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Resolving Kirchhoff’s laws for parallel Li-ion battery

pack state-estimators
Ross Drummond, Luis D. Couto and Dong Zhang

Abstract—A state-space model for Li-ion battery packs with
parallel connected cells is introduced. The key feature of the
model is an explicit solution to Kirchhoff’s laws for parallel
connected packs, which expresses the branch currents directly in
terms of the model’s states, applied current and cell resistances.
This avoids the need to solve these equations numerically. To
illustrate the potential of the proposed model for pack-level
control and estimation, a method to bound the error of a
state-estimator is introduced and the modelling framework is
generalised to a class of electrochemical models. It is hoped
that the insight brought by this model formulation will allow
the wealth of results developed for series connected packs to be
applied to those with parallel connections.

Index Terms—Li-ion battery packs, parallel connections,
nonlinear state-estimators.

Introduction

To address ever increasing energy and power demands,
Li-ion battery pack sizes are growing rapidly, especially for
large-scale applications such as electric vehicles and grid
storage. In some parts of the world, it is now common to
see electric vehicles powered by thousands of cells, like the
Tesla Model S [3], and large batteries, like the planned
50 MW hybrid battery pack to be run near Oxford by
Pivot Power [1], are now coming online to support the
grid. The sheer number of cells in large battery packs
introduces several challenges that need to be overcome
such as scalability, cell-to-cell variations, and resilience to
component failure [15]. This is especially true for the de-
sign of the battery management system (BMS), however,
as pack sizes continue to grow, ensuring that the BMS
algorithms remain both accurate and scalable enough to
be implemented on embedded hardware is becoming ever
more challenging, as explored in [12] within the context of
the battery model identification problem for example.
Battery models are the foundations for any advanced

BMS and to perform at its best, it is desirable for the BMS
to have information about every cell in the pack. This has
motivated significant efforts to develop models for whole
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battery packs. However, whilst most large battery packs
used in practice are mixtures of both parallel and series
connections, most studies on pack level modelling and
BMS design are restricted to just series connections, for
example [17], [23]. Focusing explicitly on series connected
cells greatly simplifies the problem, as every cell in series
carries the same current but neglects the diverse spectrum
of pack configurations seen in practice.

Whilst including parallel connections into the pack can
bring many benefits, such as increased reliability [3] and
natural self-balancing [23], modelling and supervising par-
allel connected cells has proven to be more challenging
than cells in series. This is primarily because the branch
currents passing through each parallel branch have to be
computed at each time instant in the models. The branch
currents are obtained by computing solutions to Kirch-
hoff’s laws, making the pack models differential algebraic
equation models (DAEs). DAE models can be significantly
more complex than those described by ordinary differential
equations (ODEs), and often require specialised solvers
with short step-sizes to compute valid solutions [19]. As
such, most modelling studies on parallel packs numerically
compute solutions to Kirchhoff’s laws before projecting the
state of the index-1 DAE down into an ODE. The fact
that parallel pack models are index-1 DAEs is shown here
from the unique solution to Kirchoff’s laws. Examples of
this numerical approach include the iterative scheme of
[6], the frequency domain approximations of [5] and the
numerical matrix inversion methods of studies like [22] and
[4] which was augmented with a thermal model in [14]. In
contrast, this work obtains an ODE model by providing
an analytical solution to Kirchhoff’s laws for n-cells con-
nected parallel. Thus, the main result of this work can be
thought of as providing an analytical expression for the
parallel pack branch currents in terms of the various cell
resistances and model states, negating the need to solve for
these currents numerically as done in benchmark studies
like (20) of [22] and (15) of [4]. This work then follows
along a recent direction in the battery pack modelling
literature, including the cell merging approach of [9], and
generalises similar efforts like [11], [13] by relaxing some
of the restrictive modelling assumptions, like the linearity
of the open cell voltage [11], as well as providing a more
involved model formulation that additionally includes the
important state-of-charge dynamics than [13]. With a
state-space formulation for the parallel connected Li-ion
battery pack in hand, the state-estimator design problem
can then be addressed, with simple gain conditions given
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in Section III.
Contribution: To be specific, the main contribution

of this paper is to introduce a state-space model for
parallel connected packs that is fully described by an
ordinary differential equation explicitly parameterised by
the various resistances and capacitances of the pack’s
cells. To achieve this, an analytic solution to the algebraic
equation of Kirchhoff’s laws is stated (see Section II). With
this equation in hand, the parallel pack model can then
be condensed into a state-space form with an appealing
structure that can be exploited for analysis. To illustrate
this point, it is shown how the approach can be generalised
to a class of electrochemical models and how the state-
estimator error for the nonlinear pack dynamics can be
bounded.
The results presented here are in many ways an ex-

tension of the recent results of [22] from some of the
authors but with a focus towards gaining insight about
the underlying DAE pack model dynamics. As just one
illustration of the potential of this approach, by solving
the DAE models’ algebraic equations it means that the
estimator design conditions of [22, Theorem 3] can now
be posed as algebraic inequalities of the pack model pa-
rameters, instead of the general state-space formulation
posed in [22, Theorem 3]. Additionally, the results show
how to extend the parallel pack model to the case when
the cell dynamics are described by a certain class of
electrochemical models and how to optimise the worst-case
bound for the state-estimator error. It is hoped that the
analysis presented in this paper will lead to new results
in other applications where parallel pack models are used,
for example in determining the weakest cells in the packs,
detecting thermal runaway and enabling whole pack state-
estimators for large Li-ion battery packs.
Notation: If a square matrix A of dimension n is positive

definite then A ∈ S
n
≻0 and if it is negative definite then

A ∈ S
n
≺0. More generally, if a matrix A is negative-definite

then A ≺ 0. If A is a non-negative diagonal matrix then
A ∈ D

n
+. The identity matrix of dimension n is denoted

In and the matrix of zeros of dimension m× n is denoted
0n×m. A signal x is said to belong to a Hilbert space

x ∈ L2 if the norm ‖x‖2 =
√

∫∞

0
x(t)2 dt is bounded.

I. DAE model for a parallel connected pack

In this section, the equations of a DAE model for Li-ion
batteries connected in parallel are briefly described, with
the equations now standard. In Section II, this DAE model
is converted into an ODE by resolving the underlying
algebraic equation for the branch currents.

A. Parallel pack model equations

Figure 1 shows the set-up of the parallel connected Li-
ion battery pack to be modelled. While this work focuses
exclusively on parallel connected packs, it is expected that,
after some minor reformulation, the presented results may
be readily generalised to other pack configurations that

Current I (t)

Current I (t)

Cell 1 Cell 2 Cell 3 Cell n

Figure 1: A Li-ion battery pack containing n cells con-
nected in parallel.
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Figure 2: Equivalent circuit model for the battery dynam-
ics. Here, rk is the kth cell’s series resistance, OCV(zk) is
its open circuit voltage and (Rℓ

k, C
ℓ
k) with ℓ = 1, . . . , np

denote the ℓth RC-pair.

combine cells connected in series and parallel, following
the results of [10] and others.

Each cell is assumed to be described by the equivalent
circuit model of Figure 2, composed of a nonlinear voltage
source (for the open circuit voltage which maps the state-
of-charge), np RC pairs and the series resistance rk. The
RC pairs approximate solid-state diffusion within the ac-
tive material particles and lead to notably simpler dynam-
ics than the fractional systems associated with Warburg
elements. The dynamics of the kth cell in the pack with
this circuit model are

ẋk(t) = Ākxk(t) + B̄kik(t), k = 1, . . . , n, (1a)

vk(t) =

np
∑

ℓ=1

wℓ
k(t) + OCV(zk(t)) + rkik(t), (1b)

where xk ∈ R
nk = [zk

T , wk
T ]T is the state-space,

zk(t) ∈ [0, 1] is the state-of-charge of each cell and
wk(t) ∈ R

np = [wk
1(t), . . . , w

np

k (t)]T is the relaxation
voltage of cell k composed of elements wℓ

k(t)- the voltage
across the ℓth-RC pair. Throughout, it is assumed that the
state dimension of each cell is the same, as in nk = np +
1, ∀k = 1, . . . , n, and so the state dimension of the whole
pack is N = nkn. The cell voltages vk(t) (the measured
signal) are the sums of the relaxation voltages wk(t), the
open circuit voltage OCV(zk(t)) and a resistance term
from rk. Because the cells are connected in parallel, each
cell voltage is the same, as in vk(t) = v(t) ∀k = 1, . . . , n.
The state space matrices in (1) are

Āk =

[

0 0
0 −τk

]

, B̄k =

[ 1
Qk
1
Ck

]

, (2)

where Qk is the battery capacity, τk =
diag(1/(R1

kC
1
k), . . . , 1/(R

np

k C
np

k )) ∈ D
np

+ contains the
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time constants and 1/Ck = [1/C1
k , . . . , 1/C

np

k ]T ∈ R
np

with Cj
k the capacitance of the jth RC-pair in cell k.

What remains is to compute the branch current ik going
into each cell. This is done by applying Kirchhoff’s laws
to the circuit model (1). Namely, Kirchhoff’s voltage law
implies for cells j, k ∈ {1, 2, . . . , n} that

OCV(zj) +

np
∑

ℓ=1

wℓ
j + rjij = OCV(zk) +

np
∑

ℓ=1

wℓ
k + rkik,

(3a)

and the current law states that the sum of the currents
going into each branch ik(t) equals the pack current I(t)

n
∑

k=1

ik(t) = I(t). (3b)

In this work, the convention that a positive current
charges the cell is adopted.

B. Differential algebraic equation parallel pack model

When combined, the dynamic circuit equations (1) and
the algebraic equations for Kirchhoff’s laws (3) can be
collected into a single DAE system [22],
[

IN 0N×n

0n×N 0n×n

] [

ẋ(t)

i̇(t)

]

=

[

A11 A12

A21 A22

] [

x(t)
i(t)

]

+

[

0N×1

φ(t)

]

(4)

where A11 = diag(Ā1, Ā2, . . . , Ān), A12 =
diag(B̄1, B̄2, . . . , B̄n), S =

[

0 −1np

T
]

,

A22 =

















r1 −r2 0 . . . 0

r1 0 −r3
. . .

...
...

...
. . .

. . . 0
r1 0 . . . 0 −rn
1 1 1 . . . 1

















, (5a)

A21 =

















0 1np

T S 01×np . . . 01×np

0 1np

T
01×np S

. . .
...

...
...

...
. . .

. . . 01×np

0 1np

T
01×np . . . 01×np S

0 0 01×np . . . 01×np 01×np

















, (5b)

and

φ(t) =











OCV(z1)−OCV(z2)
...

OCV(z1)−OCV(zn)
I(t)











. (5c)

The variables with a time derivative
x(t) = [x1(t)

T , . . . , xn(t)
T ]T are known as the

differential or state-space variables whilst the branch
current vector i(t) = [i1(t), . . . , in(t)]

T is the model’s
algebraic variable. The branch currents are obtained by
solving

i(t) = −A22
−1 (A21x(t) + φ(t)) , (6)

given that the matrix A22 is invertible (as shown in Section
II). Substituting the expression for the currents (6) into
the DAE model (4) reduces it to an ODE

ẋ(t) = (A11 −A12A22
−1A21)x(t)−A12A22

−1φ(t). (7)

II. Resolving the algebraic equation

The main results of this paper are contained in this
section where an algebraic solution for the current going
into each branch of the parallel circuit is obtained. In this
way, the parallel connected pack model of Section I can be
fully characterised as an algebraic expression of the pack
cell resistances and the model states x(t).

A. The matrix inverse A22
−1

The main stumbling block behind resolving the alge-
braic equation (6) for the branch currents is determining
the matrix inverse A22

−1. In the following theorem, an
analytic expression for this matrix inverse is stated.
Theorem 1: Consider the matrix A22 in (5a) with posi-

tive resistances ri > 0 for i = 1, . . . , n. Then A22
−1 = m

where m is a matrix composed of elements mj,k satisfying

mk,n =
1

rk

n
∑

ℓ=1

1

rℓ

, k = 1, . . . , n, (8a)

mk,j =
1

rkrj+1

(

n
∑

ℓ=1

1

rℓ

)−1

, j = 1, . . . , n− 1, (8b)

& k 6= j + 1,

mk,k−1 =
1

rk2

(

n
∑

ℓ=1

1

rℓ

)−1

−
1

rk
, k = 2, 3, . . . , n. (8c)

Proof. The problem can be cast as finding the unique
solution to

A22m = In, (9)

whose expanded form is given in (10) at the top of the
following page.
Multiplying through by the row of 1’s in A22 gives the

following relations for the column sums of m

n
∑

ℓ=1

mℓ,k = 0, ∀k 6= n, (11a)

n
∑

ℓ=1

mℓ,n = 1, (11b)

and, similarly, multiplying through by the other rows
implies, for k = 2, . . . n,

r1m1,j = rkmk,j , j = 1, . . . , n, j 6= k − 1, (12a)

r1m1,k−1 = 1 + rkmk,k−1. (12b)

Relating (12a) for different j and k implies

mℓ,j =
rk
rℓ

mk,j , j = 1, . . . , n, k 6= j + 1, ℓ 6= j + 1,

& k = 2, . . . , n, ℓ = 2, . . . , n. (13)

From these relations, the nth column of m can be
extracted. Starting from (11b) and substituting in (13)

n
∑

ℓ=1

rk
rℓ

mk,n = 1, k = 1, 2, , . . . , n, (14)

3



















r1 −r2 0 . . . 0

r1 0 −r3
. . .

...
...

...
. . .

. . . 0
r1 0 . . . 0 −rn
1 1 . . . 1 1































m1,1 m1,2 . . . . . . m1,n

m2,1 m2,2 . . . . . . m2,n

...
...

...
...

...
mn−1,1 mn−1,2 . . . . . . mn−1,n

mn,1 mn,2 . . . . . . mn,n















=



















1 0 . . . 0 0

0 1
. . .

. . . 0
...

. . .
. . .

. . .
...

0
. . .

. . . 1 0
0 0 . . . 0 1



















(10)

gives the the nth column of m,

mk,n =
1

rk

n
∑

ℓ=1

1

rℓ

, k = 1, 2, . . . , n. (15)

To compute the remaining elements of m, it is noted
that (12b) implies

mk,k−1 =
r1m1,k−1 − 1

rk
, k = 2, 3, . . . , n. (16)

Substituting (12a) and (16) into (11a) gives for k =
2, 3, . . . , n

n
∑

ℓ=1,ℓ 6=k+1

r1
rℓ
m1,k−1 +

r1m1,k−1 − 1

rk
= 0. (17)

In other words,

m1,k−1 =

(

n
∑

ℓ=1

1

rℓ

)−1
1

r1rk
, k = 2, 3, . . . , n. (18)

The remaining elements of m are then obtained from (12a)
and (16). �

B. State-space model

With the matrix A22
−1 inverse defined, an explicit

solution for the ODE model (7) can be stated. To arrive
at this statement, several matrices and vectors first have
to be established. Defining the vector of open-circuit and
relaxation voltages as

OCV(z(t)) =







OCV(z1(t))
...

OCV(zn(t))






, wΣ(t) =







∑np

ℓ=1 w
ℓ
1

...
∑np

ℓ=1 w
ℓ
n






,

(19)

then the solution to the branch current equation (6) can
be expressed as

i(t) = Πv(OCV(z(t)) + wΣ(t)) + ΠII(t) (20)

where

Πv = −







∑n−1
i=1 m1,i −m1,1 −m1,2 . . . −m1,n−1

...
...

...
...

...
∑n−1

i=1 mi,n −mn,1 −mn,2 . . . −mn,n−1






,

(21a)

ΠI = −
[

m1,n, . . . , mn−1,n, mn,n

]T
. (21b)

Figure 3: Domain of the DFN electrochemical model.
Also illustrated is the charge transfer mechanism and
ionic/electronic current distributions of the model.

Next, the vector of concatenated voltages is defined

v̌(t) = 1nv(t) =







∑np

ℓ=1 w
ℓ
1(t) + OCV(z1(t)) + r1i1(t)

...
∑np

ℓ=1 w
ℓ
n(t) + OCV(zn(t)) + rnin(t)






.

(22)

Using the substitution (20), this voltage vector of repeat-
ing elements can be formulated as

v̌(t) = Cx(t) +DOCVOCV(z(t)) +DII(t), (23)

where C = (In + rΠv)W with r = diag(rk), k =
1, . . . , n, W ∈ R

n×N is defined by wΣ(t) = Wx(t),
DOCV = In + rΠv and DI = rΠI .
With these matrices defined, the dynamics of (7) can be

written as

ẋ(t) = Ax(t) +BOCVOCV(z(t)) +BII(t), (24)

where A = A11 − A12A22
−1A21 with A12A22

−1A21 =
B̄ΠvW , BOCV = B̄Πv and BI = B̄ΠI where B̄ = A12.
Two key features of the parallel equivalent circuit pack

model are i) it is an ODE whose vector field is written
explicitly in terms of the circuit parameters (the various re-
sistance and capacitances), and ii) the model nonlinearities
(from the open circuit voltages OCVs) enter in an affine
manner. With the added assumption that these OCVs are
slope-restricted, then this nonlinear circuit model can be
thought of as a Lurie system [8], [21], a class of nonlinear
systems whose analysis is tractable.

C. Extension to electrochemical models

Whilst the results so far have focussed on the simple
RC circuit models of Figure 2, the method of solving for
the branch currents can be generalised to more complex
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electrochemical battery models with linear series resis-
tances, such as the Doyle-Fuller-Newman (DFN) model
[7]. To show this, consider the cell set-up of Figure 3
with the voltage defined as the difference in the solid-
phase potential φs(y, t) at either current collector- with
spatial variable y ∈ [0, L] and the solid-phase composed
of the active material and conducting carbon. By defining
the electrode potential φel(y, t) = φs(y, t) − φe(y, t) as
the difference between the solid-phase potential and that
of the electrolyte φe(y, t), this voltage expression can be
expressed as

v(t) = φs(L, t)− φs(0, t) + rcti(t), (25)

= φel(L, t) +

∫

Ω+

el

∂φe(y, t)

∂y
dy +

∫

Ωsep

∂φe(y, t)

∂y
dy

+

∫

Ω−

el

∂φe(y, t)

∂y
dy − φel(0, t) + rcti(t), (26)

where Ω+
el is the domain of the positive electrode, Ω−

el is
that of the negative electrode, Ωsep is the domain of the
separator and rct is the contact resistance.
Within the framework of the DFN electrochemical

model [7], in each electrode, these potentials are obtained
by solving, for cell k = 1, , . . . , n,

ie(y, t) = κ±(y, t)
∂φe(y, t)

∂y
+ θ±(y, t)

∂ ln ce(y, t)

∂y
, (27a)

is(y, t) = σ±(y, t)
∂φs(y, t)

∂y
, (27b)

ik(t) = is(y, t) + ie(y, t), (27c)

where (27a) is Ohm’s law for the ionic current ie(y, t),
(27b) is Ohm’s law for the electronic current is(y, t)
and (27c) enforces current conservation. For the sake of
simplifying the notation, the subscript k identifying the
equations for cell k was dropped from the electrochemical
terms in these equations. Furthermore, here, σ±(y, t) is the
electronic conductivity, κ±(y, t) is the ionic conductivity,
θ±(y, t) accounts for the contribution to the ionic current
from the build-up of bulk electrolyte and ± indicates
whether the domain is the positive or negative electrode.
Manipulating the current conservation equation (27c)

ik(t) = σ±(y, t)
∂φel(y, t)

∂y
+ (κ±(y, t) + σ±(y, t))

∂φe(y, t)

∂y

+ θ±(y, t)
∂ ln ce(y, t)

∂y
(28)

allows the electrolyte potential gradient in each electrode
to be expressed as

∂φe(y, t)

∂y
=

ik(t)− σ±(y, t)∂φel(y,t)
∂y

− θ±(y, t)∂ ln ce(y,t)
∂y

κ±(y, t) + σ±(y, t)
.

(29)

Similarly, in the separator, where there is no electronic
current as electrons do not flow across it, then

∂φe(y, t)

∂y
=

ik(t)− θsep(y, t)∂ ln ce(y,t)
∂y

κsep(y, t)
(30)

where superscript sep indicates parameters for the separa-
tor.

Plugging these relations back into (26) gives the cell
voltage expression

vk(t) = fk(φel(y, t), ce(y, t), t) + rk ik(t), (31)

where fk(φel(y, t), ce(y, t), t) is an integral function taking
the place of the OCV(zk)+

∑np

ℓ=1 w
ℓ
k term of the equivalent

circuit voltage (1b) and

rk =

∫

Ω+

el

1

κ+(y, t) + σ+(y, t)
dy +

∫

Ωsep

1

κsep(y, t)
dy

+

∫

Ω−

el

1

κ−(y, t) + σ−(y, t)
dy + rct (32)

is the series resistance of the cell. To ensure that the
DFN model’s voltage (31) has no nonlinear resistance
term emerging from resolving the algebraic variables,
fk(φel(y, t), ce(y, t), t) is imposed to be a function of the
model’s differential states only. Applying this condition
ensures the numerical solver for the model simulation
can evaluate (31), and hence Kirchoff’s laws, directly at
each time step. Since the branch currents enter the DFN
model voltage via rkik(t), just like in the equivalent circuit
voltage (1b), the same methodology of computing the
branch currents can be applied as in Sections II-A and
II-B. To express (31) in terms of differential variables, it
is necessary to obtain a time derivative of the electrode
potential φel, as the bulk electrolyte ce is a differential
state since it is driven by diffusion [7]. Electrode potential
dynamics are included within DFN model by accounting
for fast double-layer capacitance effects [8], [18], converting
the divergence equation of the DFN model into

C±
dl

∂φel(y, t)

∂t
=

∂ie(y, t)

∂y
− a±s Fj(y, t) (33)

where C±
dl is the specific capacitance, a±s is the reacting

surface area, F is Faraday’s constant, j(y, t) are Butler-
Volmer reaction kinetics and the ionic current flux is
expressed in terms of the differential variables from (27a)
and (29).

With the voltage expression (31) in hand, and using
the simplified notation fk(.) = fk(φel(y, t), ce(y, t), t) for
the model states’ contribution to the voltage, Kirchoff’s
voltage law from (3a) becomes

fj(.) + rjij(t) = fk(.) + rkik(t) (34)

for cells j, k ∈ {1, . . . , n}. Notice the similarity of this
expression to (3a), with a series resistance multiplying
the current and another (nonlinear) term accounting for
the contribution from the models’ differential states. By
having a similar structure, the same reasoning as used in
Theorem 1 can be applied to compute the branch currents
for the DFN model, giving

i(t) = Πvf(.) + ΠII(t) (35)

where f(.) = [f1(.), . . . , fn(.)]
T and the matrices Πv and

ΠI have the same structure as (21) but are built from the
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resistances of (32). The current distribution across n DFN
electrochemical models in parallel can then be computed
from the model states ce and φel and applied current I(t).
In the above, the fact that the DFN model incorporates

the cell’s nonlinear resistance within the Butler-Volmer
reactions kinetics, instead of the series resistance rk, was
exploited. However, this feature does not hold for all
electrochemical models, most notably it does not hold for
the single particle model [20] where spatially averaged- and
hence linear- reaction kinetics are used which leads to a
nonlinear series resistance from the overpotential. Approx-
imate solutions obtained after linearising this nonlinear
resistance may then have to be considered for computing
the parallel branch currents with such models.

III. State estimator error bounds

Returning to the equivalent circuit pack model of (1),
the value of the proposed method for evaluating pack-level
current distributions illustrated by introducing a method
to bound the error of a state-estimator. The pack is taken
to be subject to the nonlinear dynamics of (24) and
external disturbances on its current dI ∈ L2 and voltage
dv ∈ L2. Current disturbances dI(t) are assumed instead
of additive disturbances acting on the state vector field
to ensure there is no violation of Kirchhoff’s laws at any
time. Defining the perturbed current as Ĩ(t) = I(t)+dI(t)
then the battery model plant becomes

ẋ(t) = Ax(t) +BOCVOCV(z(t)) +BI Ĩ(t), (36a)

v̌(t) = Cx(t) +DOCVOCV(z) +DI Ĩ(t) + 1ndv(t).
(36b)

The following state-estimator is proposed for this system

˙̂x(t) = Ax̂(t) +BOCVOCV(ẑ(t)) +BII(t)−K(v̌(t)− ˇ̂v(t))
(37)

with x̂(t) = [ẑk(t)
T , ŵk(t)

T ]T , k = 1, . . . , n being the
estimated states composed of the estimated state-of-charge
ẑk(t) and relaxation voltages ŵk(t), ˇ̂v(t) is the predicted
voltage, îk(t) are the estimator’s currents, K ∈ R

n×N is
the known estimator gain and

ˇ̂v(t) =







v̂(t)
...

v̂(t)






=







∑np

ℓ=1 ŵ
ℓ
1(t) + OCV(ẑ1(t)) + r1î1(t)

...
∑np

ℓ=1 ŵ
ℓ
n(t) + OCV(ẑn(t)) + rnîn(t)






,

(38a)

= Cx̂(t) +DOCVOCV(ẑ(t)) +DII(t), (38b)

the voltage concatenation.
Defining the error between the plant (36) and the state

estimator (37) as e(t) = x(t)−x̂(t) then the error dynamics
can be written

ė(t) = Ae(t) +BOCV∆OCV(t) +K(v̌(t)− ˇ̂v(t)), (39)

where ∆OCV is the open circuit voltage error

∆OCV(t) = OCV(z(t))−OCV(ẑ(t)). (40)

Using the voltage definitions of the plant (36b) and the
estimator (38b), these dynamics can be expressed as

ė(t) = (A+KC)e(t) + (BOCV −KDOCV)∆OCV(t)

+KDIdI(t) +K1ndv(t), (41a)

= Aee(t) +Be,OCV∆OCV(t) +Be,IdI(t) +Be,vdv(t).
(41b)

With these dynamics, the state-estimator error can
be bounded by solving the following semi-definite pro-
gramme, a class of convex optimisation problems for which
many solvers now exist.
Proposition 1: If there exists P ∈ S

N
≻0, γ =

diag(γI , γv) ∈ D
2
+, τ ∈ D

n
+, matrices

M =





PAe +
1
2IN PBe,OCV P [Be,I , Be,v]

0n×2 0n×n 0n×N

02×N 02×n − 1
2γ



 , (42a)

Ω =





−δδZT τZ 1
2 (δ + δ)ZT τ 0N×2

1
2 (δ + δ)τZ −τ 0n×2

02×N 02×n 02×2



 , (42b)

where Z ∈ R
n×N is defined by z(t) = [z1(t), . . . , zn(t)]

T =
Zx(t) and δ, δ are the OCV slope bounds

dOCV(zk(t))

dzk(t)
= δ ∈ [δ, δ], δ > 0, ∀zk(t) ∈ [z, z] (43)

which solves

min V (e(0)) + γI‖dI‖
2
2 + γv‖dv‖

2
2, (44a)

subject to M +MT +Ω ≺ 0, (44b)

then the estimator error is bounded by

‖e‖22 ≤ V (e(0)) + γI‖dI‖
2
2 + γv‖dv‖

2
2 (45)

for all dI , dv ∈ L2 where V (e(t)) = e(t)TPe(t).
Proof. Define ξ(t) = [e(t)T , ∆OCV(t)T , dI(t), dv(t)]

T

and note that

ξT (t)Ωξ(t) =
(

δZe(t)−OCV(t)
)T

τ (OCV(t)− δZe(t)) ≥ 0,
(46)

from the OCV slope-bounds of (43). Consider the storage
function V (e(t)) = e(t)TPe(t) and note that multiplying
(44b) on the left by ξ(t)T and on the right by ξ(t) gives

d V (e(t))

dt
+ e(t)T e(t) + ξTΩξ − γIdI

2 − γvdv
2 ≤ 0. (47)

Applying the S-procedure [21] and exploiting the positivity
of the slope-restriction inequality (46), then (47) implies

d V (e(t))

dt
+ e(t)T e(t) ≤ γIdI

2 + γvdv
2. (48)

Integrating from t = 0 to t = T gives

‖e‖22 ≤ V (e(0))− V (e(T )) + γI‖dI‖
2
2 + γv‖dv‖

2
2 (49)

with the bound (45) then holding since V (e(T )) ≥ 0. �

Remark 1: One approach to set the estimator gain K
is to define it as the Kalman gain of a linearised point of
the error dynamics, as widely adopted in practice and as
considered in the numerical simulations of Section IV. ⋆
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k = 1 k = 2 k = 3

ak 5.6495 2.9993 6.903×103

bk 0.4 0.4 4

ck 0.4922 2.6829 3.2585

ζk 0.1 0.9 //

Table I: Parameters for the OCV curve in (51).

Remark 2: Since Propositions 1 is derived from results
on absolute stability theory and Lurie systems [21], it is
robust in the sense that the bound holds for all OCV
curves satisfying the slope restriction of (51). Robustness
to un-modelled dynamics may also be achieved in a similar
way, for example, by representing the ℓth RC-pair time
constants as

1

Rℓ
kC

ℓ
k

=
1

R̄ℓ
kC̄

ℓ
k

+∆ℓ
RC(t) (50)

where ∆ℓ
RC(t) ∈ [0,∆

ℓ

RC ] is a norm bounded disturbance
and R̄ℓ

kC̄
ℓ
k are the nominal values. The uncertainty in

∆ℓ
RC(t) could then be incorporated within the analysis

using a sector-type inequality as adopted for the OCV
slope-restriction of (43). ⋆

IV. Simulations

The presnted results are now evaluated through numer-
ical simulations of a parallel connected pack. Consider
2.1Ah Li-ion cells (LiFePO4 cathodes and graphite anodes)
connected in parallel such that, for cells k = 1, 2, . . . , n,
the capacitances are Qk = 2.1 × 3600, Ck = 2250 and
the resistances are Gaussian, as in rk ∼ N (0.0175, 0.001),
Rk ∼ N (0.01, 0.001). The mean parameter values were
obtained from [16] by assuming a one RC-pair model
(np = 1) and isothermal conditions at 25◦C. The OCV for
this cell was also measured in [16] using a C/20 cycling
test and is reproduced in Figure 4a. The following fit is
proposed for this OCV curve

OCV(zk) =











a1zk
b1 + c1, 0 ≤ zk,≤ ζ1,

a2(zk − ζ1)
b2 + c2, ζ1 < zk < ζ2,

a3(zk − ζ2)
b3 + c3, ζ2 ≤ zk ≤ 1,

(51)

which is compared to the measured data of [16] in Figure
4a using the parameters of Table I, giving a reasonable fit.
Clearly, since ak > 0 and bk > 0 for each k = 1, 2, 3, this
OCV curve is a monotonic function of the state-of-charge
zk and so the OCV slope restriction assumption of (51)
holds.
The parallel pack model was driven by a scaled version

of the combined Artemis drive cycle (CADC) [2] shown
in Figure 4b. In the following, this current is referred
to as Idrive(t). The initial conditions of the plant were
wk(0) = 0, zk(0) = 0.1 for k = 1, 2, . . . , n. Figure 4c
shows the deviation in the branch current of the first
parallel branch from the average when n = 3, highlighting
the heterogeneous charging of the cells in the pack. The
variation between the branch currents in this simulation
suggests that, if the cells’ parameters vary, and as cells age

any variation should amplify, then they will carry different
currents which could lead to thermal and degradation
hotspots in the pack.

Figure 5 examines the performance of a state-estimator
for the parallel pack model driven by the drive cycle
current. Two situations were considered, one where the
estimator gain K was the Kalman gain linearised around
a state-of-charge of 0.5 (the simulations were found to be
quite robust to this linearisation point) and the other being
the standard implementation of the extended Kalman
filter (EKF). For the simulations, the current and voltage
disturbances were Gaussian dI(t) = N (0, n), dv(t) =
N (0, 1). Simulations for various different pack sizes were
considered, with n = 3, 5, 10, 15, 20. To normalise the
simulations against the number of cells in the pack, the
applied current was scaled by I(t) = n × Idrive(t). The
initial conditions of the estimator were ŵ(0) = 0 and the
initial state-of-charge error was set to be the unique value
such that its square equalled 0.1 but its sum equalled zero,
as in

n
∑

k=1

(zk(0)− ẑk(0))
2 = 0.1,

n
∑

k=1

zk(0)− ẑk(0) = 0. (52)

The performance of the state-estimator measured by the
2-norm of the error is shown in Figure 5. With the normali-
sations discussed above, the exponential convergence rates
of the estimators were found to be roughly independent of
the number of cells in the pack, but the steady-state error
generally increased with the number of cells, although the
error was small for all packs considered. Moreover, no
significant performance benefits were observed with the
EKF, which implies that strong justifications have to be
made for implementing an EKF over a standard Kalman
filter as the EKF was found to be more computationally
demanding to simulate. For the 3-cell pack, the bound
of Proposition 1 was γv = 2.34 × 10−4, γI = 75.48 and
(x̂(0) − x(0))TP (x̂(0) − x(0)) = 36.38, with this bound
holding for the nonlinear dynamics, albeit conservatively.

Conclusions

A state-space model for lithium-ion battery packs con-
nected in parallel was introduced. The key result of the
paper was a solution to Kirchhoff’s laws for parallel con-
nected packs which allowed the various branch currents
charging each cell to be written explicitly in terms of
the pack’s state-space variables, applied current and the
various cell resistances. In this way, the model avoided
the need to compute these branch currents numerically.
This result was then extended to a class of electrochem-
ical model such that current distributions in a parallel
pack with Doyle-Fuller-Newman cell models could be ob-
tained. A method to compute bounds for pack-level state-
estimator errors was also presented.
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