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Direct numerical simulations are performed to study temporal variations of the wall13

shear stresses and flow dynamics in the turbulent pulsatile pipe flow. The mechanisms,14

responsible for the paradoxical phenomenon for which the amplitude of the oscillating15

wall shear stress in the turbulent flow is smaller than that in the laminar flow for the same16

pulsation conditions, are investigated. It is shown that the delayed response of turbulence17

in the buffer layer generates a large magnitude of the radial gradient of the Reynolds shear18

stress near the wall, which counteracts the effect of the oscillating pressure gradient on19

the change of the streamwise velocity and hence reduces the amplitude of the wall shear20

stress. Such a delayed response consists of two processes: the delayed development of21

near-wall streaks and the subsequent energy redistribution from the streamwise velocity22

fluctuation to the other two co-existing components. This is a dynamical manifestation23

of the viscoelasticity of turbulent eddies. As the frequency is reduced, the variation of the24

friction Reynolds number results in a phase-wise variation of the time scale and intensity25

of the turbulence response, causing the hysteresis of the wall shear stress. Such a phase26

asymmetry is amplified by the increase of the pulsation amplitude. An examination of27

the energy spectra reveals that the near-wall streaks are stretched in the streamwise28

direction during the acceleration phase, and then break up into small-scale structures29

in the deceleration phase, accompanied by the enhanced dissipation that transforms the30

turbulent kinetic energy into heat.31
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1. Introduction33

Pulsatile turbulent pipe flows are widely encountered in engineering applications and34

biological systems, such as the turbomachinery and blood flow in aortic arteries. The35

oscillating nature of the pulsatile flow leads to a high-level fluctuation of the wall friction.36

Understanding the variation of the wall shear stress is of great practical significance37

to, e.g., pipeline leak detections (Colombo et al. (2009)) and blood-vessel problems38
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(Cunningham & Gotlieb (2005)), which require precise knowledge of flow dynamic39

behaviours. This paper is concerned with the wall shear stresses in pulsatile turbulent40

pipe flows and the corresponding fluid dynamics.41

The pulsation process consists of continuous accelerating and decelerating phases. In42

the past decades, several researchers have focused on the flow responses in the accelerating43

turbulent pipe or channel flow, in which the flow rate varies in a step- or ramp-changing44

manner (Maruyama et al. (1976); Greenblatt & Moss (1999); He & Jackson (2000);45

Greenblatt & Moss (2004)). It is well-established, in both scenarios, that the flow initially46

evolves in a laminar-like way, accompanied by the streamwise stretching of the near-47

wall streaks (stage 1). Then, the elongated streaks break up, leading to a formation48

and subsequent merging of turbulent spots (stage 2). Finally, the turbulence reaches its49

new fully-developed state (stage 3) (He et al. (2011); Seddighi et al. (2014); He et al.50

(2016); Jung & Chung (2012); He & Seddighi (2015)). Specifically, this three-stage flow51

evolution resembles closely the bypass transition in the boundary layer induced by the52

free-stream-turbulence (He & Seddighi (2013)). Mathur et al. (2018) interpreted this53

process in a different way by regarding the preexisting turbulence as a perturbation that54

leads to the instability of the temporally developing laminar boundary layer from the55

wall. In any case, the laminar-like flow behaviours at the early stage allow an unsteady56

friction model to be established to predict the wall shear stress. Based on the assumption57

that the turbulence in stage 1 is nearly ’frozen’, He & Ariyaratne (2011) derived a58

laminar-flow formulation to describe the wall shear stress at that stage. The acquired59

results are in good agreement with experimental or computational outcomes as further60

consolidated in He et al. (2011). He & Seddighi (2015) and Jung & Kim (2017) discussed61

the effects of the ratio of the final to initial Reynolds number and the effects of the62

acceleration rate on the transition, respectively. They both showed that the turbulence63

evolves progressively for a low Reynolds number ratio and low acceleration rate, which is64

in contrast to the aforementioned bypass transition. Guerrero et al. (2021) investigated65

the transient dynamics of the accelerating turbulent pipe flow in detail. By utilizing the66

FIK identity which is an exact expression developed by Fukagata et al. (2002) to quantify67

the friction coefficient for wall-bounded flows, they were able to quantify the different68

contributions to the wall friction during the transient. Moreover, Sundstrom & Cervantes69

(2018a) showed that the flow responses during the accelerating phase of the pulsatile flow70

are similar to those in the first two stages of the uniformly accelerating flow. As for the71

decelerating flow which is characterized by a decay of the preexisting turbulence (Mathur72

(2016)), Sundstrom & Cervantes (2018c) also demonstrated its laminar similarity to the73

accelerating flow at the initial stage.74

Different from the one-way flow excursion reviewed above, the pulsatile turbulent75

flow exhibits strong wave-turbulence interactions due to the shear wave generated near76

the wall. The laminar Stokes thickness l+s =lsuτ/ν=
√
2ν/ω, where ν and ω are the77

kinematic viscosity and the angular pulsatile frequency, respectively, is generally used to78

characterize the wall-normal length scale of such a near-wall shear wave. In the present79

paper, the superscript + denotes normalization using the mean friction velocity uτ and80

the kinematic viscosity ν. To take into account the diffusion effect of turbulence, Scotti81

& Piomelli (2001) proposed a turbulent Stokes thickness lt, based on the eddy-viscosity82

theory, as the scaling parameter. There have been several experimental studies that83

focused on the pulsatile flows (Ronneberger & Ahrens (1977); Gerrard (1971); Ramaprian84

& Tu (1980, 1983); Tu & Ramaprian (1983); Mao & Hanratty (1986); Lodahl et al.85

(1998); Shemer & Kit (1984); Shemer et al. (1985); Tardu & Binder (1993); Tardu86

et al. (1994); He & Jackson (2009)), covering a wide range of pulsation parameters. The87

wave-turbulence interactions exhibit a strong frequency dependence. When the pulsation88
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frequency is high (0.02≲ω+≲0.04), the Stokes thickness is small such that the shear89

wave is only confined to the very narrow near-wall region. In this case, the inner shear90

wave and outer turbulence are weakly coupled (quasi-laminar state). There is a 45◦91

phase lag between the centreline velocity and the wall shear stress, which coincides92

with the laminar Stokes solution. When the frequency falls in a low-frequency range93

(ω+≲0.005), the flow variation is slow enough to allow the turbulence to react and94

settle down. Hence, the instantaneous flow field resembles that of the steady flow at95

the corresponding Reynolds number (quasi-steady state). Generally speaking, if the96

pulsation amplitude is not large enough to induce a reversal flow, the time-averaged97

flow quantities remain nearly unchanged from their values in the steady flow (Brereton98

et al. (1990)). However, Tu & Ramaprian (1983) showed a deviation of the mean velocity99

profile from the steady one when the frequency is close to or larger than the turbulent100

bursting frequency in the turbulent pipe flow, i.e., a very-high frequency range (ω+≳0.04).101

This can be possibly attributed to a resonance effect with the closeness between the102

pulsation frequency and the characteristic frequency of the near-wall coherent structure.103

On the contrary, Tardu et al. (1994) and Scotti & Piomelli (2001) did not report104

such a deviation in turbulent channel flows with different pulsation parameters. This105

might be due to the dependency of the bursting frequency on the Reynolds number106

and geometry such that a resonance condition is not easily satisfied. Sundstrom et al.107

(2016) performed experimental research on a double-frequency pulsatile turbulent pipe108

flow and showed that the time-averaged flow quantities are also unaffected by the double-109

frequency pulsation. For a large-amplitude oscillation (usually refers to a situation when110

the oscillatory to mean velocity ratio A is larger than one), Manna et al. (2012) reported111

a drag-reducing effect which manifests as an upward shift of the mean velocity profile112

in the logarithmic region. This is consistent with Mao & Hanratty (1994) and Manna &113

Vacca (2005) in which a reduction of wall shear stresses was both reported.114

The laminar-turbulent transition is also an important phenomenon that occurs in115

pulsatile flows. Turbulence can be completely relaminarized in the pulsatile pipe flow116

with a non-zero mean flow under certain parameters (Lodahl et al. (1998)), and can117

also appear intermittently in a purely oscillatory flow (Feldmann & Wagner (2012)),118

which belongs to a subcritical transition scenario (Feldmann & Wagner (2016b)). Xu119

et al. (2017) conducted an experimental study on the transition in a pulsatile pipe at120

amplitudes A⩽0.7. Based on the transition theory in the steady pipe flow (Avila et al.121

(2011, 2010); Hof et al. (2006)), they summarized the effects of pulsation frequency and122

further elaborated in Xu & Avila (2018) with the aid of the direct numerical simulation123

(DNS). For a large-amplitude pulsation with A>0.7, Xu et al. (2021, 2020) reported a124

helical instability mechanism that induces the burst of turbulence in a pulsatile pipe125

flow. In particular, this helical disturbance is triggered during the decelerating phase126

and disappears in the accelerating phase, indicating a strong phase asymmetry in the127

pulsatile pipe flow (Feldmann &Wagner (2016a)). Further, Morón et al. (2022) linked this128

helical instability to the linear stability of the corresponding laminar flow and discussed129

the effect of the pulsation wave form on the turbulence transition. Similarly, Feldmann130

et al. (2020) investigated the spatio-temporal intermittency associated with a competition131

between the helical structures and puffs. This intermittency in the pulsatile pipe flow is132

qualitatively similar to the gas-liquid slug pipe flow reported in Padrino et al. (2023).133

A paradoxical phenomenon occurs in the intermediate frequency range (0.005≲ω+≲0.02).134

In this frequency range, the amplitude of the oscillating wall shear stress in a turbulent135

flow (Aτ̃w,t) is smaller than that in a laminar flow with the same pulsation conditions136

(Aτ̃w,s). This suggests a turbulence-induced drag reduction that is opposite to that in137

the steady flow where turbulence generally produces a larger drag than a laminar flow138
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(Mao & Hanratty (1986); Tardu et al. (1994); Sundstrom & Cervantes (2018a)). To139

deal with a non-closure problem in the governing equation, several researchers have140

established theoretical models for the Reynolds shear stress based on the concept of141

eddy-viscosity. Most of these models in general fail to describe accurately the paradoxical142

phenomenon due to the inherent assumption that the Reynolds stress is in phase with143

the imposed oscillation (Weng et al. (2016)). Weng et al. (2013, 2016) introduced the144

time-dependency of the Reynolds shear stress into the standard eddy-viscosity model,145

which brings a phase lag between the Reynolds shear stress and the oscillating shear146

strain rate. This improved model is shown to be able to predict correctly the paradoxical147

phenomenon. However, a detailed explanation on why and how the turbulence reduces148

the wall shear stress is still lacking. Sundstrom & Cervantes (2018b) provided a new149

interpretation of this paradoxical phenomenon by decomposing the total wall shear150

stress into the contributions from the oscillating pressure gradient (τp) and the Reynolds151

shear stress (τs). It is shown that a phase shift between τp and τs results in a mutual152

cancellation that leads to the reduction of the total wall shear stress. Nevertheless, in153

their experimental study, τs is calculated by subtracting τp from the measured total154

wall shear stress while τp is calculated by the laminar Stokes solution. Hence, this155

interpretation still cannot explain the underlying mechanisms; for instance, it does156

not explain what causes the phase shift. Based on these, we choose to perform direct157

numerical simulations in turbulent pulsatile pipe flows, in the hope of extending the158

numerical database of pulsatile flows, elucidating the physical mechanisms that cause159

the paradoxical phenomenon and revealing the corresponding turbulence dynamics in160

detail.161

This paper is organized as follows. A computational set-up is introduced in §2. Some162

basic statistics and the properties of the varying wall shear stress are given in §3. §4163

explores the causes of the paradoxical phenomenon, and §5 discusses the hysteresis164

phenomenon of the wall shear stress. The effects of the pulsation amplitude are examined165

in §6. §7 further examines the phase-wise variation of spectra, and §8 summarizes the166

main findings of this paper.167

2. Computational set-up168

For pulsatile flows, it is common to introduce a triple decomposition of the flow quantity169

f(x, t) (Hussain & Reynolds (1970); Sundstrom & Cervantes (2018b); Weng et al. (2016)):170

f(x, t) = ⟨f⟩ (x, φ) + f ′(x, t) = f̄(x) + f̃(x, φ) + f ′(x, t), (2.1)

where f and ⟨f⟩ are the time-averaged and phased-averaged values, f̃ is the oscillating171

component, f ′ is the turbulent fluctuation and φ is the phase. By further including the172

spatial average in statistically homogeneous directions, the time and phase averages can173

be defined as:174

⟨f⟩ (y, φ) = lim
M→∞

1

2πML

M∑
n=1

∫ L

0

∫ 2π

0

f(x, t+
2πn

ω
)dxdθ, (2.2a)

175

f(y) =

∫ 2π

0

⟨f⟩(y, φ)dφ, (2.2b)

where x, y=R-r, θ denote the streamwise, wall-normal and azimuthal directions, respec-176

tively, with the corresponding velocity components being u, −v and w. The pipe radius177

is R, L is the pipe length, and M is the total number of periods.178

In the present study, the pulsation is achieved by imposing a sinusoidally varying179
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component to the constant streamwise pressure gradient that drives the steady turbulent180

pipe flow:181

∂p

∂x
(t) =

∂p

∂x
(1 + β sin(ωt)). (2.3)

The constant mean pressure gradient ∂p/∂x is set to aim for a steady turbulent flow182

of Reτ=uτR/ν=180. Throughout the paper, the quantity φ refers to a phase of the183

streamwise pressure gradient ∂p/∂x. We use the ratio of the amplitude of the oscillating184

velocity to the mean velocity at the pipe centreline, i.e. A=Aũcl
/ucl to characterize the185

pulsation amplitude. Using (2.1), the governing equation for the oscillating component186

of the streamwise velocity reads:187

∂ũ

∂t
= −∂p̃

∂x
+ ν

1

r

∂ũ

∂r
+ ν

∂2ũ

∂r2
−∂rũ′v′

r∂r︸ ︷︷ ︸
℘

. (2.4)

By evaluating (2.4) at the pipe centreline, we have:188

A = −∂p

∂x

β

ω
(2.5)

Hence, β can be predetermined based on the desired pulsation amplitude A.189

To enable a direct comparison, the pulsation parameters selected in this paper, which190

are given in table 1, are similar to those in Weng et al. (2016) and Sundstrom & Cervantes191

(2018b) (Figure 1a). Five frequencies are chosen for A=0.1 (cases 1 to 5), and the resulting192

Womersley numbers W=R
√

ω/ν ranges from 12.7 to 63.6. In addition, simulations of193

cases 6 and 7 are performed at a higher amplitude of A=0.4 to evaluate the effect of194

pulsation amplitude. To provide a more comprehensive comparison with previous studies,195

each case is plotted in the Reb-Rew plane (Lodahl et al. (1998)) together with available196

literature data (figure 1b). Here, Reb=UbD/ν is the bulk Reynolds number based on the197

bulk velocity Ub and the pipe diameter D, and Rew=Aũcl

2/ων is the oscillatory Reynolds198

number. It is clear that all cases fall in the turbulent regime, as demonstrated in figure 3199

where the instantaneous streamwise velocity at the meridional plane for case 7 is shown.200

Albeit there is a large coincidence in the parameter space between the current study and201

Cheng et al. (2020), we note that our goal is not to carry out an investigation in the202

unexplored parameter space but to further elucidate the mechanisms responsible for the203

aforementioned paradoxical phenomenon based on existing parameters in the literature.204

Further, all the simulation cases in Cheng et al. (2020) are conducted at the fixed β while205

the pulsation amplitude A is fixed in the present study. Therefore, our cases are in fact206

different from those in Cheng et al. (2020) according to equation (2.5). For each case,207

the pulsation is imposed at a single flow field of the steady turbulent pipe flow. After208

discarding the transient effect, the phase-averaged data are collected over more than 23209

periods to obtain the final statistics.210

A cylindrical-coordinate spectral element-Fourier DNS solver Semtex is employed to211

conduct the simulations (Blackburn & Sherwin (2004); Blackburn et al. (2019)). The212

computational mesh is the same as that in Liu et al. (2022), where a 50×10 two-213

dimensional spectral element mesh is deployed to discretize the meridional semi-plane.214

192 Fourier expansion planes are used in the azimuthal direction to represent the three-215

dimensional computational domain. The pipe length is set to be L=6πR. In order to216

ensure that this mesh configuration is appropriate to resolve the precise turbulence217

dynamics, we choose cases 3 and 7 to conduct the mesh independence test. The choice218

of these two cases is based on the fact that the former is the case for which the ratio219

Aτ̃w,t/Aτ̃w,s reaches its minimum and the latter is a high-amplitude case in which the220
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Case A ω+ l+s W Reb Rew Aτ̃w,t/Aτ̃w,s

1 0.1 0.125 4 63.6 5265 30 1
2 0.1 0.016 11 23.1 5273 229 0.94
3 0.1 0.01 14 18.2 5277 416 0.65
4 0.1 0.007 17 15.0 5280 924 0.86
5 0.1 0.005 20 12.7 5260 1325 1.41
6 0.4 0.01 14 18.2 5654 6230 0.80
7 0.4 0.007 17 15.0 5796 12559 0.59

Table 1. Cases with different pulsation parameters, namely the pulsation amplitude A, the
frequency ω+. l+s is the laminar Stokes thickness, W is the Womersley number. Aτ̃w,t/Aτ̃w,s is
the amplitude of the wall shear stress normalized by its laminar Stokes value. Reb=UbD/ν and
Rew=Aũcl

2/ων are the bulk and oscillatory Reynolds numbers, respectively.

Case P N H ∆x+ ∆y+ ∆(rθ)+wall

Baseline 11 192 50 [2.24, 10.0] [0.18, 5.91] 5.89
3-1 10 192 50 [2.73, 11.2] [0.21, 6.61] 5.89
3-2 12 192 50 [1.87, 9.26] [0.15, 5.46] 5.89
3-3 11 240 50 [2.24, 10.0] [0.18, 5.91] 4.71
7-1 11 240 50 [2.24, 10.0] [0.18, 5.91] 4.71
7-2 12 192 50 [1.87, 9.26] [0.15, 5.46] 5.89
7-3 11 192 65 [1.72, 7.71] [0.18, 5.91] 5.89

Table 2. Summary of the grid information. ∆x+, ∆y+ are the normalized streamwise,
wall-normal grid resolutions. ∆(rθ)+wall is the normalized circumferential grid resolution at the
wall. P is the number of Lagrange knot points along the side of each element, corresponding
to a polynomial order of P -1. N represents the number of Fourier expansion planes in the
circumferential direction. H denotes the number of elements in the streamwise direction, which
is associated with the streamwise h-refinement strategy in the spectral element method.
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Figure 1. (a) Variation of the amplitude of the wall shear stress Aτ̃w,t normalized by the laminar
Stokes amplitude Aτ̃w,s with respect to the laminar Stokes thickness l+s . (b) Laminar-turbulent
transition boundary (chain-dotted line, Lodahl et al. (1998)) and parameter combinations
considered by previous studies. The critical Reynolds numbers Reb,tr and Rew,tr are denoted
by the dashed lines.
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Figure 2. Comparisons of the phase-averaged wall shear stress ⟨τw⟩ between different
mesh-independence validation cases. (a) Case 3 (A=0.1, l+s =14), (b) Case 7 (A=0.4, l+s =17).

Figure 3. Contours of the instantaneous inner-scaled streamwise velocity u+ in the
meridional plane for case 7 (A=0.4, l+s =17) at (a) φ≈0, (b) φ≈π/4, (c) φ≈π/2, (d) φ≈3π/4.

variation of turbulence dynamics is more intense. Details of the spatial grid resolution are221

given in table 2. The hp-refinement strategy for the spectral element method is employed.222

Our baseline grid resolutions are comparable with the regular and high resolutions223

reported in Zahtila et al. (2023). Figure 2 shows the phase-averaged wall shear stress224

obtained from various grids. It can be found that all the curves for case 3 overlap well225

and the kink variation trend in case 7 can be observed for all test cases, indicating that226

our phase-averaged statistics are grid-independent. Figure 1(a) compares the present227

results of Aτ̃w,t/Aτ̃w,s for A=0.1 with previous studies. It is shown that the paradoxical228

phenomenon can be clearly reproduced and that the variation trend of Aτ̃w,t/Aτ̃w,s with229

respect to l+s is also consistent with that in the literature. Note that the temporal230

variation of the wall shear stress is not necessarily a pure sine function; thus, here the231

amplitude corresponds to the amplitude of the fundamental mode calculated from the232

Fourier analysis. Quantitatively, a reasonable agreement can also be found except that233

the minimum of Aτ̃w,t/Aτ̃w,s is 0.65 at l+s =14, which is smaller compared with that in234

Weng et al. (2016) and Sundstrom & Cervantes (2018b) but in agreement with Tardu235

et al. (1994). This can probably be attributed to the different Reynolds numbers used in236

these studies. Moreover, the instantaneous fields in figure 3 exhibit visual smoothness,237

and no mesh imprints can be found. Hence, these results give us confidence in accuracy238

of the DNS data used in this paper.239
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Figure 4. (a) Time evolution of the oscillating component of the streamwise velocity ũcl at the
pipe centreline. (b) Wall-normal profiles of the mean streamwise velocity u+. (c) Wall-normal
profiles of the components of the Reynolds stress tensor. Note that the curves for steady pipe
(no pulsation) overlap completely with those for case 2 in (b)(c).

3. Fundamental characteristics of pulsatile flow240

First, we present some basic properties of the pulsatile pipe flow. Figure 4(a) shows the241

oscillating component of the streamwise velocity at the pipe centreline ũcl. As expected,242

the oscillating amplitudes for high-frequency cases (cases 2 and 3) are exactly A=0.1,243

while it is slightly larger than 0.1 for low-frequency cases (cases 4 and 5). This is due to244

the strong coupling of the near-wall shear layer and the central region for low-frequency245

cases (Weng et al. (2016)). A similar phenomenon can also be found for higher amplitude246

cases where the centreline velocity oscillates at an amplitude larger than 0.4 for case 7.247

Figure 4(b)(c) shows the wall-normal profiles of the normalized mean velocity u and248

the components of the Reynolds stress tensor. The mean velocity is insensitive to the249

frequency at a low amplitude of A=0.1, but an increase in amplitude leads to the elevation250

of u in the log region. This is consistent with previous studies (Scotti & Piomelli (2001);251

Manna et al. (2012)). Besides, the mean velocity seems to be more sensitive to the252

frequency for high-amplitude cases. For the presented Reynolds stresses, all the curves253

collapse well except for the u′u′. The increase of amplitude produces a larger magnitude254

of u′u′ beyond y+≈10 and u′u′ is insensitive to the frequency for low-amplitude cases.255

Furthermore, the increase of u′u′ is accompanied by the wall-normal location of the256

maximum u′u′ moving away from the wall, which is similar to the situation where a257

transverse Stokes layer is generated by the wall oscillation (Quadrio & Sibilla (2000); Liu258

et al. (2022)).259

The near-wall flow dynamics are directly reflected by the wall shear stress. Figure 5260

compares the phase-wise variation of the wall shear stress τ̃w (black solid lines) with their261

corresponding laminar Stokes values (dashed blue lines) for cases with A=0.1, with the262

latter calculated by evaluating the radial derivative of the laminar Stokes solution at the263
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wall (see Manna et al. (2012)):264

ũ(r, t) = A · Re

[
i

(
J0(i

3/2
√
2r/ls)

J0(i3/2
√
2R/ls)

− 1

)
eiω(t−T/4)

]
, (3.1)

where J0 is the Bessel function of the first kind of order zero, Re[·] represents the real part265

of the argument, i is the imaginary unit and T is the pulsation period. Also included is266

the corresponding fundamental mode obtained from the Fourier analysis (red solid lines),267

which allows us to evaluate qualitatively the extent of the nonlinear effect due to the268

turbulence. For a better presentation of the variation tendency, the data are duplicated269

and then spliced such that two periods are shown.270

For case 1, the three curves overlap completely, indicating a quasi-laminar flow state.271

The phase-wise variation of the wall shear stress follows a purely sinusoidal pattern(figure272

1a). A mild increase in frequency leads to the subtle departure from the laminar Stokes273

value and the decrease of Aτ̃w,t/Aτ̃w,s from unity for case 2 (figure 1b). For case 3,274

it is clear that the amplitude of the wall shear stress is significantly smaller than its275

laminar value but they still synchronize in phase. The differences between the wall shear276

stress and its fundamental mode are subtle, suggesting that the phase symmetry still277

holds. Considerable changes occur for case 4. As seen, the wall shear stress deviates278

significantly from its fundamental mode. The drag-increasing phase occupies for a longer279

portion of the cycle than the drag-decreasing phase. That is, a hysteresis occurs during280

the oscillation cycle, indicating the destruction of the phase symmetry. Interestingly,281

when approaching the maxima, the increasing rate decreases, leading to a stage of282

the high-level wall shear stress with a slow growth. Similar phenomena have also been283

reported experimentally by Sundstrom & Cervantes (2018b), where up to 500 cycles284

of measurements have been performed to obtain the phase-averaged wall shear stress285

at a higher amplitude and Reynolds number. Nevertheless, their data still suffer from286

fluctuations due to measurement uncertainties. Chen et al. (2014) also reported the same287

tendency for similar pulsation parameters, but their data were obtained only from the288

final period. In the present study, the sufficient number of averaging periods and the289

spatial average in homogeneous directions ensure the smoothness of the phase-averaged290

statistics. In addition, the wall shear stress lags behind the laminar value, which does291

not occur in former cases. This discrepancy and the physical meaning of this phase292

lag will be discussed in section 5. For the smallest frequency considered (case 5), the293

deviations from the fundamental mode are still observable, and the hysteresis is less294

evident but discernable. A phase lag with respect to the laminar value can also be295

observed. Theoretically, if the frequency is small enough to reach the quasi-steady state,296

all three curves should be in phase with the sinusoidally varying pressure gradient, and no297

hysteresis occurs. Hence, it can be inferred that as the frequency increases from zero, the298

aforementioned phase lag and hysteresis emerge initially and then disappear gradually.299

Figure 6 shows the phase-wise variation of the wall shear stress for cases with A=0.4.300

A reduction of the amplitudes compared with the corresponding laminar value is still301

observable. Specifically, Aτ̃w,t/Aτ̃w,s increases from 0.65 to 0.8 as the amplitude increases302

from 0.1 to 0.4 for l+s =14 while it decreases from 0.86 to 0.59 for l+s =17. For case303

6, a distinct deviation from the fundamental mode occurs when the wall shear stress304

reaches its minimum (negative peak of τ̃w), which implies a strong nonlinear effect of305

turbulence at that phase. Same as that for A=0.1, the wall shear stress is still in phase306

with the laminar value. For case 7, a distinct kink can be clearly observed at around307

the phase of t=3T/4. We note that both Tu & Ramaprian (1983) and Scotti & Piomelli308

(2001) reported such kink, but the causes are still unclear. Such kink also implies special309
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Figure 5. Phase-wise variations of the oscillating component of the wall shear stress τ̃w for
A=0.1 (the black lines), with the corresponding fundamental Fourier mode represented by the
red solid lines. The blue dashed lines correspond to the laminar Stokes solution. The vertical
arrows denote the phases where the phase-averaged wall shear stress ⟨τw⟩ reaches its maximum
or minimum. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5.

turbulence dynamics and will be discussed in detail in section 6. The fundamental mode310

lags behind the laminar value, consistent with that for A=0.1. It is worth noting that we311

only consider a higher amplitude at two intermediate frequencies. In fact, increasing the312

amplitude will not change the quasi-laminar state for high-frequency cases (e.g. cases 1313

and 2), hence their wall shear stresses are expected to still follow the laminar solution;314

while for a low-frequency case where the quasi-steady state is reached, a higher pulsation315
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Figure 6. Phase-wise variations of the oscillating component of the wall shear stress τ̃w for
A=0.4 (the black lines), with the corresponding fundamental Fourier mode represented by the
red solid lines. The blue dashed lines correspond to the laminar Stokes solution. The vertical
arrows denote the phases where the phase-averaged wall shear stress ⟨τw⟩ reaches its maximum
or minimum. (a) Case 6. (b) Case 7.

amplitude leads to a higher amplitude of the wall shear stress, but the variation trend316

would still follow a sinusoidal manner. Case 5 can be considered as a transition case for317

which the flow state is closer to the quasi-steady state. The hysteresis phenomenon at the318

frequency of case 5 with a higher amplitude is probably not evident. Thus, behaviours319

of the wall shear stress for cases with high or low frequencies are somewhat predictable,320

which is the reason for considering only these two frequencies with a higher amplitude.321

In this section, we provide a general description of the pulsatile pipe flow, with a322

focus on the phase-wise variation of the wall shear stress. Different combinations of the323

pulsation parameters lead to significantly different behaviours of τ̃w. In the following324

sections, we aim to explore the causes of such differences and the corresponding flow325

dynamics based on (2.4) since τ̃w correlates closely to ũ near the wall.326

4. Damping mechanisms of the oscillating wall shear stress327

We focus on case 3, for which the ratio Aτ̃w,t/Aτ̃w,s reaches its minimum, to elucidate328

the mechanisms that lead to the amplitude reduction of the oscillating wall shear stress329

(τ̃w) in the turbulent state compared with its corresponding laminar value.330

The phase-wise variation of ũ for case 3 is shown in figure 7(b), together with its laminar331

value calculated from (3.1) shown in figure 7(a). As seen, the most dramatic difference332

resides in the near-wall region; namely, below y+≈20, the laminar contour appears to333

be more distorted than that in the turbulent case in that region. By examining the334

contour values, it can be observed that the amplitude of the oscillating ũ is smaller in335

the turbulent case, corresponding to the smaller amplitude of τ̃w shown in figure 5(c).336

In the outer layer, the laminar and turbulent cases behave almost the same. According337

to (2.4), the key term that the laminar equation lacks is the weighted radial derivative338

of the Reynolds shear stress ũ′v′ (Sundstrom & Cervantes (2018c)), which we denote339

as ℘. This term can be further decomposed into the derivative term -∂ũ′v′/∂r and the340

curvature term -ũ′v′/r, for which the latter is generally negligible compared with the341



12 X. Liu, H. Zhu, Y. Bao, N. Srinil, D. Zhou and Z. Han

(a)

(b)

(c)

u+

u+

u'v'+

j

3 . 6

- 3 . 8
5 . 0- 5 . 3 6 . 5

- 6 . 8 8 . 0
9 . 5- 8 . 2

0
1 0
2 0
3 0
4 0
5 0

y+

- 0 . 1 4

0 . 1 7

0 T / 4 T / 2 3 T / 4 T

14

0
1 0
2 0
3 0
4 0
5 0

y+

- 2 . 1

0 . 0

2 . 1

T / 4 T / 20

〈� w 〉 , m a x

3 T / 4 T

〈� w 〉 , m i n

0
1 0
2 0
3 0
4 0
5 0

y+

- 2 . 1

0 . 0

2 . 1

T / 4 T / 20 3 T / 4 T

〈� w 〉 , m a x 〈� w 〉 , m i n

〈� w 〉 , m a x 〈� w 〉 , m i n

Figure 7. Phase-wise variations of (a) the laminar Stokes velocity ũ+, (b) the turbulent

streamwise velocity ũ+, (c) the Reynolds shear stress ũ′v′
+

for case 3 (A=0.1, l+s =14). The
magenta contours in (c) represent the term ℘, with the values (divided by 10−3) marked on the
contour lines. The magenta chain-dotted straight line indicates the laminar Stokes thickness of
l+s =14.

former in the near-wall region. Hence, we examine the phase-wise variation of ũ′v′ in342

figure 7(c). Importantly, there is a phase lag between ũ′v′ and ũ such that the positive343

and negative peaks of ũ′v′ are reached when |∂ũ/∂t| reaches its maximum (the regions344

between the blue and red contours). Evidently, the term ℘ is prominent below the blue345

and red contours, as shown by the magenta contours in figure 7(c). For negative ũ′v′346

(blue region, at t≈T/4), the radial derivative of ũ′v′ near the wall is positive, hence the347

term ℘ acts as a sink term that leads to a reduction of the positive acceleration ∂ũ/∂t.348

Similarly for positive ũ′v′ (red region, at t≈3T/4), the term ℘ contributes positively to349

the negative ∂ũ/∂t. Thus, in the turbulent case, the acceleration and deceleration of ũ350

in the near-wall region are both damped by term ℘ compared with its laminar value,351

therefore causing the reduction of the amplitude of ũ and then the wall shear stress. It352

is noted that, in the near-wall region of a steady fully-developed turbulent pipe flow, -353

du′v′/dr acts as a gain term in the u transport equation and hence contributes positively354

to the mean velocity (-u′v′/r is comparatively negligible) (Wu & Moin (2008)). Thus,355

the effect of turbulence is reversed by the imposed unsteadiness. It should also be noted356

that the temporal variation of ũ′v′ is not strictly sinusoidal, i.e. the time span of the357

blue contour is not strictly the same as that of the red contour, and the same goes for358
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Figure 8. Phase-wise variations of (a) the streamwise Reynolds normal stress ũ′u′+, (b) the

radial Reynolds normal stress ṽ′v′
+

for case 3 (A=0.1, l+s =14). Phase-wise variations of the
production terms in (4.1) for case 3 (A=0.1, l+s =14): (c) P+

uu,1, (e) P+
uu,2, (g) P+

uu,3, (d) P+
uv,1,

(f ) P+
uv,2, (h) P+

uv,3. The magenta chain-dotted lines indicate the laminar Stokes thickness of

l+s =14.

the following contours. This coincides with the fact that the wall shear stress deviates359

slightly from its fundamental mode as shown in figure 5(c).360

Apparently, it is the phase lag between ũ and ũ′v′ that causes the nearly antiphase361

variation between the term ℘ and ∂ũ/∂t, leading to the subsequent reduction of the362

amplitude of τ̃w. To further understand the origin of such phase lag, we examine the363

phase-wise variations of ũ′u′, ṽ′v′ and the production terms of ũ′u′ and ũ′v′ (shown in364

figure 8):365

P
ũ′u′ = −u′v′

∂ũ

∂r︸ ︷︷ ︸
Puu,1

−ũ′v′
∂u

∂r︸ ︷︷ ︸
Puu,2

−(ũ′v′
∂ũ

∂r
− ũ′v′

∂ũ

∂r
)︸ ︷︷ ︸

Puu,3

, (4.1a)

366

P
ũ′v′ = −v′v′

∂ũ

∂r︸ ︷︷ ︸
Puv,1

−ṽ′v′
∂u

∂r︸ ︷︷ ︸
Puv,2

−(ṽ′v′
∂ũ

∂r
− ṽ′v′

∂ũ

∂r
)︸ ︷︷ ︸

Puv,3

. (4.1b)

These quantities are closely correlated as ṽ′v′ dictates the production terms of ũ′v′; ũ′v′367

dictates the production terms of ũ′u′, and the energy redistribution from ũ′u′ directly368

feeds energy into ṽ′v′. In addition, the laminar Stokes thickness l+s =14 (magenta chain-369

dotted line) is included to mark the edge of the laminar Stokes layer.370

The phase-wise variation of ũ′u′ is well correlated with ũ, with the latter leading371
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Figure 9. Phase-wise variation of the dissipation rate ε̃+ of the TKE k=u′
iu

′
i (i=1,2,3) for case

3 (A=0.1, l+s =14). Note that the time-averaged dissipation rate ε+ is negative, thus a negative
value of the oscillating component indicates the enhanced dissipation rate. For the definition of

ε̃+, we refer the reader to Eggels et al. (1994) for further details.

by a small phase margin. Since the streamwise velocity fluctuation is directly linked372

to the near-wall streak, this phase lag reflects the inertial effect of the turbulence373

structure. Here, the contour only gives the information regarding the intensity of near-374

wall streaks. It will be shown later by the spectrum analysis that the increase of ũ′u′
375

is also accompanied by the elongation of near-wall streaks. The shear-strain-oscillated376

production Puu,1 leads ũ′u′ in phase and the wall-normal location of the maximum377

coincides with that of ũ′u′. The Reynolds-stress-oscillated production Puu,2 peaks inside378

the Stokes layer, and its magnitude is larger than Puu,1. Thus, the main portion of the379

near-wall streak is dominated by the oscillating shear strain rate through Puu,1, with the380

phase lag corresponding to the delayed development of the streak. Puu,2 is in phase with381

ũ′v′ and therefore responsible for the distortion of ũ′u′ contour within the Stokes layer.382

The phase-wise variation of ṽ′v′ further lags behind ũ′u′; it reaches a positive (negative)383

peak during the deceleration (acceleration) phase of ũ. The production terms Puv,1 and384

Puv,2 both peak outside the Stokes layer, but Puv,2 is more correlated with ũ′v′ and385

its magnitude is larger than Puv,1. Thus, it can be inferred that the variation of ũ′v′ is386

dominated by ṽ′v′ rather than the oscillating shear strain rate, but the existence of Puv,1387

makes the ũ′v′ lead ṽ′v′ by a small phase margin. The phase lag between ṽ′v′ and ũ′u′
388

indicates the energy redistribution from ũ′u′ to ṽ′v′ (The same goes for w̃′w′, not shown389

here. The variation of w̃′w′ is in phase with ṽ′v′). Moreover, the magnitude of ũ′u′ is390

one order of magnitude larger than ṽ′v′ and w̃′w′. The reduction of the energy of ũ′u′
391

does not match the total energy gain of ṽ′v′ and w̃′w′, which implies that there must392

be significant dissipation of the turbulent kinetic energy (TKE) during the deceleration393

phase of ũ as confirmed in figure 9. It should be noted that the nonlinear production394

terms Puu,3 and Puv,3 are both negligible compared with the other linear production395

terms.396

Based on the information given, we can summarize the flow evolution with a schematic397

in figure 10. There are two circulations representing the time evolution of ũ′u′ and the398

bulk velocity Ub, respectively. The inside of the Ub loop corresponds roughly to the inner399

Stokes layer, while the outside is associated with the region outside the Stokes layer. As400

shown in figure 8(a), the majority of ũ′u′ contours are outside the Stokes layer, hence401

here the ũ′u′ loop encloses the Ub loop. Two main points deserve to be highlighted. One402

is the time delays that are associated with the development of near-wall streaks and the403

energy redistribution process. The former corresponds to a phase lag between ũ and ũ′u′,404

and the latter gives rise to a phase lag between ũ′u′ and ṽ′v′. These time delays together405
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Figure 10. Schematic of the flow dynamics leading to the damping of the wall shear stress. The
vertical arrows indicate whether the quantities increase or decrease. The vertical lines denote
the absolute values.

result in a phase lag between ũ′v′ and -∂ũ/∂r (figure 11a), which is∆ϕ=0.52π at y+=15.8406

where the overall absolute value of ũ′u′ reaches its maximum. This value is quite close to407

that reported in Weng et al. (2016) (figure 21 in their paper). Another point is the phase408

asymmetry of the turbulence activity. At the initial stage of the acceleration phase, the409

level of turbulence intensity is low, hence the whole phase is occupied by the smooth410

intensification of turbulent activity. For the deceleration phase, the situation is more411

complicated; the energy redistribution process is accompanied by a high-level dissipation412

rate that transfers partial TKE into heat. We note that Feldmann & Wagner (2016a) also413

reported phase asymmetries in the oscillatory pipe flow (zero mean bulk flow), but their414

focus was on the laminar-turbulent transition during the reciprocal cycles of the bulk415

flow, therefore different from the present study where the phase asymmetry is reflected416

in the evolution of sustained turbulence. Xu et al. (2020) also reported strong phase417

asymmetry in a pulsatile pipe with a non-zero mean flow. They showed, in the case of418

a large pulsation amplitude, that helical flow structures occur in the deceleration phase419

and decay in the acceleration phase. In the present study, the pulsation amplitude is420

small such that the helical instability cannot be triggered, but the energy transfer from421

ũ′u′ to the other two co-existing components bears some similarity with the occurrence422

of the helical structure since the latter is characterized by a large circumferential velocity423

whose energy probably comes from the streamwise velocity.424

However, the distinct phase asymmetry in the evolution of turbulence does not result425

in a remarkable phase asymmetry in τ̃w. As shown before, the fact that ũ′u′ is mainly426

dominated by Puu,1 suggests that the strength of the main portion of the near-wall streak427

directly follows from the magnitude of the shear strain rate. In the deceleration phase,428

ṽ′v′ drains energy from ũ′u′ and feeds energy into ũ′v′ through Puv,2 simultaneously,429

yielding a large magnitude of Puu,2. Nevertheless, Puu,2 only affects ũ′u′ in the very430

near-wall region (within the Stokes layer), which means that the main portion of the431

near-wall streak is unaffected by the variation of ũ′v′. That is, the energy flow from432
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Figure 11. (a) Phase-wise variations of the Reynolds shear stress ũ′v′
+

and the shear strain

rate -∂ũ+/∂r+ at y+=15.8 where the overall absolute value of ũ′u′ reaches its maximum for case
3 (A=0.1, l+s =14). (b) Phase-wise variations of the term ℘ and the oscillating pressure gradient
-∂p̃/∂x at y+=6.5 where the overall absolute value of term ℘ reaches its maximum for case 3
(A=0.1, l+s =14). The red solid and dashed lines represent the respective fundamental Fourier
modes that are used to calculate the phase difference.

ũ′u′ to ṽ′v′ to ũ′v′ is somewhat one-way coupled. In the acceleration phase, a negative433

ũ′u′ results in a negative ṽ′v′, ũ′v′, and Puu,2. On the other hand, due to the high-434

frequency oscillation, the Reynolds number variation does not influence markedly the435

turbulence responding time scale. Therefore, the phase-wise variation of ũ′v′ follows a436

nearly sinusoidally varying manner (figure 11a), and the term ℘ follows suit. Besides, the437

delayed response of turbulence leads to an antiphase variation pattern between the term438

℘ and the oscillating pressure gradient (figure 11b), indicating the coincidence between439

the phase lag between -∂ũ/∂r and ũ′v′ and the quarter of pulsation period. The resulting440

phase-averaged wall shear stress is equivalent to that in the laminar flow with a reduced441

amplitude of the oscillating pressure gradient. Hence, the above-mentioned factors make442

the phase-averaged wall shear stress oscillate at a lower amplitude without losing its443

phase asymmetry.444

It is noted that similar discussions regarding the production process of Reynolds445

stresses have also been made by Weng et al. (2016). Their focus was mainly on the446

effects of frequency on the production process and the wall-normal propagation of the447

shear wave. Here, the flow dynamics presented in figure 10 are broadly consistent with448

them, but we further elaborate the production process focusing on only one case. The449

differences are that: we identify the relative importance of the production terms in (4.1)450

and their effective region during the cycle; we give an explanation of why the turbulence451

damps the oscillating wall shear stress based on the production process; we explain why452

the phase asymmetry of the evolution of turbulence does not induce a remarkable phase453

asymmetry in the variation of wall shear stress.454
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Figure 12. Phase-wise variations of (a) the turbulent streamwise velocity ũ+, (b) the Reynolds

normal stress ũ′u′+, (c) the Reynolds normal stress ṽ′v′
+
, and (d) the Reynolds shear stress

ũ′v′
+
for case 4 (A=0.1, l+s =17). The data are duplicated and then spliced such that two periods

are presented.

5. Hysteresis phenomenon in the wall shear stress455

An interesting issue to be addressed next is the distinct hysteresis in the phase-wise456

variation of τ̃w for case 4, where the drag-increasing phase occupies a longer portion of457

the cycle than the drag-decreasing phase. Figure 12 shows the phase-wise variations of ũ,458

ũ′u′, ṽ′v′ and ũ′v′ for case 4. Again, the data are duplicated to two periods for a better459

presentation of the hysteresis. It is observed that the phase asymmetry is only remarkable460

in the near-wall region (approximately below y+=20) for ũ, while it shows good symmetry461

in the outer layer. This is because the outer turbulence intensity is low such that the462

flow in that region behaves almost in a laminar-like manner. The hysteresis is brought463

out well by the contours of ũ′u′, ṽ′v′ and ũ′v′. They all exhibit similar patterns, that is,464

the low-magnitude phase of the stress progresses over a longer portion of the cycle than465

the high-magnitude phase. Again, at y+≈12 where the mean streak intensity reaches its466

maximum, ũ′u′ lags behind ũ and ṽ′v′ further lags behind ũ′u′, while ṽ′v′ is almost in467

phase with ũ′v′. This suggests the same evolution process of turbulence as that in case468

3 discussed above.469

The question addressed next is why the hysteresis occurs in case 4 rather than in470

case 3 given the same turbulence evolution process. Based on the discussion in section471

4, the term ℘ and the oscillating pressure gradient are the key factors that determine472

the evolution of the near-wall streamwise velocity ũ. Hence, we found the wall-normal473

location where the overall absolute value of term ℘ reaches its maximum and plotted474

the phase-wise variation of ũ, -∂p̃/∂x, term ℘ and the sum of the last two terms at475

that location in figure 13(a). It can be observed that the phase-wise variation of term476

℘ is apparently non-sinusoidal. Specifically, the term ℘ rises to a positive peak with a477

larger absolute value than the negative peak; this leads to a sharp increase of the positive478

sum (black chain dotted-dotted line) of the term ℘ and -∂p̃/∂x, which counteracts the479

slow-down effect from the viscous force. Hence, ũ keeps increasing at a lower rate even480

though the oscillating pressure gradient has already changed its direction, leading to the481

short lingering of the high-level wall shear stress and thereby the hysteresis. In the region482

away from the wall at y+=12.2 (figure 13b), for instance, the magnitude of term ℘ is483
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Figure 13. Phase-wise variations of the term ℘, the oscillating pressure gradient -∂p̃/∂x, the
streamwise velocity ũ (divided by a scale factor of 5), and the quantity of -∂p̃/∂x+℘ at (a)
y+=6.1 where the overall absolute value of term ℘ reaches its maximum, and at (b) y+=12.2

where the overall absolute value of ũ′u′ reaches its maximum for case 4 (A=0.1, l+s =17).
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Figure 14. Definitions of the quantities associated with the time scale of turbulence response:
tT,max, tT,min, tD,max, tD,min. The data of the curves are taken from case 4 (A=0.1, l+s =17) at

y+=12.2. The values of ũ′u′+ are divided by a scale factor of 30.

smaller such that it cannot effectively influence the evolution of the streamwise velocity,484

and therefore the hysteresis is less evident.485

According to the discussions above, it can be found that the magnitude of term ℘ and486

its phase relation to the oscillating pressure gradient in the vicinity of the wall are the487

crucial factors that affect the wall shear stress. Taking the wall-normal location where488

the overall absolute value of term ℘ reaches its maximum as a reference, these two terms489

vary in antiphase to each other in case 3 (the phase lag is approximately π (figure 11b));490

while in case 4, the phase lag is less than π if we take the positive peak of term ℘ as the491

reference (figure 13a). Besides, the magnitude of term ℘ in case 4 is larger than that in492

case 3. The combination of these facts leads to the significantly different behaviours of493

τ̃w. The oscillating pressure gradient is predetermined based on the pulsation parameters.494

As for term ℘, its magnitude and phase near the wall are determined by the outer ũ′v′;495

while the outer ũ′v′ is closely associated with ṽ′v′ through the production terms, with496

the latter deriving from the energy redistribution process. Thus, this is a top-down effect497

that reflects the high wall-normal inhomogeneity of the wall-bounded turbulent flow,498

which is different from that in the homogeneous turbulence case (Yu & Girimaji (2006)).499

Hereafter, the outer region corresponds roughly to the wall-normal location where the500



Flow dynamics in turbulent pulsatile pipe flow 19

1 0 0 1 0 1- 0 . 7
- 0 . 6
- 0 . 5
- 0 . 4
- 0 . 3
- 0 . 2
- 0 . 1
0 . 0

 C a s e  2
 C a s e  3
 C a s e  4
 C a s e  5

t T/T

y +

Figure 15. Wall-normal profiles of tT normalized by the pulsation period T . Solid lines: tT,max;
dashed lines: tT,min. Note that -∂ũ/∂r approaches zero close to the centreline and numerical
errors occur when determining the tT . The regions where the magnitude of local maximum
|∂ũ/∂r| drops below 10% of the overall maximum are considered to be accompanied by certain
numerical errors, which are marked by the black dots.

overall absolute value of ũ′u′ reaches its maximum and the inner region is associated with501

the wall-normal location where the overall absolute value of term ℘ reaches its maximum.502

In regard to the phase lag between the term ℘ and the oscillating pressure gradient,503

it is natural to focus on the time scale that the turbulence reacts to the varying shear504

strain rate, i.e., the time delay between -∂ũ/∂r and ũ′v′, which we denote as tT . In the505

outer region, ũ′v′ lags behind -∂ũ/∂r due to the above-mentioned two processes. In the506

meantime, as the wall-normal location moves away from the wall, the phase lag between507

-∂ũ/∂r and the oscillating pressure gradient gradually approach π/2 (figure 12a). Thus,508

we can use a quarter of the pulsation period (T/4) as a benchmark to measure the phase509

lag between the term ℘ and the oscillating pressure gradient. If tT is equal to T/4 in the510

outer region, then the term ℘ would be in antiphase to the oscillating pressure gradient511

in the inner region, which is the situation in case 3. To quantify tT and take into account512

the hysteresis, we denote the time delay between the maximum -∂ũ/∂r and maximum513

ũ′v′ as tT,max; while for the minimum, it is denoted as tT,min (see figure 14). Figure 15514

shows the wall-normal distribution of tT normalized by the respective pulsation period515

(T ) for cases 2 to 5. It is first observed that both tT,max and tT,min in the buffer layer516

are exactly a quarter of the pulsation period for cases 2 and 3. For cases 4 and 5, tT,max517

is smaller than T/4, in accordance with the aforementioned reduction of the phase lag518

between ℘ and -∂p̃/∂x from π. It is noted that the wall-normal variation tendency of tT519

presented in figure 15 agrees qualitatively well with that reported in Weng et al. (2016)520

where they showed the wall-normal profiles of the phase lag between -ũ′v′ and ∂ũ/∂y. A521

remarkable feature is the significantly reduced phase lag below y+=10 for ω+⩽0.006 of522

their cases. In the present study, both tT,max and tT,min for cases 4 (ω+=0.007) and 5523

(ω+=0.005) exhibit such a feature. The cause is that the delayed generation of ũ′v′ in524

the outer region produces a large radial gradient of ũ′v′ in the inner region, promoting525
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Figure 16. Wall-normal profiles of inner-scaled t+D. Solid lines: tD,max; dashed lines: tD,min.
The meaning of the black dots is the same as that in figure 15.

the continuous increase of ũ and then shifting the overall phase of ũ in the inner region.526

Therefore, the phase lag between -∂ũ/∂r and ũ′v′ is reduced, and this also causes the527

phase lag of the wall shear stress between the turbulent and laminar cases mentioned in528

section 3.529

Another important information conveyed by figure 15 is the inequality between tT,max530

and tT,min, especially below y+=10. In the model proposed by Weng et al. (2016), a531

constant turbulent relaxation time is assumed such that the turbulent eddies can be532

considered as viscoelastic; this turbulent relaxation time together with the pulsation fre-533

quency determines the phase lag between -ũ′v′ and ∂ũ/∂y. Furthermore, they attempted534

to improve the turbulence model by considering the wall-normal variation of turbulent535

relaxation time. However, it turns out that the improvement in predicting the wall shear536

stress is not satisfactory. The reason might be that the turbulent relaxation time varies537

not only in space but also in phase. As shown in figure 15, the difference between tT,min538

and tT,max increases as the wall is approached (y+<10), which means that the assumption539

of constant turbulent relaxation is inappropriate; the cause might be attributed to the540

significant viscous effect near the wall such that the temporal variation of the friction541

Reynolds number leads to the distinct temporal variation of turbulence relaxation time542

scale tT in that region. Besides, such difference is more prominent in low-frequency cases543

(cases 4 and 5) where tT,max and tT,min differ significantly not only below y+=10 but544

also in the buffer layer. This might explain to a certain extent why considering the wall-545

normal variation of turbulent relaxation time can help to improve the prediction of τ̃w546

for cases with ω+⩾0.01 but fails for low-frequency cases (Weng et al. (2016)).547

We further examine the time delay between -∂ũ/∂r and ṽ′v′, denoted as tD, in figure548

16 since ũ′v′ leads ṽ′v′ by a small phase margin due to Puv,1, and tD can describe a549

more complete turbulent reaction process. Again, the time delays between the respective550

maximum and minimum values are denoted as tD,max and tD,min (see figure 14). For551

cases 2 and 3, tD,max and tD,min differ slightly in the near-wall region, in accordance552

with the phase symmetry shown in previous contours. For cases 4 and 5, tD,max and553
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tD,min follow a similar wall-normal distribution pattern, with the overall magnitude of554

tD,min being larger than tD,max. Besides, in the buffer layer where the near-wall streak555

populates, tD increases as the frequency decreases, indicating that the turbulence reacts556

more slowly in low-frequency cases. As suggested by Weng et al. (2016), the delayed557

response of turbulence is a manifestation of the viscoelasticity of turbulent eddies, then558

the above-mentioned features of tD reflect the variation of the viscoelasticity with respect559

to the pulsation frequency. For high-frequency cases (cases 2 and 3), the frequency is large560

such that the turbulent eddies exhibit phase-wise-invariant viscoelastic property, that is,561

the relative importance between the elasticity and viscosity remains nearly constant in562

phase (in Maxwell’s viscoelastic model, the ratio between the viscosity and the elasticity563

dictates the relaxation time), and this is reflected by the closeness between tD,max and564

tD,min; while for low-frequency cases (cases 4 and 5), the viscoelasticity varies in phase.565

Specifically, for a high-level shear strain rate (positive -∂ũ/∂r), the instantaneous friction566

Reynolds number is large, hence it can be regarded that the elasticity is enhanced such567

that the turbulent responding time tD,max is small; while for the low shear strain rate568

phase (negative -∂ũ/∂r), the viscosity dominates, leading to a larger tD,min which is569

also characteristic of low-Reynolds-number flows. Therefore, this highlights again the570

importance of considering the phase-wise variation of turbulent relaxation time when571

employing the viscoelastic model to predict the wall shear stress in pulsatile wall-bounded572

flows. Moreover, the effects of the varying Reynolds number on the turbulence response573

time bears qualitative resemblance with that reported in Xu et al. (2017) where the574

transition in the pulsatile pipe flow is studied. In the high-frequency regime, the transition575

threshold is unaffected due to the too-fast variation of the flow rate, corresponding to576

the equivalence between tD,max and tD,min here. When the frequency is reduced, the577

Reynolds number effect sets in: for the transition problem, it is reflected by the fact578

that the entrance of a low Reynolds number interval significantly elevates the transition579

threshold; while in the present study, the turbulence responds quickly in the high-580

Reynolds-number interval but slows down in the low-Reynolds-number interval.581

6. Effects of the pulsation amplitude582

In this section, the effects of pulsation amplitude are examined. We focus on l+s =14 and583

17 with the amplitude being A=0.4, which corresponds to cases 6 and 7, respectively. As584

shown in figure 6(a), the wall shear stress decreases at a lower rate when it is close to its585

minimum in case 6, leading to a short lingering low-level wall shear stress at that phase.586

This behaviour is similar to that in case 4 except for that the lingering stage occurs587

when the wall shear stress is close to its maximum and the extent is more distinct.588

According to the discussion on case 3, the phase of the low-level wall shear stress is589

accompanied by a high-level Reynolds shear stress ũ′v′ which results from the delayed590

turbulence response. It is reasonable to expect a more intense generation of ũ′v′ for a591

larger pulsation amplitude. This is confirmed in figure 17 where the instantaneous spatial-592

averaged wall shear stress over all the collected periods for A=0.1 and 0.4 are shown.593

As seen, for low-amplitude cases (cases 3 and 4), all the curves are evenly dispersed594

(figure 17a,b); while for high-amplitude cases (cases 6 and 7), evident local scattering of595

the curves can be observed around the phase of t=3T/4 even for a larger vertical axis596

limit (figure 17c,d). Note that the energy redistribution from ũ′u′ to ṽ′v′ and the rise597

of ũ′v′ occurs at this phase. It should also be noted that apparent scattering can be598

still observed for case 4 during the lingering phase (figure 17b). Hence, such a localized599

scattering of the wall shear stress curves indicates that the delayed response of turbulence600
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Figure 17. Temporal evolution of instantaneous space-averaged wall shear stress τw over all
the pulsation periods that are used to perform the phase average. The red solid lines represent
the corresponding laminar Stokes values. (a) case 3; (b) case 4; (c) case 6; (d) case 7.

in the drag-reducing phase is an intense event with a high degree of randomness. The601

higher the pulsation amplitude, the more intense the turbulence response. In addition,602

the corresponding laminar Stokes values are also included for comparison. Although the603

amplitude of the phase-averaged wall shear stress for all the cases shown in figure 17604

are lower than their laminar values, the instantaneous value could possibly exceed the605

variation range of laminar value for the cases with a relatively low frequency (figure606

17b,d), especially when the pulsation amplitude is large (figure 17d).607

Figure 18 shows the phase-wise variations of ũ, ũ′u′, ṽ′v′ and ũ′v′ for cases 6 and608

7, with the dashed magenta lines marking the edge of the laminar Stokes layer. The609

exhibited phase lag indicates again the delayed response of turbulence. A first observation610

is that the positive ũ′u′ peaks inside the laminar Stokes layer for case 7 (figure 18d).611

As discussed in section 4, the increase of ũ′u′ within the Stokes layer results from the612

generated ũ′v′ through Puu,2. This indicates the significantly large magnitude of ũ′v′ such613

that it produces higher streamwise velocity fluctuations near the wall. Second, distinct614

hysteresis can be observed for case 6. The blue contour occupies a longer portion of the615

cycle than that by the red contour, especially for ṽ′v′ and ũ′v′. Note that this hysteresis is616

indiscernible in case 3. Therefore, the increase of pulsation amplitude amplifies the phase617

asymmetry of turbulence activity, leading to hysteresis in the wall shear stress (figure 6a)618

that is reversed compared with case 4, i.e., the drag-reducing phase is longer than the619

drag-increasing phase. The same goes for case 7, the amplification of the phase asymmetry620

is reflected by the more distinct hysteresis conveyed by the contour plots (figure 18d,f,h).621

Furthermore, in comparison with case 6, the larger magnitude of all turbulence quantities622

in case 7 indicates the higher intensity of turbulence activity, which accords well with623

the fact that the instantaneous curves of the space-averaged wall shear stress are more624

dispersed at that specific phase (figure 17b,d).625

Next, we evaluate the relative importance of the term ℘ and the oscillating pressure626

gradient (-∂p̃/∂x) in figure 19 to explore the cause of the behaviour of τ̃w for A=0.4.627

The wall-normal locations are selected where the overall maximum absolute value of628

term ℘ is reached. As seen, the variation of term ℘ exhibits a distinct phase asymmetry629
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Figure 18. Phase-wise variations of the streamwise velocity ũ+, the Reynolds stresses ũ′u′+,

ṽ′v′
+

and ũ′v′
+

for A=0.4. (a,c,e,g) case 6 (A=0.4, l+s =14); (b,d,f,h) case 7 (A=0.4, l+s =17).
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Figure 19. Phase-wise variations of the term ℘, the oscillating pressure gradient -∂p̃/∂x, the
streamwise velocity ũ (divided by a scale factor of 5), and the quantity of -∂p̃/∂x+℘ at (a)
y+=6.5 for case 6 (A=0.4, l+s =14), (b) y+=5.8 for case 7 (A=0.4, l+s =17) where the over absolute
value of term ℘ reaches its maximum.

for both cases; it declines very slowly and smoothly during the acceleration phase of ũ630

but increases sharply in the deceleration phase. Importantly, the sharp increase of term631

℘ leads to a significant change of the sum (black chain-dotted-dotted lines), especially632

for case 7 where the sum even bounces back to a positive value at around the phase of633

t=3T/4, causing the kink of the ũ curve and hence the wall shear stress; while for case634
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Figure 20. (a) Wall-normal profiles of tT normalized by the pulsation period T . (b) Wall-normal
profiles of the inner-scaled tD. Solid lines: tT,max and tD,max; dashed lines: tT,min and tD,min.
The meaning of the black dots is the same as that in figure 15.
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Figure 21. Wall-normal profiles of the inner-scaled tT and tD. (a) Case 6 (A=0.4, l+s =14); (b)
Case 7 (A=0.4, l+s =17). The meaning of the black dots is the same as that in figure 15.

6, the ũ descends at a lower rate instead. This discrepancy results from the fact that the635

value of the positive peak of term ℘ in case 7 is larger than that in case 6, while the636

amplitude of the oscillating pressure gradient is smaller in the former case (according to637

(2.5), β is proportional to the frequency ω for fixed A). The large pulsation amplitude638

tends to enhance the phase asymmetry and produces a large magnitude of term ℘. In the639

meantime, the amplitude of the oscillating pressure gradient also varies with respect to640

the pulsation amplitude. Hence, it can be inferred that there would be diverse forms of641

the phase-wise variation of τ̃w for different combinations of pulsation parameters, which642

requires more cases to summarize the general law and is therefore beyond the scope of the643

present paper. It also highlights the complexity of pulsatile flows which possess multiple644

predefined parameters.645

We further examine the quantities tT and tD in figure 20. A first observation is that646

the significantly reduced time scale below y+≈10 in case 4 disappears for case 7. This is647

easily understood since the outer delayed variation of ũ′v′ does not induce a remarkable648

phase shift of the inner ũ (figure 18b). The general trend is that these two quantities both649

gradually increase as the wall is approached; this can be attributed to the strong viscous650

effect near the wall that shifts the phase of ũ forward, which can be clearly conveyed by651

the distorted laminar contour in figure 7(a) as an example, and thereby enlarging the time652

delay between the shear strain rate and the Reynolds stresses in that region. Compared653
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to A=0.1, tT does not change significantly in the buffer layer; both tT,max and tT,min are654

nearly a quarter of the period in case 6, and tT,min is larger than tT,max in case 7. For655

tD, a remarkable observation is the enlarged difference between tD,max and tD,min in the656

buffer layer for both cases. This accords well with the hysteresis exhibited in figure 18.657

However, there are obvious differences between tT and tD. For case 6, tT,min and tT,max658

are nearly the same in the buffer layer, while tD,min and tD,max differ significantly in659

that region. Similarly, the difference between tD,min and tD,max is also apparently larger660

than tT for case 7. Note that such discrepancy between tT and tD is not evident for661

cases with A=0.1. To explore the physical meaning, we compare the magnitude of tT662

and tD in figure 21. Generally, tT is smaller than tD since ũ′v′ leads ṽ′v′ by a small phase663

margin due to the shear-strain-oscillated production term Puv,1. It can be observed in664

figure 21 that the values of tT,max and tD,max are close while tT,min and tD,min differ665

significantly for both cases. This discrepancy highlights the importance of the shear-666

strain-oscillated production term Puv,1, that is, the variation of ũ′v′ is governed both by667

the shear strain rate and ṽ′v′. In the deceleration phase, the generation of ṽ′v′ is intense668

such that the production process of ũ′v′ is dominated by ṽ′v′, thus the variation of ũ′v′669

synchronizes with ṽ′v′ and the values of tT,max and tD,max are very close; while in the670

acceleration phase, the magnitude of ṽ′v′ is relatively small, then the effect of the shear-671

strain-oscillated production term Puv,1 becomes prominent, leading to a large phase lag672

between ũ′v′ and ṽ′v′ and also the large difference between tT,min and tD,min. For the673

small amplitude of A=0.1, the magnitude of the varying shear strain rate is small such674

that the variation of ũ′v′ is mainly dominated by ṽ′v′ throughout the cycle, hence the675

difference between tT and tD is small.676

7. Energy spectra677

We finally examine the streamwise and circumferential one-dimensional spectra to678

provide some information about the variation of scales of turbulence structures during679

the pulsating process, as shown in figure 22 and 23. These spectra data are collected680

at the wall-normal locations where u′u′ reaches its maximum. Taking case 4 as an681

example (figure 22c), the energy spectrum of large wavelengths (roughly λ+
x>1000)682

increases during the acceleration phase of ũ (approximately 0∼T/2, see figure 12a),683

accompanied by an initially mild decrease and the subsequent increase of the energy of684

small wavelengths (λ+
x<1000); in the deceleration phase (T/2∼T ), the increasing energy685

spectrum of small wavelengths reaches its maximum quickly and then decreases, while686

the energy of large wavelengths keep decreasing. Notably, the phase of the peak energy687

spectrum of small wavelengths coincides with that of the peak of ṽ′v′. Hence, a rough688

scenario can be depicted: the increase of the bulk flow yields a large magnitude of the689

near-wall shear strain, stretching the near-wall streaks in the streamwise direction and690

suppressing the turbulence motions that are of small scales; when the bulk flow starts691

to decrease, the existing streamwise-stretched long streaks break up into many small-692

scale structures, accompanied by the energy redistribution from ũ′u′ to the other two693

components and high intensity of dissipation; subsequently, the overall TKE drops to a694

low level and the flow state goes back to the beginning and repeats. This scenario is more695

clear in large-amplitude cases, as shown in figure 22(e)(f ), where the stretching and the696

breaking up processes are separated distinctly. For low-amplitude cases, the increase of697

the energy spectrum of small wavelengths becomes less evident as the frequency increases,698

it almost disappears for case 2 (figure 22a); besides, the streamwise stretching is also699

weak. Such changes result from two factors: one is that the pulsation is too fast for the700
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Figure 22. Normalized streamwise pre-multiplied spectra kxϕuu of streamwise velocity
fluctuations, where λx=2π/kx is the wavelength. The contour levels are set to be the same
for the fixed amplitude. The wall-normal location, where the spectra data are taken from, is at
y+=14.7 for (a) Case 2, (b) Case 3, (c) Case 4, (d) Case 5, and at y+=16.9 for (e) Case 6, (f )
Case 7. The black arrows indicate qualitatively the variation trend of the energy spectrum.

turbulence structures to respond, and the other is the low thickness of the Stokes layer in701

high-frequency cases such that only a small portion of the near-wall streaks are affected702

by the varying shear strain rate. Nevertheless, there is still an evident increase of the peak703

energy spectrum of λ+
x≈1000, which is the commonly-accepted averaged length scale in704

a steady flow, outside the laminar Stokes layer. This can be attributed to the turbulent705

diffusion that diffuses ”upward ejected” or ”downward sweeping” fluids with higher wall-706

normal velocity due to the bottom Stokes layer away or toward the wall, leading to a707

larger deficit or excess of the streamwise velocity outside the Stokes layer and hence the708

higher energy spectrum.709

For circumferential spectra, all the contours are centered around λ+
θ =100 which is710

the averaged circumferential length scale in the steady pipe. This means that the711

pulsation does not change the dominated circumferential length scale. Nevertheless,712

the streamwise stretching of the streaks is accompanied by a slight enlarging of their713

circumferential space, and the subsequent breaking up leads to the increase of energy of714

small circumferential wavelengths. It is noted that the results reported above resemble715

closely those in He & Seddighi (2013) where the turbulence in a channel with a step-716

increase of the bulk flow was investigated, both of which are characterized by the initial717

stretching of near-wall streaks and the subsequent breaking up into small-scale structures.718

However, the breaking up of the elongated streaks in He & Seddighi (2013) occurs in a719

circumstance that the bulk flow has already settled down, thus it can be considered720
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Figure 23. Normalized circumferential pre-multiplied spectra kθϕuu of streamwise velocity
fluctuations, where λθ=2π/kθ is the wavelength. The contour levels are set to be the same for
the fixed amplitude. The wall-normal locations, where the spectra data are collected, are the
same as those in figure 22. (a) Case 2; (b) Case 3; (c) Case 4; (d) Case 5; (e) Case 6; (f ) Case
7.

as a spontaneous and gradual event because the turbulence structures have to change721

its scales to accommodate to the new larger Reynolds number; while in the pulsatile722

flow, the elongated streaks break up in the deceleration phase of the bulk flow, that723

is, the decelerating bulk flow cannot accommodate the existing high-energy turbulence724

structures such that they are forced to break up, hence it is a non-spontaneous, externally-725

forced and transient process that is different from that in He & Seddighi (2013).726

8. Summary727

The phase-wise variations of the wall shear stress in turbulent pulsatile pipe flow with728

low-amplitude oscillations at Reτ=180 have been investigated using DNS. We focus on729

the paradoxical phenomenon reported in previous studies, that is, the amplitude of the730

oscillating wall shear stress in the turbulent flow is smaller than that in the laminar flow731

for the same pressure gradient in the intermediate frequency range. This implies that the732

turbulence reduces the wall shear stress. It is shown that the phase-wise variation of the733

wall shear stress exhibits a strong dependence on the frequency at the fixed amplitude of734

A=0.1. For high-frequency cases, the wall shear stress synchronizes with its corresponding735

laminar Stokes value, displaying an evident phase symmetry. As the frequency is reduced,736

a distinct hysteresis occurs, i.e., the time occupied by the drag-reducing phase differs737

significantly from that by the drag-increasing phase, accompanied by a phase shift with738



28 X. Liu, H. Zhu, Y. Bao, N. Srinil, D. Zhou and Z. Han

respect to its laminar Stokes value. This hysteresis would disappear if the frequency739

further reduces to reach a quasi-steady state.740

The cause of the paradoxical phenomenon can be attributed to the delayed response741

of the turbulence. Specifically, the delayed generation of the Reynolds shear stress ũ′v′742

in the buffer layer gives rise to a large magnitude of the radial gradient of ũ′v′ near the743

wall whose contribution to the oscillating streamwise velocity ũ is opposite to that of the744

oscillating pressure gradient, thus damping the variation of ũ near the wall and leading745

to a lower amplitude of the wall shear stress. This is a top-down effect that reflects the746

wall-normal inhomogeneity of wall-bounded turbulent flows. The delayed generation of747

ũ′v′ derives from two processes: the delayed development of near-wall streaks and the748

subsequent energy redistribution from streamwise velocity fluctuations to the other two749

coexisting components. This is an interpretation of the viscoelasticity of turbulent eddies750

from the perspective of flow dynamics.751

The hysteresis in the variation of the wall shear stress that occurs in low-frequency752

cases is caused by the phase asymmetry of turbulence response. In the deceleration phase753

of the bulk flow, the turbulence response is intense such that a large magnitude of ũ′v′ is754

generated in the buffer layer, yielding a large magnitude of the radial derivative of ũ′v′755

near the wall that is comparable to the oscillating pressure gradient and thus deviating756

the variation of ũ and wall shear stress from the sinusoidally varying manner; while in757

the acceleration phase, the turbulence response is mild, thereby the variation of near-wall758

streamwise velocity is dominated by the oscillating pressure gradient and hence follows a759

sinusoidal manner. Such a phase asymmetry causes the hysteresis of the wall shear stress760

and also a phase shift from its laminar Stokes value. The intensity of turbulence response761

and the magnitude of the oscillating pressure gradient are both closely related to the762

pulsation parameters. Thus, there would be diverse forms of phase-wise variations of the763

wall shear stress given the different combinations of pulsation amplitude and frequency,764

highlighting the complexity of pulsatile flows. Further, a quantitative examination of the765

turbulence responding time scale reveals that the viscoelastic model proposed by Weng766

et al. (2016) should not only consider the wall-normal variation of turbulent relaxation767

time but also take into account its phase-wise variation to acquire a better performance.768

For larger amplitude cases, the phase asymmetry of the turbulence response is amplified769

due to the larger variation range of the Reynolds number. The flow evolution can be770

clearly separated into two stages. In the acceleration phase of bulk flow, the near-wall771

streaks are stretched in the streamwise direction, accompanied by the suppression of772

small-scale turbulent motions. When the bulk flow starts to decrease, the existing long773

streaks break up into small-scale structures, together with a high dissipation rate that774

transforms the turbulent kinetic energy into heat. This process is of a high degree of775

randomness that leads to a more intense fluctuation of the instantaneous wall shear stress.776

Moreover, the importance of the shear-strain-oscillated production term of ũ′v′ increases777

for large-amplitude cases, reflected by the enlarged phase lag between the minimum ũ′v′778

and ṽ′v′ compared with that in low-amplitude cases.779
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