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Abstract

We compare the canonical bases of level-1 quantised Fock spaces in affine types A(1) and A(2),
showing how to derive the canonical basis in type A(2)

2n from the the canonical basis in type A(1)
n

in certain weight spaces. In particular, we derive an explicit formula for the canonical basis in
extremal weight spaces, which correspond to RoCK blocks of double covers of symmetric groups.
In a forthcoming paper with Kleshchev and Morotti we will use this formula to find the decom-
position numbers for RoCK blocks of double covers with abelian defect.
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9 RoCK blocks of symmetric groups and their double covers 34

1 Introduction

This paper is motivated by the decomposition number problem for the symmetric groups and their
double covers in characteristic p. Although a solution to this problem seems a long way off, several
important results are known. One of these results gives the decomposition numbers for RoCK blocks
of symmetric groups; these are particularly well understood blocks which have been used in a variety
of applications. The formula for the decomposition numbers for RoCK blocks in the abelian defect
case was given by Chuang and Tan [CT2], and results of Turner [T] allow these results to be extended
to RoCK blocks with non-abelian defect groups.

It is natural to seek analogous results for the double cover Ŝn of the symmetric group (which
controls projective representations of Sn). The case of characteristic 2 behaves very differently (and
is dealt with in [F3]), so we concentrate here on odd characteristic. The representations of Ŝn which
do not descend to representations of Sn are called spin representations of Sn, and the blocks of Ŝn
containing spin representations are called spin blocks. RoCK blocks for symmetric groups can be
characterised as elements of the maximal equivalence class of blocks under the Scopes equivalence
[S] on blocks of symmetric groups. The Scopes–Kessar equivalence [Ke] for spin blocks of double
covers suggests a natural analogue of RoCK blocks, and this can be realised in a combinatorial way
using the abacus. These blocks have recently been studied in detail by Kleshchev and Livesey [KlL],
who prove Broué’s abelian defect group conjecture for RoCK blocks. This has been used even more
recently by Brundan and Kleshchev, and independently by Ebert, Lauda and Vera, to show that
Broué’s conjecture holds for all spin blocks [BK, ELV]. However, the results of Kleshchev and Livesey
do not directly address the decomposition number problem for spin RoCK blocks, and this is the
main focus here.

In this paper we address RoCK blocks by studying quantum algebra. Let U = Uq(A(1)
p−1) denote

the quantised universal enveloping algebra of the affine Kac–Moody algebra of type A(1)
p−1. The level-1

Fock space is a highest-weight U-module with a simple combinatorial construction in terms of integer
partitions. The submodule generated by a highest-weight vector is isomorphic to the irreducible
highest-weight module V(Λ0), so the Fock space provides a combinatorial framework for studying
V(Λ0); this approach has proved useful, for example, in constructing crystals. V(Λ0) possess an
important basis called the canonical basis, which provides a connection to representation theory of
symmetric groups and Iwahori–Hecke algebras, via the work of Lascoux–Leclerc–Thibon [LLT] and
Ariki [A], who showed that decomposition numbers for Hecke algebras of type A in characteristic
zero can be obtained by specialising canonical basis coefficients at q = 1. This means in particular that
these decomposition numbers can be calculated algorithmically. A further conjecture due to James
suggested that the same should apply for decomposition numbers of symmetric groups, in blocks
with abelian defect groups. James’s conjecture is now known to be false in general [W], but there are
a wide variety of situations where it is known to hold, and it has provided inspiration for results on
decomposition numbers. In particular, the formula due to Chuang and Tan [CT2] for decomposition
numbers for RoCK blocks of Sn was inspired by their earlier calculation of the canonical basis in
weight spaces corresponding to RoCK blocks, and shows in particular that James’s conjecture holds
for RoCK blocks.

An analogous connection to quantum groups for spin representations was found by Leclerc and
Thibon [LT], using the quantum group of type A(2)

p−1. This quantum group also acts on a combi-
natorially defined level-1 Fock space (now defined in terms of p-strict partitions), which possesses
an irreducible highest-weight submodule with a canonical basis. Leclerc and Thibon formulated an
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analogue of James’s conjecture for spin representations of Ŝn. This conjecture is also known not to
hold in general, but it does hold in many special cases, in particular all known cases of decomposi-
tion numbers for RoCK blocks. Motivated by this conjecture, the aim of the present paper is to find
the canonical bases for the weight spaces of the basic Uq(A(2)

p−1)-module corresponding to spin RoCK
blocks. Rather than directly determining the canonical basis, we deduce our result from the results
of Chuang–Tan by proving more general results comparing the canonical bases in types A(1) and
A(2): we show that if β is a restricted p-strict partition satisfying a particular additional condition
which says that the p-bar-core of β is large in a certain specific sense relative to the sum of the parts
of β divisible by p, then we can obtain the canonical basis element labelled by β from a correspond-
ing canonical basis element in type A(1) by an adjustment involving inverse Kostka polynomials.
In certain cases this allows the canonical bases for entire weight spaces to be computed, including
weight spaces corresponding to RoCK blocks. Combining this result with the Chuang–Tan formula
for RoCK blocks in type A(1) yields our main result (Theorem 8.2).

Combining our theorem with the Leclerc–Thibon conjecture (specialised to the case of RoCK
blocks), we arrive at a conjecture for the decomposition numbers for RoCK blocks (Conjecture 9.1).
In a forthcoming paper with Kleshchev and Morotti [FKM] we prove this conjecture.

Acknowledgement. This research was partly supported by EPSRC Small Grant EP/W005751/1.

2 Background

In this section we set out some background details on partitions and Fock spaces.

2.1 Elementary notation

We write N for the set of positive integers and N0 =N∪{0}. Given m ∈N, the set Z/mZ consists of
cosets a + mZ = { a + mb | b ∈ Z}. Given any set B ⊆ Z and a ∈ Z, we write B + a = {b + a | b ∈ B}.

2.2 Partitions

A partition is an infinite weakly decreasing sequence λ = (λ1, λ2, . . . ) of non-negative integers
which is eventually zero. When writing partitions, we omit the trailing zeroes and group together
equal parts with a superscript. The partition (0, 0, . . . ) is written as ∅. If λ is a partition, the integers
λ1, λ2, . . . are called the parts of λ. We write |λ| = λ1 + λ2 + · · · , and we say that λ is a partition of
|λ|. The length l(λ) is the number of non-zero parts of λ. We write P for the set of all partitions.

If λ is a partition and n ∈ N, then nλ is defined to be the partition (nλ1, nλ2, . . . ). If λ and µ are
partitions, then λ ⊔ µ is defined to be the partition of |λ|+ |µ| obtained by combining all the parts of
λ and µ in decreasing order.

The Young diagram of λ is the set {
(r, c) ∈ N2 ∣∣ c ⩽ λr

}
whose elements are called the nodes of λ. In general, a node means an element of N2. We use the
English convention for drawing Young diagrams, in which r increases down the page and c increases
from left to right. We abuse notation by identifying λ with its Young diagram; so for example we
may write λ ⊆ µ to mean that λr ⩽ µr for all r.

If λ is a partition, the conjugate partition λ′ is the partition obtained by reflecting the Young dia-
gram of λ in the main diagonal; that is, λ′

r = |{ c ∈ N | λc ⩾ r}|.
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The dominance order on partitions is defined by writing λ Q µ (and saying that λ dominates µ) if
|λ| = |µ| and λ1 + · · ·+ λr ⩾ µ1 + · · ·+ µr for all r.

We say that a node (r, c) of λ is removable if it can be removed from λ to leave the Young diagram
of a partition (that is, if c = λr > λr+1), and we write the resulting partition as λ \ (r, c). Similarly, a
node (r, c) not in λ is an addable node of λ if it can be added to λ to give a partition, and we write this
partition as λ ∪ (r, c).

Now fix an integer m ⩾ 2. We say that a partition λ is m-restricted if λr − λr+1 < m for all r. We
define the residue of the node (r, c) to be c − r + mZ. Given i ∈ Z/mZ, we use the term i-addable node
to mean “addable node of residue i”, and we define the term i-removable similarly. If λ and µ are

partitions, we write λ
i:r−→ µ to mean that µ is obtained from λ by adding r nodes of residue i. (In the

case r = 1, we just write λ
i−→ µ.)

We also need to define rim hooks and m-cores. The rim of a partition λ is the set of nodes (r, c) of
λ for which (r + 1, c + 1) is not a node of λ. A rim m-hook of λ is a set of m consecutive nodes of the
rim which can be removed to leave the Young diagram of a smaller partition. The m-core of λ is the
partition obtained by repeatedly removing rim m-hooks from λ until none remain, and the m-weight
of λ is the number of rim hooks removed to reach the m-core.

It is convenient in combinatorial representation theory to depict partitions using the abacus.
Keeping m fixed as above, we draw an abacus with m vertical runners labelled 0, . . . , m − 1 from
left to right. We mark positions on the runners, labelled 0, 1, 2, . . . from left to right along successive
rows from top to bottom.

Now given a partition λ, we choose a large integer s, and define the beta-set

Bs(λ) = {λr + s − r | 1 ⩽ r ⩽ s} .

Now draw the s-bead abacus display for λ by placing beads on the abacus in the positions correspond-
ing to all the elements of Bs(λ). In an abacus display, we will say that a position is occupied if there is
a bead at that position, and empty or unoccupied otherwise.

For example, suppose m = 4 and λ = (8, 7, 52, 2, 13). Choosing s = 9, we obtain the following
abacus display. (Whenever we draw an abacus display, we adopt the convention that all positions
below those depicted are empty.)

The abacus display for a partition is very useful in two ways.

(1) Given i ∈ Z/mZ, let a ∈ {0, . . . , e − 1} be such that i = a − s + mZ. Then i-addable nodes of
λ correspond to empty positions b on runner a such that position b − 1 is occupied (or b = 0),
while i-removable nodes correspond to occupied positions b ⩾ 1 on runner a for which position
b − 1 is empty.

(2) If position b⩾m is occupied while position b−m is empty, then moving the bead from position
b to position b−m corresponds to removing a rim m-hook from λ. This means in particular that
the abacus display for the m-core of λ can be obtained by moving all the beads up their runners
as far as they will go, and the number of bead moves needed to do this is the m-weight of λ.

We end with two combinatorial lemmas we will need later on. Given λ, µ ∈ P and r ∈ N0, we
write λ

r
⇝ µ to mean that µ is obtained from λ by adding r nodes in different columns. We want to

interpret this condition in terms of beta-sets; the next lemma follows easily from the definitions.
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Lemma 2.1. Suppose λ, µ ∈ P and r ∈ N0.

(1) λ
r
⇝ µ if and only if there is a set A ⊂ N with |A| = r such that µ is obtained from λ by adding

a part equal to a for each a ∈ A and then removing a part equal to a − 1 for each a ∈ A.

(2) Suppose s ∈ N is large. Then λ
r
⇝ µ if and only if there is a set A ⊂ N with |A| = r and A ∩

Bs(λ) = ∅ such that Bs(µ) = Bs(λ) ∪ A \ (A − 1).

We will also need the following lemma.

Lemma 2.2. Suppose π ∈ P with π ̸= ∅. Let k equal the last non-zero part of π, and let π− be the

partition obtained by removing this last part. If σ, ρ ∈ P with σ Q π− and σ
k
⇝ ρ, then ρ Q π, with

equality only if σ = π−.

Proof. Let σ+ be the partition obtained from σ by adding a node in each of the first k columns. Since
ρ is obtained from σ by adding nodes in some k different columns, it follows that ρ Q σ+. Also,
from the definition of the dominance order (and the fact that conjugation of partitions reverses the
dominance order) the condition σ Q π− implies that σ+ Q π. So ρ Q π, and in order to get equality
we need σ+ = π, which is the same as σ = π−.

2.3 h-strict partitions

Now suppose h ⩾ 3 is odd. We say that a partition is h-strict if there is no r for which λr = λr+1 ̸≡
0 (mod h). We write P (h) for the set of all h-strict partitions. We will generally use letters near the
start of the Greek alphabet for h-strict partitions. We define the bar-residue of a node (r, c) to be the
smaller of the residues of c − 1 and h − c modulo h; so the bar-residue of a node depends only on the
column in which it lies, and the bar-residues follow the pattern

0 1 2 · · · h−1
2

h+1
2

h−1
2 · · · 2 1 0 0 1 2 · · ·

from left to right. A node of an h-strict partition λ is bar-removable if it can be removed from λ,
possibly together with some other nodes of the same bar-residue, to leave an h-strict partition. Given
i ∈ {0, . . . , h+1

2 }, an i-bar-removable node means a bar-removable node of bar-residue i. We define bar-
addable and i-bar-addable nodes in a similar way. Note the distinction between removable nodes
and bar-removable nodes. For example, if h = 5 and α = (6, 2, 1), then (2, 2) is removable but not
bar-removable, while (1, 5) is bar-removable but not removable. This can be seen from the following
diagram, in which we label the nodes with their bar-residues.

0 1 2 1 0 0
0 1
0

If α and β are h-strict partitions, we write α
i:r
=⇒ β to mean that β is obtained from α by adding r

nodes of bar-residue i. (In the case r = 1, we just write α
i

=⇒ β.)
Now we define the analogue of m-cores. If α is an h-strict partition, then removing an h-bar from

λ means either

⋄ replacing a part αr ⩾ h with αr − h (provided either αr ≡ 0 (mod h) or αr − h is not a part of α)
and reordering, or

⋄ deleting two parts which sum to h.
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The h-bar-core of α is the h-strict partition obtained by repeatedly removing h-bars until it is not
possible to remove any more, and the h-bar-weight of α is the number of h-bars removed.

We also use abacus displays for h-strict partitions (though we call them bar-abacus displays). In
this paper, we use the convention employed by Kleshchev and Livesey [KlL] (a different version
of the abacus for h-strict partitions was introduced in [Y, F4]). We take an abacus with h vertical
runners labelled 0, . . . , h− 1 from left to right, with positions 0, 1, 2, . . . marked from left to right along
successive rows. Given an h-strict partition α, we place a bead on the abacus at position αr for each r.
In particular, on runner 0 there can be more than one bead in a given position, and we regard position
0 as containing infinitely many beads. We call the resulting configuration the bar-abacus display for α.
We will use white beads when drawing bar-abacus displays, and we will decorate a bead on runner
0 with a ∈ N∪ {∞} to indicate that there are a beads at that position.

For example, if h = 5 and α = (18, 12, 102, 9, 7, 6, 2), we obtain the following bar-abacus display.

∞

2

As with abacus displays, bar-abacus displays are useful for visualising some of the combinatorial
concepts described above for h-strict partitions.

(1) Suppose i ∈ {1, . . . , n}. Then i-bar-addable nodes of α correspond to empty positions b on
runner i + 1 or runner h − i for which position b − 1 is occupied, and i-bar-removable nodes
correspond to occupied positions b on these runners for which position b− 1 is empty. A similar
but more complicated statement holds for i = 0.

(2) Removing an h-bar from α corresponds to either moving a bead from position b ⩾ h to position
b − h (which must be empty if b ̸≡ 0 (mod h)), or removing beads from positions i and h − i for
some i ∈ {1, . . . , n}.

2.4 The Fock space in type A(1)

Now we introduce some quantum algebra. To begin with, for any r ∈ N and an indeterminate x,
we define the quantum integer [r]x = (xr − x−r)/(x − x−1) and the quantum factorial [r]!x = [r]x[r −
1]x . . . [1]x.

Now fix an integer m ⩾ 2 and an indeterminate q. We define Um to be the quantum group
Uq2(A(1)

m−1) defined over C(q), with standard generators ei, fi, ti for i ∈ Z/mZ. We define U−
m to be

the negative part of Um, generated by { fi | i ∈ Z/mZ}. Note in particular that we define Um with
quantum parameter q2 rather than q; this will make the comparison with the Fock space of type A(2)

easier.
We will be working with the level 1 Fock space for Um, which we denote F . This was introduced

by Hayashi [Ha], but we use the combinatorial description given by Mathas in [Mat]. The Fock space
F is a C(q)-vector space with the set P of all partitions as a basis, which we call the standard basis.
We write ( , ) for the inner product on F for which the standard basis elements are orthonormal.

Each λ is a weight vector, i.e. a simultaneous eigenvector for the generators ti. We will not need
to describe the weights explicitly, but we note that two standard basis vectors λ and µ have the same
weight if and only if λ and µ have the same m-core and m-weight.

For the purposes of this paper we only need to describe the action of the divided powers f(r)i =

fr
i /[r]

!
q2 on the standard basis. Recall that we write λ

i:r−→ µ if µ is obtained from λ by adding r nodes
of residue i. If this is the case, n(λ, µ) to be the sum, over all nodes a of µ \ λ, of the number of
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i-addable nodes of µ to the left of a minus the number of i-removable nodes of λ to the left of a. Now
the action of f(r)i on F is defined by

f(r)i λ = ∑
µ∈P

λ
i:r−→µ

q2n(λ,µ)µ.

(Note in particular the factor of 2, which arises because we take the defining quantum parameter of
Um to be q2, not q.)

We will often read the coefficient n(λ, µ) from the abacus display for λ. To do this, we recall from
above that on an s-bead abacus display for λ, the addable and removable i-nodes can be read by
looking at runners a and a − 1, where i = a − s + nZ; addable and removable nodes further to the left
correspond to positions higher up these runners.

For example, suppose m = 3 and λ = (6, 5, 4, 12), and take i = 1 + 3Z and r = 2. Then λ has three
i-addable nodes (2, 6), (4, 2) and (6, 1), and one i-removable node (3, 4). So we obtain

f(2)i λ = (6, 5, 4, 2, 12) + (62, 4, 13) + q2(62, 4, 2, 1).

We can see this calculation from the following abacus displays, where i-addable and -removable
nodes can be seen on the two leftmost runners.

λ (6, 5, 4, 2, 12) (62, 4, 13) (62, 4, 2, 1)

Now we come to the canonical basis. Let Vm denote the U−
m -submodule generated by ∅ (which is

in fact also the Um-submodule generated by ∅). This is an irreducible highest-weight module for Um
with highest weight Λ0, and admits an important involution v 7→ v called the bar involution. This is
C(q + q−1)-linear, and can be defined on Vm by the properties

∅ = ∅, fiv = fiv for i ∈ Z/mZ.

We say that an element v ∈ Vm is bar-invariant if v = v. The above properties imply that any C(q +
q−1)-linear combination of vectors of the form fi1 . . . fir∅ is bar-invariant.

The bar involution allows us to define the canonical basis of Vm, which is the main object of study
in this paper. This basis is written {Gm(µ) | µ an m-restricted partition}, and the canonical basis
vectors Gm(µ) have the following properties (which are sufficient to define them uniquely).

⋄ Gm(µ) is bar-invariant.

⋄ Gm(µ) has the form ∑λ dλµ λ, where dµµ = 1 and dλµ is a polynomial divisible by q2 for λ ̸= µ.

⋄ If λ and µ are partitions and µ is m-restricted, then dλµ = 0 unless λ Q µ and λ has the same
m-core as µ.

In particular, the last condition ensures that Gm(µ) is a weight vector in Vm, so we can talk about the
canonical basis of a given weight space.

The coefficients dλµ are called q-decomposition numbers (or in our case q2-decomposition numbers),
in view of Ariki’s theorem that their evaluations at q = 1 yield decomposition numbers for Iwahori–
Hecke algebras at an mth root of unity in C. (Of course, dλµ depends on the choice of m, but we will
always make it clear from the context which value of m is intended.)
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2.5 The Fock space in type A(2)

Now let h ⩾ 3 be an odd integer, and set n = 1
2 (h − 1). Define Ǔh to be the quantum group

Uq(A(2)
h−1). We write the standard generators for Ǔ as ěi, f̌i, ťi, for i ∈ {0, . . . , n}. We define Ǔ−

h to be
the C(q)-subalgebra generated by f̌0, . . . , f̌n.

We let F̌ denote the level 1 Fock space for Ǔ. This is a C(q)-vector space with the set P (h) of h-
strict partitions as its standard basis. As in type A(1), we write ( , ) for the inner product with respect
to which this basis is orthonormal. Each α is a weight vector, and two vectors α and β have the same
weight if and only if α and β have the same h-bar-core and h-bar-weight.

The action of Ǔh on F̌ is more complicated than for F . We take the definitions from the paper
[LT] by Leclerc and Thibon, with additional detail from the author’s paper [F4]. (Note that we use the
more standard labelling of the Dynkin diagram in type A(2)

h−1, so that Leclerc and Thibon’s generators
f0, . . . , fn are our f̌n, . . . , f̌0).

Given i ∈ {0, . . . , n} and r ∈ N, we define f̌(r)i = f̌r
i /[r]

!
qi

, where

qi =


q if i = 0
q2 if 0 < i < n
q4 if i = n.

Recall that we write α
i:r
=⇒ β if β is obtained from α by adding r nodes of bar-residue i. If this is

the case, we define ň(α, β) to be the sum, over all nodes a of β \ α, of the number of i-bar-addable
nodes of β to the left of a minus the number of i-bar-removable nodes of α to the left of a. Further,
if i = 0, let M be the set of integers m ⩾ 1 such that column mh + 1 contains a node of β \ α but
column mh does not. For each m ∈ M, let bm be the number of times mh occurs as a part of α, and set
N = ∏m∈M(1 − (−q2)bm). (If i ̸= 0, then set N = 1.)

Now the action of f̌i is given by

f̌(r)i α = ∑
β∈P (h)

α
i:r
=⇒β

Nqň(α,β)
i β.

As in type A(1), we will often read the coefficient ň(α, β) from the bar-abacus displays for α and β;
here the situation is slightly more complicated when i < n, since there are more than two runners to
consider.

Now we can define the canonical basis; this is done in essentially the same way as in type A(1).
Let V̌h denote the Ǔ−

h -submodule generated by ∅ (which is also the Ǔh-submodule generated by ∅).
This is an irreducible module with highest weight Λ0. The bar involution on V̌h is the C(q+ q−1)-linear
map determined by

∅ = ∅, f̌iv = f̌iv for i ∈ {0, . . . , n}.

The canonical basis for V̌h is written{
Ǧh(β)

∣∣ β a restricted h-strict partition
}

,

and the canonical basis vectors Ǧh(β) are defined by the following properties.

⋄ Ǧh(β) is bar-invariant.

⋄ Ǧh(β) has the form ∑α ďαβα, where ďββ = 1 and ďαβ is a polynomial divisible by q for α ̸= β.

⋄ ďαβ = 0 unless α Q β and α has the same h-bar-core as β.

Our main focus in this paper is comparing canonical bases in types A(1) and A(2).
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3 Symmetric functions

In this section we recall some basic theory of symmetric functions, and prove an apparently new
result which we will use later.

3.1 Background on symmetric functions

We take an indeterminate t over Q, and a countably infinite set X of commuting indeterminates.
We let Λ be the ring of symmetric functions: power series in the elements of X with bounded degree
with coefficients in Q(t), which are invariant under permutations of X.

Λ has several important bases. Two of the most important are the bases of Schur functions sλ and
Hall–Littlewood functions Pλ. We refer to Macdonald’s book [Mac] for definitions of these, as well as a
detailed introduction to symmetric functions.

We will need to use the standard coproduct ∆ : Λ → Λ ⊗ Λ. To define this, first note that for any
countably infinite set Y and any f ∈ Λ we can define f (Y) simply by replacing the elements of X
with their images under some chosen bijection from X to Y. If we partition the set of variables X into
two disjoint infinite sets Y ⊔ Z, then each symmetric function f is symmetric in the elements of Y and
the elements of Z, so we can write f = ∑i∈I gi(Y)hi(Z) for some finite indexing set I and fi, gi ∈ Λ;
we then define ∆( f ) = ∑i gi ⊗ hi.

Our aim is to study Pieri-type rules for Hall–Littlewood functions, and for this we need some
notation. Suppose λ, µ ∈ P . Recall that we write λ

r
⇝ µ if λ ⊆ µ and µ \ λ consists of r nodes lying

in different columns. (In the literature on symmetric functions, this is often expressed as saying that
µ \ λ is a horizontal strip of length r.) If this is the case, then we define

hsλµ(t) = ∑
c
(1 − tµ′

c−µ′
c+1),

summing over all c ⩾ 1 such that column c contains a node of µ \ λ but column c + 1 does not. The
polynomials hsλµ(t) are used to write down a “Pieri rule” for Hall–Littlewood functions. To define
this, we need the second type of Hall–Littlewood functions Qλ introduced by Macdonald. For any
n ∈ N define

ϕn =
n

∏
i=1

(1 − ti).

Now for any partition λ define

bλ = ∏
c

ϕλ′
c−λ′

c+1
.

Then Qλ is defined by

Qλ = bλPλ.

Now we can state Macdonald’s Pieri rule for Hall–Littlewood functions.

Theorem 3.1 [Mac, III.5.7]. If λ ∈ P and r ⩾ 0 then

PλQ(r) = ∑
µ∈P
λ

r
⇝µ

hsλµ(t)Pµ.
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3.2 A new Pieri rule

Our objective in this section is to prove a kind of dual rule to Theorem 3.1, which surprisingly
seems not to be in the literature.

Suppose f ∈ Λ. Because the Schur functions sλ form a basis for Λ we can uniquely write ∆( f ) =
∑λ ∂λ( f ) ⊗ sλ for some symmetric functions ∂λ( f ). This defines a function ∂λ : Λ → Λ for each
partition λ. We are particularly interested in the functions ∂(r) for r ∈ N. One form of the classical

Pieri rule is that ∂(r)sµ = ∑ sλ, summing over all λ such that λ
r
⇝ µ. To give the corresponding rule

for ∂(r)Pµ, we need some more notation. If λ, µ are partitions with λ
r
⇝ µ, define

hsλµ = ∑
c
(1 − tλ′

c−λ′
c+1),

summing over all c ⩾ 1 such that column c + 1 contains a node of λ \ µ but column c does not.
The main result of this section is the following, which generalises part of [F3, Proposition 3.6].

Proposition 3.2. Suppose µ ∈ P and r ∈ N. Then

∂(r)Pµ = ∑
λ∈P
λ

r
⇝µ

hsλµPλ.

We will show how to derive Proposition 3.2 from Theorem 3.1 using the self-duality of Λ ex-
plained by Konvalinka and Lauve in [KoL, §2]. The Hall inner product on Λ is the bilinear function
defined by ⟨Pµ, Qλ⟩ = δµλ. By [KoL, Lemma 11], Λ is self-dual with respect to ⟨ , ⟩, which means that
(defining ⟨ , ⟩ on Λ ⊗ Λ as well in the obvious way)

⟨∆( f ), g ⊗ h⟩ = ⟨ f , gh⟩

for any f , g, h ∈ Λ.
The final ingredient we need is the following lemma, which follows immediately from the defini-

tions.

Lemma 3.3. Suppose λ, µ ∈ P and λ
r
⇝ µ. Then

hsλµ =
bλ hsλµ(t)

bµ
.

To complete the proof of Proposition 3.2, we need to consider the transition matrix between the
bases (sλ)λ∈P and (Pλ)λ∈P . This matrix is denoted K(t), and its entries Kλµ(t) are called Kostka
polynomials. Specifically, we write

sλ = ∑
µ

Kλµ(t)Pµ, Pλ = ∑
µ

K−1
λµ (t)sµ.

We will need the following properties of these polynomials.

Lemma 3.4. Suppose λ, µ ∈ P . Then Kλµ(t) and K−1
λµ (t) are polynomials in t which are zero unless

λ Q µ. Furthermore, Kλλ(t) = K−1
λλ (t) = 1, while Kλµ(t) and K−1

λµ (t) are divisible by t when λ ̸= µ.

Proof. The given properties for Kλµ(t) follow from [Mac, III.2.3 & III.2.6]. Now the properties for
K−1

λµ (t) follow by inverting the matrix K(t).
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Proof of Proposition 3.2. Let {Sλ | λ ∈ P} be the basis dual to the basis of Schur functions with
respect to ⟨ , ⟩. Because {Qλ | λ ∈ P} and { sλ | λ ∈ P} are both bases for Λ, there are coefficients
aµπν defined for all µ, π, ν ∈ P such that

∆(Pµ) = ∑
π,ν∈P

aµπνQπ ⊗ sν.

Then
aµπν = ⟨∆(Pµ), Pπ ⊗ Sν⟩.

By Lemma 3.4 we can write sλ as Pλ plus a linear combination of the Pµ with λ ▷ µ, for each λ. As a
consequence, S(r) equals Q(r). So

∂(r)Pµ = ∑
π∈P

aµπ(r)Qπ

= ∑
π∈P

⟨∆(Pµ), Pπ ⊗ Q(r)⟩Qπ

= ∑
π∈P

⟨Pµ, PπQ(r)⟩bπPπ

= ∑
π,λ∈P
π

r
⇝λ

hsπλ(t)
bµ

⟨Qµ, Pλ⟩bπPπ by Theorem 3.1

= ∑
π∈P
π

r
⇝µ

hsπµ(t)bπ

bµ
Pπ

= ∑
π∈P
π

r
⇝µ

hsπµPπ. by Lemma 3.3.

4 Comparing canonical bases in types A(1)
n−1 and A(2)

h−1

For the rest of the paper we fix a natural number l. We fix an odd integer h ⩾ 3, and let n = 1
2 (h − 1)

and m = 1
2 (h + 1).

Our aim in this paper is to compare the canonical bases in Vm and V̌h. But as an intermediate step
in this section, we compare Vn with V̌h. So for this section, we assume that h ⩾ 5.

We begin by setting up some combinatorics underlying our comparison between canonical bases.
Say that an h-strict partition α is standard if the residue modulo h of every non-zero part of α lies in
{1, . . . , n}. Let P std

l denote the set of standard h-strict partitions of length l, and let P⩽l denote the set
of all partitions of length at most l. Proving the next proposition is a routine exercise.

Proposition 4.1. Fix l ⩾ 1. There is a bijection ϕ : P std
l → P⩽l given by

(ϕα)r = αr − (n + 1)
⌊αr

h

⌋
− l + r − 1

for 1 ⩽ r ⩽ l. The inverse of ϕ is given by

(ϕ−1λ)r = λr + l − r + 1 + (n + 1)
⌊

λr + l − r
n

⌋
.

If β ∈ P std
l , then β is restricted if and only if ϕβ is n-restricted.



Comparing Fock spaces in types A(1) and A(2) 12

The bijection ϕ is easily realised on the abacus. Given α ∈ P std
l , the bar-abacus display for α has

l beads on runners 1, . . . , n, no beads on runners n + 1, . . . , h − 1, and no beads on runner 0 except in
position 0. Deleting runners 0 and n + 1, . . . , h − 1 yields the abacus display for ϕα.

For example, taking h = 5 and α = (16, 12, 11, 6, 2), we obtain ϕα = (23, 12).

∞

α ϕα

We want to compare canonical basis elements labelled by partitions in P std
l and P⩽l . So let

F⩽l = ⟨λ | λ ∈ P⩽l⟩ , F̌ l = ⟨α | α ∈ P std
l ⟩ ,

where ⟨X⟩ denotes the C(q)-span of a set X. Now we have a bijective linear map Φ : F̌ l → F⩽l

defined by mapping α 7→ ϕα and extending linearly.
Observe that if µ ∈ P⩽l is n-restricted, then Gn(µ) ∈ F⩽l , because if λ appears in Gn(µ) with

non-zero coefficient then λ Q µ, so that l(λ) ⩽ l. A similar statement is true in F̌ l , but requires the
following lemma.

Lemma 4.2. Suppose β ∈ P std
l . If α is an h-strict partition with the same h-bar-core as β and α Q β,

then α ∈ P std
l .

Proof. First we observe that if we remove an h-bar from β, the resulting h-strict partition will be stan-
dard with length l: since β is standard, it does not have two parts which sum to h, and so removing
an h-bar from β entails reducing by h a part which is larger than h. This does not change the length
of the partition, or the set of residues modulo h of the non-zero parts. So the resulting partition is
standard with length l. Applying this repeatedly, we find that the h-bar-core γ of β is standard with
length l.

Now consider α. Because α Q β, the length of α is at most l. On the other hand, by assumption the
h-bar-core of α is γ which has length l, and therefore l(α) = l. We can obtain α from γ by repeatedly
adding h-bars. At each stage we do not increase the length of the partition, so addition of an h-bar
must consist of increasing some positive part by h. This does not affect the set of residues modulo h
of the non-zero parts, so α is standard.

As a consequence, if β ∈ P std
l is restricted, then Ǧh(β) ∈ F̌ l . Our first main result is the following.

Theorem 4.3. Suppose β ∈ P std
l is restricted. Then

Gn(ϕβ) = Φ(Ǧh(β)).

Example. Take h = 5, so that n = 2. Let β = (16, 12, 11, 7, 6, 1). Then ϕβ = (15). Writing fi = fi+2Z for
i = 0, 1, we can calculate (

f0f1f0f1f0 − f(2)0 f(2)1 f0
)
∅ = (15) + q2(3, 12) + q4(5),

so that
G2(15) = (15) + q2(3, 12) + q4(5).

On the other hand, (12, 11, 7, 6, 2, 1) is a 5-bar-core, so (12, 11, 7, 6, 2, 1) = Ǧ5(12, 11, 7, 6, 2, 1) is bar-
invariant. If we write ǧ = f̌(2)0 f̌1f̌2 and ǧ(2) = ǧ2/(q2 + q−2), then(

ǧf̌1 ǧf̌1 ǧ − ǧ(2) f̌(2)1 ǧ)(12, 11, 7, 6, 2, 1) = (16, 12, 11, 7, 6, 1) + q2(21, 12, 11, 6, 2, 1) + q4(26, 11, 7, 6, 2, 1)

is also bar-invariant, so equals Ǧ5(β). So Φ(Ǧ5(β)) = G2(ϕβ).
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The above example suggests how Theorem 4.3 is proved: we define linear operators g0, . . . , gn−1
on F̌ which correspond to the action of the generators fi on F .

For the next two results we take i ∈ {1, . . . , n − 1}, and let ı̂ = i − l + nZ.

Lemma 4.4. Suppose α ∈ P std
l and 1⩽ r ⩽ l. Then α has an i-bar-addable node b in row r if and only if

ϕα has an ı̂-addable node c in row r. If these nodes exist, then α ∪ b lies in P std
l , and ϕ(α ∪ b) = ϕα ∪ c.

Proof. Since α is standard, αr cannot be congruent to h − i − 1 modulo h, so α has an ı̂-bar-addable
node b in row r if and only if αr ≡ i (mod h) and either r = 1 or λr−1 − λr ⩾ 2. Applying ϕ, we see
that this is equivalent to the condition that ϕα has an ı̂-addable node c in row r.

If the nodes b and c do exist, then (α ∪ b)r = αr + 1 ≡ ı̂ + 1 (mod h), so that α ∪ b is standard.
Furthermore, ϕ(α ∪ b)r = (ϕα)r + 1, so ϕ(α ∪ b) = ϕα ∪ c.

A corresponding result for ı̂-bar-removable nodes can be proved in exactly the same way. As a
consequence, we obtain the following.

Corollary 4.5. If α is a standard h-strict partition, then f̌iα ∈ F̌ l , and

Φ(f̌iα) = fı̂ϕα.

Proof. Since 1 ⩽ i ⩽ n − 1, adding an i-bar-addable node to a standard h-strict partition yields a
standard h-strict partition; so the first statement holds.

Write λ = ϕα. Then fı̂λ is a linear combination of basis elements µ obtained by adding a ı̂-addable
node to λ. Take such a µ, and suppose the added node lies in row r. Then r ⩽ l, since the residue
of the addable node of λ in row l + 1 (if there is one) is −l + nZ ̸= ı̂. So µ = ϕβ, where β ∈ P std

l is
obtained from α by adding a node in row r. The coefficient of µ in fı̂λ is determined by the ı̂-addable
and ı̂-removable nodes of λ below row r. These nodes all lie in row l or higher, so by Lemma 4.4 (and
its analogue for removable nodes) they correspond to the i-bar-addable and i-bar-removable nodes
of α in rows r + 1, . . . , l. Furthermore, α does not have an i-bar-addable node below row l (because
i ̸= 0). So (comparing the action of fı̂ on F with the action of f̌i on F̌ ) the coefficients (f̌iα, β) and
(fı̂λ, µ) agree.

Now we consider the remaining residue not included in the last two results: let ı̂ = −l + nZ, and
let ǧ = f̌(2)0 f̌1 . . . f̌n.

Proposition 4.6. Suppose α ∈ P std
l , and β is an h-strict partition with length l. Then the following are

equivalent.

(1) (ǧα, β) ̸= 0.

(2) β is standard and (fı̂ϕα, ϕβ) ̸= 0.

Furthermore, if these two conditions hold, then (ǧα, β) = (fı̂ϕα, ϕβ).

Proof. Suppose β appears with non-zero coefficient in ǧα. Then there is a sequence of h-strict parti-
tions α(1), . . . , α(n) such that

α
n

=⇒ α(1) n−1
=⇒ · · · 1

=⇒ α(n) 0:2
=⇒ β.

In particular, β has two nodes of bar-residue 0 that are not contained in α. Let r be a row containing
at least one of these nodes; then the node equals (r, hc) or (r, hc + 1) for some c ⩾ 1. This means that
αr ⩽ hc, but because α is standard, this actually gives αr ⩽ hc − n − 1, so that the nodes

(r, hc − n), . . . , (r, hc)
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all belong to β but not to α. The same applies for the other node of bar-residue 0 that lies in β

but not in α, so in fact these nodes must lie in the same row. Hence there is some r ⩽ l such that
αr ≡ n (mod h) and

βs =

{
αs + n + 2 if s = r
αs otherwise.

In particular, β is standard. Furthermore, applying the definition of ϕ we see that ϕβ = ϕα ∪ n, where
n is an ı̂-addable node of ϕα. So (1)⇒(2), and the converse is similar (but easier).

It remains to compare the coefficient of β in ǧα with the coefficient of ϕβ in fı̂ϕα. To compute the
coefficient of β in ǧα, we consider bar-addable and bar-removable nodes below row r. The coefficient
(fı̂ϕλ, ϕβ) includes a factor q2 for each bar-addable node of α below row r, and a factor q−2 for each
bar-removable node, except for n-bar-addable nodes which give a factor of q4 (note that α has no
n-bar-removable nodes because it is standard). The fact that α is standard also means that for each
s > r, the number of bar-removable nodes in row s equals the number of bar-addable nodes in row
s + 1, except when αs ≡ 1 (mod h), in which case there is one more bar-removable node in row s.
Furthermore, there is an n-bar-addable node in row s if and only if αs ≡ n (mod h). So if we let a1 be
the number of s > r such that αs ≡ 1 (mod h), and define an similarly, then

(ǧα, β) = q2(an−a1+1).

(The extra 1 arises from the bar-addable node in row r + 1.)
But now observe that αs ≡ n (mod h) if and only if (ϕα)s − s ∈ ı̂ − 1, while αs ≡ 1 (mod h) if

and only if (ϕα)s − s ∈ ı̂. So an − a1 + 1 equals the number of i-addable nodes of ϕλ below row r
minus the number of ı̂-removable nodes (the extra 1 arises from the addable node in row l + 1). So
(ǧλ, β) = (fı̂ϕα, ϕβ).

This gives an analogue of Corollary 4.5. We continue to write ı̂ = −l + nZ.

Corollary 4.7. Suppose α is a standard h-strict partition, and that fı̂ϕα ∈ F⩽l . Then ǧα ∈ F̌ l , and

Φ(ǧα) = fı̂ϕα.

Proof. From the fact that (1)⇒(2) in Proposition 4.6 we can write

ǧα = ∑
β∈P std

l

cββ

for some coefficients cβ ∈ C(q), so that ǧα ∈ F̌ l . Then the last statement in Proposition 4.6 tells us
that for each µ ∈ P⩽l the coefficient of µ in fı̂ϕα is cϕ−1µ. By assumption no µ with µ /∈ P⩽l occurs in
fı̂ϕα, and so

fiϕα = ∑
µ∈P⩽l

cϕ−1µµ = ∑
β∈P std

l

cβΦ(β) = Φ(ǧα).

Now we can prove our first main result.

Proof of Theorem 4.3. Take a restricted partition β ∈ P std
l , and let µ = ϕβ. The LLT algorithm [LLT,

Section 6.2] shows that Gn(µ) can be written as a linear combination ∑ν aν A(ν), where:

(1) the sum is over a set of partitions ν with ν Q µ;

(2) each coefficient aν lies in C(q + q−1);
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(3) each A(ν) has the form fi1 . . . fir∅ for some i1, . . . , ir ∈ Z/nZ;

(4) each A(ν) is a linear combination of partitions ξ with ξ Q ν.

In particular, conditions (1) and (4) imply that each A(ν) lies in F⩽l . So if we take such a ν and write

A(ν) = fi1 . . . fir∅ = ∑
ξ∈P⩽l

cνξξ

with each cνξ ∈ C(q), then by Corollaries 4.5 and 4.7 we can find j1, . . . , js ∈ {0, . . . , n} and a coefficient
bν ∈ C(q + q−1) such that

Φ−1(A(ν)) = bν f̌j1 . . . f̌js ϕ
−1∅ = ∑

ξ∈P⩽l

cνξϕ−1ξ.

(The coefficient bν arises because of the divided power occurring in the definition of the operator ǧ.)
Hence the vector

Φ−1(Gn(µ)) = ∑
ν

aνΦ−1(A(ν))

can be written as a linear combination of vectors of the form f̌j1 . . . f̌js ϕ
−1∅, with coefficients in C(q +

q−1). Now ϕ−1∅ is an h-bar-core: its parts are simply the smallest l positive integers whose residues
modulo h lie in {1, . . . , n}. So ϕ−1∅= Ǧh(ϕ

−1∅) is bar-invariant, and so Φ−1(Gn(µ)) is bar-invariant.
Since Φ−1(Gn(µ)) = ∑λ dλµ ϕ−1λ, with dµµ = 1 and all other dλµ divisible by q, the uniqueness of the
canonical basis means that Φ−1(Gn(µ)) = Ǧh(β).

5 Comparing types A(1)
n−1 and A(1)

m−1: runner addition

In this section we invoke a theorem from the author’s paper [F1] comparing canonical bases in
types A(1)

n−1 and A(1)
m−1, and use it to express Theorem 4.3 in terms of the canonical basis for Vm; this

will also allow us to include the case h = 3.
Let P+

⩽l denote the set of partitions λ with length at most l such that λr + l + 1− r ̸≡ 0 (mod l) for
1⩽ r ⩽ l. Another way of saying this is that λ ∈ P+

⩽l if λ can be displayed on an m-runner abacus with
l + 1 beads such that runner 0 contains only a bead in position 0. We define a bijection P⩽l → P+

⩽l
which we denote λ 7→ λ+, by setting

λ+
r = λr +

⌊
λr + l − r

n

⌋
for r = 1, . . . , l. This bijection is easily visualised on the abacus: given λ ∈ P⩽l , we take the n-runner
abacus display for λ with l beads, add a runner at the left with a bead in the top position only, and
let λ+ be the resulting partition. It is easy to see that λ+ is m-restricted if and only if λ is n-restricted.
Extending the map λ 7→ λ+ linearly, we obtain an injective linear map F⩽l → F written v 7→ v+.

Now we can give the main result from [F1]. Some translation of notation is required, since in [F1]
the opposite convention for F is used, in which the canonical basis elements Gn(µ) are indexed by n-
regular partitions, and a “full” runner is added rather than an empty one. But replacing all partitions
with their conjugates yields the following result.

Theorem 5.1 [F1, Theorem 3.1]. Suppose n ⩾ 2 and λ ∈ P⩽l is n-restricted. Then Gm(λ+) = Gn(λ)+.
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We combine this with the results of the last section to give a result comparing canonical bases in
types A(1)

m−1 and A(2)
h−1. Recalling the bijection ϕ : P std

l → P⩽l from Section 4, let ψ : P std
l → P+

⩽l be the
bijection defined by ψλ = (ϕλ)+. Explicitly, ψ is given by

(ψα)r = αr − (m − 1)
⌊αr

h

⌋
− l + r − 1

for 1 ⩽ r ⩽ l.
We define an injective C(q)-linear map Ψ : F̌ l → F by Ψ(β) = ψβ. Now we obtain the following

result.

Theorem 5.2. Suppose β ∈ P std
l is restricted. Then

Gm(ψβ) = Ψ(Ǧh(β)).

Proof. If h ⩾ 5 then this follows immediately from Theorems 4.3 and 5.1. In the case h = 3, the
assumption that β is restricted means that β is the partition (3l − 2, 3l − 5, . . . , 1), which is a 3-bar-
core, so that Ǧ3(β) = β. On the other hand, ψβ is the partition (l, l − 1, . . . , 1) which is a 2-core, so
that G2(ψβ) = ψβ. So the result follows in this case too.

6 Comparing types A(1)
m−1 and A(2)

h−1: separated partitions

Having established Theorem 5.2, we will work with Um rather than Un from now on. With this in
mind, if a is an integer then we may write fa to mean fa+mZ.

Our next aim is to extend Theorem 5.2 to include h-strict partitions with positive parts divisible
by h. To do this, we need to restrict attention to what we call separated partitions. In this section we
define separated partitions and prove two preparatory results giving similar calculations in F and F̌ .

6.1 Separated partitions

We keep l ∈ N fixed. Given a partition λ ∈ P+
⩽l and any partition π, we define a partition π|λ as

follows: we take the abacus display for λ with m runners and am+ l + 1 beads for sufficiently large a,
and then move the rth lowest bead on runner 0 down πr positions for each r. Another way to express
this is as follows: we write λ = µ+ for µ ∈ P⩽l ; then we join together the 1-runner abacus display for
π with a + 1 beads and n-runner abacus display for µ with an + l beads. It is easy to see that π|λ is
independent of the choice of a.

Given such an abacus display for π|λ, let b be the position of the last bead on runner 0 (that is,
b = (π1 + a)m), and let f be the first empty position not on runner 0. Now given k ∈ N0, we say that
π|λ is k-separated if f − b > km. For k = 0, we will just say separated rather than 0-separated. Whether
π|λ is k-separated is independent of the choice of a (in fact, it only depends on l, k, π1 and λ′

1).

Example. Take h = 7, so that m = 4, and let l = 10. If we take λ = (7, 62, 4, 13) and π = (12), then
π|λ = (7, 62, 4, 111), as we see from the following abacus displays.

λ π|λ
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We obtain b = 12 and f = 17, so that π|λ is 1-separated but not 2-separated.

Now for each k ∈ N we define an operator Fk on the Fock space by

Fk = f(k)−l f(k)1−l . . . f(k)m−1−l .

The action of the operator Fk can be visualised using the abacus: given an abacus display with l +
am + 1 beads for a partition λ, we apply Fk by moving k beads from runner m − 1 to runner 0, then
k beads from runner m − 2 to runner m − 1, and so on, and finally moving k beads from runner 0
to runner 1, where at each stage a bead moves from position b to position b + 1 for some b. The
partitions that can be obtained in this way are the partitions that appear in Fkλ.

The first result we want to prove describes Fk(π|λ) when π|λ is k-separated. Recall that given
two partitions π, ρ, we write π

r
⇝ ρ if ρ can be obtained from π by adding r nodes in distinct columns.

Proposition 6.1. Suppose λ ∈ P+
⩽l , π ∈ P and k, u ∈ N0, and that π|λ is (k + u)-separated. If ν ∈ P ,

then (Fk(π|λ), ν) ̸= 0 if and only if ν has the form ρ|µ, where

⋄ µ ∈ P+
⩽l and ρ ∈ P ,

⋄ π
r
⇝ ρ for some 0 ⩽ r ⩽ k, and

⋄ (Fk−rλ, µ) ̸= 0.

Furthermore, if these conditions hold, then ρ|µ is u-separated.

Proof. In this proof we use an abacus with m runners and l + am + 1 beads for fixed large a. For any
partition ν we write Ab(ν) for the m-runner abacus display for ν with l + am+ 1 beads. Given a finite
set B of positions on the abacus, we use the phrase making bead moves from B to mean moving a bead
from position b to position b + 1 for each b ∈ B.

Suppose ν appears in Fk(π|λ) with non-zero coefficient. From the description of the action of
the fi on Fm (interpreted in terms of the abacus) there are sets B0, . . . , Bm−1 ⊂ N0 with |Bg| = k and
Bg ⊂ g + mZ for each g, such that Ab(ν) is obtained from Ab(π|λ) by making bead moves from
Bm−1, Bm−2, . . . , B0 in turn. We write B = B0 ∪ · · · ∪ Bm−1.

Let xm be the position of the last bead on runner 0 in Ab(π|λ); that is, x = π1 + a. The assump-
tion that π|λ is (k + u)-separated means that every position before position (x + k + u)m not on
runner 0 is occupied in Ab(π|λ). We make two observations about the relationships between the sets
B0, . . . , Bm−1.

(i) If b ∈ B0 with b > xm, then b − 1 ∈ Bm−1 (otherwise it is not possible to make a bead move from
b at the final step).

(ii) If b ∈ Bg with 0 ⩽ g < m − 1 and b < (x + k + u)m, then b + 1 ∈ Bg+1 (so that there is a space to
move a bead into from position b when making bead moves from Bg). Applying this repeatedly,
we deduce that if b ∈ B0 with b < (x + k + u)m, then b + m − 1 ∈ Bm−1.

Since |B0| = k, we can find y ∈ {x, x + 1, . . . , x + k} such that ym /∈ B0. Now the two observations
above imply that there is a function

f : B0 −→ Bm−1

b 7−→
{

b + m − 1 if b < ym
b − 1 if b > ym
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which is injective, and hence bijective. Now we partition each Bg as Cg ∪ Dg, where

Cg =
{

b ∈ Bg
∣∣ b < ym

}
, Dg =

{
b ∈ Bg

∣∣ b > ym
}

.

The fact that f is bijective together with observation (ii) above means that

Cg = C0 + g for 0 ⩽ g ⩽ m − 1, (*)

so that in particular |C0| = · · · = |Cm−1| = r, say. The fact that f is bijective also gives

Dm−1 + 1 = D0. (**)

So the combined bead moves from Dm−1, . . . , D0 have no effect on runner 0. So (*) implies that runner
0 of Ab(ν) is obtained from runner 0 of Ab(π|λ) by adding a bead at position b + m for all b ∈ C0,
and then removing a bead from position b for all b ∈ C0. In particular, there are exactly a beads on
runner 0 in Ab(ν), and the last bead on runner 0 is in position ym or earlier. (*) also means that all the
positions before position ym on runners other than runner 0 are occupied in Ab(ν). This means that
ν has the form ρ|µ with µ ∈ P+

⩽l and ρ ∈ P . Now we compare the beta-sets Ba+1(π) and Ba+1(ρ). If
we let A = { c/m + 1 | c ∈ C0}, then the above description of runner 0 of Ab(ν) means that

|A| = r, A ∩ Ba+1(π) = ∅, Ba+1(ρ) = Ba+1(π) ∪ A \ (A − 1).

So π
r
⇝ ρ by Lemma 2.1(2).

Another consequence of (*) is that the combined bead moves from Cm−1, . . . , C0 have no effect on
any runner other than runner 0. This means that if we take Ab(λ) and make the bead moves from
Dm−1, . . . , D0 in turn, then we obtain Ab(µ). So µ appears in Fk−rλ with non-zero coefficient.

Now we show that ρ|µ is u-separated. Let D = D0 ∪ · · · ∪ Dm−1. Because π
r
⇝ ρ, the last bead

on runner 0 in Ab(ρ|µ) is in position (x + r)m or earlier. Let d be the first empty position in Ab(ρ|µ)
not on runner 0. If d > (x + k + u)m, then certainly ρ|µ is u-separated, so assume d < (x + k + u)m.
Then position d is occupied in Ab(π|λ), so d ∈ D. Now observation (ii) and (**) imply that d + 1, d +
2, . . . , (x + k + u)m all belong to D as well. Hence

m(k − r) = |D| > (x + k + u)m − d,

giving d > (x + r + u)m, so that ρ|µ is u-separated.

Now we need to prove the “if” part of the proposition. So suppose we are given µ, ρ, r satisfying
the conditions in the proposition. Because µ appears in Fk−rλ with non-zero coefficient, Ab(µ) is
obtained from the abacus display for λ by making bead moves from Dm−1, . . . , D0 in turn, where
Dg ⊂ g + mZ and |Dg| = k − r for each g. In addition, D0 = Dm−1 + 1 because λ and µ have identical
configurations on the 0th runner. In the same way as in the last paragraph, we can show that every
element of D0 ∪ · · · ∪ Dm−1 is greater than (x + r + u)m.

The assumption that π
r
⇝ ρ means (using Lemma 2.1(2)) that Ba+1(ρ) = Ba+1(π) ∪ A \ (A − 1)

for some set A with |A| = r and A ∩ Ba+1(π) = ∅. So if we define

Cg = { (a − 1)m + g | a ∈ A}

for each g, then Ab(ρ|µ) is obtained from Ab(π|λ) by making bead moves from Cm−1 ∪Dm−1, . . . , C0 ∪
D0 in turn, so ρ|µ appears in Fk(π|λ).

Now we want to show that the coefficients appearing in Proposition 6.1 coincide.
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Proposition 6.2. Suppose λ, µ ∈ P+
⩽l and π, ρ ∈ P with π

r
⇝ ρ for some r, and that k ∈ N is such that

k ⩾ r and π|λ is k-separated. Then

(Fk(π|λ), ρ|µ) = (Fk−rλ, µ)

Proof. Proposition 6.1 shows that one side of the given equation is non-zero if and only if the other
is, so we assume they are both non-zero. We use an abacus with l + am + 1 beads, and we define the
integer y and the sets Bg = Cg ∪ Dg for 0 ⩽ g ⩽ m − 1 as in the proof of Proposition 6.1. Then µ is
obtained from λ by making bead moves from Dm−1, . . . , D0 in turn, and ρ|µ is obtained from π|λ by
making bead moves from Bm−1, . . . , B0 in turn. We remark that these sets are uniquely defined: if ρ|µ
appears in Fk(π|λ) = f(k)−l f(k)1−l . . . f(k)−1−l(π|λ), then we obtain ρ|µ by adding all the (−1 − l)-nodes of
(ρ|µ) \ (π|λ), then all the (−2 − l)-nodes of (ρ|µ) \ (π|λ), and so on, with no choice at any stage.

So if we define partitions λ(0), . . . , λ(m) by setting λ(0) = λ and defining λ(g) from λ(g−1) by making
bead moves from Dm−g for g ⩾ 1, then λ(m) = µ and

(Fk−rλ, µ) =
m

∏
g=1

(
f(k−r)
−g−l λ

(g−1), λ(g)
)

,

and the formula for the action of f(k−r)
−g−l says that(
f(k−r)
−g−l λ

(g−1), λ(g)
)
= q2n(λ(g−1),λ(g)).

Similarly we define partitions ξ(0), . . . , ξ(m) by setting ξ(0) = π|λ and then making bead moves from
Bm−1, . . . , B0, and derive a similar formula for (Fk(π|λ), ρ|µ). We need to compare n(λ(g−1), λ(g)) with
n(ξ(g−1), ξ(g)) for each g.

Taking 2 ⩽ g ⩽ m − 1 first and letting i = −g − l + mZ, we compare the addable and removable
i-nodes of λ(g−1), λ(g), ξ(g−1), ξ(g), by looking at runners m − g and m − g + 1 of their abacus displays.
For any given row we may give the configuration of beads on the two positions on runner m − g and
m − g + 1 in that row.

The rows on these runners where these four partitions differ are the rows containing elements of
Cm−g, where

⋄ λ(g−1) and λ(g) both have ,

⋄ ξ(g−1) has ,

⋄ ξ(g) has ,

and the rows containing elements of Dm−g, where

⋄ λ(g−1) and ξ(g−1) both have ,

⋄ λ(g) and ξ(g) both have .

We conclude that λ(g−1) and ξ(g−1) have exactly the same removable i-nodes while λ(g) and ξ(g)

have exactly the same addable i-nodes. Moreover, none of the addable i-nodes of ξ(g) or removable
i-nodes of ξ(g−1) lie to the left of any of the added nodes corresponding to the positions in Cm−g. So

n(λ(g−1), λ(g)) = n(ξ(g−1), ξ(g)), which means that
(

f(k−r)
i λ(g−1), λ(g)

)
=
(

f(k)i ξ(g−1), ξ(g)
)

.

Now we consider the case g = 1, by comparing runners m − 1 and 0 of λ(0), λ(1), ξ(0), ξ(1). To
help in visualising addable and removable nodes, we imagine runner m − 1 moved to lie to the left
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of runner 0, and shifted down so that position cm − 1 is directly to the left of position cm for each
c. So for a given partition when we show the abacus configuration on these runners in row c, we
show positions cm − 1 and cm. (We temporarily introduce a new position −1, which is taken to be
occupied in all abacus displays.)

After position ym, the partitions λ(0) and ξ(0) agree, as do the partitions λ(1) and ξ(1). Now we
look at the rows before position ym.

The abacus displays for λ(0) and λ(1) both have in the first a + 1 rows, and in the remain-
ing y − a rows up to position ym.

Now consider the positions cm − 1 and cm in the abacus displays for ξ(0) and ξ(1), where cm ⩽ y.
The configurations in these positions are determined by the sets Cm−1 and Ba+1(π):

⋄ if cm − 1 ∈ Cm−1, then ξ(0) has and ξ(1) has ;

⋄ if cm − 1 /∈ Cm−1 and c /∈ Ba+1(π), then ξ(0) and ξ(1) both have ;

⋄ if c ∈ Ba+1(π), then ξ(0) and ξ(1) both have .

Note in particular that the second possibility happens exactly y − a − r times. This enables us to
compare n(λ(0), λ(1)) with n(ξ(0), ξ(1)) by examining addable and removable nodes. We find that

n(ξ(0), ξ(1)) = n(λ(0), λ(1))− (k − r)r + |A|,

where
A = { (c, d) | 0 ⩽ c < d, cm − 1 /∈ Cm−1, c /∈ Ba+1(π), dm − 1 ∈ Cm−1} .

We perform a similar analysis for the case g = m, and obtain

n(ξ(m−1), ξ(m)) = n(λ(m−1), λ(m)) + (k − r)r − |B|,

where
B = {0 ⩽ c < d ⩽ y | cm − 1 /∈ Cm−1, c /∈ Ba+1(π), dm ∈ C0} .

Now recall from the proof of Proposition 6.1 that Cm−1 = C0 + m − 1. This then means that there is a
bijection A → B given by (c, d) 7→ (c, d − 1). We deduce that

n(ξ(0), ξ(1)) + n(ξ(m−1), ξ(m)) = n(λ(0), λ(1)) + n(λ(m−1), λ(m)),

and therefore (
f(k)−l ξ(0), ξ(1)

)(
f(k)1−lξ

(m−1), ξ(m)
)
=
(

f(k−r)
−l λ(0), λ(1)

)(
f(k−r)
1−l λ(m−1), λ(m)

)
,

which is enough to complete the proof.

6.2 Bar-separated h-strict partitions

Now we prove similar results for h-strict partitions. Keep l fixed, and suppose α is a standard
h-strict partition of length l. Given a partition π, define π∥α = α ⊔ hπ. The bar-abacus display for
π∥α with h runners is obtained by taking the bar-abacus display for α and adding a bead at position
πrh for each r. Let b be the position of the last bead on runner 0 (so b = π1h), and let f be the first
empty position on any of runners 1, . . . , n. Given k ⩾ 0, say that π∥α is k-bar-separated if f − b > kh.
(We write simply “bar-separated” to mean “0-bar-separated”.)

Now for each k ∈ N, define F̌k = f̌(2k)
0 f̌(2k)

1 . . . f̌(2k)
n−1f̌(k)n . Then we can give an analogue of Proposi-

tion 6.1.
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Proposition 6.3. Suppose α ∈ P std
l , π ∈ P and k, u ∈ N0, and that π∥α is (k + u)-bar-separated. If

γ ∈ P (h), then
(

F̌k(π∥α), γ
)
̸= 0 if and only if γ has the form ρ∥β, where

⋄ β ∈ P std
l and ρ ∈ P ,

⋄ π
r
⇝ ρ for some 0 ⩽ r ⩽ k, and

⋄
(

F̌k−rα, β
)
̸= 0.

Furthermore, if these conditions hold, then ρ∥β is u-bar-separated.

Proof. We follow the structure of the proof of Proposition 6.1, though the details here are slightly
different. For any h-strict partition γ, we write Ab(γ) for the bar-abacus display of γ. As in the proof
of Proposition 6.1, given a finite set B ⊂ N0, we use the phrase making bead moves from B to mean
moving a bead from position b to position b + 1 for each b ∈ B.

Suppose γ appears in F̌k(π∥α). Let β be the partition obtained from γ by removing all the positive
parts divisible by h, and let ρ be the partition obtained by taking all the parts of γ divisible by h and
dividing them all by h. The assumption that

(
F̌k(π∥α), γ

)
̸= 0 means that we can obtain Ab(γ) from

Ab(π∥α) by making bead moves from

Bn, Bn+1 ∪ Bn−1, Bn+2 ∪ Bn−2, . . . , Bh−1 ∪ B0

in turn, where each Bg is a set of non-negative integers congruent to g modulo h, and |Bn| = k while
|Bn+g|+ |Bn−g| = 2k for 1 ⩽ g ⩽ n.

Let x = π1. Then the lowest bead on runner 0 in Ab(π∥α) is in position xh. Because |Bn| = k, we
can choose y ∈ {x, . . . , x + k} such that yh + n /∈ Bn. This has two consequences.

⋄ Because π∥α is k-bar-separated, positions yh + 1, . . . , yh + n are occupied in Ab(π∥α). The
assumption that yh + n /∈ Bn then means that yh + g /∈ Bg for g = 1, . . . , n − 1.

⋄ Because α is standard, runners n + 1, . . . , h − 1 are empty in Ab(π∥α) and position (y + 1)h is
unoccupied. The assumption that yh+ n /∈ Bn then means that yh+ g /∈ Bg for g = n+ 1, . . . , h−
1, and (y + 1)h /∈ B0.

Now write Bg = Cg ∪ Dg for each g, where

Cg =
{

b ∈ Bg
∣∣ b ⩽ yh

}
, Dg =

{
b ∈ Bg

∣∣ b > yh
}

.

The fact that runners n + 1, . . . , h − 1 are empty in Ab(π∥α), and that there are no beads on runner
0 after position yh, means that Cn+g ⊆ Cn+g−1 + 1 and Dn+g ⊆ Dn+g−1 + 1 for g = 1, . . . , n, and also
that D0 ⊆ Dn + n + 1. In addition, the fact that all the positions on runners 1, . . . , n before position yh
are occupied in Ab(π∥α) means that Cn−g ⊆ Cn−g+1 − 1 for g = 1, . . . , n. So

|C0| ⩽ · · · ⩽ |Cn| ⩾ · · · ⩾ |Ch−1|

and
|Dn| ⩾ · · · ⩾ |Dh−1| ⩾ |D0|

Now the fact that |Ch−1|+ |C0|+ |Dh−1|+ |D0| = 2k = 2|Cn|+ 2|Dn| gives equality everywhere.
So Cg = C0 + g for g = 1, . . . , h − 1 and Dn+g = Dn + g for g = 1, . . . , n, and D0 = Dn + n + 1.

So the combined bead moves from Cn, Cn+1 ∪ Cn−1, . . . , Ch−1 ∪ C0 only affect runner 0 in the bar-
abacus display, where the effect is to add a bead at position b + h for each b ∈ C0 and then remove a
bead from position b for each b ∈ C0. By Lemma 2.1(1), this means that π

r
⇝ ρ.
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Now we look at the other runners in Ab(γ). From what we have learned about the sets Cg and
Dg, we know that there are l beads on runners 1, . . . , n, and no beads on runners n + 1, . . . , h − 1. So
β ∈ P std

l , and γ = ρ∥β. Furthermore, Ab(β) is obtained from Ab(α) by making bead moves from
Dn, Dn+1 ∪ Dn−1, . . . , Dh−1 ∪ D0, and |Dg| = k − r for each g, so

(
F̌k−rα, β

)
̸= 0.

We also need to show that ρ∥β is u-bar-separated; this is done in the same way as the correspond-
ing part of Proposition 6.1.

Now we prove the “if” part of the proposition. Suppose we are given β, ρ, r as in the proposition.
Because

(
F̌k−rα, β

)
̸= 0, there are sets D0, . . . , Dh−1 ⊆ N0 with Dg ⊂ g + hZ for each g and |Dn+g|+

|Dn−g| = 2(k − r) for g = 0, . . . , n, such that Ab(β) is obtained from Ab(α) by making bead moves
from Dn, Dn+1 ∪ Dn−1, . . . , Dh−1 ∪ D0 in turn. Because α and β are both standard, we obtain Dn+g =
Dn + g for g = 1, . . . , n, so that in fact |Dg| = k − r for every g.

The assumption that π
r
⇝ ρ means that there is a set A ⊂ N with |A| = r such that ρ is obtained

from π by adding a part equal to a for every a ∈ A, and then removing a part equal to a − 1 for each
a ∈ A. So if we define

Cg = { (a − 1)h + g | a ∈ A} , Bg = Cg ∪ Dg

for each g, then Ab(ρ∥β) is obtained from Ab(π∥α) by making bead moves from Bn, Bn+1 ∪Bn−1, Bh−1 ∪
B0 in turn, so ρ∥β appears in F̌k(π∥α).

Now we compare the coefficients appearing in Proposition 6.3. This is similar to Proposition 6.2,
though here the statement is more complicated. Given partitions π, ρ with π

r
⇝ ρ, we let hsπρ be

defined as in Section 3.2, with the indeterminate t replaced by −q2; that is,

hsπρ = ∏
c⩾1

ρ′c=π′
c

ρ′c+1>π′
c+1

(1 − (−q2)π′
c−π′

c+1).

Proposition 6.4. Suppose α, β ∈ P std
l and π, ρ ∈ P with π

r
⇝ ρ for some r, and that π∥α is k-bar-

separated for some k ⩾ r. Then (
F̌k(π∥α), ρ∥β

)
= hsπρ

(
F̌k−rα, β

)
.

Proof. Proposition 6.3 shows that one side of the given equation is non-zero if and only if the other
is, so we assume they are both non-zero. We define the integer y and the sets Bg = Cg ∪ Dg for
0 ⩽ g ⩽ h − 1 as in the proof of Proposition 6.3. Then β is obtained from α by making bead moves
from Dn, Dn+1 ∪ Dn−1, . . . , Dh−1 ∪ D0 in turn, and ρ∥β is obtained from π∥α by making bead moves
from Bn, Bn+1 ∪ Bn−1, . . . , Bh−1 ∪ B0 in turn. As in the proof of Proposition 6.2, these sets are uniquely
defined.

Define partitions α(0), . . . , α(m) by letting α(0) = α, and then constructing α(g+1) from α(g) by mak-
ing bead moves from Bn+g ∪ Bn−g, for g = 0, . . . , n − 1. Then α(m) = β, and

(
F̌k−rα, β

)
=
(

f̌(k−r)
n α, α(1)

)
×

n

∏
g=1

(
f̌(2(k−r))
n−g α(g), α(g+1)

)
.

Correspondingly,

(Fk(π∥α), ρ∥β) =
(

f̌(k)n (π∥α), π∥α(1)
)

×
n−1

∏
g=1

(
f̌(2k)
n−g(π∥α(g)), π∥α(g+1)

)
×
(

f̌(2k)
0 (π∥α(n)), ρ∥β

)
.
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First we compare the terms(
f̌(k−r)
n α, α(1)

)
= q4ň(α,α(1)),

(
f̌(k)n (π∥α), π∥α(1)

)
= q4ň(π∥α,π∥α(1)).

We can compute the integers ň(α, α(1)) and ň(π∥α, π∥α(1)) by looking at runners n and n + 1 in the
bar-abacus. As in the proof of Proposition 6.2, we may draw a small diagram showing the configura-
tion of beads on these runners in a given row. These two runners are identical in the four partitions
α, α(1), π∥α, π∥α(1), except:

⋄ in the positions corresponding to elements of Cn, where α, α(1) and π∥α all have while
π∥α(1) has ;

⋄ in the positions corresponding to elements of Dn, where α and π∥α have while α(1) and
π∥α(1) have .

Now comparing the calculation of ň(α, α(1)) and ň(π∥α, π∥α(1)), we obtain

ň(π∥α, π∥α(1)) = ň(α, α(1))− (k − r)r + |A|,

where
A = {0 ⩽ c < d | ch + n /∈ Cn ∋ dh + n} .

Next we take 1 ⩽ g ⩽ n − 1, and compare the terms(
f̌(2(k−r))
n−g α(g), α(g+1)

)
= q2ň(α(g),α(g+1)),

(
f̌(2k)
n−g(π∥α(g)), π∥α(g+1)

)
= q2ň(π∥α(g),π∥α(g+1)).

We can compare the integers ň(α(g), α(g+1)) and ň(π∥α(g), π∥α(g+1)) by looking at runners n − g, n −
g + 1, n + g, n + g + 1 of the bar-abacus.

On runners n − g and n − g + 1 the four partitions have identical configurations, except:

⋄ in the positions corresponding to elements of Cn−g, where α(g) and α(g+1) have , while
π∥α(g) has and π∥α(g+1) has ;

⋄ in the positions corresponding to elements of Dn−g, where α(g) and π∥α(g) have while
α(g+1) and π∥α(g+1) have .

A similar statement holds for runners n + g and n + g + 1, but with in place of . Now
comparing the calculation of ň(α(g), α(g+1)) and ň(π∥α(g), π∥α(g+1)) using the bar-abacus gives

ň(α(g), α(g+1)) = ň(π∥α(g), π∥α(g+1)).

Finally we look at the terms(
f̌(2(k−r))
0 α(n), β

)
= N1qň(α(n),β),

(
f̌(2k)
0 (π∥α(n)), ρ∥β

)
= N2qň(π∥α(n),ρ∥β).

Here N1 and N2 are products of terms 1 − (−q2)b which we will deal with at the end of the proof.
To compare the calculation of ň(α(n), β) and ň(π∥α(n), ρ∥β) it is easier to use Young diagrams

directly rather than the bar-abacus. Given a pair of columns c < d where c, d are each congruent to 0
or 1 modulo h, we write

arc,d(α
(n), β) =


1 if there is a node of β \ α(n) in column d and

a 0-bar-addable node of β in column c

−1 if there is a node of β \ α(n) in column d and
a 0-bar-removable node of α(n) in column c

0 otherwise.
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We define arc,d(π∥α(n), ρ∥β) similarly. Then

ň(π∥α(n), ρ∥β)− ň(α(n), β) = ∑
c<d

(
arc,d(π∥α(n), ρ∥β)− arc,d(α

(n), β)
)

.

We can explicitly list the pairs c < d for which arc,d(π∥α(n), ρ∥β) ̸= arc,d(α
(n), β). These occur in two

ways.

⋄ If d− 1 ∈ Ch−1 ∪C0 while c− 1 /∈ Ch−1 ∪C0, then arc,d(α
(n), β) = 0 while arc,d(π∥α(n), ρ∥β) =−1.

⋄ If d − 1 ∈ Dh−1 ∪ D0 and c − 1 ∈ Ch−1 ∪ C0, then arc,d(α
(n), β) = −1 while arc,d(π∥α(n), ρ∥β) = 0.

Summing over all these pairs, we obtain

ň(π∥α(n), ρ∥β)− ň(α(n), β) = (|C0|+ |Ch−1|)(|D0|+ |Dh−1|)− |B|
= 4r(k − r)− |B|,

where

B = { (c, d) | 1 ⩽ c < d, c ≡ 0, 1 (mod h), c − 1 /∈ (C0 ∪ Ch−1), d − 1 ∈ (C0 ∪ Ch−1)} .

But now recalling that C0 = Cn − n and Ch−1 = Cn + n gives

B = { (ch ± n, dh ± n) | (c, d) ∈ A} ,

where A is the set defined earlier in the proof. So |B| = 4|A|.
Now combining all the cases we have computed to calculate (Fk(π∥α), ρ∥β)/

(
F̌k−rα, β

)
, the pow-

ers of q cancel to give
(Fk(π∥α), ρ∥β)(

F̌k−rα, β
) =

N2

N1
,

and we just need to show that N2/N1 = hsπρ. Recall that N1 is the product of terms 1 − (−q2)b,
where we take the product over all c ⩾ 1 such that β \ α(n) includes a node in column ch + 1 but not
column c, and b is the number of times c appears in α(n). But in fact there are no such c, because the
nodes of β \ α(n) correspond to elements of Dh−1 ∪ D0, and D0 = Dh−1 + 1. So N1 = 1. So we need
to consider N2, which is defined in a similar way. The values of c for which ρ∥β \ π∥α(n) includes a
node in column ch + 1 but not column c are the values such that ch ∈ C0 but ch − 1 /∈ Ch−1. These
in turn are precisely the values of c for which ρ′c+1 > π′

c+1 while ρ′c = π′
c. As a result, N2 = hsπρ, as

required.

7 Comparing canonical bases

In this section we give our main results comparing canonical bases. In order to use the results of
Sections 6.1 and 6.2, we need to compare the actions of the operators Fk and F̌k defined in Section 6.
We begin with the following proposition.

Proposition 7.1. Suppose α, β ∈ P std
l . Then(

F̌kα, β
)
= (Fkψα, ψβ) .
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Proof. For this proof we write λ = ψα and µ = ψβ. First we show that one side of the equation is
non-zero if and only if the other is. We use the terminology and notation relating to the (bar)-abacus
from the proofs of Propositions 6.1 to 6.4; we use abacus displays with l + 1 beads for λ and µ. We
define functions

ι : Z −→ Z ῑ : Z −→ Z

b 7−→ b + (m − h)
⌊

b
h

⌋
b 7−→ b + (h − m)

⌊
b
m

⌋
.

Observe that ι and ῑ restrict to mutually inverse bijections between g + hZ and g + mZ for each
0 ⩽ g ⩽ n, and that position b is occupied in Ab(λ) if and only if position ῑ(b) is occupied in Ab(α)
(and similarly for µ and β).

Suppose first that
(

F̌kα, β
)
̸= 0. Then there are sets D0, . . . , Dh−1 ⊂ N0 with Dg ⊂ g + hZ and

|Dn−g| + |Dn+g| = 2k for each g, such that Ab(β) is obtained from Ab(α) by making bead moves
from Dn, Dn+1 ∪ Dn−1, . . . , Dh+1 ∪ D0 in turn. The assumption that α, β ∈ P std

l implies that Dn+g =
Dn+g−1 + 1 for g = 1, . . . , n, and that D0 = Dh−1 + 1. So in fact |Dg| = k for each g. Now if we define
Eg = ι(Dg) for g = 0, . . . , n, then Eg ⊂ g + mZ and |Eg| = k for each g, and Ab(µ) can be obtained
from Ab(λ) by making bead moves from En, En−1, . . . , E0 in turn. So (Fkλ, µ) ̸= 0.

The converse is very similar: if (Fkλ, µ) ̸= 0, then there are sets E0, . . . , En with the properties given
above and satisfying E0 = En + 1. Now if we define Dg = ῑ(Eg) for g = 0, . . . , n, and Dg = Dg−1 + 1
for g = n + 1, . . . , h − 1, then the sets Dg have the properties in the above paragraph and Ab(β) is
obtained from Ab(α) by making bead moves from Dn, Dn+1 ∪ Dn−1, . . . , Dh−1 ∪ D0. So

(
F̌kα, β

)
̸= 0.

So we assume that both sides of the equation are non-zero, and define the sets D0, . . . , Dh−1 and
E0, . . . , En as in the last two paragraphs. Also, for g = 1, . . . , n let Fg be the set of parts b of α congruent
to g modulo h such that b /∈ Dg; in other words, Fg is the set of positions of beads on runner g of Ab(α)
that are not moved in constructing β from α. We define the partitions α(0), . . . , α(m) as in the proof of
Proposition 6.4, and the partitions λ(0), . . . , λ(m) as in the proof of Proposition 6.2 (using E0, . . . , En in
place of D0, . . . , Dn) , so that

(
F̌kα, β

)
=
(

f̌(k)n α, α(1)
)

×
n

∏
g=1

(
f̌(2k)
n−gα(g), α(g+1)

)
,

(Fkλ, µ) =
n

∏
g=0

(
f(k)−g−1−lλ

(g), λ(g+1)
)

.

We will compare these two expressions term by term. First consider
(

f̌(k)n α, α(1)
)
= q4ň(α,α(1)) and(

f(k)−1−lλ, λ(1)
)
= q2n(λ,λ(1)). Since runner n + 1 of Ab(α) is empty, α has no n-bar-removable nodes, so

ň(α, α(1)) = |{ (c, d) | c < d, c ∈ Fn, d ∈ Dn}|.

A similar statement applies for n(λ, λ(1)), and the relationship between the abacus displays then
gives n(λ, λ(1)) = ň(α, α(1)).

Now take 1⩽ g⩽ n− 1, and consider
(

f̌(2k)
n−gα(g), α(g+1)

)
= q2ň(α(g),α(g+1)) and

(
f(k)−g−1−lλ

(g), λ(g+1)
)
=

q2n(λ(g),λ(g+1)). By considering Ab(α(g)), we obtain

ň(α(g), α(g+1)) =
∣∣{(c, d)

∣∣ c < d, c ∈ Fn−g, d ∈ Dn−g ∪ Dn+g
}∣∣

−
∣∣{(c, d)

∣∣ c < d, c ∈ Fn−g+1, d ∈ Dn−g ∪ Dn+g
}∣∣ .
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(Note that the terms in the minuend with c ∈ Fn−g ∩ (Fn−g+1 − 1) do not correspond to bar-addable
nodes. But these terms cancel with the terms in the subtrahend with c ∈ Fn−g+1 ∩ (Fn−g + 1), which
do not correspond to bar-removable nodes.) Doing the same calculation for λ(g) and applying ῑ,

n(λ(g), λ(g+1)) =
∣∣{(c, d)

∣∣ c < d, c ∈ Fn−g, d ∈ Dn−g
}∣∣

−
∣∣{(c, d)

∣∣ c < d, c ∈ Fn−g+1, d ∈ Dn−g
}∣∣ .

Finally, we look at
(

f̌(2k)
0 α(n), β

)
= qň(α(n),β) and

(
f(k)−l λ(n), µ

)
= q2n(λ(n),β). Now there are two added

nodes of bar-residue 0 corresponding to each element of Dh−1, two 0-bar-removable nodes corre-
sponding to each element of F1 \ {1}, and a 0-bar-addable node in column 1 provided 1 /∈ F1. So

ň(α(n), β) = 2k − 4 |{ (c, d) | c < d, c ∈ F1, d ∈ Dh−1}| .

Correspondingly,

n(λ(n), µ) = k − |{ (c, d) | c < d, c ∈ F1, d ∈ Dh−1}| .

Combining these cases, we find that
(

F̌kα, β
)
= q2s (Fkλ, µ), where

s =
n

∑
g=1

∣∣{(c, d)
∣∣ c < d, c ∈ Fn−g+1, d ∈ Dn+g−1

}∣∣− ∣∣{(c, d)
∣∣ c < d, c ∈ Fn−g+1, d ∈ Dn+g

}∣∣ .
But Dn+g = Dn+g−1 + 1 for each g, so each summand is zero, and hence

(
F̌kα, β

)
= (Fkλ, µ).

Now we are in a position to prove our main result comparing canonical basis elements, extending
Theorem 5.2. We consider the two sets of partitions

{π∥α | α ∈ P std
l , π ∈ P} , {π|λ | λ ∈ P+

⩽l , π ∈ P} .

If we let ψ be the bijection from Section 4, then there is a bijection between these two sets given by
π∥α 7→ π|ψα. Our aim is to extend the linear map Ψ to give a correspondence between the canonical
basis elements. The obvious map π∥λ 7→ π|ψα does not work, because of the factor hsπρ appearing
in Proposition 6.4.

In fact, we need to restrict quite substantially the set of partitions that we consider. Suppose
λ ∈ P+

⩽l and π ∈ P . Given u ⩾ 0, say that the partition π|λ is u-super-separated if ρ|λ is u-separated
for every partition ρ with |ρ| = |π|. (Equivalently, π|λ is u-super-separated if it is (u + |π| − π1)-
separated.)

Similarly, given α ∈ P std
l and π ∈ P , say that π∥α is u-super-bar-separated if ρ∥α is u-bar-separated

for every ρ with |ρ| = |π|. (Equivalently, π∥α is u-super-bar-separated if and only if π|ψα is u-super-
separated.)

For the case u = 0, we will simply say “super-separated” to mean “0-super-separated”, and sim-
ilarly for super-bar-separated.

Our next step is to show how the u-super-separated condition is affected when we apply the
operators Fk. The following is a variation on the final statement of Proposition 6.1.

Lemma 7.2. Suppose λ, µ ∈ P+
⩽l and π, ρ ∈ P , and that k > 0 with (Fk(π|λ), ρ|µ) ̸= 0. If π|λ is (k + u)-

super-separated for some u ⩾ 0, then ρ|µ is u-super-separated.

Proof. The statement that π|λ is (k + u)-super-separated is the same as saying that π|λ is (k + u +
|π| − π1)-separated. Since ρ|µ appears with non-zero coefficient in Fk(π|λ), Proposition 6.1 shows
that σ|µ does as well, where σ is the partition obtained by adding |ρ| − |π| nodes to π at the end of
the first row. So from the final statement of Proposition 6.1, σ|µ is (u + |π| − π1)-separated, which
is the same as (u + |σ| − σ1)-separated, so σ|µ is u-super-separated, and therefore ρ|µ is u-super-
separated.
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Now for each u define

SSPu = ⟨π|λ | λ ∈ P+
⩽l , π ∈ P , π|λ u-super-separated⟩ ,

BSSPu = ⟨π∥α | α ∈ P std
l , π ∈ P , π∥α u-super-bar-separated⟩ .

We write SSP and BSSP for SSP0 and BSSP0.
Lemma 7.2 shows that Fk maps SSPk+u to SSPu. Similarly, F̌k maps BSSPk+u to BSSPu. To extend

Proposition 7.1 to connect the actions of Fk and F̌k, we need to define a linear bijection between BSSP
and SSP. Recalling the Kostka polynomials Kρπ(t) from Section 3, we define

Θ : BSSP −→ SSP

by setting
Θ(π∥α) = ∑

ρ∈P
Kρπ(−q2)ρ|ψα

and extending linearly. (Θ is bijective because the matrix of Kostka polynomials Kρπ(t) for ρ, π ∈ P(r)
is invertible for each r.)

Now we can reconcile Propositions 6.2 and 6.4 via the following proposition.

Proposition 7.3. Suppose v ∈ BSSPk. Then Θ(F̌kv) = FkΘ(v).

Proof. By linearity we can assume v = π∥α for some k-super-bar-separated partition π∥α. Since both
sides of the equation lie in SSP, it suffices to show that(

Θ(F̌k(π∥α)), σ|µ
)
= (FkΘ(π∥α), σ|µ)

for each separated partition σ|µ.
We use the results of Section 3, with the variable t specialised to −q2. So we let Pλ, Qλ be the

two types of Hall–Littlewood symmetric functions defined for t = −q2, and ⟨ , ⟩ the Hall–Littlewood
inner product.

Now (
Θ(F̌k(π∥α)), σ|µ

)
= ∑

τ∈P
π

r
⇝τ

∑
β∈P std

l

hsπτ

(
F̌kα, β

)
(Θ (τ∥β) , σ|µ) (by Proposition 6.4)

= ∑
τ∈P
π

r
⇝τ

Kστ(−q2)hsπτ

(
F̌kα, ψ−1µ

)
(from the definition of Θ)

= ∑
τ∈P
π

r
⇝τ

⟨sσ, Qτ⟩hsπτ (Fkψα, µ)

(by Proposition 7.1 and the definition of the coefficients Kστ(t))

= ∑
τ∈P

⟨sσ, Qτ⟩⟨∂(r)Pτ, Qπ⟩ (Fkψα, µ) (by Proposition 3.2)

= ⟨∂(r)sσ, Qπ⟩ (Fkψα, µ) (since sσ = ∑τ⟨sσ, Qτ⟩Pτ)

= ∑
ρ∈P
ρ

r
⇝σ

⟨sρ, Qπ⟩ (Fkψα, µ) (by the Pieri rule for Schur functions)

= ∑
ρ∈P

Kρπ(−q2) (Fkρ|ψα, σ|µ) (by Proposition 6.2)

= (FkΘ(π∥α), σ|µ) (from the definition of Θ).
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Now we want to use Proposition 7.3 to compare canonical basis elements. Given partitions π, ρ,
we write ρ ≽ π if either |ρ| < |π| or ρ Q π. Part (2) of the next theorem is our main result comparing
canonical bases.

Theorem 7.4. Suppose α ∈ P std
l and π ∈ P , and that π∥α is u-super-bar-separated for some u ⩾ 0.

Then:

(1) Ǧh(π∥α) is a linear combination of basis elements ρ∥β in which ρ ≽ π and ρ∥β is u-super-bar-
separated;

(2) Θ(Ǧh(π∥α)) = Gm(π|ψα).

Proof. We proceed by induction on π, using the order ≽. The case π = ∅ follows from Theorem 5.2,
so assume π ̸= ∅, and that the theorem is true if π is replaced by any ρ with ρ ≻ π.

Let k be the last non-zero part of π, let π− denote the partition obtained by deleting this last part,
and consider the bar-invariant vector V = F̌kǦh(π

−∥α). Since π−∥α is (k + u)-super-bar-separated,
the inductive hypothesis says that Ǧh(π

−∥α) is a linear combination of basis elements σ∥γ for which
σ ≻ π− and σ∥γ is (k + u)-super-bar-separated. Now Proposition 6.3 shows that the terms ρ∥β

appearing in V all have the properties that σ
r
⇝ ρ for some r ⩽ k and ρ∥β is u-super-bar-separated. If

σ
r
⇝ ρ with either |σ| < |π−| or r < k, then |ρ| < |π|. On the other hand, if σ Q π− and σ

k
⇝ ρ, then

ρ Q π by Lemma 2.2, with equality only if σ = π−.
So V is a linear combination of terms ρ∥β with ρ ≽ π. Moreover, hsπ−π = 1, so for any β the

coefficient of π∥β in V is the same as the coefficient of π−∥β in Ǧh(π
−∥α). This means in particular

that π∥α occurs with coefficient 1, and that for any β ̸= α the coefficient of π∥β in V is divisible by q.
Because V is bar-invariant, we can write it as a linear combination of canonical basis vectors. The

properties of V described in the last paragraph and the inductive hypothesis mean that when we do
this, the canonical basis vector Ǧh(π∥α) must occur with coefficient 1. So we can write

V = Ǧh(π∥α) + ∑
β,ρ

aβρǦh(ρ∥β), (*)

with the sum being over pairs β, ρ for which ρ ≻ π and ρ∥β is k-super-bar-separated, and each coef-
ficient aβρ lies in C(q + q−1). Now property (1) for Ǧh(π∥α) follows from the inductive hypothesis
and the corresponding property for V shown above.

Applying Θ to both sides of (*) and rearranging, we obtain

Θ
(
Ǧh(π∥α)

)
= Θ

(
F̌kǦh(π

−∥α)
)
− ∑

β,ρ
aβρΘ

(
Ǧh(ρ∥β)

)
= FkΘ

(
Ǧh(π

−∥α)
)
− ∑

β,ρ
aβρΘ

(
Ǧh(ρ∥β)

)
(by Proposition 7.3)

= FkGm(π
−∥ψα)− ∑

β,ρ
aβρGm(ρ|ψβ) (by the inductive hypothesis).

This means in particular that Θ
(
Ǧh(π∥α)

)
is bar-invariant. Moreover, Θ

(
Ǧh(π∥α)

)
equals π∥α plus

a linear combination of other standard basis vectors with coefficients divisible by q; this comes from
the corresponding property for Ǧh(π∥α), the definition of Θ and the fact (Lemma 3.4) that the inverse
Kostka matrix K−1(−q2) is unitriangular with off-diagonal entries divisible by q2. So the defining
properties of the canonical basis mean that Θ

(
Ǧh(π∥α)

)
= Gm(π|ψα).

Example. We will be most interested in applying Theorem 7.4 in weight spaces which are completely
contained within BSSP, so we give an example to illustrate this situation. Take m = 3, and consider
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(2
2 ,1

11
)

(2
5 ,1

5 )

(3
3 ,2

2 ,1
2 )

(4
,3

,1
8 )

(4
,3

,2
3 ,1

2 )

(4
,3

2 ,2
,1

3 )

(4
,3

2 ,2
2 ,1

)

(5
,3

2 ,1
4 )

(5
,3

2 ,2
2 )

(5
2 ,3

,2
)

(22, 111) 1 · · · · · · · · ·
(25, 15) · 1 · · · · · · · ·

(33, 22, 12) · · 1 · · · · · · ·
(4, 3, 18) q2 q2 · 1 · · · · · ·

(4, 3, 23, 12) · q2 q2 · 1 · · · · ·
(4, 32, 2, 13) · q4 q4 q2 q2 1 · · · ·
(4, 32, 22, 1) · · q6 · q4 q2 1 · · ·
(5, 2, 18) · · · q2 · · · · · ·
(5, 24, 12) · · · · q2 · · · · ·
(5, 32, 14) q2 q2 · q4 q4 q2 · 1 · ·
(5, 32, 22) · q4 · · q6 q4 q2 q2 1 ·
(52, 15) q4 q4 · · · · · q2 · ·
(52, 3, 2) q2 q6 · q4 · q2 · q4 q2 1
(52, 4, 1) q4 · · q6 · q4 · · · q2

(7, 3, 15) · · · · · q2 · q4 · ·
(7, 32, 2) q4 · · · · q4 q2 q6 q4 q2

(7, 6, 12) q6 · · · · · · · · q4

(8, 2, 15) · · · · · q4 · · · ·
(8, 32, 1) · · · · · q6 q4 · q2 q4

(8, 5, 12) · · · · · · · · q4 q6

(10, 3, 12) · · · · · · q4 · q6 ·
(11, 2, 12) · · · · · · q6 · · ·

Figure 1: Canonical basis in type A(1)
2

the weight space in F spanned by partitions with 3-core (22, 12) and 3-weight 3. The canonical basis
coefficients are given in Figure 1, where the (λ, µ)-entry of the given matrix is dλµ).

Now take l = 6, and consider the canonical basis for the corresponding weight space in F̌ with
h = 5. This is given by the matrix in Figure 2. This weight space is spanned by 5-strict partitions with
5-bar-core (12, 11, 7, 6, 2, 1) and 5-bar-weight 3.

The matrices in Figures 1 and 2 are almost identical, but differ because of the effect of the poly-
nomials K−1

ρπ (−q2). To see the effect of Theorem 7.4, consider for example the fourth and fifth rows
of the two matrices. In the first matrix, these rows are labelled by the partitions (12)|(4, 3, 12) and
(2)|(4, 3, 12). The inverse Kostka polynomials K−1

ρπ (−q2) for partitions of 2 are given by the following
matrix.

(1
2 )

(2
)

(12) 1 ·
(2) q2 1

Hence the linear map Θ−1 sends

(12)|(4, 3, 12) 7−→ (12)∥ψ(4, 3, 12) + q2(2)∥ψ(4, 3, 12)

= (16, 12, 7, 6, 52, 2, 1) + q2(16, 12, 10, 7, 6, 2, 1)

(2)|(4, 3, 12) 7−→ (2)∥ψ(4, 3, 12)

= (16, 12, 10, 7, 6, 2, 1).

As a consequence, the fifth row of the matrix in Figure 2 is obtained from the fifth row of the matrix
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(1
2,

11
,7

,6
,5

3 ,2
,1
)

(1
2,

11
,1

0,
7,

6,
5,

2,
1)

(1
5,

12
,1

1,
7,

6,
2,

1)

(1
6,

12
,7

,6
,5

2 ,2
,1
)

(1
6,

12
,1

0,
7,

6,
2,

1)

(1
6,

12
,1

1,
7,

5,
2,

1)

(1
6,

12
,1

1,
7,

6,
2)

(1
7,

12
,1

1,
6,

5,
2,

1)

(1
7,

12
,1

1,
7,

6,
1)

(1
7,

16
,1

1,
7,

2,
1)

(12, 11, 7, 6, 53, 2, 1) 1 · · · · · · · · ·
(12, 11, 10, 7, 6, 5, 2, 1) −q4 + q2 1 · · · · · · · ·
(15, 12, 11, 7, 6, 2, 1) q4 q2 1 · · · · · · ·
(16, 12, 7, 6, 52, 2, 1) q2 q2 · 1 · · · · · ·
(16, 12, 10, 7, 6, 2, 1) q4 q4 + q2 q2 q2 1 · · · · ·
(16, 12, 11, 7, 5, 2, 1) · q4 q4 q2 q2 1 · · · ·
(16, 12, 11, 7, 6, 2) · · q6 · q4 q2 1 · · ·
(17, 11, 7, 6, 52, 2, 1) · · · q2 · · · · · ·
(17, 11, 10, 7, 6, 2, 1) · · · q4 q2 · · · · ·
(17, 12, 11, 6, 5, 2, 1) q2 q2 · q4 q4 q2 · 1 · ·
(17, 12, 11, 7, 6, 1) · q4 · · q6 q4 q2 q2 1 ·
(17, 16, 7, 6, 5, 2, 1) q4 q4 · · · · · q2 · ·
(17, 16, 11, 7, 2, 1) q2 q6 · q4 · q2 · q4 q2 1
(17, 16, 12, 6, 2, 1) q4 · · q6 · q4 · · · q2

(21, 12, 7, 6, 5, 2, 1) · · · · · q2 · q4 · ·
(21, 12, 11, 7, 2, 1) q4 · · · · q4 q2 q6 q4 q2

(21, 17, 7, 6, 2, 1) q6 · · · · · · · · q4

(22, 11, 7, 6, 5, 2, 1) · · · · · q4 · · · ·
(22, 12, 11, 6, 2, 1) · · · · · q6 q4 · q2 q4

(22, 16, 7, 6, 2, 1) · · · · · · · · q4 q6

(26, 12, 7, 6, 2, 1) · · · · · · q4 · q6 ·
(27, 11, 7, 6, 2, 1) · · · · · · q6 · · ·

Figure 2: Canonical basis in type A(2)
4

in Figure 1 by adding q2 times the fourth row. A similar calculation applies to the first three rows of
the matrices (in fact, the 3 × 3 matrix at the top right of the matrix in Figure 2 is precisely the matrix
of polynomials K−1

ρπ (−q2) for partitions of 3).

8 Equivalences on weight spaces and Rouquier cores

In the representation theory of the symmetric group, equivalences between blocks of the same
defect (starting from the work of Scopes [S]) have proved to be an important tool in studying the
representation theory of symmetric groups. One of the Scopes equivalence classes of blocks was
identified by Rouquier as being of particular interest. These blocks are now commonly known as
Rouquier blocks or RoCK blocks, and (in combination with Scopes’s equivalences) have been instru-
mental in proving various conjectures, most significantly in the proof of Broué’s abelian defect group
conjecture for the symmetric groups [CK, CR]. There is a parallel theory for blocks of double covers
of symmetric groups, but with substantial additional complications. We will describe this in more de-
tail in Section 9, but in this section we describe analogous results in F and F̌ : we define the notion of
extremal weight spaces in F and F̌ , we recall the formula (due to Chuang–Tan and Leclerc–Miyachi)
for the canonical bases in extremal weight spaces in type A(1)

n , and we use this (and our main theorem
from Section 7) to give a corresponding formula for F̌ .
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8.1 Extremal weight spaces in type A(1)
m−1

For each m-core ν and each w ⩾ 0, let Pν,w denote the set of partitions with m-core ν and m-
weight w, and let Wν,w denote the weight space in F spanned by Pν,w. If k ∈ N, we say that two
weight spaces Wν,w and Wξ,w form a [w : k]-pair of residue i if ξ is obtained from ν by adding k nodes
of residue i. This is equivalent to saying that fk

i maps Wν,w to Wξ,w. We will write V ≼W to mean
that V and W form a [w : k]-pair for some k, and extend ≼ transitively to give a partial order on the
set of weight spaces of m-weight w. If V and W form a [w : k]-pair of residue i with k ⩾ w, we say that
V and W are Scopes equivalent; this is equivalent to the condition that f(k)i and e(k)i map the canonical
basis for V to the canonical basis for W and vice versa. Extending this relation transitively defines an
equivalence relation (the Scopes equivalence) on the set of weight spaces of m-weight w, with only
finitely many equivalence classes. The partial order ≼ on weight spaces descends to a partial order
on Scopes classes, and there is a unique maximal class for this order. We call the weight spaces in this
class the extremal weight spaces in F ; these are precisely the weight spaces corresponding to RoCK
blocks of symmetric groups. To describe the weight spaces in this class, we introduce the notion of a
Rouquier core.

Take w ⩾ 1, and let ν be an m-core. Say that ν is w-Rouquier if it has an abacus display (with
s beads, say) in which there are at least w − 1 more beads on runner i than on runner i − 1, for
i = 1, . . . , m − 1. If ν is w-Rouquier, then Wν,w is an example of an extremal weight space.

To describe the canonical basis coefficients in extremal weight spaces, we need to recall the notion
of the m-quotient of a partition. Suppose ν is w-Rouquier with an s-bead abacus display as above. By
increasing s by a multiple of m if necessary, we can assume there are at least w beads on each runner.
Now given λ ∈ Pν,w, we can construct the abacus display for λ with s beads from the abacus display
for ν by moving some beads down their runners. We define the m-quotient (λ(0), . . . , λ(m − 1)) to be
the m-tuple of partitions in which λ(i) is the partition obtained by viewing runner i in isolation as
1-runner abacus; more precisely, λ(i)r is the number of empty spaces above the rth lowest bead on
runner i.

(In fact the definition of m-quotient we have given is not the most usual one, in which the indices i
may be permuted cyclically according to the number of beads on the abacus. The m-quotient defined
here is called the ordered m-quotient in [F2].)

Now we can give the main result of Chuang–Tan and Leclerc–Miyachi (translated to the conven-
tions we are using). Recall that dλµ denotes the coefficient of λ in Gm(µ). In the following theorem,
cλ

στ denotes a Littlewood–Richardson coefficient, which should be interpreted as 0 if |λ| ̸= |σ|+ |τ|.

Theorem 8.1 [CT1, Theorem 1.1], [LM, Corollary 10]. Suppose ν is a w-Rouquier m-core, and λ, µ ∈
Pν,w. Then µ is m-restricted if and only if µ(m − 1) = ∅. If µ is m-restricted, then

dλµ =

(
∑

m−1

∏
i=1

cλ(i)
σ(i)τ(i) cµ(i−1)

σ(i−1)τ(i)′

)
q2 ∑i i(|λ(i)|−|µ(i)|),

where the sum is over all partitions σ(1), . . . , σ(m − 2), τ(1), . . . , τ(m − 1), and σ(0) and σ(m − 1)
should be read as λ(0) and ∅ respectively.

8.2 Extremal weight spaces in type A(2)
h−1

Now we describe the corresponding theory in type A(2)
h−1. If γ is an h-bar-core and w ⩾ 0, we

let P̌γ,w denote the set of h-strict partitions with h-bar-core γ and h-bar-weight w, and we let W̌γ,w

denote the weight space in F̌ spanned by P̌γ,w. The notion of a [w : k]-pair of weight spaces of
bar-residue i, and the partial order ≼ are defined exactly as in type A(1). Two weight spaces W̌γ,w
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and W̌δ,w forming a [w : k]-pair of bar-residue i are Scopes–Kessar equivalent if the divided powers f(k)i

and e(k)i map the canonical basis of W̌γ,w to the canonical basis of W̌δ,w and vice versa. (The exact
condition in terms of w, k, i for a Scopes–Kessar equivalence is given in [F4, Theorem 4.6], but we do
not need this here). As in type A(1), we extend this relation to give an equivalence relation on the set
of weight spaces with h-bar-weight w, and the order ≼ descends to an order on equivalence classes.
Again, there is a unique maximal class, whose elements we call extremal weight spaces.

To give examples of extremal weight spaces, we introduce Rouquier bar-cores, following Kleshchev
and Livesey [KlL, §4.1a]. Say that an h-bar-core γ is w-Rouquier if in the bar-abacus display for γ there
are at least w beads on runner 1, and at least w − 1 more beads on runner i than on runner i − 1, for
2 ⩽ i ⩽ n. If γ is w-Rouquier, then the weight space P̌γ,w is extremal.

We can use the results in this paper to find the canonical basis coefficients in extremal weight
spaces. Suppose γ is a w-Rouquier h-bar-core, and let l be the length of γ. Then automatically
γ ∈ P std

l (because γ has parts congruent to 1, 2, . . . , n modulo h only), and if we apply the function ψ,
we obtain a w-Rouquier m-core.

To give a formula analogous to Theorem 8.1, we need to define h-bar-quotients. Given α ∈ P̌γ,w,
let α(0) be the partition obtained by taking all the parts of α divisible by h and dividing them all by
h. For 1 ⩽ i ⩽ n, define α(i) by letting α(i)r be the number of empty spaces above the rth lowest
bead on runner i in the bar-abacus display for α. (We remark that the particular version of h-bar-
quotient we have defined here is specific to partitions with Rouquier cores; other versions [MY, Y]
have been defined which apply to all h-strict partitions.) In particular, we can write α = α(0)∥β, where
β ∈ P std

l , and α(0)|ψβ is the partition with m-core ψγ and m-quotient (α(0), . . . , α(n)). Moreover, the
w-Rouquier condition implies that α is bar-separated: the last bead on runner 0 of the bar-abacus
display is in position hα(0)1, while the first empty position not on runner 0 is position 1+(d− α(1)′1)h
or later, where 1 + dh is the position of the last bead on runner 1 for α. Since α(0)1 + α(1)′1 ⩽ w ⩽ d,
the bar-separated condition holds.

Example. Suppose h = 5 and w = 4, and let γ = (32, 27, 22, 17, 16, 12, 11, 7, 6, 2, 1). Then γ is a 4-
Rouquier 5-bar-core, and ψγ = (9, 7, 5, 32, 22, 12) is a 4-Rouquier 3-core.

∞

γ ψγ

Now let α = (37, 32, 22, 17, 16, 12, 11, 10, 7, 6, 2, 1) = (2)∥(37, 32, 22, 17, 16, 12, 11, 7, 6, 2, 1). Then α lies in
P̌γ,4, and has h-bar-quotient ((2),∅, (12)). The corresponding partition with 3-core ψγ and 3-quotient
((2),∅, (12)) is (12, 10, 5, 32, 25, 12).

∞

α (12, 10, 5, 32, 25, 12)
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Now we can apply Theorems 7.4 and 8.1, and we obtain the following result giving the canonical
bases for weight spaces with Rouquier bar-cores. (This generalises in a straightforward way to give
the canonical bases for all extremal weight spaces.)

Theorem 8.2. Suppose γ is a w-Rouquier h-bar-core, and that α and β are h-strict partitions with
h-bar-core γ and h-bar-weight w. Then β is restricted if and only if β(n) = ∅. If β is restricted, then

ďαβ =

(
∑ K−1

α(0)σ(0)(−q2)
n

∏
i=1

cα(i)
σ(i)τ(i) cβ(i−1)

σ(i−1)τ(i)′

)
q2 ∑i i(|α(i)|−|β(i)|),

where the sum is over all partitions σ(0), . . . , σ(n), τ(1), . . . , τ(n).

Example. Take h = 3 and w = 4. The 3-bar-core (10, 7, 4, 1) is 4-Rouquier, and the canonical ba-
sis in the corresponding weight space of 3-bar-weight 4 is given by the matrix in Figure 3. As

(1
0,

7,
4,

34 ,1
)

(1
0,

7,
6,

4,
32 ,1

)

(1
0,

7,
62 ,4

,1
)

(1
0,

9,
7,

4,
3,

1)

(1
2,

10
,7

,4
,1
)

(10, 7, 4, 34, 1) 1 · · · ·
(10, 7, 6, 4, 32, 1) q6 − q4 + q2 1 · · ·
(10, 7, 62, 4, 1) −q6 q2 1 · ·
(10, 9, 7, 4, 3, 1) −q6 + q4 q2 q2 1 ·
(12, 10, 7, 4, 1) q6 q4 · q2 1
(13, 7, 4, 33, 1) q2 q2 · · ·
(13, 7, 6, 4, 3, 1) −q6 + q4 −q6 + q4 + q2 q2 q2 ·
(13, 9, 7, 4, 1) q6 q6 + q4 q4 q4 + q2 q2

(13, 10, 4, 32, 1) · q4 · q4 ·
(13, 10, 6, 4, 1) · q6 q4 q6 + q4 q4

(16, 7, 4, 32, 1) q4 q4 q4 · ·
(16, 7, 6, 4, 1) q6 q6 + q4 q6 q4 ·
(13, 10, 7, 3, 1) · · · q6 q6

(16, 10, 4, 3, 1) · q6 q6 q6 ·
(19, 7, 4, 3, 1) q6 q6 · · ·
(13, 10, 7, 4) · · · · q8

(16, 10, 7, 1) · · · q8 ·
(16, 13, 4, 1) · · q8 · ·
(19, 10, 4, 1) · q8 · · ·
(22, 7, 4, 1) q8 · · · ·

Figure 3: Canonical basis in an extremal weight space

an example of how entries are calculated, consider the (α, β)-entry where α = (13, 7, 6, 4, 3, 1) and
β = (10, 7, 6, 4, 32, 1). In this case

(α(0), α(1)) = ((2, 1), (1)), (β(0), β(1)) = ((2, 12),∅),
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giving ∑i i(|α(i)| − |β(i)|) = 1. The Littlewood–Richardson coefficient c(2,12)
σ(1) equals 1 if σ = (13) or

(2, 1), and 0 otherwise. So

ďαβ = (K−1
(2,1)(13)

(−q2) + K−1
(2,1)(2,1)(−q2))q2 = ((q2 − q4) + 1)q2.

9 RoCK blocks of symmetric groups and their double covers

We end this paper by explaining the connections between our results and the spin representation
theory of the symmetric group, giving conjectural decomposition numbers for RoCK blocks with
abelian defect.

We refer to the book by Kleshchev [Kl] for background on spin representation theory of Sn, but
we summarise the main points here. As in the introduction, let Ŝn denote a proper double cover of
Sn. We consider representations of Ŝn over an algebraically closed field F of odd characteristic h.
The non-trivial central element z ∈ Ŝn acts as ±1 on any irreducible module; modules on which z
acts as −1 are called spin modules. A block of Ŝn is called a spin block if it contains a spin module (in
which case all the irreducible modules in the block are spin modules).

In practice it is more convenient to work with FŜn as a superalgebra, and consider supermodules.
So we will consider spin superblocks (which coincide with spin blocks except in the trivial case of
blocks of defect 0). For each strict partition α of n (i.e. each partition in which the positive parts are
distinct) there is an irreducible spin supermodule for CŜn, and these modules give all the irreducible
spin supermodules for CŜn. We let Sα denote an h-modular reduction of this module. For each
restricted h-strict partition β of n, there is an irreducible spin supermodule Dβ for FŜn, and these
modules give all the irreducible spin supermodules for FŜn. So (apart from the distinction between
modules and supermodules) the decomposition number problem for spin representations of Ŝn asks
for the composition multiplicities [Sα : Dβ] for all α, β.

The block classification for Ŝn (due to Humphreys [Hu]) says that Sα and Dβ lie in the same
superblock of Ŝn if and only if α and β have the same h-bar-core (in which case they have the same h-
bar-weight as well). In particular, we can talk about the h-bar-core and h-bar-weight of a superblock,
and there is a direct correspondence between spin superblocks of Ŝn (as n varies) and weight spaces
in the Fock space F̌ . Moreover, the action of the generators ěi, f̌i on standard basis elements in F̌
corresponds to the branching rules describing induction and restriction of the modules Sα. This
led Leclerc and Thibon to draw connections between canonical basis coefficients and decomposi-
tion numbers. To give a statement of their conjecture, we introduce some more notation. Given an
h-strict partition α of n, we can define in a combinatorial way a restricted h-strict partition called
the regularisation αreg of α; this was introduced by Brundan and Kleshchev, who showed that the
decomposition number [Sα : Dαreg

] is non-zero (giving its value explicitly), and that αreg is the most
dominant partition with this property. Now given any restricted h-strict partition β of n, define the
divided decomposition number

Dαβ =
[Sα : Dβ]

[Sα : Dαreg
]
.

Then the Leclerc–Thibon conjecture on spin decomposition numbers states that Dαβ is simply the
evaluation of ďαβ at q = 1 when n < h2. A natural extension of this conjecture (analogous to the
James conjecture for the symmetric groups) would weaken the condition n < p2 to include all cases
where α and β have h-bar-weight less than h (this condition corresponds to the block containing Sα

having abelian defect groups). As mentioned in the introduction, this conjecture is known to be false
(in fact it predicts negative decomposition numbers!) but it is nevertheless true in many cases; in
particular, in all blocks of abelian defect for which the decomposition numbers are explicitly known,
the Leclerc–Thibon conjecture holds.
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Now define a RoCK block to be a superblock with h-bar-weight w whose h-bar-core is w-Rouquier.
Applying Theorem 8.2, we make the following explicit conjecture. Here we write K−1

αβ for the special-

isation of K−1
αβ (t) at t = −1. We continue to write n = 1

2 (h − 1).

Conjecture 9.1. Suppose γ is a w-Rouquier h-bar-core, and that α is a strict partition and β a re-
stricted h-strict partition, both with h-bar-core γ and h-bar-weight w < h. Define the h-bar-quotients
(α(0), . . . , α(n)) and (β(0), . . . , β(n)) as above. Then

Dαβ = ∑ K−1
α(0)σ(0)

n

∏
i=1

cα(i)
σ(i)τ(i) cβ(i−1)

σ(i−1)τ(i)′ .

where the sum is over all partitions σ(0), . . . , σ(n), τ(1), . . . , τ(n).

Recent work of Kleshchev and Livesey [KlL] studies RoCK blocks in detail, particularly in the
abelian defect case. In a forthcoming paper [FKM], we will use these results and the results of the
present paper to prove Conjecture 9.1.
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