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Reduced-Order Neural Network Synthesis with

Robustness Guarantees
Ross Drummond, Matthew C. Turner and Stephen R. Duncan

Abstract—In the wake of the explosive growth in smartphones
and cyberphysical systems, there has been an accelerating
shift in how data is generated away from centralised data
towards on-device generated data. In response, machine learning
algorithms are being adapted to run locally on board, potentially
hardware limited, devices to improve user privacy, reduce latency
and be more energy efficient. However, our understanding of
how these device-orientated algorithms behave and should be
trained is still fairly limited. To address this issue, a method to
automatically synthesize reduced-order neural networks (having
fewer neurons) approximating the input/output mapping of a
larger one is introduced. The reduced-order neural network’s
weights and biases are generated from a convex semi-definite
programme that minimises the worst-case approximation error
with respect to the larger network. Worst-case bounds for this
approximation error are obtained and the approach can be
applied to a wide variety of neural networks architectures. What
differentiates the proposed approach to existing methods for
generating small neural networks, e.g. pruning, is the inclusion of
the worst-case approximation error directly within the training
cost function, which should add robustness to out-of-sample
data-points. Numerical examples highlight the potential of the
proposed approach. The overriding goal of this paper is to
generalise recent results in the robustness analysis of neural
networks to a robust synthesis problem for their weights and
biases.

I. Introduction

As smartphones get increasingly integrated into our
daily lives and the numbers of both cyberphysical systems
and smart devices continues to grow, there has been a
noticeable evolution in the way many large data sets
are being generated. In fact, Cisco [13] predicted that in
2021, whilst 20.6 ZB of data (e.g. large ecommerce site
records) will be handled by cloud-based approaches in
large data-centres, this amount will be dwarfed by the
850 ZB generated by local devices [40]. In response to
data sources becoming more device-centric, there has been
a shift in focus for many machine learning algorithms
towards both implementing and training them locally
on (potentially hardware limited) devices. Running the
algorithms on the devices represents a radical shift away
from traditional centralised learning where the data and
algorithms are stored and processed in the cloud but, as
described in [40], brings the benefits of i) increased user
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privacy as the data is not transmitted to a centralised
server ii) reduced latency since the algorithms can react
immediately to newly generated data from the device and
iii) improved energy efficiency mostly because the data and
algorithm outputs do not have to be constantly transferred
to and from the cloud. However, running algorithms
locally on devices brings its own issues, most notably in
dealing with the devices’ limited computational power,
memory and energy storage. Overcoming these hardware
constraints has motivated substantial efforts on improving
algorithm design, particularly towards developing leaner,
more efficient neural networks [36].
Two popular approaches to make neural network algo-

rithms leaner and more hardware-conscious are i) quantised
neural networks [34], [7], [35], where fixed-point arithmetic
is used to accelerate the computational speed and reduce
memory footprint, and ii) pruned neural networks [27],
[4], [18], [19], [32], [31], [22], [17], [12], [23], [26], [15], [30],
[24], where, typically, the weights contributing least to
the function mapping are removed, promoting sparsity
in the weights. Both of these approaches have achieved
impressive results. For instance, by quantising, [25] was
able to reduce model size by > 20% without any no-
ticeable loss in accuracy when evaluated on the CIFAR-
10 benchmark and [16] demonstrated that between 50-
80% of its model weights could be pruned with little
impact on performance [36]. However, our understanding
of neural network reduction methods such as these remains
lacking and reliably predicting their performance remains a
challenge. Illustrating this point, [27] stated that for pruned
neural networks “our results suggest the need for more
careful baseline evaluations in future research on structured
pruning methods” with a similar sentiment raised in [4]:
“our clearest finding is that the community suffers from
a lack of standardized benchmarks and metrics”. These
quotes indicate a need for robust evaluation methods for
lean neural network designs, a perspective explored in this
work.

Contribution: This paper introduces a method to auto-
matically synthesize neural networks of reduced dimensions
(meaning fewer neurons) from a trained larger one, as
illustrated in Figure 1. These smaller networks are termed
reduced-order neural networks since the approach was
inspired by reduced order modelling in control theory
[14]. The weights and biases of the reduced order net-
work are generated from the solution of a semi-definite
program (SDP)- a class of well-studied convex problems
[5] combining a linear cost function with a linear matrix
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inequality (LMI) constraint- which minimises the worst-
case approximation error with respect to the larger network.
Bounds are also obtained for this worst-case approximation
error and so the performance of the network reduction is
guaranteed. In this way, the method is said to be “robust”
as it ensures the approximation error of the reduced-order
neural network remains bounded for all input data in
certain pre-defined sets, in a manner specified by the bound
of Theorem 1.

What separates the proposed synthesis approach to the
existing methods for generating efficient neural networks,
e.g. pruning, is the inclusion of the worst-case approxi-
mation error of the reduced-order neural network directly
within the cost function for computing the weights and
biases. It is expected that this approach should offer two
main advantages over classical pruning methods:

1) The method is robust in the sense that it provides
guarantees of the approximation error with respect to
the full-order network, unlike with pruning.

2) The method is one of the first to do automatic
neural network synthesis from the solution of a robust
optimisation problem, with the weights and biases
of the reduced-order neural networks generated in
one-shot by solving a convex semi-definite program.
Besides being of theoretical interest as an alternative
to training via backpropogation, the main advantage
of this approach is that it allows the worst-case error to
be included directly within the training cost function
which may result in out-of-sample generality in worst-
case settings.

Whilst the presented results are still preliminary, their
focus on robust neural network synthesis introduces a new
set of of tools to generate lean neural networks which
should have more reliable out-of-sample performance, and
which are equipped with approximation error bounds. The
broader goals of this work are to translate recent results
on the verification of NN robustness using SDPs [11], [33]
into a synthesis problem, mimicking the progression from
absolute stability theory [39] to robust control synthesis
[9] witnessed in control theory during the 1980s. In this
way, this work carries on the tradition of control theorists
exploring the connections between robust control theory
and neural networks, as witnessed since the 1990s with
Glover [6], Barabanov [3], Angeli [2] and Narendra [21].

A. Notation

Non-negative real vectors of dimension n are denoted
R

n
+. A positive (negative) definite matrix Ω is denoted

Ω ≻ (≺) 0. Non-negative diagonal matrices of dimension
n× n are D

n
+. The matrix of zeros of dimension n×m is

0n×m and the vector of zeros of dimension n is 0n. The
identity matrix of size n is In. The vector of 1s of dimension
n is 1n and the n×m matrix of 1s is 1n×m. The ith element
of a vector x is denoted xi unless otherwise defined in the
text. The ⋆ notation is adopted to represent symmetric

Full-order neural network

Reduced-order neural network

Pruned neural network

Fig. 1: Illustration of two different approximations of a
neural network (termed the full-order network) to enable
it to be run on limited hardware. One approach is to
use network pruning to make the weights sparse while
the second is to develop a reduced-order network with
fewer neurons. This paper proposes a method to synthesize
the weights and biases of the reduced order network such
that they robustly minimise the approximation error with
respect to the full order network.

matrices in a compact form, e.g.
[
A B
BT C

]

=

[
A B
⋆ C

]

. (1)

B. Neural networks

The neural networks considered will be treated as func-
tions f(x) : X → F mapping input vectors of size x ∈ R

nx

to output vectors of dimension f(x) ∈ R
nf . In a slight

abuse of notation, ϕ(·) : Rnk → R
nk will refer to mappings

of both scalars and vectors, with the vector operation
applied element-wise. The full-order neural network will
be composed of l hidden layers, with the kth layer being
composed of nk neurons. The total number of neurons in
the full-order neural network is N =

∑l
k=1 nk. Similarly,

the reduced-order neural network will be composed of λ
hidden layers with the kth layer being composed of mk

neurons. The total number of neurons in the reduced-order
network is M =

∑λ
k=1 mk. The dimension of the domain

of the activation functions is defined as N̄ = N − nl + nx

(full-order network) and M̄ = M − nλ + nx (reduced-order
network).

II. Problem statement

In this section, the general problem of synthesizing
reduced-order NNs is posed. Consider a nonlinear function
f(x) : X → F mapping input data x ∈ X to an
output set F . The goal of this work is to generate a
“simpler” function g(x) : X → G that is as “close” as
possible to f(x) for all x ∈ X . Here, “simpler” will refer
to the dimension of the reduced-order neural network’s
weight matrix being smaller than the full-order one and
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“close”-ness relates to the approximation error between the
two functions f(x) and g(x) measured by the induced 2-
norm supx∈X ∥f(x)− g(x)∥2. The goal is to automatically
synthesize the simpler functions g(x) from the solution
of a convex problem and obtain worst-case bounds for
approximation error with respect to the larger neural
network f(x) for all x ∈ X .
To ensure that the function approximation problem

remains feasible, structure is added to the set F . It is
assumed that the function being approximated f(x) is
generated by a feed-forward neural network

x0 = x, (2a)

xk+1 = ϕ(W kxk + bk), k = 0, 1, . . . , l − 1, (2b)

f(x) = W lxl + bl. (2c)

Here, the input data x0 = x ∈ X ⊆ R
nx is mapped through

the nonlinear activation functions ϕ(·) (which could be the
standard choices of ReLU, sigmoid, tanh or any function
that satisfies a quadratic constraint as given in Section
III-B) element-wise with the weight matrices W 0 ∈ R

n1×nx ,
W k ∈ R

nk+1×nk and biases bk ∈ R
nk+1 , k = 0, . . . , l − 1.

Whilst the results are described for feed-forward neural
networks, the method can be generalised to other network
architectures, such as recurrent and even implicit neural
networks [10]. As an aside, verifying the well-posedness of
implicit neural networks has a strong connection to that
of Lurie systems with feed-through terms [37].
The network (2) can be equivalently written in the

implicit form

x̌ = ϕ(Wx̌+W0x+ b), ϕ(.) : R
N 7→ R

N , (3a)

f(x) = W f x̌+ bl, (3b)

where

x̌ =








x1

x2

...
xl







, W =









0 0 . . . 0

W 1 . . .
. . .

...
...

. . . 0 0
0 . . . W l−1 0









, W0 =








W 0

0
...
0







,

(4a)

b =








b0

b1

...
bl−1







, W f =

[
0, . . . , 0, W l

]
. (4b)

The neural network f(x) (which will be referred to as the
full-order neural network) is to be approximated by another
neural network g(x) ∈ G (referred to as the reduced-order
neural network) of a smaller dimension

z0 = x, (5a)

zk+1 = ϕ

(
λ−1∑

i=0

Ψk+1,izi + βk

)

, k = 0, 1, . . . , λ− 1,

(5b)

g(x) = Ψλzλ + βλ. (5c)

The weights and biases in this neural network are Ψk,i ∈
R

mk+1×mi , βk ∈ R
mk+1 , k = 0, . . . , λ − 1. The network

structure in (5b) is general, and allows for implicitly defined
networks [10]. This generality follows from the lack of
structure imposed on the matrices used in the synthesis
procedure. However, by adding structure, the search can
be limited to, for example, feed-forward networks, which
are simpler to implement.

Similar to the full-order case, the network (5) can be
written as

ž = ϕ(Ψž +Ψ0x+ β), ϕ(·) : RM 7→ R
M , (6a)

g = Ψf ž + βλ, (6b)

where

ž =








z1

z2

...
zλ







, Ψ =









Ψ1,1 Ψ1,2 . . . Ψ1,λ

Ψ2,1 Ψ2,2 . . .
...

...
. . .

. . . Ψλ−1,λ

Ψλ,1 . . . Ψλ,λ−1 Ψλ,λ









, (7a)

Ψ0 =








Ψ1,0

Ψ2,0

...
Ψλ,0







, β =








β0

β1

...
βλ−1







, Ψf =

[
0, . . . , 0, Ψλ

]
.

(7b)

In this work, the dimension of the reduced-order network
is fixed and the problem is to find the reduced-order NN’s
parameters, being the weights Ψk,i and biases βk, that
minimise the worst-case approximation error between the
full and reduced order neural networks for all x ∈ X .
In practice, the dimension of the reduced-order network
should be fixed to the minimum value for which Proposition
1 can be solved to give a sufficient level of performance, as
typically increasing the dimension of this neural network
should lead to improved approximations to the full-order
one, as larger networks will be more expressive allowing
them to more accurately approximate highly nonlinear
functions. The main tool used for this reduced-order NN
synthesis problem is the outer approximation of the NN’s
input set X , nonlinear activation function’s gains ϕ(·) and
the output error f(x)−g(x) by quadratic constraints. These
outer approximations enable the robust weight synthesis
problem to be stated as a convex SDP, albeit at the expense
of introducing conservatism into the analysis.

III. Quadratic Constraints

In this section, the quadratic constraints for the convex
outer approximations of the various sets of interest of
the reduced NN synthesis problem are defined. These
characterisations are posed in the framework of [11], which
in turn was inspired by the integral quadratic constraint
framework of [29] and the classical absolute stability results
for Lurie systems [20].
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A. Quadratic constraint: Input set

The input data x ∈ X is restricted to the hyper-rectangle
X∞.
Definition 1: Define the hyper-rectangle X∞ = {x :

xi ≤ xi ≤ xi, i = 1, . . . , nx}. If x ∈ X∞ then
[xT 1]PX∞

[xT 1]T ≥ 0 where

PX∞
=

[
−τx∞

τx∞

2 (x+ x)
⋆ −xT τx∞

x

]

, τx∞
∈ D

nx

+ . (8)

Note that the input set constraint characterised by
Definition 1 can be equivalently written as

ω(x)TΠ∞ω(x) ≥ 0 (9)

where

Π∞ =







−τx∞
0nx×N 0nx×M

τx∞

2 (x+ x)
⋆ 0N×N 0N×M 0N×1

⋆ ⋆ 0M×M 0M×1

⋆ ⋆ ⋆ −xT τx∞
x







and

µ(x) =
[
xT x̌T žT 1

]T
. (10)

B. Quadratic constraint: Activation functions

The main obstacle to any robustness-type result for
neural networks is accounting for the nonlinear activation
functions ϕ(·). To address this issue, the following function
properties are introduced.

Definition 2: The activation function ϕ(s) : S ⊂ R→ R

satisfying ϕ(0) = 0 is said to be sector bounded if

ϕ(s)

s
∈ [0, δ] ∀s ∈ S, δ > 0, (11a)

and slope restricted if

ϕ(s1)− ϕ(s2)

s1 − s2
∈ [β, β], ∀s1, s2 ̸= s1 ∈ S, β > 0. (11b)

If β = 0 then the nonlinearity is monotonic and if ϕ(0) = 0
then the slope restriction implies sector boundedness. The
activation function ϕ(s) is bounded if

ϕ(s) ∈ [c, c], ∀s ∈ S, (11c)

it is positive if

ϕ(s) ≥ 0, ∀s ∈ S, (11d)

its complement is positive if

ϕ(s)− s ≥ 0, ∀s ∈ S, (11e)

and it satisfies the complementarity condition if

(ϕ(s)− s)ϕ(s) = 0, ∀s ∈ S. (11f)

Most popular activation functions, including the ReLU,
(shifted-)sigmoid and tanh satisfy one or more of these
conditions, as illustrated in Table I. As the number of
properties satisfied by ϕ(·) increases, the characterisation of
this function within the robustness analysis improves, often
resulting in less conservative results. It is also noted that
to satisfy ϕ(0) = 0 some activation functions may require a

shift, e.g. the sigmoid, or they may require transformations
to satisfy additional function properties, as demonstrated
in the representation of the LeakyReLU as a ReLU + linear
term function.
As is well-known from control theory [20], functions

with these specific properties are important for robustness
analysis problems because they can be characterised by
quadratic constraints.

Lemma 1: Consider the vectors y, y1 ∈ R
ny , and υ ∈ R

nυ

that are mapped component-wise through the activation
functions ϕ(·) : Rny → R

ny and ϕ̃(·) : Rnv → R
nv . If ϕ(y)

is sector-bounded, then

(δy − ϕ(y))TTsϕ(y) ≥ 0, ∀y ∈ R
ny , T

s ∈ D
ny

+ ; (12a)

slope-restricted then

(β(y − y1)− (ϕ(y)− ϕ(y1))
T
T

sl(ϕ(y)− ϕ(y1)− β(y − y1)) ≥ 0;

∀{y, y1} ∈ R
ny , Tsl ∈ D

ny

+ ; (12b)

bounded then

(c− ϕ(y))TTB(ϕ(y)− c) ≥ 0, ∀y ∈ R
ny , TB ∈ D

ny

+ ;
(12c)

positive then

(T+)Tϕ(y) ≥ 0, ∀y ∈ R
ny , T+ ∈ R

ny

+ ; (12d)

such that is complement is positive then

(Tc+)T (ϕ(y)− y) ≥ 0, ∀y ∈ R
ny , Tc+ ∈ R

ny

+ . (12e)

If ϕ(y) satisfies the complementary condition then

(ϕ(y)− y)TT0ϕ(y) = 0, ∀y ∈ R
ny , T0 ∈ D

ny . (12f)

Additionally, if both ϕ(y) and ϕ̃(υ) and their complements
are positive then so are the cross terms

ϕ̃(υ)TT×(ϕ(y)− y) ≥ 0, ∀υ ∈ R
nv , y ∈ R

ny , T× ∈ R
nυ×ny

+ ,
(12g)

ϕ̃(υ)TT⊗ϕ(y) ≥ 0, ∀υ ∈ R
nv , y ∈ R

ny , T⊗ ∈ R
nυ×ny

+ .
(12h)

Inequalities (12a)-(12f) are well-known however the cross
terms (12g)-(12h) acting jointly on activation function pairs
are less so.
Remark 1: Lemma 1 is established globally, that is

for all y ∈ R
ny . Some activation functions ϕ(·) may be

defined locally, or the sector, slope bounds may be tighter
for restricted values of their arguments. In such cases, local
versions of Lemma 1 may give less conservative results. ⋆

The characterisation of the nonlinear activation func-
tions via quadratic constraints allows the neural network
robustness analysis to be posed as a SDP- with the various
λ’s in Lemma 1 being decision variables. Such an approach
has been used in [11], [14], [3], and elsewhere, for neural
networks robustness problems, with the conservatism of this
approach coming from the obtained worst-case bounds hold-
ing for all nonlinearities satisfying the quadratic constraints.
In this work, the aim is to extend this quadratic constraint
framework for neural network robustness analysis problems
to a synthesis problem.



5

φ(·) property Shifted sigmoid tanh ReLU ELU
Sector bounded ✓ ✓ ✓ ✓

Slope restricted ✓ ✓ ✓ ✓

Bounded ✓ ✓ Ö Ö

Positive Ö Ö ✓ Ö

Positive complement Ö Ö ✓ Ö

Complementarity condition Ö Ö ✓ Ö

TABLE I: Properties of commonly used activation functions, including the sigmoid, tanh, rectified linear unit ReLU
and exponential linear unit (ELU). The properties of other functions, such as the LeakyReLU, can also be inferred.

A quadratic constraint characterisation of both the
reduced and full-order neural networks can then be written,
with the following lemma being the application of Lemma
1 for both the reduced and full-order neural networks.

Lemma 2: If the activation function ϕ(·) satisfies one or
more of the quadratic constraints of Lemma 1, then there
exists a matrix

Λ =







0nx×nx
Λ12 Λ13 Λ14

⋆ Λ22 Λ23 Λ24

⋆ ⋆ Λ33 Λ34

⋆ ⋆ ⋆ Λ44






, (13)

defined by the Ti’s (i ∈ {s, sl,+, c+, B, 0,×,⊗}) of Lemma
1 such that

µ(x)TΛµ(x) ≥ 0, ∀x ∈ X . (14)

Proof. The construction of Λ for the sector nonlinearity
associated with the full-order network is shown. Lemma 1
implies that for a matrix T

s ∈ D
N
+

2ϕ(ξ)TTs(ξ − ϕ(ξ)) ≥ 0

where, from equation (3), ξ = Wx̌+W0x+ b. Noting that
ϕ(ξ) = x̌, expanding the above becomes

2x̌T
T

s(Wx̌+W0x+ b− x̌) ≥ 0

and majorising it gives







x
x̌
ž
1







T 





0 WT
0 T

s 0 0
⋆ −2Ts +T

sW +WT
T

s 0 T
sb

⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0













x
x̌
ž
1






≥ 0.

(15)

This clearly takes the form of the inequality in (14). All
other cases are derived similarly. Appendix 1 details the
characterisation of Λ for the specific case of the ReLU
activation functions.

C. Quadratic constraint: Approximation error of the
reduced-order neural network

An upper bound for the approximation error between
the full and reduced-order networks can also be expressed
as a quadratic constraint. This error bound will be used as
a performance metric to gauge how well the reduced-order
neural network approximates the full-order one, as in how
well g(x) ≈ f(x) ∀x ∈ X∞.

Definition 3 (Approximation error): For some γx ≥ 0,
γ ≥ 0, the reduced-order NN’s approximation error is
defined as the quadratic bound

∥f(x)− g(x)∥22 ≤ γx∥x∥
2
2 + γ, ∀x ∈ X∞. (16)

In practice, this bound is computed by minimising over
some weighted sum of γx and γ.

Note that by using equations (3) and (6) the approxima-
tion error f(x)− g(x) can be written as

f(x)− g(x) = Lµ(x) (17)

where

L =
[
0nf×nx , W f , −Ψf , bl − βλ

]
(18)

Similarly,

γx∥x∥
2
2 + γ = µ(x)TΓµ(x) (19)

where Γ = blockdiag(γxInx
, 0N×N , 0M×M , γ), so inequality

(16) is equivalent to

µ(x)T (LTL− Γ)µ(x) ≤ 0.

IV. Reduced-order neural network synthesis

problem

This section contains the main result of the paper;
an SDP formulation of the reduced-order NN synthesis
problem (Proposition 1). To arrive at this formulation, a
general statement of the synthesis problem is first defined
in Theorem 1. This theorem characterises the search for the
reduced-order neural network’s parameters as minimising
the worst-case approximation error for all inputs x ∈ X .
Theorem 1: Assume the activation functions ϕ satisfy

one or more of the properties from Definition 2. With fixed
weights {w1, w2} ≥ 0, if there exists a solution to

min
Ψ,Ψ0,Ψl, β, βλ,Ti,Ti

r,τx∞ , γx, γ
w1γx + w2γ, (20a)

s.t.

Π∞ + Λ+ LTL− Γ ≤ 0, (20b)

γx ≥ 0, γ ≥ 0,

then the worst-case approximation error is bounded by
∥f(x)− g(x)∥22 ≤ γx ∥x∥

2
2 + γ for all x ∈ X∞.

Proof. See Appendix 2.
The main issue with Theorem 1 is verifying inequality

(20b) since it includes a non-convex bilinear matrix inequal-
ity (BMI) between the matrix variables of the reduced-order
network’s weights, its biases and the scaling variables in
Λ. The following proposition details how this constraint
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can be written (after the application of a convex relaxation
of the underlying BMI) as an LMI. The search over the
reduced NN variables can then be translated into a SDP, a
class of well understood convex optimisation problems with
many standard solvers such as MOSEK [1] implemented
through the YALMIP [28] interface in MATLAB or even
the Robust Control Toolbox.

Proposition 1: Consider the full-order neural network
of (2) mapping x → f(x) and the reduced-order neural
network of (5) mapping x → g(x). For fixed weights
{w1, w2} ≥ 0, if there exists matrix variables T

i (of
appropriate dimension and property1), FΨ ∈ R

M×M , F0 ∈
R

M×nx , Fβ ∈ R
M , Ψf ∈ R

nf×M and βλ ∈ R
nf that solve

min
FΨ,F0,Fβ ,Ψf , βλ,Ti,Ti

r,τx∞ , γx, γ
w1γx + w2γ, (21a)

s.t. ΩSchur ≺ 0, γx ≥ 0, γ ≥ 0, (21b)

with ΩSchur defined in (35) of Appendix 3, then the reduced-
order network with weights and affine terms defined by

Ψ0 = U−1
1 F0 Ψ = U−1

2 FΨ β = U−1
3 Fβ , (22)

ensures that the worst-case approximation error bound
of the reduced-order neural network satisfies ∥f(x) −
g(x)∥22 ≤ γx ∥x∥

2
2 + γ for all x ∈ X∞.

Proof. See Appendix 3.

Appendix 4 details how the matrix Λ, which characterises
how the activation functions are included within the
robustness condition ΩSchur ≻ 0, can be written as a linear
function of the matrix variables as required by Proposition
1 for the special case where ϕ(y) = ReLU(y). Some remarks
about the proposition are given in Appendix 5.

Remark 2: There is some degree of flexibility in choosing
the architecture of the reduced-order neural network in
Proposition 1. This flexibility is viewed as an advantage
of the method, as it increases its applicability, but it is
also acknowledged that it could make finding the optimal
architecture more challenging. In practice, it has been
observed that a suitable way to fix the architecture is
to set the activation function to be the same as that of the
full-order network and also to set the layer dimensions of
the reduced-order network to be quite low. Upon solving
Proposition 1, the user should then inspect the performance
of the reduced-order network generated by Proposition 1.
If a satisfactory level of performance has been achieved
(measured either through the bounds or from inspecting
the error to the full-order network directly), then this
architecture should be retained. If not, then the dimension
of the reduced-order network should be increased, and
Proposition 1 run again. This process should be repeated
until the performance standards have been met. Algorithm
1 shows pseudo-code for this design process. ⋆

Remark 3: The reduced-order neural network generated
by Proposition 1 could also be fine-tuned, as often applied
to pruned neural networks. ⋆

1From Lemma 1 the matrices T
i and T

i
r may have special

properties such that they must have positive elements or be diagonal.

Algorithm 1 Update the reduced-order neural network
architecture

Require: Full-order neural network parameters (W, b),
reduced-order neural network dimensions (mk, λ) and
tolerances ε1, ε2.
for j = 1, 2, . . . , J do

[Ψ, β]← Proposition 1(mk, λ)
pj = γx ∥x∥

2
2 + γ

qj = max ∥f(x)− g(x)∥22 ∀x ∈ X
′
∞ ⊆ X∞

if pj ≤ ε1 and/or qj ≤ ε2 then
Break

else
Increase mk and/or λ.

end if
end for

V. Numerical example

The proposed reduced-order neural network synthesis
method was then evaluated in two numerical examples.
In both cases, the performance of the synthesized neural
networks were evaluated graphically (see Figures 2-3)
to give a better representation of the robustness of the
approximations (the focus of this work). Only academic
examples were considered due to the well-known scalability
issues of SDP solvers (but which are becoming less of
an issue [8]) and because performance was measured
graphically. The code for the numerical examples can be
obtained on request from the authors.

The first example explores the impact of reducing
the dimension of the reduced-order neural network on
its accuracy. In this case, the full-order neural network
considered was a single hidden layer network of dimension
10 with the weights W 0, W 1, b0 and bl all obtained from
sampling a zero mean normal distribution with variance
1 and which mapped a single input to a single output,
nx = nf = 1, with the input constrained to x ∈ [−10, 10].
The ReLU was taken as the activation function of both
the full and reduced-order neural networks. Reduced-order
feed-forward neural networks with single hidden layers
of various dimensions m1 were then synthesized using
Proposition 1. Figure 2a shows the various approximations
obtained and Figure 2b shows how the error bounds and
approximation errors changed as the dimension of the
reduced-order network m1 increased. The error bound was
satisfied in all cases (albeit conservatively) and dropped as
the degree of the reduced-order network increased. Even
though the error bound (the blue line in the figure) from the
solution of Proposition 1 monotonically decreased as the
dimension of the reduced-order neural network increased,
this did not imply that the actual observed worst-case
error (black line in the figure) would also monotonically
decrease, as observed at m1 = 2. The non-monotonicity
of the error highlights how the performance of several
candidates reduced-order neural network architectures
should be evaluated prior to deployment before an“optimal”
architecture is implemented, with Algorithm 1 illustrating
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one approach to conduct this search
The second example considers a more complex func-

tion to approximate and illustrates some potential pit-
falls of pruning too hard. In this case, the full-order
network’s weights were defined by ℓ = 4, nk =
4, nx = 1 and with v = (1, . . . , nk + 1)/nk

then the weights and biases were W 0 = cos (2πv),

b0 = 0, W k = 1
k+1

(

cos (2πv)× sin (2πv)
T
)

, bk =
1

k+1 (sin (2πv)), W ℓ = sin (2πv) and bℓ = 0. Figure 3
shows the output generated from a λ = mk = 3 reduced-
order feed-forward neural network as well as the network
generated by setting the Λp matrices in Lemma 2 to be
diagonal (this reduced the compute time but, as shown,
can alter the obtained function). Also shown is the case
when the full-order neural network has been pruned to
have a similar number of connections as the reduced-order
one by removing the 32 smallest (out of a total of 56)
weights. In this case, the pruned network was cut so far
that it simply generated a constant function, but further
fine-tuning of the pruned network may recover performance.
Likewise, fine-tuning of the reduced-order neural network
(through different substitutions of J1 and J2, which was
set to zero for these examples, or from simply applying
the standard fine-tuning update of pruning) may improve
the approximation of the synthesized reduced-order neural
networks.

Conclusions

A method to synthesize the weights and biases of reduced-
order neural networks (having few neurons) approximating
the input/output mapping of a larger was introduced. A
semi-definite program was defined for this synthesis prob-
lem that directly minimised the worst-case approximation
error of the reduced-order network with respect to the
larger one, with this error being bounded. By including the
worst-case approximation error directly within the training
cost function, it is hoped that the ideas explored in this
paper will lead to more robust and reliable reduced-order
neural network approximations. Several open problems
still remain to be explored, most notably in reducing the
conservatism of the bounds, scaling up the method to large
neural networks and exploring the convexification of the
bi-linear matrix inequality of the synthesis problem.
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Appendices

Appendix 1: Quadratic Constraint for the ReLU

Consider the generalised quadratic constraint of Lemma
2 with the ϕ(y) =ReLU(y) activation function and define
both ξ = Wx̌ + W0x + b and ζ = Ψž + Ψ0x + β. From
Table I, it is clear that the full order network activation
function satisfies the following quadratic constraints:

2ϕ(ξ)TT0(ξ − ϕ(ξ)) ≥ 0, T
0 ∈ D

N , (23)

2(T+)Tϕ(ξ) ≥ 0, T
+ ∈ R

N
+ , (24)

2(Tc+)T (ϕ(ξ)− ξ) ≥ 0, T
c+ ∈ R

N
+ . (25)

Similarly, the reduced order activation functions satisfy the
following quadratic constraints

2ϕ(ζ)TT0
r(ζ − ϕ(ζ)) ≥ 0, T

0
r ∈ D

M , (26)

2(T+
r )

Tϕ(ζ) ≥ 0, T
+
r ∈ R

M
+ , (27)

2(Tc+
r )T (ϕ(ζ)− ζ) ≥ 0, T

c+
r ∈ R

M
+ . (28)

In addition both the full and reduced order activation
functions satisfy the sector constraint, but the complemen-
tarity constraint is more general so the sector constraint
is redundant and thus not included. Finally, the full
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and reduced order activation functions satisfy the cross
constraints:

2(ϕ(ξ)− ξ)TT×ϕ(ζ) ≥ 0, T
× ∈ R

N×M
+ , (29)

2(ϕ(ζ)− ζ)TT×
r ϕ(ξ) ≥ 0, T

×
r ∈ R

M×N
+ . (30)

These constraints can be combined as shown in equation
(31) and then, using the definitions of ξ, ζ, ϕ(ξ) and ϕ(ζ)
given earlier, can be expressed as given in equation (32).
Note that the slope constraints of ReLU(·) could have also
been exploited as well.

Appendix 2: Proof of Theorem 1

Inequality (20b) can be pre and post multiplied by µ(x)T

and µ(x) respectively, and then split into three components:
[
x
1

]T

PX∞

[
x
1

]

︸ ︷︷ ︸

θx

+µ(x)TΛµ(x)
︸ ︷︷ ︸

θφ

+µ(x)T (LTL− Γ)µ(x)
︸ ︷︷ ︸

θ
∥f−g∥2

2

≤ 0.

(33)
If x ∈ X∞, then θx ≥ 0 from Lemma 1. Also, if the nonlinear
activation functions satisfy the quadratic constraint of
Lemma 2, then θϕ ≥ 0. Thus, inequality (20b) implies

µ(x)(LTL− Γ)µ(x) ≤ 0 ∀µ(x)

which then implies the error bound ∥f(x) − g(x)∥22 ≤
γx∥x∥

2
2 − γ holds for all x ∈ X∞.

Appendix 3: Proof of Proposition 1

Theorem 1 requires the following matrix inequality to
hold

Π∞ + Λ− Γ + LTL ≤ 0.

Using the Schur complement, a sufficient condition for this
to hold is

Ωmod =

[
Π∞ + Λ− Γ LT

L −I

]

≤ 0.

This matrix is not linear due to the fact that the matrix
Λ(Ti,Ti

r,Ψ,Ψ0, β) contains products of the constraint
matrix variables Ti and the reduced-order network paraters
Ψ,Ψ0 and β. However, Λ can be re-written as in equation
(34) where some of the matrix variables T

i
r are written

as products of other matrix variables and two constant
matrices J1 ∈ R

N×M and J2 ∈ R
M which are chosen

by the user. In equation (34), the Λ̃ij elements are affine
functions of the T

i,Ti
r matrix variables and Uk are matrix

variables constructed from the sum of one or more T
i
r.

Defining

F0 = U1Ψ0, FΨ = U2Ψ, Fβ = U3β,

and using the expression for Λ in Ωschur yields the linear
matrix inequality of (35).
Once inequality (35) is satisfied, the parameters of the

reduced order network can be recovered via

Ψ0 = U−1
1 F0, Ψ = U−1

2 FΨ, β = U−1
3 Fβ .

Appendix 4: The matrix Λ for the case ϕ(y) =ReLU(y)

When the activation functions of the neural network are
ϕ(y) = ReLU(y), then the matrix Λ = ΛReLU in Ωschur

is given as in inequality (32). Ωschur becomes an LMI if
Λ can be made linear. ΛReLU of (32) features the matrix
variables T

0 ∈ D
N , T

0
r ∈ D

M , T
+ ∈ R

N
+ , T

+
r ∈ R

M
+ ,

T
c+ ∈ R

N
+ , Tc+

r ∈ R
M
+ , T× ∈ R

N×M
+ , T×

r ∈ R
N×M
+ , as

well as Ψ ∈ R
M×M , Ψ0 ∈ R

M×nx and β ∈ R
N . To make

ΛReLU, specific structures for T×
r and T

c+
r must be chosen,

viz,

T
×
r = T

0
rJ1, T

c+
r = T

0
rJ2, (36)

where J1 ∈ R
M×N and J2 ∈ R

M , which makes the
substitutions

F
T
Ψ = ΨT

T
0
r, F

T
0 = ΨT

0 T
0
r, F

T
β = βT

T
0
r. (37)

The arising expression for ΛReLU is shown in equa-
tion (40) and is clearly linear in the matrix variables
T 0,T0

r, T
+, T+

r ,Tc+,T×,FΨ,F0 and Fβ . As in the general
case, the reduced order parameters can be determined via

Ψ0 = (T0
r)

−1
F0, Ψ = (T0

r)
−1

FΨ, β = (T0
r)

−1
Fβ .

(38)

The scaling matrices Jp, p ∈ {1, 2} are constant matrices
that can be picked by the user, under the stipulation that
they preserve the properties of the multipliers of Lemma 2.
In this work, the choice was

J1 =
[
IM 0M×(N−M)

]
, J2 = 1M , (39)

but more refined choices may also exist.
In this way, the non-convexity of the bilinear matrix

inequality of the problem has been relaxed into a convex
linear one. However, the substitution (37) limits the space
of solutions that can be searched over by the synthesis
SDP, resulting in only local optima being achieved and
increased conservatism in the approximation error bounds.

Remark 4: The use of the specific structures presented
in (36) is central to expressing the results in linear matrix
inequality form. However, it is vital to ensure the stipulated
properties of the matrices are satisfed. For instance T

×
r is

required to have all of its elements positive (or zero). This
will indeed be the case if J1 ∈ R

M×N
+ and if T0

r ∈ D
M
+ as

required by Lemma 1. However, to recover the reduced
order network parameters T0

r also needs to be nonsingular
(see equation (38) , so in the arising optimisation problem
it may be prudent to choose T

0
r to be strictly positive

definite to guarantee this. Similar comments apply to the
the vector J2. ⋆

Appendix 5: Some remarks about Proposition 1

a) Neural network synthesis: A key feature of Propo-
sition 1 is that the parameters of the reduced-order neural
network are synthesized in one shot from the solution to
(21). Directly minimising the worst-case approximation
error of the reduced-order neural networks may lead to
more robust and reliable out-of-sample performance.
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ξ
ζ

ϕ(ξ)
ϕ(ζ)
1









T 







0N×N 0N×M T
0 −T× −Tc+

⋆ 0M×M −T×
r T

0
r −Tc+

r

⋆ ⋆ −2T0
T

× + (T×
r )

T
T

+ +T
c+

⋆ ⋆ ⋆ −2T0
r T

+
r +T

c+
r

⋆ ⋆ ⋆ ⋆ 0

















ξ
ζ

ϕ(ξ)
ϕ(ζ)
1









≥ 0 (31)

µ(x)T







0 WT
0 T

0 −ΨT
0 T

×
r ΨT

0 T
0
r −WT

0 T
× −WT

0 T
c+ −ΨT

0 T
c+
r

⋆ −2T0 +T
0W −WT

T
0 (IN −W )TT× + (T×

r )
T (IM −Ψ) T

0b+T
+ + (IN −W )TTc+ − (T×

r )
Tβ

⋆ ⋆ −2T0
r +T

0
rΨ+ΨT

T
0
r T

0
rβ +T

+
r + (IM −Ψ)TTc+

r − (T×)T b
⋆ ⋆ ⋆ −(Tc+)T b− bTTc+ − (Tc+

r )Tβ − βT
T

c+
r







︸ ︷︷ ︸

ΛReLU

µ(x) ≥ 0

(32)

Λ =







0 Λ̃12 +ΨT
0 U1J

T
1 Λ̃13 +ΨT

0 U1 Λ̃14 +ΨT
0 U1J2

⋆ Λ̃22 Λ̃23 + J1U2Ψ Λ̃24 + J1U3β

⋆ ⋆ Λ̃33 + U2Ψ+ΨTU2 Λ̃34 +ΨTU2J2 + U3β

⋆ ⋆ ⋆ Λ̃44 + βTU3J2 + JT
2 U3β







(34)

Ωschur =









−τx∞ − γxInx
Λ̃12 + F

T
0 J

T
1 Λ̃13 + F

T
0 Λ̃14 + F

T
0 J2 +

τx∞

2 (x + x̄) 0nx×nf

⋆ Λ̃22 Λ̃23 + J1FΨ Λ̃24 + J1Fβ (W f )T

⋆ ⋆ Λ̃33 + FΨ + F
T
Ψ Λ̃34 + F

T
ΨJ2 + Fβ −(Ψf )T

⋆ ⋆ ⋆ Λ̃44 + F
T
β J2 + JT

2 Fβ − γ − xT τx∞
x̄ bl − βλ

⋆ ⋆ ⋆ ⋆ −Inf









(35)

ΛReLU =







0 WT
0 T

0 − F
T
0 J

T
1 F

T
0 −WT

0 T
× −WT

0 T
c+ − F

T
0 J2

⋆ −2T0 +T
0W −WT (T0)T (IN −W )TT× + J1T

0
r − J1FΨ T

0b+T
+ + (I −W )TTc+ − J1Fβ

⋆ ⋆ −2T0
r + FΨ + F

T
Ψ Fβ +T

+
r +T

0
rJ2 − F

′
ΨJ2 − (T×)T b

⋆ ⋆ ⋆ −(Tc+)T b− bTTc+ − JT
2 Fβ − F

T
β J2







(40)

b) Computational cost: The main source of compu-
tational complexity in Proposition 1 is the growth in the
number of decision variables as the problem involves matrix
variables. This limits the applicability of the proposed
approach to modestly size networks. However, this issue
could be reduced by imposing sparsity on the various matrix
variables, such as restricting the scaling Λp matrices in
Lemma 2 to be diagonal or sparse. Scalability issues are a
common curse of methods providing robustness guarantees,
like [11], but methods are being developed to alleviate these
issues, e.g. [8].

c) Bilinearity: The BMI constraint in (40) is the
source of non-convexity in the problem [38] which had to be
relaxed. It is highly likely that, for a given full-order neural
network, there would exist better substitutions than (39),
however, (39) seemed to work quite well in the numerical
example of Section V.

d) Robust approximation: Since the robustness anal-
ysis holds for all nonlinear activation functions satisfying
the quadratic inequalities of Lemma 1 and all inputs
x ∈ X∞, the performance guarantees of Proposition 1
may be conservative.
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