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Abstract

Obstructive sleep apnea (OSA) is a chronic and prevalent con-

dition with well-established comorbidities. Due to limited di-

agnostic resources and high cost, a significant OSA population

lives undiagnosed, and accurate and low-cost methods to screen

for OSA are needed. We propose a novel screening method

based on breathing sounds recorded with a smartphone and res-

piratory effort. Whole night recordings are divided into 30-s

segments, each of which is classified for the presence or absence

of OSA events by a multimodal deep neural network. Data fu-

sion techniques were investigated and evaluated based on the

apnea-hypopnea index estimated from whole night recordings.

Real-world recordings made during home sleep apnea testing

from 103 participants were used to develop and evaluate the

proposed system. The late fusion system achieved the best sen-

sitivity and specificity when screening for severe OSA, at 0.93

and 0.92, respectively. This offers the prospect of inexpensive

OSA screening at home.

Index Terms: obstructive sleep apnea, acoustic analysis, res-

piratory effort, multimodal, deep learning, sleep-disordered

breathing

1. Introduction

Sleep-disordered breathing (SDB) is a debilitating condition

that affects a significant proportion of the population; a typi-

cal US study shows that 24% of middle-aged men and 9% of

middle-aged women are affected [1]. Obstructive sleep apnea

(OSA) is the most common sleep-related breathing disorder,

which repeatedly interrupts breathing during sleep, leading to

desaturation in blood oxygen level. As a result, OSA is often

associated with fatigue, daytime sleepiness, and increased risk

of stroke, heart attack, high blood pressure and diabetes [1, 2].

There is also recognised prevalence of OSA in patients recov-

ering from COVID-19 [3]. However, a significant proportion of

OSA patients are not diagnosed until these other medical prob-

lems become apparent [2, 4]. This is in part because current

OSA diagnosis using polysomnography (PSG) is uncomfort-

able, time-consuming and expensive, requiring patients to stay

overnight in a sleep clinic with multiple wired sensors attached

to their head and body. The availability of sleep clinics has

been further strained by the COVID-19 pandemic, which has

placed significant demand on respiratory wards [5]. Rapidly

rising patient numbers means it is now much more likely that a

sleep test takes place at home using home sleep apnea testing

(HSAT) equipment, but this equipment is similarly uncomfort-

able and expensive – as well as being less accurate than the

hospital-based study. Effective home screening methods using

inexpensive and less invasive equipment are therefore needed in

order to allow earlier interventions (such as lifestyle changes) to

be made and identify those that require PSG to fully assess their

condition, thus making better use of scarce resources.

OSA events are often associated with unique acoustic char-

acteristics including a sequence of acoustic events such as

snores, chokes, loud gasps and absence of breathing. There

have been a number of studies that investigated low-cost audio-

based solutions for SDB assessment at home [6–10]. Other

studies employed different data modalities for OSA screening.

Memis et al. [11] proposed a feature-based or early fusion ap-

proach to screen for OSA. Features from electrocardiography

(ECG) and blood oxygen saturation (SpO2) were combined to

train a support vector machine (SVM) classifier. Prabha et

al. [12] developed a decision-based or late fusion method to

screen for OSA. They trained one SVM classifier from heart

rate variability features (i.e., ECG) and another using respira-

tory effort. The outputs of both classifiers were combined to

obtain the final decision. Yadollahi et al. [13] used SpO2 and

acoustic features to classify tracheal audio recording segments

into ‘normal’ and ‘apneic’. SpO2 was employed to extract au-

dio segments from 10 seconds before the start of a desaturation.

Then acoustic and SpO2 features computed from the extracted

segment were passed through sigmoid functions and summed to

obtain the final decision. A similar approach was proposed by

Saha et al. [13] using tracheal audio recordings, SpO2 and body

movement. Castillo-Escario et al. [6] also made use of SpO2 to

extract audio recording segments and looked for silent regions

with a duration of at least 6 seconds based on sample entropy.

There are however two major challenges for realistic home-

monitoring: 1) audio may be corrupted by background noise or

interfered by snoring from the bed partner [14]; 2) sensors may

be unreliable or missing (e.g., incorrectly fitted or falling off

during sleep). To overcome these, this study proposes a multi-

modal approach through a combination of audio recordings and

abdominal respiratory effort. The abdominal respiratory effort

was selected because the sensor can be placed unobtrusively on

the body and is less prone to falling off compared to other typi-

cally used sensors (e.g., nasal cannulas and pulse oximeters). It

can also be implemented using small and low-cost accelerome-

ters.

The novelty of this paper is twofold. First, different fu-

sion methods of the acoustic signal and the abdominal respira-

tory effort signal are investigated in a multimodal deep learning

framework. Second, previous methods have largely been fo-

cused on acoustically well controlled conditions in a clinical

setting, whereas the signals used in this study were collected in

over 100 real home scenarios. The results demonstrated realis-

tic performance of the methods investigated.

The rest of this paper is organised as follows. Section 2

describes the OSA data used in this study. The proposed late

fusion and early fusion systems for combining audio and respi-
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(a) Both data modalities available (b) No respiratory effort available (c) Background noise in audio

Figure 1: Abdominal respiratory effort and mel spectrogram for 30-second segments

ratory effort data are described in Section 3. The experimental

settings and the evaluation framework are introduced in Sec-

tion 4. Section 5 presents and discusses the results and conclu-

sions are given in Section 6.

2. Data

Participants undertook HSAT for one or two nights in a real

home setting using a SOMNOtouch RESP device [15], which

consists of several attached sensors that record SpO2, heart

rate, nasal airflow, respiratory effort, and body position. HSAT

data was annotated for apnea events by a technologist with

the RPSGT qualification certified by the Board of Registered

Polysomnologists (USA, AASM). During each HSAT session,

audio recordings were made simultaneously using a smartphone

(iOS or Android) placed next to the bed at the head level. Au-

dio recordings were collected using a purpose-built app, which

records sound with a sampling frequency of 16 kHz and 16-bit

resolution. In total 157 nights of recordings from 103 partici-

pants (Table 1) were included in this study. Data collection and

storage protocols were subjected to the ethical review proce-

dures of the University of Sheffield.

Table 1: Demographics of the participants included in this

study. The percentages of data groups, data ranges, and av-

erages with standard deviations are also given.

Total Participants 103

Male 67 65%

Female 36 35%

Age (years) 45 ± 13 25 – 71

BMI (kg/m2) 31 ± 7 19 – 48

Total Nights 157

Night duration (hours) 7.0 ± 1.4 3.0 – 9.8

Healthy: AHI < 5 (nights) 13 8%

Mild: 5 ≤ AHI < 15 (nights) 67 43%

Moderate: 15 ≤ AHI < 30 (nights) 38 24%

Severe: AHI ≥ 30 (nights) 39 25%

The scored HSAT data (inhalations, exhalations, desatura-

tions, snores, and apnea-hypopnea events) was used as a ref-

erence for the acoustic recordings. Because the HSAT device

clock may not be accurate or tightly synchronised with the

smartphone, the HSAT data needed to be synchronised to the

audio recordings. A 20-minute segment of the audio record-

ings after the HSAT recording started was used to compute the

synchronisation delay with the snore channel signal from HSAT

based on cross-correlation [10].

3. System description

We hypothesise that the integration of these data modalities

can result in more robust screening systems in comparison with

those that only use one modality, since both streams of data are

complementary. Unlike audio recordings, the respiratory effort

signal is not affected by background noise, but it is more prone

to signal loss, as it is measured with a sensor attached to the

body that can fall off or become disconnected from the HSAT

device. Our analysis of the data from 157 nights of recordings

shows that around 7% of the recordings have signal loss in the

respiratory effort sensor. In contrast, audio recordings using a

smartphone placed on a bedside table do not have this issue, but

may capture background noise or interfering breathing sounds

from a bed partner in addition to those of the subject under the

study. Therefore, combining both data modalities could over-

come the disadvantages of individual modalities [16].

Examples of both streams of data are presented in Fig. 1.

In Fig. 1a, the respiratory effort is present with clean recordings

of breathing sounds. In Fig. 1b, the respiratory effort signal is

missing; whereas, in Fig. 1c, background noise is present in the

sound recording.

This study investigates different multimodal deep learning

approaches to screen for OSA based on the analysis of breathing

sounds and abdominal respiratory effort during sleep. Three

mechanisms for fusing the data streams from the two modalities

are considered – early feature fusion, latent space fusion, and

late decision fusion.

3.1. Early feature fusion

For early feature-based fusion, features are combined immedi-

ately after they are extracted from the raw signals, and a single

classifier is trained on the combined features [16]. This is illus-

trated in Fig. 2.

The audio and respiratory effort signals are first divided into

30-s overlapping segments with a shifting window of 10 s. A

long context window is employed so that an apnea event, which

could last up to 30 seconds, can be captured within the window.

Mel spectrograms are computed for the audio segments using

a frame size of 50 ms, a frame rate of 50 Hz, a Hann window,

and a bank of 64 mel filters spaced between 75 Hz and 7.5 kHz.
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Each segment is labeled as either having apnea-hypopnea events

inside it or not according to the scored HSAT data.

The raw respiratory effort signal, and its first and second or-

der differences (i.e., delta and delta-delta) are appended as ad-

ditional features to the mel spectrogram features. Since the raw

respiratory effort signal is sampled at 32 Hz, it is upsampled

to 50 Hz first in order to match the frame rate of mel spectro-

gram features. The combined features are provided as input to a

convolutional neural network (CNN) system similar to the one

employed in our previous study [10]. This network has the same

architecture and parameters that we previously used, since the

dimensionality of the resulting features (1,500 × 67) is close to

that of mel spectrograms (1,500 × 64). It is made of three 2-

dimensional convolutional layers of 16, 32, and 64 filters with

a kernel size of 3 × 3. Each convolutional layer is followed by

a 4 × 3 max-pooling layer, and a batch normalisation layer. All

convolutional layers use ReLU activation, and a dropout rate

of 0.3. The output of the convolutional layers is flattened and

passed to a dense layer with 512 ReLU activation units. Lastly,

a dense layer with one sigmoid unit performs the classification.

The network has 0.7 million parameters.
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Figure 2: System architecture for early feature fusion

3.2. Latent space fusion

For latent space fusion (Fig. 3), the audio mel spectrograms fea-

tures and the respiratory effort signal are fed to separate CNN

filters. The extracted features from the two pathways of con-

volutional layers (i.e., latent space) are flattened, concatenated,

and passed to a dense layer of 512 ReLU units and a dense

layer of one sigmoid unit for classification. The remaining pa-

rameters are identical to the parameters of the single-modality

classifiers that will be introduced next. In this way, the network

is optimised on both data modalities at the same time, and does

not require any additional processing of the output, as opposed

to late decision fusion. This network has 2.4 million parame-

ters.
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Figure 3: System architecture for latent space fusion

3.3. Late decision fusion

For late decision-based fusion, a classifier is trained indepen-

dently for each data modality. Then, individual classifier out-

puts are integrated by computing the sum or product of proba-

bility to produce the final output [16]. The sum of probability

can be seen as the arithmetic mean of the outputs, while the

product of probability can be regarded as the geometric mean

of the outputs [17].

An overview of the proposed late fusion system is given in

Fig. 4. The breathing sounds classifier (upper half of Fig. 4)

is based on the system proposed in our previous study [10],

which is a CNN that takes as input the mel spectrogram for a 30-

second segment, and outputs the probability of the segment con-

taining apnea-hypopnea events. The respiratory effort classifier

(lower half of Fig. 4) is a CNN based on architectures that have

proven successful for the analysis of 1-dimensional physiolog-

ical signals such as ECG [18–20]. Similar to its acoustic coun-

terpart, it takes as input the raw effort signal for a 30-s segment,

and outputs the probability of the segment containing apnea-

hypopnea events. The network consists of 4 1-dimensional con-

volutional layers of 64, 128, 256, and 512 filters with a kernel

size of 1 × 8. A 1 × 4 max-pooling layer, and a batch normal-

isation layer follow each convolutional layer. Other parameters

are the same as those of the breathing sounds classifier. The late

fusion system has 3.7 million parameters in total.

All systems converged within 50 epochs using Tensor-

Flow [21], a learning rate of 0.001, a batch size of 64, the Adam

optimiser, and binary cross-entropy as the loss function.
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RESPIRATORY EFFORT CLASSIFIER

Figure 4: System architecture for late decision fusion

3.4. AHI estimation

OSA screening is typically based on the apnea-hypopnea index

(AHI) – the average number of OSA events per hour over a

night. Our proposed segment-based OSA classification systems

do not directly estimate AHI. Since a typical apnea or hypop-

nea lasts around 30 seconds and segments overlap, adjacent 30-

second segments predicted as containing OSA events can be as-

sumed to belong to the same event. Consecutive segments that

have the same predicted labels are merged into single events.

Then, the AHI is computed as the quotient of the number of

events and the duration of the recording in hours.

4. Evaluation

Experiments were conducted on the annotated OSA corpus, de-

scribed in Section 2, using 10-fold cross-validation – 10 partic-
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ipants per fold with the exception of the last one, which had 13.

For each cross-validation round, one fold was used for testing;

one fold, for validation; and the remaining 8 folds, for training.

The single-modality systems used for the late fusion ap-

proach (i.e., the breathing sounds classifier and respiratory ef-

fort classifier) were used as the baseline systems, since they ev-

idence the performance of our OSA screening systems when

only one data modality is available. Sensitivity (Eq. 1), speci-

ficity (Eq. 2), and area under the receiver-operating character-

istic curve (AUC) were computed from the pooled results for

all system configurations at the generally accepted AHI cut-off

points: 5, 15, and 30 events/hour. These metrics indicate the

diagnostic or screening capability of a test.

sensitivity =
true positives

true positives + false negatives
(1)

specificity =
true negatives

true negatives + false positives
(2)

5. Results and discussion

Table 2 lists the sensitivity, specificity, and AUC of the differ-

ent OSA screening systems at various recognised AHI cut-off

points. Compared to the audio only system, the respiratory ef-

fort only system achieved better specificity but had lower sensi-

tivity (< 0.7), failing to identify many true OSA events. From

a clinical point of view, false positives would be more tolerable

than false negatives when screening for a condition with serious

comorbidities like OSA. However, false positives would result

in reduced diagnostic availability and increased diagnostic cost,

as more people would go through PSG, the gold standard for

OSA diagnosis [22]. By combining information from both data

modalities, the fusion systems in general attained a better per-

formance than the audio only baseline, which evidences that the

integration of complementary data modalities is indeed benefi-

cial for the OSA screening task.

The overall best performance was achieved by the late fu-

sion – sum of probability system (sensitivity: 0.93, specificity:

0.92, AUC: 0.95) when screening for severe OSA (i.e., AHI ≥
30 events/hour), outperforming the baseline systems. The sen-

sitivity was especially improved, from 0.78 for the audio only

system and 0.69 for the respiratory effort only system to 0.93.

This is likely due to the fact that OSA events are in general

under-represented in the training data and systems have a ten-

dency to under-report OSA events. At the AHI cut-off of 30, 39

nights are considered to be severe OSA whereas 118 nights are

mild or healthy. Both late fusion systems were able to exploit

the two data modalities, achieving an improvement in sensitiv-

ity while maintaining good specificity. At other AHI cut-off

points, the late fusion systems also retained a similar sensitivity

to the audio only system while having an improved specificity.

The integration of these data modalities resulted in a better bal-

ance between sensitivity and specificity as well.

Although the latent space fusion system was outperformed

by the late fusion approaches, it showed similar improvement

over the single-modality systems. Furthermore, the former has

the advantage of being contained in a single neural network

model that takes as input both data modalities rather than con-

sisting of two separate models. This facilitates its deployment

in low-resource mobile devices. The early feature fusion ap-

proach did not perform better than the baseline systems. It was

likely caused by the manner respiratory effort features and mel

spectrograms were concatenated: effort features were appended

Table 2: Performance of OSA screening systems at different AHI

cut-off points. In the second row, the split of negative | positive

OSA nights (i.e., below vs. above cut-off point) is shown.

AHI 5 15 30

157 nights 13 | 144 80 | 77 118 | 39

Audio only

Sensitivity 0.86 0.81 0.78

Specificity 0.62 0.84 0.93

AUC 0.75 0.84 0.92

Respiratory

effort only

Sensitivity 0.64 0.57 0.69

Specificity 0.94 0.97 0.99

AUC 0.84 0.91 0.94

Early

feature

fusion

Sensitivity 0.74 0.67 0.67

Specificity 0.53 0.72 0.88

AUC 0.74 0.79 0.86

Latent

space

fusion

Sensitivity 0.81 0.81 0.88

Specificity 0.82 0.74 0.87

AUC 0.87 0.86 0.93

Late fusion

– sum of

probability

Sensitivity 0.86 0.81 0.93

Specificity 0.82 0.77 0.92

AUC 0.87 0.89 0.95

Late fusion

– product of

probability

Sensitivity 0.81 0.81 0.86

Specificity 0.94 0.82 0.94

AUC 0.92 0.90 0.94

next to the higher mel coefficients, and the CNN exploits local

patterns. The relationship between effort features and the whole

mel spectrogram might not have been fully learned by the net-

work and a different network architecture might be needed.

One of the study’s objectives was to establish a baseline

for the development of robust OSA screening systems that can

run on smartphones along with novel and low-cost hardware

for the recording of respiratory effort. Low-cost sensors, such

as Bluetooth-enabled accelerometers or gyroscopes instead of

the more expensive HSAT equipment, can be paired to a smart-

phone to record abdominal respiratory movement as a surrogate

for respiratory effort. Together with acoustics from a smart-

phone microphone, the proposed approach offers the prospect

of inexpensive, continuous monitoring for SDB at home which

facilitates treatment intervention.

6. Conclusions

Robustly screening for OSA in a real home environment during

sleep is a challenging task. There are two main problems: 1)

ambient sound recordings can be affected by background noise;

2) sensor data could be corrupted or missing due to incorrect

fitting or falling off during sleep. This paper has proposed a

novel solution by exploiting the temporal pattern of breathing

sounds and integrating complementary information from ab-

dominal respiratory effort signals in a multimodal deep learn-

ing framework. Evaluated using data collected in over 100

real home scenarios, the best performance was obtained with

the late fusion approach, which offers an inexpensive home-

based solution for accurate and reliable assessment of SDB.

Future work will investigate ways to automatically fall back to

single-modality approaches when data is missing, corrupted or

affected by noise. We have also identified the analysis of a sub-

ject and their bed partner’s breathing sounds during sleep as an

area for future research.
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