by auto
hence l2r: applyToSet (asFunc Akmy) (regularConeSet y)\subseteq regu-
larConeSet x

```
using xcone by auto
have r2l: regularConeSet \(x \subseteq\) applyToSet (asFunc Akmy) (regularConeSet y)
proof -
\{ assume converse: \(\neg\) (regularConeSet \(x \subseteq\) applyToSet (asFunc
Akmy) (regularConeSet \(y\) ))
then obtain \(z\) where
\(z: z \in\) regularConeSet \(x \wedge \neg(z \in\) applyToSet (asFunc Akmy)
(regularConeSet y))
by blast
define \(z^{\prime}\) where \(z^{\prime}: z^{\prime}=A m k x z\)
have \(z^{\prime}\) NotOnCone \(: \neg\left(z^{\prime} \in\right.\) regularConeSet \(\left.y\right)\)
proof -
\{ assume conv: \(z^{\prime} \in\) regularConeSet \(y\) have Akmy \(z^{\prime}=z\) using Amkx \(z^{\prime}\) by auto hence (asFunc Akmy) \(z^{\prime} z\) by auto
hence \(\exists z^{\prime} \in\) regularConeSet \(y\). (asFunc Akmy) \(z^{\prime} z\) using
conv by blast
hence \(z \in\) applyToSet (asFunc Akmy) (regularConeSet y)
by auto hence False using \(z\) by blast
\}
thus ?thesis by blast
qed
hence \(\neg\) (regularCone \(y z^{\prime}\) ) by auto
then obtain \(l\) where
\(l:\left(\right.\) onLine \(\left.z^{\prime} l\right) \wedge(\neg(y \in l)) \wedge(\operatorname{card}(l \cap(\) regularConeSet \(y))\) = 2)
using lemConeLemma2[of \(\left.z^{\prime} y\right]\) by blast
then obtain \(p q\) where
\[
p q:(p \neq q) \wedge p \in(l \cap(\text { regularConeSet } y)) \wedge q \in(l \cap
\]
(regularConeSet \(y\) ))
using lemElementsOfSet2 \([\) of \(l \cap(\) regularConeSet \(y)]\) by blast
have lineL: isLine \(l\) using \(l\) by auto
define \(p^{\prime}\) where \(p^{\prime}: p^{\prime}=A k m y p\)
define \(q^{\prime}\) where \(q^{\prime}: q^{\prime}=A k m y q\)
have \(p^{\prime}\) inv: Amkx \(p^{\prime}=p\) using Amkx \(p^{\prime}\) by auto
have \(q^{\prime}\) inv: Amkx \(q^{\prime}=q\) using Amkx \(q^{\prime}\) by auto
have \(p\) OnCone: \(p \in\) regularConeSet \(y\) using \(p q\) by blast
moreover have (asFunc Akmy) p \(p^{\prime}\) using \(p^{\prime}\) by auto
ultimately have \(\exists p \in\) regularConeSet \(y\). (asFunc Akmy) \(p\)
\(p^{\prime}\) by blast
hence \(p^{\prime} \in\) applyToSet (asFunc Akmy) (regularConeSet y) by
auto
hence \(A p: p^{\prime} \in\) regularConeSet \(x\) using l2r by blast
have \(q\) OnCone: \(q \in\) regularConeSet \(y\) using \(p q\) by blast
moreover have (asFunc Akmy) \(q q^{\prime}\) using \(q^{\prime}\) by auto
ultimately have \(\exists q \in\) regularConeSet \(y\). (asFunc Akmy) \(q\) \(q^{\prime}\) by blast
hence \(q^{\prime} \in\) applyToSet (asFunc Akmy) (regularConeSet y) by auto
hence \(A q: q^{\prime} \in\) regularConeSet \(x\) using l2r by blast
have \(p^{\prime} q^{\prime}: p^{\prime} \neq q^{\prime}\)
proof -
\(\left\{\right.\) assume \(p^{\prime}=q^{\prime}\)
hence Akmy \(p^{\prime}=A k m y q^{\prime}\) by auto
hence \(p=q\) by (metis \(p^{\prime} q^{\prime} A m k x\) )
hence False using \(p q\) by simp
\}
thus ?thesis by auto
qed
have \(p^{\prime} z: p^{\prime} \neq z\)
proof -
\(\left\{\right.\) assume \(p^{\prime}=z\)
hence \(p=z^{\prime}\) using \(p^{\prime}\) inv \(z^{\prime}\) by auto
hence False using \(p\) OnCone \(z^{\prime}\) NotOnCone by auto
\}
thus ?thesis by auto
qed
have \(q^{\prime} z: q^{\prime} \neq z\)
proof -
\{ assume \(q^{\prime}=z\)
hence \(q=z^{\prime}\) using \(q^{\prime}\) inv \(z^{\prime}\) by auto
hence False using \(q\) OnCone \(z^{\prime}\) NotOnCone by auto
\}
thus ?thesis by auto
qed
define \(l^{\prime}\) where \(l^{\prime}: l^{\prime}=\) applyToSet (asFunc Akmy) \(l\)
have affine Akmy using Akmy by auto
hence All': applyAffineToLine Akmy l l'
using \(l^{\prime}\) lineL lemAffineOfLineIsLine[of l Akmy l']
by blast
have line \(L^{\prime}\) : isLine \(l^{\prime}\) using All' by auto
define \(S\) where \(S: S=l^{\prime} \cap\) regularConeSet \(x\)
```

have $x \operatorname{NotInL}^{\prime}: \neg\left(x \in l^{\prime}\right)$
proof -
\{ assume $x \in l^{\prime}$
hence $\exists y 1 \in l$. (asFunc Akmy) y1 x using l^{\prime} by auto
then obtain $y 1$ where $y 1:(y 1 \in l) \wedge(A k m y y 1=x)$ by
auto
hence Akmy $y 1=A k m y$ using $x A^{\prime} y$ by auto
hence $y 1=y$ using inv A^{\prime} by auto
hence $y \in l$ using $y 1$ by auto
hence False using l by auto
\}
thus?thesis by auto
qed
have p^{\prime} InMeet: $p^{\prime} \in S$
proof -
have $p \in l \wedge\left(\right.$ asFunc Akmy) $p p^{\prime}$ using $p^{\prime} p q$ by auto
hence $\exists p \in l$. (asFunc Akmy) $p p^{\prime}$ by auto
hence $p^{\prime} \in l^{\prime}$ using l^{\prime} by auto
thus ?thesis using $A p S$ by blast
qed
have q^{\prime} InMeet: $q^{\prime} \in S$
proof -
have $q \in l \wedge$ (asFunc Akmy) $q q^{\prime}$ using $q^{\prime} p q$ by auto
hence $\exists q \in l$. (asFunc Akmy) $q q^{\prime}$ by auto
hence $q^{\prime} \in l^{\prime}$ using l^{\prime} by auto
thus ?thesis using $A q S$ by blast
qed
have zInMeet: $z \in S$
proof -
have Akmy $z^{\prime}=z$ using $z^{\prime} A m k x$ by blast
moreover have $z^{\prime} \in l$ using l by auto
ultimately have $z^{\prime} \in l \wedge$ (asFunc Akmy) $z^{\prime} z$ by auto
hence $\exists z^{\prime} \in l$. (asFunc Akmy) $z^{\prime} z$ by auto
hence $z \in l^{\prime}$ using l^{\prime} by auto
thus ?thesis using $z S$ by blast
qed
have finite $S \wedge$ card $S \leq 2$
using x NotInL' lineL' S lemConeLemma1 $\left[\right.$ of $\left.x l^{\prime} S\right]$
by auto

```
moreover have \(S \neq\{ \}\) using zInMeet by auto
ultimately have card \(S=1 \vee \operatorname{card} S=2\)
using card- 0 -eq by fastforce
```

 moreover have card S\not=2
 proof -
 { assume card S=2
 hence p'=z\vee q' = z
 using p}\mp@subsup{p}{}{\prime}\mp@subsup{q}{}{\prime}\mp@subsup{p}{}{\prime}\mathrm{ InMeet q'InMeet zInMeet
 lemThirdElementOfSet2[of p' q}\mp@subsup{q}{}{\prime}Sz
 by auto
 hence False using }\mp@subsup{p}{}{\prime}z\mp@subsup{q}{}{\prime}z\mathrm{ by auto
 }
 thus ?thesis by auto
 qed
 moreover have card S\not=1
 using p'InMeet q'InMeet p'q}\mp@subsup{q}{}{\prime}\mathrm{ card-1-singletonE by force
 ultimately have False by blast
 }
 thus ?thesis by blast
 qed
 thus ?thesis using l2r by blast
 qed
have lprops:l= applyToSet (asFunc Akmy) timeAxis
proof -
define t' where }\mp@subsup{t}{}{\prime}:\mp@subsup{t}{}{\prime}=\mathrm{ applyToSet (asFunc Akmy) timeAxis
define p1 where p1: p1 = (y\inwline k k)
define p2 where p2: p2 = tangentLine timeAxis (wline k k) y
define p3 where p3: p3 = affineApprox Akmy (wvtFunc k m) y
define p4 where p4: p4 = wvtFunc k m y x
define p5 where p5:p5= applyAffineToLine Akmy timeAxis t'
define tgt where tgt: tgt = tangentLine t'(wline m k)x
have pre1: p1 using p1 ykk by auto
have pre2: p2
proof -
have tangentLine l' (wline kk) y using tgtl' s by auto
hence tangentLine timeAxis (wline k k) y using c2 by meson
thus ?thesis using p2 by blast
qed
have pre3: p3 using p3 Akmy by auto
have pre4: p4 using p4 kmyx by auto
have pre5: p5

```
using \(p 5\) aff \(A^{\prime}\) lemTimeAxisIsLine \(t^{\prime}\) Akmy lemAffineOfLineIsLine[of timeAxis Akmy t]
by blast
```

 have \(p 1 \longrightarrow p 2 \longrightarrow p 3 \longrightarrow p 4 \longrightarrow p 5 \longrightarrow t g t\)
 using p1 p2 p3 p4 p5 tgt
 lemPresentation[of \(y k k\) timeAxis \(m\) Akmy \(x t^{\prime}\)]
 by fast
 hence tl t'mkx using tgt pre1 pre2 pre3 pre4 pre5 by auto
 moreover have tl \(l m k x\) using ass2 by auto
 moreover have affineApprox \(A\) (wvtFunc \(m k\)) \(x\) using \(A\) by auto
 moreover have wvtFunc \(m k x y\) using mkxy by auto
 moreover have \(x \in\) wline \(m k\) using ass1 by auto
 ultimately have \(t^{\prime}=l\)
 using lemTangentLineUnique[of \(\left.x m k t^{\prime} l A y\right]\)
 by fast
 thus ?thesis using \(t^{\prime}\) by blast
 qed

```
\(\{\) fix \(p y\) assume \(p y\) : onTimeAxis \(p y \wedge p y \neq y\)
have pyInsideCone: insideRegularCone y py proof -
have pyOnAxis: onLine py timeAxis using py lemTimeAxisIsLine by blast
hence pyprops: timeAxis \(=\) lineJoining y py
using py yOnAxis lemLineAndPoints[of y py timeAxis] by auto
define \(d\) where \(d: d=(y \ominus p y)\)
hence \(\exists\) py \(y .(p y \neq y) \wedge\) (onLine py timeAxis)
\(\wedge(\) onLine \(y\) timeAxis \() \wedge(d=(y \ominus p y))\)
using py pyOnAxis yOnAxis by blast
hence \(d d r t n: d \in d r t n\) timeAxis by simp
have scomp0: sComponent \(d=\) sOrigin using \(d\) py yOnAxis by auto
have sf: slopeFinite py \(y\) using \(p y y O n A x i s\) by force
hence sloper py \(y=((-1) \otimes((1 /(\) tval py - tval \(y)) \otimes d))\) using \(d\) by auto
hence velocityJoining py \(y=\) sOrigin using scomp0 by simp
hence velocityJoining origin \(d=s\) Origin using \(d\) by auto
hence \((d \in d r t n\) timeAxis \() \wedge(\) sOrigin \(=\) velocityJoining origin
d) using ddrtn by auto
hence \(\exists d .(d \in d r t n\) timeAxis \() \wedge(\) sOrigin \(=\) velocityJoining origin d)
by blast
hence (sOrigin \(\in\) lineVelocity timeAxis) by auto
hence \((\) sOrigin \(\in\) lineVelocity timeAxis \() \wedge(\) sNorm2 sOrigin \(<\) 1)
by auto
hence \(\exists v .(v \in\) lineVelocity timeAxis \() \wedge(s N o r m 2 v<1)\)
by blast
thus ?thesis using pyprops sf by auto
qed
define \(p x\) where \(p x: p x=\) Akmy \(p y\)
have insideRegularCone \(x p x\)
proof -
have insideRegularCone y py using pyInsideCone by blast
moreover have affInvertible Akmy using aff \(A^{\prime}\) inv \(A^{\prime}\) by blast
moreover have \(x=A k m y\) y by ( \(\operatorname{simp}\) add: \(x A^{\prime} y\) )
moreover have \(p x=A k m y\) py by (simp add: \(p x\) )
moreover have regularConeSet \(x=\) applyToSet (asFunc Akmy) (regularConeSet y)
using \(p 35 a\) Regular by simp
ultimately show ?thesis
using lemInsideRegularConeUnderAffInvertible[of Akmy y py] by auto
qed
moreover have \(x \neq p x\)
proof -
\{ assume xispx: \(x=p x\)
hence False using xispx inv \(A^{\prime} p x x A^{\prime} y\) py by auto \}
thus ?thesis by auto
qed
ultimately have insideRegularCone \(x(\) Akmy py) \(\wedge x \neq(\) Akmy py)
using \(p x\) by blast
\}
hence result: \(\forall p y\). (onTimeAxis \(p y \wedge p y \neq y)\)
\(\longrightarrow\) insideRegularCone \(x(\) Akmy py \() \wedge x \neq(\) Akmy py)
by blast
obtain \(p\) where \(p:(p \neq x) \wedge(p \in l)\) using assms(4) by blast
have \(l=\) applyToSet (asFunc Akmy) timeAxis using lprops by simp
hence \(p \in\{p . \exists p y \in\) timeAxis . (asFunc Akmy) py \(p\}\) using \(p\) by auto
then obtain \(p y\) where \(p y: p y \in\) timeAxis \(\wedge\) (asFunc Akmy) py p by blast
hence onTimeAxis py by blast
moreover have \(p y \neq y\)
proof -
\{ assume \(p y=y\)
hence False using \(p y p\) by (simp add: \(x A^{\prime} y\) )
\}
thus ?thesis by auto
qed
ultimately have onTimeAxis \(p y \wedge p y \neq y\) by blast
hence inside: insideRegularCone x \(p \wedge x \neq p\) using result py by auto
have onl: onLine x \(l \wedge\) onLine p \(l\) using ass2 using \(p\) by blast
have pnotx: \(p \neq x\) using inside by auto
hence xnotp: \(x \neq p\) by simp
hence \(l j: l=\) lineJoining \(x p\)
using lemLineAndPoints[of \(x\) pl] xnotp onl by auto
hence lineSlopeFinite \(l\) using onl inside by blast
moreover have (sNorm2 \(v<1\) )
proof -
have \((\exists v \in\) lineVelocity \(l\). sNorm2 \(v<1)\) using \(l j\) inside by auto
then obtain \(u\) where \(u: u \in\) lineVelocity \(l \wedge\) sNorm2 \(u<1\) by blast
hence \(u=v\)
using lemFiniteLineVelocityUnique[of ulv] ass3 calculation by presburger
thus ?thesis using \(u\) by auto
qed
ultimately have (lineSlopeFinite \(l) \wedge(s N o r m 2 v<1)\) by auto \}
thus ?thesis by auto
qed
end
end

\section*{References}
[1] M. Stannett and I. Németi. Using Isabelle/HOL to verify first-order relativity theory. Journal of Automated Reasoning, 52(4):361-378, 2014.
[2] M. Stannett and I. Németi. No faster-than-light observers. Archive of Formal Proofs, April 2016. https://isa-afp.org/entries/No FTL_observers.html, Formal proof development.```

