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Abstract—This paper presents an improved study on the
motion of mobile robots with dynamic obstacle environments
and arbitrary directions. This study focuses on incorporating
the concept of inertia into the movement of obstacles to enhance
the capabilities of mobile robots in complex environments. Unlike
random movements, the obstacles in this study possess inertia,
which constrains their motion in predictable patterns. This
inertia can be learned or predicted by the robot, enabling it to
better anticipate the obstacle positions. This research employs a
grid-based simulation environment with systematically moving
obstacles. By considering inertia, the robot gains the ability
to understand and leverage the predictable aspects of obstacle
motion, resulting in improved navigation performance. The robot
can predict obstacle trajectories more effectively, reducing the
likelihood of collisions and increasing overall efficiency by using
the velocity obstacle algorithm. By incorporating inertia into the
movement of obstacles, the robot gains valuable insights that
enable it to plan its movements more intelligently. Incorporating
inertia as a factor in obstacle motion contributes to a more
systematic and predictable environment, allowing the robot to
make informed decisions based on the anticipated positions
of both fixed and moving obstacles. This research opens up
possibilities for further advancements in mobile robot navigation
in complex environments and dynamic scenarios.

Index Terms—Mobile robots, dynamic obstacles, arbitrary
direction, grid environment, inertia, velocity obstacle.

I. INTRODUCTION

The significance of mobile robots has surged across all
facets of life. These machines have become increasingly intel-
ligent, enabling them to operate autonomously in dynamic and
unpredictable environments [1]. Research in robot develop-
ment can be categorized into four main areas: motion control,
obstacle avoidance, path planning, and localization [1]. Path
planing involves the mobile robot detecting the boundaries of
obstacles, devising alternative paths, and calculating its instan-
taneous velocity and angular heading. This allows the robot to
avoid collisions while in motion [1] . The bug algorithm is a
well-known technique used for collision avoidance. It has been
used since the early days as one of the approaches to address
this problem [2]. In the bug algorithm, the first step is to
detect the presence of obstacles. Once obstacles are detected,
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the robot subsequently navigates along the boundaries of
these objects as it moves, ensuring collision avoidance. This
algorithm is only effective in a stationary environment. An
additional approach that could be considered is the potential
field method [3]. The global path planning method, also
referred to as potential field navigation, considers the target
and obstacles as valleys and hills in a highland region, where
the lowest and highest values represent the potential gravity.
To avoid obstacles, the robot maneuvers through the repulsive
field, while simultaneously moving towards the goal using
the attractive field. Despite these advantages, this algorithm
still has limitations and struggles in narrow passages. Addi-
tionally, the bug algorithm itself has certain drawbacks, and
its implementation can be challenging in real-time systems.
In this paper, we present a study on mobile robots with
arbitrary directions. This study has been implemented in a grid
environment with a more systematic movement of obstacles.
Instead of obstacles that move randomly, they have inertia
which constrains their motion. This can then be learned or
predicted by the robot.

II. RELATED PREVIOUS WORKS

It’s crucial for mobile robots to navigate through dynamic
environments while avoiding obstacles to reach their destina-
tion safely [1] . One approach is the motion saliency method,
which calculates the saliency of dynamic objects and identifies
dangerous ones using segmentation [4]. By predicting the
movement of these objects through B-spline curves, the robot
can use nonlinear model predictive control to steer clear of
potential collisions [4]. In unknown dynamic environments, a
robot can detect its surroundings, gather distance information,
and generate trajectories in real-time. One such method is
the hybrid fuzzy potential field, which combines fuzzy logic
and potential field techniques to achieve autonomous motion
planning [5], [6]. The Velocity Obstacle algorithm is known
for its remarkable efficiency in local path planning. It enables
the incorporation of dynamic and unforeseen obstacles into
the planning process [7]. By doing so, the robot can effec-
tively navigate and avoid collisions by choosing its velocity
exclusively from the collision-free region. [8] However, when
comparing the cumulative time taken based on the minimum



distance, it became evident that VO was significantly safer than
APF. Moreover, the VO method also completed the formation
faster, as compared to APF [9]. The authors in [1] introduced
the VO method for motion planning in dynamic environments
and showed its effectiveness in avoiding collisions with mov-
ing obstacles in real time. Another collision avoidance method
is based on motion saliency for a dynamic environment [2].
In this method, segmented dynamic objects are used to calcu-
late the saliency of dynamic objects and segment dangerous
dynamic objects. The B-spline curve is a powerful tool for
forecasting the trajectory of hazardous, dynamic objects. When
combined with a nonlinear model predictive control method, it
becomes an effective approach to navigating around perilous
obstacles in a robot’s dynamic environment. [4]. In unknown
dynamic environments, a robot would detect environments,
incrementally obtain distance information of its current state
and obstacles and then generate a trajectory online [10]. The
utilisation of a hybrid fuzzy potential field has been proposed
in mobile robot dynamic motion planning [10]. The Velocity
Obstacle (VO) method is a popular and effective algorithm
for local path planning that allows for the consideration of
dynamic and unexpected obstacles [7].

III. RESEARCH OBJECTIVES

• Developing a systematic movement algorithm using
MATLAB environment.

• Prove the effectiveness of the proposed method by reduc-
ing collision.

• Use some performance metrics such as number of colli-
sions, time, and path efficiency.

As compared to our previous study [11], there are several
aspects which differentiate it from the current study. The key
differences are summarized as the first study on the A* path-
finding algorithm as:

• Implement a variation of the A* algorithm on a 15 by 15
grid using Python.

• Test the Maximum Velocity Obstacle (MVO) algorithm
for dynamic obstacle avoidance.

• Demonstrates that the MVO algorithm is efficient and
reliable for grid-based environments.

• Suggests the possibility of optimizing the algorithm fur-
ther by combining proposed method with other pathfind-
ing techniques like artificial neural networks.

While our study on motion mobile robots with inertia in
dynamic obstacle environments:

• Explores the concept of incorporating inertia into the
movement of obstacles to enhance the capabilities of
mobile robots.

• Uses MATLAB to implement the study on a larger 50 by
50 grid setting.

• Introduces the idea of obstacles possessing inertia, which
constrains their motion in predictable pattern.

• Shows that by considering inertia, the robot gains the
ability to leverage predictable aspects of obstacle motion.

• Implements the Velocity Obstacle Algorithm to improve
navigation performance and reduce collisions.

• Emphasizes the potential of inertia in enhancing mobile
robot performance in dynamic obstacle environments.

• In this study, we add moving and fixed obstacles to the
experiment.

• Indicates the implications for real-world applications like
search and rescue missions and navigating cluttered en-
vironments. Both share a common goal of improving
the performance and efficiency of robots in navigating
through complex and changing environments.

IV. MATERIAL AND METHODS

A. Implementing the Grid Environment

The grid environment was designed with a more sys-
tematic movement of obstacles. Instead of obstacles that
move randomly, they have inertia which constrains their
motion. This can then be learned/predicted by the robot.

B. Obstacle Movement Modeling

The obstacle movement was modeled using a B-spline
curve which can be employed to anticipate the motion
of hazardous and dynamic entities. The obstacles were
individually segmented based on their saliency, and the
identification process focused specifically on dangerous
dynamic objects. The nonlinear model predictive control
method was used to circumvent perilous obstructions
within the ever-changing surroundings of the robot.

C. Robot Motion Algorithm

The Velocity Obstacle (VO) method is a commonly used
and highly effective algorithm in the field of robot motion
planning for dynamic obstacle avoidance. It allows a
robot to navigate from its initial starting position to its
intended goal position while avoiding collisions with
obstacles along the way. The Velocity Obstacle (VO)
method operates by establishing a collection of velocities
for a robot. These velocities are identified as those which,
if pursued, would lead to a collision with another robot or
obstacle if it keeps moving with its existing velocity. By
selecting a velocity within the velocity obstacle, the two
robots, or the robot and obstacle, will ultimately collide.
Conversely, if a velocity is chosen outside the velocity
obstacle, it ensures that no collision will occur. This
approach helps in navigating safely while considering po-
tential collisions. One of the reasons why the VO method
is a preferred choice for robot motion planning is its
simplicity and good real-time performance. It allows for
quick and efficient calculations to be made in real-time,
enabling the robot to effectively navigate around obstacles
and avoid collisions. The VO method has numerous
applications in robotics and motion planning. It can be
used for autonomous navigation of robots in dynamic
environments, where obstacles may be constantly moving
or changing. It can also be used for multi-robot systems
where multiple robots need to coordinate their movements
to avoid collisions with each other.



D. Simulation Runs and Data Collection

Simulation runs were conducted to collect data on the
robot’s motion behavior and obstacle avoidance strate-
gies. The data was then analyzed to evaluate the per-
formance of the proposed method in terms of collision
avoidance and path efficiency.

E. Mathematical Model of Velocity Obstacle Method

Velocity Obstacle Algorithm: The method involves
creating velocity obstacles [1], [4], generating velocity
obstacles by taking into account the present positions and
velocities of both the robot and the obstacles. To derive
the equation for the Velocity Obstacles method, consider
a two-dimensional scenario.
Assumptions: The agent and obstacles are point-like
objects moving in a two-dimensional space. The agent
has a known position and velocity position: (xa, ya),
velocity: (vxa, vya ). Each obstacle has a known position
and velocity (position: (xo, yo ), velocity: (vxo, vyo ).
Relative Velocity: Defining the relative velocity of an
obstacle with respect to the robot as follows:

vrelx = vxo − vxa, (1)

vrely = vyo − vya. (2)

Velocity Obstacle: The velocity obstacle is a geometric
representation that defines the set of velocities that would
result in a collision between the agent and the obstacle.
It consists of two boundary lines: the tangent line and the
acceleration line.
(a) Tangent Line: The tangent line represents the ve-
locities that would result in a collision if the agent and
the obstacle continue on their current trajectories. The
tangent line is calculated as shown:

tangentSlope =
vrely
vrelx

, (3)

tangentintercept = ya − tangentslope × xa. (4)

(b) Acceleration Line: The acceleration line represents
the velocities that would result in a collision if the agent
and the obstacle accelerate maximally. The acceleration
line is perpendicular to the tangent line and passes
through the position of the agent. Its slope is the negative
reciprocal of the tangent line slope:

accelerationslope = − 1

tangentslope
, (5)

accelerationinter = ya − accelaritionslope × xa. (6)

Feasible Velocities: To determine the feasible velocities
for the agent, we need to consider the space outside
the velocity obstacle. Any velocity outside the velocity
obstacle guarantees collision avoidance. The equation for
the velocity obstacle as follows :

velocityobstacle =
vrely
vrelx

∗(vx−vxa))+(ya−(
vrely
vrelx

)∗(vx−vxa)) ≥ 0.

(7)

This equation represents the upper half-plane of the
velocity obstacle. Any velocity (vx, vy) that satisfies this
equation ensures collision avoidance.
In MATLAB, the following algorithm was implemented
using the above ”Velocity Obstacle Method”
1. Defines minimum obstacle avoidance distance:

d = δ. (8)

2. Calculates desired velocity vector towards the goal
position:

vdesired =
pgoal − probot

∥pgoal − probot ∥
, (9)

where, prob. ∈ Rn, pgoal ∈ Rn, and

||pgoal − probot || =
√∑

(pgoal − probot )
2
. (10)

3. Adds random acceleration to create variability in the
movement:

αrand = N(0, 1) ∗ αmax , (11)

where, N(0, 1) generates a random vector from a
multivariate normal distribution with mean 0 and
covariance matrix equal to the identity matrix.
4. Updates the robot’s velocity based on desired velocity
and acceleration:

vrobot = vrobot + (vdesired + αrand ) ∗∆t, (12)

where, ∆t is the time step size.
5. Checks if any obstacles are too close to the robot:

tooclose = ∆ < obstacledistances. (13)

6. If any obstacles are too close, calculate a new velocity
vector that avoids them:

aavoid =
∑

(pobstacle − probot) ∗ tooclose. (14)

This sums up the vectors pointing away from any
obstacles that are too close, using -1 or 1 to invert each
vector for obstacles that are too close behind versus in
front of the robot.
7. Updates the robot’s velocity by adding the avoidance
vector:

vrobot = vrobot+ aavoid
||aavoid||

. (15)

8. Updates the position of the robot and all obstacles:

probot = probot + vrobot ∗∆t, (16)

pobstacle = pobstacle + vobstacle ∗∆t, (17)

pobstacle ∈ Rnxm, vobstacle ∈ Rnxm,



TABLE I
ROBOT MOVEMENT IN TWO SCENARIOS

Robot Movement
Scenario No of colli-

sion
Count of iter-
ation to reach
goal

Time
taken
(sec)

with Vo algorithm 3 168 90.37
without algorithm 7 122 66.77

where, pobstacle ∈ Rnxm is a matrix containing the
positions of all obstacles, and vobstacle ∈ Rnxm is a matrix
containing the velocities of all obstacles.

F. Motions of Obstacles

To derive the discrete approximation of the continuous
change in velocity from Newton’s second law of motion
[12], starting with the equation :

F = m ∗ a, (18)

where, F represents the net force acting on an object m
represents the mass of the object and a represents the
acceleration of the object. Rearranging the equation to
solve for acceleration:

a =
F

m
. (19)

To approximate the change in velocity over a small-
time interval dt. Considering an initial velocity v and
the final velocity v′ after a time interval dt. The average
acceleration over this time interval is approximated as:

aavg =
v′ − v

dt
(20)

Using the relationship between acceleration and net force
F = m ∗ a, we can substitute aavg into the equation:

F = m ∗ aavg, F = m ∗ v′ − v

dt
. (21)

Rearranging the equation to solve for the final velocity:

v′ = v +
F ∗ dt
m

. (22)

This equation represents the discrete approximation of
the continuous change in velocity v′ based on the initial
velocity v, net force F , mass m, and time step size
dt. It is derived from Newton’s second law of motion
and allows for calculation of the updated velocity over
discrete time steps.

V. RESULTS

Based on Table I there are some notable differences be-
tween the scenarios with and without the Velocity Obsta-
cle (VO) algorithm: Number of Collisions,and Count of
Iterations to Reach Goal. The VO algorithm is designed
to help the robot avoid collisions by considering the
velocity of the obstacles. In the given scenario including
the Velocity Obstacle (VO) algorithm, the robotic system
successfully demonstrated its capability to traverse the

TABLE II
AVERAGE PATH EFFICIENCY IN TWO CASES

Average Path Efficiency
Case Average
with VO algorithm 0.9962
without algorithm 0.4878

surrounding area while effectively reducing the occur-
rence of collisions. Conversely, in the absence of the
algorithm, the robot lacked the capability to proactively
evade obstacles by considering their velocities, leading to
a greater incidence of collisions, specifically amounting
to 7. This implies that the virtual obstacle (VO) algo-
rithm has efficacy in mitigating collisions. The count of
iterations represents the number of steps or time taken
for the robot to reach the goal. In this case, it seems that
the scenario without the VO algorithm required fewer
iterations to reach the goal compared to the scenario
with the algorithm. There are other things that could
potentially contribute to this phenomenon.The lack of
obstacle avoidance that considers obstacle velocities in
the scenario without the algorithm may have enabled the
robot to follow more direct routes towards the target,
leading to quicker convergence. The VO algorithm, al-
though proficient in the task of collision avoidance, has
the ability to include supplementary course deviations
or cautious movements in order to prevent prospective
collisions. This may lead to an extended trajectory and
an increased number of iterations necessary to achieve
the objective, thereby resulting in a longer duration.

We calculate the path efficiency using this equation:

pathefficiency =
No of obs− free grid element

Tot No of grid elements
.

(23)
The increased path efficiency observed in Table II, as
a result of using the VO algorithm, suggests that the
robot successfully navigated with greater efficiency while
effectively avoiding obstacles. As a result, the robot could
reach the goal with minimal deviations and optimized
trajectories. On the other hand, the case without the
VO algorithm had a lower average path efficiency. This
implies that the robot faced more challenges in avoiding
obstacles and encountered sub optimal paths. The lack of
an obstacle avoidance strategy like the VO algorithm may
have resulted in more collisions or inefficient maneuvers,
leading to reduced path efficiency.
By comparing the two scenarios, the following differ-
ences can be observed: Without inertia, the obstacles’
movements appear more erratic and less predictable. They
can change direction abruptly at each time step due to
the random updates in their positions. This behavior can
lead to sudden collisions with other objects or unexpected
interactions with the environment. With inertia, the obsta-
cles’ movements were smoother and exhibited a sense of



Fig. 1. A grid size of 50 x 50 was set up, containing 15 randomly generated
obstacles (colored pink) and 15 fixed obstacles in the form of triangles. The
grid includes a designated start position (colored green) and a goal position
(colored red) for the robot.

Fig. 2. In this case, the obstacles’ positions were updated at each time step
by adding a random value between -1 and 1 to their current positions. This
means that the obstacles can move in any direction with equal probability.
The absence of inertia implies that the obstacles do not have a tendency to
maintain their current velocities or resist changes in their motion. As a result,
the obstacles can change direction abruptly at each time step.

momentum. They tend to maintain their current velocities
and change directions more gradually in response to
the applied acceleration. This behavior allows for more
controlled and realistic motion, reducing the likelihood of
sudden collisions and providing a more natural interaction
with the environment.
The proposed method, Motion of Robotic with Velocity

Fig. 3. In this case, the obstacles’ positions and velocities are updated using
inertia. The obstacles experience a random acceleration at each time step,
which affects their velocities. The velocities, in turn, influence the positions
of the obstacles. The inertia provides a sense of momentum to the obstacles,
making their motion smoother and more continuous compared to the case
without inertia. The obstacles tend to maintain their current velocities and
gradually change their directions based on the applied acceleration.

Fig. 4. The robot’s motion path (blue) was simulated from its initial
starting position to its intended goal position. During the simulation, the robot
demonstrated its capabilities by effectively navigating around obstacles and
avoiding any collisions.

TABLE III
COMPARISON WITH PREVIOUS STUDIES

Ref Motion Planing
Algorithm

Obstacle Handling
Method

Performance Matrix

[3] Artificial potential
fields

Repulsive forces Computational
efficiency

[13] Sampling based
motion planing

Probabilistic road
map

Planing time

[14] Cooperative
multi robot path

Rapidly exploring
random trees

Coordination
efficiency

[15] Theory of mind for
humanoid robot

Mental state
inference

Human interaction
capability

[16] Ant colony
optimization

Pheromone based
communication

Convergence speed

[17] Random walk search
strategy

fixed obstacle Time to explore the
area

Obstacle Algorithm, demonstrates similarities with the
compared methods in terms of motion planning and ob-
stacle handling. However, it distinguishes itself in several
aspects, such as its unique motion planning algorithm,
obstacle handling approach, and the performance met-
ric. Specifically, the method incorporates the Velocity
Obstacle algorithm to consider obstacle velocities and
emphasizes dynamic obstacle avoidance for single robot
navigation. The performance metric employed in this
study is the time it takes for the robot to reach its
destination.

VI. DISCUSSIONS

The algorithm works by first computing the Velocity
Obstacle for each obstacle in the robot’s environment [3].
The robot determines a preferred velocity that enables
it to move towards its goal while efficiently avoiding
collisions with obstacles. The algorithm checks if the pre-
ferred velocity falls inside any of the Velocity Obstacles
computed earlier. If it does, the robot must select a new
velocity that avoids the obstacle.
In the given scenario, a grid of size 50x50 was initial-
ized with 15 randomly generated obstacles with fixed
obstacles, including the start and goal positions for the
robot . The obstacles were then made to move with the



inertia that constrained their motion for a time step of 50.
The robot’s motion was simulated from its initial starting
position to its intended goal position using the Velocity
Obstacle (VO) method.
During the simulation, the robot demonstrated its ad-
vanced capabilities by effectively navigating around ob-
stacles and avoiding any collisions. The effective execu-
tion of the simulation serves as evidence of the robot’s
advanced design and programming.The robot’s ability to
reach its goal position while avoiding obstacles is a cru-
cial step in ensuring its real-world functionality and effec-
tiveness [3], [18]. The utilization of the velocity obstacle
(VO) technique in this particular context facilitated rapid
and fast computations in real-time, empowering the robot
to adeptly maneuver amidst dynamic impediments and
evade potential collisions. The proficient implementation
of the Velocity Obstacle (VO) approach in this particular
context illustrates its viability for application in various
other practical situations that necessitate the ability to
navigate around moving obstacles. This encompasses the
independent navigation of robots in dynamic settings
characterised by moving or changing obstacles, as well as
the coordination of motions among many robots in order
to prevent collisions.

VII. CONCLUSION AND FUTURE WORK

Based on the simulation, the velocity obstacle method
is effective in avoiding moving obstacles. The results of
this simulation demonstrate the practicality and efficiency
of the VO method in ensuring safe and efficient motion
planning for the robot. This geometric method of collision
avoidance enables quick and efficient computations to be
conducted in real-time, enabling the robot to effectively
navigate around obstacles and avoid collisions. The pos-
sible applications of the VO approach extend beyond this
scenario to include the autonomous navigation of robots
in dynamic environments and multi-robot systems where
many robots need to coordinate their movements. The VO
method is a powerful tool for robot motion planning and
has the potential to revolutionize the field of robotics. For
future work in the field of robotics and motion planning,
using the VO method could include investigating the
use of the VO method in multi-robot systems to enable
coordination and collision avoidance between multiple
robots [19], [20]. Also, exploring the integration of the
VO method with other approaches [21], and collision
avoidance to develop hybrid methods that can leverage
the strengths of multiple approaches.
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