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We develop a relativistic perturbation theory for scalar clouds around rotating black holes. We first
introduce a relativistic product and corresponding orthogonality relation between modes, extending
a recent result for gravitational perturbations. We then derive the analog of time-dependent
perturbation theory in quantum mechanics, and apply it to calculate self-gravitational frequency
shifts. This approach supersedes the non-relativistic “gravitational atom” approximation, brings close
agreement with numerical relativity, and has practical applications for gravitational-wave astronomy.

Introduction.—Fundamental bosonic fields are ubiqui-
tous in extensions of General Relativity and the Standard
Model. In black hole (BH) spacetimes, perturbations by
massless bosonic fields are well known to be described by
a series of damped sinusoids called quasi-normal modes
(QNMs) [1, 2]. Unlike normal modes, which exist for con-
servative systems and have purely real spectrum, QNMs
appear in dissipative systems and have complex frequen-
cies ω = ωR + iωI, with the imaginary part setting their
decay time. For BHs, dissipation arises due to radiation
of the field through the horizon and away to infinity.

Massive fields around BHs admit an additional class of
solutions known as quasi-bound states (QBSs). Whereas
QNMs are radiative solutions, with frequency |ω| > µ,
where µ is the field mass, QBSs are spatially con-
fined by the Yukawa suppression and have |ω| < µ.
Thus, QBSs do not radiate at infinity, although they
still dissipate through the horizon. For spinning BHs,
these modes can also undergo superradiant amplification,
leading to the well-known superradiant instability (see,
e.g., [3]). For astrophysical BHs, this process is efficient
for µ ≈ 10−20–10−10 eV, leading to the formation of a
macroscopic boson cloud and the spin-down of the BH.
This phenomenon translates into potentially observable
signatures, such as gaps in the BH spin-mass (Regge)
plane, gravitational wave emission from the condensate
(when the bosonic field is real), or signatures in binary
systems [4–18]. Superradiant instabilities, therefore, rep-
resent a powerful probe of ultralight bosons beyond the
Standard Model, such as axions or dark photons.

Given these (and other) prospects for deviations from
linear mode evolution, there is considerable interest in
calculating nonlinear perturbative effects involving QBSs
or QNMs [5, 19–22]. However, due to the non-Hermiticity
of the system, the spectral theorem does not guarantee
the orthogonality or completeness of these modes—which
moreover often diverge at the BH horizon or infinity—so
it is not clear a priori how to incorporate them into a
perturbative framework.

For QBSs, the problem can be simplified using the

“gravitational atom” or “hydrogenic” approximation. In-
deed, at leading order in the gravitational coupling
α = µM , where M is the BH mass, and beyond the
field’s Compton length, r ≫ µ−1, QBSs reduce to eigen-
functions of the hydrogen atom Hamiltonian. In this limit,
the ingoing condition at the BH horizon is replaced by
a regularity condition at the origin [12, 23–25]. Thus, a
“hydrogenic” inner product ( · , · )hyd can be defined, in
analogy to quantum mechanics, and mode orthogonality
is guaranteed by the spectral theorem in the absence of
dissipative boundaries.1

The hydrogenic approximation (and its relativistic
corrections [12, 26]) has been widely used to com-
pute various perturbative corrections to the linear prob-
lem [12, 18, 19, 27–29]. For instance, to leading order, a
potential term δV arising from, e.g., a binary compan-
ion, or a quartic self-interaction, gives rise to level mix-
ing through the matrix element (Ψnℓm, δV Ψn′ℓ′m′)hyd [12].
The self-gravity of the state also gives rise to a shift in
the mode frequency, proportional to the matrix element
(Ψnℓm, δV Ψnℓm)hyd [4, 27]. However, this approximation
has two drawbacks: it breaks down for higher values of α,
and it does not take into account the dissipative nature of
the problem. To accurately model the phenomenology of
massive fields around black holes, we require a relativistic
perturbative framework, based on an appropriate notion
of orthogonality between the modes.

In this Letter, we introduce a bilinear form for massive
scalar fields in Kerr to take the place of the hydrogenic
inner product in fully relativistic calculations. Under
this bilinear form, which is a natural extension of the
gravitational bilinear form of Ref. [30], Kerr QNMs and
QBSs are truly orthogonal—for all values of α. The
product reduces to the hydrogenic inner product in the
limit α → 0, but it is also applicable in the relativistic
regime, and forms the basis for a relativistic perturbation
theory in terms of modes.

1 The same is not true for QNMs, which still radiate to infinity.
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Using the relativistic product, we derive the analog of
time-dependent perturbation theory in quantum mechan-
ics for the scalar field. As an application, we calculate
the leading relativistic frequency shift due to the self-
gravity of a superradiant mode, and we find a significant
improvement over the hydrogenic approximation when
comparing to previously-published numerical-relativity
results [9], improving the agreement by a factor of 2.5
even at α = 0.4. Our product therefore opens a new path
to accurate nonlinear mode calculations.

We use GN = c = ℏ = 1 units throughout.
Bilinear form for massive scalars.—We first extend the

bilinear form of [30] to scalar massive perturbations of
Kerr and prove the orthogonality of scalar modes with
both quasinormal and quasibound asymptotic conditions.

The Kerr line element for a black hole of mass M and
spin parameter a is given by

ds2 =−
(
1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdϕ

+
Σ

∆
dr2 +Σdθ2 +

Λ

Σ
sin2 θdϕ2, (1)

in Boyer-Lindquist coordinates, where ∆ = r2+a2−2Mr,
Σ = r2+a2 cos2 θ, Λ = (r2+a2)2−∆a2 sin2 θ. We denote
the event horizon (the greater root r± of ∆) by r+ and
define the tortoise coordinate, dr/dr∗ = ∆/(r2 + a2).

The Lagrangian density for the complex Klein-Gordon
equation on a Kerr background (which coincides with the
Teukolsky equation OΦ = 0 for a spin s = 0 complex
massive field [31]) reads

L = −
√
−g(gab∇aΦ

∗∇bΦ+ µ2Φ∗Φ), (2)

where µ is the mass. A product between two solutions of
the Klein-Gordon equation can be built as follows. Start
from a “base” product (related to the symplectic form),

ΠΣ [Φ1, Φ2] =

∫
Σ

(Φ1∇aΦ2 − Φ2∇aΦ1)n
adV, (3)

where Σ is a time slice with unit normal na. One can
easily verify that, if Φ1, Φ2 are solutions, the product is
conserved (i.e., independent of Σ) and that it is C-linear
in both entries, or bilinear.

Reference [30] showed that one can build, from this base
product, an infinite number of conserved quantities by
inserting symmetry operators of the equation of motion.
In Kerr, one can make use of the symmetry operators
associated with the time-translation and ϕ rotation isome-
tries, Lt and Lϕ, as well as with the Killing tensor of
the spacetime. One can also use the symmetry operator
associated with the t–ϕ spacetime symmetry, J , whose
action on a scalar field simply takes t → −t and ϕ → −ϕ.
Note that the Teukolsky operator and the t–ϕ reflection
operator commute on s = 0 Weyl scalars, OJ = JO.

The product relevant for the orthogonality relation can
be built from the t–ϕ reflection operator [30]. For scalar
massive (or massless) perturbations with compact support
it is given by

⟨⟨Φ1, Φ2⟩⟩ = ΠΣ [JΦ1, Φ2] . (4)

In Boyer-Lindquist coordinates, the bilinear form reads

⟨⟨Φ1, Φ2⟩⟩ =
∞∫

r+

dr

∫
S2

d2Ω

[
2Mra

∆
(JΦ1∂ϕΦ2 − Φ2∂ϕJΦ1)

+
Σ

∆

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
× (JΦ1∂tΦ2 − Φ2∂tJΦ1)

]
,

(5)

where d2Ω = sin θ dθdϕ. In addition to being bilinear and
conserved, one can easily prove, in analogy to Ref. [30],
that

1. the bilinear form is symmetric, ⟨⟨Φ1, Φ2⟩⟩ =
⟨⟨Φ2, Φ1⟩⟩; and

2. the time-translation symmetry operator is symmet-
ric with respect to the bilinear form, ⟨⟨LtΦ1, Φ2⟩⟩ =
⟨⟨Φ1,LtΦ2⟩⟩.

Extension to mode solutions.—Quasinormal and quasi-
bound states are mode solutions of the Teukolsky equation,
Φℓmω = e−iωt+imϕRℓmω(r)Sℓmω(θ), where Sℓmω are the
s = 0 spin-weighted spheroidal harmonics with angular
numbers ℓ, m [31] and the radial solution can be defined
in terms of an asymptotic series involving a three-term
recursion relation [32, 33]. The modes are required to
be regular at the horizon, Φ ∼ e−ikHr∗ as r∗ → −∞,
where kH = ω −mΩH and ΩH is the angular frequency
of the outer horizon ΩH = a/(2Mr+). At infinity, the
two families satisfy

Φ ∼ r−1eikr∗ , r∗ → ∞ (QNMs), (6)

Φ ∼ r−1e−ikr∗ , r∗ → ∞ (QBSs), (7)

where k =
√

ω2 − µ2.
Because the radial solutions have non-compact support,

and for ωI < 0 actually diverge as r∗ → −∞ (QNMs
and QBSs) and as r∗ → +∞ (QNMs), we must find
a suitable, finite extension of the bilinear form (4). In
analogy with Ref. [30], we extend the definition of the
bilinear form to a complex radial integration contour C,
such that the radial integral is absolutely convergent. We
define the bilinear form over a pair of QNMs or QBSs
with complex frequencies ω1, ω2 by integrating over a
complex r∗ contour such that

arg r∗ + arg(ω1 + ω2) = −π/2, r∗ → −∞ , (8)
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Figure 1. The relativistic product between two ℓ = m = 1 QBSs in Schwarzschild, as a function of the counter-term regularization
point ϵ = r̄/r+ − 1, for different scalar field masses. The red curve is a power-law fit, showing convergence to zero. In the top-left
corner, we show the absolute value of the radial mode-functions around the BH. Modes are normalized to have ⟨⟨n, n⟩⟩ = 1 in
the regularization limit.

and running along the real axis elsewhere. If the product
is over one or two QNMs, we also take

arg r∗ + arg(±k1 ± k2) = π/2, r∗ → ∞ , (9)

where the plus (minus) sign holds for QNMs (QBSs).
Explicitly, the bilinear form on modes reads

⟨⟨Φ1, Φ2⟩⟩modes = iδm1m2
e−i(ω1−ω2)t

∫
C

dr
K

∆
R1R2, (10)

where

K(r) = α12(r
2 + a2)2(ω2 + ω1)− 2Mraα12(m1 +m2)

− γ12(ω2 + ω1)a
2∆(r), (11)

α12 = 2π

π∫
0

dθ sin θ S1(θ)S2(θ), (12)

γ12 = 2π

π∫
0

dθ sin3 θ S1(θ)S2(θ). (13)

Note that, as demonstrated for Kerr QNMs in Ref. [30],
this product can be used to project initial data onto modes,
resulting in the known mode excitation coefficients [34–
36]. In the hydrogenic limit, this reduces to the familiar
inner product on the (real) hydrogenic mode functions,

⟨⟨Φ1, Φ2⟩⟩ → δm1m2

∞∫
0

dr r2 R1R2(r)

π∫
0

dθ sin θ S1S2(θ)

≡ (Φ1, Φ2)hyd, (14)

up to an overall factor. In this limit, no regularization is
required.

For QBSs in Schwarzschild, it is convenient to adopt an
alternative regularization involving counter-term subtrac-
tion [37]. This is particularly useful when mode solutions
are only known numerically and thus cannot be easily
continued into the complex r∗-plane. For Schwarzschild,

the integrals over r and θ factorize, and the latter gives
rise to the usual orthogonality relation for spherical har-
monics. The radial integration can then be regularized
by subtracting suitable counter-terms,

⟨⟨Φ1, Φ2⟩⟩Schwarzschild QBS

= iδm1m2
δl1l2 (ω1 + ω2) lim

r̄∗→−∞

[∫ ∞

r̄∗

dr∗X1(r
′
∗)X2(r

′
∗)

+
i

ω1 + ω2
X1(r̄∗)X2(r̄∗) +O(r−1

∗ )

]
, (15)

where X(r) = rR(r). For long-lived states (M |ωI | ≪ 1),
only the leading counter-term is needed to make the prod-
uct finite. Further details of the counter-term subtraction
method, including a discussion of higher-order counter-
terms, are provided in the Supplemental Material. Note
that this method works for QBSs, since regularizing the
QNM divergence at infinity would require an infinite series
of subtractions.
Mode orthogonality.—With the finite bilinear form in

hand, from property 2 we obtain

(ω1 − ω2)⟨⟨Φ1, Φ2⟩⟩ = 0 (16)

for a pair of QNMs or QBSs with frequencies ω1, ω2.
Then, either ⟨⟨Φ1, Φ2⟩⟩ = 0 or ω1 = ω2, proving that
QNMs and QBSs are orthogonal. In particular, modes of
the two families are also mutually orthogonal.

We now numerically compute the product (15) between
two QBSs in Schwarzschild with different radial numbers2

n. We do so in the hydrogenic (α = Mµ ≪ 1) and
relativistic (α ≃ 1) regimes. To compute the QB frequen-
cies and radial solutions, we use the Leaver continued

2 The product between states with different ℓ,m numbers is trivial,
as their orthogonality in Schwarzschild follows from the orthog-
onality of the spherical harmonics. The orthogonality between
different ℓ modes becomes non trivial in Kerr [30], due to the
spin-weighted spheroidal harmonics.
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fraction method [32]. We perform product integrals (15)
numerically using Mathematica.
Figure 1 shows the product between the ℓ = m = 1

fundamental mode and the first overtone as a function
of the integral regulator ϵ = r̄/r+ − 1. Different panels
span the hydrogenic regime and the relativistic regime.
The product between the two modes goes to zero as a
power-law as ϵ → 0 in all cases, confirming numerically
the orthogonality to a precision of order 10−7. For higher
values of α, we are able to probe the integral for smaller
r due to better convergence resulting from milder diver-
gences at the horizon. We obtain similar results also for
higher radial overtones.

Relativistic perturbation theory.—We now describe our
relativistic approach to compute transitions between
modes due to a perturbation. To emphasize the sim-
ilarity to ordinary Schrödinger perturbation theory in
quantum mechanics, we work in the Hamiltonian formu-
lation, writing the metric in Arnowitt-Deser-Misner form
gab = −N−2(ta − Na)(tb − N b) + hab (see App. E of
[38]), assumed to be some perturbation of Kerr. Starting
from the Lagrangian (2) we introduce the momentum
Π = N−1

√
h(ta −Na)∇aΦ and the Hamiltonian, leading

to equations in first order form,(
Φ̇

Π̇

)
≡ Lt

(
Φ

Π

)
= H

(
Φ

Π

)
, (17)

where

H ≡

(
NaDa N/

√
h√

h(DaNDa −Nµ2) DaN
a

)
. (18)

In phase-space notation, the relativistic product takes
the form ⟨⟨(Φ1, Π1)

T, (Φ2, Π2)
T⟩⟩ =

∫
C(Φ1 ◦ JΠ2 +Π1 ◦

JΦ2) d
3x.

For a general perturbation, H is time-dependent. We
make an ansatz for the column vector F = (Φ,Π)T as-
sociated with a solution in terms of a superposition of
modes with time-dependent amplitudes,3

F (t) =
∑
q

cq(t)F0q(t), (19)

where F0q are the QB and QN modes of the unperturbed
problem with Hamiltonian H0, i.e., H0F0q ≡ LtF0q =
−iωqF0q, so that F0q(t) has harmonic e−iωqt time depen-
dence.

We decompose the Hamiltonian as H = H0+δH, where
the subscript 0 denotes quantities associated with the
Klein-Gordon equation in the Kerr metric. The scheme
rests on the facts that ⟨⟨F0q, F0q′⟩⟩ = δqq′ and that H0

3 Considering the Π and Φ components separately, one sees that
consistency of (19) requires |ċq/cq | ≪ |ωq | and a/M ≲ 1.

is symmetric4 relative to our relativistic product on two-
vector states Fi. A standard calculation mirroring quan-
tum mechanics then gives the perturbation series for the
time-dependent excitation coefficients,

ċn⟨⟨Φn, Φn⟩⟩ =
∑
q

cq⟨⟨F0n, δH(t)F0q⟩⟩. (20)

If δH is approximately t-independent, we have an (ap-
proximate) perturbed QN or QB mode F = F0 + δF ,
defined by the “eigenvalue equation” HF = −i(ω0+δω)F
and appropriate boundary conditions, with a frequency
shift δω. Taking an inner product ⟨⟨F0, · ⟩⟩ with the
unperturbed QNM or QBS and going through exactly
the same steps as in ordinary time-independent quantum
mechanics perturbation theory immediately yields the
usual formula,

−iδω =
⟨⟨F0, δHF0⟩⟩
⟨⟨F0, F0⟩⟩

, (21)

at first perturbation order. Substituting this back into
the eigenvalue equation and taking an inner product
⟨⟨F0q, · ⟩⟩ with all unperturbed QNM or QBS F0q orthog-
onal to F0 then gives

δF0 =
∑
q

⟨⟨F0q, δHF0⟩⟩
−i⟨⟨F0q, F0q⟩⟩ (ω0 − ω0q)

F0q, (22)

using (38) at first order. In the Supplemental Material, we
also derive the perturbation equations for the excitation
coefficients in the second-order formalism.

Frequency shift due to self-gravity.—We apply our rela-
tivistic perturbative framework to calculate the frequency
shift δωn of an (unstable) mode Φn close to the superra-
diant bound in Kerr due to its self-gravity. We assume
that the squared amplitude A2 of the mode and the rota-
tion parameter a/M are both relatively small and neglect
effects that are not linear in these quantities. We show in
the Supplemental Material that, under these assumptions,
the perturbed metric δgab = gab − gab0 can be written
in the form δgab ≈ −δ[N−2(ta − Na)(tb − N b)] where
δNa ≈ Na

0 δN/N0. Following [19], we therefore take a
semi-Newtonian, approximation for the gravitational po-
tential sourced by a mode. With this, the perturbed
Hamiltonian of the scalar field is δH ≈ δV H0, where
δV = δN/N0 is given approximately by

δV (r) ≈ −µ2

1
r

r∫
r+

d3r′ |Φn|2 +
∞∫
r

d3r′
|Φn|2

r′

 , (23)

4 The symmetry ⟨⟨F1, H0F2⟩⟩ = ⟨⟨H0F1, F2⟩⟩ can be shown by
integration by parts, and in contrast to property 2 does not
require Fi to be solutions.
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where the integration is carried out over flat space and
we have taken the leading order (spherical) multipole.

To estimate the correction δωn to the mode fre-
quency ωn in Kerr we use (21), with δH ≈ δV H0

and H0(Φn, Πn)
T = −iωn(Φn, Πn)

T. Reverting to 1-
component form, we get

δωn

ωn
≈ ⟨⟨Φn, δV Φn⟩⟩

⟨⟨Φn, Φn⟩⟩
. (24)

This approach is similar in spirit to that outlined in
Refs. [22, 39–41]. In the nonrelativistic limit, this formula
reduces to that found in Refs. [19, 27]. Note that superra-
diantly unstable QBSs, which have ωI > 0 and decay at
infinity, have no divergence at the horizon and therefore
require no regularization of the product.
For completeness, we also write the equation for the

time evolution of the excitation coefficients, better suited
to when the perturbation δH ≈ δV H0 is time-dependent,

ċn⟨⟨Φn, Φn⟩⟩ = −i
∑
q

ωq⟨⟨Φn, δV Φq⟩⟩. (25)

We now calculate numerically the frequency shift (24)
for superradiant modes with ℓ = m = 1. For a given
coupling α, we set the BH spin to be close to the super-
radiant bound mΩH ≳ ωR, the same setup as [19]. For
this application, we use the Black Hole Perturbation

Toolkit to compute the modes’ spin-weighted spheroidal
harmonics [42].
In Fig. 2, we compare for several α our perturbative

calculation of δω/Mcloud against the numerical relativ-
ity estimate of ∂ω/∂Mcloud from [19]. We find excellent
agreement, including significant improvement over the
hydrogenic approximation, which begins to fail around
α ≃ 0.3. For α = 0.4, the error is reduced from 28%
to 11%. The remaining disagreement is likely due to
the approximation that δω is linear in the cloud mass
(∂ω/∂Mcloud ≃ δω/Mcloud), to our semi-Newtonian ap-
proximation for the perturbed equation, and to the
monopolar approximation of the Newtonian potential.
In the Supplemental Material, we include another ex-

ample, calculating relativistic matrix elements of tidal
perturbers [12], and again find O(10%) corrections to the
hydrogenic approximation. This example is relevant for
gravitational wave signals from extreme or intermediate
mass-ratio binaries (see also [22]).
Conclusions.—In this study, we introduced a bilinear

form for massive scalar-field perturbations of Kerr and
showed that modes are orthogonal with respect to this
product. Our bilinear form replaces the standard quan-
tum mechanics inner product—often employed in a hy-
drogenic approximation—making no assumption on the
strength of the gravitational coupling α. We also intro-
duced an approach to compute perturbative corrections
to mode evolution due to a perturbation, and applied
this to recover frequency shifts due to the self-gravity

hydrogenic
numerical relativity (Siemonsen+2023)
relativistic product (this work)

0.0 0.1 0.2 0.3 0.4

-0.04

-0.02

0.

Figure 2. Frequency shift due to the self-gravity of a super-
radiant mode in Kerr (ℓ = m = 1, n = 0). We compare
our result based on the relativistic product with the hydro-
genic approximation, and with the fully relativistic (numerical)
frequency shift from Ref. [19]. For the analytic results, we
plot δω/Mcloud, which should be a good approximation of the
derivative for small cloud masses.

of a superradiant state. For large values of α, accurate
results were previously only obtainable using numerical
relativity.
Our bilinear form and perturbative framework have

both conceptual and practical importance. Other ap-
plications could be to compute corrections due to self-
interaction terms such as quartic potentials [27], or in the
sine-Klein-Gordon equation for the QCD axion [43]. In
future work, we also hope to explore transitions between
QN and QB modes, and to rigorously derive angular se-
lection rules for massive perturbations in Kerr using the
bilinear form.
Another natural extension would be to generalize our

product to massive spin-1 fields. This scenario presents a
number of difficulties as the Proca equation is not separa-
ble using the standard Teukolsky formalism. Nevertheless,
an ansatz yielding separability of the Proca equation in
Kerr spacetime was recently discovered [44, 45], and could
allow for a generalization of the bilinear form.

Finally, in the context of BH binaries, the gravitational
product [30] could be used with the second-order Teukol-
sky equation [46, 47] to estimate nonlinear corrections to
the BH ringdown. This could be used to inform waveform
development and address recent questions on nonlinear
effects during the ringdown [20, 21, 48–50]. We hope to
report on these interesting problems in the future.
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Supplemental Material

I. COUNTER-TERM SUBTRACTION METHOD

In certain applications, e.g., when mode solutions are
only known numerically, the complex-contour regular-
ization can be difficult to implement in practice. Here
we introduce an alternative regularization based on the
subtraction of divergent boundary terms at the horizon
[37].
Consider for simplicity the bilinear form (4) in

Schwarzschild. It is immediate to see that in this case the
integrals in r and θ factorize, with the latter reducing to
the orthogonality condition for spherical harmonics,

⟨⟨Φ1, Φ2⟩⟩ = iδm1m2
δl1l2 (ω1 + ω2)

∞∫
r+

dr
r2

f
R1R2, (26)

where f = 1 − 2M/r. It is convenient to define the
scalar function R(r) = X(r)/r, so that the radial integral
becomes simply

⟨⟨Φ1, Φ2⟩⟩ ∼
∫

dr f−1X1X2 =

∫
dr∗ X1X2. (27)

In the near-horizon limit, the solution X can be described
by the series expansion

X(r) ∼
+∞∑
n=0

Xn
r+ ∼

+∞∑
n=0

e−iωr∗(r − r+)
nbn(ω). (28)

At leading order, the mode behaves as

X0
r+(r) ∼ e−iωr∗ ∼ (r − r+)

r+ωI . (29)

When the mode is stable (ωI < 0) this term diverges
at the horizon. To regularize this divergence, we simply
subtract the near-horizon integral of the leading order
term,

⟨⟨Φ1, Φ2⟩⟩ ∼ lim
r̄∗→−∞

[ ∞∫
r̄∗

dr∗X1(r
′
∗)X2(r

′
∗)

+
i

ω1 + ω2
X1(r̄∗)X2(r̄∗)

]
. (30)

Note that this method is suitable to regularize the hori-
zon divergence of both (massless or massive) QNMs and
QBSs, as their leading-order behavior in the near-horizon
expansion coincides.
This method can be extended to regularize the diver-

gence of any order N = n1 + n2 in the horizon expansion
(28),

Xn1
r+X

n2
r+ ∼ (r − r+)

N (r − r+)
r+(ωI1+ωI2). (31)

The N -th term in the expansion is regular if r+ωI1 +
r+ωI2 +N ≥ 0. However, QBSs with interesting (i.e., po-
tentially detectable) phenomenology are long lived modes,
M |ωI | ≪ 1. In this limit, all terms beyond the leading
order are regular, and the subtraction of the leading order
divergence (30) is sufficient.

The complex contour and the counter-term subtraction
method give equivalent definitions of the mode product.
To see this, we separate the integral into

⟨⟨Φ1, Φ2⟩⟩ ∼
∫
C

dr∗X1X2 =

∫
C+

dr∗X1X2 +

+∞∫
r̄∗

dr∗X1X2.

(32)
where C+ : r∗ = r̄∗+ρeiβ and β is an angle in the complex
plane chosen to satisfy condition (8). Assuming the modes
are very bound M |ωI | ≪ 1 and in the limit of r̄∗ → −∞,
we find that the first integral is equal to

e−i(ω1+ω2)r̄∗eiβ
0∫

∞

dρ e−i(ω1+ω2)ρe
iβ [

1 +O(ρ−1)
]

=
i

ω1 + ω2
e−i(ω1+ω2)r̄∗

[
1 +O(ρ−1)

]
= +

i

ω1 + ω2
X1(r̄∗)X2(r̄∗)

[
1 +O(r̄−1

∗ )
]
. (33)

This is precisely the counter term defined in (30).

II. COVARIANT PERTURBATION THEORY

Instead of the Hamiltonian approach to perturbation
theory outlined in the Letter, we may also consider a
“covariant” (one component) form. As in the previous
section, we consider a perturbation gab = gab0 + δgab, with
correspondingly perturbed KG operator O = O0 + δO.
As in the main text, the ansats for the solution to OΦ = 0
is approximated by a sum of QN or QB modes Φ0q on the
unperturbed spacetime, with t-dependent coefficients,

Φ =
∑
q

cq(t)Φ0q (34)

where the dependence of Φ,Φ0q on t is implicitly un-
derstood. Consider the quantity ΠΣ(t)(Φ1 ◦ J , Φ2) =
⟨⟨Φ1, Φ2⟩⟩Σ(t) on the perturbed spacetime. Then we have

d

dt
⟨⟨Φ1, Φ2⟩⟩Σ(t) =

∫
Σ(t)

[(OΦ1◦J )Φ2−Φ1◦J (OΦ2)] t
adΣa,

(35)
which in the absence of a perturbation states that the bi-
linear form does not depend on the chosen Cauchy surface
Σ(t) if Φ1, Φ2 solve the unperturbed KG equation. Now
we take Φ1 = Φ0q, a QN or QB mode of the unperturbed
spacetime, and Φ2 = Φ. Furthermore, instead of Σ(t) we
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take one of the complex contours C(t) required to define
the inner product for QN or QB modes, as described in
the Letter. Assuming that |ċq/cq| ≪ |ωq|, we then have

⟨⟨Φ0q, Φ⟩⟩C(t) ≈ cq(t)⟨⟨Φ0q, Φ0q⟩⟩C(t). (36)

Combining with Eq. (35) gives using OΦ ≈ 0 and
O0Φ0q = 0 gives

ċq(t) ≈
∑
q′

cq′(t)

∫
C(t)

(δOΦ0q) ◦ J Φ0q′ t
adΣa

≡
∑
q′

δO(t)qq′cq′(t),

(37)

where we defined δO(t)qq′ =
∫
C(t)(δOΦ0q) ◦ J Φ0q′ t

adΣa.

This equation is solved as usual by a perturbation series
similar to Eq. (38) in the Letter

cq(t) = cq(t0) +
∑
n>0

∫
t0<s1<···<sn<t

dns

δO(sn)qqn · · · δO(s2)q3q2δO(s1)q2q1cq1(t0),

(38)

If δO can be assumed to be nearly time-independent, we
may obtain an expression for the frequency shift of a QN
or QB mode Φq = Φ0q + δΦq defined by LtΦq = −i(ωq +
δωq)Φq and appropriate boundary condtions. Using the
properties of the bilinear form, we then have

d

dt
⟨⟨Φ0q, δΦq⟩⟩C(t) = −⟨⟨LtΦ0q, δΦq⟩⟩C(t)+⟨⟨Φ0q,LtδΦq⟩⟩C(t).

(39)
On the other hand, Eq. (35) gives

d

dt
⟨⟨Φ0q, δΦq⟩⟩C(t) = −

∫
C(t)

Φ0q ◦ J (O0δΦq) t
adΣa. (40)

Since to first order in perturbation theory O0δΦq +
δOΦ0q = 0, and LtδΦq = −i(ωqδΦq + δωqΦ0q), we easily
get

−iδωq =
(δO)qq

⟨⟨Φ0q, Φ0q⟩⟩
(41)

for the frequency shift. In Schwarzschild, we can re-write
(δO)qq = (2ωq)

−1⟨⟨Φq0, (N
2δO)Φq0⟩⟩.

III. PERTURBED SCALAR FIELD
HAMILTONIAN

Here we estimate the perturbation δH to the scalar
field Hamiltonian due to the self-gravity of a mode Φ
of relatively small amplitude. We work on a Kerr back-
ground with relatively small a/M and count orders for
simplicity in a dimensionless parameter δ ≲ 1 so that
a/M = O(δ) = |Φ|2, though we could in principle eas-
ily take |Φ|2 ≪ a/M as well. The mode is assumed

to be of superradiant (unstable) type with frequency
ω = ωR + iωI close to the superradiant bound, with
ωR ≲ mΩH = O(a/M), field mass µ2 ≈ ω2

R and
M |ωI | ≪ 1, so the field amplitude’s modulus is grow-
ing only slowly. This growth is neglected. An unstable
mode (ωI > 0) is regular at r = r+ and supported far5

(1 ≲ r/r+) from the ergo-surface.
To include the self-gravity of such a mode, we must

in principle consider the full Einstein-scalar field system.
This is difficult, so we resort to a semi-Newtonian ap-
proach. It is convenient to discuss this in the Hamiltonian
formulation of the Einstein-complex-scalar equations, see
e.g. App. E of [38] for details and notation. For the
coupled Einstein-scalar system, we supplement the La-
grangian to

L =
√
−g

(
1

8πGN
R− gab∇aΦ

∗∇bΦ− µ2Φ∗Φ

)
. (42)

To simplify the formulas and differently from the Letter,
our units are such that 8πGN = 1 in the following. The
ADM-ansatz is gab = −N−2(ta −Na)(tb −N b) + hab ≡
−nanb+hab, and the ADMmomentum is pab =

√
h(Kab−

habK). We write N = N0 + δN , pab = pab0 + δpab, hab =
h0ab + δhab etc. where a “0” refers to the Kerr quantities,
and when referring to the size of such tensors, we mean
a Cartesian coordinate system made from the Boyer-
Lindquist coordinates (r, θ, ϕ).
Our aim is to solve the ADM evolution- and con-

straint equations approximately by a semi-Newtonian,
time-independent ansatz. In this ansatz, we attempt to
put δhab = 0, while keeping the other variables perturba-
tively small in δ, in such a way as to be consistent with
the ADM evolution- and constraint equations. We will
argue that it is possible to achieve

δpab = O(δ2), δhab = 0,

δNa = O(δ), δN = O(δ).
(43)

In fact, as we shall see momentarily, consistency with
the ADM evolution- and constraint equations requires
that we make specific choices of δN = (δV )N0, δN

a =
(δV )Na

0 + δXa, δpab as, respectively

Da
(
N2

0DaδV
)
= N2

0

(
Π∗Π

h
− µ2Φ∗Φ

2

)
Da

(
1

N0
DaδXb

)
= −2ReΠ∗DbΦ/

√
h

δpab = −δ

[√
h

N

(
D(aNb) −

1

2
habDcN

c

)]
.

(44)

The right sides of the first two equations are O(δ3) func-
tions varying on a dimensionless length scale of 1/δ by our

5 For α = 0.1, the peak is at r/r+ ≈ 100; for α = 0.4, the peak is
at r/r+ ≈ 7.
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assumptions about Φ, ω, µ. Both equations are of Laplace
type (divergence form), so solutions are easily shown to
exist and are expected to be of order δV = O(δ) = δNa

up to and including r = r+, with derivatives falling off
correspondingly faster. Thereby, the third equation yields
δpab = O(δ2).

We now show that our ansätze are consistent with the
ADM constraint- and evolution equations at the indicated
perturbative orders in δ. The ADM evolution equation
for hab is

ḣab (= 0) =
2N√
h
(pab − 1

2habp)− 2D(aNb) (45)

which holds in the background since Kerr is stationary.
The third equation is made precisely in such a way that
it holds exactly also for the perturbed solution. Consider
next the ADM evolution equation for pab. For consistency,
we need to show ṗab = O(δ2). This equation is lengthier
and can be found e.g. in E.2.36 of App. E of [38], to
which we need to add the contributions

ṗab = · · ·+N
√
hD(aΦ∗Db)Φ− 1

2
N
√
h(DcΦ∗DcΦ

+ µ2Φ∗Φ)hab +
NΠ∗Π

2
√
h

.
(46)

Using that the equation holds in the background with
ṗab0 = 0, one easily finds ṗab = O(δ2).

We must also consider the Hamiltonian and momentum
constraints, which are

1
2 (R+ pabpab/h− 1

2p
2/h) = Tabn

anb,

Da(p
ab/

√
h) = Tcdn

chd
b

(47)

where Tab is the stress tensor of Φ and Rab is the Ricci
curvature of hab. Taking the divergence of the ADM
evolution equation for hab and using the second equation
in (44), we see that the momentum constraint holds up
to an including terms of order O(δ3). Taking the trace of
the ADM evolution equation for pab and using the first
equation in (44), we see that the Hamiltonian constraint
holds at the same order as ṗ, i.e. O(δ2), as is required for
consistency.
Our mode is supported relatively far from the hori-

zon, where N0 ≈ 1, Na
0 ≈ 0, hab ≈ δab. Under these

approximations Da → ∂a and the source of δXa in Eq.
(44) (the momentum current) becomes ≈ −2ωImΦ∗DaΦ.
For ω2 ≈ µ2, this term is negligible, so we may also ne-
glect δXa, and with this, δNa ≈ (δV )Na

0 at the leading
approximation. The remaining Eq. (44) become

∇⃗2δV ≈ µ2Φ∗Φ

2
≈ 4πGNTtt

δpab = O(δ3)

(48)

where we have reinserted Newton’s constant (so δpab is
seen to be even smaller than originally anticipated). The

Poisson equation may be solved in the usual way which in
the s-wave approximation gives the expression for δV in
the Letter, the formula for δN, δNa, and that of the scalar
field Hamiltonian H, given by δH = (δV )H + O(δ2) at
the leading approximation. Since the perturbation itself
is of order δ ∼ |Φ|2, the subleading part may be dropped
in the computation of the frequency shift δω = O(|Φ|2).

IV. APPLICATION TO TIDAL POTENTIAL

As another example, we consider the tidal, Newtonian
potential arising from a non-spinning binary companion to
a (Schwarzschild) black hole endowed with a QB state. In
the hydrogenic approximation, this was shown to give rise
to transitions between modes of the QB spectrum [12, 29].

A binary companion induces a perturbation in the
background metric gab = gab0 + δgab. This leads to a
shift in the potential of the scalar field (at leading or-
der) δV ∼ δgtt ∼

∑
ℓpmp

rℓpYℓpmp , where the subscript
distinguishes the angular numbers of the perturbation
[12].6 We neglect the time dependence of the potential
due to the companion’s motion. This could be introduced
after the calculation of the matrix element in an adiabatic
approximation [12], or taken fully into account in the
relativistic matrix element.

We compute the level mixing due to this external poten-
tial between modes with ℓ = 1, m = 1,−1, and n = 0, 1
(or |211⟩ and |31−1⟩ in the hydrogenic notation7). Note
that this transition is allowed in the case of tidal quadrupo-
lar perturbations ℓp = 2 by the angular selection rules
due to the angular dependence of the perturbed potential
[12]. These selection rules survive in the relativistic limit
(at least in Schwarzschild) as the bilinear form reduces
to the standard inner product for spherical harmonics.
We will therefore focus on the radial part of the matrix
element.

In the hydrogenic approximation, the matrix elements
of δV read

(Ψhyd
ñ1ℓ1m1

, δV Ψhyd
ñ2ℓ2m2

)hyd ∼
∞∫
0

dr r4Rhyd
ñ1ℓ1m1

Rhyd
ñ2ℓ2m2

,

(49)

6 In our formalism, it is possible to consistently include relativistic
corrections to the tidal potential by working out the perturbed
scalar field Hamiltonian δH to a better approximation than given
above. However, a full description of the binary system is beyond
the scope of this work.

7 In this notation, states are labelled by the three quantum numbers
|ñℓm⟩, where ñ = ℓ+ n+ 1 is the principal quantum number.
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Figure 3. Relative difference in the matrix element of the com-
panion’s tidal potential, computed with our bilinear form and
in the hydrogenic approximation. The discrepancy increases
with α, as the hydrogenic approximation breaks down.

where Rhyd
nℓm are the hydrogenic wavefunctions,

Rhyd
ñℓm(r) =

√(2µα
ñ

)3 (ñ− ℓ− 1)!

2ñ(ñ+ ℓ)!

(2αµr
ñ

)ℓ
e−

µαr
ñ

× L2ℓ+1
ñ−ℓ−1

(2µαr
ñ

)
. (50)

Notice that the hydrogenic wavefunctions are everywhere
regular and are integrated from the origin, as already
discussed.

The matrix element appearing in the fully relativistic

perturbative expansion, on the other hand, reads

⟨⟨Φn1ℓ1m1
, δV Φn2ℓ2m2

⟩⟩ ∼
∞∫

r+(1+ϵ)

dr r2f(r)X1(r
′)X2(r

′)

+
ir2+

ω1 + ω2
X1(R)X2(R) ,

(51)

Notice that the potential modifies the boundary regular-
ization term at the horizon. In the nonrelativistic limit,
the full radial solutions X become real and tend to the
hydrogenic approximation: Rhyd

nℓm(r) ≈ Re(Xnℓm(r))/r.
We evaluate the relativistic matrix element (51) on

numerical Klein-Gordon solutions. We find that this con-
verges to a finite nonzero value as we take the integral
regulator ϵ → 0, confirming that the tidal potential gives
rise to level-mixing between the two modes under consid-
eration.
In Fig. 3 we show the relative difference between the

hydrogenic matrix element appearing in Ref. [12] and
our fully relativistic treatment (51), for a range of scalar
masses α. While the matrix elements obtained with the
two methods are overall comparable, the relative error
clearly increases for higher α, as the hydrogenic approxi-
mation starts to loose accuracy.
Interestingly, the relative error can be as high as 10%

even for values of α ≃ 0.2, where the radial solutions
are still relatively accurate (within at most 5%). This
suggests that relativistic corrections to the mode product
itself—included in our fully relativistic bilinear form, but
not in the quantum-mechanics inner product—contribute
significantly to the matrix element. Previous work on
mode mixing focused on relativistic corrections to the de-
cay width of the modes [26], or resorted to fully numerical
methods [5].
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