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The transcription factor NRF2 is well known as a master regulator of the cellular stress
response. As such, activation of NRF2 has gained widespread attention for its potential
to prevent tissue injury, but also as a possible therapeutic approach to promote repair
processes. While NRF2 activation affects most or even all cell types, its effect on epithe-
lial cells during repair processes has been particularly well studied. In response to tissue
injury, these cells proliferate, migrate and/or spread to effectively repair the damage. In
this review, we discuss how NRF2 governs repair of epithelial tissues, and we highlight
the increasing number of NRF2 targets with diverse roles in regulating epithelial repair.

Introduction
Epithelial cells are tightly packed cells, which exert a wide variety of different functions depending on
the type of tissue and organ. Major functions of epithelial cells include the secretion/excretion of
material, the absorption of nutrients as well as filtration. Some epithelial cells also act as a barrier to,
and sensor of the external environment, and they are actively involved in inflammatory processes. The
epithelium must therefore be equipped with efficient protective capabilities to handle diverse environ-
mental challenges while maintaining its function, or in the case of injury, mounting an effective repair
response [1]. Similar overarching mechanisms govern epithelial repair throughout the body, although
tissue-specific processes also take place. Generally, a healing response is composed of three overlap-
ping phases, which have been most thoroughly studied in the skin: inflammation, new tissue forma-
tion, and tissue remodeling [2,3]. During the repair process, the epithelium must effectively
co-ordinate a combination of proliferation, migration, cell spreading and differentiation to restore the
lost tissue and its functionality. Defects in any of these cellular processes can result in chronic tissue
damage as seen for example in chronic skin ulcers, which remain a significantly challenging clinical
problem [4,5]. A better understanding of the cellular and molecular mechanisms of epithelial cell
behavior and dysfunction during tissue repair is important in order to address this challenge
therapeutically.
Like all cell types, epithelial cells require complex cytoprotective signaling networks in order to

sense and appropriately respond to different stressors that can accumulate immediately after injury
and during tissue repair. In addition to directly sensing the stressor, epithelial cells also depend on
nearby stromal and immune cells. These cells release growth factors, cytokines and extracellular
matrix (ECM) molecules, many of which are up-regulated as a response to stress signals and promote
survival, proliferation, migration and differentiation of epithelial cells [6].

The NRF2 transcription factor
One of the most important factors in regulating the cellular response to oxidative or xenobiotic stress
is nuclear factor-erythroid 2-related factor 2 (NRF2; NFE2L2). It is a member of the cap`n collar
family of transcription factors, which also includes NFE2, NRF1, NRF3, Bach1 and Bach2 [7]. NRF2
regulates the transcription of hundreds of genes, the bulk of which code for detoxification enzymes
and antioxidant proteins, which help to alleviate cell damage, maintain the redox balance, and restore
cellular homeostasis [7–10]. This cytoprotective function of NRF2 is conserved in different cell types,
while additional NRF2 target genes that are not directly involved in cytoprotection, are frequently
expressed in a cell type-specific manner [11–13].
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NRF2 activity is primarily regulated at the post-translational level via its chief antagonist Kelch-like
ECH-associated protein 1 (KEAP1) [9,14,15]. During cellular homeostasis, KEAP1 binds to NRF2 in the cyto-
plasm, leading to the rapid ubiquitination and proteasomal degradation of NRF2 [9,15]. Activation of NRF2
requires the weakening of its interaction with KEAP1, which can occur through different mechanisms. The
classic and most studied mechanism involves the accumulation of oxidizing compounds/electrophiles (e.g. as a
result of cellular stress), which react with different cysteine residues in KEAP1 and form covalent modifications
[9,15]. These modifications of KEAP1 results in a conformational change, which weakens the KEAP1–NRF2
interaction, thereby allowing newly synthesized NRF2 to accumulate in the nucleus. Once inside the nucleus,
NRF2 forms a heterodimer with small MAF proteins and together with them binds to regions of DNA com-
monly referred to as antioxidant response elements (AREs), which are present in the promoter or enhancer
regions of its target genes [7,15] (Figure 1). NRF2 competes with the related NRF1 and NRF3 transcription
factors for binding to many of these AREs [16,17].
As an alternative to the canonical activation pathway, NRF2 can become activated during autophagy via

p62-dependent autophagosomal degradation of KEAP1 [18]. Phosphorylated p62 can also directly interact with
KEAP1 and interfere with binding to NRF2, allowing for NRF2 stabilization and nuclear accumulation [19–22].
Several other proteins have also been reported to activate NRF2 in a similar manner by disrupting the KEAP1–
NRF2 interaction by binding to either KEAP1 or NRF2 [23–28]. These mechanisms have been reviewed previ-
ously [29,30] and are summarized in Figure 1. Furthermore, phosphorylation of NRF2 by different kinases can
positively or negatively regulate NRF2 activity [31].

NRF2 in repair of epithelial tissues
The role of NRF2 in the protection of epithelial and other cell types from various insults has been researched
extensively and previously reviewed [7–9,32,33]. Here, we will summarize the increasing evidence for a direct
involvement of NRF2 in repair processes after the injury has occurred (summarized in Table 1) and the rele-
vant NRF2 target genes, whose function extend beyond cytoprotection. We report on tissues and organs, for

Figure 1. Mechanisms of NRF2 activation.

NRF2 binds to KEAP1 during cellular homeostasis, resulting in its rapid proteasomal degradation. Left: The classical

(canonical) mechanism for NRF2 activation relies on the accumulation of intracellular electrophilic or oxidative compounds,

which are common by-products during cellular stress. These compounds react with cysteine residues in KEAP1, which

weakens the KEAP1–NRF2 interaction, allowing NRF2 to accumulate in the nucleus and facilitate transcription of its target

genes by binding to AREs. Right: Non-canonical mechanisms of NRF2 activation involve p62-dependent degradation of

KEAP1 during autophagy. Alternatively, phosphorylated p62 and several other proteins can compete with NRF2 for binding to

KEAP1, allowing NRF2 to accumulate in the nucleus.
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which such data are available, including skin, eye, lung, liver and kidney. Roles of NRF2 in the repair of add-
itional epithelial tissues are likely, but remain to be determined.

Skin
A possible role for Nrf2 in wound repair was first addressed using global Nrf2 knockout (Nrf2 KO) mice [34].
These mice develop normally with no major phenotypic abnormalities [35]. Similarly, upon skin wounding, no
obvious differences in wound closure, re-epithelialization or granulation tissue formation were observed,
despite Nrf2 being highly expressed in the wound epithelium as well as in stromal and immune cells of wild-
type mice [34]. The only observed difference was a prolonged inflammatory response in the KO mice [34]. To
address the issue of potential compensation by Nrf1 and Nrf3, transgenic mice were generated, which express a
dominant-negative Nrf2 mutant in keratinocytes. This truncated protein still binds to DNA and thereby

Table 1 Effects of targeting NRF2 on epithelial repair in different organs and cell types

Organ Cell type Activation status Impact on epithelial repair Refs.

Skin Keratinocytes Activation Increased proliferation of hair follicle stem
cells, faster re-epithelialization

[50]

Improved wound closure in diabetic rodents [39,41–44]
Improved epithelial repair in wounds of
healthy, non-diabetic mice

[45–47]

Dominant-negative
Nrf2

No effect [36]

Inducible
knockout

Reduced keratinocyte proliferation, migration
— delayed wound closure

[37]

Fibroblasts Activation Increased proliferation of keratinocytes, faster
re-epithelialization, fibroblast senescence

[52]

Global Knockout Prolonged wound inflammation [34]

Eye Retinal
epithelium

Activation Reduced EMT, less fibrosis [60]

Corneal
epithelium

Activation Faster healing in diabetic mice [62]

Global Knockout Delayed corneal healing, defective corneal
keratinocyte migration

[61]

Lung Lung cells
(general)

Activation Improved recovery following ALI
More severe emphysema

[66,67,70,76]

Airway basal
stem cells

Activation Optimal Notch expression, proliferation/
renewal

[71]

hAMSCs Over-expression Improved recovery following ALI, increased
type II alveolar cell differentiation

[68]

Club cells Knockout Impaired resolution of inflammation following
ALI, worse recovery

[73]

Global Knockout Impaired lung regeneration following ALI,
increased mortality
Pro-fibrotic response to irradiation injury

[72,74]

Liver Liver cells
(general)

Activation Faster regeneration following partial
hepatectomy

[87]

Hepatocytes Activation Impaired liver regeneration following partial
hepatectomy
Reduced cell proliferation, differentiation

[84–86]

Inhibition Increased progenitor cell differentiation [84]
Global Knockout Delayed liver regeneration following acute

toxic injury or partial hepatectomy, increased
cell death
Reduced Notch1 expression,
De-differentiation of hepatocytes

[79–83]

Kidney Kidney cells
(general)

Activation Protection of proximal tubular cells from
ferroptosis following kidney injury

[89]

Inhibition Improved repair following ischemia/
reperfusion injury

[91]
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competes for binding of endogenous Nrf1, Nrf2 and Nrf3, but it lacks the transactivation and Keap1 binding
domains [36]. These mice also showed no major defects in wound re-epithelialization, suggesting Nrf2 activa-
tion in keratinocytes is not essential for re-epithelialization of a normal skin wound, and that potential long-
term compensation may occur independently of Nrf1 or Nrf3 [36]. Indeed, when Nrf2 was conditionally
deleted in keratinocytes of adult mice using a tamoxifen-inducible system, thereby reducing the time/potential
for compensatory mechanisms to become engaged, delayed wound healing was observed [37]. A role for Nrf2
in epithelial wound repair is not restricted to mice, since RNAi-mediated knock-down of Nrf2 caused delayed
closure of laser-inflicted wounds in Drosophila embryos as a consequence of slower epithelial cell migration [1].
Additional studies have shown a more pronounced role for Nrf2 during impaired wound healing, which

occurs for example in diabetic rodents or humans [38]. Mice injected with streptozotocin (STZ) develop dia-
betes and experience delayed wound closure, a phenotype that was exacerbated in mice lacking Nrf2 [39]. This
same study also found that the NRF2 activating compounds sulforaphane or cinnamaldehyde were both suffi-
cient to improve wound closure when administered to diabetic mice, but they had no significant impact when
administered to healthy, non-diabetic mice [39]. In vitro, keratinocytes cultured in hyperglycemic conditions
showed reduced proliferation and migration, which was worsened or rescued when Nrf2 was inhibited or acti-
vated, respectively [39]. The NRF2 activator dimethyl fumarate, approved by the Food and Drug
Administration for the treatment of multiple sclerosis [40], also accelerated wound closure in STZ-induced dia-
betic, but not in healthy control mice [41]. Several other substances capable of activating NRF2 have shown
similar improvements to re-epithelialization in the STZ-induced diabetes model [42–44].
In contrast with the studies described above, other substances capable of activating NRF2 are suggested to

improve cutaneous wound healing even in non-diabetic, healthy mice, and they promoted epithelial repair and
epidermal integrity in mouse models and 3D organotypic culture models for atopic dermatitis [45–47]. This is
of potential relevance in humans, since reduced NRF2 activity was detected in the epidermis of patients with
this chronic inflammatory skin disease [48].
While the use of NRF2-activating compounds can provide useful insight into how NRF2 regulates epithelial

repair, potential off-target effects of these compounds or medicines often make the precise role of NRF2 diffi-
cult to interpret. One strategy to overcome this problem is through the use of genetic models. One such model
uses a mutated form of Nrf2, which lacks the Keap1-binding domain and is therefore constitutively active [49].
Transgenic mice with constitutively active Nrf2 (caNrf2) expressed in keratinocytes show increased expression
of classical and newly identified Nrf2 target genes in the epidermis. Excisional wounds in these mice
re-epithelialized significantly faster compared with wounds of control mice [49,50]. While this is beneficial, it
should be considered that constitutive activation of Nrf2 induced hyperkeratosis in the non-injured epidermis
of the caNrf2-transgenic mice and also in Keap1 KO mice [49,51].
Interestingly, activation of the Nrf2 pathway in fibroblasts by expression of caNrf2 also promoted wound

re-epithelialization without aggravating scar formation. This was caused by Nrf2-mediated fibroblast senescence
during wound healing and the subsequent release of a senescence-associated secretome, which promoted
migration and proliferation of keratinocytes, leading to faster re-epithelialization [52].
In addition to the classical Nrf2 target genes that regulate the cellular redox balance, additional Nrf2 target

genes not directly related to cytoprotection continue to be identified in keratinocytes and some of them are
also important regulators of tissue repair. For example, in mice with keratinocyte-specific expression of caNrf2,
the activated Nrf2 targeted the gene coding for epigen, which signals via the epidermal growth factor receptor
to enhance proliferation of hair follicle stem cells. These cells contribute to re-epithelialization, and their hyper-
proliferation therefore promoted this process [50]. In another study, Nrf2 was shown to target the gene coding
for C-C motif chemokine ligand 2 (Ccl2) in keratinocytes following injury. Overexpression of this chemokine
promoted the recruitment of macrophages to the wound site. Macrophages then provided signals that stimulate
keratinocyte proliferation and re-epithelialization [37]. In wounds of genetically diabetic db/db mice, Nrf2 acti-
vation was impaired, resulting in defects in macrophage recruitment and wound closure. This was rescued by
administration of Ccl2, pointing to a role for keratinocyte-derived Nrf2 in regulating keratinocyte proliferation
indirectly via Ccl2-mediated recruitment of macrophages [37]. In fibroblasts, Nrf2 directly targets Serpine1, the
gene encoding plasminogen activator inhibitor-1 (PAI-1) [52]. PAI-1 is a known inducer of senescence in fibro-
blasts, a key event during wound healing, which can promote the proliferation and migration of nearby epithe-
lium via its senescence-associated secretome [52–54]. Nrf2 also targets genes coding for miRNAs in
keratinocytes and fibroblasts [55,56], which are capable of regulating the expression of a wide variety of pro-
teins that may affect repair. Interestingly, many Nrf2 target genes, particularly those that are non-classical
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targets, may be cell-type specific. One reason for this could be the co-ordinated action of Nrf2 with other tran-
scription factors that are expressed or become activated in a cell-type specific manner or context. For example,
NRF2 and p63 work synergistically in human keratinocytes to drive expression of common target genes,
thereby promoting keratinocyte proliferation [57]. This finding suggests that their combined activation may
offer even greater potential for improving epithelial repair.

Eye
In the eye, retinal detachment can occur as a result of injury, disease or normal aging, and treatment usually
requires emergency surgery [58]. Potential complications following surgery include a fibrotic response termed
proliferative vitreoretinopathy (PVR), which includes increased proliferation of retinal epithelial cells and epi-
thelial to mesenchymal transition [59]. While this typically requires further surgery, one study found that the
use of a synthetic, bio-functional polymer was sufficient to activate Nrf2 and reduce EMT in retinal epithelial
cells in a rabbit model of PVR, suggesting a possible therapeutic role for activated NRF2 in the promotion of
healthy repair and prevention of PVR following retinal detachment surgery [60].
The epithelium of the cornea must also withstand from environmental stress and rapidly recover from

injury. In this tissue, wound healing was also investigated using Nrf2 KO mice [61]. Unlike skin, global Nrf2
deficiency significantly delayed corneal wound healing, featuring a defective migratory ability of corneal kerati-
nocytes [61]. Another study suggests that certain compounds may improve corneal wound healing during dia-
betes by activating Nrf2 [62]. In this study, the authors used STZ-induced diabetic mice, which show delayed
corneal wound healing and reduced Nrf2 activity. Topical application of the lipid mediator resolvin D1 led to
activation of Nrf2, as seen by increased expression of Nrf2 target genes, reduced ROS levels and accelerated
repair [62]. These findings suggest similar benefits of Nrf2 activation in corneal keratinocytes as seen in skin,
particularly during diabetic wound healing.

Lung
Damage to the lung epithelium can occur due to a variety of factors, including infection, inflammation or
inhalation of toxic fumes. Several lines of evidence suggest NRF2 activation can regulate repair of the lung epi-
thelium, and pharmaceutical activators of NRF2 have shown promise in preventing and treating lung injury
and disease (e.g. COVID-19) due to their antioxidant and anti-inflammatory properties [63,64]. Acute lung
injury (ALI) and acute respiratory distress syndrome (ARDS) are inflammatory lung disorders, resulting in
damage to the lung epithelium [65]. Efforts to treat these conditions in mice with various Nrf2-activating com-
pounds yielded promising results [66,67]. Strategies to treat ALI/ARDS have also incorporated Nrf2 activation
as part of cell-based approaches. In one study, injection of NRF2-overexpressing human amniotic mesenchymal
stem cells (hAMSC) into mice resulted in improved recovery following ALI induced by lipopolysaccharide com-
pared with normal hAMSCs [68]. NRF2 overexpression led to increased differentiation of these cells into type
II alveolar cells and faster resolution of fibrosis [68].
Lung injury can also result from ischemia and subsequent reperfusion in the brain, an injury that frequently

extends to distant organs and tissues [69]. In a rodent model, lung injury following cerebral ischemia/reperfu-
sion was associated with increased activation of Nrf2 in lung tissue, whose cytoprotective function likely
combats further injury while facilitating repair [70]. Another study found that Nrf2 became activated in airway
basal stem cells following an increase in ROS and was essential for optimal Notch expression and subsequent
proliferation and self-renewal [71]. Nrf2 KO mice responded worse to ALI resulting from hypoxia, showing
increased mortality and impaired regeneration of alveolar structures [72]. Loss of Nrf2 specifically in Club cells,
which are exocrine epithelial cells within the bronchi, also lead to worse outcomes following hypoxia-induced
ALI. This included reduced protection from injury and an impaired resolution of inflammation during repair
[73]. Nrf2 deficiency also impaired the mobilization of progenitor cells following irradiation injury of the lung
and shifted repair to a more fibrotic response [74].
In contrast with its beneficial effects, Nrf2 activation in the lung may be detrimental in some cases. For

example, in a mouse model of emphysema, Nrf2 activation suppressed ROS-mediated platelet-derived growth
factor receptor B (Pdgfrb) signaling, which functions to maintain alveolar homeostasis [75,76]. In this model,
knockout of the short isoform of latent transforming growth factor (TGF)-β-binding protein 4 (Ltbp4S)
resulted in decreased levels of active TGF-β, which under normal conditions inhibits Nrf2 indirectly by block-
ing sestrin 2-mediated autophagosomal degradation of Keap1. Ltbp4S knockout mice therefore showed elevated
expression of Nrf2 target genes, reduced Pdgfrb signaling and severe emphysema [75]. Such adverse effects
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should to be taken into consideration when NRF2-activating compounds are applied to promote repair of the
lung, but also of other tissues as detailed below.

Liver
In contrast with other mammalian organs, the liver has a remarkable regenerative capacity and can completely
regenerate after limited acute injury without formation of scar tissue [77]. Loss of liver tissue as a consequence
of surgery or toxin- or virus-mediated injury initiates a repair program that ultimately restores the original liver
mass, while still allowing the organ to perform its important metabolic functions. In vivo imaging in transgenic
reporter mice that express luciferase under control of an ARE-regulated promoter showed strong Nrf2 activation
in the liver after partial (two-thirds) hepatectomy (PH), with a peak activity on day 3. In addition, Nrf2 accumu-
lated in the nucleus of hepatocytes after PH [78]. These findings demonstrate that Nrf2 is activated in the regen-
erating liver and suggest its functional involvement in this process. This was confirmed using mice with a global
KO of Nrf2, which showed delayed liver regeneration as a consequence of enhanced death and delayed prolifer-
ation of liver cells. This resulted from oxidative stress-mediated resistance of hepatocytes to insulin/insulin-like
growth factor signaling [79]. Loss of Nrf2 also reduced the levels of Notch1, which contributed to the impaired
regeneration after PH [80]. Other studies revealed that Nrf2 is involved in maintaining hepatocytes in a fully dif-
ferentiated state during the regeneration process [81] and also ensures the timely entry of replicating hepatocytes
into mitosis by regulating the expression of cyclin A2 and the Wee1/Cdc2/cyclin B1 pathway [82]. The import-
ant role of Nrf2 in liver regeneration was confirmed in a model of acute injury induced by the hepatotoxin
CCl4, where loss of Nrf2 also delayed the repair process [83]. On the other hand, silencing or inhibition of Nrf2
promoted hepatic progenitor cell activation and differentiation, which is required after severe and chronic liver
injury. Vice versa, activation of Nrf2 in the biliary tract repressed the injury-induced ductular reaction, in which
hepatic progenitor cells acquire hepatocyte or cholangiocyte phenotypes [84]. These results point to different
functions of Nrf2 in different cell types and different liver injury models.
The important role of endogenous Nrf2 in liver regeneration suggested that further activation of Nrf2 in the

liver may be beneficial. However, hepatocyte-specific expression of caNrf2 in mice, which increases target gene
expression to a level seen upon activation of endogenous Nrf2, caused a surprising impairment of liver regener-
ation after PH without affecting liver development and homeostasis [85]. This resulted from Nrf2-mediated
up-regulation of the cyclin-dependent kinase inhibitor p15 and the pro-apoptotic protein Bcl2l11 (Bim) in the
regenerating liver of caNrf2 transgenic mice, whose genes were identified as direct Nrf2 targets [85]. Consistent
with these results, heterozygous deficiency in Keap1, which resulted in increased Nrf2 activity, caused a delay
in S-phase entry, disruption of S-phase progression and loss of mitotic rhythm of replicating hepatocytes after
PH [86]. However, liver re-growth was not significantly affected in these mice [86], possibly because of a
weaker activation of Nrf2 in hepatocytes of heterozygous Keap1 KO mice compared with caNrf2 expressing
mice. Both studies, however, suggest that activation of Nrf2 in the liver does not promote liver regeneration
and even impairs this process. In contrast with these studies, pharmacological activation of Nrf2 by bardoxo-
lone methyl (CDDO-Me) accelerated liver regeneration and improved liver function after PH in wild-type, but
not in Nrf2 KO mice [87]. This was associated with more pronounced hepatocyte hypertrophy, enhanced hep-
atocyte proliferation and reduced liver inflammation. These findings suggest that transient and limited activa-
tion of Nrf2 in all cells of the liver may be beneficial for the regeneration process. In the future, it will be
important to determine the optimal extent and duration of Nrf2 activation in the regenerating liver and the
relevance of Nrf2 in different cell types during the regeneration process.

Kidney
Similar to other tissues, activation of Nrf2 protected the kidney from acute or chronic tissue injury [88]. However,
a potential role of Nrf2 in kidney repair has only been addressed very recently. In one study, the authors demon-
strated that sex differences in resilience to ferroptotic cell death underlie the reduced kidney injury and enhanced
repair of this organ in female vs. male mice [89]. Importantly, Nrf2 activation was identified as a female resilience
mechanism against ferroptosis, and activation of Nrf2 in male mice protected proximal tubular cells from ferropto-
sis and improved cellular plasticity to the extent seen in female mice [89]. Nrf2 activation may also promote repair
following ischemia/reperfusion injury in the kidney, where Nrf2 activation is suppressed [90]. This appears to be
mediated by hypoxia-inducible factor 1-alpha (HIF-1α), which promotes activation of Nrf2 in nutrient-rich, or
mild ischemic conditions, but suppresses Nrf2 activation in nutrient-deficient or severe ischemic conditions [91].
These studies identify Nrf2 as a potential therapeutic target to promote renal repair after acute kidney injury.
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Summary
Recent advances in the field have cemented the view of NRF2 as a multifaceted regulator of epithelial repair in
different animal models. This has been aided by the identification of a number of cell type-specific target genes
with diverse roles in regulating a variety of cellular processes important for efficient healing (Figure 2). While
downsides to NRF2 activation were observed in some occasions, it is often beneficial for the repair process of
epithelial tissues. However, the precise level of activation of NRF2 as well as the duration of the treatment will
most likely determine the final outcome. In addition, potential pro-tumorigenic effects of long-term NRF2 acti-
vation should be taken into consideration [52,92,93] before NRF2 activators are used in the clinic to promote
tissue repair. With these limitations in mind, use of precisely targeted NRF2 activators with well-characterized
specificity is a promising new strategy to promote repair of injured tissues.

Perspectives
• Defective epithelial repair can lead to long-term tissue damage, which represents a substantial

clinical challenge.

• The NRF2 transcription factor is a key regulator of tissue repair, and its pharmacological acti-
vation is a promising therapeutic strategy for impaired healing. A beneficial effect of NRF2
activation on epithelial repair was confirmed in multiple studies; however, prolonged activation
negatively impacted repair of the lung, liver and kidney under certain conditions.

• Compounds or treatment regimens that allow a precise timing of the extent and duration of
NRF2 activation are required for the promotion of tissue repair. In addition, identification of
further NRF2 target genes and their function could help to predict for what tissues or injury
situations NRF2 activation may offer the greatest benefit.

Figure 2. Cellular processes regulated by NRF2 with implications for epithelial repair.

NRF2 activation can promote proliferation of epithelial cells in multiple tissues and organs. In contrast, constitutive NRF2

activation promotes fibroblast senescence, which leads to increased proliferation of neighboring epithelium via the

senescence-associated secretome. NRF2 activation can also encourage epithelial cell differentiation and migration, while at the

same time limit complications that contribute to impaired healing by reducing epithelial to mesenchymal transition (EMT) and

subsequent fibrosis, and protecting cells from apoptosis.
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