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Abstract

This thesis attempts to address the problems of sampling rare events in
power system operations, global optimisation studies and in higher dimensions.
Our primary algorithmic tool is the skipping sampler, an existing Metropolis-
class algorithm designed to efficiently draw samples from a distribution π,
whose support C, consists of connected components. First, we apply the skip-
ping sampler to a cyber-physical-statistical power system simulation model to
sample power injections from renewable energy sources, conditioned on the ac-
tivation of frequency-related emergency responses. Such emergency responses,
designed to protect sensitive equipment from deviations in system frequency,
occur infrequently, and can be considered a rare event. We also explore how
the application of large battery energy storage systems can mitigate this risk.
Methodologically, we apply the skipping sampler to the field of global opti-
misation, where we present the basin hopping with skipping algorithm, which
replaces the perturbation step of the well-known basin hopping routine with
the proposal function of the skipping sampler. Results indicate that, for en-
ergy landscapes with well-separated basins, the basin hopping with skipping
algorithm is both more effective and efficient at locating the global minima
than the basin hopping routine. Finally, to address the problem of drawing
samples of rare events in higher dimensions, we propose the Sequential Monte
Carlo with skipping (SMC-S) algorithm, which use the skipping sampler as
the transition kernel of a sequential Monte Carlo framework. To address the
challenge of sampling particle paths which intersect with regions of interest
in high dimensions, the skipping sampler kernel samples the direction particle
paths from a data-driven, empirical distribution, based on the relative posi-
tions of particles. Experiments suggest that the SMC-S, using this approach,
outperforms both MCMC and other SMC routines in drawing samples of rare
events in high dimensions.
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0.1 Introduction

This thesis is motivated by the critical importance of rare events, such as blackouts,
in electrical power systems. Rare event analysis is pertinent to this context because
the power system of the UK, like those of many other countries, is designed and
operated to very high standards of reliability. Thus the events which have the most
impact on the power system, such as blackouts, occur so rarely that there is very
little relevant empirical data available for study. This fact motivates the use of other
approaches such as simulations.

For essentially the same reasons, the simulation of rare events in power systems
is computationally challenging. This creates an exciting interdisciplinary research
opportunity which requires careful study in both computational statistics and power
systems engineering, and it is this interface which is addressed here. At the level of
methodology the main tool used in this thesis is the skipping sampler, a Metropolis-
class rare-event sampling algorithm recently developed for this application by Mori-
arty, Vogrinc and Zocca [75]. This sampler proceeds by jumping or ‘skipping’ across
the complement of the rare event of interest. It is particularly suitable for use
with complex, ‘black box’-type simulation models because it requires only pointwise
knowledge of the rare event.

The first interdisciplinary contribution of this thesis is the precise mathemati-
cal description of a cyber-physical-statistical power system simulation model. The
physical part is sufficiently detailed to capture both the necessary continuous elec-
trical and mechanical dynamics. It is a so-called third order model including both
voltage and power dynamics, which are necessary to model the large power distur-
bances which are required to cause power systems to fail [98, 56]. The statistical
part reflects the fact that randomness plays an increasingly important role in our
decarbonised power systems, due mainly to the increased penetration of stochas-
tic renewable generation. It models power disturbances, which represent random
changes (either positive or negative) to the electrical power injected at the different
nodes of the system. The ‘cyber’ part accounts for both the discrete-time actions
of power system emergency protection equipment and the physical discontinuities
caused by its operation. This enables the modelling of cascading failures, as the
emergency responses of protection equipment lead to changes in the topology and
other physical characteristics of the power system, potentially causing additional
system instability triggering further emergency response, and so on.

The thesis’s second interdisciplinary contribution is to couple the skipping sam-
pler, for the first time, with a detailed power system simulator. Inspired by the
ongoing adoption of grid-scale battery storage, this model combines the above cyber-
physical-statistical model with a model of automatic voltage regulation and a battery
storage model recently developed in the engineering literature. In a detailed case
study, this model is then applied to a benchmark power system model, namely the
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Kundur two-area system [57].
In common with many Metropolis-Hastings algorithms, the skipping sampler’s

performance degrades as the dimension of the sample space increases. The third
contribution of this thesis is an empirical study of promoting the skipping sampler
to a sequential Monte Carlo (SMC) algorithm [21] and, hence, evolving a population
of samples rather than just one. This attempts to use the fact that at each step of
the algorithm, the population contains information about the geometry of the rare
event of interest. The idea is to use this information to guide the sampling process
during the next step of the algorithm, in order to help mitigate the effect of high
dimension.

In order to make the best possible system design and capital planning decisions,
optimisation also plays an important role in power systems engineering. It was briefly
noted in [75] that the skipping sampler could be combined with basin hopping (BH),
a stochastic algorithm for global non-convex optimization [111]. The connection is
made by first noting that BH applies random walk sampling to search for the global
minimum. Then, in challenging non-convex optimisation problems, this search may
be considered a problem of rare event sampling. This motivates substituting the
skipping sampler for the random walk sampler, giving the so-called basin hopping
with skipping (BH-S) algorithm. A fourth contribution of this thesis is then to
global non-convex optimization, providing the first systematic exploration of the
BH-S algorithm on a variety of benchmark optimisation surfaces.

The thesis is organised as follows. Chapter 1 provides background on rare-event
sampling before focusing on the skipping sampler. Two novel proofs are provided,
concerning the reversibility both of the sampler and of a more efficient implementa-
tion (the ‘doubling trick’). Moving next to the perspective of power systems engi-
neering, Chapter 2 presents the cyber-physical part of the power system model. To
validate the use of this model for a statistical study of cascading failures, Chapter 3
carries out a case study on ‘toy’ power systems with differing network topologies.
The skipping sampler is first applied in Chapter 4. Here the use of the Kundur two-
area system, together with careful calibration of the model parameters, results in a
cyber-physical-statistical model which is robust in the sense that failures are rare
events, which we analyse in detail. Chapter 5 presents the application of skipping to
global non-convex optimisation while Chapter 6 details the empirical investigation
of the skipping sampler’s application to sequential Monte Carlo.

12



Chapter 1

Markov Chain Monte Carlo methods
for rare event sampling

Specialised rare-event sampling algorithms use numerical methods to encourage a
simulation model to generate more realisations of a particular rare event of interest
than would be generated by brute force simulation [11]. In the literature, Markov
chain algorithms such as Markov chain Monte Carlo (MCMC) and non-Markov
algorithms such as importance sampling have been discussed as methods for rare
event sampling. This thesis will focus on developing Markov chain approaches by
presenting a series of MCMC algorithms specially designed for sampling rare events.
These methods will be derived from the skipping sampler, an MCMC algorithm for
intended to draw samples from a distribution π with connected support introduced
in [76] (see Section 1.4).

This chapter proceeds as follows: in Section 1.1 we provide relevant definitions
from Markov chain literature while Section 1.2 will present the Metropolis-Hastings
algorithm. These are intended to familiarise the reader with the terminology used
throughout the thesis. Section 1.4 presents a review of the skipping sampler, with
alternatives proofs of Proposition 5 from [75] provided in Section 1.5. Finally Sec-
tion 1.6 presents a discussion, proof and case study of the doubling sampler, an
extension of the skipping sampler proposed by the authors of [76].

In this chapter, the state space is taken to be Ω = Rd, with capitalised Latin let-
ters representing random variables and lower-case Latin letters representing realised
outcomes. Density functions and their corresponding distributions will be denoted
by the same Greek symbols.

1.1 Markov chain background

This section presents relevant theorems and definitions from Markov chain literature
used in subsequent chapters of the thesis. Unless referenced otherwise, this section
presents the theorems and definitions from [107].

13



Definition 1.1.1 (Markov chain). A stochastic process X(t) = X0, X1, . . . is a
discrete time Markov chain once it satisfies:

P(Xn+1 = y|X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+1|Xn = xn).

where the quantities P(Xn+1 = xn+1|Xn = xn) are called transition probabilities.

If the transition probabilities do no depend on the time step n, then the Markov
chain is said to be time homogeneous :

Definition 1.1.2 (Time homogeneous Markov chain). A Markov chain {Xi}i≥0 is
time homogeneous if P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i).

For general state spaces, transitions from state Xn−1 = x at time n− 1 to state
Xn = y at time n are given by a Markov kernel, defined as:

Definition 1.1.3 (Markov Kernel, [81]). For measurable spaces (Rd,A) and (Rd,A1),
a Markov kernel M1,is a map M1 : Rd ×A1 → [0, 1] such that:

i ∀x ∈ Rd,M1(x, ·) is a probability measure on A1;

ii ∀A1 ∈ A1,M1(·, A1) is A-measurable.

As previously stated, we aim to construct a Markov chain sample from a density
π. To achieve this, we can design a Markov such that π is the unique invari-
ant/stationary distribution:
A time-homogeneous Markov chain with invariant distribution π is a sequence of
random variables {Xn}n≥0 such that the transition kernel P given by:

P (Xn, A) = P{Xn+1 ∈ A|X0, ..., Xn}

satisfies:

π(A) =

∫
π(x)P (x,A) (1.1)

for all measurable sets A.
We desire to construct a Markov chain such that π is the only stationary dis-

tribution, regardless of X0. The conditions required for convergence to a unique
stationary distribution are established in Theorem 1.1.7. We first introduce the
following key concepts:

Definition 1.1.4 (π-irreducibility). A transition kernel P on (Rd,A) is π-irreducible
if for each initial state x ∈ Rd, and for each A ∈ A with π(A) > 0, there exists an
integer n = n(x,A) ≥ 1 such that P n(x,A) > 0.

14



Irreducibility of the transition kernel implies there should be a non-zero proba-
bility of transitioning to any state x in the support of π. Additionally, transitions
between disjoint sets in the sample space should not occur cyclically, formally, P
must be aperiodic:

Definition 1.1.5 (Periodicity:). A π-irreducible transition kernel P is periodic if
there exists an integer d ≥ 2 and a sequence {E0, E1, . . . , Ed−1} of d non-empty
disjoint sets in Rd such that, for all i = 0, . . . , d− 1 and all x ∈ Ei,

P (x,Ej) = 1 for j = i+ 1 (mod d)

Otherwise, the kernel is aperiodic.

A key concept for the convergence of theory of generate state space chains is
recurrence:

Definition 1.1.6 (Recurrence). A π-irreducible chain {Xn}n≥1 with invariant dis-
tribution π is recurrent if, for each A with π(A) > 0,

P{Xn ∈ A i.o.} > 0 for all x, (1.2)

P{Xn ∈ A i.o.} = 1 for π-almost all x. (1.3)

The chain is Harris recurrent if P{Xn ∈ A i.o. } = 1 1 for all x.

The requirements for a Markov chain to converge to its unique, stationary dis-
tribution are given in Theorem 1.1.7 (Theorem 1 in [107]):

Theorem 1.1.7. Suppose P is π-irreducible and πP = π. Then P is positive
recurrent and π is the unique invariant distribution of P . If P is also aperiodic,
then for π-almost all x,

||P n(x, ·)− π|| → 0,

with || · || denoting the total variation distance. If P is Harris recurrent, then the
convergence occurs for all x.

Finally, we present the concept of reversibility :

Definition 1.1.8 (Reversibility). A Markov chain is reversible with respect to a
probability distribution π(·) if:

π(x)p(x, y) = π(y)p(y, x) ∀ (x, y) (1.4)
1i.o.: Suppose that {An : n ≥ 1} is a sequence of events in a probability space. Then the event

A(i.o.) = {An occurs for infinitely many n} is given by A(i.o.) := ∩∞
k=1 ∪∞

n=k An.
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This relationship is also known as the detailed balance equation, and is a sufficient
condition for π to be the unique stationary density of the Markov chain [31](page
194).

The reversibility of the chain is used in the construction of the Metropolis-
Hastings algorithm, a class of MCMC algorithm which will be discussed later in
Section 1.2.
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1.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a class of Markov Chain Monte Carlo
methods used when a sample must be taken from a distribution π from which sam-
pling is difficult, complicated or expensive due to the intractability of the calculation
[31, 107], or because the dimensionality of the problem is large [19]. The basic aim of
the MH algorithm is to construct a Markov chain with state space Rd and stationary
distribution π, then simulate a long run of the chain. Following an initial, transient
phase, realisations of the chain can be used as samples from the density of interest
π [94].
A Metropolis-Hastings algorithm is presented in Algorithm 1:

Algorithm 1: Metropolis-Hastings algorithm; adapted from [31]
1 Initialize iteration counter i = 0. Set initial value for investigation: X0;
2 for i = 1 to N do
3 Propose new value Y using q(Xi, Y );
4 Calculate the acceptance probability α:
5

α(Xi, Y ) = min

{
1,
π(Y )q(Y,Xi)

π(Xi)q(Xi, Y )

}
Generate a uniform random number U ∈ [0, 1];

6 if α ≥ U then
7 Accept the proposed state Y and set Xi+1 = Y ;
8 else
9 Set Xi+1 = Xi;

10 end
11 Increase the iteration counter by 1: i = i+ 1;
12 end

1.2.1 The Metropolis-Hastings transition kernel

The MH algorithm presented by Hastings in [40] constructs a Markov transition
kernel P (x, y) such that π is the equilibrium distribution of the resulting Markov
chain by ensuring the transition kernel P satisfies the detailed balance equation (1.4).
As mentioned in Section 1.1, this is a sufficient condition for π to be the unique
stationary distribution of the resulting Markov chain.

Suppose the transition kernel, for some function p(x, y), can be expressed as

P (x, dy) = p(x, y)dy + δx(dy)

[
1−

∫
Rd

p(x, y)dy

]
, (1.5)

where p(x, x) = 0 and δx denotes point mass at x.

Theorem 1.2.1. If the function p(x, y) satisfies the detailed balance condition (Equa-
tion (1.4)), then π is the invariant density of P . [107]
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Proof. We now verify this claim: Starting with the right-hand side of Equation (1.1)
and letting r(x) = 1−

∫
Rd p(x, y)dy:

∫
P (x,A)π(x)dx =

∫ [ ∫
A

p(x, y)dy

]
π(x)dx+

∫
r(x)δx(A)π(x)dx

=

∫
A

[ ∫
p(x, y)π(x)dx

]
dy +

∫
A

r(x)π(x)dx

=

∫
A

[ ∫
p(y, x)π(y)dx

]
dy +

∫
A

r(x)π(x)dx

=

∫
A

(1− r(y))π(y)dy +

∫
A

r(x)π(x)dx

=

∫
A

π(y)dy

For the MH algorithm, the function p(x, y) is decomposed into a proposal density
q(x, y) and an acceptance probability α(x, y) as in Equation (1.6):

p(x, y) = q(x, y)α(x, y) x ̸= y. (1.6)

The proposal density q(x, y), with
∫
q(x, y)dy = 1 [19] is used to generate a

potential move of the chain- i.e. q is the conditional density of proposing state y
given that the chain is currently at Xn = x. Positivity of the proposal density
(q(x, y) > 0 for all x, y ∈ Rd) ensures the irreducibility of the resulting MH chain
([109], Equation 2.1).

The acceptance probability α(x, y) is the probability of accepting the proposal
Y = y into the Markov chain, so Xn+1 = y [31]. The choice and structure of the
acceptance probability is important for the form of the algorithm. Hastings, in the
formulation of the generalised Metropolis-Hastings algorithm, proposed that α(x, y)
be constructed as in Equation (1.7):

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
, (1.7)

such that, when combined with the proposal density q, the resulting MH transition
kernel P satisfies the detailed balance Equation (1.4) [40]. Note Equation (1.6)
is defined for y ̸= x. The probability for the chain to remain at x is given by
Equation (1.8):

p(x, x) = 1−
∫
q(x, y)α(x, y)dy. (1.8)

Combining Equations (1.6) and (1.8) yields the expression of the MH transition
kernel P :
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P (x,A) =

∫
A

q(x, y)α(x, y)dy + δx(dy)

[
1−

∫
q(x, y)α(x, y)dy

]
, (1.9)

for any set A ⊂ Rd.

1.2.2 Metropolis-Hastings implementation

In the implementation of the MH algorithm, one common class of proposal density
is the symmetric proposal, where q(x, y) = q(y, x). When the proposal density is
symmetric, the acceptance probability of the move simplifies to

α(x, y) = min

{
π(y)

π(x)
, 1

}
. (1.10)

which does not depend on the proposal density q, and is usually simpler to eval-
uate than the Metropolis-Hastings acceptance probability in Equation (1.7). MH
algorithms with this simplified acceptance probability are referred to as Metropolis
algorithms.

A second class of proposal density is the random-walk proposal where q(x, y) =
q1(y − x). The proposed state y is drawn following the process y = xi +Wi where
Wi ∼ q1 is a random variable, usually with distribution independent of the chain.
This leads to the exploration of the state space through a random walk process,
with the resulting chain referred to as a random-walk chain. When q1(c) = q1(−c),
that is, q1 is symmetric around zero, the acceptance probability again simplifies
to Equation (1.10). Common choices for q1 are the Gaussian, Student’s t and the
uniform distributions centred at the origin [31]. The seminal work for MCMC algo-
rithms employs a random-walk chain (see [71]), with such algorithms referred to as
random-walk Metropolis algorithms.

A third class of proposal density is the independent proposal, where q(x, y) =

q1(y) leading to independent chains [19]. For example, if the form of π is known and
π ∝ f(x)h(x) where h(x) is a density that can be sampled and f(x) is uniformly
bounded, if q(x, y) = h(y), then the acceptance ratio can be simplified to

α(x, y) =
f(y)

f(x)
. (1.11)

For example, in a Bayesian context, one implementation of the independent chain
is for h to be a prior density and f the likelihood function [31].

The above classes of proposal functions are not exhaustive. In fact, subject to
the conditions stated above, the researcher can design proposal functions for MH
algorithms to address problem-specific challenges which may arise in sampling. In
this thesis, we exploit the flexibility in the construction of q to develop specialised
Metropolis-Hastings algorithms for rare event sampling. Following the notation used
in [76], we will denote by MH(π, q) a Metropolis-Hastings algorithm with target
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density π and proposal function q.
The dispersion of the proposal density has implications for the performance of

the algorithm [19] and its choice is a consideration in the “tuning” of the algorithm,
i.e- choosing parameters to minimise the iterations required for the chain to reach
its stationary density. The dispersion of the proposal density affects both the ac-
ceptance rate (the ratio of the number of accepted moves to the total number of
proposals) and the region of the sample space explored by the chain. For exam-
ple, the dispersion of a Gaussian random-walk proposal q(x, y) ∼ N(Xn, σ

2) can be
controlled by the choice of the variance σ2. As σ2 → 0, q generates minute displace-
ments relative to the current state Xn = x, requiring a large number of iterations
to explore the state space, and for the chain to converge to the desired stationary
distribution [19], a phenomena known as ‘slow mixing’. Conversely, for σ2 ≫ 0, if
Xn is in the high density region of π and a proposal is selected from a lower density
region, then acceptance rates may be low as such proposed states will more likely
be rejected [14, 31]. Tuning of proposal dispersion should have the aim to achieve
an optimal acceptance rate. However, no single optimal rate has been prescribed
in the literature, with rates between 15% to 48% quoted as desirable to avoid slow
mixing. [31].

A key characteristic of Metropolis-Hastings algorithms is ‘burn-in’ or ‘warm-up’,
referring to the number of trials which should be discarded from the start of the
chain, when the chain is yet to achieve its desired stationary distribution. While
the burn-in quantity can be identified by measuring the auto-covariances, in practice
however it is usually sufficient for users to build long chains using the MH algorithm,
and discard the first 1 - 2% of states as burn-in [34].

1.3 Metrics

1.3.1 The batch means test

The Batch Means statistic is one method used to calculate Monte Carlo Standard
Errors for MCMC algorithms. The batch means method attempts to reduce auto-
correlation by batching observations.

In general, if it is intended to estimate the expectation of some function µ = E(g(X))

whereX is drawn from a distribution π, then a non-overlapping batch means method
requires the output Markov chain {XN} to be divided into blocks of equal size, that
is, N = ab with a, b ∈ N. This divides the sample generated from the Markov
process into a batches each of size b. For each batch a, a sample mean Yk of the kth

batch is given by:
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Yk =
1
b

∑kb
i=(k−1)b+1 g(Xi) for j = 1, ..., a. (1.12)

The batch means estimate of the sample variance given by:

σ̂2
g =

b

a− 1

a∑
k=1

(Yk − µ̂)2, (1.13)

where µ̂ =
∑a

i=1 Yi

a
.

The batch mean estimate of the Monte Carlo Standard Error (MCSE) is given by:

MCSE =
σ̂√
N
. (1.14)

The batch size b should be such that each Yk is independent. Furthermore, the
authors of [50] revealed that if the batch size and the number of batches are allowed
to increase as the overall length of the simulation increases, then σ̂2

g → σ2
g almost

surely as n → ∞. As such, a reasonable heuristic for b is b =
√
N , and a = N/b to

ensure that the estimator σ̂2
g converges to σ2

g asymptotically [17].

The MCSE can be used as to determine the stopping time of an MCMC simulation.
This is done by first determining an acceptable MCSE for the experiment’s param-
eters. As the algorithm is running, periodically compute the standard errors for the
parameters using the batch means methodology. The chain can be halted when the
standard errors reach a desired level. In general, lower values for the MCSE are
preferred, as they indicate a chain with consistent mean between arbitrary batches
.

1.3.2 Mean squared jump distance

The mean squared jump distance (MSJD) statistic is used to calculate the average
of the square of the Euclidean distance between elements in the Markov chain. This
is given by:

MSJD :=
1

n− 1

n−1∑
i=1

∥xi+1 − xi∥22. (1.15)

where xi are elements of the Markov chain. This statistic can be used to evaluate the
mixing of the chain, which is directly related to how quickly the algorithm converges
to its stationary distribution. Broadly stated, higher MSJD values are associated
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with high acceptance rates, while lower values are associated with low acceptance
rates and high rejection rates [9].

1.4 The skipping sampler: Efficient sampling of tar-

gets with non-convex support

1.4.1 Background

Much of the novel work developed in subsequent sections of this thesis are based
upon the results of [76]. Given its relevance, this section summarises its findings,
which introduces the skipping sampler, an easy to implement Metropolis-class algo-
rithm intended to improve exploration of target densities π with non-trivial support
C. The target density π is assumed to possess the following characteristics:

Assumption 1: π is a probability density function on Rd whose support

C = supp(π) := {x ∈ Rd : π(x) > 0}

satisfies Leb(Cc) > 0 where Cc is the complement of C and Leb denotes Lebesgue
measure on Rd. (page 1, [75])

Relevant to this thesis, targets of this form were said to arise in rare event sam-
pling problems, and could pose a challenge for random-walk Metropolis algorithms
which conduct local exploration moves for the next state of the chain, as any pro-
posals in Cc would be rejected. Instead, the skipping sampler attempts to cross
Cc in a sequence of linear steps in order to generate a relevant proposal, with the
authors noting this method can be advantageous when C is composed of connected
components. In addition, the skipping sampler is a Metropolis-class algorithm due
to the symmetry in the construction of its proposal density q (discussed below).
Thus, q need not have a convenient closed-form expression as it is not required for
the Metropolis acceptance probability (Equation (1.10)). The implementation of
the skipping sampler requires no a priori knowledge of the target density π or its
support, only a means to determine if a state is in C.

1.4.2 The skipping sampler

Assumption 2. Let q : Rd 7→ R be a symmetric (q(x) = q(−x)) continuous prob-
ability density function with q(0) > 0. We refer to q as the underlying proposal
density. (Page 3, [75])
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The symmetry of the proposal density given by Assumption 2 allows the use
of the simplified Metropolis acceptance probability (1.10). We relax the symmetric
assumption for q in Sections 1.4.6 and 6.3, requiring an acceptance probability with
form similar to (1.7). The skipping sampler enables a random-walk Metropolis
algorithm to traverse regions where the target density π is zero. The skipping
sampler initially generates proposal Yn+1 = y using a random walk proposal. If
Yn+1 ∈ Cc, then this state would be rejected in a random walk Metropolis-Hastings
algorithm; instead, in the skipping sampler, states Yn+1 ∈ Cc are updated by adding
jumps of random size in a linear trajectory until C is entered, or the updating
procedure (referred to as ‘skipping’) is halted. This is formalised in Algorithm 2.

Algorithm 2: Skipping sampler algorithm (adapted from [76])
1 Set X := Xn and Z0 = X;
2 Generate the initial proposal Y of the skipping chain distributed with
u 7→ q(u−X);

3 Calculate the direction Φ = (Y−X)
|Y−X| ;

4 Generate an independent halting index K ∼ K;
5 Set k = 1 and Z1 := Y ;
6 while Zk ∈ Cc and k < K : do
7 Generate an independent ditance increment R distributed as |Y −X|

given Φ;
8 Set Zk+1 := Zk + ΦR;
9 Set k = k + 1;

10 end
11 Set Z := Zk;
12 Evaluate acceptance probability:

α(X,Z) =

 min

(
1, π(Z)

π(X)

)
if π(X) ̸= 0;

1, otherwise

Generate A ∼ U(0, 1);
13 if A ≤ α(X, Y );
14 then
15 Xn+1 = Y ;
16 else
17 Xn+1 = X;
18 end
19 return Xn+1.

1.4.3 The skipping chain

With reference to Algorithm 2, the halting index K is an independent random vari-
able distributed K ∼ K on Z>0∪{∞}. When K = 1, Y is a random-walk Metropolis
proposal. Alternatively, if K > 1, the initial proposal Y is updated as described in
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the previous section using the skipping chain {Zk}k≥0 on Rd, constructed so that
Z0 := X, with X = Xn as the current state of the chain and following the update
rule:

Zk+1 := Zk + ΦRk+1, k ≥ 0, (1.16)

where
Φ :=

Y −X

||Y −X|| (1.17)

R1 := ||Y −X||, (1.18)

where the distance increments {Rk}k≥2 are independent realisations from the dis-
tribution of the radial component ||Y −X|| conditioned on the angular component
Φ. Let TC be the first entry time of the skipping chain {Zk}k≥0 into the support C.
Specifically,

TC := min{k ≥ 1 : Zk ∈ C} (1.19)

where min{∅} := ∞.

Assumption 3. The support C = supp(π) and distribution K are such that
E[TA ∧ K] < ∞ where TC ∧ K denotes the smaller of the two indices TA and K

(page 3, [76]).

The skipping proposal Z := ZTC∧K output by Algorithm 2 is well defined as
Y ̸= X since q is a density and TC ∧K <∞ by Assumption 3 in [76].

Proposition 2.1:

i Algorithm 2 is a symmetric Metropolis-class algorithm on the domain C. That
is, there exists a transition density qK which depends on the halting index distri-
bution K satisfying qK(x, z) = qK(z, x) for all x, z,∈ C such that Algorithm 2 is
MH(π, qK);

ii The inequality qK(x, z) ≥ q(z − x) holds for every x, z ∈ C. (page 4, [75]).

1.4.4 Choice of underlying proposal q

In addition to assumptions 2 and 3, it is sufficient that a Metropolis-Hastings algo-
rithm with target π and proposal density q (denoted here and in [75] as MH(π, q))
be π-irreducible to ensure the Strong Law of Large Numbers holds. This is true
when π is continuous and bounded, and q > 0 everywhere. For the skipping sam-
pler, the authors suggested q can be chosen as if it was to be used in a random walk
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Metropolis algorithm, with the aim of achieving an acceptance rate of approximately
25% of proposals, although the authors note that empirical results indicate that a
lower acceptance rate of 15% may stimulate skipping.

1.4.5 Proposal density q and the jump increment Ri

Since radial jump increments R1, R2, . . . are sampled conditioned on the event {Φ =

φ}, q should be chosen such that samples can be efficiently drawn from

||Y −X|| conditional on {Φ = φ} (1.20)

for all φ in the unit sphere Sd−1 with {z ∈ Rd : |z| = 1} [75]. Radially symmetric
densities are a natural choice for q, so that conditioning on Φ is not necessary. A
second option for q is q ∼ N (0,Σ) for some d× d covariance matrix Σ, where, given
direction Φ = φ, Ri follows a generalised Gamma distribution with density given:

Ri|Φ = φ ∼ (φTΣ−1φ)
d
2

2
d
2
−1Γ(d

2
)
rd−1e−(φTΣ−1φ)R

2

2 . (1.21)

A third option provided by the authors was that q could be chosen indirectly
by instead directly choosing the unconditional distribution of Φ and the conditional
distribution R|Φ.

A final suggestion by the authors is highlighted when sampling the conditional
distribution R|Φ is computationally expensive. In such cases, Rk = R for all k,
requiring only a single realisation of R to be generated. This will lead the skipping
chain to skip in the direction Φ with jump increments of equal size.

1.4.6 Anisotropy in C

In the implementation of the skipping sampler, if the support C has known anisotropy,
the angular component of the proposal density can be selected to favour certain
directions φ over others. This could be achieved, for example, by adjusting the co-
variance matrix of a Gaussian proposal function. It was noted this technique may be
particularly beneficial in higher dimension problems, where the skipping chain may
fail to enter C with high probability. This “biasing” of the selection of Φ requires
the Metropolis acceptance ratio used by the skipping sampler to additionally depend
on the ratio of the angular densities. Letting qφ(x, ϕ) be the density of direction
ϕ at the location x, for Φ = Yn+1−Xn

||Yn+1−Xn|| then the acceptance probability is given by
Equation (1.22).

α(Xn, Yn+1) = min

(
π(Yn+1)qφ(Yn+1,−Φ)

π(Xn)qφ(Xn,Φ)

)
. (1.22)
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This result will be revisited in Section 6.3 which discusses using the skipping proposal
with non-uniform sampling of Φ as the transition kernel of a sequential Monte Carlo
method. This is intended to improve sampling from π in high-dimension problems.

1.4.7 Choice of K
The authors of [75] suggest a number of choices for the distribution of the halting
index. The simplest option is to employ a non-random halting index K ≡ ks ∈ Z>1,
applying a vector of the ks skips to be applied to states Zi for i = 1, . . . , ks of the
skipping chain respectively. The advantage of this choice is it could permit the user
to evaluate whether Zi ∈ C in parallel, allowing potential running speed of the
skipping sampler to approach that of the random walk Metropolis algorithm.

In cases where some knowledge of the geometry of Cc is known, the choice of q can
influence the choice of K. The authors provide an example where the upper bound
D of the diameter of Cc is known. In this case, ks = D

supφσφ
where σφ is the standard

deviation of the conditional jump density in the direction φ. Alternatively, if C has a
known anisotropy, the halting index can constructed to be direction-dependent while
ensuring Kφ = K−φ for each φ ∈ Sd−1 to maintain the symmetry of the proposal.
The authors do caution that an unbounded distribution K should only be considered
if Cc is known to be bounded due to the potentially high computational costs in C
is not re-entered.

1.5 Alternate proof of Proposition 5.1 from [75]

In this section, we provide alternative proofs for Proposition 5.1 and Lemma 5.2
from [75]. We first present the transition kernel of the skipping chain for states
x ̸= y as well as definitions for the killed skipping chain and the stopped skipping
chain from [75].

Definition 1.5.1. For every z ∈ Rd\{x}, set rz = ||z − x|| and φz =
z−x

||z−x|| .

ξ1(x, z) := qr|φ(rz|φz)

ξk(x, z) :=

∫
ξk−1(x, x+ tφz)1Cc(x+ tφz)qr|φ(rz − t|φz)dt,

where ξ1(x, z) is the density of proposing z in one step conditional on the chain
is currently at x, conditioned on direction φz. Similarly, ξk(x, z) is the density of
proposing state z in k steps, conditional on the chain’s current state being x and
the sampled direction φz, and follows from the Chapman-Kolmogorov equation.

With reference to the skipping chain discussed in section 1.4, the authors of [75]
also present the following related chains:
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1.

Definition 1.5.2 (Killed skipping chain). Letting ∆ /∈ Rd be a cemetery state,
the killed skipping chain {Z̃k}k≥1 on Rd ∪∆ is defined as

Z̃k =

Zk, k ≤ TC

∆, k > TC

and

2.

Definition 1.5.3 (Stopped skipping chain). The stopped skipping chain {Sk}k≥1

on Rd is given by
Sk := ZTC∧k,

where TC ∧ k := minTC , k.

Proposition 5.1 (page 13 [75]):
Conditional on {Φ = φ}, the state Z̃ of the killed skipping chain has a density

with respect to Lebesgue measure on the line Lφ := {x+tφ : t ≥ 0}. This conditional
density is given by the function t 7→ ξk(x, x + tφ). That is, for all Ar ∈ B([0,∞])

and k ≥ 1:
P[Z̃k ∈ x+ Arφ

∣∣Φ = φ] =

∫
Ar

ξk(x, x+ tφ)dt

An alternate, simple proof of Proposition 5.1, not found in [75], is provided below:

Proof. For 0 ≤ s ≤ t, let Pk(s, t) be the k-step transition density of the killed skip-
ping chain on the line Lφ with the given parametrization. Then, by the Chapman-
Kolmogorov equation:

Pk(s, t) =

∫ t

s

Pk−1(s, u)P1(u, t)du

Let:

Cu = {u ∈ (s, t) : x+ uφ ∈ C}

Then by construction:
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P1(u, t) =

0 ifu ∈ Cu

qr|φ(t− u|φ) ifu /∈ Cu

Hence,

Pk(s, t) =

∫ t

s

Pk−1(s, u)1Cc
u
(u)P1(u, t)du

.

Suppose that the proposition is true, for k = n− 1. Then setting s = 0, t = rz and
φ = φz we have:

Pn(0, rz) =

∫ t

0

Pn−1(0, u)1Cc
u
(u)P1(u, rz)du

=

∫ t

0

ξn−1(x, x+ uφz)1Cc(x+ uφz)qr|φ(rz − u|φz)du

= ξn(x, z)

The characteristics of the stopped skipping chain {Sk} are established in Lemma
5.2 of [75]:

Lemma 5.2:
For x, z ∈ Rd with x ≺ z and x ̸= z we have:

i For k ≥ 2, ξ(x, z)=

∫
...

∫
a

( k−1∏
i=1

qr|φ(ri|φ)1Cc

(
x+ (

i∑
j=1

rj)φ
))
qr|φ(rz −

k−1∑
i=1

ri|φ)drk−1...dr1 (1.23)

where:

a = r1 ≺
∑2

i=1 ri ≺ ... ≺∑k−1
i=1 ri ≤ rz

ii The identity ξk(x, z) = ξk(z, x) holds for every k ∈ N,

A simple proof of lemma 5.2, not presented in [75], is presented below:
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i Proof. Suppose the statement holds for k = n− 1. Then by definition:

ξn(x, n) =

∫
ξn−1(x, x+ tφ)1Cc(x+ tφ)qr|φ(rz − t|φ)dt

=

∫
t

∫
...

∫
0≤ti,

∑n−2
i=1 ti≤rz

n−2∏
i=1

qr|φ(ti|φ)1Cc

(
x+

( i∑
j=1

tj
)
φ

)
qr|φ(t−

n−2∑
i=1

ti|φ)dtn−2...dt1

× 1Cc(x+ tφ)qr|φ(rz − t|φ)

If we let tn−1 := t−∑n−2
i=1 ti. The we obtain by substitution:

ξn(x, z) =

∫
...

∫
0≤ti,

∑n−1
i=1 ti≤rz

n−1∏
i=1

qr|φ(ti|φ)1Cc×

(
x+

( i∑
j=1

tj
)
φ

)
qr|φ(rz −

n−1∑
i=1

ti|φ)dtn−1...dt1

as required.

ii Proof. Exchange the roles of x and z in (i), noting that:
rx := |x− z| = |z − x| = rz and φx = x−z

|x−z| = − z−x
|z−x| = −φz,

by assumption 2:

qr,φ(r,−φ) = q(x− rφ, x)rd−1

= q(x, x+ rφ)rd−1 = qr,φ(r, φ)

.

Thus qφ(φ) = qφ(−φ) and qr|φ(r|φ) = qr|φ(r| − φ).

Then:
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ξn(z, x) =

∫
...

∫
0≤ti,

∑n−1
i=1 ti≤rz

n−1∏
i=1

qr|φ(ti| − φz)1Cc

(
z −

( i∑
j=1

tj
)
φz

)
×

qr|φ(rz −
n−1∑
i=1

ti| − φ)dtn−1...dt1

Setting s1 = rz −
∑n−1

i=1 ti, s2 = tn−1, s3 = tn−2, ...sn−1 = t2,

we have rz −
∑n−1

i=1 si = t1 and:

z − t1φz = z − (rz −
n−1∑
i=1

si)φz = (z − rzφz) + (
n−1∑
i=1

si)φz

=x+ (
n−1∑
i=1

si)φz

also:

z − (
2∑

i=1

ti)φz = x+ (
n−2∑
i=1

si)φz

and so on...

Therefore, ξn(x, y) = ξn(y, x).
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1.6 The doubling sampler

The authors of [76] present a methodology to accelerate the skipping sampler under
the restriction that Cc is convex referred to in this section as the doubling sampler.
Summarising [76], since the states of the skipping chain are the partial sum Zk =

x+Φ
∑k

i=1Ri where Ri are iid distance increments and R1 = |Y −x|, the convexity
of Cc induces an ordering on the skipping chain: Zk ∈ Cc, if k < TC ,

Zk ∈ C, if k ≥ TC ,
(1.24)

where Tc is the first entry time of the skipping chain into the support C. Additionally,
the convexity of Cc implies the halting index can such that P [Kϕ = ∞] = 1.

With reference to Algorithm 2, TC (1.19) is determined by sampling the partial
sums {Rk}k≥1 sequentially. Alternatively, the skipping sampler algorithm can be
accelerated if, for any k,

∑k
i=1Ri can be sampled directly, both unconditionally

and conditioned on the value of
∑2k

i=1Ri at a comparable cost to sampling R1.
For example, this is possible when the distance increments Ri are exponentially
distributed.

One strategy to develop a Metropolis-class algorithm which uses this accelerated
skipping proposal (henceforth called the doubling proposal qd(x, y)) is to design the
doubling proposal such that it it has the same density as the skipping proposal qκ.
Defining

SC := min{k ≥ 1 : Z2k−1 ∈ C}, (1.25)

the doubling proposal would search forward through the exponential subsequence
Z1, Z3, Z7, . . . , Z2k−1, . . . until k = k̃ = SC such that Z2k̃−1 ∈ C, then perform a
logarithmic search of the sequence Z2k̃−1−1, . . . , Z2k̃−1 to identify TC . We then sample
Zm for m = 2k̃−1 − 1 + 2k̃−2; if Zm ∈ C, the sequence is reduced to Z2k̃−1−1, ..., Zm.
Alternatively, if Zm ∈ Cc, the subsequent sequence Zm, . . . , Z2k̃−1 is searched. This
reduction in the sequence continues in a bisection-like manner until TC is located,
in a process we will refer to as ‘backtracking’.

1.6.1 The backtracking algorithm

Let Tk+1 denote the k + 1st ‘doubled’ jump increment. Then:

Tk+1 ∼ R1 +R2 + ...+R2k , (1.26)

where Ri ∼ exp(λ) for λ ∈ R+. It follows that Tk+1 ∼ Γ(2k, λ), and the update rule
for state Z2k+1−1 is given by:

Z2k+1−1 = Z2k−1 + Tk+1Φ. (1.27)
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If Z2k−1 ∈ Cc with Tk and Z2k+1−1 ∈ C with Tk+1, then in the backtracking step, we
first simulate Z ′

= Z2k+1−1 − T
(1)
k+1Φ where T (1)

k+1 ∼ R1 + R2 + ... + R2k−1 . We now
need the distribution of T (1)

k+1 conditional on the result of Tk+1. As the unconditional
distribution of T (1)

k+1 is a Gamma distribution with parameters Γ(2k−1, λ), then by
Bayes’ Theorem:

P (T
(1)
k+1 ∈ dx|Tk+1 ∈ dy) =

P (T
(1)
k+1 ∈ dx, Tk+1 ∈ dy)

P (Tk+1 ∈ dy)

=
P (T

(1)
k+1 ∈ dx, T̃

(1)
k+1 ∈ d(y − x))

P (Tk+1 ∈ dy)
, (1.28)

where T̃ (1)
k+1 ∼ R2k−1+1 + ... + R2k has the Γ(2k−1, λ) distribution (independent of

T
(1)
k+1). Letting m = 2k−1, then (1.28) can be written as:

P (T
(1)
n+1 ∈ dx|Tn+1 ∈ dy) =

Γ(2m)

Γ(m)2
(λmxm−1e−λx)(λm(y − x)m−1)e−λ(y−x)

λ2my2m−1e−λy

=
Γ(2m)

yΓ(m)2

(
x

y

)m−1(
1− x

y

)m−1

.

It follows that x
y

follows the β(2k−1, 2k−1) distribution. The backtracking algorithm
which conducts the logarithmic search of Z2k̃−1−1, . . . , Z2k̃−1 is formalised in Algo-
rithm 3.

Algorithm 3: Backtracking Algorithm
1 INPUT: k, Z2k−1 ∈ C and Tk ∼ R1 + · · ·+R2k−1 ;
2 Set T (0) = Tk and Z ′

= Z2k−1;
3 Set i = 1;
4 while i ≤ k do
5 Sample ω ∼ β(2k−i, 2k−i) and calculate T (i) = ωT (i−1);
6 if Z ′ ∈ C then
7 Set Z ′

= Z
′ − T (i)Φ;

8 Z = Z
′ ;

9 else
10 Z

′
= Z

′
+ T (i)Φ;

11 end
12 Set i = i+ 1;
13 end
14 Set Y = Z;
15 OUTPUT: Y

With this, it is possible to specify an algorithm for a doubling sampler MCMC in
Algorithm 4:
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Algorithm 4: Doubling skipping sampler
1 Initialisation: The nth sample: Xn ∈ Rd; R ∼ exp(λ) for λ ∈ R+;
2 Set X = Xn ;
3 Generate the initial proposal Y according to the density q(u−X)du;
4 Calculate the direction ϕ = Y−X

|Y−X| ;
5 Set k = 1 and Z1 = Y ;
6 while Z2k−1 ∈ Cc do
7 Generate ‘doubled’ jump increment Tk+1 ∼ R1 +R2 + ...R2k distributed

according to Tk+1 ∼ Γ(2k, λ);
8 Set Z2k+1−1 = Z2k−1 + Tk+1Φ;
9 k = k + 1;

10 end
11 Backtracking algorithm:(Input: k, Z2k+1−1 and Tk+1. Output: Y );
12 Compute the acceptance probability α:
13

α(X, Y ) =

 min

(
1, π(Y )

π(X)

)
if π(X) ̸= 0;

1, otherwise

14 Generate a uniform random variable v ∼ U [0, 1];
15 if v ≤ α(X, Y ) then
16 Xn+1 = Y ;
17 else
18 Xn+1 = Xn;
19 end
20 Set n = n+ 1 and repeat from step 1;

Proposition 2.2: The doubling proposal described in Algorithm 4 has the same
density as the skipping proposal qκ.

Proof. Let qd denote the doubling proposal density and qκ be the skipping proposal
density. The authors of [75] have already proven that qκ is reversible.
Consider both the state D proposed by the doubling proposal after Kd = k steps,
and the state of the S proposed by the skipping proposal when the same ‘doubled’
steps Ks = k are inspected, that is, we inspect the state of the skipping chain after
the (2k−1 − 1)st steps. Following from the convexity of Cc, P(S ∈ dx) is given by
Equation (1.29):

P(S ∈ dx) =
∞∑
k=1

P(S ∈ dx|Ks = k)P(Ks = k). (1.29)

Likewise, P(D ∈ dx) is given by Equation (1.30):

P(D ∈ dx) =
∞∑
k=1

P(D ∈ dx|Kd = k)P(Kd = k). (1.30)

By construction of each proposal, it follows that P(Kd = k) = P(Ks = k). To
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demonstrate that P(D ∈ dx|Kd = k) = P(S ∈ dx|Ks = k), first consider the pro-
posed state S generated by the skipping proposal, observed at the (2k−1 − 1st) step.
Let M = {1, ..., 2k−1} denote the number of distance increments Ri between the
2k−1−1st and the 2k−1st observations. For each M = m, the event {S ∈ dx|Kd = k}
is given by (1.31):

{S ∈ dx|Ks = k} =



{S ∈ dx,M = 1|Kd = k},
{S ∈ dx,M = 2|Kd = k},

...

{S ∈ dx,M = 2k−1|Kd = k}

. (1.31)

It follows:

P(S ∈ dx|Kd = k) =
2k−1∑
i=1

P(S ∈ dx,M = i|Kd = k).

Similarly, denote the steps of the skipping sampler associated with the event
defined in Equation (1.31) by Zk,m for m = 1, ..., 2k−1. The convexity of Cc induces
an ordering of Zk,m such that there exists M = m∗ such that:

Zk,m∗ ∈ C

Zk,m<m∗ ∈ Cc

Zk,m>m∗ ∈ C

.

It follows that, by construction, Zk,m∗ is the proposal of the skipping chain.

Now we investigate the proposal of the doubling sampler D and the event:

{D ∈ dx|Kd = kd}.

Further denoting steps of the doubling proposal Dk, if Kd = k, it follows that
Dk−1 ∈ Cc.
When Kd = k, Dk = Dk−1 + TkΦ where Tk ∼ R1 + · · · + R2k−1 . Let Xk,N

represent simulated partial sums between states Dk−1 and Dk using Ri. Thus
Xk,N = Dk−1 +

∑N
i=1Ri, where max(N) = 2k−1 and Xk,2k−1 = Dk. The back-

tracking algorithm conducts a logarithmic search of this sequence of partial sums to
locate D. The event {D ∈ dx|Kd = k}, can therefore be expressed as:
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{D ∈ dx|Kd = k} =



{D ∈ dx,N = 1|Kd = k}
{D ∈ dx,N = 2|Kd = k}

...

{D ∈ dx,N = 2k−1|Kd = k}

.

It follows:

P (D ∈ dx|KD = k) =
2k−1∑
i=1

P (D ∈ dx,N = i|KD = k).

Additional, by the convexity of Cc and the construction of the backtracking algo-
rithm, there exists n∗ such that:


Xk,n∗ ∈ C;

Xk,N<n∗ ∈ Cc

Xk,N>n∗ ∈ C

It follows that, D = Xk,n∗ , and S|Kd ∼ D|Kd. Thus P (D ∈ dx|Kd = k) = P (S ∈
dx|Ks = k) and P (S ∈ dx) = P (D ∈ dx).

1.6.2 Numerical Results

The doubling sampler algorithm was used to draw samples from the distribution
π = ρ1C

ρ(C)
, where ρ ∼ N ([0, 0, 0], 100× I3) where I3 is the 3× 3 identity matrix. The

support of π is C := {x ∈ R3 : x21 + x22 + x23 > 502}, constructed so that Cc is
convex. Additionally, the choice of ρ and C are such that the target density π is
symmetric about the origin, with E(Xi) = [0, 0, 0]. The doubling sampler algorithm
was initiated at X0 = [−50,−50,−50] and conducted N = 50, 000 proposals with
unconditional jump density R ∼ exp(10). Thus, by the construction of Algorithm 4,
Tk ∼ Γ(2k−1, 10).

For comparison, a random-walk Metropolis algorithm and a skipping sampler
algorithm were also applied to draw samples from π. Both were initiated at the same
state X0 as the doubling sampler and conducted 50,000 proposals with underlying
density q(Xn, Xn+1) ∼ N (Xn, 5 × I3). The skipping sampler employed a halting
regime of K = 6. Each algorithm was run for 200 independent simulations initiated
at X0. This allows for inferences to be made about the distribution of sample means.

Table 1.1 presents summary statistics for the samples generated by the three
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algorithms described above. The average of the sample means generated by the
random-walk Metropolis simulations was [-9.8,-21.7,-26.6], while the average dis-
tance between the sample means and E(X) was 34.9 units. These results suggest
limited exploration of the state space, with the signs of the components of the ini-
tial state X0 = [−50,−50,−50] correlating with those of the average of the sample
means. The average MSJD also reflects the limited exploration of the state space,
as the average displacement provided by the proposal was 2.76 units, the least of all
algorithms. This can be understood as a consequence of the local moves conducted
by the random-walk proposal.

In contrast, the doubling sampler produced samples whose sample means had
an average Euclidean distance from E(X) of 3.1 units, the least of the three algo-
rithms, as well as the largest average MSJD of 8.9 units. These suggest the doubling
sampler was able to conduct global exploration of the state space by traversing Cc,
allowing the algorithm to generate samples with averages closer to the expected
value. Additionally, given that Cc was convex and P[Kϕ = ∞] = 1, the doubling
sampler was expected have proposals with larger displacements than the skipping
sampler. This is reflected by the higher MSJD of the doubling sampler over that of
the skipping sampler. The average time taken also highlights the expected benefit
of the doubling sampler, taking less time, on average, than the skipping sampler to
complete the simulation, exhibiting the computational advantage over the skipping
sampler as desired by the authors of [76].

Table 1.1: The performance metrics of each algorithm: RW-M: a random walk
Metropolis-Hastings algorithm; Skip: the skipping sampler; D-Skip: the doubling
sampler. For the metrics: Avg. µ̂ average sample means from simulations, Avg
ED: average Euclidean distance between sample means and E(X); Avg. time: av-
erage execution time for each algorithm; Avg MSJD: average Mean Squared Jump
Distance.

Metric RW −M Skip D − Skip

Avg. µ̂ [−9.8,−21.7,−26.6] [−5.6,−23.2,−17.0] [−2.9, 0.4, 0.7]
Avg. ED 34.9 28.1 3.1

Avg. time (s) 5.23 7.84 6.08
Avg. MSJD 2.76 7.78 8.90

The reduction in execution time provided by the doubling sampler has already
been noted in [76] and is illustrated in the comparative results in Table 1.1. Through
its construction, the reduced time spent in Cc is especially beneficial when elements
from the sample space are intended to be input parameters of a computationally
demanding physical model of a natural or engineered system. While this method
requires a priori knowledge that Cc is convex, this geometry is not uncommon in
reliability studies. For example, in the case of random changes in power injections
from renewable energy sources, destabilising effects on power system operations were
observed for random power injections with large (≫ 0) deviations from equilibrium
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conditions (see chapters 3 and 4). If it is desired to sample such random power
injections, the doubling sampler may be suitable as Cc may be a convex subset of
the state space of power disturbances.
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Chapter 2

Power system modelling
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NOMENCLATURE
Machine and line parameters

Ai Governor droop response;
ωsys Steady state frequency of rotating reference frame;
δij Phase angle difference: (δi − δj) ;
M System angular momentum;
δi Electrical phase angle of machine i with respect to ωsys;
δ̇i Electrical angular velocity. This is 0 during steady state;
δ̈i Rate of change of frequency (RoCoF);
D System load damping factor;
χG
i Mechanical power of machine i;
χL
i Power consumption (Load) at node i
χe Electrical power generated/consumed at machine i;
N Total number of machines in the network;
νi, νj q-axis transient voltages at machines i and j; i, j ≤ N ;
Ef,i Rotor’s field voltage of machine i;
Bij Line susceptance connecting nodes i and j;
Xd,i d-axis reactance of machine i;
X

′

d,i d-axis transient reactance of machine i;
ρi Mechanical power provided by governor at machine i ;
Pm
i Maximum power output of generator i;
Pne,i Rated active power of machine i p.u.;
PG
i Initial equilibrium power of machine i;
sne,i Primary frequency control droop of machine i ;
Tse,i Relative servomotor time constant of machine i;
Td,i Transient time constant of the d-axis of machine i;
ηi Power disturbance at node i;

Protection system parameters
C Load shedding increments (%)
F+ Over Frequency Generation Shedding (OFGS) Threshold, Hz
F− Set of Progressive Under Frequency Load Shedding (UFLS) Thresholds, Hz
G RoCoF Trip Threshold, Hz s−2

P ϕ Line Trip Power Flow Deviation Threshold, MW
T ϕ Line Trip Relay Delay
Ωij Indicator for line protection system
Ξi Indicator for generation shedding emergency response
Γi Indicator for load shedding emergency response
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A power system refers to the collection of components responsible for producing
electrical energy and delivering this to consumers. While such systems vary in size
and complexity, they share some basic characteristics.

Synchronous generators are the main source of electrical energy in power systems,
with power system stability philosophies largely focused on keeping inter-connected
machines in synchronism [59]. These generators also play an important role in both
frequency and voltage regulation. The descriptor “synchronous” refers to the syn-
chronising torque between generators which aims to make all generators’ rotors spin
with the same angular velocity, known as the system frequency, which is maintained
very close to a particular value depending on the geographical region, normally
either 50 or 60 Hz [43].

The prime movers of synchronous machines are the turbines which convert pri-
mary energy sources (gas, coal, nuclear fuels or renewable sources) to mechani-
cal energy, which is then converted to electrical energy by synchronous generators
[46]. The network is comprised of three-phase alternating current (AC) lines con-
necting components of the power system, sub-divided into the transmission, sub-
transmission and distribution networks which operate at different but approximately
constant voltages. Also found on the network are the transformers which regulate
voltage between the different networks. Loads, including households, industry and
commercial activities, convert electrical energy from the network to other forms for
final consumption [57].

However, the rising prevalence of weather-dependent wind and solar-based re-
newable energy systems (RES) increases the challenge of maintaining frequency and
voltage stability. Wind and solar RES are considered low inertial generation sys-
tems, i.e. they do not employ large spinning masses to generate electricity [110],
and can therefore induce rapid “power disturbances”- random changes in power in-
jected to the network. If power disturbances are sufficiently large, these can lead
to contingencies- a significant deviation in frequency from its desired value, which
can be damaging to sensitive equipment [42]. While all electrical networks em-
ploy regulatory systems (section 2.4) to maintain system frequency and emergency
responses (section 2.5) which disconnect power system components to safeguard
sensitive equipment, RES-induced contingencies may increase the risk of emergency
responses and the loss of service to customers.

The risk of RES-induced power disturbances to frequency stability is revealed
by empirical studies which have shown wind energy feed-in to have a measurable
effect on frequency deviations on short time-scales (< 1s), below the response time
of frequency regulation systems [39]. While the effects of RES intermittency may
be expected to diminish with the aggregation of RES sites, in networks with high
prevalences of RES, intermittency is still observed even under country-wide averag-
ing, thus impacting frequency stability. Furthermore, the distribution of short-term
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frequency deviations are non-Gaussian when subject to intermittent wind power
generation, possessing heavier tails than those predicted by Gaussian models, repre-
senting a higher rate of large deviations, particularly in smaller networks. In larger
networks the non-Gaussian behaviour in frequency deviations vanish on time scales
longer than 1s, but in smaller more isolated networks, such heavy-tailed behaviour
persists and remain detectable on time scales up to 10s [97].

Drawing a sample of power disturbances conditioned on the event of the acti-
vation of an emergency response is a key research objective of this thesis. Power
systems are designed to be resilient against the occurrence of contingencies, thus the
set of power disturbances sufficiently large and well-located to trigger emergency re-
sponses occur infrequently, and can be considered a rare event. In the context of
power systems and this thesis, rare events are those whose probability of occurrence
are very small, but which can have an adverse impact on the operation of the net-
work and a loss of service to customers (i.e. a blackout) [16]. Rare events of interest
in power systems investigated by this thesis include frequency deviations beyond the
nominal operating band and the cascading disconnection of generating units, trans-
mission lines or loads. However, studying such phenomena via simulation-sampling
coupling can be computationally challenging - due to their infrequent occurrence,
Monte Carlo sampling requires a large number of realisations to generate even a
single instance of a rare event [11, 22]. One approach to this problem is to ap-
ply specialised mathematical techniques for the study of rare events, such as those
reviewed in Chapter 1. In this thesis we focus on the application of the skipping
sampler described in Section 1.4 to draw samples of power disturbances conditioned
on the occurrence of specific contingencies in the network. These samples can be
used to understand the potential vulnerabilities of a power system.

While detailed power system models which describe frequency dynamics are
available, their complexity would consume significant resources to conduct the re-
quired number of simulations. Conversely, simplified models for frequency dynamics
also exist, usually using the swing equation [58]. The evaluation of these models re-
quires less time, but produce results which are only valid for small disturbances, and
only for approximately one second (t = 1) following a simulated power disturbance
on the network [57]. To mediate between the qualities of simplicity and reliability,
this chapter will detail a novel power system model which can generate frequency
dynamics for t > 1 seconds following a simulated power disturbance, but which
can also be evaluated sufficiently quickly to allow the rare-event sampling methods
discussed in Chapter 1 to be feasibly applied.

This chapter is organised as follows: a model for the electrical network and its
transmission lines is provided in Section 2.1. The classical model and third order
model for the synchronous generator and motor are presented Sections 2.2 and 2.3.
Frequency regulation is introduced in Section 2.4 along with the model for governor
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action following a power disturbance on the network. Section 2.5 presents the models
for power system emergency responses intended to safeguard sensitive equipment,
including generation shedding, load shedding and line disconnection. The impact
of voltage regulation on frequency stability is explored in Section 2.6, and details
a simple model for automatic voltage regulation. Finally, Section 2.7 presents the
proposed power system model for rare event analysis which will be used in Chapters 3
and 4.

2.1 Network Model

Electrical power systems can be modelled as a graph G(X,E) where the set of nodes
X with |X| = N represent the components of the network such as generators and
loads. The set of edges E corresponds to the transmission lines connecting these
nodes [100]. Transmission lines have an impedance calculated as Zij = Rij+jXij [57],
where Rij and Xij are resistance and reactance respectively for the line connecting
nodes i and j.

Each edge in the network also has a complex valued admittance given by Yij =
1

Zij
= Gij + jBij, where Gij is the conductance and Bij the susceptance of line ij

[100]. An admittance matrix, Y ∈ CN×N records the line admittances of each line,
which are used in Kirchoff’s and Ohms laws [59]:

I = Y ν, (2.1)

where I, ν ∈ Cn are vectors of nodal currents and voltages respectively.
The electrical network is responsible for transmitting the power released by

generators- their apparent power, to loads across the network. A generator’s ap-
parent power can be decomposed into two components- active power and reactive
power, whose flows through the network are influenced by different control actions
and have effects on different components of the network. Active power is closely
related to frequency regulation and control, while reactive power is associated with
voltage regulation [57]. As our focus is to understand rare phenomena in frequency
regulation, this section will focus on modelling active power flows in the network,
and its interaction with frequency regulation systems and emergency responses. The
apparent power S at each node j is given by:

Sj = νjI
∗
j , (2.2)

where I∗ is the complex conjugate of nodal currents, νj = |νj|eiδj , Ij =
∑

k Yjkνk

and δj is the electrical phase angle. Substituting yij = |yij|eiδij = Gij + iBij where
yij is the ijth component of the admittance matrix, then the active power at node j
is χj = Re(Sj):
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χj =
N∑
i=1

|νj||νi|[Gijcos(δi − δj) +Bij sin(δi − δj)]. (2.3)

Under the assumption the network is lossless, i.e. the lines experience no loss of
power, then Gij = 0∀i, j and the electrical power flow can simplified as:

χj =
N∑
i=1

|νj||νi|Bij sin(δi − δj), (2.4)

where B ∈ RN×N is the matrix of susceptances. Equation (2.4) will be used in
Section 2.2 to derive the model for the synchronous generator and motor.

2.1.1 Kron reduction

We conclude this section by providing a discussion on Kron reduction, a network
reduction method from graph theory [24]. Assume the set of nodes X can be par-
titioned into active nodes which produce current and passive nodes which do not.
Kron reduction can be used to eliminate passive nodes and form a reduced network,
while retaining the characteristics of the original. Kron reduction of electrical net-
works creates a reduced admittance matrix Yred := Y ∈ CN×N derived from the
network’s admittance matrix Yij as follows.

Each line connecting node i and j is included in the Y matrix. Only nodes with
generators will be sources of current, thus the current vector can be partitioned:

I =

[
In

0

]
.

Following equation (2.1), matrices Y and ν can also be partitioned :[
In

0

]
=

[
Ynn Ynr

Yrn Yrr

][
νn

νr

]
,

where the subscript n is used to denote generator nodes and r denotes remaining
nodes [4]. Expansion yields In = Ynnνn + Ynrνr and 0 = Yrnνn + Yrrνr. Eliminating
νr yields:

In = (Ynn − YnrY
−1
rr Yrn)νn. (2.5)

The matrix Yred = (Ynn − YnrY
−1
rr Yrn) is the reduced admittance matrix associated

with an effective network model or reduced network, which represents the interactions
between generators where loads are treated as constant impedances.
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2.2 Second order model

A key novelty of the power system modelling in this thesis is its cyber-physical
dynamics: in addition to the electro-mechanical (that is, physical) dynamics, we
also model the action of automated protective (that is, cyber) equipment. While
the physical dynamics are smooth and described below by differential equations,
the cyber dynamics introduce discontinuous changes to the parameters of these
equations. In order to justify these parameter changes, it is necessary to understand
the derivation of the electro-mechanical dynamics, and that is the aim of the present
section.

There are several models for generators with differing levels of complexity and
accuracy. The simplest model is the swing equation, a second-order differential
equation based on Newton’s equations of motion [43]. We develop this model below
following from [59]:

The torques acting on the rotor of the generator can be classified as the mechanical
torque Tm and the electromagnetic torque Te. When there is an imbalance between
the torques acting on the rotor, the net torque results in an acceleration:

Ta = Tm − Te, (2.6)

where:
Ta is the accelerating torque in Newton metres Nm;
Tm is the mechanical torque acting on the rotor in Nm
Te is the electromagnetic torque in Nm.

When modelling active power generation, we set Tm > 0, while Tm < 0 for mo-
tors which consume active power. The equation of motion for the rotor is given by
Equation (2.7):

J
dωm

dt
= Ta = Tm − Te, (2.7)

where:
J is the combined moment of inertia of the generator and turbine in kg m2

ωm is the angular velocity of the rotor, in mechanical rad/s;
t is time in seconds;

To simplify power system analysis, units of measurement for the parameters of
power, voltage, current, impedance and admittance parameters are converted to the
per unit (p.u) system, with all parameters expressed as multiples of selected base
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units. Base units normally used include power, measured in Mega-Volt Ampere
(MVA) and voltage, measured usually in kilovolts (kV). This allows the parameters
used to describe network components to be specified in per unit values to ease
calculations.

The inertia constant H is used to convert the equation of motion for the rotor
into the per-unit system:

H =
stored energy at rated speed in MW.s

MVA rating
, (2.8)

H =
1

2

Jω2
0m

MVAbase

, (2.9)

where ω0m is the angular velocity in mechanical rad/s which the machine is rated
to operate, and MVAbase is the base power of the machine.

Rearranging, the moment of inertia is given by:

J =
2H

ω2
0m

MVAbase. (2.10)

Substituting (2.10) in equation (2.9) yields:

2H

ω2
0m

MVAbase
dωm

dt
= Tm − Te. (2.11)

Dividing throughout by Tbase = MVAbase

ω0m
and rearranging yields:

2H
d

dt

(
ωm

ω0m

)
=
Tm − Te
Tbase

(2.12)

This gives the equation of motion for the rotor in per-unit form as:

2H
dω̄r

dt
= T̄m − T̄e. (2.13)

ω̄r =
ωm

ω0m

=
ωr/p

ω0/p
=
ωr

ω0

.

where:
ωr is the angular velocity of the rotor in electrical rad/s
ω0 is the rated speed of the generator;
p is the number of field poles.
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Let the mechanical rotor angle δm denote the angular difference between the
rotor and a reference axis rotating with synchronous angular velocity ωsys. The
electrical phase angle δ, measured in electrical radians with respect to the rotating
reference axis, is given by δ = 2δm

p
, where p is the number of magnetic poles of the

generator. The electrical phase angle at time t is given by:

δ(t) = ωrt− ω0t+ δ0. (2.14)

where δ0 is the δ when t = 0. Taking the time derivative yields:

dδ

dt
= ωr − ω0 = ∆ωr. (2.15)

Taking the second derivative

d2δ

dt2
=
dωr

dt
=
d(∆ωr)

dt

= ω0
dω̄r

dt
= ω0

d(∆ω̄r)

dt
. (2.16)

Substituting for dω̄r/dt in the above equation yields:

2H

ω0

d2δ

dt2
= T̄m − T̄e. (2.17)

An additional separate component for damping torque not accounted for in the
calculation of Te is usually included in the equation by adding a term KD propor-
tional to the speed of the rotor:

2H

ω0

d2δ

dt2
= T̄m − T̄e −KD∆ω̄r, (2.18)

where
∆ω̄r =

∆ωr

ω0

=
1

ω0

dδ

dt
;

yielding:

2H

ω0

d2δ

dt2
= T̄m − T̄e −

KD

ω0

dδ

dt
, (2.19)

where KD is the damping factor/coefficient in per unit torque/per unit speed devi-
ation and ω0 = 2πf where f is rated system frequency.

Many sources use angular momentum in the equation of motion for the generator
[100]. Defined in relation to the inertia constant H:
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M =
2H

2πf
MVAG, (2.20)

where MVAG is the machine rated power in megavolt-amperes [54]. If the power is
expressed in per unit form instead of megawatts, this result must be divided by the
base power MVAbase, giving:

M =
2H

2πf

MVAG

MVAbase

. (2.21)

In reality the angular momentum is not strictly constant as rotor speed varies dur-
ing the swing following a disturbance. However, the change in speed due to the
disturbance is so small in comparison to the regular speed of the rotor that it is
reasonable to assume that M be treated as constant, known as the inertia constant
[54].
This gives the form (in per unit basis):

M
d2δ

dt2
= Tm − Te −

KD

ω0

dδ

dt
. (2.22)

In the literature, the mechanical torque is provided by power from generators is
usually denoted Pg and the electrical power extracted from the generator denoted
Pe (see, for example [100]). However, for consistency with subsequent chapters of
this thesis, we instead denote these quantities as χG and χe respectively. Thus, for a
N -machine network with synchronous generators, this equation gives changes in the
electrical angular velocity of the rotor of machine i and yields the swing equation:

Mδ̈i = −Diδ̇i + χG
i − χe

i . (2.23)

At each node, the active electrical power flow is given by χe
i =

∑N
j=1 νiνjBij sin δij,

where δij := δi − δj [98, 100]. The classical model for the generator’s frequency
dynamics can be presented:

Mδ̈i = −Diδ̇i + χG
i −

N∑
j=1

νiνjBij sin δij. (2.24)

The classical model in Equation (2.24) assumes constant nodal voltages νi, and
is the reason why the reliability of results of transient stability analysis is limited
to less than one second after a simulated disturbance [57]. Instead, the third order
model given in Section 2.3 includes transient voltage of the generator, and will be
used in this thesis to describe frequency dynamics of machines in the network.
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2.3 Third order model

Because it includes the transient voltage of the generator, the third order model
presented in this section is suitable for the modelling of larger power disturbances
over timescales of multiple seconds. Although it nevertheless still neglects damper
winding effects and the sub-transient equations found in the more complete Park’s
model, these omissions are often compensated by increasing the mechanical damping
coefficient (D) of each machine [100].

To account for the temporal variations in loads in a network during response
to a disturbance, loads will be modelled as synchronous motors, analogous to syn-
chronous generators [100]. When modelling loads in this way, the sign of electrical
power χe

i and mechanical power χG
i inputs are reversed in the swing equation (2.23),

signifying that loads convert electrical power to mechanical power [100]. As we may
desire to model both loads and generation at a single node, we instead use the term
χL
i to represent the load at node i.

Power disturbances, as previously mentioned, represent changes in the power
injected at any location in the network. We will model them as random changes in
the net generation (or load) at each node. If the initial conditions of the system of
differential equations are chosen such that the system is in equilibrium at t = 0−

with system frequency equal to the desired frequency, then any non-zero disturbance
|ηi| > 0 for t ≥ 0 will lead to transient behaviour of the frequency.

The distribution of the vector of random power disturbances η ∈ RN for a N -
node network is of importance to understanding their relationship with power system
emergency responses, and will be discussed in greater detail in Chapters 3 and 4.
Including load dynamics and the random power injection terms, the third order
model is given below in equation (2.25):

Mδ̈i +Dδ̇i = χG
i − χL

i − νi

N+L∑
j=1

Bijνj sin(δi − δj) + ηi

Td,iν̇i = Ef,i − νi + (Xd,i −X
′

d,i)
N+L∑
j=1

Bijνj cos(δi − δj),

(2.25a)

(2.25b)

where Td,i is the transient time constant of machine i, Xd,i and X
′

d,i are the d-axis
reactance and transient reactance respectively of machine i.

2.4 Frequency regulation

Frequency regulation refers to the systems and services which maintain network
frequencies within pre-determined tolerances following a mismatch between active
power generation and load demand. Such mismatches occur due to load fluctua-
tions or random power disturbances. Frequency regulation is conducted by altering
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active power output of generators to ensure grid stability [54]. These systems and
services are normally classified as primary, secondary or tertiary frequency control
depending on the delay of the response following a contingency [54].

• Primary frequency control involves rapid local response (first few seconds) of
automatic systems to deviations from system frequency, for example through
generator governor units, controllable loads [57] or more recently grid-scale
batteries, with the aim of halting any frequency excursions and establishing a
temporary steady-state.

• Secondary frequency control attempts to restore the system frequency to pre-
disturbance values through a centralised network approach-i.e. by changing
the electrical outputs of generators across the network coordinated by an au-
tomatic generation control (AGC) unit. This occurs between the first 5 - 20
seconds following a contingency.

• Tertiary frequency control refers to network operators dispatching additional
generation to the network [54]. Like secondary control, tertiary control is cen-
tralised, but does not require as fast a response as secondary control, occurring
on the order of several seconds to minutes following a contingency.

Synchronous generators, with their large rotating masses, already provide a mea-
sure of frequency control through the inertia response following a contingency [27].
This acts to slow the rate of change in frequency and is modelled by the inertia con-
stant M . The following section describes the generator’s governor, which actively
regulates frequency following a contingency.

2.4.1 Governor model

Generator governors adjust active power output of the generator in order to maintain
the desired system frequency value [59]. Governors are therefore a key component
of primary frequency control [78]. While the prime movers of generators convert
the thermal energy to mechanical energy, the governing unit of the prime mover
can adjust its power in response to changes in frequency, and also forms an integral
component of a centralised automatic generation control (AGC) mechanism which
regulates system frequency across the network. A simple model to evaluate sys-
tem frequency dynamics under governor action during primary frequency control is
derived from [64]:

ρ̇i = −Aiδ̇i, (2.26)
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where ρi is the mechanical power commanded by the governor of generator i and
the constant Ai determines the response of the turbine governor to deviations in
frequency from the desired system frequency at node i. The deviation from desired
system frequency at generator i is denoted by δ̇, whose dynamics are provided by
the third order model. A more detailed governor action presented by [65] includes
damping action based on the generator’s mechanical power:

ρ̇i = −Aiδ̇i −
1

Tse,i
(χG

i − PG
i ), (2.27)

where χG
i is generator i’s mechanical power; PG

i is the expected equilibrium me-
chanical power of generator i; Tse is the servomotor time constant and the constant
1

Tse,i
controls the response of the governor to changes in mechanical power of the

generator at node i.
Additionally, we model a deadband frequency range in which the governor does

not respond to deviations from system frequency to prevent excess oscillations in
generator power:

ρ̇i =

(
− Aiδ̇i −

1

Tse,i
(χG

i − PG
i )

)(
1− 1W [δ̇i]

)
, (2.28)

where W is the governor deadband frequency range. An example of such a deadband
frequency range can be found in Appendix 8.1, which is applied in Chapter 4.

2.5 Power system emergency responses

This section follows the content of the supplementary document submitted along
with the manuscript [37], which is presented in Chapter 4.

In the event of significant deviation in frequency beyond pre-set thresholds follow-
ing a contingency, protection systems may be activated to disconnect generators,
loads, lines or combinations of these with the dual purpose of protecting sensitive
equipment and to halt the deviation in system frequency [29, 1]. These emergency
responses include:

• Rate of change of frequency (RoCoF) generation shedding;

• Over-frequency generation shedding (OFGS);

• Under-frequency load shedding (UFLS);

• Line disconnection.

50



2.5.1 Generation shedding

Rate of change of frequency (RoCoF) is the time derivative δ̈ of the power system
frequency. Previously, this quantity was a less significant concern as the inertia
of large synchronous generators would counter increases in RoCoF. However, as
low-inertia, inverter-based, non-synchronous renewable energy generation increases
in prevalence, larger RoCoF values may be observed in networks. Larger RoCoF
values may endanger system security due to mechanical limitations of individual
synchronous machines [29].

A sufficiently large disturbance, such as a system split or the loss of a large
generator in a small network may result in a high rate of change of frequency.
To protect against this, transmission system operators (TSOs) employ protection
systems for generators against large RoCoF excursions, with different thresholds
used among TSOs. For example, [1] specifies RoCoF protection settings of 1.0
Hzs−1 over a 0.5 second moving average for synchronous generators greater than
5MW.

Over-frequency generation shedding (OFGS) is triggered when local frequency
measured at the generator exceeds a preset threshold [1]. OFGS involves the inten-
tional disconnection of generators in a systematic approach with the objective to
contain the system frequency rise during an over-frequency event [2].

OFGS is typically implemented progressively over multiple thresholds: for exam-
ple, [1] recommends a two-staged scheme for over-frequency protection of generating
units.

Modelling generation shedding

To model generation shedding, we monitor whether the frequency δ̇ (t) > F+, where
F+ ∈ R+ is a fixed threshold. That is, we consider the over-frequency indicators:

λ+i (t) := Θ[δ̇i(t)− F+], (2.29)

where, i = 1, . . . , N and Θ is the Heaviside function. Also, given a closed interval
[G−, G+] with G−, G+ ∈ R+ and G− < G+, the RoCoF violation indicator can be
written as

ψi(t) := Θ[δ̈i(t)−G+] + Θ[G− − δ̈i(t)], (2.30)

During the observation time window [0, T ], we can count the number of times
the emergency schemes are activated in the power grid using the following time-
integrated counters (whose definitions are motivated below):

Λ+
i (t) := min

{
1;

∫ t

0

δ[1 + (λ+i (sε)− λ+i (s))]ds

}
, (2.31)
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and

Ψi(t) := min

{
1;

∫ t

0

δ[1 + (ψi(sε)− ψi(s))]ds

}
, (2.32)

where sε := s − ε with ε > 0 arbitrarily small and, with a little abuse of notation,
here δ indicates the Dirac delta function1. The GS emergency response is activated
by either an over-frequency or a RoCoF violation, and thus can be written as an
indicator function:

Ξi := (1−Θ[Ψi])(1−Θ[Λ+
i ]), (2.33)

since once GS is triggered at generator node i we have Θ[Ψi] and/or Θ[Λ+
i ] equal

to 1 which gives in turn Ξi = 0. The GS scheme does not remove the relevant
node from the graph, but only disconnects the generator from the network once a
violation occurs (which motivates the min terms in (2.31) and (2.32)).

2.5.2 Under-frequency load shedding

Power systems can potentially avoid a frequency collapse following a contingency by
implementing automatic load shedding during primary frequency control [78]. This
action is known as under frequency load shedding (UFLS) and is triggered using
under-frequency relays, which detect when frequency falls below preset thresholds
and automatically sheds an appropriate amount of controllable load to restore the
power balance across the network. These relays are usually installed at distribu-
tion and transmission substations [78]. In our case studies, we focus on fixed UFLS
schemes, which shed a pre-defined set of load when system frequencies fall below
a particular threshold, with further shedding occurring if frequency continues to
degrade after the initial activation. This leads to a multi-stage, progressive load
shedding scheme employed to combat under-frequency contingencies, see for exam-
ple [68]. An example of such an UFLS scheme is presented in Table 2.1.

Table 2.1: An example of a multi-stage under-frequency load shed scheme. Adapted
from [85].

Frequency (Hz) Load Shed %
49.2 10%
48.8 20%
48.4 30%
48 40%

1We assume that the integration domain is consistent with the chosen time discretisation and
large enough to allow for the Dirac delta to be well defined, so that (2.31) and (2.32) are natural
numbers
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Modelling under-frequency load shed events

We model the load shed (LS) scheme as shedding load progressively as frequency
decreases. This progression follows a step function, where each jump (LS activation)
corresponds to a lower fixed frequency threshold. In formulas, given an ordered
set of decreasing frequency thresholds F− := {F−

1 , F
−
2 , . . . , F

−
∆} with ∆ ∈ N and

F−
1 < F+, we define a matrix λ̂− of under-frequency indicators element-wise as

λ−ij(t) := Θ[F−
j − δ̇i(t)], (2.34)

and the corresponding time-integrated counter matrix Λ− as

Λ−
ij(t) := min

{
1;

∫ t

0

δ[1 + (λ−ij(sε)− λ−ij(s))]ds

}
, (2.35)

where the first index runs over nodes i = 1, . . . , N and the second over the under
frequency set j = 1, . . . ,∆. The proportion of load shed is then specified as

Γi(Λ
−) :=

∆∑
j=1

Λ−
ij ∈ {0, 1, . . . ,∆}. (2.36)

This value adjusts the load through χL
i by a desired amount at step intervals when

a load shedding thresholds are met. Also, recalling (2.25), the damping coefficient
which appears in the third order model adjusts dynamically according to:

D(Γ) := D

[
1−

(
C∑N+L

i=1 χL
i

)
N+L∑
i=1

Γiχ
L
i

]
, (2.37)

where buses without the LS scheme have the relevant Γi set equal to 0. This results
in the difference between the total load before and after a single load shed event as
CΓiχ

L
i where C is proportion of load being shed at each activation.

2.5.3 Line disconnections

As presented in [27], the line connecting nodes i and j trips when two conditions
are concurrently met. The first is verified when the power flowing through the line
ij, namely ϕij := Bijνiνj sin(δi − δj), exceeds a threshold value P ϕ for the entire
duration of a fixed time interval T ϕ. So, following the same structure as for the
preceding emergency responses, we define the excess power flow indicator as

ωij(t) := Θ

[∫ t

t−Tϕ

Θ[ϕij(s)− P ϕ]ds− T ϕ

]
. (2.38)
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The second controls if each bus frequency deviation exceeds a threshold F ϕ < F+

during [0, T ϕ]. This results for the generic bus i in an over-frequency indicator and
its corresponding time-integrated counter

λϕi := Θ[δ̇i(t)− F ϕ], Λϕ
i (t) := min

{
1;

∫ t

t−Tϕ

δ[1 + (λϕi (sε)− λϕi (s))]ds

}
. (2.39)

These conditions are combined in a single line trip indicator which reads as

Ωij(t) := 1−min

{
1;

∫ t

Tϕ

δ[ωij(s)Λ
ϕ
i (s)Λ

ϕ
j (s)− 1]ds

}
. (2.40)

When a line trip occurs between nodes i and j, the indicator Ωij switches from 1 to
0.

2.6 Automatic voltage regulation (AVR)

Beyond frequency regulation, voltage stability is a further critical requirement for
power system operation. Automatic voltage regulators (AVR) are used to maintain
the terminal voltage of a generator at a desired level by controlling the excitation
voltage of the generator [30]. The AVR functions when there is a voltage error
greater than a specified dead-band threshold between measured terminal voltage
and reference voltage due to a disturbance in the network [45]. The simplest such
system consists of four main components: the amplifier, exciter, generator and sen-
sor. The basic components and associated transfer function for a simple AVR model
is developed below (adapted from [45]).

The sensor detects the terminal voltage for the generator and compares this
to the reference voltage set-point stipulated for safe operation, generating an error
signal. A sensor can be represented by the first order transfer function:

νs(s)

ν(s)
=

Ks

1 + sT s
,

with input ν, the terminal voltage and output νs. The parameters Ks and T s

represent the gain and time constant of the sensor model. The amplifier rectifies
the input signal from the sensor to a suitable form to control the exciter. A simple
amplifier model is given by the first order transfer function:

ϵa(s)

νe(s)
=

Ka

1 + sT a
,

with inputs νe = V r − νs and output ϵa, where V r is the reference voltage while
νs is the voltage signal. Ka and T a represent the gain and time constants of the
amplifier respectively.
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The exciter provides DC current to the field winding of the generator, which in
turn affects the generated electromagnetic field. The exciter, based on the recti-
fied error signal, adjusts reactive power generation and the generator’s field winding
current, regulating the generated electro-magnetic field (emf) and field voltage Ei.
This in turn regulates terminal voltage. The transfer function for the exciter model
takes the form:

ϵe(s)

ϵa(s)
=

Ke

1 + sT e
,

with input rectified voltage ϵa and output change in field voltage ϵe, along with
gain and time constant Ke and T e. The components of the transfer function are
summarised in the block diagram given in Figure 2.1.

Figure 2.1: Block Diagram for AVR System (adapted from [30])

Common values for the parameters listed for the various components of the AVR
system are provided below in Table 2.2.

Table 2.2: Table Showing values of AVR parameters used in the the model; adapted
from [30]

Quality Transfer Function Gain Constant Time Constant
Amplifier KA

1+TA 10 ≤ KA ≤ 40 0.02 ≤ TA ≤ 0.1

Exciter KE

1+TE 1 ≤ KE ≤ 10 0.4 ≤ TE ≤ 1

Generator Kg

1+T gs
0.7 ≤ Kg ≤ 1 1 ≤ TA ≤ 2

Sensor Ks

1+T ss
Ks = 1 0.001 ≤ T s ≤ 0.06

The following time domain differential equations may be obtained from the trans-
fer functions of the AVR system using the Laplace transform:
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

ν̇si (t) =
1

T s
i

(
Ks

i νi(t)− νsi (t)
)

ϵ̇ai (t) =
1

T a
i

(
Ka

i

(
V r
i − νsi (t)

)
− ϵai (t)

)
.

ϵ̇ei (t) =
1

T e
i

(
Ke

i ϵ
a
i (t)− ϵei (t)

)
(2.41a)

(2.41b)

(2.41c)

2.7 Power system model for rare event analysis

This section summarises the power system model intended for rapid evaluation of
frequency dynamics and power system emergency responses following a power dis-
turbance on a specified network. This model is suitable to be used in conjunction
with the skipping sampler discussed in Chapter 1 as it takes approximately 2-5 sec-
onds to simulate frequency dynamics for 15 seconds following a simulated power
disturbance using MATLAB. Starting with the third order model for the generator,
the power system model for rare-event sampling simulations will also include a model
for governor action, automatic voltage regulation and a model of protection system
emergency responses if the frequency or RoCoF exceeds pre-defined thresholds.

M(Ξ)δ̈i +D(Γ)δ̇i = Ξiχ
G
i − χL

i − νi

N+L∑
j=1

Bij(Ωij)νj sin(δi − δj) + ηi

Td,iν̇i = Ξi(Ef,i − ϵei )− νi + (Xd,i −X
′

d,i)
N+L∑
j=1

Bij(Ωij)νj cos(δi − δj)

ρ̇i =
(
− Aiδ̇i −

1

Tse,i
(χG

i − PG
i )
)(
1− 1W [δ̇i]

)
ν̇si (t) =

1

T s
i

(
Ks

i νi(t)− νsi (t)
)

ϵ̇ai (t) =
1

T a
i

(
Ka

i

(
V r
i − νsi (t)

)
− ϵai (t)

)
ϵ̇ei (t) =

1

T e
i

(
Ke

i ϵ
a
i (t)− ϵei (t)

)
.

(2.42a)

(2.42b)

(2.42c)

(2.42d)

(2.42e)

(2.42f)

Equation 2.42a is the Swing Equation, which describes the dynamics of machine i’s
frequency, where equation (2.42a), χG

i := min{ρi+PG
i , P

m
i } is generator i’s mechan-

ical power, PG
i is the equilibrium mechanical power output of the generator and Pm

i

is the generator’s nominal maximum power output. The dynamics of each machine’s
voltage is given by equation (2.42b) (Section 2.3), while the dynamics for governor
action which adjust generator’s power output in response to frequency deviations
are described in (2.42c), where ρi is the change in generator power commanded by
the governor, Ai is the governor’s response to frequency deviation and W is the gov-
ernor deadband (Section 2.4.1). Equations (2.42d) - (2.42f) describes the dynamics
and action of each generator’s voltage sensor, amplifier and exciter respectively, key
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components of an automatic voltage regulators (AVR) intended to maintain voltage
deviations within prescribed limits (Section 2.6).

The corresponding equations for each load bus i = N + 1, . . . , N + L are
M(Ξ)δ̈i +D(Γ)δ̇i = −χL

i + νi

N+L∑
j=1

Bij(Ωij)νj sin(δi − δj)

Td,iν̇i = Ef,i − νi + (Xd,i −X
′

d,i)
N+L∑
j=1

Bij(Ωij)νj cos(δi − δj).

(2.43a)

(2.43b)

In Chapter 3, a simplified version of this model without the AVR components
will be applied to a number of test networks to analyse how power disturbances
from low inertial renewable sources can lead to cascading disconnection of loads
and generators. In Chapter 4, the full model is applied to the Kundur Two Area
Network, an IEEE test network based on the Australian power system. In this
application, the model will be used to analyse the effect of power disturbances on a
more realistic network, and evaluate how fast response battery storage systems can
mitigate the effects of correlated power disturbances.
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Chapter 3

Distributions of cascade sizes in
power system emergency response

This chapter is derived from a manuscript with the same name published in the
2020 International Conference on Probabilistic Methods Applied to Power Systems
(PMAPS). All authors have been credited.
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Abstract

Following disturbances to a power system triggering emergency responses such
as protection or load/generation shedding, several factors affect the way in
which these responses may cascade through the network. Beyond determin-
istic factors such as network topology, in this paper we aim to quantify the
effect of correlations in power disturbances. These arise, for example, from
common weather patterns causing correlated forecast errors in renewable gen-
eration. Our results suggest that for highly connected networks, the cascade
size distribution is bimodal and positively correlated disturbances tend to re-
duce cascade size. The latter relationship is stronger in more reliable networks.

keywords: Cascade size, Correlated disturbances, Emergency response, Protection
schemes, Rare events, Network topology

3.1 Introduction

The design and operation of power system emergency response schemes such as
protection or load/generation shedding carries increasing importance as countries
shift their energy provision from fossil to renewable sources. This is because a move
towards more stochastic forms of generation poses new challenges for power system
reliability. Renewable generation is subject to exogenous shocks due to forecast er-
rors, implying increased exposure of electrical networks to power fluctuations. These
fluctuations in turn can activate power system emergency responses, causing compo-
nent disconnections in the power grid which may propagate in a cascading fashion
[41]. Such cascading failures are the primary cause of most large-scale network
outages, and can occur in in both large and small networks.

In the study of more general networks, the probability distribution of cascade
sizes has been found to depend in a systematic way on network topology. From a
theoretical perspective, in [112] it was shown that in highly connected networks the
distribution of cascade sizes is bimodal, while in sparse networks the distribution
obeys a power law. This result has been supported by simulation studies [15].

In this paper we view a power system as the combination of the network and a
set of correlated random power disturbances. These disturbances are relative to the

1School of Mathematical Sciences, Queen Mary University of London, London, UK,
m.p.goodridge@qmul.ac.uk

2School of Mathematical Sciences, Queen Mary University of London, The Alan Turing Insti-
tute, London, UK, j.moriarty@qmul.ac.uk

3School of Mathematical Sciences Queen Mary University of London, The Alan Turing Institute,
London, UK, ap@andreapizzoferrato.com
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planned operating equilibrium and arise, for example, from errors in generation or
demand forecasts. It is potentially important to consider correlation in these dis-
turbances since renewable generation can experience common weather patterns over
significant spatial areas. From an electrical perspective, power system transients are
coupled via the network topology. Our aim in this work is to explore the implica-
tions of this correlation and coupling for the cascading of power system emergency
responses.

In particular, in contrast with quasi-static or quasi-dynamic studies of cascade
sizes [114, 116, 51], we simulate power system dynamics using an appropriate system
of differential equations. To represent opposite extremes of connectivity we consider
both a fully-connected and a ring topology. The authors of [99] used the swing
equation to analyse the propagation of cascade failures in network. However, this
work focused only on the cascades of line disconnections. We extend this framework
by considering the activation of generator and load disconnection schemes following
a change in equilibrium nodal power injections, or power disturbance. To model high
penetration of distributed renewable generation, power disturbances are applied at
the majority of nodes (that is, buses). Transient dynamics are modelled by the third-
order model (see for example [100, 64]), i.e. differential equations for an AC system
taking into account both power and voltage, as advocated by [99] as necessary to
evaluate system dynamics on longer time periods.

The power disturbances, which perturb these dynamics, are sampled from cor-
related Gaussian distributions with zero mean to represent forecast errors. While
empirical studies have noted that wind generation has been measured to induce
frequency deviations with non-Gaussian, heavier tailed distributions on timescales
of approximately 1 second, frequency deviations were found to be approximately
Gaussian on timescales greater than 1s. As we model a static disturbance over the
simulation period, we consider a Gaussian model suitable for this investigation. Fu-
ture work will endeavour to study the effect power disturbances with heavier-tailed
distributions. Emergency response schemes, which monitor the local frequency at
each node, are activated either by this frequency moving outside a certain range or
by the RoCoF (Rate of Change of Frequency) exceeding a given magnitude.

Our results suggest that in more highly connected networks, positively correlated
disturbances tend to reduce cascade size. Further, this relationship is stronger in
more reliable networks. We confirm findings from more general network models that
cascade size distribution in highly connected networks is bimodal. The results also
suggest that in highly resilient systems, not only do emergency response cascades
occur less frequently, but their size distribution is also different when compared to
less resilient systems.

The rest of the paper is structured as follows. In Section 3.2 we provide the tran-
sient model, while Section 3.3 details the emergency response schemes considered.
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Section 3.4 details the statistical model, while Section 3.5 presents a Monte Carlo
study and discussion and Section 3.6 outlines potential future directions.

3.2 Transient Model

We consider an unweighted and undirected graph G (N + 1, V ), having N +1 nodes
(buses) and V edges (lines). Each node 1, . . . , N represents a bus with renewable
generation, conventional generation and load, and is modelled as an equivalent gen-
erator, while node N +1 represents a pure load. The equivalent generators at nodes
1, . . . , N may be electrically disconnected from the network by the activation of the
emergency response schemes, while the load at node N + 1 may be progressively
shed.

The equivalent generator dynamics are given by the third-order model, regulated
by a governor. As in [64], each governor is itself modelled as an equivalent generator.
The corresponding set of differential equations for node i = 1, . . . , N is (where
constant and time-evolving variables are indicated using Latin upper-case and Greek
lower-case letters, respectively):

Miδ̈i +Diδ̇i = αi

(
χi − νi

N+1∑
j=1

Bijνj sin (δi − δj)

)
,

Td,iν̇i = αiEi − νi + Li

N+1∑
j=1

Bijνj cos (δi − δj) ,

ρ̇i = −Aiδ̇i −Hiρi,

(3.1)

where at node i, χi = min{ρi + P 0
i + ηi, P

m
i } is the power injection, ηi accounts

for a power disturbance, and αi is an indicator function encoding the emergency
scheme operation, as specified below. The matrix B encodes the topology of the
graph, while the remaining quantities are specified in Table 3.1 (see [100] for further
details). Node N + 1 is modelled as a synchronous motor load via the differential
equations 

MN+1δ̈N+1 +DN+1δ̇N+1 = −(P 0
N+1 − P sΓ(Λ−))

+ νN+1

N+1∑
j=1

BN+1jνj sin (δN+1 − δj) ,

Td,N+1ν̇N+1 =

EN+1 − νN+1 + LN+1

N+1∑
j=1

BN+1jνj cos (δN+1 − δj) ,

(3.2)

where P 0
N+1 is the nominal value of the pure load and P sΓ(Λ−) is the amount of

load shed, as detailed in Section 3.3. (For convenience we take ρN+1 identically

61



Table 3.1: Variables labels used in (3.1).

Label Meaning Unit of measure
δi ∈ R+ Phase angle [rad]
δ̇i ∈ R Frequency [s−1]
δ̈i ∈ R Rate of Change of Frequency (RoCoF) [s−2]
νi ∈ R Voltage [WA−1]
ρi ∈ R+ Mechanical Power [W]
Ai ∈ R+ Power-frequency response [W]
B ∈ R Susceptance matrix [W−1A2]
Di ∈ R+ Damping Torque [Ws]
Ei ∈ R+ Rotor field [WA−1]
Hi ∈ R+ Damping Power [s−1]
Li ∈ R+ Reactance [WA−2]
Mi ∈ R+ Angular Momentum [Ws2 ]
Pm
i ∈ R Maximum power output [W]

Td,i ∈ R+ Transient Time d-axis [s]

equal to 0.) The above mentioned studies [112, 15] found a relationship between
graph connectivity and the distribution of cascade sizes in general graph models. We
explore the extent to which this translates to power systems contexts by choosing
two topologies which are extremes of connectivity, namely the fully connected graph
and ring graph. (Note that the Monte Carlo simulation study of Section 3.5 was
also run with five symmetrically spaced nodes capable of load shedding, and this
was found to make no qualitative difference to the results. As a result, in this study
all load shedding is located at node N + 1). We note that the choice of network
topologies was not intended to reflect realistic power system networks, but to allow
inferences to be drawn about the relationship between connectivity and cascade
sizes induced by random power disturbances. We examine a more realistic network
topology in Chapter 4 where we apply the power system model to the Kundur Two
Area network.

In practice we sample the observable evolution (3.1)–(3.2) in discrete time, ac-
knowledging that this is subject to the particular choice of time discretisation, which
we assume to be optimal (no loss of sensitivity, see [74] for a detailed discussion).

3.3 Disturbances and emergency responses

In contrast to the swing equation, the third-order model captures voltage dynamics
and angle-voltage interplay and has the advantage that disturbances are not required
to be small. We model disturbances as constant over the timescale of our study,
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which is on the order of seconds. In particular we have

η (t) := UΘ [t] ∈ RN , [W] (3.3)

where U = (Ui)i=1,...,N is the vector of disturbance magnitudes and Θ is the Heaviside
step function.

An equilibrium (δi (0) , νi (0))i=1,...,N+1 is first calculated for equations (3.1)–(3.2)
and taken as the initial conditions at time 0− (that is, just before time 0). From time
0 onwards, the constant power disturbance (3.3) perturbs this equilibrium according
to (3.1)–(3.2), creating transient dynamics. These dynamics are simulated over an
observation time window [0, T ] with T ∈ R+ [s].

We model emergency response from both the generators (generation shedding,
GS) and load (load shedding, LS). The equivalent generator at each node is discon-
nected from the network when either RoCoF is observed to lie outside its normal
operating band, or when frequency is observed to lie above a given limit. Accord-
ing to this scheme, the power injected at node i is specified as follows. To detect
when the frequency δ̇ (t) > F+, where F+ ∈ R+ [s−1], we introduce over-frequency
indicators:

λ+i (t) := Θ[δ̇i(t)− F+], (3.4)

where, i = 1, . . . , N . Similarly, the RoCoF indicators are

ψi(t) := Θ[δ̈i(t)−G+] + Θ[G− − δ̈i(t)], (3.5)

where [G−, G+] is a closed interval with G−, G+ ∈ R+ [s−2] and G− < G+. The fol-
lowing time-integrated counters record the number of times each protection scheme
is activated during the observation window:

Λ+
i (t) := min

{
1,

∫ t

0

δ[1 + (λ+i (s−)− λ+i (s))]ds

}
, (3.6)

Ψi(t) := min

{
1,

∫ t

0

δ[1 + (ψi(s−)− ψi(s))]ds

}
, (3.7)

where δ denotes the Dirac delta function. The indicator function αi is then given
by

αi = (1−Θ[Ψi])(1−Θ[Λ+
i ]). (3.8)

Thus the activation of GS at node i disconnects its equivalent generator electrically
from the network without altering the network topology.

In contrast to the GS scheme, load is shed progressively as frequency falls below a
sequence of thresholds. Given a decreasing set of frequencies F− :=

{
F−
1 , F

−
2 , . . . , F

−
∆

}
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with ∆ ∈ N and F−
1 < F+, we define a matrix λ of under-frequency indicators by

λ−ij(t) := Θ[F−
j − δ̇i(t)], (3.9)

and the corresponding time-integrated counter matrix Λ− as

Λ−
ij(t) := min

{
1,

∫ t

0

δ[1 + (λ−ij(s−)− λ−ij(s))]ds

}
, (3.10)

where the first index runs over nodes i = 1, . . . , N and the second over the under
frequency set j = 1, . . . ,∆. The amount of load shed is then specified as

Γ(Λ−) := P s max
i=1,2,...,N

∆∑
j=1

Λ−
ij, (3.11)

where P s ∈ R+ [MW ]. Thus load is shed in equal steps (activations), driven by the
lowest frequency observed in the network. At any time t, the number of activations
which have occurred by time t is equal to the index j of the lowest threshold Fj in
F− :=

{
F−
1 , F

−
2 , . . . , F

−
∆

}
which has been observed.

3.4 Statistical model

Beyond the initial power disturbance vector U at time 0, we also model the dynamic
effect on transient behaviour of the above emergency responses. In particular we are
interested in the distribution of the total number of responses during the observation
time window, which we call ‘cascade size’. In order to explore the effect of correlation
in the initial disturbances on cascade size we use the following convenient statistical
model.

The interpretation of the model is as follows. As discussed above, each node
1, . . . , N is an equivalent generator representing a bus with renewable generation,
conventional generation and load. Further the system is assumed to be operating
in equilibrium at time 0−, and at time 0 random power disturbances are applied
at each generator node. These disturbances can therefore be understood to take
account of errors in the generation schedule, due for example to imperfect forecasts
of renewable production. The initial power disturbances are therefore taken to have
mean zero. A covariance matrix Σ parametrised by two positive parameters σ, α is
taken:

Σij =

{
σ2, i = j,

ασ2, i ̸= j,
i, j ∈ {1, . . . , N}. (3.12)

In addition to its convenience, this particular choice of the covariance matrix guar-
antees its positive semi-definiteness provided that α ∈ [0, 1]. The random power
disturbance Ui at generator node i is also scaled linearly according to the equilib-
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rium power injection P i
0 at that node. That is, the initial power disturbance U in

(4.11) is taken to be the Hadamard product

U = u ◦ P 0. (3.13)

3.5 Monte Carlo study

The Monte Carlo simulation study in this section aims to explore the influence of
correlation in the initial power disturbances U on the cascade size distribution. We
also aim to distinguish its effect from that of two other factors: the rareness of
emergency scheme activations, and the connectivity of the network.

Correlations between the initial power disturbances U = (U1, . . . , UN) arise, for
example, from common weather patterns causing correlated forecast errors. This
is accounted for in our framework by varying the correlation parameter α of the
covariance matrix Σ.

Rareness has recently been addressed by applying the large deviations framework
to power grids [79]. Large deviations theory concerns events with exponentially small
probabilities, and provides insight into how such events typically occur. We account
for the rareness of emergency responses by varying the standard deviation parameter
σ of the covariance matrix Σ, as smaller values of σ tend to make emergency scheme
activations less frequent.

Connectivity is also an important driver for cascade sizes in more general models
of network dynamics [112, 15]. We account for its influence by simulating cascades
on two different network topologies. For clarity we choose two topologies at the
extremes of connectivity, namely the complete graph and ring graph.

For each considered network and pair of values α, σ, the disturbance vector U is
independently sampled Nmc = 105 times. For each sample U j the dynamics (4.3)–
(4.4), which take account of the emergency responses described in Section 3.3, are
run over the observation time window and the number of emergency responses as
encoded by (3.6), (3.7), and (3.10) is recorded. For instance in the case of over-
frequency response, this results in a matrix DOF ∈ NNmc×(N+1) whose (i, k)th entry
for k = 1, . . . , N is equal to the number of times generator k is shed under the initial
disturbance U i (and whose (i, N + 1)th entries are zero since there is no generator
at node N + 1). Note that the entries of DOF can only take the value 0 or 1
since, under the scheme of Section 3.3, generator disconnection is permanent during
the time observation window. Similarly, matrices DUF and DR can be respectively
defined for UF responses and RoCoF responses. The data matrix for all sampled
responses is thus

D := DUF +DOF +DR ∈ NNmc×(N+1), (3.14)
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while the vector of cascade sizes is

d := {d1, d2, . . . , dNmc} with di :=
N+1∑
k=1

Dik. (3.15)

Table 3.2 records the parameter values used.

Table 3.2: Parameter values used. Semicolons separate differing values for generators
(left) and the load (right).

Variable Value
Ai 1
B diag(−237) + offdiag(15.8)
Di 1; 2
∆ 4
Ei 1
F− −0.1, −0.2, −0.4, −0.8
F+ 0.1

G+ = −G− 2
Hi 4
Li 0.17
Mi 29.0 · 10−4; 2.95 · 10−1

P 0
i 0.5; −750

Pm
i 100 ;
P s 50
Td,i 1
Nmc 105

N 15
σ2 {0.01, 0.03, 0.05}

Figure 3.1 presents the effect of the correlation parameter α on the empirical
distribution of cascade sizes, for both the fully connected and ring networks, when
the disturbance standard deviation is σ2 = 0.03 and σ2 = 0.01 respectively. These
standard deviations were chosen so that the proportion of samples with at least one
emergency response was on the order of 10% in both cases. For better legibility,
all plots exclude samples with 0 emergency responses. Figure 3.2 indicates the split
between activations of the three different protection schemes. In both cases the
results shown are for a single value of α, but these splits are representative of the
other values for α (data not shown). Figure 3.3 plots the mean cascade size as α
varies for several different values of the disturbance standard deviation σ.

Figure 3.1 confirms the effect of network topology. Firstly, the fully connected
network required disturbances with significantly higher standard deviation (σ2 =

0.03) than those of the ring network (σ2 = 0.01) in order to generate the same
proportion of samples with emergency responses. In this sense, the fully connected
network exhibits greater resilience. Secondly, consistent with the more general mod-
els of cascades on graphs explored in [15, 112], the fully connected network gives
rise to a bimodal distribution in which the cascade size is almost always small or
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Figure 3.1: Histogram of empirical cascade sizes for the fully-connected network
with σ2 = 0.03 (left) and ring network with σ2 = 0.01 (right), and mean cascade size
(dashed vertical lines), as the disturbance correlation α varies. For better legibility,
cascades of size 0 are excluded; the remaining samples constitute on the order of 10%
of the samples in each case. Bi-modality, and the decreasing relationship between
correlation and mean cascade size, are clearly seen in the top panel.

large. This bi-modality is clarified by Figure 3.2, which plots the split between
the under-frequency load shedding, over-frequency generation shedding and RoCoF
emergency schemes. RoCoF responses are shown to play a significant role only in
the fully connected network, and they typically occur at all 15 generation nodes.
This is consistent with the high connectivity of the latter network, since a rapid
transient at any node influences every node. (Note that the two modes at 3 and
15 activations in the top panel of Figure 3.2 correspond to the single mode at 18
activations in the top panel of Figure 3.1.)

For the fully connected network, from Figure 3.1 the mode at 1 activation is
driven by increasing values in the correlation parameter α. Further, Figure 3.2
shows that this mode consists of either under- or over- frequency emergency re-
sponses. As the correlation parameter α increases, the initial power disturbances
U = {U1, . . . , UN} are then more homogeneous. In the fully connected network, a
single generation or load shedding respectively is therefore more capable of correct-
ing the initial disturbance U . Note also from Figure 3.1 that for the ring network,
the mode at 1 activation is again driven by increasing values in the correlation pa-
rameter α, although the cascade size distribution varies much less as a function of
the disturbance correlation. This observation is consistent with the ring network’s
low connectivity, meaning that disturbances have only local influence, making their
global correlation less important.

As put on a rigorous basis by large deviations theory [79], the rareness of an event
influences the way in which it typically occurs. It follows that as the disturbance
standard deviation parameter σ decreases and emergency responses become more
rare, so the statistical pattern of the disturbances U causing them may also change.
This is borne out in the top panel of Figure 3.3, where the effect of the correlation
parameter α is in general observed more clearly for smaller values of σ. The bottom
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panel of Figure 3.3 confirms that for the ring network there is little relationship
between α and the mean cascade size.

Figure 3.2: Split between activations of under frequency load shedding (UF), over
frequency generation shedding (OF) and RoCoF emergency schemes. Left: fully
connected network, α = 0.174, σ2 = 0.03. Right: ring network, α = 0.16149,
σ2 = 0.01.

Figure 3.3: Plot of mean cascade size versus disturbance correlation parameter α
for the fully-connected network (Left) and ring network (Right), for different values
of the disturbance standard deviation σ. The corresponding curves for intermediate
values of σ are intermediate between those plotted.

3.6 Conclusion and Outlook

In this paper we have simulated cascades in power system protection and load/generation
shedding when the network is perturbed by multiple exogenous shocks. Consider-
ing these shocks as errors in the generation schedule, due for example to imperfect
forecasts of renewable production, we have modelled them using Gaussian random
vector U with zero mean and a covariance matrix Σ parametrised by two parameters
σ, α. We have distinguished the effect of correlation in the initial power disturbances
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U from that of two other factors which are known to have material effects, namely
the rareness of emergency scheme activations and the connectivity of the network.

The results indicate that these correlations have a material effect if the network
is highly connected. In this case, increases in the correlation parameter α drive
an increase in the number of small cascades and, in particular, single emergency
responses. This may be explained by the fact that in highly connected networks,
a single generation or load shedding is capable of correcting multiple similar dis-
turbances U = (U1, . . . , UN). Interestingly this effect is observed clearly only when
emergency responses are rare, which is the operational paradigm for many power
systems globally. This observation is in line with large deviations theory [79]: under
our Gaussian model, theory predicts that a large overall disturbance typically arises
as an aggregate of small but consistent disturbances. The results also confirm find-
ings from more general models of cascades on graphs explored in [15, 112] concerning
the effect of network topology on cascade size.

In order to draw qualitative conclusions on the effects of correlation, rareness
and topology, the networks we have considered are highly stylized and there is
clearly scope to explore more realistic systems. Our modelling framework may also
prove useful for the study of innovative emergency schemes, such as the use of
grid-connected battery storage systems. Further kinds of disturbance may also be
considered, for example line faults which result in dynamic changes to network
topology.

Considering the bi-modality observed in Figure 3.1 (top), care may be needed
in the design of simulation and sampling schemes for cascade size distributions. In
particular, when large cascades are rare, bias could arise related to under-sampling of
large cascades. More sophisticated sampling schemes than the Monte Carlo approach
of the present paper may therefore be required, in particular methods designed for
rare events (see for example [12, 74]). We employ such a specialised rare event
sampler- the skipping sampler, in Chapter 4.
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Chapter 4

A rare-event study of frequency
regulation and contingency services
from grid-scale batteries

This chapter presents a manuscript published on 7 June 2021 with the same name in
the 2021 issue of the Philosophical Transactions of the Royal Society A. All authors
have been credited. Some variable symbols have been change from the published
version to maintain consistency with other chapters in the thesis.
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Abstract

We perform a rare-event study on a simulated power system in which grid-scale
batteries provide both regulation and emergency frequency control ancillary
services. Using a model of random power disturbances at each bus, we employ
the skipping sampler, a Markov Chain Monte Carlo algorithm for rare-event
sampling, to build conditional distributions of the power disturbances leading
to two kinds of instability: frequency excursions outside the normal operating
band, and load shedding. Potential saturation in the benefits, and competition
between the two services, are explored as the battery maximum power output
increases.

4.1 Introduction

A growing number of countries are transitioning their energy generation from fossil
to renewable energy sources (RES), due to an increased desire to mitigate the effects
of climate change [36]. While on one side this shift positively impacts the environ-
ment [35] (for instance, by reducing carbon emissions), it also poses new challenges
in power system stability and security. Renewable resources are vulnerable to exoge-
nous shocks, such as from weather conditions [87], resulting in increased exposure
of the electricity network to power fluctuations. When combined with endogenous
power disturbances due to various other system contingencies, these disturbances
could in the worst case activate emergency responses in the power grid [48, 27]
which may propagate in a cascading fashion [41, 77, 5, 92, 63, 113].

There is increasing interest in embedding battery energy storage systems (BESS)
in power grids [83] to improve grid stability and resilience to disturbances [115, 73,
8, 91, 26, 70] by virtue of their rapid response [52]. In this study we employ the
skipping sampler, a Markov Chain Monte Carlo (MCMC) rare-event sampler, to
examine the benefits of BESS as both the battery maximum power output (MPO)
and the distribution of power disturbances vary. Taking a probabilistic model for
the potential power disturbances at all buses (interpreted as both exogenous and
endogenous), we build conditional distributions of the combinations of disturbances
which lead to rare instabilities of two kinds. Firstly, to examine the frequency regu-
lation benefits of BESS we study frequency excursions beyond the normal operating
band. Then, to explore the emergency response provided by BESS, we condition
on a load shedding event. Potential saturation in the benefits of BESS is examined
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2Queen Mary University of London, The Alan Turing Institute, London
3University of Bath
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as MPO increases, and also potential interactions between the frequency regulation
and contingency services which they provide.

In this line of research we aim to combine time-domain simulation with random
sampling, in order to study rare events occurring in power systems. The main
challenges are that standard Monte Carlo simulation methods are unreliable in rare
event settings [88], a problem compounded by the heavy computational expense of
time-domain, simulation-based assessment of power system robustness [62]. In the
face of these challenges, one approach is to apply carefully reformulated methods
for random sampling (see for example [84]), while another is to explore alternatives
to random sampling, such as those studied in [79, 18, 62]. However, these methods
typically involve simplifying assumptions of varying strength, which may make these
studies challenging to transfer to other related contexts.

This paper continues recent work based on Markov Chain Monte Carlo (MCMC)
random sampling which was begun in [74, 38]. While the latter papers also made
strong simplifications, our goal in the present work is to demonstrate the incorpo-
ration of a power system model which is both detailed and adaptable. That is,
the model and case study below incorporate network topology and nodal frequen-
cies, third-order dynamics, automatic voltage regulation, primary and secondary
frequency control, battery storage, frequency-based load and generation shedding,
and rate of change of frequency (RoCoF) generator protection. We also emphasise
that, as in the latter papers, any probability density may be taken as the model of
power disturbances.

In [74] a simpler MCMC rare-event sampler was used to build conditional distri-
butions of random disturbances leading to excessive RoCoF at any bus. One limita-
tion in that work was the use of dynamics which neglect system voltage transients
and are valid only for small disturbances. In order to study cascades of emergency
responses caused by larger disturbances, [38] employed third-order dynamics. The
latter work established the effect of network connectivity on the conditional distri-
bution of cascade sizes (that is, the number of emergency responses arising from the
initial disturbances), namely that these distributions can be highly bimodal in more
highly connected networks. However, these findings were obtained through the use
of toy power system models at the extremes of connectivity, namely the ring and
fully connected networks. In contrast, we perform a case study based on Kundur’s
two-area system [57], including the additional features of BESS, line disconnection
and automatic voltage regulation. This enables study of the benefits of BESS for
system robustness and resilience under uncertainty, taking into account potential
interactions with emergency protection schemes.

In the spirit of the present theme issue of Philosophical Transactions A, we aim
as far as possible for a self-contained presentation suitable for an interdisciplinary
audience, with further technical detail provided in Chapter 2. The results may be
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reproduced using the code available at https://github.com/ahw493/ .

4.2 Simulation model

Our simulation model is cyber-physical, in the sense that we model physical ob-
servables (the physical layer) in continuous time while simultaneously modelling
emergency protection schemes (the cyber layer) in discrete time. Between interven-
tions from the cyber layer, the physical layer evolves via the differential equations
(4.3) and (4.4). The cyber layer, which consists of the emergency protection schemes
described in Chapter 2 Section 2.5, inspects the physical layer at regular intervals.
On this discrete-time lattice, if any activation criterion is met then the corresponding
protection system activates. Each activation creates a discontinuity in the physical
layer, resulting either from an instantaneous reduction in generation or load, or an
instantaneous change to the graph topology through the loss of an edge (line).

Table 3.1 collects notation used in the paper. Constant and time-evolving vari-
ables are indicated using Latin and Greek letters, respectively. Lower-case Greek
letters correspond to physical observables (rotor angles, frequencies, powers and volt-
ages), while upper-case Greek letters are used to denote the state of the emergency
response schemes. Vectors are underlined e.g v.

4.2.1 Network model

Consider an undirected graph G (N + L,W ), where N + L is the set of nodes and
W a set of weighted edges. The set of nodes 1, . . . , N represents generator buses,
while the remaining N + 1, . . . , N + L nodes represent load buses. Edges represent
power lines, and the weight Wij of line ij (that is, the line between buses i and j)
is the triple of characteristics Wij = (pij, eij, lij), where pij is the reactance per unit,
eij the resistance per unit and lij the length of line ij. The line indicator variable
Ωij switches from 1 to 0 upon disconnection of line ij by the protection scheme.
The system’s susceptance matrix can then be written as a Laplacian-like matrix
(see [20]), expressed in turn as a function B(Ω) of the line indicator variables:

Bij(Ω) :=


(

N+L∑
k=1

wik(Ωik)

)
− wij(Ωij) if i = j,

−wij(Ωij) if i ̸= j,

(4.1)

where

wij(Ωij) :=


0 if i = j

− pij
e2ij + p2ij

Ωij

lij
if i ̸= j.

(4.2)
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The network is assumed to be lossless, so that the susceptance matrix coincides with
the imaginary part of the admittance matrix [57, 101].

74



Table 4.1: Summary of notation. Note: per unit quantities are denoted p.u.

Sym. Meaning Units
Equivalent generator and line parameters

Ai Governor droop response MW/rad
Bij Susceptance matrix p.u
D Load damping factor %
δi Voltage angle rad
δ̇i Frequency p.u
δ̈i Rate of change of frequency (RoCoF) p.u
Ei Rotor field voltage p.u
ϵei Automatic voltage regulation p.u
ηi Random power injection or drain p.u
Li Equivalent machine reactance (see Appendix 8.1) ohms

M(Ξ) System angular momentum Ws2
Mi Generator angular momentum Ws2
νi, νj Nodal voltage p.u
Pm
i Maximum power output p.u
PG
i Initial generator power ( at t= 0) p.u
PL
i Initial loads (at t= 0) p.u
ϕij Power flow from bus i to j p.u
ρi Governor mechanical power p.u
Td,i Transient time constant d-axis s
W Governor deadband frequency range Hz

χL
i , χG

i Active bus loads/generation p.u
Battery parameters

βi Battery power injection/drain p.u
b+i Initial battery state parameter %
B0

i Initial battery power MW
Bm Maximum battery power MW
Br Maximum battery power for regulation FCAS MW
Bg Battery response to global frequency MW
Bl Battery response to local frequency MW
F d Battery deadband frequency deviation Hz
F n Emergency FCAS frequency deviation Hz
Fm Frequency deviation associated with maximum battery power Hz
E Frequency interval for local battery response Hz
R Frequency interval for AGC commanded battery response Hz
D Battery’s deadband frequency interval Hz
T b AGC signal interval s

Protection system parameters
C Load shedding increments %
Ωij Indicator for line protection system -
Ξi Indicator for generation shedding emergency response -
Γi Indicator for load shedding emergency response -
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Figure 4.1: (Left) Generator bus including synchronous machine, local load, and
renewable unit (Right) Load bus including load (modelled as a motor) and BESS.
ϕij is the power flow through the line from bus i to bus j, see Appendix 8.1 for
parameter choices, Table 3.1 and main text for other notation.

4.2.2 System dynamics

Each generation bus i = 1, . . . , N includes a synchronous machine, load, and renew-
able unit, as shown in Figure 4.1 (left) and equations (4.3):



M(Ξ)δ̈i +D(Γ)δ̇i = Ξiχ
G
i − χL

i − νi

N+L∑
j=1

Bij(Ωij)νj sin(δi − δj) + ηi

Td,iν̇i = Ξi(Ei − ϵei )− νi + Li

N+L∑
j=1

Bij(Ωij)νj cos(δi − δj)

ρ̇i = −Aiδ̇i(1− 1W [δ̇i])

(4.3a)

(4.3b)

(4.3c)

In equation (4.3a), χG
i := min{ρi + PG

i , P
m
i } is generator i′s mechanical power, PG

i

is the equilibrium mechanical power output of the generator, Pm
i is the generator’s

nominal maximum power output and ρi is the power contribution of a governor,
whose dynamics are described in (4.3c) where W is the governor deadband (see
Appendix 8.1); voltage dynamics are given by (4.3b); and the terms M(Ξ), D(Γ)

and ϵei are detailed below.
Each load bus i = N + 1, . . . , N + L includes a load and a battery, as shown in

Figure 4.1 (right), whose corresponding equations are
M(Ξ)δ̈i +D(Γ)δ̇i = −χL

i + νi

N+L∑
j=1

Bij(Ωij)νj sin(δi − δj) + βi

Td,iν̇i = Ei − νi + Li

N+L∑
j=1

Bij(Ωij)νj cos(δi − δj).

(4.4a)

(4.4b)

The initial conditions of the above system of equations, denoted δi (0), νi (0), ρi(0)
and PG

i are set equal to equilibrium states which can be determined numerically. 4

4see, for example, [101] for a study of the existence of these states and Appendix 8.1 for specific
values.
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Recalling that the models of generation and load shedding are presented in Chap-
ter 2, the variables Ξ := {Ξ1,Ξ2, . . . ,ΞN} are used to record activations of generation
shedding emergency responses. That is, Ξi is initially 1 and switches to 0 when gener-
ation shedding occurs at generator node i. The global variable M(Ξ) :=

∑N+L
i=1 ΞiMi

then represents the total angular momentum of the system, while accounting dy-
namically for generation shedding through its dependence on Ξ. For the load buses
i = N+1, . . . , N+L the values χL

i := (1−CΓi)P
L
i are also dynamic, due to the action

of the load shedding emergency scheme. Here 0 < C < 1 is the additional amount
of load shed per activation of this emergency scheme and Γi counts the number of
load shedding events at node i. In the same way, the global damping coefficient
D(Γ) accounts dynamically for load shedding events. The variable ηi representing
the power disturbance at bus i is detailed in Section 4.3. The term ϵei accounts for
the action of automatic voltage regulation (see Section 2.6), while βi is the battery
power injection/drain defined in (4.5). Note that the sign in front of the voltage νi
on the right-hand side of (4.4a) is the opposite of that in (4.3a), as explained by the
opposite direction of the mechanical and electrical energy conversions.

4.2.3 Battery model

Each BESS has two reference response strategies, one for response to local frequency
and one for response to an Automatic Generation Control (AGC) signal based on
the average global frequency. The response to local frequency takes precedence.
Each of these reference strategies has a deadband region with no response, a region
of linear response, and a region of fixed response. Thus the battery response is given
by:

βi := 1E [δ̇i](B
l(δ̇i)−B0

i ) + (1− 1E [δ̇i])(B
g(δ̇)−B0

i ). (4.5)

Here, the indicator function 1E [δ̇i] determines whether the local frequency at bus
i lies in the range E ≡ E1 ∪ E2, where E1 ≡ (−∞,−Fm] ∪ [Fm,∞) and E2 ≡
(−Fm,−F n]∪ [F n, Fm) (see Figure 4.2). The terms (Bl(δ̇i)−B0

i ) and (Bg(δ̇)−B0
i ),

where the functions Bl(δi)) and Bg(δ̇)) are defined below, take account of the fact
that the BESS will in general be responding at a pre-contingency level B0

i just prior
to time 0. These terms therefore model the change in power output when the BESS
delivers its reference response. Since we do not explicitly model the state of the
system prior to time 0, the values of B0

i are randomly sampled initial conditions,
see Section 4.3 for more details.

BESS response to local frequency δi

According to (4.5), if the local frequency δi lies in the range E then the BESS response
is determined by this local frequency deviation. In this case the power-frequency
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relation of the response is given by the blue graph in Figure 4.2: 5

Bl(δ̇i) :=


Bmsgn[δ̇i](

M lδ̇i +Qlsgn[δ̇i]
)

0

δ̇i ∈ E1

δ̇i ∈ E2

δ̇i ∈ R ∪D
, (4.6)

where R ≡ (−F n,−F d] ∪ [F d, F n), D ≡ (−F d, F d), Bm is the battery maximum
power output (MPO) and

M l :=

(
Bm −B0

F n − Fm

)
< 0 andQl :=

∣∣∣∣BmF n −B0Fm

F n − Fm

∣∣∣∣ (4.7)

are respectively the slope and intercept of the diagonal blue lines in Figure 4.2.

BESS response to system average frequency δ̇

Again from (4.5), if the local frequency δi lies outside the range E then the BESS
response is determined by the system average frequency deviation through the AGC
signal. In this case the power-frequency relation of this response is given by the red
graph in Figure 4.2:

Bg(δ̇) :=


Brsgn[δ̇]

(M g δ̇ +Qgsgn[δ̇])

0

δ̇ ∈ E
δ̇ ∈ R
δ̇ ∈ D

, (4.8)

where

M g :=

(
Br −B0

F d − F n

)
< 0, andQg :=

∣∣∣∣BrF d −B0F n

F d − F n

∣∣∣∣ (4.9)

are respectively the slope and intercept of the diagonal red lines in Figure 4.2 and
the system average frequency deviation is calculated as

δ̇ = δ̇(t) :=
1

N

N∑
i=1

δ̇i(T
b⌊t/T b⌋). (4.10)

The form of (4.10) takes into account time delay in the calculation, broadcast
and reception of the system-wide AGC signal. The discretised time index T b⌊t/T b⌋
corresponds to reception of the AGC signal at the BESS every T b seconds.

5The superscript l stands for “local”, superscript m stands for “maximum”, superscript g stands
for “global”, superscript r stands for “regulation”.
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Figure 4.2: Reference power-frequency response strategies for the BESS response
to local frequency (blue line) and the AGC signal (red line). As in (4.5), response
to local frequency takes precedence. The common deadband D is indicated by the
dashed central line.

4.3 Statistical Model

4.3.1 Unconditional distribution

At each bus i we sample a random power injection or drain ηi. These random
disturbances are modelled agnostically and may, for example, represent exogenous
shocks and/or endogenous contingencies. They are applied as impulses at time 0
and, as in [38], are modelled as constant power disturbances over the timescale
of our simulations. Thus for example, if the model is used to explore the effect of
renewable generation forecast errors then the joint distribution of these disturbances
should reflect the historical joint distribution of such errors, and the timescale of
the simulation should be comparable to the characteristic timescale of these errors.
In the case study of Section 4.4, to enable a straightforward parametric exploration
of the effect of correlations between disturbances, the vector η of disturbances is
modelled as

η (t) := UΘ [t] ∈ RN+L (4.11)

where Θ is the Heaviside step function and U is the vector of disturbance magnitudes.
More generally, if it is not judged reasonable to model disturbances as static over
the timescale of the simulation, then dynamic disturbances can be accounted for by
augmenting the simulation model with appropriate dynamics for the disturbances
ηi in equation (4.3a).

Each Ui is normalised by setting it proportional to the stationary power injection
at node i. Thus U = u ◦ PL, where PL is the vector of equilibrium nodal power
loads, ◦ is the component-wise product and u ∈ RN+L is taken to be a Gaussian
vector

u ∼ N (0,Σ) where Σij := σ2 ·
{

1 i = j

α i ̸= j
i, j ∈ {1, . . . , N + L}, (4.12)
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with 0 ≤ α < 1 to ensure positive semidefiniteness.
The pre-contingency response of the battery just prior to time 0 is sampled from

a uniform distribution
B0

i ∼ U
[
−b

+Bm

2
,
b+Bm

2

]
(4.13)

(see Appendix 8.1 for parameter specifications).
It is assumed that time 0 in our simulations can occur at any time in the interval

between AGC signals. To reflect this, the time of the first AGC signal in the
simulation is sampled uniformly:

T b
0 ∼ U [0, cT b], (4.14)

and subsequent AGC signals occur every T b seconds.

4.3.2 Rare event sampler

Rare event sampling is performed using the skipping sampler, a Markov Chain
Monte Carlo (MCMC) algorithm developed for this purpose. The sampler belongs
to the class of Metropolis-Hastings (MH) algorithms and, as proved in [75] and
demonstrated in the case study of Section 4.4, improves performance relative to the
random walk Metropolis algorithm. Starting from any state (in the present context,
a vector u0 ∈ RN+L of power disturbances), a proposed new state ũ ∈ RN+L is
sampled from a so-called proposal density. The proposal ũ is either accepted or re-
jected according to a specified acceptance probability. If it is accepted, the proposal
is added to the output sample and becomes the new state u1. This procedure is
repeated a desired number of times and the output sample {u1, u2, . . .} is returned.
The skipping sampler is dedicated to sampling from any rare event Υ of interest,
since its proposal density ‘skips’ over the unwanted region Υc until the rare event
Υ is sampled (or until the skipping process is halted for reasons of computational
efficiency, if this occurs first).

More precisely, in rare event sampling we are given an unconditional density µ
on RN+L and a rare event Υ ⊂ RN+L of interest and the task is to sample from this
distribution conditional on Υ. The density of this conditional distribution at the
point u ∈ RN+L is

π (u) :=
µ (u)1Υ (u)

µ (Υ)
, (4.15)

where µ (Υ) is the probability of the event Υ.
Pseudocode for the skipping sampler is given in Algorithm 5. Given the current

state u, the proposal ũ is a random walk proposal. If ũ /∈ Υ, we calculate the
direction Φ = (ũ− u) / ∥ũ− u∥ between these two points, and move (‘skip’) a further
independent random distance R1 in this direction, where R1 has the conditional
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distribution of ∥ũ− u∥ when conditioned on the observed value of Φ. If the modified
proposal Z = u + R1Φ lies in Υ then it is either accepted or rejected according to
the acceptance probability α(u, Z), otherwise the process skips again in the same
direction Φ, by an independent random distance R2 having the same distribution as
R1, and so on, until either Υ is entered or the budget for skipping is exhausted.

We take the unconditional distribution µ to be the Gaussian distribution in (4.12)
above, and let the set Υ be a particular system instability. While the underlying
sampler is the same as that employed in [38], in the case study of Section 4.4 below
the system model and simulator aim to be more realistic and we are interested in
instabilities relating to two different services provided by BESS (that is, regulation
and emergency responses) and their interaction.

Algorithm 5: Skipping sampler (n-th step). Here q is a symmetric random
walk proposal density and qr|Φ (r|Φ) is the conditional density of its polar
radial coordinate r given the polar angle Φ, see [75] for full details.
Input : The n-th sample un
Set u := un;
Generate an initial proposal ũ distributed according to the density
q(y − u)dy;

Calculate the direction Φ = (ũ− u) / ∥ũ− u∥;
Generate a halting index K ∼ Kφ;
Set k = 1 and Z1 := ũ;
while Zk /∈ Υ and k < K do

Generate a distance increment R distributed according to qr|Φ (r|Φ);
Set Zk+1 = Zk + ΦR;
Increase w by one;

end
Set Z := Zk;
Evaluate the acceptance probability:

α(u, Z) =

{
min

(
1, π(Z)

π(u)

)
if π(u) ̸= 0,

1, otherwise,
(4.16)

Generate a uniform random variable V on (0, 1);
if V ≤ α(u, Z) then

un+1 = Z;
else

un+1 = u;
end
return un+1.
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4.4 Case Study

4.4.1 Kundur Two-Area System

Our case study is based on the Kundur two-area system (KTAS) [57]. In particular
we take a Kron reduced version (see for example [24, 23]) consisting of N = 4

generation buses and L = 2 load buses as in Figure 4.3. For simplicity the load
buses are equipped with equally specified batteries. In equilibrium, power flows
from Area 1 to Area 2 through the line connecting nodes 5 and 6. This is modelled
as a weak tie line (see for example [90]) with a disconnection (‘line tripping’) scheme.
The system parameters (whose values can be found in Appendix 8.1) are such that
the system is N − 1 secure, in the sense that the loss of a generator (in the absence
of any other disturbance) does not trigger an emergency response.
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Figure 4.3: (Top) Single line diagram of the Kundur two-area 4 node network,
reproduced from [57], before Kron reduction. (Bottom) Schematic drawing of the
same system after Kron reduction. Generator buses (green circles) correspond to
nodes i = 1, . . . , 4 and load buses (brown circles) correspond to nodes i = 5, 6.
Governors (blue annuli) are attached to generator buses while BESS (yellow annuli)
are located at load buses. Line lengths are indicated.

4.4.2 Metrics for instability

In order to explore the frequency regulation benefits of BESS, the first metric we
apply is the frequency excursion area (FEA) which may be defined per bus as

Fi (t) :=

∫ t

0

{
Θ[δ̇i(s)−F+](δ̇i(s)−F+)ds+Θ[F− − δ̇i(s)](F− − δ̇i(s))

}
ds, (4.17)

where F+ and F− are constant thresholds. Thus the FEA is the area lying between
the graph of frequency at bus i and the frequency band [F+,F−].
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To measure the emergency response benefits of BESS, the metric of interest is
the amount of load shed (equivalently, the numbers Γi of load shed events at the
load buses, as defined in Section 2.5.2 of Chapter 2). The system averages of these
quantities are then

F (t) :=
1

N + L

N+L∑
i=1

Fi(t) and G (t) :=
1

L

N+L∑
i=N+1

Γi(t) (4.18)

In equilibrium we have F (t) = 0 and G (t) = 0. Recalling Section 34.3.2, the rare
events of interest are the sets ΥF and ΥG , corresponding to frequency excursions
and load shedding respectively, where:

ΥF := {u ∈ RN+L : F (T ) > 0} and ΥG := {u ∈ RN+L : G (T ) > 0}. (4.19)

Here T > 0 is the length of the observation time window considered. In direct
analogy with the well-known conditional value at risk (CVaR) metric, we may then
define the conditional average load shed as

⟨G (T )⟩ :=
L∆∑
i=1

G (T ) · P[G (T ) = i|ΥG ], (4.20)

where ∆ is the maximum possible number of load shed events per node (Section 2.5.2
of Chapter 2). Thus ⟨G (T )⟩ measures the severity of load shedding, given that it
occurs. We may similarly define the conditional average FEA ⟨F (T )⟩, measuring the
severity of frequency excursions when they occur. The conditional samples output
by the skipping sampler of Section 4.3.2 may be used to calculate the simulation
values of these conditional metrics.

4.4.3 Skipping sampler implementation

In Algorithm 5, the halting index is taken to be constant and the proposal q to be
Gaussian, so that the conditional distribution qr|φ of the polar radial coordinate r
of the initial proposal is the generalised Gamma distribution

qr|φ (r|φ) = (φTΣ−1φ)
N+L

2

2
N+L

2
−1Γ(N+L

2
)
e−(φTΣ−1φ) r

2

2 rN+L−1. (4.21)

4.5 Results

In this section we explore how the frequency regulation and emergency response
benefits of BESS vary with both the BESS Maximum Power Output (MPO) Bm

and the correlation parameter α for disturbances. Based on BESS characteristics
anticipated in the near future [3] we take Bm from 0 (no BESS) to 1000MW (the
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maximum BESS MPO considered). Simulations were conducted using MATLAB®,
each taking between 2 and 5 seconds to execute for a given vector of initial conditions
using a desktop machine. To compare the computational complexity of the skipping
sampler to standard Metropolis-Hastings and Monte Carlo sampling, in the study of
Section 4.5.1 with 1GW battery, independent 15 minute runs generated 112, 63, and
9 samples from the skipping sampler, MH, and Monte Carlo samplers respectively. In
the study of Section 4.5.2 with 1GW battery, independent 15 minute runs generated
95, 53 and 3 samples from the skipping sampler, MH, and Monte Carlo samplers
respectively.

4.5.1 Frequency regulation benefits of BESS

Figure 4.4 (Left) illustrates the relationship between battery MPO and ⟨F (T )⟩, the
conditional average frequency excursion area, for different values of α. The results
reveal a clear decreasing trend in ⟨F (T )⟩, approximately in the interval [0, 400] MW
for MPO, while the frequency regulation benefit tends to saturate beyond this level.

Figure 4.4 (Centre) plots the conditional average magnitude of disturbances in
the rare set ΥF , showing an increasing trend. Recalling the ‘bell-shaped curve’ of
the Gaussian distribution, this indicates that the event ΥF becomes increasingly
rare as battery MPO increases. Thus higher MPOs correspond to a reduction in
both the likelihood of frequency excursions outside the normal operating band and,
when they occur, the frequency excursions are less severe on average. While this
reduction in severity saturates as MPO increases to 1GW, the reduction in frequency
appears to be maintained up to this level.

These measures of severity and likelihood may be combined to produce a nor-
malised version of conditional Average FEA, calculated by dividing ⟨F (T )⟩ by the
average magnitude of disturbances in the set ΥF . This quantity is illustrated in
Figure 4.4 (Right). Although this shows the same trend as Figure 4.4 (Left) in the
present case of FEA, it is of greater interest in the next section.

4.5.2 Emergency response benefits of BESS

Figure 4.5 replicates the plots introduced in Figure 4.4, this time for the condi-
tional average load shed metric. Recalling the above discussion of Figure 4.4, the
relationships are more complex when we consider load shedding, a rarer instabil-
ity. In the left panel, the conditional average load shed is initially approximately
constant as MPO increases, after which a significant decreasing relationship is seen.
From the centre panel, the conditional average disturbance size initially increases,
after which a significant decrease is observed. Together this implies that as MPO
increases from 0 to 1GW, the initial benefit of BESS is in reducing the likelihood of
load shedding while its severity remains approximately constant. After this initial
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Figure 4.4: Conditioned on the rare event ΥF (occurrence of a frequency excursion
outside normal operating band), the above plots illustrate (Left): Plot of the con-
ditional average FEA; (Centre): Plot of conditional average disturbance magnitude
against battery MPO; (Right): Plot of normalised FEA versus battery MPO.

trend, significant reductions in severity are balanced against significant increases in
the likelihood of load shedding (as evidenced by the decrease in conditional average
disturbance size). When these two aspects are weighed against each other in the
right panel through normalisation, a consistent improvement in system resilience
under this metric is observed with increasing MPO, with the exception of the cases
of highest correlation between disturbances (α = 0.6, 0.8).

Figure 4.6 investigates further the phenomena observed in Figure 4.5. As shown
in the left panel, the increase in normalised load shedding seen for α = 0.6, 0.8 co-
incides with an increase in disconnection of the weak tie line between nodes 5 and
6. Further investigation (data not shown) reveals that in this parameter range, load
shedding was associated with the occurrence of large negative disturbances in Area
2 of the KTAS. A plausible explanation is that with this combination of parameters
and disturbances, the BESS in Area 1 contributes to excessive power transfer to Area
2, resulting in disconnection of the weak tie line. The additional transient dynamics
resulting from the consequent system separation exacerbate the on-going cascade
of both load shedding and generation shedding (right panel), reducing system re-
silience. Additionally, the centre panel of Figure 4.5 reveals a different but similarly
complex relationship between MPO and the probability of generation shedding due
to RoCoF.

4.5.3 Interaction between frequency regulation and contin-

gency services

Recall from Section 4.3 that to account for the frequency regulation service provided
by BESS, the power injection or withdrawal B0

i from each battery just before time 0
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Figure 4.5: Conditioned on the rare event ΥG (occurrence of at least one load shed
event), the above plots illustrate (Left): Plot of the conditional average load shed;
(Centre): Plot of conditional average disturbance magnitude against battery MPO;
(Right): Plot of normalised load shed versus battery MPO.

Figure 4.6: Conditioned on the rare event ΥG (occurrence of at least one load
shed event), the above plots illustrate (Left): Conditional probability of line trip;
(Centre): Conditional probability of generation shedding due to rate of change of
frequency; (Right) Conditional probability of over frequency generation shedding.
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is sampled from a uniform distribution. Also, from equation (4.5), this initial state
determines the maximum power available to respond to the disturbances at time
0. To confirm that the model captures interaction of the frequency regulation and
emergency responses, the top row of Figure 4.7 plots the full distribution of B0

i at
the two buses with BESS (i = 5, 6), when conditioned on ΥG (that is, conditioned
on load shedding). The top left pair plots results for MPO 200MW, and from visual
inspection the conditional distribution is again approximately uniform. In contrast
the top right pair of distributions, which plots results for MPO 1GW, are markedly
skewed. This indicates interaction between the frequency regulation and contingency
services, since load shedding is associated with high values of B0

5 (the initial BESS
power in Area 1) and low values of B0

6 (the initial BESS power in Area 2).

  

 

Figure 4.7: Empirical distributions of the BESS initial output power B0
i for i = 5, 6,

conditional on the event ΥG (that is, conditional on load shedding), for σ2 = 0.003
and α = 0.2. Vertical red lines locate the conditional mean. (Top Left Pair): MPO
200 MW, b+ = 1. (Top Right Pair): MPO 1GW, b+ = 1. (Bottom Right Pair):
MPO 1GW, b+ = 0.2. (Bottom Left): Plot of the conditional average disturbance
level (including sign) at buses 5 and 6 versus battery MPO.

Indeed the bottom left panel shows that, for MPO 1GW, the conditional average
disturbance at node 5 is positive, while it is negative at node 6. Thus in this
case study, load shedding is associated with disturbances which are in the same
direction and thus reinforce the initial power outputs B0

i (i = 5, 6), rather than
being in the opposite direction and thus partially cancelling them. The bottom
right panel confirms that this potential issue may be mitigated by judicious choice
of the parameter b+ in (4.13): taking MPO 1GW and b+ = 0.2, the conditional
distribution of B0

i is markedly less skewed.
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4.6 Conclusions and outlook

Our results demonstrate successful application of rare event sampling to a detailed
power system dynamic simulation model including BESS. The method accounts for
the feedback effects of emergency responses and is flexible, producing a wide variety
of empirical statistics capable of distinguishing between the likelihood and severity
of instabilities, and of identifying both saturation in these benefits as MPO in-
creases and competition between the frequency regulation and emergency responses
provided by BESS. Possible future research directions include extensions to further
protection systems such as voltage regulation, more detailed sensitivity analyses in-
cluding the influence of BESS speed of response, and investigation of the effect of
different network topologies.
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Chapter 5

Skipping between distant basins

This chapter presents the manuscript entitled ‘Skipping between distant basins’,
submitted to the Journal of Global Optimization in August 2021. At the time
of compiling this thesis the article has received positive reviews and the authors
are amending the manuscript with the suggestions provided by the reviewers for
publication.
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Abstract

We present and analyse the Basin Hopping with Skipping (BH-S) algorithm
for stochastic optimisation. This algorithm replaces the perturbation step of
basin hopping (BH) with a so-called skipping mechanism from the rare-event
sampling. Empirical results on benchmark optimisation surfaces demonstrate
that BH-S can improve performance relative to BH by encouraging non-local
exploration, that is, by hopping between distant basins.

keywords: Basin hopping, stochastic optimisation, skipping sampler, rare
events, Markov chains

5.1 Introduction and background

In the literature on global optimisation of a non-convex energy landscape a source
of inspiration has been methods from the theory of rare-event sampling. Examples
include the methods of cross-entropy for combinatorial and continuous optimisation
[96] and, more recently, splitting for optimisation [28]. In stochastic optimisation
algorithms such as random search [102], basin hopping [61, 111], simulated an-
nealing [55] and the multistart method [47, 69], one or more initial points X0 are
perturbed in order to discover new neighbourhoods (or ‘basins’) of lower energy,
which may then be explored by a local procedure such as gradient descent. As such
algorithms discover progressively smaller energy values, the remaining lower-energy
basins form a decreasing sequence of sets. Viewing the optimisation domain heuris-
tically as a probability space and these basins as events, the discovery of smaller
energy values can then also be likened to rare-event sampling.

In this analogy, the local perturbation step plays a similar role to the proposal
step in a Markov Chain Monte Carlo (MCMC) sampler (see [13], [93]). Thus in
order to enhance performance, one may explore the use of alternative MCMC pro-
posal distributions developed in the context of rare event sampling as alternative
perturbation steps within stochastic optimisation routines. This is the approach we
take in the present paper.

1School of Mathematics, Queen Mary, University of London, London, E1 4NS, UK,
ahw493@qmul.ac.uk

2School of Mathematics, Queen Mary, University of London, London, E1 4NS, UK
j.moriarty@qmul.ac.uk

3Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
Jure.Vogrinc@warwick.ac.uk

4Department of Mathematics, Vrije Universiteit Amsterdam, 1081HV, Netherlands,
a.zocca@vu.nl

90



To illustrate the potential benefit of this approach, consider the problem of
metastability in the study of dynamical systems, where an energy function gov-
erns the evolution of a stochastic process. Metastable regions correspond to local
minima of the energy landscape, which may be rare and well-separated by so-called
energy barriers. Particles which follow the dynamics defined by the energy function
may therefore remain in such local minima for extended periods of time, with the
average switching time between metastable events being orders of magnitude longer
than the timescale of the process itself [10]. If X0 lies in one such minima, sepa-
ration means that local perturbations are not well suited to the direct discovery of
another basin. Instead, algorithms using local perturbations to minimise over such
a landscape should be non-monotonic, accepting transitions from X0 to states of
higher energy in the hope of later reaching lower-energy basins. In contrast, since
non-local perturbation steps offer the possibility of direct moves between distant low-
energy basins, they may possibly be effective on such surfaces within a monotonic
optimisation algorithm. In this paper we explore the use of a particular non-local
perturbation, the ‘skipping perturbation’ of [76].

Although other non-local perturbations have been proposed in the literature
(see for example [6, 89, 60, 104, 105, 108] in the context of MCMC), skipping has
the advantage of being just as straightforward to implement as a local random
walk perturbation. That is, it requires no additional information about the energy
landscape beyond the ability to evaluate it pointwise.

We explore its use within the basin hopping (BH) algorithm [61, 111], which
combines local optimisation with perturbation steps and requires only pointwise
evaluations of the energy function f . The resulting ‘basin hopping with skipping’
(BH-S) algorithm is thus as generally applicable as the BH algorithm.

The BH algorithm works as follows: the current state Xn is perturbed via a ran-
dom walk step to give Yn which is, in turn, mapped via deterministic local minimi-
sation to a local minimum Xn+1. This local minimum point is then either accepted
or rejected as the new state with a probability given by the Metropolis acceptance
ratio, and the procedure is repeated until a pre-determined stopping criterion is met.
Due to its effectiveness and ease of implementation, the BH algorithm has been used
to solve a wide variety of optimisation problems (see [44, 82, 86] for more details).

The BH-S replaces the random walk step of BH with a skipping perturbation over
the sublevel set of the current state Xn. Like a flat stone skimming across water, this
involves repeated perturbations in a straight line until either a point of lower energy
is found, or the skipping process is halted. In contrast with the non-monotonic BH
algorithm, BH-S is monotonic- that is, if the current state of the BH-S is Xn, the
BH-S will only transition to a new state Xn+1 if f(Xn+1) < f(Xn), where f is the
energy function to be minimised. The BH-S algorithm, which was first outlined
in [76], thus provides a direct mechanism to escape local minima which contrasts
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with the indirect approach taken by BH. Another perspective is that BH-S alters
the balance between the computational effort expended on local optimisation versus
the effort spent on perturbation, typically increasing the latter while decreasing the
former (cf. Table 5.1 below).

This paper investigates the interaction between the choice of parameters and
type of landscape by using a set of benchmark problems to present a systematic
overview on the types of optimisation problem on which BH-S tends to outperform
BH. The rest of the paper is structured as follows: Section 5.2 introduces the algo-
rithms, empirical results are presented and discussed in Section 5.3, and Section 5.4
concludes.

5.2 The BH-S algorithm

Consider the box constrained global optimisation problem on a rectangular subdo-
main D ⊂ Rd, of the form

min f(x) s.t. x ∈ D :=
d∏

i=1

[li, ui], (5.1)

for some scalars li ≤ ui, i = 1, . . . , d. In the rest of the paper, we will often refer to
f as the energy function and to its graph as the energy landscape. This terminology,
which is similar to that of simulated annealing, is appropriate, since the BH algo-
rithm was originally conceived as a method to find the lowest energy configuration
of a molecular system [111]. In this section, we review the BH algorithm and then
introduce basin hopping with skipping (BH-S).

5.2.1 Basin hopping algorithm

The core idea of the basin hopping algorithm [111], which is presented in Algorithm
6, is to supplement local deterministic optimisation by alternating it with a random
perturbation step capable of escaping local minima. More specifically, inside the
RandomPerturbation procedure at step 5 of Algorithm 6, a random perturbation
W ∈ Rd is drawn and added to the current state Xn giving a state Yn = Xn +W .
Most commonly, the incrementW is either spherically symmetric or has independent
coordinates. The state Yn becomes the starting point of a deterministic local min-
imisation routine. In our implementation of Algorithm 6, the LocalMinimisation

procedure at step 6 is performed using the limited-memory BFGS algorithm [66], a
quasi-Newton method capable of incorporating boundary constraints, although we
note that other choices are possible. The resulting local minimum Un is then either
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accepted or rejected as the new state with probability equal to

min

(
1, exp

(
−f(Un)− f(Xn)

T

))
,

where T ≥ 0 is a fixed temperature parameter. This means, in particular, that
downwards steps for which f(Un) < f(Xn) are always accepted. The BH algorithm
prescribes to repeat this basic step until a pre-defined stopping criterion is satisfied.
Commonly used stopping criteria for the BH algorithm include, among others, a
limit on the number of evaluations of the function f or the absence of improvement
over several consecutive iterations [82, 95]. The monotonic basin hopping method
introduced in [61] is the BH variant corresponding to the limiting case T = 0, in
which all steps that increase the energy are rejected.

Algorithm 6: Basin hopping
1 Generate a random initial state Y0 ∈ D;
2 X0 = LocalMinimisation(Y0);
3 n = 0;
4 while Stopping criterion for {Xj}j≤n is not satisfied: do
5 Yn = RandomPerturbation(Xn);
6 Un = LocalMinimisation(Yn);
7 Generate V ∼ Uniform([0, 1]);

8 if V < min
(
1, exp

(
−f(Un)−f(Xn)

T

))
then

9 Xn+1 = Un;
10 else
11 Xn+1 = Xn ;
12 end
13 Increase n by 1;
14 end

Basin hopping can thus be viewed as a random walk on the set of local minima
of the energy landscape, which, due to its transition probabilities favour downhill
moves to lower minima, is capable of finding the global minimum and, hence, of solv-
ing global optimisation problems. Its transition probabilities depend in a complex
way on the current position, the landscape, and the perturbation step. The BH-
S algorithm introduced in the next section modifies these transition probabilities,
aiming to accelerate optimisation.

5.2.2 Skipping perturbations and the BH-S algorithm

In this subsection we introduce the BH-S algorithm, which differs from BH only in
the perturbation step of line 5 in Algorithm 6. Instead of the random walk pertur-
bation described above, the RandomPerturbation procedure described in Algorithm
7 below is applied in order to obtain Yn. The LocalMinimisation and acceptance
steps remain identical to those in Algorithm 6.
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Given the current state Xn and a fixed probability density q on Rd, the random
walk perturbation of the BH algorithm can be understood as drawing a state Yn
from the density y 7→ q(y − Xn). In contrast, the skipping perturbation of BH-S
depends on both the current state Xn and a target set C ⊆ Rd of states. The target
set Cn for the n-th skipping perturbation is the sublevel set of the energy function
f at the current point Xn, i.e.,

Cn := {x ∈ D : f(x) ≤ f(Xn)} ⊂ Rd. (5.2)

A state Z1 is drawn according to the density q just as in the random walk
perturbation and, if Z1 does not lie in the target set Cn, further states Z2, Z3, . . .

are drawn such that Xn, Z1, Z2, . . . lie in order on a straight line, with each distance
increment |Zj+1−Zj| having the same distribution as that of |Z1−Xn| conditioned
on the line’s direction Z1−Xn

|Z1−Xn| . The first state of this sequence to land in the target
set Cn becomes the state Yn. If Cn is not entered before the skipping process is
halted, then Yn is set equal to Xn.

More precisely, let x = (r, φ) be polar coordinates on Rd with the angular part φ
lying on the d− 1 dimensional unit sphere Sd−1. Write φ 7→ qφ(φ) for the marginal
density of q with respect to the angular part φ, which we may call the directional
density (and which we assume is strictly positive). For each φ ∈ Sd−1 denote by

qr|φ(r|φ) :=
qr,φ(r, φ)

qφ(φ)

the conditional jump density, i.e., the conditional density of the radial part r given
the direction φ. To construct the skipping perturbation, set Z0 = Xn and draw a
random direction Φ ∈ Sd−1 from the directional density qφ. A sequence of i.i.d. dis-
tances R1, R2, . . . is then drawn from the conditional jump density qr|Φ, defining a
sequence of modified perturbations {Zk}k≥1 on Rd by

Zk+1 := Zk + ΦRk+1, k = 0, 1, . . .

Since this modification of the BH perturbation is more likely to generate states Zk

lying outside the optimisation domain D, we apply periodic boundary conditions.
If Zk ∈ Cn for some k ≤ K, where K is a pre-defined maximum number of steps

called the halting index, then we set Yn = Zk in Algorithm 6 and continue to the
LocalMinimisation and acceptance steps. Alternatively if Zk /∈ Cn for all k ≤ K

we set Yn = Xn. Note that although in [76] the halting index K can be randomised,
in the present setting with a known bounded domain D it is sufficient to consider
only fixed halting indices.

For clarity, in the remainder of the paper we will understand the BH algorithm
to mean setting K = 1 in Algorithm 7. In all simulations we set the perturbation
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q to be a spherically symmetric and Gaussian with standard deviation σ, although
other choices are possible (see the discussion in Section 4.1 of [76]). In the next
section we explore for which types of energy function f BH-S offers an advantage
over BH, and also discuss the choice of the halting index.

Algorithm 7: RandomPerturbation subroutine for BH-S
Input : State Xn ∈ Rd

Output: Randomly perturbed state Yn ∈ Rd

1 Set Z0 = Xn ;
2 Generate an initial perturbation W distributed according to the density
w 7→ q(w −Xn) ;

3 Calculate the direction

Φ =
(W −Xn)

∥W −Xn∥
;

Set k = 1 and Z1 := W ;
4 while f(Zk) > f(Xn) and k < K do
5 Generate an independent distance increment R distributed as ∥W −Xn∥

given Φ ;
6 Set Zk+1 = Zk + ΦR ;
7 Increase k by one ;
8 end
9 Set Yn := Zk;

5.3 Empirical results

In this section, we aim to explore on which types of optimisation problem BH-S
tends to outperform BH and vice versa using a set of benchmark energy landscapes
with known global minima from [32, 49, 106]. To facilitate discussion of landscape
geometry, we initially restrict attention to two-dimensional energy functions, before
considering higher dimensions in Section 5.3.6.

In Subsection 5.3.3 we show that, if an energy landscape has distant basins (recall
that with the word ‘basin’ we refer to the neighbourhood of a local minimum) then
BH-S tends to offer an advantage. Otherwise, as described in Subsection 5.3.4, BH
is to be preferred since any benefit from BH-S is then typically outweighed by its
additional computational overhead. We also explore the effect of the state space
dimension d on the performance of both algorithms and offer guidance on tuning
the BH-S method, including strategies to improve exploration of challenging energy
landscapes.
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5.3.1 Methodology

For each benchmark energy landscape, we compare the performance of BH-S to
that of BH with temperature T = 1, in both cases taking the density q of the initial
perturbation as the centred Gaussian

q ∼ N (0, σ2 · Id), (5.3)

where Id is the d×d identity matrix and the parameter σ allows for tuning, as follows.
Both the BH and BH-S algorithms are run on a set of uniformly distributed initial
states I := {X(n)

0 ∈ D, n = 1, . . . , |I|}. These initial states are used sequentially
until the computational budget of 300 seconds of CPU time has elapsed, and the
corresponding set of final states is recorded. To account for numerical tolerance,
we consider a run to have successfully identified an element x∗ in the set of global
minimum points in D, if its final state lies in G := {x ∈ Rd : ||x − x∗|| ≤ 10−5}.
This choice excludes all non-global minima for all benchmark landscapes.

The performance of each algorithm is then assessed with respect to two metrics:

• Effectiveness, defined as the proportion of runs terminating in G,

• Efficiency, defined as the number of runs terminating in G.

We write ρc and ρs for the effectiveness of the BH and BH-S algorithms re-
spectively, while ϵc and ϵs denote their respective efficiencies. The BH and BH-S
algorithms are individually tuned for each function by selecting σ andK to maximise
their efficiency.

In order to understand the role played by the skipping perturbation, we also
record diagnostics on the average size of perturbations. For each new state Xn+1 ̸=
Xn accepted in Algorithm 6, define the perturbation distance J as ∥Yn − Xn∥, the
Euclidean distance between the state Xn at step n and its perturbation Yn. For
each run of an algorithm, the mean J of these perturbation distances is recorded.
Then for each 300 second budget, the expected mean jump distance υ is the average
υ := N−1

∑N
n=1 J

(n), where N is the number of runs realised within the time budget.
For the BH-S algorithm, υ is calculated separately for the accepted random walk
perturbations (that is, those for which Yn = Z1 in Algorithm 7) and the accepted
skipping perturbations (those for which Yn = Zk with k ≥ 2 in Algorithm 7),
denoting these by υ1 and υs respectively.

The simulations were conducted on a single core using Python 3.7, using the
basinhopping and limited-memory BFGS routines in SciPy version 1.6.2 for the
BH algorithm. Results for all considered landscapes are presented in the Appendix.
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5.3.2 Exploratory analysis

As an exploratory comparison between BH and BH-S, their relative effectiveness
ρs/ρc and efficiency ϵs/ϵc were calculated for each benchmark energy landscape and
plotted in Figure 5.1.

Figure 5.1: Scatter-plot of relative efficiency E = ln(ϵs/ϵc) versus relative effective-
ness P = ln(ρs/ρc) for the BH and BH-S algorithms on benchmark energy land-
scapes. See Appendix 8.2 for detailed performance metrics of the BH-S and BH
algorithms for each benchmark energy landscape.

Landscapes in the first quadrant of Figure 5.1 represent cases where the BH-S al-
gorithm exhibits both greater effectiveness and greater efficiency than BH. The com-
mon feature among these landscapes, which are plotted in the Appendix, might be
called distant basins: that is, basins separated by sufficient Euclidean distance that
the random walk performed by the BH algorithm is unlikely to transition directly
between them. While indirect transitions between such basins may be possible,
they require a suitable combination of steps to be made. Such indirect transitions
may carry significant computational expense, for example if suitable combinations
of steps are long or relatively unlikely. In the BH-S algorithm, by contrast, the linear
sequence of steps taken by the skipping perturbation enables direct transitions even
between distant basins.

Conversely, landscapes lying in the lower-left quadrant of Figure 5.1 represent
cases where the BH-S algorithm is both less reliable and less efficient than BH. As
explored more extensively later in Subsection 5.3.4, for each of these landscapes,
if the energy of the state Xn is close to the global minimum value f(x∗) then the
corresponding sublevel set Cn has almost zero volume. This means that even if the
skipping perturbation traverses the distance between basins, the states Z1, . . . , Zk

are unlikely to fall in Cn due to its small volume. Since the BH algorithm is non-
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monotonic, it does not suffer from the same issue and outperforms BH-S for these
landscapes.

Figure 5.1 displays a positive correlation between relative efficiency and rela-
tive effectiveness. However for several landscapes (which lie near the vertical axis)
the performance of BH and BH-S cannot be clearly distinguished on the basis of
effectiveness alone. As confirmed by the Appendix, this is typically because both
algorithms have effectiveness close to 100%. Nevertheless the algorithms differ in
their efficiency, with BH-S observed to be more efficient than BH for each such
landscape. One surface also lies in each of the second and fourth quadrants.

Table 5.1: CPU time spent on the perturbation and local minimisation steps by
the BH and BH-S algorithms for the test functions discussed in Sections 5.3.3–5.3.5,
normalised by efficiency.

Time spent
Efficiency , s

BH BH-S

Location in Figure 5.1 Function Perturbation Local
Minimisation

Skipping
Perturbation

Local
Minimisation

First quadrant
(Section 5.3.3)

Egg-holder 0.72 6.76 0.73 0.19
Modified Rosenbrock 0.46 13.53 0.22 0.10

Third quadrant
(Section 5.3.4)

Mishra-03 0.02 1.75 1.74 3.21
Whitley 0.01 0.68 4.92 1.58

Special cases
(Section 5.3.5)

Rosenbrock 0.01 0.13 0.05 0.01
Styblinksi 0.02 0.06 0.06 0.01

Further exploratory analysis is provided in Table 5.1, which indicates average
CPU time spent on the perturbation versus the local minimisation steps for each al-
gorithm. To facilitate comparison between the two algorithms, in each case the total
time spent is normalised by the algorithm’s efficiency, as defined in Section 5.3.1.
This demonstrates that the BH algorithm spends most computing time on the local
minimisation step, with relatively little devoted to the perturbation step. While
the ratio between processor time spent on local minimisation and perturbation is
more problem-dependent for BH-S, the balance appears to be shifted in favour of
perturbation.

The BH-S perturbation step is more expensive by construction, since it requires
between 1 and K evaluations of the energy function f (depending on the sublevel
set of the current state), whereas each BH perturbation requires just one evaluation
of f . However in Table 5.1, for the Damavandi, Schwefel, Modified Rosenbrock and
Egg-holder functions for which BH-S works well (cf. Figure 5.1), after normalisation
the BH-S algorithm spent approximately the same or less CPU time than BH on
perturbation, in addition to spending less time on local minimisation. Thus for these
landscapes which favour BH-S, perturbation steps were not only less frequent for
BH-S (again, after normalisation by efficiency) than BH, but the monotonic BH-S
perturbations also reduced the total computational burden arising from the local
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minimisation step.
Conversely it was noted above for landscapes in the third quadrant of Figure 5.1,

if the energy of the state Xn is close to the global minimum value f(x∗), then the
corresponding sublevel set Cn has almost zero volume. This represents the worst
case for the BH-S perturbation: if the states Z1, . . . , Zk all lie outside the sublevel
set, then the perturbation requires the maximum number k of evaluations of the
energy function. However, the perturbed state Yn is rejected and Xn+1 = Xn, so the
optimisation procedure does not advance. Indeed for the Mishra-03 and Whitley
functions in Table 5.1, the efficiency normalised CPU time invested in perturbations
is two orders of magnitude greater for BH-S than for BH. For these landscapes, the
efficiency normalised computational burden from local minimisation is also observed
to be greater for BH-S than for BH, although the reasons for this are less clear.

Guided by the exploratory analysis of Figure 5.2, in Sections 5.3.3–5.3.5 we study
the performance of both algorithms on specific energy landscapes in greater detail.

5.3.3 Landscapes favouring the BH-S algorithm

(a) Modified Rosenbrock function (b) Egg-Holder function

(c) Sublevel set C = {x ∈ R2 : f(x) < 100}
of the Modified Rosenbrock function (d) Sublevel set C = {x ∈ R2 : f(x) < −700}

of the Egg-Holder function

Figure 5.2: Examples of energy landscapes from the first quadrant of Figure 5.1

Figure 5.2 plots two landscapes from the first quadrant of Figure 5.1–that is,
landscapes which favour the BH-S algorithm over BH. For each landscape, the sub-
level set of a level above the global minimum f(x∗) is also plotted. The Modified
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Rosenbrock energy function is given by

f(x) = 74 + 100(x2 − x21)
2 + (1− x1)

2 − 400 exp

(
− (x1 + 1)2 + (x2 + 1)2

0.1

)
,

and we take the domain D = [−2, 2]2, with global minimum x∗ = (−0.95, −0.95)

[32].
The Egg-Holder energy function is

f(x) = −(x2 + 47) sin

(√
|x2 +

x1
2

+ 47|
)
− x1 sin

(√
|x1 − (x2 + 47)|

)
,

and we take the domainD = [−512, 512]2, with global minimum at x∗ = (512, 404.2319)

[49].
Observing Figure 5.2a, the modified Rosenbrock function has two basins: a larger

basin with a U-shaped valley and a smaller, well-shaped basin. To transition from
the minimum of the valley to the minimum of the well, the BH algorithm would
require a relatively large perturbation step landing directly in the well, otherwise
the local optimisation procedure would take it back to the minimum of the valley.
Even for an optimal choice of σ, which would require a priori knowledge about the
landscape, such perturbations would be unlikely.

In contrast, if the initial point X0 lies at the minimum of the valley, the BH-S
algorithm aims to skip across the domain and enter its sublevel set C0 as defined
in (5.2). From Figure 5.2c, this will correspond to entering an approximately cir-
cular basin near the point (−1,−1) in the domain. By Algorithm 7, the skipping
perturbation has the potential to enter that basin provided that the straight line
issuing from X0 in the initial direction Φ in Algorithm 7 intersects it. In particular,
this ability is robust to the choice of standard deviation σ provided that the halting
index K is chosen appropriately (see the discussion on tuning in Subsection 5.3.7
below).
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Table 5.2: Effectiveness ρ and efficiency ϵ of the BH and BH-S algorithms, with
and without the application of periodic boundary conditions, for the test functions
discussed in Sections 5.3.3–5.3.5.

Location in Figure 5.1 Function Boundary Condition ρc ϵc ρs ϵs

First quadrant
(Section 5.3.3)

Egg-Holder Periodic 1.8% 77 29.4% 280
Non-periodic 1.4% 58 81.7% 815

Modified Rosenbrock Periodic 18.8% 783 100% 1249
Non-periodic 17.2% 597 96.7% 321

Third quadrant
(Section 5.3.4)

Mishra-03 Periodic 77.9% 811 6.2% 78
Non-periodic 49.6% 474 68.4% 576

Whitley Periodic 90.1% 137 13.9% 33
Non-periodic 86.8% 138 13.4% 34

Special cases
(Section 5.3.5)

Rosenbrock Periodic 100% 942 100% 1376
Non-periodic 100% 1006 100% 1524

Styblinski Periodic 99.7% 366 99.9% 932
Non-periodic 99.4% 526 92.3% 784

Figure 5.2b illustrates that the Egg-Holder function has multiple basins, many
of which have near-global minima. Figure 5.2d shows that the deepest basins lie in
four groups, one group per corner of the domain. Within each group, the basins
are close in the Euclidean distance and so perturbations are likely to enter different
basins within that group. Also, the basins in each group have similar depths (that
is, similar local minimum energies), making the acceptance ratio in Algorithm 6 high
for such within-group perturbations. As a result the BH algorithm is likely to walk
regularly between within-group local minima. Also from Figure 5.2b, the Egg-Holder
function has shallower basins distributed throughout its domain. As discussed in
Subsection 5.3.2 these provide an indirect, although potentially computationally
expensive, route for BH to cross between the four groups of Figure 5.2d.

However between groups the Euclidean distance is large, creating the same chal-
lenge for BH as with the modified Rosenbrock function: even for optimally chosen
σ, which would require a priori knowledge of the landscape, transitions between
groups are relatively rare.

In contrast, the BH-S algorithm is capable of moving between the four groups in
Figure 5.2d provided the initial direction Φ of its skipping perturbation intersects
a different group. The likelihood of such an intersection is increased by both the
length of the skipping chain and the use of periodic boundary conditions in the BH-S
algorithm, and is again robust with respect to the choice of standard deviation σ.

Regarding the application of periodic boundary conditions to the domain D, we
have argued that they are natural for BH-S, since otherwise long skipping chains
would tend to exit the domain D. In contrast, they are not implemented for the
BH algorithm in the results of Figure 5.1 and Table 8.4. One may therefore ask
whether it is their use, rather than the skipping perturbation of BH-S, which yields
any observed improvement. To explore this, Table 5.2 illustrates the effect of im-
posing periodic boundary conditions on the performance of both the BH and BH-S
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algorithms. Interestingly the performance of BH-S on the Egg-Holder landscape is
improved without their use. This tendency appears to be driven by the proximity of
its global minimiser x∗ to the boundary. In general, it is clear from Table 5.2 that for
both algorithms their benefit or disbenefit is problem-dependent and the skipping
perturbation explains a distinct and material part of the observed improvements
relative to BH.

It can be observed from Table 8.4 in the Appendix that the expected mean
jump distances υs and υc (defined in Subsection 5.3.1) typically satisfy υs ≫ υc

for landscapes in the first quadrant of Figure 5.1. This confirms quantitatively the
success of BH-S in hopping between distant basins. The cost of this feature is that
the BH-S skipping perturbation is more computationally intensive than the random
walk perturbation of BH.

Without skipping (that is, using the halting index K = 1 in Algorithm 7),
BH-S would reduce to the monotonic basin hopping method of [61] and the initial
perturbation W of Algorithm 7 would simply be either accepted or rejected. One
may therefore also ask whether this increase in the expected mean jump distance
is induced by the skipping mechanism of BH-S, or simply by its monotonicity. To
address this, recall that Algorithm 7 first perturbs the current state Xn to give an
initial perturbation Z1 := W . Then if f(W ) > f(Xn), the initial perturbation is
modified to Z2, and so on, until either a state Zk is generated with f(Zk) ≤ f(Xn)

or skipping is halted. If such a Zk is found, then it may be accepted by setting
Xn+1 = Zk or rejected. The Appendix records the proportion of accepted BH-S
perturbations Xn+1 = Zk for which k > 1. Indeed, for many landscapes in the
first quadrant of Figure 5.1 this proportion is 100%. That is, for such landscapes,
each accepted perturbation Xn+1 required the skipping mechanism since none of the
initial perturbations had lower energy than the current state Xn.

5.3.4 Landscapes favouring the BH algorithm

Figure 5.3 plots two landscapes from the third quadrant of Figure 5.1, on which
the BH algorithm outperforms BH-S, each with two sublevel sets above the global
minimum f(x∗). The Mishra-03 function is

f(x) :=

√
| cos

(√
|x21 + x22|

)
|+ 0.01(x1 + x2),

and the domain D = [−10, 10]2 gives x∗ = (−8.466,−10) [49]. The Whitley function
f : R2 → R, given by

f(x) :=
2∑

i=1

2∑
j=1

((
100(x2i − xj)

2 + (1− xj)
2
)2

4000
−cos

(
100(x2i −xj)2+(1−xj)2+1

))
,
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(a) Mishra-03 Function (b) Whitley Function

(c) Sublevel set C = {x : f(x) < 1} of the
Mishra-03 function

(d) Sublevel set C = {x : f(x) < 5} of
the Whitley function

(e) Sublevel set C = {x : f(x) < −0.01} of
the Mishra-03 function

(f) Sublevel set C = {x : f(x) < 0.1} of the
Whitley function

Figure 5.3: Examples of energy landscapes favouring the BH algorithm

has global minimum x∗ = (1, 1) on the domain [0, 1.5]2 [49].
From Figure 5.3a, the Mishra-03 function is highly irregular and has many basins

which appear almost point-like. Figure 5.3e confirms that the situation outlined in
Section 5.3.2 applies to this landscape. That is, for states Xn with energy close to
the global minimum value f(x∗), the corresponding sublevel set Cn has almost zero
volume and the states Z1, Z2, . . . , of Algorithm 7 are unlikely to fall in Cn.

The deepest basins of Mishra-03 form groups arranged in concentric circular
arcs. Since the Euclidean distances both within and between these groups are rela-
tively small, the BH algorithm is able to move frequently both within and between
groups without requiring precise tuning of the standard deviation parameter σ. In
particular, it outperforms BH-S on this landscape.
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Similarly, by observing Figure 5.3d, the deepest basins of the Whitley function
can be seen either as forming one group, or as a small number of groups close to
each other. Thus, as for Mishra-03, the BH algorithm is able to move frequently
between them while nevertheless being robust to the choice of the standard deviation
parameter σ. As with Mishra-03, however, from Figure 5.3f the sublevel sets Cn

corresponding to near-global minimum states Xn have low volume. Thus it is more
challenging for BH-S to transition between the deepest basins, and BH outperforms
BH-S on this landscape.

These limitations of the BH-S routine can be mitigated by alternating between
a monotonic and non-monotonic perturbation step. In Subsection 5.3.8 we provide
a discussion on how this alternating perturbation can be implemented.

5.3.5 Special cases

It was noted in Section 5.3.2 that for several landscapes lying near the vertical
axis, both BH and BH-S algorithms have effectiveness close to 100%. For these
surfaces BH-S typically has greater efficiency simply because of its monotonicity,
since no further computational effort is expended on local optimisation once the
global optimum is reached. The Holder Table and Carrom Table landscapes have
multiple distant ‘legs’, each leg being the basin of a global minimum point. In this
case, the ability of BH-S to skip between distant basins is not reflected in either its
efficiency or its effectiveness, although it would clearly be beneficial if the goal was
to identify the number of global minima in the landscape.

5.3.6 Scaling with dimension

In this section we aim to illustrate the performance of the BH-S algorithm as the
dimension of the optimisation problem increases. For this we focus on Schwefel-07,
a landscape with ‘distant basins’ which is also defined for higher dimensions. It is
given by the function fd : Rd → R, where

fd(x) = 418.9829× d−
d∑

i=1

xi sin(
√
|xi|),

and has global minimum (421.0)d on the domain Dd = [−500, 500]d [49].
Figure 5.4a illustrates that the effectiveness and also the efficiency of both al-

gorithms decrease approximately linearly with increased dimension. Recall that
relative to BH, the strength of BH-S lies in its ability to transition directly between
distant basins. With reference to Algorithm 7, in order to transition directly to
the global minimum basin, it is necessary for the line from the current state in the
random direction Φ to intersect that basin. As Φ is drawn from a space of dimension
d− 1, heuristically this becomes less likely as d increases.
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(a) Percent of samples in desired basin: ρ (b) Total trials in desired basin: ϵ

Figure 5.4: Comparison of BH and BH-S performance when applied to the Schwefel-
07 function while varying the dimension d of the domain D. We set σ = 20 for both
algorithms and the BH-S has halting index K = 50. These parameters were close
to optimal for both algorithms. Each simulation used a CPU time budget of 300s.

In contrast, the BH algorithm should rely to a greater extent on indirect tran-
sitions from its current state to the global minimum. By statistical independence,
the probability of a particular indirect transition is the product of the probabilities
of its constituent steps. Since the probability of each step decays with dimension
as discussed above for BH-S, this suggests that the performance of BH will degrade
more rapidly with dimension than BH-S.

This is observed/illustrated in Figure 5.4a, where BH fails to locate x∗ within
the 300 second budget for any dimension d ≥ 4, while BH-S continues to locate x∗

(albeit with decreasing effectiveness and efficiency) until dimension d = 11. Indeed,
the effectiveness of BH-S for this landscape is above 50% for dimensions d ≤ 7.

5.3.7 Adapting parameter values to the landscape

Both BH and BH-S have the parameter σ, the standard deviation of the centred
Gaussian density q used to generate the initial perturbation. As noted above, the
initial perturbation is analogous to a Metropolis-Hastings (MH) proposal in MCMC.
The MH literature highlights the importance of tuning such proposals, guided either
by theory or by careful experimentation [31, 71]. Following this analogy, in this
section we explore the choice of σ and also of the BH-S halting index K. To facilitate
this discussion we restrict attention to the two-dimensional Egg-Holder function.

Figure 5.5 plots the effectiveness and efficiency of both BH and BH-S as σ varies
between 0 and 300 (recall that the domain D = [−512, 512]2; also, we set K = 25

for BH-S). Clearly, for both algorithms σ should not be very small (≤ 10). In that
case the random walk step W is likely to land in the same basin as the current point
Xn, so that the local optimisation step maps the perturbation back to Xn and the
algorithms do not advance.

We note first from Figure 5.5 that both the effectiveness and efficiency of the
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BH algorithm increase approximately linearly within this range as σ increases. As
discussed in Section 5.3.3, this reflects the fact that as σ increases, direct transitions
between the four groups of deepest basins become more likely. In contrast, and again
confirming the discussion in Section 5.3.3, both the efficiency and effectiveness of
BH-S appear to be rather robust to the choice of σ.

(a) Percentage of trials which successfully re-
ported the correct global minimum

(b) Total number of trials which successfully
reported the correct global minimum.

(c) Total perturbation steps conducted during
the 300s time budget.

Figure 5.5: Comparison of individually tuned BH-S and BH performances on the
Egg-holder function. Set-up: CPU time budget of 300 seconds; stopping criteria:
50 perturbations; the halting index for skipping perturbation is set to K = 25 for
all simulations.

(a) Percent of samples in desired basin: ρs (b) Total trials in desired basin: ϵs

Figure 5.6: Effectiveness and efficiency results for the BH-S applied to the Egg-
holder function for various combinations of K and σ. A CPU time budget of 300s
was applied to all simulations.
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Figure 5.6 illustrates the impact on effectiveness and efficiency of the choice of
halting index K. From Algorithm 7, the maximum linear distance covered by the
skipping procedure is

∑K
k=1Rk, where each Rk is distributed as the radial part of a

centred Gaussian with standard deviation σ. This suggests that K should not be
too small, and the plot of efficiency in Figure 5.6b indicates that K should be at
least 5 in our example (by default we take K = 25).

It is seen that provided (K ≤ 5), increasing K tends to increase effectiveness
while decreasing efficiency. This reflects the fact that larger K allows the skipping
procedure to travel further, thus increasing the likelihood of a direct transition to
the global minimum basin, after which the BH-S algorithm would stop due to its
monotonicity. In this way, greater K increases effectiveness. On the other hand,
greater K increases the length of unsuccessful skipping trajectories. That is, each
time the perturbed state Yn of Algorithm 7 is not accepted (after the local min-
imisation step of Algorithm 6), the landscape is evaluated up to K times without
advancing the optimisation. This implies that increased K also typically leads to
decreased efficiency.

The adaptation considerations discussed above for the BH-S algorithm can be
summed up as follows. It should first be checked that σ is large enough that the
initial perturbation regularly falls outside the basin of the current state Xn. Having
selected σ, K should then be taken large enough that the skipping procedure regu-
larly enters the sublevel set Cn. A practical suggestion here is to choose K so that
Kσ exceeds the diameter of the domain D.

(a) Percent of samples in desired basin: ρ (b) Total trials in desired basin: ϵ

Figure 5.7: Performance of the BH-S algorithm on the Schwefel-07 function for
different combinations of domain dimension d and perturbation variance σ. Note:
the halting index was set to K = 50 with a CPU time budget of 300s for all
simulations.

Figure 5.7 confirms these guidelines in higher dimensions, by plotting the BH-S
effectiveness and efficiency in dimensions up to 10 as σ varies with the fixed choice
K = 50. It confirms that these performance metrics are relatively robust to the
value of σ, provided that σ is sufficiently large.
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5.3.8 Alternating BH-S and BH

In this section we explore a hybrid approach which is intended to overcome the
challenges identified in Section 5.3.4 for the monotonic BH-S algorithm by regularly
including non-monotonic BH steps. Figure 5.8 plots the effectiveness and efficiency
metrics for this hybrid algorithm on various landscapes, as the ratio between BH-S
and BH steps varies.

(a) (b)

Figure 5.8: Performance of the hybrid algorithm with varying proportions of BH to
BH-S steps.

It can be seen that for the Mishra-03 and Whitley functions of Section 5.3.4, this
hybrid improves both effectiveness and efficiency compared to BH-S. Indeed, the
performance of a 1:1 ratio of BH and BH-S steps is comparable to that of BH for
these landscapes. Further, on the landscapes of Section 5.3.3, this 1:1 ratio achieves
performance superior to that of BH and somewhat comparable to that of BH-S.
Thus if little is known about the problem’s energy landscape a priori, these results
indicate that the 1:1 hybrid is to be preferred.

5.4 Discussion and future work

Basin hopping with skipping (BH-S) is a global optimisation algorithm inspired by
both the basin hopping algorithm and the skipping sampler, an MCMC algorithm.
As such, the MCMC literature also suggests potential extensions of this work. In
adaptive MCMC, parameter tuning is an online procedure driven by the progress
of the chain [7]. A similar idea has been proposed for BH in [33] and is part of the
of the SciPy implementation of the BH method. We believe it could be interesting
as future work to devise an adaptive scheme for the halting index K and the stan-
dard deviation σ, possibly reducing in this way the amount of tuning required to
implement BH-S.

During our investigation of the research question, we also explored the idea of
sampling several directions and skipping in all of them simultaneously. As a negative
finding, we report that preliminary results indicated that the computational effort
is best spent searching over a single, rather than multiple, directions. Our heuristic
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explanation is that the line is the shortest route between two sets, and so is the
most efficient way to cover distance. An alternative, more sophisticated approach
would be to introduce multiple BH-S particles which explore the energy landscape
in a coordinated way. This could for instance be inspired by selection-resampling
procedures as in sequential Monte Carlo sampling [72], or by an optimisation proce-
dure such as particle swarm optimisation [53]. Potential applications for the BH-S
algorithm are to problems of metastability, where transitions between metastable
energy states are rare due to separation by large energy barriers. The BH-S algo-
rithm may improve global exploration to locate other stable energy-minima, and
reduce the computational time required to transition between local minima of the
energy landscape.
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Chapter 6

Sequential Monte Carlo with
skipping

Let π be a target density with support C ∈ Rm from which samples are desired. If the
geometry of C is not known a priori, then sampling π when m≫ 2 poses a challenge
for many classes of algorithms. This problem especially arises in the context of rare-
event sampling when C is disjoint or in the context of global non-convex optimisation
when local sub-level sets are well-separated. As potential trajectories increase with
the dimension of the sample space, the chance that sampled paths intersect with
any region of interest decreases, concentrating particles in local modes due to limited
exploration of the sample space. Under such circumstances, even MCMC algorithms,
including the skipping sampler, become increasingly ineffective [103], exhibiting low
acceptance rates as it becomes increasingly challenging to propose states in C ⊂ Rm.

Instead of directly sampling π, assume that samples can be drawn in a sequen-
tial manner from a series of distributions {πn}n∈N indexed by N and defined on
a common measurable space E, where N = {1, 2, ..., d} or N = N. The sequen-
tial procedure means samples are to be drawn first from π1, then π2 and so on
[21]. In practice, such sequential sampling problems arise commonly, especially in
both Bayesian inference and optimisation contexts. MCMC algorithms such as the
Metropolis-Hastings (MH) algorithm presented in Section 1.2 are not well adapted
for such sequential sampling-type problems, since, at index n, one must wait until
the Markov chain with kernel qn achieves its associated stationary distribution πn.
In addition, it is difficult to determine when a MCMC chain has reached its sta-
tionary distribution, and chains can easily become trapped in local modes, limiting
exploration of the sample space [21].

In the literature, sequential Monte Carlo SMC samplers have been employed
to generate samples from such sequential-type problems [67, 21, 25]. At index
n, the SMC procedure generates a large collection of N ≫ 1 random variables
{X(i)

n }i=1,...,N , referred to as particles, with associated weights {W (i)
n }i=1,...,N , whose

empirical distribution converges asymptotically to the target sequence distribution
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πn at index n as N → ∞ [21]. That is, for N weighted particles {W (i)
n , x

(i)
n },

(i = 1, ..., N ;W
(i)
n > 0;

∑N
i=1W

(i)
n = 1), and for any function t : E → R:

N∑
i=1

W (i)
n t(X(i)

n ) → Eπn(t), (6.1)

almost surely; where:

Eπn(t) =

∫
E

t(x)πn(x)dx. (6.2)

Particles are then evolved from density πn to πn+1 by using a combination of se-
quential importance sampling (SIS) and resampling ideas found in [25].

SMC methods exhibit certain advantages over MCMC algorithms. Firstly, SMC
algorithms do not require any burn-in period (see Section 1.2) inherent to many
MCMC algorithms. Secondly, SMC samplers are considered a richer class of algo-
rithm than MCMC as there is greater freedom in the specification of the transition
kernels which can be used to move particles- in fact, in SMC algorithms, such
transition kernels need not be reversible, nor even Markovian [80]. Thirdly, the
performance of MCMC algorithms typically decreases as dimensionality of the state
space increases. However, SMC algorithms have already been successfully applied to
many high dimensional sequential problems in Bayesian inference, such as particle
filter methods used in digital communication and target tracking [80].

Given the potential benefits of SMC methods for sampling from challenging
distributions in higher dimensions, this chapter will present the sequential Monte
Carlo with skipping (SMC-S) formulation of the SMC algorithm, which uses the
skipping proposal from [76] (see Section 1.4) as the transition kernel to move a
population of particles {X(i)

n }i=1,...,N from πn at index n to πn+1 at index n+1. That
is, instead of constructing a sample incrementally by accepting/rejecting a single
proposal at each iteration as is done in the MH algorithm, the SMC-S algorithm aims
to sample a target density π by moving particles sequentially through a sequence
of carefully designed artificial distributions π1, . . . , πd−1, πd = π using the skipping
sampler.

This chapter is structured as follows. Section 6.1 presents a sequential Monte
Carlo (SMC) algorithm and a discussion on parameter choices. Subsequently, Sec-
tion 6.2 presents the SMC-S algorithm for rare event sampling, while Section 6.2.1
benchmarks the performance of the SMC-S algorithm against other rare event sam-
pling algorithms discussed in this thesis. Finally, Section 6.3 evaluates an SMC-S
algorithm with non-uniform sampling of skipping trajectories, intended to improve
sampling in higher dimensions.
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6.1 Sequential Monte Carlo samplers

This section provides an algorithm for Sequential Monte Carlo framework, and fol-
lows the text of [21], which focused on presenting an algorithmic perspective of the
SMC methodology. As mentioned, the aim of SMC methodologies is to move a
set of particles {X i

n}i=1,...,N sequentially through a series of distributions {πn} for
n = 1, . . . , d, where πd := π is our desired target distribution and {πn}n=1,...,d−1 are
referred to as intermediate distributions. Algorithm 8 formalises the SMC routine.

Algorithm 8: Sequential Monte Carlo algorithm. Adapted from [21]
1 Initialisation; n = 1;
2 For i = 1, ..., N , sample X i

0 ∼ ν0(·);
3 For i = 1, ..., N , evaluate the normalised weights W i

1 =
π1(Xi

0)

ν0(Xi
0)

for each

particle such that:
∑N

i=1W
i
1 = 1;

4 Resampling Step:
5 Multiply/discard particles with respect to normalised weights to obtain N

particles {X i
1}i=1,...,N ;

6 Iteration n; n ∈ N\{1}
7 Sampling Step
8 For i = 1, ..., N , sample Y i

n ∼ Kn(X
i
n−1, ·);

9 For i = 1, ..., N , evaluate weights and then normalised: W i
n,
∑N

i=1W
(i)
n = 1;

10 Resampling Step
11 Multiply/discard particles in {Y i

n}i=1,...,N with respect to high/low weights
{W i

n}i=1,...,N to obtain N particles {X i
n}i=1,...,N .

The algorithm can be understood as an adaptive importance sampling technique,
where the initial set of particles {X i

0}i=1,...,N are sampled from a distribution ν0. An
importance weight is calculated for each particle using W i

1 and normalised so that∑N
i=1W

i
1 = 1. Particles are subsequently resampled relative to their importance

weights - particles with the highest importance weights are multiplied, while those
with comparatively small weights are discarded.

At index n, the path of each particle is extended according to a Markov kernel
Kn(X

i
n−1, Y

i). For example, if Kn is a random walk kernel, their movement can be
understood as a local exploration of the distribution at index n. For indices n > 1,
the importance weight for each particle is given by:

Wn(xn−1, xn) =
πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1)Kn(xn−1, xn)
, (6.3)

where {Ln}n=1,...,d are ‘backward in time’ Markov kernels with density Ln−1(xn, xn−1)

introduced to permit the calculation of particle weights when n > 1. In this formu-
lation of the SMC, the authors of [21] note that while the choice of Ln and Kn are
arbitrary (as long as (6.3) is well defined), Ln can be optimised for a given transi-
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tion kernel Kn. We now have a set of weighted particles {X i
n,W

i
n}i=1,...,N at index n.

Particles can then be resampled according to their normalises importance weights,
as was done in the initial step.

The SMC methodology formalised in Algorithm 8 is general, and allows for many
potential choices for {πn, Kn, Ln}n∈N , leading to a wide range of possible algorithms.
As our aim is to generate an algorithm which combines the skipping sampler kernel
with the SMC methodology to improve rare event sampling in higher dimensions,
we direct our focus to SMC formulations which:

1. move a set of particles from an initial distribution ν0 to a desired target
distribution πd = π through a sequence of intermediate distributions πn for
n = 1, . . . , d− 1;

2. employ an MCMC transition kernel to move particles between intermediate
distributions;

3. resamples particles at the end of each step, to ensure that, at index n, particles
are distributed approximately according to πn. The authors of [21] highlight
various schemes which can be used to resample particles with the simplest
method being to sample N new particles from the multinomial distribution of
their weights {W (i)

n }. This is the approach which will be taken in all subsequent
SMC algorithms in this thesis.

4. has the following form for Ln:

Ln(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
, (6.4)

According to [21], this is a common choice for {Ln} when Kn is an MCMC
kernel with unique stationary distribution πn and πn ≈ πn−1. This simplifies
the un-normalised particle weight at index n > 1 to:

Wn(xn−1, xn) = πn(xn−1)/πn−1(xn−1). (6.5)

6.2 Sequential Monte Carlo with skipping (SMC-S)

In this section, we exploit the flexibility of the SMC framework to propose the se-
quential Monte Carlo with skipping (SMC-S) algorithm, which uses the skipping
sampler, introduced in Chapter 1, as the transition kernel to move particles from
πn−1 at index n − 1 to πn at index n. As previously mentioned, SMC algorithms
outperform MCMC algorithms when sampling in higher dimensions, while the skip-
ping sampler is designed to improve rare event sampling. Therefore, the SMC-S
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algorithm is intended to address the challenge of sampling rare events in higher di-
mensions.
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Notation: Given an underlying distribution ρ, we write the target density as

π =
ρ1C

ρ(C)
(6.6)

for connected support C ⊂ Rd.

The SMC-S methodology can be understood as an SMC algorithm with the
following choices for {πn, Kn, Ln}: let {πn}n=1,...,d be a sequence of distributions,
each with form as given in Equation 6.6, characterised by a sequence of supports
{Cn}n=1,...,d where C1 ⊃ C2 ⊃ ... ⊃ Cd−1 ⊃ Cd. The support C1 is associated with
π1 =

ρ1C1

ρ(C1)
, which is designed to be simple to sample. The algorithm progresses

sequentially through the intermediate distributions to the desired distribution πd :=
π with desired support Cd = C.

To improve the algorithm’s ability to move particles from index n to n+1 when
the support Cn is connected, the skipping sampler will be used as the transition
kernel Kn (see step 10 of Algorithm 8). For each particle, the state Y i

n is generated
by a skipping sampler kernel with target density πn. Starting at X i

n−1, a skipping
direction is first sampled, followed by independent jump increments to generate a
proposal Zi

n as described in skipping sampler algorithm (see Section 1.4). The state
Y i
n = Zi

n if the proposal is accepted, otherwise Y i
n = X i

n−1. Therefore, the skipping
sampler transition kernel can be understood as a skipping sampler algorithm initi-
ated at X i

n−1 with target πn, using a single instance of the skipping proposal. This
restriction in the number of proposals will be relaxed in Section 6.3.2.

Since the transition kernel of the SMC-S is a MCMC kernel with unique sta-
tionary distribution πn, the reverse Markov kernel Ln(xn, xn−1) will be given by
Equation (6.4) with associated simplified incremental weight function (6.5).

6.2.1 Numerical results for the SMC-S

This section presents two case studies of the SMC-S drawing samples, the first from
a sample space E ⊂ R and the second from E ⊂ R2. These examples are intended
to provide an intuition for the methodological and performance differences between
the SMC-S and MCMC algorithms before we discuss problems in higher dimensions.

The SMC-S will be benchmarked against other sampling procedures introduced
earlier in the thesis, including the skipping sampler, doubling sampler and a sequen-
tial Monte Carlo with a random-walk transition kernel (SMC-R). To compare the
performance of these algorithms, the following metrics will be used:

1. The empirical mean (µ̂) of the samples generated by each algorithm ;

2. The Monte Carlo Standard Error (MCSE) using the Batch Means Statistic
(see Section 1.3.1) and
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3. The Mean Squared Jump Distance (MSJD) (see Section 1.3.2).

Case study in R

The skipping sampler, doubling sampler, SMC-R and SMC-S algorithms were used
to draw samples from the target density π = ρ1C

ρ(C)
, where ρ ∼∑V

i=1 γihi(x) is a mixed
Gaussian model for hi ∼ N (µi, σ

2
i ). Parameter values for this model are provided in

Table 6.1. The support C := {x ∈ R : |x| ≥ 27} was designed so that Cc is convex,
allowing the doubling sampler to be applied. Additionally, the parameters chosen
were selected to ensure C and ρ are centred on x = 0, giving a known expectation
of Eπ(X) = 0 as a benchmark for algorithmic performance. The target density π

has four modes, symmetric about x = 0, located at x = µi for i = 1, . . . , 4.

Table 6.1: Parameters associated with the Mixed Gaussian underlying distribution
ρ ∼∑V

i=1 γihi(x).

Parameter Value

V 4
γ {0.15, 0.35, 0.35, 0.15}
µ {−60,−30, 30, 60}
σ2 {4, 12, 12, 4}

The following methodologies were used for each sampling algorithm:

1. Random-walk Metropolis (RW-M) sampler: a random-walk proposal density
Xn+1 ∼ N (Xn, σ

2), with σ2 = 400 chosen to generate an acceptance rate of ap-
proximately 25%. This algorithm was initialised at X0 = −52, a state between
the two modes of π on the negative x-axis. Such an initial state is potentially
challenging for MCMC algorithms, which may become trapped in either mode
on the negative x-axis, without sampling from the connected components of
C located on the positive x-axis. This algorithm used N = 900, 000 proposals,
to equal the total number of proposals conducted by the SMC algorithms.

2. A skipping sampler: This was also initialised at X0 = −52 with proposal den-
sity Xn+1 ∼ N (Xn, 400) . A halting regime of K = 6 was chosen ensure the
skipping chain can traverse the region of interest. This algorithm also con-
ducted N = 900, 000 proposals.

3. The doubling sampler (D-Skip): This was initialised at X0 = −52, with
N = 900, 000 proposals. Skipping directions are sampled uniformly, with
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an unconditional jump density Ri ∼ exp{10}.

4. SMC-R: N = 20, 000 particles were sampled initially from X
(i)
0 ∼ N (−20, 400)

for i = {1, . . . , N}. The transition kernel Kn is a Gaussian random-walk

proposal with density Y i
n ∼ N

(
X

(i)
n−1, 400

)
for i ∈ 1, . . . , N . This algo-

rithm moved particles through 45 distributions π1:45 with associated support
C1:45 = {x ∈ R : |x| > Tj} for thresholds Tj = [6, 7, ..., 50]. The choice of 45
distributions was not required for the success of the algorithm, but was chosen
to illustrate how the SMC can smoothly transition between πn−1 and πn in a
sequential manner. We explore how the number of intermediate distributions
affect sampling performance in the next case study.

5. SMC-S: N = 20, 000 particles were sampled initially from X
(i)
0 ∼ N (−20, 400)

for i = {1, ...N}. The transition kernel Kn is a skipping sampler MCMC ker-
nel with density πn. Each skipping sampler MCMC algorithm used a single
skipping chain proposal. The parameters for the skipping chain are identical
to those detailed for the skipping sampler approach above. The SMC-S uses
the same sequence of intermediate distributions {πn}n=1,...,45 as the SMC-R.

Each algorithm was run for 200 independent simulations, allowing inferences
about the distribution of the means, Monte Carlo standard errors and the mean
squared jump distances. The results of the experiment are presented below in table
6.2.

Table 6.2: The performance metrics of each algorithm: M-RW: a random-walk
Metropolis algorithm; Skip: skipping sampler; D-Skip: doubling sampler; SMC-R:
a SMC algorithm with random-walk transition kernel; SMC-S: SMC algorithm with
skipping transition kernel.

Metric M −RW Skip D − Skip SMC −R SMC − S

Avg. µ̂π -59.9994 -59.6385 0.0462 4.2003 0.0557

Avg. MCSE 0.0129 0.0797 0.4087 0.6296 0.5748

Avg. MSJD 1.2945 1.2977 477.6756 103.7352 85.1286

Avg. CPU (s) 10.52 17.15 15.12 16.71 16.95

With reference to Table 6.2, following the 200 independent simulations, the mean
of the sample averages was 0.0557 with average Monte Carlo standard error of
0.5748. Using the Monte Carlo standard error to form an interval analogous to
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a confidence interval, we observe Eπ(X) ∈ 0.0557 ± 0.5748, implying the sample
means generated by the SMC-S algorithm are consistent with the expected value
of the target distribution. While the algorithm benefits from the large number of
particles distributed across the sample space, this feature alone does not improve
sampling performance. For instance, the mean of the sample averages drawn with
the SMC-R algorithm was 4.2003 with a MCSE of 0.6296, which implies the SMC-R
generates samples which are inconsistent with π, as the Eπ(X) /∈ 4.2003± 0.6286.

The average of the sample means for the random-walk Metropolis and skipping
sampler algorithms indicate they may have become trapped in the local mode centred
at x = −60. The average MCSE of 0.0129 and 0.0797 reported respectively for these
algorithms across the 200 experiments indicate that these chains consistently become
stuck in this mode and are unable to sample the connected component of C on the
positive x-axis. The average MSJD for both algorithms reflect this hypothesis as the
average displacement provided by accepted proposals was approximately 1.3 units,
while for context, the width of Cc is 52 units. Thus, proposals were dominated by
local moves, and samples were restricted to the local modes nearest the point of
initialization.

Of the MCMC methodologies, the results of the doubling sampler indicate supe-
rior performance over the random-walk Metropolis, skipping and the SMC-R algo-
rithms. The average of sample means are 0.0462 with an average MCSE of 04087.
As Eπ(X) ∈ 0.0462± 0.4087, we can conclude the doubling sampler produces sam-
ples which are consistent with π and therefore include states from the components
of C on the positive x-axis. This is derived from its ability to sample larger jump in-
crements, allowing proposals to traverse Cc and explore the sample space. However,
despite its superior performance over many of the other algorithms, this methodol-
ogy is strictly limited to cases where Cc is convex, necessitating a priori knowledge
of the geometry of C. The SMC-S is not constrained by this requirement, and can
therefore be more generally applied.

Sampling a super-level set of the Egg-holder function

The Egg-holder function f : R2 → R:

f(x) = −(x2 + 47) sin

(√
|x2 +

x1
2

+ 47|
)
− x1 sin(

√
|x1 − (x2 + 47)|), (6.7)

discussed in Chapter 5, is a difficult to optimise function due to the large number
of local minima. We construct a target density π on the Egg-holder function with
form given by (6.6) where ρ is a mixed Gaussian distribution ρ =

∑V
i=1 γihi(x), γi

is a weight applied to each density function, hi(x) ∼ N (µi,Σi) with mean µi and
covariance matrix Σi. The parameters for ρ are given in Table 6.3.
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Parameter Value

i 1 2 3 4

γi 0.25 0.25 0.25 0.25

µi [50,−30] [−10,−21] [61, 21] [−100, 100]

Σi

[
600 250
250 600

] [
600 420
420 600

] [
500 78
78 500

] [
400 81
81 400

]

Table 6.3: The parameters associated with the mixed Gaussian underlying distribu-
tion ρ =

∑V
i=1 γihi(x) where hi(x) ∼ N (µi,Σi) and V = 4.

The support C ⊂ R2 is the superlevel set C = {x : f(x) ≥ 50} of the Egg-holder
function, with parameters chosen such that Cc includes part of the high density
region of ρ, leading to π having disjoint support in both the high and low density
regions of ρ. Such sampling problems may be challenging as Monte Carlo techniques
require a large number of iterations to draw random samples from the resulting low-
density regions of π, while random-walk Metropolis algorithms are likely to become
trapped in separated modal regions.

An SMC-S algorithm was used to draw samples from π using seven distributions
πn for n = 1, . . . , 7, defined by a sequence of sublevel sets with decreasing area Cn =

{x ∈ R2 : f(x) ≥ 15+ 5n}. The SMC-S uses N = 10, 000 particles sampled initially
from ν ∼ N ([10, 10], σ2

ν×I2) where σ2
ν = 100 and I2 is the 2×2 identity matrix. The

state Y i
n is generated by the transition kernelKn which is the skipping sampler kernel

with target density πn. The underlying proposal density of the skipping sampler is
q ∼ N (X i

n, 100× I2), with a halting regime of K = 6.
For comparison, the following algorithms were also used to draw samples from

π:

1. A skipping sampler algorithm initiated at X0 = [98, 31] ∈ C using 70, 000 pro-
posals. This number of proposals was chosen so the skipping sampler conducts
an equivalent number of proposals as the SMC algorithms (7 × 10, 000). A
Gaussian proposal density is used with variance tuned to generate an accep-
tance rate of approximately 20% and a halting regime of K = 6.

2. An SMC algorithm with random-walk proposal kernel (SMC-R) with N =

10, 000 particles also sampled initially from ν0. The transition kernel Kn is a
Gaussian random-walk kernel Kn ∼ N (X i

n, 100 × I2), similar to the SMC-S’
transition kernel. For consistency, the SMC-R employs the same intermediate
distributions as the SMC-S algorithm.

Figure 6.1 illustrates the samples from π generated by each of the sampling
methods investigated. The SMC-R algorithm was only able to draw samples from a
single component of C closest to the high density region of the initial distribution of
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(a) Superlevel set of the Eggholder function
f(x) ≥ 50

(b) Skipping sampler

(c) SMC-R (d) SMC-S

Figure 6.1: Illustrations of the superlevel set f(x) ≥ 50 for x ∈ [−200, 200]2 and
samples of π generated by the skipping sampler, the SMC-R and SMC-S algorithms.
The underlying mixed Gaussian density ρ =

∑V
i=1 γihi(x) where hi(x) ∼ N (µi,Σi)

is shown as a heat map. The parameters for ρ are provided in Table 6.3.

particles ν0. This correlation between the sample and initial distribution of particles
is indicative of limited exploration of the sample space. This may be a consequence
of the random-walk transition kernel favouring local moves- if transitions are unlikely
to directly traverse Cc

n, particles may concentrate in a few components of C.
Referencing Figure 6.1b, the skipping sampler algorithm was able to draw sam-

ples from three connected components of C, as the skipping proposal allows the
transition kernel to traverse Cc, a benefit discussed in Chapters 1 and 5. However,
careful observation of Figure 6.1b reveals these components were the three proximate
to the initial state of the skipping sampler algorithm X0. Additionally, no samples
were generated from the modal regions of π in the second or third quadrants of the
sample space.
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With reference to the computational time required, the skipping sampler required
four seconds of computational time; the SMC-R took approximately five seconds to
complete its evaluation; while the SMC-S required approximately seven seconds
to complete. The advantage in exploration provided by the SMC-S however may
compensate for the increased computational time required by the algorithm.

Figure 6.2: Scatter plots of samples drawn with the SMC-S from π with mixed Gaus-
sian density as the underlying distribution with support C = {x ∈ [−200, 200]2 :
f(x) ≥ 50}. Plots are produced for different combinations of N , the number of par-
ticles and σ2

ν , the main diagonal component of the co-variance matrix of the initial
distribution of particles.

Figure 6.2 illustrates how the dispersion of the initial distribution particles ν0
and the number of particles N affect the performance of the SMC-S. First, note
that as the main diagonal component of the covariance matrix of ν0 (denoted by
σ2
ν) increases, so too does the exploration of the sample space. This is observed

by comparing the dispersion of the final samples for the (N, σ2
ν) parameter-pairs

(10, 000, 1, 600) and (100, 000, 100). In the former, more samples are drawn from
the distant mode in quadrant two, producing a more representative sample of π,
despite using fewer particles than the latter case. These results suggest non-local
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(a) d = 2 (b) d=16 (c) d = 61

Figure 6.3: Illustrations of the superlevel set f(x) ≥ 50 for x ∈ [−200, 200]2 and
samples of π taken from the SMC-S when the number of distributions used d is 2,
16 and 61. Simulation parameters are: N = 20, 000, k = 20, skipping proposal
N (Xn, 625× I2) where I2 is the 2× 2 identity matrix. The choice of k and proposal
variance are designed to permit particle skipping proposal to traverse the width of
the sample space.

exploration of the sample space may be better achieved by the SMC-S when the
initial set of particles has a large dispersion relative to the size of the desired sample
space.

Observing Figure 6.2 again, increasing the number of particlesN allowed samples
generated by the SMC-S to better simulate connected components of C with com-
paratively smaller areas. This is observed by the sampling of the narrow connected
component in the first quadrant, with more samples drawn from this small strip
for larger values of N . As sample space sizes and dimensions can vary, we instead
guide our discussion to the particle density, calculated as the number of particles N
divided by the volume of the sample space, when such spaces are bounded. Thus,
for the Egg-holder function with sample space x ∈ [−200, 200]2 and N = 10, 000

particles, a particle density of 0.0625 particles per square unit was in effect, while
for N = 100, 000 particles, the particle density was ten times higher at 0.625/unit2.
However, as N increased, the execution time required also increased, with times of
6s, 7s and 9s required for N = 10, 000, N = 50, 000 and N = 100, 000 respectively.
These results suggest that, for an SMC-S algorithm, increased particle densities may
permit better sampling of small-area components, albeit at the expense of increased
computational effort.

Finally, Figure 6.3 illustrates an investigation into the relationship between the
number of intermediate distributions πn used by the SMC-S and sampling outcomes.
Fixing the distribution of the initial particles as ν ∼ N ([10, 10], 100× I2) for all sim-
ulations, when only two distributions are used, fewer samples are drawn from the
second quadrant of the sample space. However, as the number of intermediate dis-
tributions increases, more samples are drawn from this distant mode. Furthermore,
Figure 6.3c shows the distribution of particles more closely follows π as the number
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of intermediate distributions increases. However, as expected, increasing the number
of intermediate distributions leads to a linear increase in time required to complete
the simulation, with approximate times of 2s, 15s and 52s required when 2, 16 and
61 distributions were used respectively.

These results may have implications for the tuning of the SMC-S algorithm in
higher dimensions. For example, to improve global exploration, the user can increase
the dispersion of the initial particle set without significant additional computational
effort. However, careful consideration must be given to the choice of N and the
number of intermediate distributions, as these choices affect the sampling outcome
but also the time taken to execute the simulation. The number of particles N should
be chosen to provide an appropriate particle density, which will depend on the vol-
ume of the sample space. Finally, users should avoid choosing too few intermediate
distributions when designing the SMC-S, as this was associated with poor algorithm
performance.

6.3 Sequential Monte Carlo with skipping in higher

dimensions

First, consider the rare-event sampling problem from Chapter 4: samples of power
disturbances were desired from R6 using the skipping sampler, with initial proposal
density q ∼ N (X,Σ) for some covariance matrix Σ ∈ R6×6. This implies the direc-
tion of the skipping chain is in fact sampled from a fixed distribution, independent
of the previous state. While this sufficed when the dimension was m = 6, sam-
pling skipping directions from a fixed distribution may be a sub-optimal strategy
for moving particles between connected components of Cn in high dimensions.

Instead, this sub-section presents the sequential Monte Carlo with non-fixed an-
gular skipping (SMC-AS), an amended SMC-S methodology intended to increase
the proportion of particles which successfully transition between regions of interest
in high dimensions. The SMC-AS algorithm employs a skipping sampler transition
kernel Kn where the skipping direction for each particle is sampled from an empiri-
cal distribution, which uses the locations of all particles to bias the directions of the
skipping chain. Such a skipping sampler formulation was proposed by the authors
of [76] and is discussed in Section 1.4. As a reminder, if the angular distribution
is non-constant, then the acceptance probability for the skipping sampler depends
additionally on the ratio of the angular densities as follows: if qφ(X,Φ) is the den-
sity of direction Φ from the state X, then for Φ = Y−X

|Y−X| , the required acceptance
probability is:

α(X, Y ) = min

(
1,
π(Y )qφ(Y,−Φ)

π(X)qφ(X,Φ)

)
, (6.8)

where Y is the proposed state from the skipping proposal.

123



6.3.1 Empirical angular distributions qφ(·, ·)
How to construct the empirical distributions qφ(·, ·) for particle X i

n will now be
addressed. At the start of each index n, SMC algorithms have a set of particles
{X i

n−1}i=1,...,N ∈ Cn−1, distributed approximately according to πn−1 due to resam-
pling. At index n, we sample the skipping direction for each particle X i

n−1 uniformly
from the set of directions between X i

n−1 and the perturbed regions of the N −1 par-
ticles {Xj

n−1}j ̸=i,j=1,...,N given by:

ϕij
n =

{
φij
n ∈ Sm−1 : φij

n =
Xj

n−1+ϵijn −Xi
n−1∣∣Xj

n−1+ϵijn −Xi
n−1

∣∣} for
i ∈ {1, . . . , N},

j ∈ {1, . . . , N}/{i}
, (6.9)

where ϵijn is, for example, Gaussian noise. Once particles are sufficiently dispersed
and Cn ≈ Cn−1, the idea is that this procedure increases the likelihood that a parti-
cle’s skipping trajectory φij

n allows its skipping chain to intersect another component
of Cn.

Since the SMC methodology given in Algorithm 8 can be specified by the choice
of {πn, Kn, Ln}, the SMC-AS algorithm can be understood as an SMC algorithm
with: a sequence of distributions πn with supports Cn for n = 1, . . . , d, (see (6.6));
Ln is given by Equation (6.4); and the transition kernel Kn being the skipping
sampler, where the angular density is the non-fixed, empirical distribution qnφ(·, ·)
and the radial jump density is Rk ∼ U[a, b] for parameters a, b ∈ R+ and b > a.
Note that the acceptance probability (1.22) also requires the calculation of qnφ(Y i

n, ·)
for each proposal Y i

n.

6.3.2 Numerical Results for the SMC-AS

We evaluate the performance of an SMC-AS algorithm by drawing samples from a
target density π = ρ1C

ρ(C)
where ρ ∼ U[−400, 400]m and support C = ∪4

i=1Bi(A) where
Bi(A) = {x ∈ Rm : ||x − vi|| ≤ A}, disjoint hyper-spheres with identical radius A
and centres vi given by the ith row of the matrix V :

V ∈ R4×m =


200 200 200 ... 200

−200 −200 −200 ... −200

−200 200 −200 ... 200

200 −200 200 ... −200


Similar to the methodology used in Section 6.2.1, the target density and spacial

distribution of the hyper-spheres were chosen to ensure that Eπ(X) = [0, . . . , 0] ∈
Rm. As the dimension of the sample space increases, so too does the volume and,
by the construction of C, so does the Euclidean distance between its connected
components. To compensate for this, we increase the number of particles N as m
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increases. An SMC-AS algorithm is implemented to sample from π as follows: N
particles are sampled from an initial distribution ν ∼ N ([50, . . . , 50] ∈ Rm, 3002×Im)
where Im is the m × m identity matrix. The distribution of ν0 was intentionally
designed to be different from ρ in terms of centrality and dispersion so to discern if
the SMC-AS methodology truly transitions particles from ν0 to π. The intermediate
distributions πn have supports ∪4

i=1Bi(An) with hyper-sphere radii given by An =

1.1− 0.1n for n = 1, . . . , 7. The initial radius A1 is selected so the volume of C1 is
80% of the volume of the domain E := [−400, 400]m.

The transition kernels Kn for the SMC-AS are specified below:

1. A skipping sampler kernel with target πn, where the skipping direction is
sampled uniformly from an empirical angular distribution given in (6.9) with
ϵij ∼ N (0 ∈ Rm, 0.001× Im) is intended to perturb the positions of Xn−1

j for
j ̸= i. The unconditional radial jump density is given by U[15, 20].

2. A skipping sampler kernel as described in (1) above but iterated 20 times (for
distinction, this is denoted SMC-AS20).

As a benchmark, these results are compared to the following:

(i) A skipping sampler algorithm, with halting regime of K = 100, an underlying
Gaussian proposal with covariance matrix given by s× Im where s ∈ R+ was
adjusted to yield an acceptance rate of approximately 25%.

(ii) A random-walk Metropolis algorithm with Gaussian proposal function with
covariance matrix given by f × Id where f was adjusted achieve an acceptance
rate of approximately 25%.

(iii) An SMC-S algorithm with underlying Gaussian proposal distribution with
symmetric covariance matrix tuned to generate an approximate 25% accep-
tance ratio and a fixed halting regime K = 100. The number of particles is
presented in Table 6.4

Each algorithm was run for 30 independent simulations, allowing inferences about
the distribution of the sample means. The results from these algorithms are detailed
in Table 6.4. The table also records the transition rate which is the proportion of
accepted moves which resulted in a transition between the four different connected
components of C.
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Table 6.4: Comparison of the performance of sampling algorithms as the dimension m of the sample space increases. Key: MH- Metropolis-
Hastings algorithm; MH-S- skipping sampler; SMC-S: SMC algorithm with skipping transition kernel; SMC- AS: SMC algorithm with a skipping
sampler transition kernel which samples the skipping direction from an empirical distribution; SMC-AS20: SMC-AS algorithm with 20 skipping
proposals; AED: the average of the Euclidean distances between the sample means µ̂ and Eπ(X); the average distribution of samples reports
the proportion of elements in the final samples in each component of C.

m Statistic RW-M MH-S SMC-S SMC-AS SMC- AS20

2

No. of
Particles/Proposals 140,000 140,000 20,000 20,000 20,000

AED 145.23 3.91 6.11 5.02 3.15
Avg. distribution
of samples [0.15, 0.14, 0.49, 0.22] [0.25, 0.24, 0.24, 0.27] [0.22, 0.26, 0.27, 0.26] [0.25, 0.23, 0.25, 0.27] [0.25, 0.24, 0.26, 0.25]

Avg. transition
rate 0.01% 9.1% 23.1% 41.3% 66%

Avg. time taken 116s 469s 381s 532s 2001s

5

No. of Particles 280,000 280,000 40,000 40,000 40,000
AED 882.8 29.1 20.6 11.2 9.4
Avg. distribution
of samples [0.41, 0.59, 0, 0] [0.25, 0.25, 0.26, 0.24] [0.25, 0.24, 0.24, 0.26] [0.21, 0.23, 0.28, 0.28] [0.25, 0.25, 0.26, 0.24]

Avg. transition rate 0.02% 0.7% 26.3% 59.1% 65.4%
Avg. time taken 201s 449s 785s 920s 9287s

10

No. of Particles 350,000 350,000 50,000 50,000 50,000
AED 1,831.1 1,723.6 682.8 422.0 21.4
Avg. distribution
of samples [0.48, 0.52, 0, 0] [0.51, 0.49, 0, 0] [0.17, 0.21, 0.11, 0.51] [0.19, 0.39, 0.20, 0.22] [0.25, 0.25, 0.26, 0.24]

Avg. transition rate 0.1% 2.3% 27.3% 34.2% 63.7%
Avg. time taken 291s 776s 909s 2,413s 32,148s
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We evaluate the results summarised in Table 6.4 in a pairwise manner. Firstly,
we briefly comment on the results of the random-walk Metropolis (RW-M) and
skipping sampler (MH-S) algorithms: for all dimensions investigated, the MH-S
algorithm produced samples with lower average Euclidean distances (AED) between
the sample means µ̂ and Eπ(X), higher average transition rates and samples which
are uniformly distributed between the four components of C when m = 2 and m = 5.
As discussed in Section 6.2.1, the skipping sampler’s ability to traverse the region Cc

improves global exploration and permits higher transition rates between connected
components. However, the MH-S was unable to generate samples from components
three or four when m = 10. This suggests that increasing the displacement of each
proposal via skipping may be insufficient to effectively sample connected components
in higher dimensions, due to the additional challenge of generating a direction Φ

which allows the skipping chain to intersect with a component of C. This limits the
number of transitions and traps the chain in one or few connected components.

The potential contribution of the SMC methodology to sampling in higher di-
mensions can be inferred by comparing the results of the MH-S and sequential Monte
Carlo with skipping (SMC-S) algorithms. While both algorithms move particles us-
ing a skipping sampler kernel where the skipping direction is sampled from a fixed
distribution, the SMC-S algorithm moves multiple particles {X i

n}i=1,...,N through a
sequence of carefully constructed distributions πn for n = 1, . . . , d. With reference
to Table 6.4, the SMC-S algorithm generated higher transition rates and samples
with lower AED than the MH-S algorithm in all dimensions. Furthermore, skip-
ping multiple particles via intermediate distributions was clearly advantageous when
m = 10, as the SMC-S was able to generate samples in each component of C, un-
like the MH-S. Under the SMC-S methodology, the initial intermediate distributions
πn and supports Cn are constructed to allow particles to easily transition between
components. However, as n increases and Cn concentrates on C, the separation
between components increases, potentially trapping particles in local modes. This
phenomena may be exacerbated in higher dimensions when skipping directions are
sampled from a fixed distribution, due to the aforementioned additional challenge
of sampling an appropriate direction to intersect with other components of C. This
is observed for the SMC-S when m = 10- while the SMC-S draws samples from all
four components of C, it is clear most samples are localised in component four.

To overcome the challenge of directional sampling in higher dimensions, the
SMC-AS algorithm instead samples each particle’s skipping direction from a data-
driven, empirical distribution qφ(·, ·) described in Section 6.3.1. Comparing the
results of the SMC-AS algorithm to those of the SMC-S algorithm, the results in Ta-
ble 6.4 indicate the SMC-AS generated samples with smaller AEDs and higher tran-
sition rates than the SMC-S in each dimension investigated. Focusing on m = 10,
the average distribution of samples generated by the SMC-AS algorithm was more
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evenly distributed across the components of C than those generated by the SMC-S,
indicative of improved sampling results in higher dimensions. The SMC-AS infers
information about the distribution of the connected components of Cn from the rel-
ative positions of particles at index n− 1. It then uses this information to construct
the empirical distributions qφ(·, ·) which biases sampled skipping directions to those
which are more likely to intersect with other components of Cn. As the primary
methodological difference between the SMC-S and SMC-AS algorithms is the lat-
ter’s use of the empirical angular distributions, this comparison strongly suggests
their use is directly associated with increased transition rates and provides an effec-
tive mechanism by which to tackle the challenge of directional sampling in higher
dimensions.

Finally, to evaluate the effect of using an SMC-AS algorithm with multiple in-
stances of the skipping sampler kernel, we compare the outcomes of the SMC-AS to
those of the SMC-AS20, which uses twenty instances of the skipping sampler tran-
sition kernel. On average, the distribution of samples generated by the SMC-AS20
appears to be evenly distributed among all components of C in each dimension in-
vestigated. Additionally, when m = 10, the SMC-AS had an AED statistic of 422
and an average transition rate of 34.2%, while the SMC-AS20 had an AED of 21.4
and an average transition rate of 63.7%, indicating a significant improvement in
sampling performance. To understand the higher transition rate of the SMC-AS20,
first consider the SMC-AS; after a single instance of the skipping sampler transition
kernel, if a particle’s trajectory did not intersect with any component of Cn, then
Y i
n = X i

n−1 is returned, potentially trapping that particle in the current component
of Cn. However, when multiple instances of the skipping sampler kernel are em-
ployed, it is more likely that at least one instance has transitioned the particle to a
new component of Cn, increasing the likelihood that the resulting Y i

n is in a different
component.

6.4 Discussion

The results of this chapter suggest that sampling the skipping direction from an
empirical distribution derived from the distribution of particles may be a more ef-
fective mechanism to move particles between well-separated modes of π in high
dimensions. In particular, the results suggest the distribution of particles provides
useful information about the geometry of Cn at index n, which may be exploited
by a transition kernel with data-driven sampling of skipping directions to increase
the transition rate of particles. In the absence of a priori information about the
geometry of Cn, this methodology may provide an advantage over algorithms which
sample the proposal direction from a fixed distribution. However, implementation
of the SMC-AS20 is constrained by the significant increase in computation time
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required to construct distributions qφ(X i
n, ·) and qφ(Y, ·) for each particle and each

proposal, which increases quadratically with the number of particles. While this
increase in execution time can be partially mitigated as the SMC-AS is easily par-
allelised in implementation, this additional computational effort must be considered
when choosing the parameters for the algorithm, such as the number of particles N ,
the number of proposals for the skipping sampler transition kernel and the number
of intermediate distributions.

Collectively, the family of SMC-S algorithms investigated in this chapter pro-
vides an intriguing methodology to tackle challenging rare-event sampling problems,
allowing the user to benefit from the advantages of sequential sampling of interme-
diate distributions and non-local exploration of the sample space by the skipping
sampler. In high dimension problems, using the current distribution of particles to
inform the transition kernel has been demonstrated in this chapter to improve sam-
pling outcomes when compared to previously mentioned Metropolis-Hastings and
also to other SMC routines. As such, there is scope for further investigation and
development of this methodology.
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Chapter 7

Conclusion

This thesis explored various applications of the Metropolis-class skipping sampler
algorithm, which was designed to draw samples from a desired set C ⊂ Rd which may
be disjoint and well-separated. Such problems are commonly encountered in risk and
reliability studies in power systems, where other random-walk Metropolis-Hastings
algorithms are likely to become trapped in local modes, leading to unrepresentative
samples. Instead, we demonstrated the skipping sampler was able to transition
between connected components of C by updating the initial proposal in a linear
fashion until C is entered or updates are halted.

With the relative advantages of the skipping sampler established, it was used
to sample adverse rare-events of critical importance in power systems with high
penetration of low-inertial, renewable energy sources. To achieve this, we devel-
oped a novel power system model based on the third order model, which included
dynamics for network frequency, voltage, generator governor action and automatic
voltage regulation (AVR). Critically, the power system model also modelled the
activation of frequency-related protection systems, including the disconnection of
transmission lines, generators and loads due to large frequency deviations. This
novel power system model was initially used to map the activation of frequency-
related protection systems to the magnitude and spatial distribution of random
power disturbances within general, stylised network topologies. Power disturbances
were modelled as correlated power injections, intended to represent forecast errors
in the scheduled generation from renewable energy sources, induced by, for example,
exogenous weather phenomena. As many weather events can be non-local in nature,
they can induce correlated forecast errors in renewable power generation across large
portions of the power grid.

Chapter 3 paired the novel power system model with a Monte Carlo method-
ology to draw samples of power disturbances which led to a network failure- the
disconnection of lines, loads or generators, while recording the number of such ac-
tivations - the cascade size. It was revealed that in highly connected networks, the
distribution of cascade sizes was bi-modal- replicating similar findings in the lit-
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erature and validating the novel power systems model. With respect to network
connectivity, highly connected networks were shown to be more resilient, requiring
disturbances with larger average magnitudes to generate cascades of similar size
to those in sparsely connected networks. However, large disturbances at a single
node in highly connected networks can have global effects, leading to large cascade
sizes across the network. Conversely, the effect of large power disturbances at a
single node in sparsely-connected were primarily local, constrained by the limited
connectivity of the network.

A subsequent comprehensive analysis was conducted to investigate the effects
of correlated power disturbances on a more realistic network, and to understand
how battery energy storage systems (BESS) can reduce the size of cascades. This
investigation summarised in Chapter 4 employed the novel power system model
described in Chapter 2, along with models for a fast-response BESS and network
automatic generation control (AGC) for frequency regulation. This power system
model was applied to the Kundur Two-Area network, an IEEE test network based
on the Australian power grid. Again, we aimed to sample power disturbances which,
when applied to the power system network, led to an adverse frequency event in the
network. As a BESS was expected to improve the resilience of the network against
power disturbances, adverse frequency events were expected to be rare, rendering
Monte Carlo sampling inefficient. To overcome this challenge, we instead employed
the skipping sampler to draw samples of relevant power disturbances. The results of
this study highlighted the benefits of battery systems with maximum power output
of 50MW - 400MW to reduce the severity of adverse frequency events following
power disturbances. However, for storage systems with higher power outputs, the
inter-area transmission lines became increasingly vulnerable to excess power flows
induced by the battery’s response to large power disturbances. This triggered the
lines’ disconnection at a critical point of power instability, leading to a cascade of
multiple failures in both areas. Additionally, when BESS power outputs exceed
400MW, the frequency regulatory role of battery units as governed by an AGC unit
can exacerbate adverse frequency events when random power disturbances correlate
with the AGC commanded state of the battery.

The results of these studies highlight the high-impact consequences of forecast
errors in renewable energy generation schedules in modern power systems which are
increasingly reliant on intermittent wind and solar energy sources. This motivates
the urgent need for additional research into the effects of such renewables-induced
power disturbances. Direct extensions of the current work can include evaluating
the impact of power disturbances and the mitigating benefits of battery storage on
larger, more complex networks, from which inferences about modern power systems
can be easily drawn. Other extensions also include incorporating the results of
recent empirical studies which revealed frequency deviations induced by renewable
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power injections have non-Gaussian distributions [97]. Additional research is also
needed to investigate the optimal spatial distribution BESS units in a network to
mitigate the risk of frequency excursions and large contingencies in networks with
high penetration of distributed renewable generation.

Beyond risk-assessment analyses, this thesis explored how the skipping sampler
can be applied to the area of global stochastic optimisation, which is routinely used
to aid decision-making in the energy industry, as they account for the uncertainties
inherent to energy balancing, economic planning and dispatch decisions. Specifically,
Chapter 5 explored basin hopping with skipping (BH-S), an algorithm for global non-
convex optimisation which replaced the random-walk perturbation step of the BH
routine with the skipping sampler.

We compared the effectiveness and efficiency of the BH-S algorithm to those
of the basin-hopping (BH) algorithm when applied to locate the global minima of
various energy landscapes from the global optimisation literature. This investiga-
tion revealed two, general classes of energy landscapes based on the relative perfor-
mance of the BH-S and BH algorithms. First, energy landscapes where performance
favoured the BH-S algorithm were those where the basin containing the global min-
imum was well-separated from other local minima. In such landscapes, improved
global exploration promoted by the skipping perturbation allowed the algorithm to
locate the global minimum basin in less time, while the BH algorithm consistently
became trapped in local minima as the separation of basins made direct transitions
between modes by the random-walk perturbation unlikely. Secondly, landscapes
where performance favoured the BH were those with topologies where the skipping
perturbation was not required or unsuited to locate the global minimum basin, in-
cluding bowl-like topologies and those where the basin of the global minima was
almost point-like. On such landscapes, the skipping perturbation did not contribute
to locating the global minimum, leading to lower effectiveness and efficiency.

Chapter 5 concluded by discussing approaches to tuning the BH-S algorithm, as
well as areas for future research, including exploring the use of multiple, interacting
skipping chains for the perturbation step, inspired by a particle swarm approach.
Additionally, given the BH-S improved ability to explore an energy-landscape to
locate well-separated modes, a promising future application of the BH-S algorithm
is to the field of molecular chemistry and the problem of metastability, where much
emphasis is placed on efficiently escaping local, metastable regions of an energy
function by transitioning across large energy barriers to locate the true minimum
state of a system.

Finally, as intermittent renewable energy sources increase in prevalence in mod-
ern power systems, evaluating high impact, low probability events necessitate mod-
elling a large number of stochastic variables. Therefore, rare-event analyses of such
systems will be high-dimension problems, which, as noted by the literature, poses a
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significant challenge for MCMC algorithms, including the skipping sampler. When
C is connected and well-separated in higher dimensions, it becomes increasingly un-
likely sampled skipping trajectories will intersect with any component of C. With
the aim of improving sampling results in Rd, we conducted an empirical study of the
sequential Monte Carlo with skipping (SMC-S) algorithms, which pair the skipping
sampler with a sequential Monte Carlo (SMC) algorithm, hence evolving a popu-
lation of particles rather than just one. This methodology exploits the fact that
at each stage of an SMC algorithm, the current population of particles contains
information about the geometry of C.

In a similar approach taken to develop the BH-S algorithm, the SMC-S algo-
rithms employ the skipping sampler as the transition kernel for an SMC algorithm
to facilitate global exploration and draw samples from connected components of in-
terest in Rd. Specifically, using the current spatial distribution of particles to infer
the geometry of C, the skipping sampler transition kernel samples the skipping tra-
jectory for each particle from an empirical distribution which biases each particle’s
trajectory to those which are more likely to intersect with disjoint components of
C. Simulations reveal SMC-S algorithms significantly improve the rate at which
particles transition between regions of interest in Rd, leading to improved sampling
outcomes when compared to MCMC and other SMC routines.

However, while SMC-S algorithms exhibit improved exploration of Rd, this is
at the cost of increased computational time required for evaluation. Additional
research in this area should focus on developing heuristic guidelines to improve
algorithmic efficiency and reduce computational efforts. Another potential extension
is to utilise a multi-step approach where the SMC-S methodology is initially used to
infer the geometry of regions of interest in Rd from which an empirical distributions
for skipping trajectories can be constructed. The second step involves applying only
the skipping sampler algorithm, where the skipping trajectory is sampled from an
empirical distribution. The objective is to use the SMC-S gather information about
the geometry of the components of C from the distribution of particles, then use
this information to construct the empirical distribution from which trajectories for
a skipping sampler algorithm will be sampled. This provides the skipping sampler
with information about the geometry of C, and may reduce the number of operations
when compared to a full SMC-S operation.

Unlike traditional power grids which were centralised and easily controllable, 21st

century power systems will be characterised by a high proportion of renewable energy
sources (RES) which generate power intermittently, smart devices which regulate
power consumption and distributed energy storage which balance the system in real-
time. However, the design and operation of modern power systems must account for
greater uncertainty and complexity, necessitating specialised algorithms to conduct
risk assessments and support decision-making under uncertainty. In this thesis, we

133



provided a number of tools which can be employed to model high-RES networks,
and demonstrated how coupling power system simulators with specialised rare-event
samplers can yield insights about the risks posed by high RES penetration, and how
battery storage systems can be effectively applied to mitigate these effects. We can
therefore view the methodologies discussed in this thesis as another set of tools to
be used in the transition to carbon neutral energy systems, enabling stakeholders to
effectively design power systems which take advantage of the increasing capabilities
of clean, sustainable energy sources such as wind and solar based technologies.
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Chapter 8

Appendix

8.1 Appendix 1: Kundur two-area network case study

parameters

The following susceptance matrices describes the Kron-reduced Kundur Two Area
Network (KTAS) network before and after a line-tripping event. The susceptance
matrix depends on the indicator function Ω which changes from 1 to 0 when a line
trip occurs. The difference occurs in line 5-6, which is the inter-connector line of the
reduced network.

B(Ω) =



−18.9278 7.8461 0 0 12.9499 0

7.8461 −38.0413 0 0 32.5581 0

0 0 −19.0178 7.8461 0 12.9499

0 0 7.8461 −38.3713 0 32.5581

12.9499 32.5581 0 0 −52.1891 9.0982 · Ω
0 0 12.9499 32.5581 9.0982 · Ω −50.6891


.

Table 8.1: Table of parameters used for Kundur’s two-area network in simulations
for Chapter 4

Sym.Meaning Value Units
δ(0) Electrical Phase Angle (nodal; t = 0) {0.4, 0.2,−0.1,−0.3,−0.1,−0.5} [rad]
δ̇(0) Rotor Angular Velocity (nodal; t = 0) {0, 0, 0, 0, 0, 0} [s−1]
δ̈(0) Rate of Change of Frequency (nodal; t= 0) {0, 0, 0, 0, 0, 0, } [s−2]
v(0) Voltages (nodal; t= 0) 230 kV
ρ(0) Initial Governor Contribution to Power {0, 0, 0, 0, 0, 0} [MW ]

PG Initial Generator Power (nodal; t= 0) {735, 735, 735, 735, 0, 0} [MW ]

PL Initial Loads (nodal; t= 0) {100, 100, 50, 50, 967, 1, 767} [MW ]

D Load Damping Factor 2 [%]
Td Transient Time constant 8 [s]
E0 Rotor Field Voltage 20 [kV]
L Equivalent Machine Reactance Xd −X

′

d {1.07, 1.07, 1.07, 1.07, 1.07, 1.07} ohms
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Sym.Meaning Value Units
W Governor Deadband Frequency Range [59.95, 60.05] [Hz]
A Governor Droop Response 2 MW/∆f

Battery parameters
Bm Maximum Battery Power Bm ∈ {0, 100, 200, ..., 1000} MW
Br Maximum Battery Power 1

2B
m [MW]

for Regulation FCAS
b+ Initial Battery State Parameter 1 %
T b AGC Signal Interval 4 s
F d Battery Deadband Deviation 0.05 [Hz]
Fn Emergency FCAS Frequency Deviation 0.15 [Hz]
Fm Frequency deviation associated with 1 [Hz]

Maximum Battery Power
AVR parameters

T s Sensor Time Constant 0.05 [s]
Ks Sensor Gain Constant 1
T a Amplifier Time Constant 0.1 [s]
Ka Amplifier Gain Constant 10
T e Exciter Time Constant 1 [s]
Ke Exciter Gain Constant 10

Protection system parameters
F+ OFGS Threshold 62 [Hz]
G RoCoF Trip Threshold 3 [Hzs−2]

F− Progressive UFLS Thresholds {59.5, 59, 58.5, 58, 57.5} [Hz]
Pϕ Line Trip Power Flow Deviation Threshold 510 [MW]
Tϕ Line Trip Relay Delay 4 [s]

Generator and line data
Pm Maximum Generator Power 900 [MW]
M Generator Angular Momentum {0.3104, 0.3104, 0.2948, 0.2948} [Ws2]
Xd Transient Reactance 4.05 [ohms]
X

′

d Sub-transient Reactance 2.93 [ohms]
B line susceptances see Matrix above [siemens]

Table 8.2: Generator Data for Kundur’s two-area network: 900 MVA, 20kV base

Generator Rating Xd X
′

d T
′

d0 H
(MVA) (pu) (pu) (s) (s)

G1 900 1.8 0.3 8 6.5
G1 900 1.8 0.3 8 6.5
G1 900 1.8 0.3 8 6.175
G1 900 1.8 0.3 8 6.175
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Table 8.3: Transmission Network Data for Kundur’s two-area network: 100 MVA,
230kV base [57]

From To R X B
Bus Bus (pu) (pu) (pu)

1 5 0 0.15/9 0
2 6 0 0.15/9 0
3 11 0 0.15/9 0
4 10 0 0.15/9 0
5 6 25×0.0001 25×0.001 25×0.00175
10 11 25×0.0001 25×0.001 25×0.00175
6 7 10×0.0001 10×0.001 10×0.00175
9 10 10×0.0001 10×0.001 10×0.00175
7 8 110×0.0001 110×0.001 110×0.00175
7 8 110×0.0001 110×0.001 110×0.00175
8 9 110×0.0001 110×0.001 110×0.00175
8 9 110×0.0001 110×0.001 110×0.00175

8.2 Appendix II: Performance comparison of basin-

hopping and basin-hopping with skipping algo-

rithms

Table 8.4 records the results for all landscapes in Figure 5.1. For each landscape,
both BH and BH-S were hand tuned in order to maximise their efficiency as defined
in Section 5.3.1. The following notation is used:

• ρc and ρs are the effectiveness of BH and BH-S respectively;

• ϵc and ϵs are the efficiency of BH and BH-S respectively;

• υ1 is the expected mean jump distance among random walk steps;

• υs is the expected mean jump distance among skipping transitions, i.e., when
k > 1;

• Ps is the probability that, conditional on the BH-S perturbation being ac-
cepted, skipping had occurred (k > 1);

• ν1 and νs are the expected mean jump distances among random walk steps
(k = 1) and skipping steps (k > 1), respectively.
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Table 8.4: Performance metrics for the BH and BH-S algorithms on all landscapes
in Figure 5.1.

BH BH-S
Function σ ρc ϵc ν1 σ K ρs ϵs ν1 νs Ps

Carrom Table

2 99.8 556 1.5
√
2 10 100 925 2.9 9.4 86.8

Cross in Tray

2 96.5 446 1.7
√
2 10 100 676 2.7 9.3 85.1

Cross Leg Table

0.4 15.5 48 0.8
√
2 10 12.7 45 1.8 6.6 45.7

Damavandi

0.1 0.2 3 0.5 0.3 150 32.9 28 N/A 34.9 100

Eggcrate

1 99.7 377 1 1 10 99.7 647 1.9 7.6 94.8

Egg-holder

100 2.2 13 12.5 10 25 38.7 116 7.1 178.1 98.6

El Attar Vidyasagar Dutta
EAVD

8 99.6 231 3.2 5 10 63.4 393 4.8 5.8 39.3

Freudenstein-Roth

2 82.6 176 1.6
√
2 10 97.2 551 4.9 11.3 99.5
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BH BH-S
Function σ ρc ϵc ν1 σ K ρs ϵs ν1 νs Ps

Holder Table

2 99.8 453 1.4
√
2 10 100 695 2.4 9.1 82.4

Keane

2 47 272 1.8 0.9 25 53.6 301 1.6 12.4 96.6

Mishra-03

2 65.9 56 1.8
√
2 10 5.4 17 1.6 12.1 96.7

Modified Rosenbrock

0.4 5.3 1 0.8 0.4 25 83.8 31 N/A 7.7 100

Price 02

2 44.4 234 1.8 0.9 25 60.6 208 N/A 17.1 100

Rana

200 5.5 13 17.6 5 75 20.5 18 1.8 224.5 98.5

Rosenbrock

0.2 99.3 149 0.6 2 10 100 695 N/A N/A 0

Schwefel-07

10 4.1 38 4 7 25 61.9 275 N/A 181.6 100

Styblinski Tang

1 99.6 537 1.2 1 10 100 840 N/A 8.7 99.8
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BH BH-S
Function σ ρc ϵc ν1 σ K ρs ϵs ν1 νs Ps

Whitley

0.4 86.4 121 0.7 0.7 50 31.8 21 0.6 17 37.7

Zirilli

0.2 99.9 707 0.6
√
2 10 97.9 987 1.9 5.3 49.4
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