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Abstract  A detailed and fully coupled thermo-
hydro-mechanical (THM) model for fractured rock 
is presented. This model distinguishes itself by har-
moniously integrating elastoplastic material behav-
iour with a continuum damage mechanics framework. 
Solid matrix displacement, pore and fissure water 
pressures and temperature of the solid are introduced 
as the primary nodal variables. The ingenuity of this 
research is embedded in the intricate coupling of 
THM processes with plastic deformation and damage 
mechanics in a double porous medium, a venture that 
significantly broadens the remit of existing method-
ologies. The model is implemented using finite ele-
ment method (FEM) and validation is achieved by 

comparing the FEM results against existing literature 
numerical outcomes describing linear and elastoplas-
tic continuum damage behaviour of fractured rock. 
The model also exhibits an extraordinary proficiency 
in reproducing experimental triaxial test results, 
using THM components conjoined with elastoplas-
tic bounding surface aspects and inherent hardening 
effects. It is imperative, nonetheless, to underscore 
the model’s sensitivity to certain material properties, 
inclusive of strength parameters, leakage coefficients, 
and permeability attributes. This fully coupled THM 
model provides a comprehensive and sophisticated 
tool for investigating the behaviour of fractured rock 
under various loading conditions. It can help us bet-
ter understand the physics of fractured rock behaviour 
and contribute to the development of more accurate 
and reliable models for engineering applications, such 
as CO2 injection.

Article highlights 

•	 Setup of fully coupled governing equations includ-
ing: deformation, flow and energy balance.

•	 Construction of Thermo-Hydro-Mechanical (THM) 
constitutive model for fractured porous media.

•	 Implementation of bounding surface yield model 
considering elasto-plastic behaviour coupled 
with continuum damage effects and plastic hard-
ening.
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•	 Numerical implementation of the fully coupled 
THM model using FEM.
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1  Introduction

Coupling THM effects on fractured porous media is 
important to describe processes such as carbon stor-
age, hydrogen storage, geothermal energy extrac-
tion, underground storage of thermal energy, gas-oil 
recovery, remediation of contaminated sites, isolation 
of hazardous waste, amongst others (Jing and Hud-
son 2002; Kolditz et al. 2016; Ma et al. 2016; Maedo 
et al. 2021; Bai and Tahmasebi 2022; Damirchi et al. 
2022; Mahmoodpour et  al. 2022; Saeedmonir and 
Khoei 2022; Aliyu et  al. 2023). The first fully cou-
pled flow-deformation analysis for elastic responses 
of saturated single porous media was considered in 
Biot (1941). Since then, the model has been widely 
adopted to describe pore pressure and effective stress 
distribution in saturated porous media (Detournay 
and Cheng 1988; Cheng et al. 1993). Throughout the 
literature, the most basic principles of THM model-
ling are demonstrated by Terzaghi’s consolidation 
theory (von Terzaghi 1923), Biot’s theory of elastic-
ity (Biot 1941) and mixture theory (Goodman and 
Cowin 1972; Bowen 1982).

In recent years, more advanced models have been 
developed for deformable formations considering 
plasticity and continuum damage effects (Khalili 
and Loret 2001; Mortara 2009; Busetti et  al. 2012; 
Shojaei et  al. 2014; Ma 2016; Spiezia et  al. 2016; 
Brünig and Michalski 2017; Zhao et  al. 2018; Shen 
et al. 2019; Paluszny et al. 2020; Maedo et al. 2021; 
Ma et al. 2022; Kong et al. 2023; Zhang et al. 2023) 
including the coupling of elastoplastic damage mod-
els with micromechanics. These models adeptly cap-
ture phenomena such as strain softening and changes 
in elastic stiffness through the damage model, while 
accounting for irrecoverable strain and the residual 
state using plasticity theory. This coupling is crucial, 
as it enables the representation of permanent defor-
mations within the material (Ma and Zhao 2018). 

However, despite these advancements, a critical gap 
exists in the consideration of coupled thermal effects 
within existing models. Current models, while adept 
at simulating mechanical and damage responses, 
often fall short of adequately addressing the thermal 
effects inherent in fractured rock formations.

Considering thermal loading in porous media, 
McTigue (1986) is one of the most cited research 
articles that considers local thermal equilibrium in 
rock and provides analytical results for the thermo-
elastic behaviour of saturated porous rock with sin-
gle porosity. The thermo-mechanical behaviour is 
based on Biot’s (1941) poro-elasticity theory and on 
the isothermal theory of Rice and Cleary (1976). The 
characteristic of McTigue’s model is that the thermal 
expansion of the porous medium is controlled by the 
solid skeleton only, the constitutive diffusion equa-
tions are based on Darcy’s and Fourier’s laws and a 
reduced form of the energy balance equation is pre-
sented as convective transport. Masters et al. (2000), 
assumed local thermal equilibrium among all phases 
and only one temperature variable was considered. 
Both convection and conduction are included in the 
model of Masters et  al. (2000) and they validated 
their model with a double porosity isothermal prob-
lem and a non-isothermal single porosity example. 
For non-isothermal conditions, Bowen and Garcia 
(1970) introduced the thermo-mechanical theory 
of a mixture, in which each phase had its own tem-
perature, considering non-linear elasticity, non-linear 
heat conduction, non-linear viscosity, and diffusion. 
Aifantis (1980) and Aifantis and Beskos (1980) were 
among the first to attempt non-isothermal models in 
fractured media, based on the assumption that the 
flow mechanism is convective in the fractures and 
conductive in the porous phase. De La Cruz and 
Spanos (1989) coupled the temperature variation 
and mechanical motion by considering separate tem-
perature and heat transfer parameters for each phase 
of the saturated porous medium. Liu and Yu (2011), 
following the framework of Nishimura et al. (2009), 
recommended a coupled THM model to describe 
the behaviour of unsaturated porous media during 
freezing. Their model was based on thermodynam-
ics and fluid mechanics. It took into consideration 
the elastoplastic deformation and the change of the 
volumetric heat capacity and ice content during freez-
ing. Khalili and Selvadurai (2003), proposed a fully 
coupled THM model for fully saturated elastic double 
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porous media, assuming local thermal non-equilib-
rium. Thermal convection was accounted for between 
the phases, and three balance energy equations were 
proposed for the solid, porous and fracture domains 
(Khalili and Selvadurai 2003). Furthermore, the con-
stitutive equations proposed by the THM model of 
Gelet et al. (2012) can be used to identify the possible 
failure of a borehole exposed to both temperature and 
pressure gradients. Tan et al. (2011) set up a coupled 
THM model describing the heat transfer and tempera-
ture distribution as well as water migration. They sug-
gested a fully coupled THM model combined with 
a damage theory model, which could analyse the 
freeze–thaw stability of a tunnel under severe condi-
tions. Huang et al. (2018) carried out a validation of 
the THM laboratory test conducted by Neaupane et al. 
(1999) by comparing it to a theoretical THM model, 
which was also numerically analysed, and found a 
good prediction of the heat and frost energy dissipa-
tion. Their validation demonstrated that all the critical 
parameters, including pore ice pressure, permeability, 
and thermal energy, were linked to the unfrozen water 
content. However, their test was limited to homoge-
neous and isotropic rock in which thermal transmis-
sion was the same in every direction during freezing. 
Finally, Ma et  al. (2022) proposed a coupled THM 
elastoplastic damage model for concrete subjected to 
dynamic loading, focusing on thermal hardening due 
high temperature loading (20  °C < T < 950  °C) and 
triaxial conditions.

Previous investigations in the literature have gen-
erally not considered brittle–ductile behaviour, and 
existing damage models have demonstrated limita-
tions in their capacity to explore phenomena such 
as fracturing, crack re-opening, or closure. Moreo-
ver, earlier models have struggled to simultaneously 
account for both thermal-hydro-mechanical (THM) 
effects and elastoplastic hardening influences. This 
study presents a groundbreaking constitutive model 
designed to emulate THM effects within a medium 
(rock) proximate to a wellbore. What sets this 
research apart is its integration of both thermal and 
elastoplastic continuum damage effects, departing 
from the conventional assumption of elasticity and 
isothermal conditions. This fully coupled THM dou-
ble-porosity FEM model may be applied to simulate 
several wellbore stability scenarios during drilling 
and production of oil and gas; estimate any pore-fis-
sure pressure and temperature evolution on a double 

porosity fractured medium during carbon sequestra-
tion due to different CO2 injection scenarios; estimate 
the THM effects of thermal energy hydrogen stor-
age, etc. This research expands the work of Ma et al. 
(2016) and Ma and Zhao (2018), introducing also 
thermal effects to rock, based on the work of Khalili 
and Selvadurai (2003), Gelet et  al. (2012) and Ma 
et al. (2022). Hardening plasticity effects and perme-
ability evolution are also considered in the proposed 
model based on the research of Khalili et al. (2008). 
The solution for the governing differential equations 
was obtained by numerical implementation of the 
constitutive model using an innovative finite element 
formulation developed in MATLAB.

2 � Constitutive modelling

The model consists of a fully coupled THM formula-
tion, where rock is treated as a two-phase system con-
sisting of solid and liquid. The formulation presented 
consists of three separate inter-connected models 
considering deformation, flow, and heat exchange. 
Two interacting domains are identified: one repre-
senting the porous medium and the other the fracture 
network. Non-isothermal conditions are considered 
to exist in the double porous media during thermal 
loading, due to the different thermal diffusivity of the 
fluid in the pores and fissure and of the solid grains. 
However, adopting a non-isothermal model raises 
two issues: the correct termination of the work conju-
gate variables that describe the constitutive coupling 
laws and the definition of the heat transfer parameters 
between domains (Gelet et al. 2012). For the current 
research and for simplicity, the assumption that pores 
and fissures have the same temperature at each time 
step is adopted, i.e., the domains are in thermal equi-
librium and one energy balance equation is written for 
the entire system. However, mass transfer between the 
domains is considered and the double porosity model 
of Khalili (2008) and Gelet et al. (2012) is adopted to 
describe the porous and fissure network.

The model is formulated as a coupled system of 
the partial differential governing equations, which 
are discretised in space by a finite element formula-
tion and discretised in time by using the modified 
Euler’s forward scheme with automatic sub-stepping. 
The set of coupled governing equations are non-lin-
ear, second-order differential equations that contain 
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both spatial and temporal derivatives of the primary 
variables, which are deformations, pore and fissure 
pressure and temperature of the solid. The solution 
of the discretised numerical model constructed from 
the differential equations can be used to solve the 
continuum problem as a linear problem using finite 
elements. The solutions produced by this technique 
for a typical boundary value problem are formed of 
both global and local solutions. For this research, the 
global solution scheme is used for the primary vari-
ables. The integrated constitutive model produces the 
local solutions, and variables such as stress, strain, 
plastic hardening, damage and permeability evolution 
are determined. In Fig. 1 the constitutive model flow 
chart can be seen. The detailed analytical formula-
tion of the model and the constitutive relationships, as 
well as the damage evolution and hardening effects on 
rock are presented in the following sections.

2.1 � Deformation model

The deformation model is described by the concept 
of geomechanical effective stress (Khalili and Val-
liappan 1996). According to Khalili and Selvadurai 
(2003), Gelet et al. (2012) and Bai (2016) and adopt-
ing Voigt’s notation, the incremental form of the 
effective stress for saturated double porous media can 
be given as:

where j1 and j2 are the effective stress parameters that 
relate, respectively, the pore pressure and fissure pres-
sure to the matrix deformation vector; � is Kroneck-
er’s delta function; �̇ is the incremental total stress; 
⋅

p1, 
⋅

p2 and Ṫs are the increments of pore and fissure 
fluid pressures and temperature of the solid respec-
tively; and CTs

Cfr

  is the ratio between the volumetric 

thermal expansion of the solid and the compressibil-
ity of the fracture domain. Based on Khalili et  al. 
(2010), the volumetric thermal expansion coefficient 
of a whole porous medium is fully determined and 
equal to the thermal expansion of the solid skeleton. 
The effective stress parameters can be expressed as 
follows:

where Cp , Cfr and Cs represent the drained tangent 
elastic compressibilities of the porous medium, the 
fractured porous domain and the solid skeleton, 
respectively.

Selecting a representative volume of the frac-
tured porous medium as an element, and assuming 

(1)�̇
� = �̇ + j1

⋅

p1 � + j2
⋅

p2 � +
CTs

Cf

Ṫs�

(2)
j1 = Cp

/
Cfr − Cs

/
Cfr

j2 = 1 − Cp

/
Cfr

Fig. 1   Flowchart of constitutive model implementation
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no internal acting forces, the linear momentum 
equation for the whole element can be expressed as:

where � is the total external stress and F represents 
the body force per unit volume.

For the case of small deformations, the total strain 
component can be expressed as:

where u is the displacement vector of the solid phase.
The incremental stress–strain relationship can be 

indicated as:

where C is the tangential drained stiffness of the solid 
matrix of the damaged material including any elastic 
thermal effects and �̇ is the strain increment of the 
solid skeleton.

Following Eqs.  (1)–(5) the partial differential 
equation for the deformation model of a thermo-elas-
tic double porous medium is described as follows:

Cfr according to Khalili et al. (2008) can be expressed 
in terms of Young’s modulus (E) and Poisson’s ratio 
(�) as:

2.2 � Flow model

The flow of fractured rock, in the pores and fissures, 
is determined by linking Darcy’s law with the fluid 
and temperature gradient mass balance equation. Dis-
regarding any internal and viscous effects, consider-
ing an isotropic porous material, Darcy’s law is as 
follows:

(3)div� + F = 0

(4)� =
1

2
(∇u + u∇)

(5)�̇
� = [C]�̇

(6)

div

(
1

2
[C](∇u̇ + u̇∇) − j1

⋅

p1 � − j2
⋅

p2 � −
CTs

Cfr

Ṫs�

)
+ Ḟ = 0

(7)

⎧⎪⎨⎪⎩

Cfr =
(1−2�)(1+�)

(1−v)E
, for 1D strain conditions

Cfr =
2(1−2�)(1+�)

E
, for 2D strain conditions

Cfr =
3(1−2�)

E
, for 3D strain conditions

(8)vr
a
= −

ka

�

(
∇pa + �f g

)
− �aΘ∇T , a = 1, 2

where a = 1, 2 represent the porous and fracture net-
works respectively, vr

a
 is the relative velocity of the 

fluid, ka is the average permeability, ∇pa is the fluid 
pressure gradient, �f  is the density of the fluid, � is 
the dynamic viscosity of the fluid, g is the vector of 
gravitational acceleration, �a is the porosity of pores 
or fissures, and Θ is the thermo-osmosis coefficient 
coupling fluid flux to the temperature gradient.

The relative velocity of the fluid can be expressed 
as:

where va is the absolute fluid velocity and vs is the 
velocity of the solid structure.

Ma et al. (2016) and Bai (2016) suggested that by 
considering the conservation of mass and the mass 
exchange between the porous medium and fissure net-
work, the mass balance equation for a double porosity 
system can be given as:

where p1, and p2 are the pore and fissure fluid pres-
sures, respectively, and � is the shape factor for quasi-
steady-state conditions that controls the exchange of 
fluid mass between the porous matrix and the fissure 
network and it is expressed according to Warren and 
Root (1963) as:

where � is the number of the total sets of fractures 
and l is the characteristic dimension for matrix 
blocks, which can be expressed from surface-volume 
ratio following the work of Bai (2016) as follows:

where d1, d2, and d3 is the average fissure spacing 
along three orthogonal directions.

Applying the Lagrangian total derivative concept 
to Eq. (9) the flow equation will be as follows:

(9)vr
a
= �a

(
va − vs

)

(10)
−div

(
�a�f vs

)
− div

(
�f v

r
a

)
=

�

�t
(�a�f ) + (−1)a�

(
p1 − p2

)

(11)� =
4�(� + 2)

l2

(12)l =

⎧⎪⎨⎪⎩

3d1d2d3

(d1d2+d2d3+d1d3)
, � = 3

2d1d2

(d1+d2)
, � = 2

d1, � = 1
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The term da�f
dt

 can be rewritten using the coefficient 
of fluid compressibility ( Cfl) and the thermal expan-
sion coefficient of the fluid ( CTf ) following Khalili et al. 
(2008) as:

where Ta is the water temperature in the porous and 
fissure domain.

According to Ma et  al. (2016), the divergence of 
the velocity of the solid structure can be expressed as 
follows:

The term ds�a

dt
  from Eq. (13) can be also expressed 

as:

2.3 � Heat transfer to the solid medium

The heat transfer is due to the temperature gradient only 
and can be described by the multi-dimensional exten-
sion of Fourier’s Law as:

where qs is the conductive heat flux, �s is the porosity 
of the solid and ks is the thermal conductivity of the 
solid.

According to Gelet et al. (2012) and Bai (2016) and 
assuming that the pore-fluid, fissure-fluid and solid are 
in local equilibrium, the energy balance equation for 
the solid phase can be presented as:

where ṡsolid is the change in entropy per unit volume 
which can be expressed, following Bai (2016), as:

(13)
−�f div

(
v
r
a

)
=�a

da�f

dt
+ �f

ds�a

dt

+ �a�f div
(
vs

)
+ (−1)a+1

�
(
p
1
− p

2

)

(14)
da�f

dt
= Cfl�f

dapa

dt
− �f CTf

daTa

dt

(15)div
(
vs
)
=

1

Vtotal

dsVtotal

dt

(16)
ds�a

dt
=

1

Vtotal

(
dsVa

dt
− �a

dsVtotal

dt

)

(17)qs = −�sks∇Ts

(18)div
(
𝜑sks∇Ts

)
= Tsṡsolid

where Cps is the possible heat capacity of the solid (J/
m3 K) and �s is the apparent density of the solid (kg/
m3), which is equal to the porosity of the solid 

(
�s

)
 

multiplied by the intrinsic density of the solid 
(
�s
)
.

2.4 � Damage variable

For a certain Representative Elementary Volume 
(REV), big enough to contain several discrete micro-
cracks; a plane normal to the direction vector ( ns ) is con-
sidered, which has an area ( A ) consisting of a damaged 
area ( AD ) and an undamaged area ( Au ). If we denote D 
as the damage variable linked to the vector ( ns) then it is 
a scalar for isotropic damage and anisotropic operations:

In fracture mechanics, a fracture takes place when 
the current principal tensile stress exceeds the tensile 
strength in the stress domain. However, rock materials 
are exposed to both hydrostatic and deviatoric stress. 
Consequently, the equivalent stress or Von-Mises cri-
terion is applied. Von-Mises criterion is applicable for 
the analysis of plastic deformation for ductile materials. 
The yielding of the ductile material begins when the 
second invariant of deviatoric stress J2 reaches a critical 
value. The equivalent stress is equal to the deviatoric 
stress as �e =

√
3J2.

The damage evolution law based on the Von-Mises 
criterion following the work of Yazdchi et  al. (1996), 
Lemaitre (1985), Kachanov (1980) and Ma (2014) is:

where H�e
 is the damage evolution rate and depends 

on the stress state (confining pressure and stress ratio):

where z controls the effects of the confining pressure 
on material behaviour and is expressed as 

(19)

ṡsolid =
CTs

Cf

𝜀̇ −
(
j1 − 𝜑1

)
CTs

⋅

p1 −(j2 − 𝜑2)CTs

⋅

p2 +
𝜌sCps

Ts
Ṫs

(20)D =
AD

A

(21)Ḋ =

{
H𝜎e

(
𝜎e
)1∕m

, 𝜎e > 𝜎et
0, 𝜎e ≤ 𝜎et

(22)H�e
= h�e |lnz|

|||||
ln

(
Mcs + �

2Mcs

)|||||
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z = p�
o

/(
p�
conf

+ 1

)
 , with the p′

o
 being the maximum 

hydrostatic compressive pressure or the historic con-
solidation pressure and p′

conf
 is the confining pressure; 

h�e is a material constant that may be determined by 
fitting to experimental results; � =

q

p�
 can be used to 

determine the relationship between deviatoric and 
hydrostatic stresses (this is important as, generally, 
hydrostatic stress can be responsible for the closure of 
micro-cracks, and we need to discover the propaga-
tion of the micro-cracks); and Mcs is the slope of the 
critical state line. Based on these, the threshold of the 
damage equivalent stress �et can be expressed as (Ma 
et al. 2016):

where �et0 is the initial threshold of damage equiva-
lent stress, k𝜎e > 0 is a rock constant that controls the 
increase in the rate for the damage equivalent stress 
threshold. The hydrostatic stress p′ is responsible for 
the development of micro-cracks and the plastic hard-
ening or softening of the rock is determined by the 
plastic hardening energy h.

2.5 � Constitutive relationships

According to the framework of continuum damage 
mechanics (Lemaitre 1985; Voyiadjis and Kattan 
2005; Ma et al. 2016), the irrecoverable energy dis-
sipation � consists of two parts: the damage elastic 
part �e and the damage plastic part �p . In this work, 
the plastic and elastic parts are denoted using the 
labels ’p’ and ’e’ respectively. In isothermal con-
ditions, the irrecoverable energy dissipation �  is 
expressed as:

where �e is the second-order symmetric elastic strain 
tensor and SDT is the fourth-order elastic stiffness ten-
sor for the damaged material including elastic ther-
mal effects. Thermal influence is included in the elas-
tic strain using:

(23)�et = �et0 +
k�ep

�exp(1∕h)

(1 − D)

(24)� = �e + �p =
1

2

[
�
e
]T[

SDT
][
�
e
]
+ �p

where ST is the fourth-order elastic stiffness of the 
undamaged material considering only thermal elastic 
deformations.

The effective stress, is presented as the deriva-
tive of the energy dissipation to the derivative of the 
elastic strain:

By differentiating Eq.  (26), the stress rate (using 
Einstein convection) is determined as follows:

Equation (27) can be rearranged to:

in which

According to Khalili and Valliappan (1996), the 
elastic constitutive equation for fully saturated frac-
tured porous media can be achieved using the Max-
well-Betti reciprocal work theorem. Applying Betti’s 
theorem and using Eqs. (1), (28) and (29), the elastic 
strain components ( ̇�e, 1

Vtotal

dsVa

dt
 ) are related to the 

stress components ( 𝜎̇, ṗa) as follows:

It is assumed that temperature changes induce 
elastic strain, which leads to isotropic elastic expan-
sion. The change in the pore and fissure volume, 
presented in Eq. (15), over the current volume of the 
porous domain with respect to the moving solid can 
be expressed as (Khalili et al. (2008)):

(25)SDT = (1 − D)2ST

(26)�
′ =

��

��e
=
[
SDT

][
�
e
]

(27)�̇
� = −

2Ḋ

1 − D

[
SDT

]
∶ �

e +
[
SDT

]
∶ �̇

e

(28)�̇
� =

[
SDT

]
∶ �̇

d

(29)�̇
d = �̇

e −
2Ḋ

1 − D
�
e

(30)

�̇
e = �̇

d +
2Ḋ

1 − D
�
e + �̇

T

=
1[

S
DT

]
(
�̇ − j

1

⋅

p
1
� − j

2

⋅

p
2
�

)

+
2Ḋ

1 − D
�
e −

CTs

Cfr

Ṫs
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where je
11

 , je
22

 , je
21

 , je
12

 are the elastic coefficients 
relating to the porous volumetric deformations and 
changes of the porous fluid pressures. The elastic 
coefficients can be obtained using:

The total strain increment of the solid skeleton 
and the fluid volume change rate are made up of 
elastic and plastic parts:

Following the general plasticity approach and 
the definition of the effective stress concept, the 
incremental volumetric plastic strain rate and the 
incremental rates of fluid volumes in the porous 
and fracture domains can be expressed based on Ma 
et al. (2016) as follows:
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in which 𝜆̇ and g(�′) are the plastic multipliers and 
plastic potential as expressed by Khalili et al. (2008), 
respectively and presented in Appendix 1.

The yield function can be expressed in terms of 
effective stress and plastic hardening parameter as 
follows:

where p′
c
 is a function of the plastic volumetric strain 

and damage that controls the size of the yield sur-
face. The adopted bounding yield surface model can 
be found in the work of Khalili et al. (2005) and Ma 
(2014) and is presented in Appendix 1.

The consistency condition for the yield surface 
according to Ma and Zhao (2018) is presented as 
follows:

According to Ma et  al. (2016, 2022) and Rep-
pas et  al. (2022), the plastic hardening modulus hp , 
which is presented analytically in Appendix 2, can be 
expressed as follows:

Then, substituting Eqs. (38) and (43) into Eq. (42), 
the consistency condition is rearranged as follows:

where 𝜆̇ is the plastic multiplier for the damaged 
material and can be expressed as:

The total hardening modulus H = H(D) can be 
defined as:
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(
𝜕f

𝜕�′

)T

�
′ +

𝜕f

𝜕p�
c

(
𝜕p�

c

𝜕𝜀
p
v

�̇
p +

𝜕p�
c

𝜕D
Ḋ
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Ḋ

𝜀̇
p
v

)

(44)ḟ =
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The elastoplastic damage constitutive equation 
for the solid skeleton is outlined by substituting 
Eqs. (30)–(35) and (41) into (28) as follows:

Ma and Zhao (2018) suggested that the stiffness 
SDTp of the double-porosity system is the drained 
elastoplastic fourth-order stiffness matrix of the dam-
aged material. The elastoplastic stress-rate equation 
including temperature effects is presented as:

Based on Eqs.  (4) and (29), when damage occurs 
the damage strain rate is equal to:

2.6 � Critical state concept

Critical state mechanics (CSM) has been extended 
to rock materials satisfactorily by many investiga-
tors (Gerogiannopoulos and Brown 1978; Shah 
1997; Wong et  al. 1997; Sheldon et  al. 2006; Ma 
2016; Reppas et al. 2020). While initially designed 
for soil analysis, these models have proven effec-
tive in capturing the intricate mechanisms of plas-
tic strain exhibited by porous rocks (Cuss et  al. 
2003; Sheldon et  al. 2006). Porous rocks, unlike 
low-porosity crystalline rocks, undergo deforma-
tion characterised by the localisation of zones 
prone to shearing, with the ability to shift around 
through processes such as shear, dilation, or com-
paction. This unique behavior arises from the 
rearrangement of their packing and the reduc-
tion in grain size of individual grains (Schultz 
and Siddharthan 2005). The versatility of CSM 
in accommodating such diverse rock behaviors is 
highlighted in the work by Navarro et  al. (2010), 
where a model of this type successfully reproduces 
the main behaviour of rock using a relatively low 
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number of parameters. This adaptability makes 
CSM a valuable tool for understanding and predict-
ing the mechanical response of porous rocks under 
various conditions, contributing to advancements 
in geomechanics and rock engineering (Alonso 
et al. 2012).

The critical state is defined as the state at which 
the material approaches a large shear deformation 
at a constant shear stress (Khalili et al. 2008). The 
critical state line (CSL) separates the brittle and 
ductile deformation behaviour of rock. For critical 
state models, the damaged thermo-elastic modulus 
can be expressed as (Khalili et  al. 2005; Reppas 
et al. 2022):

Where KDT is the elastic bulk modulus considering 
thermal effects, GDT is the elastic shear modulus con-
sidering thermal effects,  v = 1 + e is the specific vol-
ume, �T is the slope of the unloading- reloading line 
in a v − lnp� domain, and � is the Poisson’s ratio of the 
material. Note, the thermal influence on �T is shown 
in Reppas et al. (2022).

2.7 � Permeability evolution

Ma and Wang (2016) proposed a permeability evo-
lution model for fissured porous sandstones under a 
wide range of confining pressures. The relationship 
between permeability and the overall porosity can 
provide an estimation of the permeability evolution:

where k, k0 are the current and reference permeabili-
ties, � , �0 are the current and reference porosities, 
and Ψ and � are the parameters of the permeability 
and permeability resistance.

The reference porosity �0 =
e

1+e0
 , according to Ma 

and Wang (2016), is obtained through physical 
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testing, and the current porosity can be calculated 
based on volumetric strain �v = �1 + 2�3 in a triaxial 
test, which can be found using the bounding surface 
of the presented model. According to Ma and Wang 
(2016), the fractured matrix solids are not deforma-
ble, and the volumetric change mainly comes from 
the change in pore space:

2.8 � Summary of fully coupled equations

The fully coupled constitutive equations can be 
achieved by the combination of the deformation 
model, the flow model and the heat exchange. It is 
assumed that the temperature of the solid and the 
temperature of the liquid in the pores and fracture 
network is the same, for any specific point, at each 
time step.

The deformation equation after implementing 
Eqs. (47–49) into Eq. (6) is as follows:

The flow equations are expressed after implement-
ing Eqs. (31–40) into Eq. (10):

The energy balance equation for the solid medium 
is expressed after implementing Eqs.  (19) and (30) 
into Eq. (18):

where the displacement vector can be expressed as 
divu = �

T
(
�̇ − �̇T

)

(52)� =
e0 −

(
1 + e0

)
�v

1 +
(
e0 −

(
1 + e0

)
�v
)

(53)div

(
1

2

[
SDTp

](
∇u̇d + u̇d∇

)
− j1

⋅

p1 � − j2
⋅

p2 � −
CTs

Cfr
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The effective stress parameters are:

3 � Model validation

The fully coupled theoretical model presented in 
Eqs.  (53–56) after converted into a FEM model 
(Appendix 3), is implemented in MATLAB and 
results from the literature are used to validate it. The 
selected geometry and mesh used for validation of 
the FEM model is presented in Fig. 2, based on the 
work of Kazemi (1969), Gelet et  al (2012) and Ma 
and Zhao (2018). A unit thickness of the drawdown 
regime is used for the analysis. An axisymmetric 
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(
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)
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(58)j11 = �1Cfl + (j1 − �1)Cs + j12

(59)j22 = �2Cfl + (j2 − �2)Cs + j21

plane stress formulation is adopted, as the loading 
conditions display symmetry about the vertical axis. 

A vertical wellbore in a thermo-elastoplastic fractured 
medium is considered with inner radius rw = 0.1  m, 
and an outer radius of 800 m at the far-field. A sche-

matic illustration of the in-situ stresses and fluid 
pressure is presented in Fig. 2a, while the boundary 
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conditions are shown in Fig. 2b. Po is the initial pore 
and fissure pressure before drilling and Tform is the 
temperature of the formation before applying any 
pressure or thermal loading. It is assumed that the 
three mediums have the same temperature for each 
time step, T1 = T2 = Ts . The fully saturated formation 
is located at a depth of 1000 m, and the subjected ver-
tical gradients are presented in Fig. 2b. Distances of 
the horizontal grid points of the mesh (in m) from the 
centre of the wellbore are: [0.1, 0.101, 0.102, 0.105, 
0.110, 0.115, 0.120, 0.125, 0.130, 0.140, 0.150, 0.20, 
0.50, 1, 2, 5, 10, 20, 50, 100, 200, 500, 800].

Considering only elasticity and THM effects, the 
fully coupled FEM model is validated against the 
numerical results of Gelet et  al (2012). Pore/Fissure 
pressures versus the radial distance from the wellbore 

wall are selected to validate two of the primary 
unknowns of the FEM model and effective stresses 
versus the radial distance from the wellbore wall are 
also compared to validate one of the secondary vari-
ables. For the damage evolution and plasticity effects, 
neglecting however any thermal loading, the model 
is validated against the work of Ma and Zhao (2018). 
Pore/Fissure pressures are compared to the work of 
Ma and Zhao (2018) to validate the influence of dam-
age to the primary unknowns, while damage evolu-
tion validation makes the suggested damage-plasticity 
model robust.

Gelet et al. (2012) validated their model against a 
single porosity case (McTigue 1986). All the mate-
rial moduli were set as inputs. The selected time for 
validation was t = 80  s. An internal pressure Pi and 

Fig. 2   a Schematic illustration of the well-plan view, b finite-element mesh and boundary conditions for axisymmetric problem (not 
to scale)
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temperature Ti is applied representing the constant 
mud pressure of Gelet et  al (2012). The internal 
selected pressure was Pi = 12 MPa. The internal tem-
perature was set equal to Ti = + 50 °C, 0 °C, − 50 °C 
to validate the case scenarios of cooling or heating 
the fractured medium in the vicinity of the wellbore. 
The initial temperature of the formation was set to  
Tform = 50  °C. The material parameters used for the 
validation are presented in Table 1.

Figures  3, 4, 5, 6, 7 and 8 present the effect of 
temperature difference between the fluid in the 
wellbore and of the in-situ fluid at the wellbore 
wall. Figures 3, 5 and 7 present the effect of 0 °C, 
+ 50  °C, − 50  °C thermal loading to the pore and 
fissure pressure of the wellbore wall, while Figs. 4, 
6 and 8 examine the effect of the same thermal load-
ing to the effective stresses of the wellbore. Based 

Table 1   Material 
parameters for the elastic 
problem (Gelet et al. 2012)

Material parameters (symbol unit) Value

Elastic modulus [E (GPa)] 9.5
Poisson’s ratio [ν] 0.25
Storativity of the porous domain [β11 (MPa−1)] 7.23 × 10−09

Storativity of the fissure network [β22 (MPa−1)] 1.8 × 10−10

Effective stress parameter [β1] 0.27
Effective stress parameter [β2] 0.1
Compressibility of the fluid [cf (MPa−1)] 1.45 × 10−9

Fluid viscosity [µ (MPa)] 10−9

Porosity of porous domain (φ1) 0.15
Porosity of fissure network (φ2) 0.015
Permeability of porous block [k1 (m2)] 5 × 10−20

Permeability of fissure network[k1 (m2)] 5 × 10−19

Fluid mass exchange parameter [γ (1/Pa s)] 5.3 × 10−10

Heat capacity of the porous domain [Cps (J/kg K)] 837
Thermal conductivity of the material [ks (W/mK)] 2.65
Volumetric thermal expansion coefficient of the porous domain [CTs (1/K)] 1.8 × 10−5

Volumetric thermal expansion coefficient of the fluid [CTw (1/K)] 4.5 × 10−4

Fig. 3   Validation of pore and fissure pressure, at time 80 s for 
0 °C temperature change (Gelet et al. 2012)

Fig. 4   Validation of the compressive Radial and Hoop effec-
tive stress, at time 80  s for 0  °C temperature change (Gelet 
et al. 2012)-absolute value presented
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on the research of Gelet et  al. (2012), the value of 
the radial stress at the well bore is not influenced 
by changing the temperature, while the hoop stress 
changes significantly. For this reason and adopting 
this assumption, the thermal expansion influence 
due to cooling or heating was applied only to the 
hoop stress as a boundary condition. The model 
agrees with the results of Gelet et  al. (2012) and 
reasonably captures the behaviour of the rock in the 
vicinity of the wellbore, once temperature loading 
is applied. Additionally, the model seems to remark-
ably agree with both the pore/fissure pressures and 
the effective stresses.

According to Ma and Zhao (2018), elastic analy-
sis gives an underestimation of the effective stresses 
and an overestimation of the fluid pressures. During 
loading, new created fractures or micro-cracks, which 
indicates damage, increase the porosity and reduce 
pore pressures (Detournay and Cheng 1988). Con-
sequently, an elastoplastic model is appropriate for a 
more realistic scenarios. The damage evolution law 
was presented in Sect.  2.4 and is validated against 
the work of Ma and Zhao (2018), in which thermal 
effects are ignored and critical state mechanics are 
considered. The wellbore’s internal pressure was 

Fig. 5   Validation of pore and fissure pressure, at time 80 s for 
+ 50 °C temperature change (Gelet et al. 2012)

Fig. 6   Validation of the compressive Radial and Hoop effec-
tive stress, at time 80 s for + 50 °C temperature change (Gelet 
et al. 2012)-absolute value presented

Fig. 7   Validation of pore and fissure pressure, at time 80 s for 
− 50 °C temperature change (Gelet et al. 2012)

Fig. 8   Validation of the compressive Radial and Hoop effec-
tive stress, at 80 s for − 50 °C temperature change (Gelet et al. 
2012)-absolute value presented
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set as 0, indicating a post-drilling scenario. Based 
on Ma (2014) and Kazemi (1969), the initial stress 
state for material with elastic modulus E = 10 GPa is 
p�
c
= 35.3 MPa and ⌣p

�

c
= 63 MPa. The material prop-

erties and critical state mechanics parameters based 
on Ma and Zhao (2018) are listed in Table 2.

The damage variables used based on the work of 
Ma and Zhao (2018) are listed in Table 3:

Table 2   Material 
parameters for the damage 
validation (Ma and Zhao 
2018)

Material parameters (unit) Value

Elastic modulus [E (GPa)] 10, 20, 100
Poisson’s ratio [ν] 0.25
Storativity of the porous domain [β11 (MPa−1)] 7.23 × 10−09

Storativity of fissure network [β22 (MPa−1)] 1.8 × 10−10

Matrix coupling factor [β12 = β21 (MPa−1)] 0
Effective stress parameter [β1] 0.99
Effective stress parameter [β2] 0.01
Compressibility of the fluid [cf (MPa−1)] 1.45 × 10−9

Fluid viscosity [µ (MPa1)] 10−9

Porosity of porous domain (φ1) 0.04985
Porosity of fissure network (φ2) 0.001243
Permeability of porous block [k1 (m2)] 5 × 10−20

Permeability of fissure network [k2 (m2)] 5 × 10−19

Fluid mass exchange parameter [γ (1/Pa s)] 5.3 × 10−10

Gradient of isotropic compression line (ICL) [λ] 0.1
Slope of the unloading- reloading line (URL) [κ] 0.031
Parameter controlling the shape of the bounding surface [M] 1.9
Material constant of the bounding surface [R] 2.45
Slope of the Critical State Line (CSL) [Mcs] 1.7
Hardening material constant [kd] 1

Table 3   Damage material parameters

km YD0 mD m hγ

0.45 0.001 0.0025 10 0.00015

Fig. 9   Pore-Fissure pressure diagram with and without dam-
age for a drilled borehole, validation for a material with E = 10 
GPa

Fig. 10   Validation of damage evolution in different time steps 
for E = 10 GPa (Ma and Zhao 2018)
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The effective stress parameters were set equal 
to j1 = 0.99 and j2 = 0.01 , based on Johnson and 
Cleary (1991), to reproduce the results of Ma and 
Zhao (2018). In Fig.  9 the fluid pressure response 
in the double porous fractured domain is presented 

considering both elastic and elastoplastic damage 
behaviour. The outcomes of the proposed model are 
compared to the numerical results of Ma and Zhao 
(2018), and satisfactoraly reproduce the effect of 
damage to the pore/fissure pressure at the vicinity of 
the wellbore for a particular time step (t = 80  s). In 
Fig. 10, the evolution of damage in time is also repro-
duced versus the radial distance from the wellbore, 
and the results fit satisfactoraly the outcome of Ma 
and Zhao (2018).

To validate the plasticity and hardening effects 
(Appendix 1), an axially symmetric mesh which con-
sisted of 64 four-node quadrilateral elements with 2 
by 2 integration points was considered. One-half of 
the sample was analysed, and the boundary condi-
tions are presented in Fig. 11. The numerical model 
is used to reproduce experimental triaxial tests and 
validated against the experimental results of Reppas 
et al. (2023).

Based on Ma (2014), for strain increments 
smaller than 10−4, the numbers of steps are suf-
ficient to give a representative solution. Conse-
quently, to reduce the computational time, the axial 
strain rate was set as 10−4. The hardening param-
eters mp , the material constant kd , the slope of the 
unloading–reloading line �, the critical state line’s 
slope Mcs and the Poisson’s ratio � are taken from 
the research of Reppas et  al. (2022) and Reppas 
et al. (2023) and presented in Table 4. The void ratio 
was estimated based on the experimental tests of 
Reppas et al. (2023) as e0 = 0.38. Damage evolution 

Fig. 11   The finite element mesh and boundary condition for 
the UCS and triaxial test simulation

Table 4   Parameter values 
for 12.5 MPa (Reppas et al. 
2022, 2023)

ν λ κ Mcs mp kd

15 °C 0.26 0.1 0.00125 1.55 5 37
− 5 °C 0.15 0.1 0.00299 1.66 12 37

Table 5   Rock samples 
dimensions and 
temperatures (Reppas et al. 
2023)

Temperature Samples Diameter (mm) Length (mm) Dry mass (g)

Triaxial tests 12.5 MPa 
saturated sandstones

15 °C 1 37.65 82.45 208.11
2 37.60 83.14 199.18
3 37.40 80.76 191.13

− 5 °C 4 37.79 79.31 201.60
5 37.81 83.06 209.27
6 37.91 81.74 203.68
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parameters and initial damage are assumed to be 
constant in all the tests with Dinitial = 0.015 . The 
damage parameters are the same as presented in 
Table 3. The numerical simulation is compared to a 
set of three triaxial tests with sample characteristics 
presented in Table 5.

It can be seen from Figs. 4, 5, 6, 7, 8 and 9 that 
the model reproduces the literature results, with 
a slight difference at the wellbore wall. Specifi-
cally, at the wellbore wall, hoop effective stresses 

are around 8% underestimated for positive thermal 
loading compared to the work of Gelet et al. (2012), 
while maximum damage in time is 4% lower than in 
the work of Ma and Zhao (2018). At a small radial 
distance from the wellbore wall and further to the 
far field the model is in perfect agreement with the 
literature results.

A robust representation of the experimental results 
(Figs. 12, 13, 14 and 15) can be seen for the devia-
toric stress- axial strain curve while for the volumetric 

Fig. 12   Deviatoric stress-axial strain relationship for triaxial 
12.5  MPa test at 15  °C. (Experimental tests and Numerical 
simulation)

Fig. 13   Volumetric strain-axial strain relationship for triaxial 
12.5  MPa test at 15  °C. (Experimental tests and Numerical 
simulation)

Fig. 14   Deviatoric stress-axial strain relationship for triaxial 
12.5  MPa test at − 5  °C. (Experimental tests and Numerical 
simulation)

Fig. 15   Volumetric strain-axial strain relationship for triaxial 
12.5  MPa test at − 5  °C. (Experimental tests and Numerical 
simulation)
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strain-axial strain curve there is good agreement until 
reaching nearly the 6% axial strain. This is mainly 
happening as the Poisson’s ratio is increasing and the 
model cannot accept values of Poisson’s ratio bigger 
than 0.5.

It can be said that by validating against an elas-
tic THM model and against an elastoplastic hydro-
mechanical model, as well as against experimental 
triaxial tests, the model seems robust and can be used 
to investigate different loading scenarios and examine 
various fluid-thermal-deformation examples.

4 � Wellbore stability representative scenario 
and parametric study

4.1 � Simulation of representative injection scenario

To demonstrate the capability of the model to simu-
late wellbore stability scenarios, the effects of inter-
nal wellbore pressures and temperatures, due to CO2 
injection or other applications, on the pore-fissure 
pressures, effective stresses and damage evolution of 
the surrounding rock are presented. A unit thickness 

Fig. 16   a Schematic illustration of the injection well-plan view, b finite-element mesh and boundary conditions for axisymmetric 
problem (not to scale)
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of the drawdown regime is analysed in this chapter. A 
vertical wellbore of inner radius rw = 0.1 m is consid-
ered and a unit thickness of the wellbore is simulated, 

with the outer radius being set to 800 m to describe 
the boundary conditions at the far-field. Vertical 
deformation of the whole medium is assumed to be 

Fig. 17   Pore-Fissure 
pressure profiles in a dual-
porosity system at a t = 80 s, 
b t = 800 s
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Fig. 18   Radial and Hoop 
effective stresses profiles in 
a dual-porosity system at a 
t = 80 s, b t = 800 s
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constrained. Elastoplastic damage effects on the well-
bore wall are considered and the isotropic material 
parameters for the parametric study were taken from 
Tables 1 and 2. The finite element mesh and bound-
ary conditions of the problem can be seen in Fig. 16. 
Since the loading displays symmetry about the verti-
cal axis of the wellbore, an axisymmetric formulation 
is selected. Coordinates, measured in meters from the 
centre of the wellbore, of the horizontal grid points 
of the mesh are: [0.1, 0.1025, 0.105, 0.1075, 0.110, 
0.115, 0.120, 0.125, 0.130, 0.135, 0.140, 0.145, 
0.150, 0.155, 0.160, 0.17, 0.180, 0.190, 0.20, 0.22, 
0.25, 0.30, 0.50, 1, 2, 5, 10, 20, 50, 100, 200, 400, 
600, 800]. This demonstrates that more points are 
considered close to the wellbore, which is the area 
of interest, as mesh refinement technique. The results 
are presented at time t = 80 s, and t = 800 s. The time 
(t = 80 s), corresponds to an early time response of the 
system, where the difference between the three tem-
peratures is the largest.

Different scenarios are simulated to examine the 
behaviour of the rock during the injection of CO2. 
The pressure of the CO2 is considered as the inter-
nal pressure of the wellbore ( Pi or PCO2

 ) and the 
stress due to the weight of the formation as exter-
nal radial stress 

(
�r
)
 . The initial pore and fissure 

pressure, assuming the system to be in equilibrium, 
before injection, is equal to the hydrostatic pressure 
( P0 ) and is influenced by effective stress param-
eters due to post drilling effects. The temperature of 
the formation ( Tform ) was selected according to the 
studied depth. It should be noted that the 

(
P0

)
  and (

Tform
)
 are the pressure and temperature of the for-

mation prior to any drilling. The internal tempera-
ture of the wellbore ( Ti ) was selected according to 
the injected temperature of the CO2.

During CO2 injection, typically the pressure and 
temperature of the CO2 will increase with depth of 
the wellbore (Vilarrasa et  al. 2013). An example of 
1000 m depth, with Pi = 24.5 MPa and Tform = 33 °C, 
was selected based on Vilarrasa et  al. (2013). The 
damage parameters for the damage evolution law 
which are based on the tensile principal stress are the 
same as those used in Table 3.

The simulated internal temperatures of the well-
bore were − 15 °C, − 10 °C, − 5 °C, 0 °C, 5 °C. These 
temperatures were selected to identify the cooling 
effects on rock due to CO2 injection. The range of 
them were based on the research of Vilarrasa et  al. 

(2013). The pore-fissure pressures and the effec-
tive stresses results of simulations are presented in 
Figs. 17 and 18, respectively.

For internal wellbore temperature of − 15  °C, 
there is a huge drop of the pore pressure at the early 
stage of the simulation (t = 80  s), from 12  MPa to 
almost 1  MPa compared to the temperature of 5  °C 
(Fig.  16a). This can induce stress-relief and lead to 
rock fracturing (Khaledi et  al. 2021). However, this 
pore pressure drop decreases as time passes and the 
pore and fissure pressure are trying to reach equi-
librium. Additionally, for t = 80  s, the compressive 
radial stress increases for higher temperature differ-
ence while the hoop stress decreases. For 800 s, this 
change in effective stresses becomes more apparent.

Studying different material parameters is also 
important, as mechanical parameters can influence 
the induced damage of the material. Additionally, dif-
ferent temperature conditions can also alter the effec-
tive pressures of the rock. Young’s modulus, leakage 
term and permeability evolution are investigated. 
Young’s modulus describes the elastic behaviour of 
the material, leakage term controls the flow between 
the porous and fissure domain and permeability 
indicates how quickly the saline water flows inside 
the fractured porous domain. All of them can influ-
ence the outcome of the deformation, flow, and heat 
transfer.

4.2 � Young’s modulus E influence on the results

To identify the influence to the numerical simulation 
of E, two different injection temperatures are used: 
5  °C and 33  °C. The temperature of the formation 
is considered Tform = 33  °C. These temperatures are 
selected to investigate if Young’s modulus influence 
exist when there is a temperature difference between 
wellbore wall and formation.

In Figs. 19 and 20 the influence of Young’s modu-
lus on effective stresses and damage evolution is pre-
sented, respectively.

4.3 � Leakage term influence on the results

The leakage parameter or aperture factor controls the 
transfer of mass between the porous block and the fis-
sure domain in local thermal non-equilibrium. Values 
of the leakage term can vary from 5.3 × 10−11/Pa s to 
10−7/Pa  s (Kazemi 1969; Gelet et  al. 2012). Three 
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different values were used (10−7, 10−9, 10−11) to study 
the influence of the fluid leakage parameter on the 
results. The temperature of the formation is consid-
ered Tform = 33  °C. The internal temperature for this 
parametric study is 5 °C corresponding to an injected 
temperature of − 5  °C according to Vilarrasa and 
Laloui (2016). The same mesh, boundary conditions 

were used as described in Fig. 15. Young’s modulus 
was set equal to 10 GPa, to focus the parametric study 
to the leakage aperture factor. In Fig.  21, the influ-
ence of the leakage term to the effective stresses of 
the wellbore is presented, while in Figs.  22 and 23 
the effect of the leakage term to the pore-fissure rock 
pressures and damage is investigated, respectively.

Fig. 19   Influence of 
Young’s modulus (E) on 
the effective stresses of the 
rock under different internal 
temperatures a Ti = 5 °C and 
b Ti = 33 °C, t = 80 s
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From Fig.  21, the radial effective stress becomes 
more compressive as the aperture factor decreases, 
while the hoop effective stress is slightly changing. 

Additionally, it can be seen from Fig.  22 that lower 
leakage parameter induces higher pore pressure drop 
and increases the difference in pressure between the 

Fig. 20   Influence of (E) 
on the damage of the rock 
under different internal 
temperatures a Ti = 5 °C and 
b Ti = 33 °C, t = 80 s
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two phases. It can be outlined that rocks with low 
capability of mass transfer between the phases are 
vulnerable to potential fracturing due to stress relief 
and extreme pore pressure drop.

As far as it concerns the damage, the lower the 
leakage term is, the less damage appears in the vicin-
ity of the wellbore at a specific timestep of injection, 
as seen in Fig. 23. Once the mass transfer is achieved 
and the two domains are in equilibrium the damage 
will increase and the rock can then be considered as a 
single-phase medium.

4.4 � Permeability influence on the results

Changing the permeability of the rock can influence 
the dissipation speed of the fluid inside the domain. 
For the estimation of the permeability influence to 
the effective stresses and pore-fissure pressures, the 
permeability of the porous domain kept constant, 
while the permeability of the fissure network varied. 
The internal wellbore temperature of 5  °C is used 

Fig. 21   Leakage term influence on effective stress (Ti = 5 °C)

Fig. 22   Leakage term influence on pore-fissure pressure 
(Ti = 5 °C

Fig. 23   Leakage term influence on damage (Ti = 5 °C

Fig. 24   Influence on the effective stress keeping the perme-
ability of the porous domain constant and varying the perme-
ability of the fissure network (Ti = 5 °C)
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indicating the scenario of injecting CO2 at − 5  °C. 
Figure  24 presents the permeability influence on 
the effective stresses, while Fig. 25 the permeability 
influence on the pore and fissure pressures.

It can be seen in Fig. 24 that the effective stresses 
are not influenced significantly by the permeability. 
However, changing the permeability, the difference 
between the pore and fissure network pressure can 
increase. Consequently, more time will be needed for 
them to achieve equilibrium (see Fig. 25).

5 � Conclusions

The developed theoretical THM model, integrating 
elastoplastic material behaviour and damage evolu-
tion in double porosity fractured media, represents 
a significant advancement in the understanding 
and simulation capabilities of geomechanical sys-
tems. The model offers a comprehensive explora-
tion of deformability, fluid flow, and heat transfer 
phenomena. By ensuring equilibrium, adhering to 
constitutive laws, and satisfying boundary condi-
tions through meticulous global and local solu-
tion schemes, the model provides a robust frame-
work for accurate simulations. Implemented using 
the Finite Element Method (FEM) in MATLAB, 
the numerical model demonstrates its capability 

to reproduce results from prior studies and experi-
mental triaxial tests. This validation underscores 
the reliability of the model in capturing critical 
geomechanical phenomena.

Furthermore, the model’s sensitivity to material 
strength, leakage term, and permeability highlights 
its potential for in-depth analyses. A suggested sen-
sitivity analysis of mechanical critical state mechan-
ics parameters offers a pathway to enhance the 
model’s versatility and applicability under diverse 
loading conditions. Looking forward, the model 
holds promise for future investigations into mul-
tiphase flow and heat transfer between porosities 
(pores and fractures). This extension would enable 
a more detailed and accurate simulation of double 
porous media behaviour under realistic conditions.

The model’s capacity to incorporate these addi-
tional complexities positions it as a valuable asset 
for researchers and practitioners seeking a compre-
hensive understanding of geomechanical systems. 
Overall, the theoretical THM model stands as a 
powerful and adaptable tool with broad applica-
tions in the field of geomechanics and porous media 
studies.
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Appendices

Appensix 1. Bounding surface plasticity model 
details

The equation describing the bounding surface for 
different types of rocks was adopted based on Khal-
ili et  al. (2005), Reppas et  al. (2020) and Reppas 
et al. (2022) as follows:

where ⌣p
′

 represents the current effective stress on the 
yield surface, ⌣p

′

c
 controls the size of the bounding sur-

face and is a function of the damage variable D and 
the plastic volumetric strain �p� ; and m is a calibrat-
ing parameter that controls the shape of the bound-
ing surface and according to Yu (1998). For the value 
of m = 1, the yield function is reduced to the origi-
nal Cam-Clay model; R is a material constant that 

(60)f
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represents the ratio between ⌣

p
′

c
 and the value of ⌣

p
′

 
at the crossing point of the yield function f  with the 
critical state line in the q − p′. domain. For sandstone, 
according to Ma (2014), m can take values from 1.7 
to 2.5 and R from 2 to 2.45. The adopted flow plastic-
ity model can be found and validated in the research 
of Ma (2014) and Reppas et al. (2022).

For porous rock, if damage takes place, the dila-
tancy-induced plastic strain can be accommodated 
by the plastic potential of Khalili et  al. (2005) as 
follows:

where p′
o
 is a dummy variable controlling the size of 

the plastic potential according to Ma (2014).
The unit normal vector n at the at the stress state 

�
′ , as seen in Fig. 26, defines the direction of load-

ing and can be determined by the general equations of 
Khalili et al. (2005) as follows:

The components of  n =
[
np nq

]T at �′ can be 
expressed as:

Appensix 2. Hardening effects

The hardening modulus hp is separated in two com-
ponents, the plastic modulus hb at stress point �′ and 
the arbitrary modulus hf  (the distance between the �′ 
and ⌣𝝈

′

 ), as:

(61)g
(
p�, q, p

0

)
= q +

(
1 + kd�

)
Mcsp

�ln
p�

p�
o

(62)n = ±
�L∕��′

�L∕��′
= ±

�f∕��′

�f∕��′

(63)

np = ±

−
⌣

p∕

(
⌣

p
�
[
1 − 1∕

(
Mln

(
⌣

p
�

c
∕

⌣

p
�
))])

+

√{
−

⌣

p∕

(
⌣

p
�
[
1 − 1∕

(
Mln

(
⌣

p
�

c
∕

⌣

p
�
))])}2

+ 1

(64)
nq = ±

1

+

√{
−

⌣

p∕

(
⌣

p
�
[
1 − 1∕

(
Mln

(
⌣

p
�

c
∕

⌣

p
�
))])}2

+ 1

(65)hp = hb + hf
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Applying the plastic consistency condition at the 
bounding surface according to Khalili et al. (2008) 
and assuming that isotropic hardening of the bound-
ing surface is connected with isotropic damage and 
plastic compressive volumetric strain, hb can be 
expressed as:

The arbitrary modulus hf  can be expressed based 
on the formulation proposed by Khalili et al. (2008) 
for sand and soil materials as:

where ⌣p
′

c
 and p′

c
 control the size of the bounding sur-

face and the loading surface, respectively, mp being a 
material parameter and � =

q

p�
  and �p =

(
1 − kd�

)
Mcs , 

with k being a material parameter. According to 
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Khalili et al. (2005) hf  is zero at the bounding surface 
and infinite at the stress reversal point.

Appensix 3. FEM model shape functions and 
matrices

Finite Element modelling (FEM) was used to link 
the primary unknowns of those four governing equa-
tions to the applied boundary conditions. The primary 
unknowns are the displacement vector ud , the porous 
water pressure p1 , the fissure saline water pres-
sure p2 and the temperature of the solid medium Ts . 
The general solutions of these differential equations 
are achieved by numerical approaches which give 
approximate results.

Appensix 3.1 Weak form

The weak form of the governing equations is obtained 
using the standard Galerkin weighted residual 
approach and application of the divergence operator 
as follows:

(68)∫ [N]T
(
∇�T

([
SDTp

]{
∇
(
̇̃ud
)})

+ 𝛽1 ̇̃p1∇
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Fig. 26   Bounding surface, 
loading surface and map-
ping rule for compression 
of rock
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where ũd, p̃1 and p̃2 are the approximate solutions of 
the differential Equations (68–71), [N] is the shape 
function and Θ is the element domain. The body force 
vector is ignored in this study for the sake of simplic-
ity. The approximate solutions are computed in terms 
of the nodal values of the primary variables via the 
element shape functions:

where {u}, 
{
p1
}
,
{
p2
}
,
{
Ts

}
 are the vectors of the 

nodal values of the solid matrix displacement, pore 
saline water and fissure saline water pressure and tem-
perature of the solid, respectively. {ue} is the vector of 
the nodal values of the solid matrix elastic displace-
ment. This research uses two-dimensional four-node 
iso-parametric elements to represent the fractured 
porous medium. The associated shape functions can 
be found in the research of Gelet et  al. (2012), and 
equal-order interpolation for all unknowns is selected 
for computational speed.
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The finite element matrices in equations are listed 
below:

where the shape functions are as follows:

[
∇�N

]
 is the strain displacement matrix. For 

axisymmetric case, it can be expressed as follows:

The Galerkin method involves interpolating the 
variations u̇d, ṗ1, ṗ2 and Ṫs through the shape func-
tions N . Taking into consideration those shape func-
tions, employing Green’s theorem and substituting 
Equations (77–81) into Equations (68–71) results in:
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where Γ is the element domain.
Equations (82) to (85) are presented in a contracted 

FEM form as follows:
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Ḟ
}
dΘ = 0

(83)

− ∫ 𝛽1[N]
T{�}T

[
∇�N

]
{u̇}dΘ − ∫ 𝛽11[N]

T [N]
{
ṗ1
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{
Ṫs

}
dΘ

− ∫ [∇N]T
k1

𝜇f

[∇N]
{
p1
}
dΘ + ∫ [N]T

k1

𝜇f

[∇N]
{
p1
}
dΓ

− ∫ [N]T [N]𝛾
{
p1
}
dΘ + ∫ [N]T [N]𝛾

{
p2
}
dΘ = 0

(84)

− ∫ 𝛽2[N]
T{�}T

[
∇�N

]
{u̇}dΘ − ∫ 𝛽22[N]

T [N]
{
ṗ2
}
dΘ

+ ∫ 𝛽21[N]
T [N]

{
ṗ2
}
dΘ + ∫

(
𝛽2 − 𝜑2

)
Cs[N]

T [N]
{
Ṫs

}
dΘ

− ∫ [∇N]T
k2

𝜇f

[∇N]
{
p2
}
dΘ + ∫ [N]T

k2

𝜇f

[∇N]
{
p2
}
dΓ

− ∫ [N]T [N]𝛾
{
p2
}
dΘ + ∫ [N]T [N]𝛾

{
p1
}
dΘ = 0

(85)

− ∫ [∇N]T𝜑sks[∇N]
{
Ts

}
dΘ + ∫ [N]T𝜑sks[∇N]

{
Ts

}
dΓ

− ∫ Ts
Cs

Cfr

[N]T{�}T
[
∇�N

]
{u̇}dΘ

+ ∫ Ts
(
𝛽1 − 𝜑1

)
Cs[N]

T [N]
{
ṗ1
}
dΘ

+ ∫ Ts
(
𝛽2 − 𝜑2

)
Cs[N]

T [N]
{
ṗ2
}
dΘ

− ∫ 𝜌sCps[N]
T [N]

{
Ṫs

}
dΘ = 0

Appensix 3.2 Time integration

To determine the solution of the coupled problem in 
time, the rate form of the discretized equation needs 
to be integrated over time. Specifically, the integra-
tion of an arbitrary function y over the interval time 
Δt is taken as:

(86)
[�]

{
u̇d
}
− 𝛽

1
[�]p

{
ṗ
1

}
− 𝛽

2
[�]p

{
ṗ
2

}

−
CTs

Cf

[�]uT
{
Ṫs

}
=
{
Ẇd

}

(87)

− 𝛽
1
[�]

pT
{u̇} − 𝛽

11
[�]

{
ṗ
1

}
+ 𝛽

12
[�]

{
ṗ
2

}

+
(
𝛽
1
− 𝜑

1

)
Cs[�]

{
Ṫ
s

}
− [�]

1p

{
p
1

}
− 𝛾[�]

{
ṗ
1
− ṗ

2

}
=
{
Ẇ

1

}

(88)

− 𝛽2[�]pT{u̇} − 𝛽22[�]
{
ṗ2
}
+ 𝛽21[�]

{
ṗ1
}
+ Cs[�]

{
Ṫs

}

− [�]2p
{
p2
}
− 𝛾[�]

{
ṗ2 − ṗ1

}
=
{
Ẇ2

}

(89)

− Ts
Cs

Cfr

[�]
Tu
{u̇} + Ts(𝛽1 − 𝜑

1
)Cs[�]

{
ṗ
1

}

+ Ts
(
𝛽
2
− 𝜑

2

)
Cs[�]

{
ṗ
2

}
− 𝜌sCps[�]

{
Ṫ
s

}
− [�]Ts

{
T
s

}
= −

{
��

}

(90)

t+Δt

∫
t

y(t)dt =
[
(1 − �)yt + �yt+Δt

]
Δt =

(
yt + �Δy

)
Δt

Δy = yt+Δt − yt
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where yt is the value of y at the time t , and � rep-
resents the type of approximation applied to the time 
integration. � = 1 is used for backward interpolation, 
� = 0.5 for central interpolation and � = 0 for for-
warding interpolation.

Applying the spatially discretized function 
Eq.  (90), the Eqs.  (86–89) can be rearranged as 
follows:

(91)[�]
{
ud
}t+Δt

− �1[�]p
{
p1
}t+Δt

− �2[�]p
{
p2
}t+Δt

−
CTs

Cf

[�]T
{
Ts

}t+Δt
=
{
Rd

}t+Δt

(92)

− �1[�]pT{u}
t+Δt − �11[�]

{
p1
}t+Δt

+ �12[�]
{
p2
}t+Δt

+
(
�1 − �1

)
Cs[�]

{
Ts

}t+Δt

− βΔt[�]1p
{
p1
}t+Δt

+ βΔt�[�]
[{

p2
}t+Δt

−
{
p1
}t+Δt

]

= −�1[�]��{u}
t − �11[�]

{
p1
}t

+ �12[�]
{
p2
}t

+
(
�1 − �1

)
Cs[�]

{
Ts

}t

+ (1 − β)Δt[�]1p
{
p1
}t

− (1 − β)βt�[�]
[{

p2
}t+Δt

−
{
p1
}t+Δ

]

+ βΔt
{
W1

}t+βt
+ (1 − β)Δt

{
W1

}t

(93)

− �2[�]pT{u}
t+Δt − �22[�]

{
p2
}t+Δt

+ �21[�]
{
p1
}t+Δt

+
(
�2 − �2

)
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{
Ts

}t+Δt
− βΔt[�]2p

{
p2
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p1
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−
{
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]
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{
p2
}t
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(
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)
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{
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{
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{
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}t+Δt

]
+ βΔt

{
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+ (1 − β)Δt
{
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(94)

− Ts
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{
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}t+Δt

+ Ts
(
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)
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{
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{
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Appensix 3.3 Modified Euler’s forward scheme

The procedure followed to solve the ordinary differ-
ential equations in this work is the modified Euler’s 
algorithm presented in the following steps:

1st step A time step Δ
⌣

t  is used to calculate from 
any current effective stress 𝜎′

⌣
t

 and current damage 

variable D⌣
t
 the same variables at the next incre-

mental step as follows:

where Δ�� the increment of effective stress and ΔD is 
the cumulative damage.

2nd step According to Sloan et  al. (2001) and 
Habte (2006) a pseudo time sub increment is intro-
duced 

(
0 < Δtw < 1

)
.

Δtw is the size of the wth sub increment and Δt 
is the total time increment in which the incremental 
strain Δ� is acting. Using now the explicit Euler’s 
method at the end of the pseudo time step Δtw , the 
stress and the hardening and damage parameters can 
be determined as:

(95)𝜎�

⌣
t +Δ

⌣
t

= 𝜎�

⌣
t

+ Δ𝜎�

(96)D⌣
t +Δ

⌣
t
= D⌣

t
+ ΔD

(97)��
w+1

= ��
w
+

1

2

(
Δ��

1
+ Δ��

2

)
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where Δ��
1
 , Δ⌣

p
�

c1
 are calculated by the explicit forward 

scheme at the stress state Δ��
w
 and plastic hardening 

parameter ⌣

p
′

cw
 , respectively. ΔD1 is computed at the 

stress state ��
w
+ Δ��

1
 and damage condition Dw ; Δ��

2
 , 

Δ
⌣

p
�

c2
 are calculated by the explicit forward scheme 

at the stress state ��
w+1

+ Δ��
1
 and plastic hardening 

parameter ⌣

p
�

cw+1
+ Δ

⌣

p
�

c1
 , respectively. ΔD2 is com-

puted at the stress state ��
w
+ Δ��

1
+ Δ��

2
 and damage 

condition Dw + ΔD1

Then all these variables are updated. Afterwards, 
Euler’s scheme is applied to compute another set of 
these variable using the updated values.

3rd step An error for the given step is then deter-
mined, which is the difference between the second-
order Euler’s modified approach and the first-order 
Euler’s solution. If the error is too large, then the 
strain increment is subdivided into smaller steps 
using an expression for the primary error term as 
follows:

The local error for the calculated values of ��
w+1

 
and ⌣

p
�

c(w+1)
 is determined as the difference between 

the second order modified Euler and the first order 
Euler scheme.

The relative error of the modified Euler solution 
is obtained using the following form:

where

(98)
⌣

p
�

c(w+1)
=

⌣

p
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cw
+

1

2

(
Δ

⌣

p
�

c1
+ Δ

⌣

p
�

c2

)

(99)Dw+1 = Dw +
1

2

(
ΔD1 + ΔD2

)

(100)

Rw = max
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Ew
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������
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,

���Ew

�
Dw+1

����
Dw+1

⎞⎟⎟⎟⎟⎠

(101)Ew

(
��
w+1

)
=

1

2

(
Δ��

2
+ Δ��

1

)

(102)Ew

(
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p
�

c(w+1)

)
=

1

2

(
Δ

⌣

p
�

c2
+ Δ

⌣

p
�

c1

)

Suppose the calculated local error is greater than 
the specified tolerance. In that case, the proposed 
solution is rejected, and the process is repeated 
using now a smaller sub-step size until a successful 
sub increment is achieved. Once the local error sat-
isfies the limitation 2nd step is updated.

For the current study, the adopted prescribed 
error tolerance for the yield surface is set to 10−9, 
the stress error tolerance between the first-order 
Euler method and the second-order modified Euler 
method is set to 10−6 and the damage error toler-
ance is set to 10−6 (Ma 2014).

4th step The integration scheme is fully achieved 
when the total imposed strain increment is applied.

The matrices for hydraulic conductivity and heat 
conduction are:

The mass matrix is:

The matrices of the load vector corresponding to 
the nodal forces and fluxes are as follows:

(103)Ew

(
Dw+1

)
=

1

2

(
ΔD2 + ΔD1

)

(104)[�]1p = ∫ [∇N]T
k1

�f

[∇N]dΘ

(105)[�]2p = ∫ [∇N]T
k2

�f

[∇N]dΘ

(106)[�]Ts = ∫ [∇N]T�sks[∇N]dΘ

(107)[�] = ∫ [N]T [N]dΘ

(108)

{
Ẇd

}
= ∫ [N]T

{
Ḟ
}
dΘ + ∫ [N]T

{
⋅

Traction

}
dΓ

(109)
{
Ẇ1

}
= ∫ [N]T

{
�1
}
dΓ

(110)
{
Ẇ2

}
= ∫ [N]T

{
�2
}
dΓ
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where 
{

⋅

Traction

}
 , 
{
q1
}
 , 
{
q2
}
 and 

{
rs
}
 vectors of 

the nodal traction force, pore and fissure water pres-
sure influx and heat flux respectively and are defined 
as follows:
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