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Abstract 

Stochastic processes are shown to be useful tools for quantifying extreme 

trends in climate indices. The variance of the trend distribution is shown to 

generally increase with autocorrelation, with an increase in extreme trend 

exceedance probabilities. The winter North Atlantic Oscillation (NAO) index has 

weak autocorrelation which is underestimated in historical climate models and 

helps to explain the underestimation of extreme trends. The maximum observed 

31-year NAO trend occurred in 1963-1993 and is estimated to have a 1 in 20 

chance of being exceeded in the 144-year historical record using fitted 

stochastic models. Climate models and stochastic models without 

autocorrelation underestimate this probability as a 1 in 200 chance. The NAO 

trend in the 1963-1993 window was identified due to its unusual nature. If this 

window is wrongly treated as a randomly chosen single window, the 

exceedance probability is further reduced (a 1 in 1000 chance). Post-processing 

methods are proposed to increase the low autocorrelation in climate models 

and are shown to improve the simulation of extreme trends and also increase 

the variance of ensemble mean trends. Future projections show a small 

systematic increase in end-of-century NAO ensemble mean trends relative to 

the magnitude of the radiative forcing. The probability of a maximum 31-year 

trend greater than that observed is 3-7% in the next 75-years (under the higher 

“business as usual” radiative forcing scenario), which is similar to the historical 

model probability for the last 75-years. Near-term projections of the next 

31-years (2024-2054) are relatively insensitive to the scenario, showing no 

forced trend in the models but a large ensemble range due to internal variability 

(-7.41 to 7.68 hPa/decade) which could increase or decrease regional climate 

change signals in the Northern Hemisphere by magnitudes that are 

underestimated when using raw climate model output. 
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for AR(1) processes with the corresponding autocorrelation parameter. Grey 

dashed lines are for FD processes with difference parameters matched to the 

displayed autocorrelation values. 

 

Figure 3.8. The relationship of maximum trend distribution parameters 

with the autocorrelation of the original AR(1) process. (a) Shape, (b) scale 

and (c) location parameters of the GEV distributions fitted to simulated 

maximum trends vs the lag-1 autocorrelation of the original AR(1) time series 
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(black solid line) for window length 31 and trend series length m = 100 (Section 
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Figure 4.1. First EOF pattern for MSLP DJF seasonal mean. The full 

available period of (a) HadSLP2r and (b) C20C datasets are used, with the 

standardised NAO index nodes marked as black crosses (Iceland and Azores). 

 

Figure 4.2. First EOF pattern for MSLP DJF seasonal and daily mean data. 

The full period of the EMSLP dataset is used to calculate EOFs on (a) seasonal 

and (b) daily mean data, with the standardised NAO index nodes marked as 

black crosses (Iceland and Azores). 
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Figure 4.3. Interannual variability of the NAO and its trend in observations. 

(a) The standardised DJF mean NAO index for HadSLP2r (black solid line), 

C20C (black dashed line) and L99 (black dotted line). (b) The 31-winter moving 

window linear trend estimate is shown for the same datasets with the maximum 

trend shown as a horizontal black line centred on 1978. 

 

Figure 4.4. Autocorrelation function for the DJF NAO index. The lagged 

autocorrelations are shown for lag 0 to 10 years for winter mean NAO using 

HadSLP2r. The 95% prediction interval for the autocorrelation assuming a white 

noise process is shown by black dashed lines, with the upper value marginally 

lower than the NAO lag-1 year autocorrelation. 

 

Figure 4.5. Lag-1 year autocorrelation patterns for MSLP DJF seasonal 

mean. The full available period of (a) HadSLP2r and (b) C20C datasets are 

used, with the standardised NAO index nodes marked as black crosses (Iceland 

and Azores). 

 

Figure 4.6 Return Plot for NAO Trend with empirical probability-based 

uncertainty estimates. Exceedance probabilities (top axis) and return period 

(bottom axis) from fitted (a) AR(1) and (b) FD processes (thick black dashed 

curves) with shaded 95% prediction interval based on empirical probabilities 

from trend series simulations (Section 4.4.3). Empirical probabilities for 

HadSLP2r standardised NAO index shown as open circles (Section 4.4.1). 

Probability curves are included for the AR(1) and FD processes with lag-1 

autocorrelation ρ in the set {0.0, 0.1, 0.2, 0.3, 0.4} (thin black dashed curves 

with labelled ρ values). 

 

Figure 4.7 Return Plot for NAO Trend with variance based uncertainty 

estimates. Exceedance probabilities (top axis) and return period (bottom axis) 

from fitted (a) AR(1) and (b) FD processes (thick black dashed curves) with 

shaded 95% prediction interval based on variance of trend series simulations 

(Section 4.4.3). Empirical probabilities for HadSLP2r standardised NAO index 

shown as open circles (Section 4.4.1). Probability curves are included for the 

AR(1) and FD processes with lag-1 autocorrelation ρ in the set {0.0, 0.1, 0.2, 

0.3, 0.4} (thin black dashed curves with labelled ρ values). 
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Figure 5.1. First EOF for MSLP DJF seasonal mean. HadSLP2r observations 

(a) and the multi-model mean of the EOF patterns from CGCMs (b) using the 

full period available for each dataset, with the Iceland and Azores NAO node 

locations marked as black crosses. 

 

Figure 5.2. Multi-decadal NAO trends in CGCMs. The 31-winter moving 

linear trend estimate is shown for the set of CMIP5 and CMIP6 CGCM 

simulations of the NAO (grey solid lines) and for the multi-model ensemble 

mean (grey dot-dash line). The HadSLP2r (black solid line) and C20C (black 

dash line) observed trends are overlaid, with the maximum trend shown as a 

horizontal black line, centred on 1978. 

 

Figure 5.3 Empirical distribution of block maxima NAO trends in CGCMs. 

The probability density function (kernel density estimate, see Appendix B.6 for 

details) for the CGCM maximum 31-year NAO trend values with empirical 95% 

prediction interval (thick black horizontal lines). The observed HadSLP2r 

maximum trend is shown as a dashed vertical line. 

 

Figure 5.4. Return period plot for NAO moving window trend. Empirical 

exceedance probabilities (top axis) and return period (bottom axis) from CGCM 

simulations (grey crosses) and observations (black open circles) of 31-year 

moving window NAO trends. Black dot-dash curve shows the Gaussian 

distribution fitted to the CGCM trends with the 95% prediction interval for a 

single time-series shaded in grey (Section 5.3.2). Black dashed curves show 

the exceedance probabilities using the covariance approach (Section 4.4.2) for 

the AR(1) (ρ = 0.169) and white noise (ρ = 0.0) processes fitted to the observed 

NAO index time series. 

 

Figure 5.5 Empirical distribution of Moving Window NAO trends in 

CGCMs. The probability density function (kernel density estimate, see Appendix 

B.6 for details) for the CGCM 31-year moving window NAO trend values (black 

curve) with empirical 95% prediction interval (black horizontal line). The 

probability density function of the Gaussian fit is overlaid (grey curve). The 

observed HadSLP2r maximum trend is shown as a dashed vertical line. 
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Figure 5.6. The relationship of maximum NAO trends to NAO 

autocorrelation in CGCMs. The maximum NAO trend for each CGCM 

simulations is shown relative to the model estimate of the lag-1 year 

autocorrelation ρ (grey “x” with 95% prediction ellipse) with the correlation (r) 

and p-value (p) displayed in the bottom right. Observed values are shown for 

HadSLP2r (black circle, and horizontal line) and C20C (black square). 

 

Figure 5.7 Empirical distribution of lag-1 year autocorrelation for NAO 

index. Box plots of the empirical distribution of lag-1 year autocorrelation (ρ) 

estimates from the 538 individual CGCM simulations and the expected 

distribution of sample ρ estimates from a white noise model using the Bartlett 

formula (Bartlett, 1946) (Section 5.3.3; Equation 3.13). The box plots show the 

median line in the centre of the 25- to 75- percentile box with thick black 

whiskers showing the 95% prediction interval (2.5- to 97.5- percentiles). For the 

CGCM distribution thin black total range whiskers are included. Observed 

values are shown for HadSLP2r (black circle) and C20C (black square). 

 

Figure 5.8: Empirical distribution of time mean trends for CGCM historical 

NAO. The probability density function (kernel density, see Appendix B.6) for the 

CGCM time means of 31-year moving window NAO trend series for the period 

1862-2005 (black curve). The probability density function for the Gaussian white 

noise model overlaid (grey curve). Empirical 95% prediction intervals are shown 

by black (CGCM) and grey (white noise) horizontal lines. The observed time 

mean trend for 1862-2005 (HadSLP2r) is shown (dashed black vertical line). 

 

Figure 5.9 Empirical distribution of block maxima NAO trends and pseudo 

maximum NAO trends in CGCMs. The probability density function (kernel 

density, see Appendix B.6) for the CGCM pseudo maximum NAO trend values 

calculated from the maximum and minimum trends at the Azores and Iceland 

NAO nodes respectively regardless of timing (grey curve) as described in 

Section 5.3.5 with the empirical 95% prediction interval (thick grey horizontal 

line). The distribution for the original CGCM block maxima trends is shown 

(black solid line) as in Figure 5.3, with the observed (HadSLP2r) maximum 

trend shown by the dashed vertical line. 
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Figure 5.10. Empirical distributions of MSLP extreme trends at NAO nodes 

in GCMs. The probability density function (kernel density, see Appendix B.6) for 

(a) the maximum MSLP trend at the Azores NAO node and (b) the minimum 

MSLP trend at the Iceland NAO node using the CGCM (black curve) 

simulations for MSLP over the period 1862-2005. Horizontal black lines show 

the empirical 95% prediction intervals for the CGCM simulations. Observed 

(HadSLP2r) estimates are shown as black dashed vertical lines. 

 

Figure 5.11 Empirical distribution of NAO interannual variability in 

CGCMs. Box plots showing the empirical distribution of standard deviation (sd) 

estimates for the period 1862-2005 from the 538 individual CGCM simulations 

for (4) “Anomalised point index” and (5) “Anomalised regional average index” 

(labelled as in Table 5.2). The box plots show the median line in the centre of 

the 25 to 75 percentile box with thick black whiskers showing the 95% 

prediction interval (2.5 to 97.5 percentiles) and thin black total range whiskers. 

Observed standard deviation estimates are shown for the same period using 

HadSLP2r (black circle) and C20C (black square). 

 

Figure 5.12 Likelihood of maximum trends versus window length. Trend 

exceedance probabilities for block maxima NAO trends for a range of window 

lengths. Probabilities of maximum 31-year NAO trend exceedance 

q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) for window length 11 to 81 years (K in range 

5 to 40) in the historical period 1862-2005 using the empirical probabilities from 

CGCM experiments (black solid line) relative to the observed (HadSLP2r) 

maximum trend thresholds z. Probability thresholds 10% and 1% are shown as 

labelled grey horizontal lines, representing very unlikely and exceptionally 

unlikely categories of the IPCC likelihood scale. 

 

Figure 5.13 Likelihood of minimum trends versus window length. Trend 

exceedance probabilities for block minima NAO trends for a range of window 

lengths. Probabilities of minimum 31-year NAO trend exceedance q’ = 

Pr(min{Z1+K, Z2+K, … Zn-K} ≤ z) for window length 11 to 81 years (K in range 5 to 

40) in the historical period 1862-2005 using the empirical probabilities from 

CGCM experiments (black solid line) as relative to the observed (HadSLP2r) 
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minimum trend thresholds z. Probability thresholds 10% and 1% are shown as 

labelled grey horizontal lines, representing very unlikely and exceptionally 

unlikely categories of the IPCC likelihood scale. 

 

Figure 5.14 Distribution of block maxima NAO trends for winter months. 

The probability kernel density functions for the CGCM maximum 31-year NAO 

trend values with empirical 95% prediction interval (thick black horizontal lines) 

for the winter season DJF, extended winter season DJFM and individual months 

December to March. Observed (HadSLP2r) maximum trends are shown as 

dashed vertical lines and the percentage of CGCM values above these 

thresholds displayed as q. 

 

Figure 6.1: Reddening effect on white noise time series. (a) A length 144 

time series from a stochastic white noise process with variance one (black solid 

line). Dotted lines show the reddened version of this time series using the AR(1) 

(red) and FD (blue) method with lag-1 autocorrelation parameter 𝜌𝑅  = 0.3 and 

fractional difference parameter 𝑑𝑅 = 0.23. (b) Moving window trend series for 

the time series in (a). 

 

Figure 6.2: Reddening effect on autocorrelation function of CGCM NAO 

index. (a) The distribution of lag-1 year autocorrelation parameter estimates for 

all the individual raw CGCM historical simulations (black dashed line). The 

distributions are also shown for the reddened CGCM output using the AR(1) 

method with stochastic parameters shown in brackets (𝜌𝑅 = 0.17, 0.32; 𝑑𝑅 

=0.15, 0.24). The HadSLP2r observed estimate is shown by the thick black 

vertical line (ρ = 0.17). (b) The average lag autocorrelation value across all 

individual CGCM ensemble members for lags zero to ten years for the raw and 

reddened CGCM output as in (a). The observed estimates are shown by the 

thick black solid line. 

 

Figure 6.3: Reddening effect on a single CGCM NAO simulation. (a) Raw 

NAO Index time series (black) from a single CGCM simulation (CMIP6 

HadGEM3-GC3.1-MM). Dotted lines show the reddened version of this time 

series using the AR(1) (red) and FD (blue) method with lag-1 year 

autocorrelation parameter 𝜌𝑅 = 0.3 and fractional difference parameter 𝑑𝑅 = 
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0.23. (b) The 31-year moving window trend series of the CGCM NAO index 

series in (a), relative to the central year of the window. 

 

Figure 6.4 Reddening effect on CGCM ensemble distribution of NAO trend 

series. Ensemble mean NAO 31-year trend series for CMIP5+6 simulations 

using (a) raw model output, or FD reddened output with difference parameter 

(b) 𝑑𝑅  = 0.15 and (c) 𝑑𝑅  = 0.24 (black dashed curves), relative to the central 

year of the window. The light and dark grey shading shows the ensemble range 

and empirical 95% prediction interval respectively. The observed 31-year trend 

series is shown for HadSLP2r (black solid curve) with the maximum value 

identified (horizontal thin dotted black line). 

 

Figure 6.5: Return Period Plots for NAO moving window trends for 

reddened CGCMs. Empirical exceedance probabilities (top axis) and return 

period (bottom axis) for CGCM 31-year moving window NAO trend series after 

applying (a) the AR(1) reddening method (𝜌𝑅 = 0.17 and 𝜌𝑅 = 0.32) and (b) the 

FD reddening method (𝑑𝑅 = 0.15 and 𝑑𝑅 = 0.24) shown as red curves identified 

in the key by solid and dashed lines respectively. Probabilities are also shown 

for the raw CGCM simulations (black solid curve) and observations (black open 

circles, using HadSLP2r). The maximum observed trend is identified by the 

horizontal black line. 

 

Figure 6.6: Return Period Plots for NAO maximum trends for reddened 

CGCMs. Empirical exceedance probabilities (top axis) and return period 

(bottom axis) for the maximum 31-year NAO trend in the 144 year historical 

record (1862-2005) computed from the reddened CGCM trend series after 

applying (a) the AR(1) reddening method (𝜌𝑅 = 0.17 and 𝜌𝑅 = 0.32) and (b) the 

FD reddening method (𝑑𝑅 = 0.15 and 𝑑𝑅 = 0.24), shown as red curves identified 

in the key by solid and dashed lines respectively. Probabilities are also shown 

for the raw CGCM simulations (black solid curve) and the maximum observed 

trend is identified by the horizontal black line. 

 

Figure 7.1: CMIP6 Effective Radiative Forcing. Time series showing the total 

anthropogenic part of the effective radiative forcing (Wm-2) for historical CMIP6 

experiments (black solid curve) and for future scenarios SSP126 (blue), 
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SSP245 (green), SSP370 (orange) and SSP585 (red). The natural part of the 

effective radiative forcing is shown separately for the historical (black dashed 

curve) and future (black dotted curve) experiments. This figure has been 

adapted from the IPCC AR6 Technical Summary to just show the scenarios 

discussed in this chapter and to have more contrasting colours that match later 

figures. Source: Arias et al. (2012) Figure TS.4. 

 

Figure 7.2: Interannual variability of the NAO. Time series of observed NAO 

winter mean index using HadSLP2r (grey line, relative to left axis) in units of 

standard deviation (sd). CMIP6 multi-model ensemble mean series (relative to 

right axis with a smaller range) for historical (black line) combined with four 

different future SSP scenarios (coloured lines) from 2015 onwards.  

 

Figure 7.3: Multi-decadal variability of the NAO. Time series of 31-year 

moving window average of HadSLP2r observed winter NAO index (black solid 

line). CMIP6 multi-model ensemble mean series for historical (black dashed 

line) combined with four different future SSP scenarios (coloured dashed lines). 

The multi-model range and 95% prediction interval are shown by light and dark 

grey shading for the historical experiments and future scenario SSP585. The 

vertical dashed line marks where the CGCM values begin to diverge due to 

inclusion of future projections and the vertical dotted line marks from where the 

values purely use future projections. 

 

Figure 7.4: Multi-decadal trends in the NAO. Time series of observed 31-year 

moving window linear trends of winter NAO index using HadSLP2r (black solid 

line). CMIP6 multi-model ensemble mean series for historical (black dashed 

line) combined with four different future SSP scenarios (coloured dashed lines). 

The multi-model range and 95% prediction interval are shown by light and dark 

grey shading for the historical experiments and future scenario SSP585. The 

vertical dashed line marks where the CGCM values begin to diverge due to 

inclusion of future projections and the vertical dotted line marks from where the 

values purely use future projections. 

 

Figure 7.5 Distribution of time-mean 31-year trends in future NAO series. 

The probability density function (kernel density, see Appendix B.6) of time 
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means of 31-year trends (�̅�) computed for each of the 165 ensemble members 

over the 75-year period 2024-2098 is shown for the four different CMIP6 SSP 

future experiments (coloured curves identified in key) using (a) raw model 

output and (b) FD reddened model output with 𝑑𝑅 = 0.24. 

 

Figure 7.6: Longer-term trends in the NAO. Time series of HadSLP2r 71-year 

moving window winter NAO trends (black solid line). CMIP6 ensemble mean 

series for historical (black dashed line) combined with four future SSP scenarios 

(coloured lines), with shading for the multi-model range (light grey) and 95% 

prediction interval (dark grey) (using SSP585 beyond 2014). The vertical 

dashed line marks where the CGCM values begin to diverge due to inclusion of 

future projections and the vertical dotted line marks from where the values 

purely use future projections. (a) uses raw CMIP6 output, (b) and (c) use FD 

reddened CMIP6 output with 𝑑𝑅 = 0.17 and 0.24 respectively. 

 

Figure 7.7 Historical and future distributions of maximum 31-year NAO 

trends. The probability density function (kernel density, see Appendix B.6) of 

maximum 31-year NAO trends in the 75-year period 2024-2098 for the four 

different CMIP6 SSP future experiments using raw model output (coloured 

curves). The distribution of historical CMIP6 maximum trends is shown for the 

75-year period 1947-2021 (black curve), using SSP585 beyond 2014 and the 

maximum observed (HadSLP2r) trend for this period is shown in grey (vertical 

line). 

 

Figure 7.8 Effect of reddening on distribution of future maximum NAO 

trends. Box and whisker plots of the distribution of maximum 31-year NAO 

trends in the 75-year period 2024-2098 for the SSP126 and SSP585 future 

experiments using raw model output (grey box plots) and after applying the 

fractional difference (“+FD”) reddening method with 𝑑𝑅 = 0.24 (red box plots), 

displaying the median line in the centre of the 25 to 75 percentile box and total 

range whiskers. Box and whisker plots for the historical (HIST) CMIP6 

maximum trends are shown for the 75-year period 1947-2021, using SSP585 

beyond 2014. The observed maximum 31-year trend is shown as the dashed 

horizontal line, and the percentage of model members exceeding this threshold 

is displayed above each box plot. 
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Figure 7.9 Near-term NAO trends. Box and whisker plots for CMIP6 historical 

(“HIST”) 1963-1993 NAO trends and for CMIP6 future 2024-2054 NAO trends 

using scenarios SSP126 and SSP585. Grey box plots use the raw CMIP6 

model output (median line in centre of 25 to 75 percentile box; total range 

whiskers). Red box plots use CMIP6 model output after applying the fractional 

difference reddening method (“+FD”) with 𝑑𝑅 = 0.24. The observed 1963-1993 

NAO trend is shown as the dashed horizontal line. 

 

Figure 7.10 Anomaly index near-term future NAO trends. As Figure 7.9 but 

using the anomaly based NAO index (without standardisation) so that units are 

in hPa/decade, and the observed maximum trend 1963-1993 is based on the 

C20C MSLP data (5.59 hPa/decade). Box and whisker plots for CMIP6 

historical (“HIST”) 1963-1993 NAO trends and for CMIP6 future 2024-2054 

NAO trends using scenarios SSP126 and SSP585. Grey box plots use the raw 

CMIP6 model output (median line in centre of 25 to 75 percentile box; total 

range whiskers). Red box plots use CMIP6 model output after applying the 

fractional difference reddening method (“+FD”) with 𝑑𝑅 = 0.24. The observed 

1963-1993 NAO trend is shown as the dashed horizontal line. 
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1. Introduction 

Changes in regional atmospheric climate variables such as temperature and 

precipitation over the coming few decades (multi-decadal timescales) are of 

interest to society, but it is the extreme changes that are most important to 

predict as these can lead to increased likelihood of extreme events that can 

have severe impacts on society (Scaife et al., 2005; Deser et al., 2017; O’Reilly 

et al., 2021; Smith et al., 2022a). A common method to quantify the strength of 

multi-decadal climate change is to use moving window linear trend analysis, for 

example trends in large scale climate modes of variability such as the North 

Atlantic Oscillation (NAO) or the North Atlantic jet (Raible et al., 2005; Semenov 

et al., 2008; Scaife et al., 2008, 2009; Deser et al., 2017; Bracegirdle et al., 

2018; Bracegirdle, 2022). Rapid changes in climate modes such as the NAO 

can have considerable impacts on regional atmospheric variability. Multi-

decadal trends in the winter NAO have been shown to have a strong influence 

on Eurasian trends in temperature and snow cover (Ye et al., 2022). The 

unusually large positive NAO trend from the 1960s to 1990s has been shown to 

account for at least half of the winter warming in the northern hemisphere extra-

tropics (Scaife et al., 2005), while the unusually large negative trend from 1920 

to 1971 more than halved the winter warming (Iles and Hegerl, 2017).  

 

Modelling methods are required to quantify the distribution of maximum trends 

in the observed record, using statistical and/or dynamical models. Extreme NAO 

trends in the observed record are not well simulated by current state-of-the-art 

General Circulation Models (GCMs) (Bracegirdle et al., 2018, 2022) which is 

concerning as it is likely that the influence of the NAO on future projections of 

regional climate change will also be underestimated. It is therefore important to 

understand and quantify whether the GCMs may be underestimating extreme 

NAO trends and find ways to improve the realism of the models. 

 

1.1 Aims 

The aim of this thesis is to outline methods to quantify the distribution of moving 

window trends and extreme trends in climate indices and make predictions of 

how these distributions may change in the future. The winter NAO is chosen as 
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a case study with a moving window length of 31-years. Key questions that will 

be addressed are: 

1. How can we better diagnose and quantify extreme trends in climate indices? 

2. How realistically do General Circulation Models simulate extreme trends in 

the NAO? 

3. Can post-processing of GCM simulations improve the representation of 

extreme trends in the NAO? 

4. How might extreme trends in the NAO change in the future? 

 

1.2 Structure of this thesis 

Chapter 2 reviews the current state of knowledge about winter NAO multi-

decadal variability and the motivation behind choosing it as a case study, 

including methods to distinguish between externally forced and unforced 

components of the NAO variability. 

 

Chapter 3 outlines the mathematical definition of a multi-decadal linear trend in 

a climate index series. From this definition, the distribution of moving window 

trends is mathematically derived by fitting stochastic models to the original 

index series. The relationship of the distribution of extreme trends to that of the 

moving window trend series is discussed and a simulation approach is 

proposed to estimate the distribution of block maxima trends and the effect of 

uncertainties in distribution parameter estimates. 

 

Chapter 4 applies the trend analysis methods from Chapter 3 to the winter NAO 

case study by first fitting simple stochastic processes to the observed NAO 

index series and then estimating the related distributions of moving window 

trends and extreme trends. These distributions are used to quantify the 

likelihood of the maximum observed 31-year NAO trend (1963-1993) in the 

historical record, which can be used as a simple estimate of the probability of 

such a trend occurring again in the future under the assumption of stationarity. 

 

Chapter 5 uses GCM simulations from the Coupled Model Intercomparison 

Project (CMIP) phases 5 (CMIP5) and 6 (CMIP6) (Taylor et al., 2012; Eyring et 

al., 2016) large ensembles of historical experiments to estimate the distribution 
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of extreme NAO trends. Comparisons are made to the fitted stochastic model 

distributions from Chapter 4 to investigate whether GCMs may be 

underestimating multi-decadal NAO trends and show how this may relate to a 

lack of autocorrelation in the NAO index series. 

 

Chapter 6 proposes new post-processing reddening methods to increase the 

autocorrelation or long-range dependence of the GCM NAO index series and 

improve the representation of extreme trends in the NAO. This is the first known 

application of such a reddening method to postprocess climate model output 

and increase the multi-decadal variability of the NAO index. 

 

Chapter 7 uses CMIP6 climate projections to quantify how the behaviour of 

extreme trends in the NAO may change in the future, making use of the 

reddening methods from Chapter 6 to better simulate the range of plausible 

future trends. 

 

Conclusions and ideas for future work are given in Chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

2. Background 

2.1 Outline 

The motivation to assess the multi-decadal variability of the climate system is to 

improve understanding of observed periods of rapid change which have a 

significant impact on society, such as occurred in the North Atlantic in the 

second half of the 20th century. This chapter reviews what is currently known 

about the multi-decadal variability of the North Atlantic Oscillation (NAO) in 

winter, highlighting the importance of multi-decadal trends in the NAO for 

northern hemisphere winter climate variability and how General Circulation 

Models (GCMs) tend to underestimate the magnitude of NAO trends. Methods 

are discussed for evaluating multi-decadal variability in terms of moving window 

filters, and for quantifying the role of externally forced components relative to 

internal variability components. In general it is found that for the full historical 

period back to the mid-1800s, the NAO interannual and multi-decadal variability 

is consistent with internal variability, however when restricting the period to just 

the late 20th century, there is still a lack of consensus as to whether there is 

evidence of a forced signal. Finally, a brief description is given of the various 

drivers and mechanisms that may influence NAO multi-decadal variability. 

 

2.2 The North Atlantic Oscillation 

The North Atlantic Oscillation is the dominant large-scale mode of atmospheric 

variability in the North Atlantic region related to changes in the North-South 

pressure gradient (Walker and Bliss, 1932) and can be quantified by an index 

representing the difference in pressure between the Azores and Iceland regions 

(Jones et al., 1997; Hurrell, 1995; Hurrell et al., 2003). Statistically it is the 

dominant mode of interannual variability in the North Atlantic as it relates to the 

first Empirical Orthogonal Function (EOF) of monthly mean sea level pressure 

(MSLP) variability, with consistent North Atlantic teleconnection patterns in 

other atmospheric variables (Ambaum et al., 2001). The NAO also manifests as 

changes to the mean wind flow (Wanner et al., 2001), with an alternative 

definition based on the variability of westerly wind strength in the mid-latitude 

North Atlantic (40-60N) (Greatbatch, 2000), and is strongly linked to the Atlantic 

storm track and jet stream (e.g. Woollings et al., 2015). 
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2.2.1 Observed NAO multi-decadal variability 

The NAO exhibits decades with a persistent positive or negative phase and also 

decades of rapid change (Hurrell et al., 2003). In the latter half of the 20th 

Century the observed winter NAO experienced a large positive trend, with 

“unprecedented strongly positive NAO index values” (Hurrell, 1995) (Figure 

2.1), while decades before and after displayed large negative trends seen in 

Figure 2.2 (Hanna et al., 2015). This change of behaviour between different 

decades has been termed multi-decadal variability. Going beyond direct 

observations to use proxy records, low-frequency variability can be identified in 

the North Atlantic over several hundreds of years, shown in Figure 2.3 

(Luterbacher et al., 1999). The North Atlantic Jet has multi-decadal variability 

that is closely related to the NAO (e.g. Woollings et al., 2010) and also exhibits 

significant long-term positive trends for the winter jet speed and latitude over the 

historical observation record (e.g. Hallam et al., 2022). In addition to multi-

decadal variability, the observed interannual variance of the NAO has increased 

over the last century, shown in Figure 2.4 (Hanna et al., 2015). 
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Figure 2.1: Normalised time series of winter mean NAO observations (thin solid 

lines) and a low-pass filtered version (thick solid lines). The NAO index is 

defined as the difference of normalised MSLP at locations in Stykkisholmur and 

Lisbon, for December to March seasonal averages. Source: Hurrell (1995) 

Figure 1A. 

 

 

 

Figure 2.2: Winter NAO values plotted annually (thin lines) and 5‐year running 

means (thick lines). The NAO index is defined as the first EOF of observed 

December-to-February seasonal mean MSLP anomalies. Source: Hanna et al. 

(2015) Figure 1. 
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Figure 2.3: Normalised time series of winter mean NAO index (black solid line) 

and a low-pass filtered version (red solid lines). This is a reconstruction using 

instrumental measurements of surface temperature, MSLP and precipitation as 

predictors for the NAO index based on observed differences of MSLP between 

Iceland and the Azores, for December to February mean. Source: Luterbacher 

et al. (2001) Figure 3. 

 

 

 

Figure 2.4: Running standard deviation of NAO index (defined as in Figure 2.2) 

for 5- and 11-year windows (thin and thick lines). Source: Hanna et al. (2015) 

Figure 3. 
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2.2.2 Impacts of NAO multi-decadal variability 

The impact of NAO variability on European and North American regional climate 

has been widely discussed in the literature in terms of seasonal forecasting 

(e.g. Scaife et al., 2014). The winter NAO has been shown to impact many 

aspects of society in Europe and the USA. The NAO can impact agriculture, 

fishing and water management through its effect on temperature, extreme 

rainfall and drought (Hurrell et al., 2001) which in turn effects planning for food 

import needs (Kim and McCarl, 2005). The energy sector is influenced by the 

NAO in terms of energy demand relating to winter temperatures and in terms of 

energy supply relating to wind, solar and hydropower (Jerez et al., 2013; Uvo 

and Berndtsson, 2002; Thornton et al., 2017). The NAO can also impact the 

insurance industry, related to damage from extreme events such as high winds 

and flooding (Zanardo et al., 2019). Understanding multi-decadal trends in the 

NAO is therefore important for all these sectors when planning for future 

adaptation. 

 

Increased interest in multi-decadal NAO trends occurred in the late 1990s, 

when links were identified between the observed Atlantic variability and 

Northern hemisphere winter temperature variability. The NAO was shown to be 

responsible for the tendency for cold UK winters in the 1960s moving towards 

milder and wetter winters in the 1990s (Hurrell, 1995). More generally, the large 

positive NAO trend from the 1960s to 1990s has been shown to account for at 

least half of the winter warming in the northern hemisphere extra-tropics in this 

period (Scaife et al., 2005), while the large negative trend from 1920 to 1971 

more than halved the winter warming (Iles and Hegerl, 2017). These time 

windows, on which the linear trends are calculated, actually contain the 

maximum 33-year trend and the minimum 52-year trend in the NAO historical 

record. It is therefore important that climate models are capable of simulating 

these extreme multi-decadal trends in the NAO as such dynamic effects may 

enhance or counteract some of the thermodynamic regional climate warming 

signal over the coming decades (e.g. Scaife et al., 2008; Shepherd, 2014; 

Deser et al., 2017; Fereday, 2018). 

 

NAO multi-decadal variability has been shown to influence regions beyond 

nearby Europe and North America, for example surface temperature in South-
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Central China and Eurasia (Zuo et al., 2016; Ye et al., 2022). There is also a 

growing body of research showing that the NAO multi-decadal trends can have 

a strong influence on the variability of other variables, such as European rainfall 

(Deser et al., 2017) and Eurasian snow cover (Ye et al., 2022). 

 

2.2.3 Anthropogenic forcing of the NAO 

The 1960s-1990s NAO trend inspired the key question as to whether this large 

positive trend could be attributed to climate change. In the early 2000s, just 

after the peak of a positive phase of the NAO, a number of studies showed 

evidence that the dominant driver of the then recent positive NAO trend might 

be anthropogenic forcing (Gillett et al., 2003; Shindell et al., 1999) (proposed 

mechanisms are summarised in Section 2.5.2.7). Gillett et al. (2003) showed 

that most GCM experiments with increasing greenhouse gas forcing analogous 

to the 1960s to 1990s lead to a positive NAO, however this response was not 

uniform across all models. Indeed, in the decades that followed, the NAO has 

exhibited a negative trend which cannot be simply explained by anthropogenic 

forcing in most GCMs (Pinto and Raible, 2012; Hanna et al., 2015).  

 

Osborn et al. (1999) showed that a coupled GCM (HadCM2) forced by 

greenhouse gas and aerosol concentrations partially simulated the positive 

trend in the NAO over the second half of the 20th century, and predicted a 

downturn in the first half of the 21st century which is weaker when the aerosol 

forcing is removed (Figure 2.5). This doesn’t explain all the variability observed, 

but with comparison to a related control run (no external forcings just natural 

internal variability) they found evidence to reject the null hypothesis that the 

observed NAO variability is just due to internal variability and weather noise. 

 

Multi-model studies show considerable variation in the response of the NAO to 

greenhouse gas forcings. CMIP2 greenhouse gas forced multi-model 

simulations (1% increase per year over 80 years) exhibit a slight increase in the 

NAO trend compared to matching control simulations (without the greenhouse 

gas forcing), but with large variation between models (Kuzmina et al., 2005; 

Stephenson et al., 2006). The Coupled Model Intercomparison Project Phase 5 

(CMIP5) (Taylor et al., 2012) multi-model simulations with historical forcings and 

projections for the future (RCP8.5 scenario), including greenhouse gas and 
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aerosol emission, show an overall increase in the NAO index over the 20th to 

21st century for the ensemble mean, and some multi-decadal variability, but this 

is relatively weak compared to the large variability between models as shown in 

Figure. 2.6 (Hanna et al., 2015). More recently, the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016) simulations have 

been used to show that the models simulate the NAO interannual variability 

well, but still underestimate the multi-decadal variability (Lee et al., 2021; 

Bracegirdle, 2022).  There is still a lack of consensus as to whether the 1960s 

to 1990s NAO trend can be explained by internal variability alone or whether it 

was externally forced. Much of this analysis relies on trusting that climate 

models can simulate both the internal and externally forced components of NAO 

multi-decadal variability. The performance of current generation GCMs is 

discussed in Section 2.4.4. 

 

 

 

Figure 2.5: 30-year low pass filtered winter mean NAO index (December to 

March) for observations (grey thick line), the ensemble mean from a GCM with 

greenhouse gas forcings (think black line) and from a GCM with both 

greenhouse gas and aerosol forcings (thick black line). Source: Osborn et al. 

(1999) Figure 9. 
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Figure 2.6: The standard deviation (top) and mean (bottom) on moving 11-year 

windows for the NAO index from CMIP5 historical GCMs (grey thin lines). The 

version for the multi-model ensemble mean is shown in thick black. Source: 

Hanna et al. (2015) Figure 10. 
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2.3 Evaluation of multi-decadal variability 

2.3.1 Moving window averages 

A common way to assess the multi-decadal variability part of a time series is to 

apply a smoothing technique to filter away the higher frequency variability. A 

simple method is to calculate multi-year averages of a time series on M-year 

moving windows (some positive integer M) which helps to identify the periods 

where a certain phase persists. For example, Scaife et al. (2005) calculate the 

observed 10-year mean winter NAO index for non-overlapping windows, while 

Stephenson et al. (2000) calculate 10-year running medians of winter NAO on 

moving windows, both noting the change in phase from negative in the 1960s to 

positive in the 1990s. This technique attempts to remove the short-term 

variability component (assumed to be unpredictable) from a longer-term 

variability component that has potential predictability and may be externally 

forced (Zwiers et al., 1987).  

 

2.3.2 Moving window trends 

An alternative method when considering multi-decadal variability is to compute 

the moving window linear trend series, which helps to highlight periods of rapid 

change. This alternative filtering method is frequently used to assess climate 

indices, for example, trends in the North Atlantic Oscillation (Deser et al., 2017; 

Scaife et al., 2005, 2009; Semenov et al., 2008; Raible et al., 2005) and in the 

North Atlantic jet characteristics (Bracegirdle et al., 2018; Bracegirdle, 2022; 

Blackport and Fyfe 2022; Schurer, 2023). Moving window trend analysis has 

been used to detect significant changes in other variables such as the onset of 

spring (Ge et al., 2014) and European winter precipitation (Matti et al., 2009). 

Unusual or extreme trends are of particular interest as they represent rapid 

periods of change that society may not be expecting and is not well adapted to. 

Moving window trend analysis has also been used to investigate the likelihood 

of periods of zero trend, such as the slowdown in the rise of global mean 

temperature at the start of this century (Shi et al., 2016). Trends in these studies 

are typically estimated using Ordinary Least Squares (OLS) regression, and this 

method is presented in Chapter 3. 
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2.4 Modelling multi-decadal internal variability 

There is some debate as to how much of the multi-decadal variability of the 

NAO is an aggregation of short-term weather variations, which are 

unpredictable beyond a few weeks, and how much may be forced by internal 

ocean-atmosphere feedbacks or by external drivers, which are potentially 

predictable (Zwiers et al., 1987). Common methods to quantify these 

components make use of stochastic models or general circulation models 

(GCMs). 

 

Stochastic processes are a set of random variables with some pre-defined 

mathematical properties, and for atmospheric variables such as the NAO, these 

will need to be continuous stochastic processes (e.g., Wilks, 2006). They are a 

useful tool for emulating climate index variability over time as they can be 

generated very quickly and can replicate some of the variability seen in 

observations. GCMs are more computationally expensive to run but they 

include known physics and chemistry elements of the climate system so can 

lead to a better understanding of the behaviour of the real world. 

 

2.4.1 Stochastic models of daily mean NAO index 

The observed daily variability of the NAO is frequently modelled as a stochastic 

red noise process using a first order auto-regressive model, AR(1) (Feldstein, 

2000, 2002; Franzke, 2009; Keeley et al., 2009). This AR(1) model can then be 

used to estimate the distribution of longer-term variability that would be 

expected without any additional forcing or non-stationarity, and test the null 

hypothesis that this variability can instead be explained by the simple 

aggregation of weather noise. 

 

Feldstein (2000) applies this potential predictability approach to show that the 

winter mean NAO variability for the period 1864-1997 can be explained without 

any external forcing, i.e. the null hypothesis is accepted when simulating the 

daily weather noise element as an AR(1) process with parameters estimated 

from the observed NAO time series. In contrast, for the late 20th century period 

1958-1997 the null hypothesis is rejected as it explains just 61% of the 

interannual variability. 
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Keeley et al. (2009) estimate how the within season daily variability is 

influenced by the interannual variability, by estimating the AR(1) lag-5 day 

autocorrelation parameter from daily NAO values after the removal of the 

interannual variability (using the 5-day lag rather than 1-day lag autocorrelation 

as they say this leads to a better fit of the data in this case). For the period 

1957-2002 they estimate that 70% of the winter NAO index interannual 

variability is actually externally forced, so only 30% is explained by the null 

hypothesis of weather noise. Their method leads to a lower estimate of the 

AR(1) autocorrelation parameter than Feldstein (2000), which can be shown to 

reduce the model variability estimate in most cases (see Chapter 3 on how 

increased autocorrelation can lead to an increase in the variance of the moving 

window trend series).  

 

Feldstein (2002) extends the method of Feldstein (2000) to test the significance 

of the Arctic Oscillation (AO) and NAO trends over the period 1967-1997. They 

generate a large sample of 90-day simulations based on a red noise model with 

lag-1 day autocorrelation parameter estimated from the observations, and use 

randomly generated initial values. Distinct 30-year trends are then calculated 

leading to an estimate of the trend distribution due simply to aggregation of 

weather noise. The observed 1967-1997 NAO trend compared to this 

distribution is shown to be statistically significant at the 99% confidence level, 

suggesting that there must be an additional factor, other than weather noise, 

that leads to the magnitude of the observed trend, such as atmospheric 

coupling with the ocean or some external forcing.  

 

In summary, these studies suggest that for the full historical period back to the 

mid-1800s, the NAO interannual variability is consistent with internal variability 

without any external forcing, however when restricting the period to just the late 

20th century, there is evidence of a forced signal. However, a warning is given 

against the validity of results for the late 20th century due to the short sample 

size which happens to coincide with a period of large positive trend that may 

itself alter the stochastic model parameter estimates (Feldstein, 2000). Also, 

these studies assume independence of individual winters - Feldstein (2002) 

uses a randomly generated initial value for each season and Keeley et al. 
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(2009) argue that daily autocorrelation becomes insignificant beyond 30 days – 

which is shown not to be a valid assumption in Section 2.4.2. 

 

2.4.2 Stochastic models of seasonal mean NAO index 

The variability of the winter seasonal mean NAO can also be modelled as a 

stochastic process to help interpret the longer-term variability of the NAO. 

Wunsch (1999) sets up the null hypothesis that the longer-term variability of the 

extended-winter NAO index can be explained by the aggregation of seasonal 

mean variability modelled as a stochastic process. Wunsch (1999) shows that 

the winter mean NAO exhibits weak red noise, and simulations using this fitted 

AR(1) process can lead to multi-decadal trends of similar magnitude to that 

observed from the 1960s to 1990s. They conclude that the NAO multi-decadal 

variability can be explained as an aggregation of seasonal mean variability and 

find no evidence for the requirement of an externally forced component. Similar 

results were found by Franzke (2009) and Stephenson et al. (2000), though the 

latter show that winter mean NAO variability requires a long-range fractional 

difference model to fully account for the long-term persistence of the NAO 

index. 

 

Wunsch (1999) also show that simulations from AR(1) processes can produce 

large multi-decadal fluctuations in the autocorrelation estimate when calculated 

over relatively short moving windows, similar to the observed fluctuations shown 

in Figure 2.7 (Hurrell and van Loon, 1997). This leads to the warning that short 

samples of observed time series exhibiting red noise should be treated carefully 

to avoid underestimating the level of autocorrelation and wrongly rejecting the 

null hypothesis.  
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Figure 2.7: Lag-1 year autocorrelation estimated within moving 60-year 

windows for the winter mean NAO index (December to March). Source: Hurrell 

and van Loon (1997) Figure 7. 

 

 

Aggregated variance analysis is a simple tool to assess long-term variability in 

time series for a range of time-scales to see how quickly this variability 

dissipates. This method computes the variance of time means on moving 

windows of increasing length M years, as seen in Figure 2.8 (Stephenson et al., 

2000). Stochastic models lead to an analytic way of calculating the expected 

behaviour under the null hypothesis that the longer-term NAO variability is 

explained by aggregation of the shorter-term variability and weather noise. 

Stephenson et al. (2000) show that the observed multi-year mean of the winter 

NAO index has rather higher aggregated variance than expected for a simple 

white noise process which should show a decay in variance proportional to 1/M 

(M = length of moving window) (Figure 2.8). Franzke (2009) use an empirical 

method to calculate the expected behaviour for a red noise process by 

calculating the mean and 95% prediction intervals from a large ensemble of 

AR(1) simulations. I extended this aggregated variance method to assess the 

variance of the M-year trend (for increasing integers M) in Figure 2.9 (Menary et 

al., 2018, Figure 4), but this is missing a comparable analytic solution which will 

be derived later in Chapter 3. 
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Figure 2.8: Aggregated variance for multi-year means of observed winter NAO 

vs a white noise model. Source: Stephenson et al. (2000) Figure 2. 

 

 

 

Figure 2.9: Aggregated variance plots of winter (December to February) NAO 

multi-year mean and linear trend. Observed NAO index (black dashed line) 

compared to two different GCMs (red low resolution and blue medium 

resolution), and the empirical white noise values in (a) (dotted grey diagonal 

line). Source: Menary et al. (2018) Figure 4. 
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2.4.3 Climate models and internal variability 

Another frequently used method to estimate the natural internal variability of the 

climate system is to use coupled GCM control simulations, i.e. models with a 

stationary level of external forcing such as pre-industrial climate conditions. 

GCM control runs can be used as a robust null hypothesis against which to 

compare the observed variability or the variability of GCMs which include 

additional external forcing components that reflect past or future changes. 

Examples of these types of studies were summarised in Section 2.2.3, generally 

showing a weak response of the NAO to the external forcing (Osborn et al., 

1999; Kuzmina et al., 2005; Stephenson et al., 2006).  

 

Advantages of GCMs over stochastic models are that they do not rely on 

assumptions about the underlying statistical distribution of the climate variable, 

and they can incorporate the current state of knowledge on climate system 

dynamics, thermodynamics and feedbacks between the ocean and atmosphere 

(and land and sea ice) which may occur on a range of timescales. These 

simulations are more computationally expensive than stochastic models, but 

can still be run for many hundreds of years, i.e. for much longer timescales than 

the available observations datasets. This type of analysis assumes that climate 

models are able to realistically simulate both the internal and externally forced 

components of climate variability, though this is not always the case as 

discussed in Section 2.4.4. 

 

2.4.4 Climate model performance 

Many recent studies have shown that GCMs underestimate the multi-decadal 

variability of the NAO. Scaife et al. (2009) found that none of the GCMs they 

tested could reproduce the strong positive trend observed in 1965-1995, likely 

in part due to an inadequate stratosphere in the models (Scaife et al., 2005). 

More recently, the Coupled Model Intercomparison Project Phase 5 and 6 

(CMIP5 and 6) (Taylor et al., 2012; Eyring et al., 2016) multi-model ensembles 

of historically forced experiments were assessed to compare extreme trends in 

the winter NAO and jet indices (Bracegirdle et al., 2018; Bracegirdle, 2022; 

Blackport and Fyfe, 2022; Schurer et al., 2023). They found that these GCMs 

still generally underestimate the extreme multi-decadal trends in the NAO (and 
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jet strength) compared to observations, despite successfully representing the 

interannual variability (Kravtsov, 2017; Wang et al., 2017). Davini and 

Cagnazzo (2013) show that CMIP5 models are fairly good at simulating the 

observed NAO pattern of interannual variability, but some of these models do 

not correctly capture the related dynamics and physical processes particularly 

the observed coupling to the Greenland blocking frequency. Possible causes of 

the GCM underestimation of multi-decadal trends include: 

• An underestimation of the natural internal variability of the atmosphere 

• A failure to realistically respond to external forcing 

• An underestimation of the ocean-atmosphere interactions 

(Gastineau and Frankignoul, 2015; Blackport and Fyfe, 2022; Bracegirdle, 

2022). 

 

2.5 Causes of NAO multi-decadal variability 

2.5.1 Null hypothesis – natural internal variability 

There are many hypotheses about what may be driving the year-to-year 

variability of the NAO. These drivers may also be important for multi-decadal 

variability if they have a long response time, or if they are themselves forced by 

another low-frequency driver. To test the relative influence of single or multiple 

drivers, their impact can be compared against the null hypothesis that the 

variability is just due to a build-up of aggregated weather noise (as discussed in 

Section 2.4.1 and 2.4.2 using stochastic models) or the null hypothesis that the 

variability can be explained by natural variations within a GCM control 

simulation that does not contain these drivers (as discussed in Section 2.4.3). 

 

2.5.2 Drivers and mechanisms of NAO multi-decadal variability 

A variety of drivers of the NAO multi-decadal variability have been proposed in 

the literature in terms of observation and modelling studies, many of which 

highlight the importance of ocean-atmosphere coupling and a well resolved 

stratosphere as outlined in the following sections. Some of these drivers can be 

thought of as internal to the coupled climate system as a whole, such as the 

variability of the stratosphere, oceans and Arctic sea ice, and may involve 

coupled feedback mechanisms with the NAO. Other drivers can be thought of 

as external to the climate system such as solar variability, volcanic eruptions 
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and anthropogenic emissions, without any feedback from the NAO. These may 

force the NAO directly or indirectly via the stratosphere, oceans and sea ice. 

 

2.5.2.1 The stratosphere 

Baldwin and Dunkerton (2001) demonstrated the importance of the stratosphere 

in leading changes in the NAO by about 60 days, showing that observed 

changes in the stratospheric circulation and wind fields, in particular the strong 

northern hemisphere stratospheric polar vortex, descend down and influence 

the troposphere. Periods with a strong polar vortex show a shift in the daily 

NAO index towards more positive values, and more negative values when the 

vortex is weaker.  Kidston et al. (2015) explain that a stronger polar vortex leads 

to reduced polar cap pressure causing air to rise and cool at the pole, balanced 

by a movement of air equatorward where it descends. This reduces surface 

pressure at the poles and increases pressure in the tropics, leading to a 

poleward shift of the tropospheric jet and a positive NAO response. Likewise, a 

weaker polar vortex leads to a negative NAO response. 

 

The troposphere can influence the stratosphere via planetary Rossby waves 

which propagate upwards and weaken the polar vortex (Kidston et al., 2015). 

This can lead to a sudden stratospheric warming (SSW), for example in January 

2009 the temperature of the polar stratosphere jumped from -70C to -10C in 4 

days, which leads to a negative NAO response in the month following the 

warming (Kidston et al., 2015). 

 

GCM experiments with observed stratospheric forcings lead to improved 

simulations of North Atlantic winter variability that can better replicate the 

observed NAO increase from the 1960s to 1990s (Scaife et al., 2005). In terms 

of winter seasonal variability, the simulation of SSW events is a crucial part of 

the prediction skill. The correlation of winter mean NAO forecasts with 

observations over past decades drops from a significant value of 0.62 to an 

insignificant value of 0.09 if the members with SSW events are removed from 

the ensemble (Scaife et al., 2016). Periods with a SSW event lead to a 

significant mean shift towards negative NAO values. The initialisation of the 

polar high-level stratosphere also improves seasonal predictability, shown to 

explain around 22% of the winter NAO variability (Nie et al., 2019). 
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A variety of other mechanisms that lead to changes in the polar vortex may thus 

effect surface weather, e.g. tropical SSTs, solar variability, volcanic eruptions, 

greenhouse gas concentrations, and these may evolve on a range of timescales 

(Baldwin and Dunkerton, 2001; Kidston et al., 2015; Smith et al., 2014).  

 

2.5.2.2 Atlantic multi-decadal oscillation 

The Atlantic Multi-decadal Oscillation (AMO) relates to persistent phases of the 

winter NAO with positive AMO years showing a tendency for negative NAO 

patterns (Smith et al., 2014). This is in part due to the influence of the NAO on 

the North Atlantic ocean. The warm phase of the AMO in the 1990s links to an 

increase in the Atlantic Meridional Overturning Circulation (AMOC), which 

ocean models show to be caused by the predominantly positive winter NAO in 

the 1980s (Robson et al., 2012). The observed multi-decadal variability of the 

AMOC is strongly related to the multi-decadal variability seen in occurrences of 

SSWs (Reichler et al., 2012). They use GCMs to show that the positive NAO 

response to a strengthening of the polar vortex leads to surface cooling in the 

northern North Atlantic which persists over a number of years, strengthens, and 

descends within the ocean column, leading to low frequency variability of the 

ocean circulation. 

 

Ocean-atmosphere coupling in GCMs is important for capturing the multi-

decadal variability of the NAO. Omrani et al. (2014) show that large scale 

Atlantic warming can drive changes in the stratosphere leading to SSWs which 

then follow the stratospheric pathway for influencing the NAO. Atmosphere-only 

GCMs forced by observed Atlantic SSTs can capture the NAO like winter 

response, but only if the model has an adequate stratosphere. Delayed 

oscillator models show that coupling of the NAO with Atlantic Ocean SSTs is 

key for realistic multi-decadal NAO variability with instantaneous and delayed 

feedbacks increasing the persistence of the NAO response (Sun, C., et al., 

2015; Omrani et al., 2022). This highlights the importance of both a fully 

resolved stratosphere and ocean-atmosphere coupling for GCMs to realistically 

simulate the multi-decadal variability of the NAO. 
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2.5.2.3 Tropical ocean influence 

Hurrell et al (2004) use multi model atmosphere-only GCMs forced with 

observed SSTs to show that SSTs are able to explain much of the interannual 

variability of the winter NAO (winter season JFM) and some of the long-term 

positive trend from the 1950s to 2000s. Regionally forced experiments (global 

tropical ocean forcing versus Atlantic tropical ocean forcing) show that the 

leading influence comes from the tropics, and mainly the Pacific and Indian 

oceans rather than the Atlantic itself, where the surface temperature warming 

has a related increase in local rainfall (Hoerling et al., 2001; Hurrell et al., 2004). 

Hurrell et al. (2004) find that the positive NAO trend in this period using the 

atmosphere-only GCM is significantly different to the sampling distribution 

calculated from such 50-year trends in a control experiment forced with just 

climatological SSTs (which is centred around zero), but it is still only half the 

magnitude of the observed 50-year trend. 

 

Seabrook et al. (2023) show that the positive phase of tropical Pacific decadal 

variability leads to a strengthening of the stratospheric polar vortex (SPV) on 

decadal time scales which is consistent with a positive NAO response. In 

contrast, on interannual time scales the Pacific variability is dominated by the El 

Nino Southern Oscillation and in this case the positive phase is known to cause 

a weakening of the SPV and an associated negative NAO response. They show 

that the decadal response is related to a build up of water vapour in the 

stratosphere which cools the poles and strengthens the extratropical jet (related 

to an increase in the meridional temperature gradient). 

 

Peterson et al. (2002) use a primitive dry atmospheric model forced with 

realistic diabatic heating to show that, while the tropical forcing is most 

important for the NAO multi-decadal trend in the second half of the 20th century, 

the extra-tropical forcing is important for the interannual variability. They also 

manage to simulate an eastward shift in the NAO spatial pattern in this period, 

similar to that observed, but only if fully global diabatic forcings are included. 

 

The Indian Ocean warming since the 1950s is at least partially due to increased 

greenhouse gas concentrations, and is well simulated in coupled GCMs with 

greenhouse gas forcings as well as in atmosphere-only GCMS forced with 



49 

 

observed Indian Ocean SST (Hoerling et al., 2004). However, while the Indian 

Ocean has continued to warm since the 1990s, the NAO has experienced a 

downward trend (Hoerling et al., 2004; Hurrell et al., 2004) so there isn’t a 

simple consistent relationship between these variables. 

 

Yu and Lin (2016) show that the observed NAO is significantly correlated with 

rainfall in the tropical Indian ocean, but not SSTs. They propose that this rainfall 

variability leads to a shift in the local jet, influencing the northern hemisphere jet 

stream and leading to a response in the NAO. Tropical rainfall, especially in the 

Indian and West Pacific oceans, is identified as a key driver in the atmosphere-

only GCMs of Hurrell et al. (2004). Forcing the Indian ocean with a warming 

trend in the atmosphere-only GCMs of the same magnitude as observed (1950-

2000) leads to enhanced Indian Ocean rainfall and a positive NAO response 

(Hoerling et al., 2004), while a sudden step change in temperature based on the 

change from 1950 to 2000 shows that this NAO response takes three weeks to 

emerge, likely through changes in the storm track. Molteni et al. (2015) note that 

a deficiency of atmosphere-only GCMs is that they can’t simulate the feedback 

of convection onto SSTs causing the tropical rainfall response to be too uniform 

with longitude. Tropical rainfall variability also accounts for a large part of the 

skill (40% of the variability) in seasonal forecasts of winter NAO, by generating 

Rossby waves that travel poleward in the upper troposphere (peaking at 

200hPa height) from key source regions in the tropical oceans (Scaife et al., 

2017). 

 

2.5.2.4 Arctic sea ice 

It has been shown in modelling studies that reducing Arctic sea ice generally 

leads to a negative NAO response, however large ensembles are needed for 

this response to be apparent as the strength of the response is generally 

underestimated and there is large variation between models in terms of timing, 

strength and sign of this signal (Mori et al., 2014; Cohen et al., 2014; Screen et 

al., 2018; Smith et al., 2022b). Results differ across modelling studies due to 

differences in the experimental setup, such as the time scale of the sea ice 

change or the location of the sea ice change, and differences between the 

models used. 
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There are a variety of possible mechanism by which reduced Arctic sea ice may 

influence the NAO. GCMs are fairly consistent in their simulation of local 

thermodynamic responses with a warming at the surface where the sea ice is 

reduced, but the dynamical responses vary considerably (Screen et al., 2018; 

Smith et al., 2022b).  Reduced Arctic sea ice leads to local surface warming and 

a reduction in the surface temperature gradient from the equator to the pole 

which weakens the mid-latitude westerly jet, in line with a negative NAO 

response (Screen, 2017). Reduced Arctic sea ice may also weaken the AMOC 

(Sevellec et al., 2017; Suo et al., 2017) which could influence the NAO via 

ocean heat transport. The regional pattern of Arctic sea ice loss causes local 

changes in pressure and asymmetries in the flow which can enhance wave 

activity and weaken the stratospheric polar vortex leading to a negative NAO 

response through the stratospheric pathway described in Section 2.5.2.1 

(Cohen et al., 2014; Francis and Vavrus, 2012). Reduced Arctic sea ice leads to 

increased snow fall over Siberia (as it causes an increase in precipitation) 

(Ghatak et al., 2010). This strengthens the Siberian high which expands into 

northern Europe, the north pole and eastern North America, shifting the 

Icelandic low south-westwards and leading to a negative NAO response (Cohen 

et al., 1999). 

 

Experiments with large changes in sea ice, such as future projections versus 

present day, tend to show a stronger negative NAO response (e.g. Deser et al., 

2010) whereas gradually changing sea ice reflecting recent observed year-to-

year variability tend to show weaker signals (e.g. Screen et al., 2013). Future 

projections tend to reduce sea ice everywhere, whereas historical to present 

day sea ice variability has a dipole pattern of change in the Atlantic (Labrador 

sea versus the Greenland, Iceland and Norwegian (GIN) seas) and the Pacific 

(Sea of Okhotsk versus Bering Sea) (Deser et al., 2000). Atmosphere-only 

models show that the atmospheric response to regional sea ice loss depends 

on the location and the size of the loss as reducing sea ice in the Atlantic sector 

leads to a weaker winter polar vortex whereas the Pacific sector leads to a 

strengthening (Sun, L., et al., 2015; McKenna et al., 2018). For moderate 

changes in Atlantic or Pacific sea-ice, this leads to a negative or positive Arctic 

Oscillation (AO) response respectively, as expected via the stratospheric 

pathway, however for large sea ice reduction in the Pacific the response is 
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actually a negative AO with similar magnitude to that from the analogous 

Atlantic forcing (McKenna et al., 2018). They explain these differences as a 

result of two competing pathways, one via the stratospheric polar vortex, and 

one via the tropospheric mechanism relating to eddy feedbacks. Screen (2017) 

use atmosphere-only GCM experiments to show that differences between the 

responses to regional sea ice loss are related to constructive or destructive 

interference between the Rossby waves forced by the sea ice loss and the 

background wave pattern of the model climatology.  

 

A recent coordinated large multi-model study has shown that very large 

ensembles are needed to see a significant response in the NAO and North 

Atlantic jet to Arctic sea ice loss, and the underestimation of the climate model 

response is related to an underestimation of the eddy feedback, the strength of 

which also partially explains the differences between models (Smith et al., 

2022b). 

 

The NAO has also been shown to influence Arctic sea ice. Deser et al. (2000) 

show that in observations of winter (JFM) mean NAO for the period 1958-1997, 

periods of positive NAO seem to force Arctic sea ice variability with higher sea 

ice concentration in the Labrador sea and lower in the GIN seas which is 

consistent with the main dipole pattern of sea ice variability in this region using 

EOF analysis. Strong et al. (2010) use observations of weekly mean NAO for 

the December to April months (1978-2008) and a vector auto-regressive model 

to show that NAO forced changes in Arctic sea ice can then have a lagged 

negative feedback effect on the NAO on timescales of several weeks. 

 

2.5.2.5 Solar forcing 

Solar radiation variability has been shown to impact atmospheric circulation on 

decadal (e.g. Ineson et al., 2011) and multi-decadal (e,g, Shindell et al., 2001) 

timescales. The transition from a maximum to a minimum period leads to a 

cooling of the upper stratosphere due to reduced ozone heating from incoming 

ultra-violet radiation (UV). The strongest stratospheric cooling occurs in the 

tropics leading to a reduced temperature gradient between the equator and the 

poles, balanced by an easterly wind anomaly which weakens the polar vortex. 

This then follows the stratospheric pathway of Section 2.5.2.1 leading to a 
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negative NAO response at the surface. Further analysis shows that for a solar 

maximum period, the observed NAO has a lagged response which builds to a 

positive NAO pattern which peaks after about 3-4 years and later reverses after 

about seven years, though this is mainly due to a significant change in the 

southern node rather than the full pattern (Gray et al., 2013). They suggest that 

the lagged response is due to ocean-atmosphere feedbacks with the ocean 

response to the stratosphere then feeding back onto the NAO. There is also 

evidence of solar activity forcing changes in the tropical Pacific which can 

influence the NAO (see Section 2.5.2.3) e.g. by generating Rossby waves 

(Swingedouw et al., 2011; Chiodo et al., 2016). 

 

Long GCM control simulations forced with solar maximum versus solar 

minimum UV conditions demonstrate the same mechanisms observed that lead 

to a negative NAO response (Ineson et al., 2011). Gray et al. (2013) also find 

that long GCM control runs with a realistically varying solar cycle capture the 

NAO response to solar minimum and maximum periods, but they get the 

maximum response at lag zero rather than the lagged response seen in 

observations that increases over a few years. In contrast, multiple short GCM 

experiments perturbed with a sudden increase in UV do simulate a lagged NAO 

response to the forcing which starts weakly and increases out to four years, 

along with a related SST tripole pattern, though it is still weaker than reality 

(Scaife et al., 2013). 

 

2.5.2.6 Volcanic forcing 

Large tropical volcanic eruptions such as Pinatubo (1991) that inject aerosols 

into the stratosphere lead to a global surface cooling response, but also a 

positive AO or NAO response in the following winters and warming in Eurasia 

and North America, with longer lags for higher latitude eruptions (Robock and 

Mao, 1992). Volcanic aerosol in the lower stratosphere causes ozone depletion 

leading to cooling at high latitudes and a strengthening of the polar vortex 

(Stenchikov, 2002) which then follows the stratospheric pathway in Section 

2.5.2.1 to a positive NAO response.  

 

A positive NAO response is also found in atmosphere-only GCM experiments 

forced with Pinatubo like aerosols over five years, but the response is much 
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weaker (Ottera et al., 2008). GCM experiments can show a more faithful 

response if they have a realistic QBO, for example when also forced by 

observed stratospheric winds (Stenchikov, 2004). They show that the NAO 

response to aerosols is enhanced when there is a westerly QBO which further 

strengthens the polar vortex, and also allows stratospheric planetary waves to 

travel from the northern hemisphere south across the equator. Historical 

simulations used in the Intergovernmental Panel on Climate Change (IPCC) 4th 

Assessment Report (AR4) capture the tropospheric cooling, but the positive 

AO/NAO response and winter surface warming are rather weaker than 

observed (Stenchikov, 2006). More recently, CMIP5 models still struggle to 

capture the strength of this NAO/AO response, linked to issues with QBO or 

perhaps an overly stable polar vortex that is hard to shift (Driscoll et al., 2012).  

Decadal prediction systems (using coupled GCMs) simulate a positive NAO 

response in the first winter after an eruption, but the amplitude is much weaker 

than expected from observations (Hermanson et al., 2020). Seasonal forecasts 

can capture a more realistic NAO/AO response, but this is thought to be due to 

persistence of observed initial conditions rather than the influence of volcanic 

forcing and the stratosphere (Marshall et al., 2009). 

 

2.5.2.7 Anthropogenic forcing 

Increased greenhouse gas forcing in GCMs leads to an overall warming of the 

troposphere, but in contrast a cooling of the lower stratosphere (Cubasch et al., 

2001). This leads to an increase in the meridional temperature gradient around 

the tropopause, as the tropics warm while the high-latitudes cool, enhancing 

zonal winds and strengthening the polar vortex (Shindell et al., 1999; Gillett et 

al., 2003). This can result in a positive NAO response as per Section 2.5.2.1, 

however there are considerable differences across models with some showing 

opposite or no response (Section 2.2.3). Shindell et al. (1999) highlight the 

importance of including the stratosphere in their GCMs (atmosphere- mixed 

layer ocean model) for simulating a positive trend comparable to the observed 

NAO in the second half of the 20th century when forced by the observed 

increase in greenhouse gas concentrations for this period (and projections 

thereafter). Without this they find that GCMs simulate only a weak decrease in 

MSLP over the Arctic related to the surface warming more strongly at higher 

latitudes than the tropics. Gillett et al. (2002) find that increasing the height of 
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their model (atmosphere- slab ocean model) to include the stratosphere does 

not increase the response of the AO to increased greenhouse gas forcing. This 

could be due to differences between the model physics, or differences in the 

experiment setup as Gillett et al. (2002) apply a doubling of carbon-dioxide 

(compared to a control simulation with pre-industrial concentration levels) which 

relates to the projected mid-21st century conditions (van Vuuren et al., 2011), 

whereas Shindell et al. (1999) apply the observed increase in greenhouse gas 

concentrations over time. 

 

Greenhouse gas forcings may influence the NAO variability indirectly through 

changes to the oceans or the stratosphere. Section 2.5.2.3 noted how 

anthropogenic warming of the tropical oceans may in turn influence the 

increasing trend of the NAO (Hoerling et al., 2001; Hurrell et al., 2004), 

especially the Indian Ocean (Hoerling et al., 2004), however a different balance 

of mechanisms may be needed to explain the decreasing NAO trend since the 

1990s when the Indian ocean temperature has continued to rise (e.g. Roxy et 

al., 2014).  
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3. Distribution of extreme multi-decadal 

trends 

3.1. Introduction 

This chapter defines the concept of multi-decadal trends in climate indices 

(Section 3.2) and describes how to model the distribution of moving window 

trends (Section 3.3) and extreme trends (Section 3.4). The goal is to find a 

methodology to estimate exceedance probabilities for trends such that in later 

chapters this approach can be applied to thresholds of interest based on climate 

index time series. Gaussian stochastic processes are used to represent a time 

series with some year-to-year memory and the related distributions of trends in 

these time series are explored. Where observed records of climate indices are 

relatively short, it can be informative to fit a model to the original index series 

and then quantify the associated distribution of trends for that model, rather 

than try to fit a distribution to the moving window trend series directly. For this 

chapter the focus is on extreme positive trends, but the approaches described 

can easily be inverted to assess extreme negative trends. 

 

3.2. Definition of a multi-decadal trend 

A multi-decadal trend is here defined as an Ordinary Least Squares (OLS) trend 

in time for a window of length 31 years, i.e. the slope parameter estimate 

obtained from linear regression of the index on time. Other window lengths will 

also be considered. Shpakova et al. (2020) suggest that the maximum window 

length should be around one third of the length of the time series, but also long 

enough to take into account climate factors such as the 11 year solar cycle. A 

standard time scale considered to be decadal variability is defined as 10-30 

years by Meehl et al. (2009). For observation based time series which normally 

have a length of order one century, a convenient window length to satisfy all of 

these criteria is of order three decades, hence the choice of 31-years.  

 

Moving window trends are obtained by shifting a window along the index time 

series year-by-year and calculating the linear trend estimate within each 

window. For a regular time series {Y1,Y2,…,Yn} of length n years, the OLS slope 

parameter estimate of the trend (Zi) in a window of length 2K+1 years centred at 
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time i = 1+K, 2+K, …, n–K is given by   

𝑍𝑖 =
∑ (𝑖 + 𝑗 − (𝑖 + 𝑗)̅̅ ̅̅ ̅̅ ̅̅ )(𝑌𝑖+𝑗 − �̅�) 𝐾

𝑗=−𝐾

∑ (𝑖 + 𝑗 − (𝑖 + 𝑗̅̅ ̅̅ ̅̅ ))
2

 𝐾
𝑗=−𝐾

=
∑ 𝑗𝑌𝑖+𝑗 − ∑ 𝑗�̅� 𝐾

𝑗=−𝐾  𝐾
𝑗=−𝐾

∑ 𝑗2 𝐾
𝑗=−𝐾

 

where the over-bars indicate a mean over time. Zi is calculated over years i-K, i-

K+1, …, i+K+1 such that the time mean of j over these years is 𝑗 ̅= 0. For this 

single i’th window the time mean �̅� is independent of j, so                      

∑ 𝑗�̅� 𝐾
𝑗=−𝐾 = �̅� ∑ 𝑗 𝐾

𝑗=−𝐾 = 0 and 

𝑍𝑖 =
1

ℎ2
∑ 𝑗𝑌𝑖+𝑗 

𝐾

𝑗=−𝐾

(3.1) 

where ℎ2 = ∑ 𝑗2 = 𝐾(𝐾 + 1)(2𝐾 + 1)/3𝐾
𝑗=−𝐾 . 

 

The window length 2K+1 is chosen to be an odd number to avoid the central 

point being half-way between two years, e.g. K = 15 for a moving window length 

of 31 years (~3 decades). From the filtered time series Zi, the extreme trend can 

be identified as max {Z1+K, Z2+K, …, Zn-K}. 

 

From Equation 3.1, the resulting trend values are a linear combination of the 

index values, so the trend time series Z is a moving average filtered version of 

index series Y with the 2K+1 filter weights: 

{
−K

ℎ2
,
−(K − 1)

ℎ2
, … ,

K − 1

ℎ2
,

𝐾

ℎ2
} . 

Hence, if Y can be represented as a p’th order Auto-Regressive process AR(p) 

then Z is an Auto-Regressive Moving Average process ARMA(p, 2K+1) (e.g. 

Wilks, 2006, Chapter 8).  

 

3.3. Distribution of multi-decadal trends 

To quantify how unusual an observed trend is for a single predefined window 

within a climate index series, it is necessary to understand the distribution of 

such Z values in a series and then estimate the exceedance probability for that 

magnitude of trend. A common approach in the climate literature is to model 

internal atmospheric variability as a stationary stochastic process, such as a 

white noise or known process, and use knowledge of this process to quantify 

the associated distribution of linear trends (e.g. Santer et al., 2000; Feldstein 

2002). Three approaches are discussed below:  
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• A covariance approach that defines the trend variance directly from 

Equation 3.1 assuming that Y is a pre-defined stochastic process 

(Section 3.3.1); 

• A simulation approach using a large set of simulations of Y generated 

from a pre-defined stochastic process (Section 3.3.2); 

• The pre-whitening method from Cochrane & Orcutt (1949) (Section 

3.3.3). 

 

The time series in this thesis will be thought of as representing climate indices 

for atmospheric variables which typically have fairly low levels of dependence 

between years. For example, the winter mean North Atlantic Oscillation (NAO) 

has been shown to exhibit some weak dependence between winters with lag-1 

year autocorrelation of around 0.1 to 0.2 (e.g. Stephenson et al., 2000; Pozo-

Vázquez et al., 2001; Scaife et al., 2014). 

 

3.3.1. Covariance approach 

The probability distribution of the moving window trend in any predefined year is 

determined by the moving window filter weights and the distribution and 

dependency of the underlying index series. Firstly, since any linear combination 

of Gaussian variables is Gaussian, the trend series will be Gaussian if the index 

series is Gaussian, which is often a reasonable approximation for aggregate 

climate indices because of the central limit theorem (e.g. Wilks, 2006). 

 

For index series that have a deterministic part that is a function of time F(k), 

such as a global warming trend or climate change signal, and a non-

deterministic part that can be represented by a first order stationary process 

such as an ARMA, termed here as random variable Vk, then the index series Yk 

can be represented as 

 Yk = Vk + F(k) + α 

where α is a constant. The trend series, using Equation 3.1 is then 

𝑍𝑖 =
1

ℎ2
∑ 𝑗𝑉𝑖+𝑗  

𝐾

𝑗=−𝐾

+
1

ℎ2
∑ 𝑗𝐹(𝑖 + 𝑗).

𝐾

𝑗=−𝐾

 

The expectation of Zi is given by 
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𝐸[𝑍𝑖] =
1

ℎ2
∑ 𝑗𝐸[𝑉𝑖+𝑗] 

𝐾

𝑗=−𝐾

+
1

ℎ2
∑ 𝑗𝐸[𝐹(𝑖 + 𝑗)].

𝐾

𝑗=−𝐾

 

In this case, the random variable Vk is 1st order stationary so the expectation of 

Vk does not depend on the year k (E[Vk] = E[V]), and function F(k) is 

deterministic so E[F(k)] = F(k), leading to 

𝐸[𝑍𝑖] =
1

ℎ2
𝐸[𝑉] ∑ 𝑗 

𝐾

𝑗=−𝐾

+
1

ℎ2
∑ 𝑗𝐹(𝑖 + 𝑗) =

1

ℎ2
∑ 𝑗𝐹(𝑖 + 𝑗)

𝐾

𝑗=−𝐾

.

𝐾

𝑗=−𝐾

(3.2) 

By substitution of Equation 3.1, the variance of Zi is given by 

𝑽𝒂𝒓[𝑍𝑖] =
1

ℎ4
∑ ∑ 𝑗𝑘𝑪𝒐𝒗[𝑌𝑖+𝑗𝑌𝑖+𝑘]

𝐾

𝑘=−𝐾

.

𝐾

𝑗=−𝐾

 

The covariance part simplifies to 

 Cov[Yi+j,Yi+k] = Cov[Vi+j + F(i+j), Vi+k + F(i+k)] = Cov[Vi+j, Vi+k] 

as F is a deterministic function (F(k) is just a fixed value dependent on k), so the 

covariance for the index Yk is only dependent on the stochastic part Vk. The 

variance 𝜎𝑧
2 of the moving window trends (hereafter referred to as the trend 

variance) is then given by 

𝜎𝑧
2 =

𝜎𝑌
2

ℎ4
∑ ∑ 𝑗𝑘𝜌𝑘−𝑗

𝐾

𝑘=−𝐾

𝐾

𝑗=−𝐾

(3.3) 

where 𝜌𝑘−𝑗  is the autocorrelation function and 𝜎𝑌
2 is the variance of the 

stationary part of the original index process. Woodward and Gray (1993) used 

sample moment estimates of lagged autocorrelation parameters ρ1, ρ2, … and a 

similar equation to Equation 3.3. to estimate the trend variance. However, for a 

stochastic process that has a known parametric form, a precise estimate of the 

trend variance can be calculated from Equation 3.3. 

 

From Equations 3.2 and 3.3, the trend Zi in any year i will be Gaussian 

distributed  

𝑍𝑖~𝑁(�̅�𝑖, 𝜎𝑧
2) (3.4) 

and the probability of the trend in year i exceeding a threshold value of z is then 

simply given by 

𝑝 = 𝑃𝑟(𝑍𝑖 > 𝑧) = 1 − 𝑃𝑟(𝑍𝑖 ≤ 𝑧) = 1 −  Φ (
𝑧 − �̅�𝑖

𝜎𝑧
) (3.5) 
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where Φ(.) is the cumulative distribution function of the standard normal. For a 

given threshold z, the probability of exceedance is determined by the trend 

mean �̅�𝑖 and the trend variance 𝜎𝑧
2. 

 

For index series where the deterministic part is a simple linear trend 

F(k) = βk 

then, from Equation 3.2, the mean of the trend is independent of k so 

𝐸[𝑍𝑖] =
1

ℎ2
∑ 𝑗𝛽(𝑖 + 𝑗) 

𝐾

𝑗=−𝐾

=
1

ℎ2
𝛽𝑖 ∑ 𝑗 

𝐾

𝑗=−𝐾

+
1

ℎ2
𝛽 ∑ 𝑗2 =

𝐾

𝑗=−𝐾

𝛽 (3.6) 

which means Equation 3.4 can be written as 

𝑍𝑖~𝑁(𝛽, 𝜎𝑧
2) (3.7) 

 

The rest of this chapter will consider the specific case where the index series 

are 1st order stationary, i.e. F(k) = 0. Using Equation 3.6 with β = 0, it can be 

seen that for this stationary case 𝑍 ̅= 0 and  

𝑍𝑖~𝑁(0, 𝜎𝑧
2). (3.8) 

 

For a white noise process, the lag autocorrelation 𝜌𝑘−𝑗  = 1 if k = j and 𝜌𝑘−𝑗 = 0 

otherwise, so from Equation 3.3 the trend variance is simply 

𝜎𝑧
2 =

𝜎𝑌
2

ℎ2
. (3.9) 

 

For the short-range dependence AR(1) process Yi+1 = ρYi + εi+1 (where ρ is the 

autocorrelation parameter such that at lag-1 ρ1 = ρ, and εi+1 are independent 

Gaussian variables), the lag autocorrelation function at time lag k – j is  

𝜌𝑘−𝑗 = 𝜌|𝑘−𝑗| . (3.10) 

 

For a long-range dependence fractional difference (FD) process 

(1 - B)d Yi+1= εi+1 (where d is the difference parameter, and the backward shift 

operator B is such that BYt = Yt-1), the lag autocorrelations decay slower than 

exponential and have the form  

𝜌𝑘+1 =  
𝜌𝑘(𝑘 + 𝑑)

𝑘 + 1 − 𝑑
(3.11) 

for k = 0, 1, 2, … (Hosking, 1981). 
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The black dashed curve in Figure 3.1 shows the variance of moving window 

trend series (trend variance) calculated numerically using Equations 3.3 and 

3.10 for AR(1) processes over a range of values of the lag-1 autocorrelation 

parameter ρ, all with time series variance 𝜎𝑌
2 = 1. Equation 3.3 captures the 

expected trend variance dependence on ρ, increasing slowly with ρ for small 

values, but then more rapidly as ρ increases. As ρ approaches one, the 

variance drops sharply back to zero. This is a consequence of using an OLS 

estimator of slope that tends to zero for large values of ρ when, for a stationary 

process, consecutive values in the index time series become very similar to one 

another. 

 

The black dotted curve in Figure 3.1 shows the trend variance for FD processes 

calculated numerically using Equations 3.3 and 3.11. In this case the difference 

parameters (d) have been matched to the lag-1 year autocorrelation parameters 

by noting that ρ1(d) = d/(1 – d) (Hosking, 1981). The trend variance is slightly 

higher for a FD process than for an AR(1) process for moderate positive values 

of lag-1 autocorrelation, but for larger lag-1 autocorrelation the FD trend 

variance increases more slowly, peaking earlier and at a considerably lower 

trend variance than for the AR(1) process. The moving window trend variance is 

not unduly sensitive to the choice of stochastic model when lag-1 

autocorrelation is low-to-moderate (ρ < 0.4). 

 

Figure 3.2 shows how the variance of moving window trends decreases 

monotonically with respect to the increasing window length for a white noise 

process. The AR(1) and FD processes initially have larger variance than the 

white noise process, but tend towards the variance of the white noise process 

as the window length gets larger. This is a consequence of values at the end of 

the window having less dependence on values at the start of the window as the 

window length increases. For larger window lengths, the qualitative relationship 

of trend variance to lag-1 year autocorrelation ρ remains similar, but the peak in 

variance shifts towards higher ρ values, seen in Figure 3.3 for window length 

81. 
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Figure 3.1. The relationship of the variance of moving window trends with 

autocorrelation. The trend variance is shown for the 3 approaches discussed 

in Section 3.3 with trend window length 31 (K = 15): The covariance approach 

for AR(1) (black dashed line) and FD (black dotted line) processes; the 

simulation approach using a selection of AR(1) (diamond) and FD (circle) 

simulations of length 130 years; the pre-whitening method from Cochrane & 

Orcutt (1949) (grey solid line). Trends are calculated for a standardised index, 

so the variance of trends is in units year-2, which can be thought of as (sd/year)2 

where sd refers to the standard deviation of the index pre-standardisation. The 

simulation approach for extended FD simulations with trend series length 104 

(“+”) and 105 (“*”) are included for the case ρ = 0.9. 
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Figure 3.2. The relationship of the variance of moving window trends with 

window length. The trend variance is shown for the covariance approach from 

Section 3.3.1 for AR(1) (black dashed line) and FD (black dotted line) processes 

with lag-1 autocorrelation of 0.2 and for a white noise process (grey solid line). 
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Figure 3.3. The relationship of the variance of moving window trends with 

autocorrelation for a longer window length. The trend variance is shown for 

the covariance approach from Section 3.3.1 for AR(1) (black dashed line) and 

FD (black dotted line) processes for a trend window of length 81 (K = 40). 

 

 

3.3.2. Simulation approach 

An alternative method to quantify the distribution of moving window trends is to 

use a stochastic simulation approach (e.g. Feldstein 2002). 5000 random 

stochastic simulations of length n = 130 have been generated from both short-

range dependent AR(1) and long-range dependent FD Gaussian stochastic 

processes (see Appendix B.1 for code details). From these, the moving window 

trend series have been computed for window length 31, leading to 5000 trend 

series of length m = 100, each with a sample trend variance estimated directly 

from the m values. The length m = 100 was chosen as most observation based 

climate index time series have length of order 100. 

 

The mean value of the trend variance estimates is shown in Figure 3.1 for 

stochastic simulations with lag-1 autocorrelation parameter ρ in the set {-0.2, 
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0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95}. For the AR(1) processes the trend variance 

estimates from the simulations closely match the numerical solution Equation 

3.3, even for high autocorrelation values. For the FD processes (with d 

parameters matched to the same set of ρ parameters), the simulations agree 

well with the numerical solution Equation 3.3 for the low to moderate levels of 

autocorrelation found for most annual atmospheric climate index time series, 

which generally have a year-to-year autocorrelation of less than 0.4. For time 

series such as the winter North Atlantic Oscillation, the numerical covariance 

approach and the simulation approach are fairly interchangeable with the former 

having the benefit of requiring less computations. 

 

Beyond ρ ≈ 0.4 (i.e. d ≈ 0.3) the simulation approach overestimates the 

variance of moving window trends compared to the covariance approach for the 

FD process. This is due to the relatively short simulations (trend series length 

100) as, for processes with a high level of long-range dependence, the 

asymptotic behaviour needs a much longer series to be applicable. Extending 

10 of the FD simulations to have trend series length 104 and then 105 for ρ = 0.9 

(d = 0.474) brings the simulated variance estimate closer to the numerical 

solution but there is still a large bias (Figure 3.1 “+” and “*”). However, this high 

level of long-range dependence is not apparent in atmospheric climate indices 

such as the NAO so both the simulation and covariance approaches are 

adequate. 

 

3.3.3. Cochrane and Orcutt approach 

A common approach used in the climate literature is to calculate the standard 

error for a trend using linear regression which assumes that the residuals about 

the trend are independent identically distributed Gaussian random variables 

(e.g. Santer et al., 2000; Thompson et al., 2015). This standard error estimate is 

then scaled by an additional factor to account for autocorrelation in the residuals 

if required, following Cochrane & Orcutt (1949). For an AR(1) process with 

known autocorrelation function, as the expected trend is zero (Equation 3.6 with 

β = 0), the residuals about the expected trend will have the same 

autocorrelation function as the original process and the standard error for the 
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trend (referred to here as 𝜎𝑧_𝑐𝑜
2 ) is a scaled version of the trend variance for a 

white noise process (Equation  3.9): 

𝜎𝑧_𝑐𝑜
2 ≈

𝜎𝑌
2

ℎ2

(1 + 𝜌)

(1 − 𝜌)
(3.12) 

(Santer et al., 2000; Cochrane & Orcutt, 1949; Wilks, 2006; Chandler and Scott, 

2011). The 𝜎𝑧_𝑐𝑜
2  estimate of the trend variance tends to infinity as ρ approaches 

1 (Figure 3.1). This method does not behave well for large values of 

autocorrelation ρ, compared to the covariance based approach (Equation 3.3) 

and the simulation based approach, however for moderate ρ typical of annual 

atmospheric climate indices (ρ < 0.4) there is little difference in these methods. 

 

3.3.4. Uncertainty in trend variance estimates 

The distribution of trends can be estimated directly from an observation based 

climate index trend series, but there will be considerable sampling uncertainty in 

the variance estimate due to the fairly short periods of data available. 

Alternatively, a stochastic process can be fitted to the observed climate index 

time series by estimating the autocorrelation function parameters. This section 

compares the uncertainty arising from estimating the trend variance directly with 

the uncertainty arising from estimating the autocorrelation function and then 

computing the expected trend variance using the covariance method. 

 

To investigate the uncertainty in the sample trend variance, the 5000 simulated 

trend series described in Section 3.3.2 are used to calculate 5000 individual 

trend variance estimates and form an empirical distribution. Figure 3.4 shows 

the 95% prediction interval for direct sample estimates of the trend variance 

(dotted lines) from the AR(1) simulations using lag-1 autocorrelation values ρ in 

the set {0.0, 0.1, 0.2, 0.3, 0.4} and trend series length m = 100 (from a 130-year 

index series), using the empirical 2.5th and 97.5th percentiles. The prediction 

interval demonstrates considerable uncertainty. This is unsurprising given that 

there are very few independent 31-year windows in a 130-year time series (just 

four non-overlapping windows). This suggests that it is difficult to obtain a 

robust estimate of the trend variance directly from a single observed climate 

index time series.  
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To investigate the uncertainty arising from the estimate of the autocorrelation 

function, the distribution of the lag-1 year autocorrelation parameter can be 

assumed to be Gaussian such that the 95% prediction interval for the lag-1 year 

autocorrelation parameter ρ for an index series of length n is given by the 

Bartlett formula 

𝜌 ± 1.96√
(1 − 𝜌2)

𝑛
(3.13) 

(Bartlett, 1946) where 1.96 is the threshold such that the probability 

P(|X| < 1.96) = 0.95 for the standard Gaussian variable X. Alternatively, the 

distribution can be approximated by fitting an AR(1) distribution to each of the 

5000 simulated AR(1) trend series (Section 3.3.2) and using the individual 

sample ρ estimates to form an empirical distribution. 

 

Figure 3.4 shows how the uncertainty in the autocorrelation parameter effects 

the estimate of the trend variance by using Equation 3.3 with ρ equal to the 

2.5th and 97.5th percentiles of the ρ distribution using the Bartlett formula 

(Equation 3.13) (black dashed lines). This uncertainty estimate is very similar if 

the empirical 2.5th and 97.5th percentiles of sample ρ estimates are used 

(Figure 3.4, grey dashed lines). These methods give estimates of the 95% 

prediction interval for the trend variance based on the uncertainty in the 

autocorrelation parameter estimates, which are narrower than the prediction 

interval based on the sample trend variance estimates. This is likely due to the 

large amount of autocorrelation in the trend series which decreases the 

effective sample size of the series (only four independent 31-year windows in 

the series) and increases the level of uncertainty in the variance parameter 

estimate. Using the AR(1) and FD simulated trend series (Section 3.3.2) to 

make estimates of the lag-1 autocorrelation for each individual trend series, 

Figure 3.5 shows that the average lag-1 autocorrelation (𝜌𝑧) for the moving 

window trend series Z is large (quickly reaching above 0.9) and not overly 

sensitive to the lag-1 autocorrelation ρ of the original index Y. 
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Figure 3.4. The uncertainty in parameter estimates for the distribution of 

moving window trends. The trend variance is shown for the covariance 

approach from Section 3.3.1 for AR(1) (black solid line) processes for a trend 

window of length 31 (K = 15) with methods to show the uncertainty in parameter 

estimates due to the finite length of trend series (Section 3.3.4). The uncertainty 

due to the sample trend variance estimate (black dotted line) and the 

uncertainty due to the autocorrelation parameter ρ estimate using simulations 

(grey dashed line) and the Bartlett formula (black dashed line). 
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Figure 3.5. Autocorrelation in moving window trend series. The average 

lag-1 autocorrelation for moving window trends is shown for the AR(1) and FD 

simulations (window length 31), plotted against the lag-1 autocorrelation of the 

underlying index time series. 

 

 

3.3.5. Sensitivity of exceedance probabilities to trend 

distribution 

To quantify how unusual an observed trend is in a climate index series, an 

estimate of Pr(Zi ≥ z)  is needed from Equation 3.4, i.e. the probability that the 

trend centred on a specific year i exceeds a threshold z. Section 3.3.4 has 

shown that it is difficult to estimate the distribution of trends in a series directly 

from a short trend series due to the high level of autocorrelation in moving trend 

series and noting that for high exceedance thresholds z such trends may have 

rarely been observed. Instead, it is useful to consider the distribution and 

autocorrelation structure of the original climate index series, and then use the 

covariance approach (Section 3.3.1) to estimate the trend distribution. 

 

Exceedance probabilities Pr(Zi > z) = 1 −  Φ (
𝑧

𝜎𝑧
) for a white noise trend series 

(𝜎𝑌 = 1, window length 31, �̅�𝑖= 0) are shown in Figure 3.6 for a range of 

thresholds z which might be considered relatively extreme, given that the 

Intergovernmental Panel on Climate Change (IPCC) definition of very unlikely is 
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an event that occurs with probability less than 0.1 (IPCC likelihood scale, 

Appendix B.2). Equation 3.3 is used to calculate 𝜎𝑧, and the uncertainties due to 

stochastic model fitting to finite time series (Section 3.3.4) are shown as grey 

shading using the 2.5th and 97.5th percentiles from the Bartlett formula with ρ = 

0.0 (Equation 3.13). For an AR(1) process with a typical weak red noise 

autocorrelation parameter of 0.2, the exceedance probabilities are higher than 

for the white noise process and outside of the 95% uncertainty range, while the 

exceedance probabilities for a matching FD process (d = 0.167) are higher still.  

 

Although the trend variance shows little sensitivity to the choice of stochastic 

model when weak year-to-year dependence is assumed (Figure 3.1), the effect 

of wrongly assuming no year-to-year dependence, as for the white noise 

process, could substantially alter conclusions based on exceedance 

probabilities. For example, for a white noise process the trend threshold 

z = 0.0330 sd/year equates to a 95-percentile event, i.e. the exceedance 

probability is 1 −  Φ (
0.0330

𝜎𝑧
) = 0.05. However, the exceedance probability for this 

threshold using the AR(1) model with ρ = 0.2 is 0.0852, almost double that of 

the white noise process, and using the FD model (d = 0.167) the probability is 

0.106, which is over double that of the white noise process and changes the 

IPCC description from very unlikely to unlikely. 

 

 



70 

 

 

Figure 3.6. Example exceedance probabilities for multi-decadal trends. 

The exceedance probability p = Pr(Zi ≥ z) is shown for relatively extreme trend 

thresholds z for a white noise process (white solid line) with grey shading 

representing the uncertainty due to stochastic model fitting (Section 3.3.5). 

Probability curves are also shown for an AR(1) (black solid line) and FD (grey 

solid line) index time series with lag-1 autocorrelation of ρ = 0.2. 

 

 

3.4. Distribution of extreme multi-decadal trends 

The cumulative distribution function for extreme trends, i.e. the maximum 

moving window trend in a series, is given by one minus the exceedance 

probability q(z): 

𝑞(𝑧) = 𝑃𝑟(𝑚𝑎𝑥{𝑍1+𝐾, 𝑍2+𝐾, … , 𝑍𝑛−𝐾} ≥ 𝑧) (3.14) 

where n is the length of the original index series and the window length is 2K+1. 

 

3.4.1. Independent trend values 

Extreme Value Theory for block maxima can be used to explain how the 

asymptotic distribution of the maximum trend relates to properties of an index 

series if the series consists of independent random variables. This is not the 

case for moving window trend series, as the application of the moving trend 
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filter leads to a high level of autocorrelation in the trend series (Figure 3.5) 

which increases further if there is autocorrelation in the underlying series.  

 

If the trend series consisted of independent Gaussian variables Zi
* ~ N(0, 𝜎𝑧

2), 

the maximum value distribution would asymptotically converge to a Gumbel 

distribution, a special case of the Generalised Extreme Value (GEV) distribution 

with a shape parameter of zero, location μ* and scale σ* such that 

𝑞 = 1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝 (−
(𝑧 − 𝜇∗)

𝜎∗
)} (3.15) 

(Kinnison, 1985 chapter 7; Coles et al., 2001 chapter 3; Wilks, 2006, chapter 4). 

It is also known that Gaussian processes with short-range dependence such as 

ARMA processes have extremes that are asymptotically independent (Davis et 

al., 2013), and so will also lead to GEV distributions with a shape parameter of 

zero. 

 

For independent Zi values, the Gumbel parameters are linear functions of 𝜎𝑧 

and vary with the block length, which in this case is the length of the trend 

series m = n – 2K. It has been shown using an approximation of the Gaussian 

probability density function that as m tends to infinity 

𝜇𝑚
∗ = 𝜎𝑧 {√2 ln(𝑚) −

𝑙𝑛(𝑙𝑛(𝑚)) + 𝑙𝑛(4𝜋)

2  √2 𝑙𝑛(𝑚)
} (3.16) 

 𝜎𝑚
∗ = 𝜎𝑧

1

√2 𝑙𝑛(𝑚)
(3.17) 

(Kinnison, 1985, chapter 7). These location and scale parameters are just 

scaled versions of 𝜎𝑧, as shown in Figure 3.7 for maximum trends in a trend 

series of length m = 100 where 𝜎𝑧 has been calculated for AR(1) and FD 

processes using Equation 3.3. For the weak autocorrelation values typical of 

yearly climate indices, e.g. around 0.0 to 0.2 for the NAO, these parameters are 

not overly sensitive to the choice of stochastic process as 𝜎𝑧 is similar for AR(1) 

and FD models. 

 

 



72 

 

 

Figure 3.7. The relationship of maximum trend distribution parameters 

with the autocorrelation of the original index for independent trend values. 

(a) Scale and (b) location parameters of the Gumbel distribution of extreme 

trends, calculated from Equation 3.16 and 3.18 for an independent trend series, 

vs the lag-1 autocorrelation parameter of the original stochastic process. The 

window length is 31 and the trend series length is 100. Black dashed lines are 

for AR(1) processes with the corresponding autocorrelation parameter. Grey 

dashed lines are for FD processes with difference parameters matched to the 

displayed autocorrelation values. 

 

 

3.4.2. Dependent trend values 

For moving window trend series, there is a high level of autocorrelation due to 

the moving trend filter (Figure 3.5), so the sample of trend values cannot be 

treated as independent. For dependent trend values the Gumbel distribution of 

the block maxima has the same scale parameter as the independent case but a 

reduced location parameter: 

 𝜎𝑚 =  𝜎𝑚
∗ (3.18) 

𝜇𝑚 = 𝜇𝑚
∗ + 𝜎𝑚

∗ ln (𝜃) (3.19) 

where θ is the extremal index in the range (0, 1] quantifying the level of 

dependence with θ = 1 when Zi are independent (Coles et al., 2001). 
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To investigate the behaviour in this dependent case, stochastic simulations are 

needed to go beyond the theory for the independent case as it is not possible to 

derive simple analytic solutions for θ. Simulations of maximum moving window 

trends can be obtained from the stochastic simulations described in Section 

3.3.2. For each of the 5000 simulations from a specified stochastic process, the 

maximum moving window trend is identified and a GEV distribution is then fitted 

to these 5000 values (see Appendix B.4 for code details).  

 

Figure 3.8 shows the GEV parameter estimates (see Appendix B.4 for code 

details) for maximum trends from the set of AR(1) processes. The best GEV 

distribution fit has a negative shape parameter, i.e. the distribution is a Weibull 

rather than a Gumbel. The relationship of the fitted location and scale 

parameters to the lag-1 autocorrelation ρ are similar to the independent case, 

as expected from the asymptotic theory, with the peak location and scale values 

occurring for the same ρ values. The location parameters for the dependent 

case are reduced compared to the independent case as expected from 

Equation 3.19, however, the fitted scale parameters are considerably larger 

than for the independent case so are not consistent with Equation 3.18. Fitting a 

Gumbel distribution to the data (i.e. setting the shape parameter to be zero) 

leads to very similar scale and location parameters compared to those from the 

best GEV distribution fit. If the fitted Gumbel distribution is additionally set to 

have the scale parameter from Equation 3.17 the location parameter is reduced 

marginally further. The asymptotic theory is useful for understanding the 

relationship of the GEV parameters to the distribution of moving window trends, 

but trend series of length m = 100 are too short for this theory to be applicable. 

 

Similar results are found for simulated extreme trends using FD processes 

(Figure 3.9) - the fitted GEV has a negative shape parameter with reduced 

location parameter and increased scale parameter compared to the 

independent case. However, for larger levels of autocorrelation, the fitted 

location and scale parameters continue to increase with autocorrelation, 

contrary to the independent case which peaks for moderate levels of 

autocorrelation (around ρ = 0.4 in this case) and then decreases. This relates to 

Section 3.3.2 which found that moving window trends simulated from FD 
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processes lead to a trend variance estimate that diverges from the numerical 

solution for ρ > 0.4. If the fitted Gumbel distributions are set to have the 

independent scale parameters from Equation 3.17 the fitted location parameters 

more closely resemble the behaviour of the independent case but with much 

lower values (Figure 3.9c, dotted line). 

 

 

 

Figure 3.8. The relationship of maximum trend distribution parameters 

with the autocorrelation of the original AR(1) process. (a) Shape, (b) scale 

and (c) location parameters of the GEV distributions fitted to simulated 

maximum trends vs the lag-1 autocorrelation of the original AR(1) time series 

(black solid line) for window length 31 and trend series length m = 100 (Section 

3.4.2). Scale and location parameters for a fitted Gumbel distribution are shown 

(grey solid line), and the location parameter for a fitted Gumbel distribution 

using the scale parameter for the independent case (grey dotted line). Black 

dashed lines are Gumbel parameters for the fully independent case (Section 

3.4.1).  
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Figure 3.9. The relationship of maximum trend distribution parameters 

with the autocorrelation of the original FD process. (a) Shape, (b) scale and 

(c) location parameters of the GEV distributions fitted to simulated maximum 

trends vs the lag-1 autocorrelation of the original FD time series (black solid 

line) for window length 31 and trend series length m = 100 (Section 3.4.2). 

Scale and location parameters for a fitted Gumbel distribution are shown (grey 

solid line), and the location parameter for a fitted Gumbel distribution using the 

scale parameter for the independent case (grey dotted line). Black dashed lines 

are Gumbel parameters for the fully independent case (Section 3.4.1).  

 

 

3.4.3. Uncertainty in extreme value distribution parameter 

estimates 

In most cases it will not be possible to estimate the distribution of extreme multi-

decadal trends directly from an observation based climate index time series as 

the time series are too short. More often a modelling approach will be needed, 

for example using the simulated maximum trend values from the stochastic 

simulations described in Section 3.4.2 or from General Circulation Model (GCM) 

simulations of the climate index of interest. For the stochastic simulation 

approach, a massive set of simulations can easily be generated such that the 

uncertainty in GEV parameter estimates should be fairly low. For the GCM 

approach, such model runs are prohibitively computer intensive such that the 

largest sets of simulations are generally of order 100 and come from 
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coordinated modelling projects such as the Coupled Model Intercomparison 

Project Phase 6 (CMIP6) (Eyring et al., 2016). 

 

To test the uncertainty in GEV parameter estimates given a sample size of 100 

simulations, a bootstrap resampling method was applied to the stochastic 

simulations described in Section 3.4.2. For a specified stochastic process, the 

5000 simulated maximum trends were used to repeatedly pick random subsets 

of 100 values (without replacement) and fit a GEV distribution in each case 

(1000 random subsets in total). The 95% prediction interval was then 

determined using the empirical 2.5th and 97.5th percentiles for each of the GEV 

parameters. This interval is shown in Figures 3.8 and 3.9 as grey shading for 

AR(1) and FD simulations for each of the GEV parameters. There is a large 

amount of uncertainty in the shape parameter estimate, but it is generally 

negative implying a Weibull distribution. The 95% prediction interval is fairly 

narrow for the scale and location parameters compared to the level of variation 

related to the autocorrelation of the underlying index time series. The location 

and scale parameters for the independent trend window case (Equation 3.16 

and 3.17) are far outside of the prediction intervals for the dependent case, 

which means that the independent case is too different to the dependent case 

to be helpful in estimating exceedance probabilities. This is related to the high 

level of autocorrelation in the moving window trend series (Figure 3.5), even 

when there is no autocorrelation in the underlying index. 

 

3.4.4. Sensitivity of exceedance probabilities to extreme trend 

distribution 

To quantify how unusual the maximum observed trend is in a climate index 

series, an estimate of the exceedance probability q(z) = Pr(max{Z1+K, Z2+K, … 

Zn-K} ≥ z) is needed (Equation 3.14), i.e. the probability that the maximum trend 

in a series exceeds a threshold z. Figure 3.10a shows exceedance probabilities 

q(z) for a range of thresholds z where the underlying index series Y has been 

generated from a white noise process. Fitting a GEV distribution to the sample 

of maximum trends (Figure 3.10a white solid line) gives very similar probabilities 

to the empirical probabilities based on sample rank values (black dot-dash line), 

as expected. 
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Figure 3.10. Example exceedance probabilities for extreme trends. The 

exceedance probability q is shown relative to the trend threshold z for GEV 

distribution fits to stochastic simulations (window length 31): white noise (white 

solid line in grey shading), AR(1) (ρ = 0.2, black solid line) and FD (d = 0.167, 

black dashed line) processes. For each process, the empirical probabilities are 

shown as dark-grey dot-dash lines close to the GEV distribution fit. The 95% 

prediction interval (grey shading) represents the uncertainty due to finite sample 

sizes of (a) 100 and (b) 1000 simulations (Section 3.4.4). 
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To explore the sensitivity of exceedance probabilities to the uncertainty in the 

GEV parameter estimates due to relatively small sample size (100 maximum 

trend values), the bootstrap resampling method from Section 3.4.3 is used to 

get a probability estimate from the fitted GEV distributions for each of the 1000 

subsamples of the maximum trend data. The 95% prediction interval for these 

probabilities is defined using the empirical 2.5th and 97.5th percentiles from 

these sample GEV distribution fits (grey shading in Figure 3.10a), and shows 

that this estimate of the sampling uncertainty for fitted GEV probabilities is 

almost as large as the uncertainty due to the choice of stochastic process for 

the original time series (white noise, AR(1) or FD). Thus, even for seemingly 

large GCM ensembles such as from CMIP6, there will be considerable 

uncertainty in the estimates of the distribution of extreme trends.  

 

Despite the apparent larger uncertainty in the shape parameter than the other 

GEV parameters (Figures 3.8 and 3.9), the uncertainty in the exceedance 

probabilities is not all coming from the shape parameter. If the bootstrap 

resampling method is repeated with the shape parameter fixed to be that from 

the full 5000 simulations, the 95% prediction interval is almost unchanged. 

 

To explore the sensitivity of exceedance probabilities to the autocorrelation in 

the original index time series, Figure 3.10a shows exceedance probabilities for 

AR(1) and FD index time series with lag-1 autocorrelation of ρ = 0.2 and 

difference parameter d = 0.167, with similar results for both the GEV fit (solid 

black and grey lines) and empirical probabilities based on sample rank values 

(black dot-dash lines). For these cases with weak autocorrelation such as is 

seen in the atmosphere, exceedances probabilities are substantially increased 

and outside of the 95% prediction interval for white noise processes except for 

very large trend values. 

 

Repeating this bootstrap analysis for a larger sample size of 1000 maximum 

trend values greatly reduces the levels of uncertainty (Figure 3.10b), showing 

that fairly robust estimates of the extreme trend distribution for stochastic model 

time series should be possible provided a large number of trend simulations are 

generated. In this case the uncertainty due to the fitting of a stochastic process 

to the original time series becomes more important. 
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3.5. Summary 

In the context of trends and extreme trends in stationary stochastic Gaussian 

time series, this chapter has proposed approaches to: 

• Define the distribution of multi-decadal trends and extreme trends. 

• Assess the uncertainty in distribution parameter estimates. 

• Assess the influence of these uncertainties on trend exceedance 

probabilities. 

These approaches are also applicable to time series that consist of a stationary 

part and a deterministic signal such as a long-term linear trend. 

 

For the distribution of moving window trends, a numerical method is proposed 

that calculates the trend variance based on properties of the underlying index 

time series (autocorrelation function, variance, and moving window length). For 

the distribution of block maxima trends, a numerical method to describe the 

relevant GEV distribution (Gumbel) might be achievable if the trend series was 

long enough and the trend values were independent. Unfortunately, such 

asymptotic behaviour is not achieved for typical observed climate variable trend 

series due to the shortness of the series (block length) and the high level of 

serial dependence created by the moving window trend filter. Instead, 

stochastic simulations are used here to estimate the distribution of maximum 

trends, either empirically or by fitting a GEV distribution which in this case is 

shown to be a Weibull distribution. By considering stationary stochastic models, 

it has been shown that the chance of extreme trends is determined by the 

variance of the moving window trend process, which generally increases when 

there is more autocorrelation in the index series. If the underlying index series 

has a deterministic part such as a positive long-term linear trend, then the 

distribution of moving window trends is shifted away from zero to instead be 

centred around this long-term trend and the probability of extreme positive 

trends will also increase. 

 

Later chapters will apply these approaches to climate index time series from 

observations and multi-model ensembles of GCM simulations. For these 

applications, it has been shown that the length of time series and the number of 
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GCM simulations available are important considerations when estimating the 

distribution parameters for trend and extreme trend distributions. Given the 

relatively short length of most observation based climate index time series, 

there will be large uncertainty in an estimate of the variance of multi-decadal 

trends obtained directly from the moving window trend series, shown in Section 

3.3.4 using stochastic simulations. However, if the time series can be well 

modelled as a stationary Gaussian stochastic process, then more robust 

estimates of the trend and extreme trend distributions may be obtained based 

on the behaviour of the fitted stochastic process. In this case one uncertainty to 

consider is that of the stochastic process distribution parameters when 

estimated from observed time series. This uncertainty has been addressed (in 

Sections 3.3.4 and 3.4.3) by estimating a plausible range of autocorrelation 

parameters that could describe the observed NAO series (using the 95% 

prediction interval assuming a Gaussian distribution) and computing 

exceedance probabilities based on the end points of the interval. An alternative 

more Bayesian like method would be to produce a large sample of plausible 

parameter estimates drawn from the Gaussian distribution for autocorrelation, 

compute exceedance probabilities based on each and then compute the 95% 

prediction interval. These two methods should give similar results, so the former 

simpler method was chosen. Finally, there is also uncertainty related to the 

choice of stochastic model. For this reason, both the AR(1) and FD models will 

be assessed in later chapters to see how sensitive the analysis is to the 

stochastic model choice. If the observed NAO index series is not stationary, 

then this methodology will not lead to accurate probabilities, thus the validity of 

this assumption is tested in Chapter 4.  
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4. Extreme multi-decadal historical trends in 

the North Atlantic Oscillation 

4.1. Introduction 

This chapter applies methods from Chapter 3 to the winter North Atlantic 

Oscillation (NAO) index. The NAO definition and observation/reanalysis data 

sets are outlined in Section 4.2. Stochastic models are fitted to the NAO index 

in Section 4.3, and are used to model the distribution of multi-decadal trends 

and extreme trends in Sections 4.4 and 4.5. The goal is to identify block 

maxima trends in the observed NAO index time series and quantify the 

probability of seeing such trends under present day climate conditions. This 

analysis assumes that the NAO multi-decadal variability can be reasonably 

represented by a stationary stochastic process that represents the aggregation 

of atmospheric noise (e.g. Wunsch, 1999; Feldstein, 2000) with some year-to-

year memory. Stationary Gaussian stochastic processes are fitted to the NAO 

using a first order auto-regressive AR(1) process and a fractional difference 

(FD) process to capture the short- and long- term memory of the NAO. 

 

4.2. The North Atlantic Oscillation 

4.2.1 Definition of the NAO 

The winter NAO index is defined using Mean Sea Level Pressure (MSLP) 

averaged over the winter season December to February (DJF), where January 

is used to define the year. Analysis is repeated for three observation datasets: 

• HadSLP2r gridded observation dataset, 1851-2020, 171 years (Allan and 

Ansell, 2006); 

• 20th century reanalysis data V2 (“C20C”), 1872-2012, 141 years (Compo 

et al., 2011); 

• NAO reconstructed index (“L99”), 1659-2001, 343 years, based on a mix 

of station data (pressure, temperature and precipitation) and proxy data 

fitted to the standardised NAO index outlined below (Luterbacher et al., 

1999, 2001). 
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Using the gridded MSLP datasets, a standardised NAO index is defined to 

match the definition of the L99 NAO reconstructed index which is based on 

Hurrell et al. (1995):  

𝑁(𝑡) =
(𝑃(𝑡) − �̅�)

𝑠𝑃
−

(𝑅(𝑡) − �̅�)

𝑠𝑅
 

𝑁𝐴𝑂(𝑡) =
(𝑁(𝑡) − �̅�)

𝑠𝑁

(4.1) 

NAO(t) at time t is the standardised difference in DJF MSLP at the two main 

nodes of NAO variability, that is Ponta Delgada, Azores at 37.7N, 25.7W (P) 

minus Reykjavík, Iceland at 65.0N, 22.8W (R), using the nearest grid boxes. �̅� 

and �̅� are the sample means and 𝑠𝑃 and 𝑠𝑅 are the sample standard deviations 

of P and R MSLP index series respectively, calculated over the full length of the 

MSLP datasets i.e. different periods for different datasets. �̅� and 𝑠𝑁 are the 

sample mean and standard deviation of N calculated over climate periods 

specified in the analysis sections below, generally 1862-2005.  

 

The time series for each MSLP node used in the NAO definition (Equation 4.1) 

are first standardised individually so that neither node dominates the variability. 

This definition is based on the index used in Hurrell (1995), except that the 

Azores is used as the southern node instead of Lisbon, and means that the 

index is comparable to the leading principal component of winter MSLP 

variability in the North Atlantic region. The standardisation of the NAO index 

series makes it easier to compare all observation time series simultaneously 

with the same stochastic processes (variance equal to one), without having to 

consider differences in the interannual variance of the individual MSLP 

datasets. In particular, it enables the longer gridded observation dataset 

HadSLP2r to be used, despite its known underestimation of MSLP variability 

(e.g. Semenov et al., 2008). It is also useful in Chapter 5 when comparing NAO 

index time series from observation datasets to those from Coupled General 

Circulation Model (CGCM) experiments as the sensitivity of trend distributions 

to the difference in stochastic behaviour (e.g. year-to-year memory) can be 

assessed separately to the sensitivity to differences in overall MSLP variability. 

For these reasons, the standardised NAO index (Equation 4.1) is used for the 

majority of this thesis, and the sensitivity of results to the NAO index definition 

are discussed later in Section 5.4.1. 
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Figure 4.1 shows the Empirical Orthogonal Function (EOF) patterns for the 

North Atlantic region using HadSLP2r and C20C MSLP datasets (see Appendix 

B.5 for code details). The North Atlantic region is defined here as 20-90N and 

90W-40E, as in Hurrell (1995) but extended to 90N as in Deser et al. (2000) and 

Ambaum et al. (2001). The full available period of data is used for each dataset 

to get the most robust estimate of the pattern. The EOF patterns are consistent 

with one another, with just small differences as would be expected due to the 

different horizontal resolutions and different time periods of the two datasets. In 

both cases, the main nodes of variability are slightly shifted compared to those 

defining the standardised NAO index (Azores 37.7N, 25.7W and Iceland 65.0N, 

22.8W), particularly the southern node. Differences may just be due to the 

station based NAO index definition being constrained by the availability of land 

based station data with long historical records (Portugal, Azores and Iceland). 

However, the EOF pattern is also sensitive to the temporal resolution of the 

MSLP data used, shown in Figure 4.2 using an alternative MSLP observation 

dataset, EMSLP (Ansell et al., 2006), which has daily data for 1850-2003 over 

the European-North Atlantic region. Calculating DJF means from this MSLP 

data and then calculating the first EOF pattern (Figure 4.2a) leads to a similar 

pattern to those in Figure 4.1, whereas using the daily MSLP data directly (days 

within season DJF) leads to an EOF pattern (Figure 4.2b) with the southern 

node closer to the Azores and the northern node shifted east of Iceland. Despite 

the sensitivity of the EOF pattern to temporal resolution, the Azores and Iceland 

node positions used in Equation 4.1 remain close to the main nodes of 

variability in the NAO patterns so should be adequate for capturing the NAO 

variability. 
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Figure 4.1. First EOF pattern for MSLP DJF seasonal mean. The full 

available period of (a) HadSLP2r and (b) C20C datasets are used, with the 

standardised NAO index nodes marked as black crosses (Iceland and Azores). 
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Figure 4.2. First EOF pattern for MSLP DJF seasonal and daily mean data. 

The full period of the EMSLP dataset is used to calculate EOFs on (a) seasonal 

and (b) daily mean data, with the standardised NAO index nodes marked as 

black crosses (Iceland and Azores). 
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4.2.2 NAO variability and multi-decadal trends 

Figure 4.3a shows the NAO index for all three NAO datasets in units of 

standard deviation (sd) as the index has been standardised over the common 

period of 1872-2001. All three datasets show consistent timing of peaks and 

troughs in the NAO index over the common period, with a prominent shift from 

large negative values in the 1960s to large positive values in the 1990s. 

 

Figure 4.3b shows the 31-winter moving window trend time-series calculated as 

in Section 3.2 with units sd/decade (i.e. 10 times the analogous value in units of 

sd/year). As discussed in Chapter 3, the window length of 31 winters is chosen 

as it is within the time frame generally considered as multi-decadal variability, 

with a large enough sample of data points to calculate a fairly robust estimate of 

the linear trend over time, whilst being short enough to have multiple non-

overlapping samples within the observed time series. The maximum 31-winter 

trend occurs for the winters 1963 to 1993, i.e. the window centred on 1978 with 

years referring to the January in DJF, with magnitude close to 0.7 sd/decade for 

all three observation datasets (Table 4.1). This maximum NAO trend is 

noticeably greater than any of the previous peak 31-year trends, including those 

in the whole 343 years of L99 reconstruction, i.e. this is an extreme multi-

decadal trend. Over the 3 decades this is equivalent to a total shift of ~2 

standard deviations of the winter mean NAO interannual variability. 

 

 

Max Trend (sd/decade) (a) (b) 

HadSLP2r 0.725 0.737 

C20C 0.701 0.708 

L99 0.654 0.659 

Table 4.1. Maximum 31-year NAO trends. Values are shown using the entire 

NAO time series available from HadSLP2r, C20C and L99 datasets, 

standardised over (a) the common period 1872-2001 and (b) the CGCM period 

1862-2005 such that units are in sd/decade (i.e. 10 times the analogous value 

in units of sd/year). 
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Figure 4.3. Interannual variability of the NAO and its trend in observations. 

(a) The standardised DJF mean NAO index for HadSLP2r (black solid line), 

C20C (black dashed line) and L99 (black dotted line). (b) The 31-winter moving 

window linear trend estimate is shown for the same datasets with the maximum 

trend shown as a horizontal black line centred on 1978. 

 

 

The precise values of the maximum 31-year NAO trends depend on the climate 

period used for standardisation as well as the observation dataset. This can be 

seen by comparing Table 4.1 column (a) to column (b) where the latter uses 

1862-2005 as the climate period for standardisation, chosen as this is the 

period available from the CGCM experiments analysed in Chapter 5. For C20C 

and L99 a subset of 1862-2005 period is used as these datasets do not cover 

the whole period. The maximum trends are only slightly sensitive to these 

definitions, and are the same to an accuracy of one decimal place (0.7 

sd/decade), so these details should not overly effect exceedance probabilities. 
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4.2.3 Co-variability of MSLP trends at NAO nodes 

The NAO index using MSLP at the two nodes Ponta Delgada (Azores) and 

Reykjavík (Iceland) was originally defined as such due to the high level of North 

Atlantic variability captured by these points, as seen in the EOF pattern (Figure 

4.1) and the long-term availability of historical observations at these locations. 

On interannual timescales, the winter mean MSLP at these two nodes is 

strongly anti-correlated with correlation -0.520 using HadSLP2r (1862-2005) 

and -0.669 using C20C (1872-2005). Analysing the 31-year MSLP trend series 

at these two nodes, the timing of the maximum observed 31-year NAO trend 

coincides with both the positive peak in 31-year trends for the Azores and the 

negative peak in 31-year trends for Iceland (extreme trends centred on 1978 

except for HadSLP2r maximum Azores trend which is centred on 1979). This 

consistency in multi-decadal variability is also shown by a high level of anti-

correlation between the two moving window trend series (-0.849 for HadSLP2r 

NAO and -0.939 for C20C for their respective time periods 1862-2005 and 

1872-2005). These correlation estimates are fairly insensitive to excluding the 

period of interest, with values -0.749 (HadSLP2r) and -0.907 (C20C) when 

winters 1960 onwards are excluded. Thus, it seems that these locations are 

strongly related on multi-decadal time-scales as well as shorter time-scales. 

 

4.3. Fitting stochastic processes to the NAO index 

To estimate the distribution of trends in the NAO index, stochastic models are 

fitted to the observed NAO index time series and then the covariance approach 

from Section 3.3.1 is applied. The most common stochastic models used to 

represent the NAO are short-range dependence red noise (AR(1)) processes 

(e.g. Wunsch, 1999; Feldstein, 2000; Thompson et al., 2015) and long-range 

dependence (FD) processes (Stephenson et al., 2000). These models assume 

that the NAO index series has stationary variance. The NAO index in Figure 4.3 

looks like the variance has increased over recent years, but this is mainly 

because of the extreme negative and positive NAO winters in 2010 and 2015 

respectively while differences in the pre-1850 NAO series are likely due to it 

being based on proxy data rather than gridded observations. The recent decade 

with extreme winter NAO events is too short to make a robust assessment as to 
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whether the variance has significantly changed, but if the variance has 

increased then this would lead to an increase in the magnitude of multi-decadal 

trends as 𝜎𝑌
2 would increase in Equation (3.3). The extreme NAO years and the 

pre-1850 proxy data period are outside of the time period used to standardise 

and assess the distribution of NAO trends (1862-2005) thus the assumption of 

stationary variance is deemed valid. 

 

Figure 4.4 shows the autocorrelation function for the NAO index using 

HadSLP2r. The autocorrelation function does not simply decay with lag, which 

has led some studies to consider long range dependence processes, however 

for the datasets assessed here the autocorrelation is very low beyond lag-1 

year so higher order auto-regressive models are not considered. The lag-1 year 

autocorrelation estimates are significantly different to that of a white noise 

process at the 5% significance level, falling just outside the 95% prediction 

interval expected for white noise (Figure 4.4, black dashed lines) estimated 

using Bartlett’s formula (Bartlett, 1946; Equation 3.13) with n = 170 and ρ = 0.0. 

 

Similar autocorrelation and fractional difference parameter estimates are found 

when fitting AR(1) and FD processes to the three observation datasets (Table 

4.2), though with some sensitivity to the time period used. Using the Bartlett 

formula (Bartlett, 1946; Equation 3.13) for the uncertainty in the HadSLP2r lag-1 

year autocorrelation estimate of ρ = 0.169 with n = 170 (time series length) 

gives a 95% prediction interval for ρ of (0.0212, 0.317). The ρ estimates in 

Table 4.2 for different datasets and time periods are therefore consistent as 

they all fall within this range. 

 

Figure 4.5 shows the lag-1 year autocorrelation patterns for DJF seasonal mean 

MSLP from HadSLP2r and C20C. The Azores and Iceland nodes (marked as 

black crosses) are both positioned over regions of relatively high lag-1 year 

autocorrelation. The observed winter mean NAO index consistently exhibits 

moderate levels of year-to-year dependence, coming from both the Azores and 

Iceland nodes, and this should be considered when investigating the distribution 

of multi-decadal NAO trends. 
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Figure 4.4. Autocorrelation function for the DJF NAO index. The lagged 

autocorrelations are shown for lag 0 to 10 years for winter mean NAO using 

HadSLP2r. The 95% prediction interval for the autocorrelation assuming a white 

noise process is shown by black dashed lines, with the upper value marginally 

lower than the NAO lag-1 year autocorrelation. 

 

 

 AR(1) ρ parameter FD d parameter 

HadSLP2r 0.169 0.123 

C20C 0.142 0.0919 

L99 0.0975 0.0614 

HadS 1872-2001 0.158 0.126 

C20C 1872-2001 0.156 0.116 

L99 1872-2001 0.171 0.0978 

Table 4.2. AR(1) and FD model fits to the NAO index. Lag-1 year 

autocorrelation ρ and difference parameter d estimates are shown for the entire 

NAO index time series available from HadSLP2r, C20C and L99 datasets, and 

for the period 1872-2001 that overlaps with all the datasets. 
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Figure 4.5. Lag-1 year autocorrelation patterns for MSLP DJF seasonal 

mean. The full available period of (a) HadSLP2r and (b) C20C datasets are 

used, with the standardised NAO index nodes marked as black crosses (Iceland 

and Azores). 
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4.4. Distribution of multi-decadal trends 

4.4.1. Empirical probabilities 

To quantify the unusualness of the 1963-1993 NAO trend within the available 

observed record it is insufficient to use the observed NAO index time series 

alone as this trend has been specially chosen as it is the maximum in the time 

series. This means that the simple method of estimating the empirical 

exceedance probability based on sample rank values for the filtered trend series 

(Z) will be governed by the length of the available observed trend series (m) 

rather than the relative number of occurrences as there has only been one such 

value in the trend series. This leads to the empirical rank probability  

p = Pr(Zi ≥ z) = 1/m 

for the threshold z = max{Z1+K, Z2+K, … Zn-K}. For example, using the full NAO 

time series from each of the three observation datasets, the empirical rank 

probability p is estimated to be 1/140 = 0.714% (HadSLP2r, Table 4.3), 1/111 = 

0.901% (C20C) and 1/313 = 0.319% (L99), noting that for a time series of 

length n, the length of the 31-year moving window trend series m = n – 30. 

 

 

Model p Uncertainty from 𝜎𝑧
2  Uncertainty from ρ 

Empirical  0.714 % n/a n/a 

White Noise 0.0121 % (6.31x10-7, 0.413) % (0.00129, 0.0681) % 

AR(1) ρ = 0.169 0.0822 % (2.44 x10-5, 1.27) % (0.0159, 0.309) % 

FD d = 0.123 0.141 % (6.38 x10-5, 1.77) % (0.0199, 0.584) % 

Table 4.3. Trend exceedance probabilities for 31-year trends. Probabilities 

of trend exceedance (shown as percentages) for a single 31-winter trend 

p = Pr(Zi ≥ 0.0737 sd/year) using HadSLP2r empirical estimates (Section 4.4.1) 

and stochastic model fits to HadSLP2r (Section 4.4.2). Uncertainty levels are 

shown due to the trend variance estimates (𝜎𝑧
2) and autocorrelation estimates 

(ρ) using 95% prediction intervals (Section 4.4.3). 
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4.4.2. Covariance approach 

The maximum 31-year NAO trend using the HadSLP2r observations is 

z = 0.737 sd/decade (Table 4.1). Using the covariance approach from Section 

3.3.1, the probability of the trend in year i exceeding this threshold 

z = 0.737 sd/decade is given by Equation 3.3 

𝑝 = 𝑃𝑟(𝑍𝑖 > 0.737) = 1 −  Φ (
0.737

𝜎𝑧
) 

The trend variance 𝜎𝑧
2 is found from Equation 3.4 with 𝜎𝑦 = 1.0, K = 15 and               

ℎ2 = 15 × (15 + 1)(2 × 15 + 1)/3 = 2480 (Section 3.3.1) combined with the 

fitted stochastic model parameters (ρ and d) from Table 4.2. 

 

For the fitted AR(1) process with ρ = 0.169, 

𝜎𝑧
2 =

1

24802
∑ ∑ (𝑗𝑘 × 0.169|𝑘−𝑗|)

15

𝑘=−15

15

𝑗=−15

(4.2) 

such that p = 0.0822%. 

 

For the fitted FD process with d = 0.123, 

𝜎𝑧
2 =

1

24802
∑ ∑ (𝑗𝑘 × 𝜌𝑘−𝑗)

15

𝑘=−15

15

𝑗=−15

(4.3) 

where 𝜌𝑘−𝑗 is determined iteratively using Equation 3.11, leading to p = 0.141%. 

 

If instead it is assumed that the NAO index has no short- or long- range 

dependence, a white noise stochastic process can be used instead such that 

𝜎𝑧
2 = 1/2480 (Equation 3.9) and p = 0.0121%, i.e. p is an order of magnitude 

smaller than for the stochastic models which include year-to-year memory. 

 

The fitted stochastic model exceedance probability estimates average around a 

1 in 1000 chance (p = 0.1%). Ignoring the year-to-year dependence when 

modelling the NAO timeseries underestimates the exceedance probabilities by 

a factor of 10 (p = 0.01%). The HadSLP2r empirical rank probability estimate 

p = 0.714% (Table 4.3) is considerably larger than the fitted AR(1) and FD 

model estimates, but this empirical estimate is not very robust as it is totally 

dependent on the length of the time series. Using the whole L99 trend series 

leads to a smaller probability estimate p = 0.319%. These observed empirical 
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rank probabilities are within the uncertainty range for the AR(1) and FD 

processes related to the sampling uncertainty of the variance estimate 𝜎𝑧
2 

(Table 4.3) so are consistent with the fitted AR(1) and FD processes (the 

method to calculate these intervals is outlined in Section 4.4.3). However, these 

observed empirical rank probabilities are in the upper end of the uncertainty 

range which suggests that extreme NAO trends may be more likely in the 

observations than one might expect from these simple stochastic models. 

 

4.4.3. Sampling uncertainty 

Figure 4.6 shows the distribution of moving window trends for the standardised 

NAO index in terms of the exceedance probability p = Pr(Zi ≥ z) and return 

period (1/p) for moderate to extreme z thresholds. These probability curves are 

plotted for the Gaussian distribution with mean zero and variance 𝜎𝑧
2 from 

Equation 4.2 for the fitted AR(1) process (Figure 4.6a) and from Equation 4.3 for 

the fitted FD process (Figure 4.6b). A set of probability curves are also shown 

for the AR(1) and FD processes with lag-1 autocorrelation ρ in the set {0.0, 0.1, 

0.2, 0.3, 0.4} (thin black dashed lines with labelled ρ values). The empirical 

probabilities for HadSLP2r from Section 4.4.1 are shown as open circles, using 

the period 1862-2005 to match the length of CGCM experiments assessed later 

in Section 5. These empirical probabilities are fairly close to the fitted probability 

curves for low trend thresholds but are clearly larger for higher thresholds.  

 

To quantify the uncertainty on the exceedance probability p when estimated 

from a finite trend series, a set of 5000 stochastic simulations are generated for 

the fitted AR(1) process (ρ = 0.169) and fitted FD process (d = 0.123), both with 

standard deviation 𝜎𝑌 = 1.0 and length n = 144 years (representing 1862-2005), 

leading to a set of simulated trend series of length m = 144 – 30 = 114 years 

calculated as in Section 3.2. For each simulated trend series, the empirical 

probabilities of trend exceedance are stored for a set of thresholds (z) in the 

range 0.01 to 0.09. The 95% prediction interval from these 5000 sets of 

probabilities is used to estimate the uncertainty on the empirical probability 

estimate of p due to finite sample size, shaded dark grey in Figure 4.6. Another 

set of simulations is generated for a white noise process, with the related 

prediction interval shaded light grey (Figure 4.6). The region where these 
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intervals overlap is shaded medium grey to enable the plotting of both intervals 

on the same graph. These prediction intervals are a fairly good indication of the 

expected uncertainty in empirical probabilities calculated from a single filtered 

trend series (Z) derived from a relatively short observation dataset. The level of 

sampling uncertainty is very large, meaning that the empirical distribution from a 

relatively short series of observed moving window trends should be treated with 

caution as it may not be very representative of the true distribution. The 

prediction interval curves are step-like due to the discrete set of possible 

empirical exceedance probability values {0, 1/114, 2/114, …} from a trend 

series of length 114. Note that as the trend thresholds get more extreme, the 

prediction interval lower bound quickly tends to zero and the return period tends 

to infinity. Trend thresholds of magnitude greater than or equal to the maximum 

observed NAO trend (z = 0.737 sd/decade) are so rarely sampled, even within 

5000 simulations, that the prediction interval upper bound also quickly tends to 

zero for the fitted stochastic processes, while no such trends are simulated 

using the white noise process, at which point this method of estimating 

sampling uncertainty ceases to be meaningful. 

 

An alternative method to estimate the sampling uncertainty for more extreme 

trend thresholds is proposed using sample variance estimates. The simulation 

method can be adapted to make use of the assumption that the 31-year trend Z 

has a Gaussian distribution with variance 𝜎𝑧
2. For each simulated trend series, 

the sample variance of the moving window trends is stored. The empirical 95% 

prediction interval from these 5000 values is used to estimate the effect of 𝜎𝑧
2 

sampling uncertainty on the Gaussian probabilities. The prediction interval from 

the fitted stochastic processes are shaded dark grey in Figure 4.7 and 

summarised in Table 4.3 for trend threshold z = 0.0737 sd/year (“Uncertainty 

from 𝜎𝑧
2”). The white noise prediction interval is shaded light grey, and medium 

grey represents where these regions overlap (Figure 4.7). In this case the 

prediction interval curves are similar to those in Figure 4.6, but they are 

continuous as they inherit the continuous nature of the Gaussian distribution, so 

can be used to estimate the sampling uncertainty for any trend threshold. 
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Figure 4.6 Return Plot for NAO Trend with empirical probability-based 

uncertainty estimates. Exceedance probabilities (top axis) and return period 

(bottom axis) from fitted (a) AR(1) and (b) FD processes (thick black dashed 

curves) with shaded 95% prediction interval based on empirical probabilities 

from trend series simulations (Section 4.4.3). Empirical probabilities for 

HadSLP2r standardised NAO index shown as open circles (Section 4.4.1). 

Probability curves are included for the AR(1) and FD processes with lag-1 

autocorrelation ρ in the set {0.0, 0.1, 0.2, 0.3, 0.4} (thin black dashed curves 

with labelled ρ values). 
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Figure 4.7 Return Plot for NAO Trend with variance based uncertainty 

estimates. Exceedance probabilities (top axis) and return period (bottom axis) 

from fitted (a) AR(1) and (b) FD processes (thick black dashed curves) with 

shaded 95% prediction interval based on variance of trend series simulations 

(Section 4.4.3). Empirical probabilities for HadSLP2r standardised NAO index 

shown as open circles (Section 4.4.1). Probability curves are included for the 

AR(1) and FD processes with lag-1 autocorrelation ρ in the set {0.0, 0.1, 0.2, 

0.3, 0.4} (thin black dashed curves with labelled ρ values). 
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The observed empirical probabilities clearly lie outside of the probability 

prediction intervals for a white noise process (Figure 4.6a and 4.7a, light grey 

shading), showing that it is inadequate to neglect the year-to-year dependence 

when modelling the NAO time series. For moderate trend thresholds the 

observed empirical probabilities lie within the prediction intervals for the fitted 

AR(1) and FD processes (Figure 4.6 and Figure 4.7 dark grey shading), thus 

the difference to fitted model probabilities can likely be explained by the 

considerable sampling uncertainty in empirical probabilities caused by the 

relatively short observed time series available and the lack of occurrence of the 

larger trend values. For more extreme trend thresholds, greater than about 0.04 

sd/year, the observed empirical probabilities lie close to the upper edge of the 

prediction intervals. From Figure 4.3b it can be seen that the timing of these 

exceedances are all concentrated around the maximum trend centred on 1978. 

This under-sampling of higher magnitude trends in the observations means that 

the related empirical probabilities lack robustness and are likely consistent with 

the fitted AR(1) and FD processes. 

 

It is also useful to quantify the uncertainty in the estimate of the probability p 

given that the stochastic processes have been fitted to a finite time series. 

Using the Bartlett formula (Bartlett 1946; Equation 3.13) for the uncertainty in 

the estimate of lag-1 autocorrelation parameter given the finite time series 

length n = 170 and ρ = 0.169 gives the 95% prediction interval of (0.0212, 

0.317). Using this range of parameters for an AR(1) process, and the related 

difference parameters for a FD process using d(ρ1) = ρ1/(1 + ρ1) (Hosking, 

1981), leads to an estimate of how the uncertainty in stochastic model fit may 

affect the estimate of p. These prediction intervals are summarised in Table 4.3 

(“Uncertainty from ρ”) for trend threshold z = 0.0737 sd/year, alongside the 

prediction intervals quantifying the effect of 𝜎𝑧
2 sampling uncertainty 

(“Uncertainty from 𝜎𝑧
2”). The sampling uncertainty in p coming from the 

autocorrelation estimate ρ is considerably smaller than the uncertainty from 

trying to model the distribution of trends directly from the filtered time series Z 

(related to the uncertainty in 𝜎𝑧
2). This justifies the approach of fitting a 

stochastic model to the original NAO index time series, as it should give more 

robust probability estimates than using the observed trend series directly, 
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especially for higher trend thresholds which are under-sampled in the observed 

trend series. 

 

4.4.4. Stationarity of observed NAO trends 

The stochastic model covariance approach to quantify exceedance probabilities 

in Section 4.4.2 assumed that the NAO index series is first order stationary such 

that the expectation of the trend E[Zi] is equal to zero. To test the validity of this 

assumption, the time mean trend �̅� is computed for the observed 31-year NAO 

trend series (Zi) over the historical period 1862-2005 (144 years): 

�̅� =
1

𝑚
∑ 𝑍𝑖

1990

𝑖=1877

. (4.4) 

The 31-year moving trend series Zi is labelled here by the central year (i) and m 

is the length of the 31-year trend series (m = 144-31+1 = 114 in this case). For 

the observed NAO index series using HadSLP2r, �̅� = 0.0354 sd/decade.  

 

To test whether the observed �̅� value is consistent with a stationary process, 

the distribution of time mean trends �̅� is estimated using NAO trend simulations 

from each of the fitted stochastic models in Section 4.4.3, which are stationary 

by definition. For each fitted stochastic process, the time mean trend �̅� is 

computed for each of the 5000 simulations of moving window trend series 

(length 114 to emulate the observed NAO trend series). Relative to these 

empirical stochastic distributions (white noise, AR(1) and FD), the probability of 

�̅� having absolute magnitude greater than the observed estimate of �̅� 

(0.0354 sd/decade) is in the range 14% to 35% (Table 4.4), so there is no 

evidence to reject the null hypothesis that �̅� comes from a stationary stochastic 

model distribution with mean zero (applying standard hypothesis testing at the 

5% level, see Appendix B.3). Therefore, it seems that the assumption of 

stationarity for the observed NAO trend series is valid, given the sampling 

uncertainty implied by the stochastic model distributions of �̅� due to the 

relatively short historical period available. This is in agreement with previous 

studies summarised in Sections 2.4.1 and 2.4.2 that found that the multi-

decadal variability of the NAO is consistent with simple stochastic models of 

internal variability with some short- or long- range dependence when assessed 

over the full historical record. 
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NAO model % of |�̅�| > 0.0354 sd/decade 

White noise 14.2 % 

AR(1)  ρ = 0.169 22.7 % 

FD       d = 0.123 34.6 % 

Table 4.4 Likelihood of stationarity for observed historical NAO series. 

The percentage of fitted stochastic simulations of 31-year trend series Z (length 

114) with absolute magnitude of time mean �̅� greater than the observed value 

0.0354 sd/decade for the historical period 1862-2005 (see Section 4.4.4). 

 

 

4.5. Distribution of extreme multi-decadal trends 

When considering the chance of exceeding the 1963-1993 trend value, it is 

necessary to take into account that this period has been pre-selected because 

of it being the maximum of all the values in the historical trend series. The 

approach chosen here is to use extreme value distributions for block maxima, 

building on the distribution of moving window linear trends to estimate the 

distribution of the maximum value in the trend series (block). Using the notation 

of Section 3.4 (Equation 3.14) and the threshold value of z = 0.737 sd/decade 

from Section 4.4, the exceedance probability of interest in this case is 

𝑞(𝑧) = 𝑃𝑟(𝑚𝑎𝑥{𝑍1+𝐾, 𝑍2+𝐾, … , 𝑍𝑛−𝐾} ≥ 𝑧). (4.5) 

 

A similar issue is discussed in Percival and Rothrock (2005) in the context of 

trends at the end of a time series where the start point (or window length) from 

which the trend is calculated may have been chosen after “eyeballing” a period 

of interest. They account for this by testing end-of-series trends for a range of 

window lengths, specifically ten to fifty years, that encompass the 32-year 

window that was chosen by “eyeballing” the data. They use a large sample of 

simulations from stochastic time series (length ten to fifty years) to find the 

empirical probability that at least one of those window lengths simulates a trend 

with magnitude greater than that observed. Adjusting the notation of Section 4.4 

such that Z(w) is the variable representing the end-of-series trend for window 
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length w years and z(w) is the observed end-of-series trend for window length w 

years, then Percival and Rothrock (2005) are essentially calculating the 

probability: 

𝑝𝑃𝑅 = 𝑃𝑟(|𝑍(10)| ≥ |𝑧(10)| 𝑜𝑟 |𝑍(11)| ≥ |𝑧(11)| 𝑜𝑟 … 𝑜𝑟 |𝑍(50)| ≥ |𝑧(50)|). (4.6) 

 

The extreme value method seems more appropriate when considering the 

chance of exceeding the 1963-1993 NAO trend as the window length has been 

pre-chosen based on definitions of multi-decadal variability (Section 4.2.2) and 

the temporal position is not constrained to be at the end of the time series. In 

this case it is the position of the window in time, rather than the length of the 

window, that has been chosen based on looking at the data and finding the 

maximum value in the moving trend series. If the window length had been 

chosen to maximise the observed trend, then it could be interesting to develop a 

method that combines the two approaches. 

 

4.5.1. Stochastic simulations of extreme trends 

To estimate the exceedance probability q(z) (Equation 4.5) for the maximum 

moving window trend in a series, the large set of stochastic simulations from 

Section 4.4.3 are used to model the distribution of maximum trends for the fitted 

stochastic processes with ρ = 0.169 or d = 0.123 (Table 4.2) and standard 

deviation 𝜎𝑌 = 1.0. To quantify the uncertainty in these estimates, additional 

sets of simulations are generated for stochastic processes based on the 95% 

prediction interval for lag-1 year autocorrelation ρ = 0.0212 and 0.317 which 

translates to the interval d = 0.0208 and 0.241 (Hosking, 1981). For this 

analysis, the stochastic time series length is set as n = 144 years to match the 

length of CGCM experiments assessed later in Section 5 (1862-2005), leading 

to a set of trend series (blocks) of length m = 144 – 30 = 114 years calculated 

as in Section 3.2. The exceedance probability q(z) from Equation 4.5 is then 

computed using the empirical probabilities based on the proportion of simulated 

trend series which have a maximum trend greater than the threshold 

z = 0.737 sd/decade. 

 

The AR(1) and FD fitted models estimate maximum trend exceedance 

probabilities q(z) to be 3.46% and 6.06% respectively for trend threshold 
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z = 0.737 sd/decade (Table 4.5), which averages at around a 1 in 20 chance. 

Using the Intergovernmental Panel on Climate Change (IPCC) likelihood scale 

(Appendix B.2), this would be termed a very unlikely chance of occurrence. 

Using the 95% prediction interval for lag-1 autocorrelation ρ of (0.0212, 0.317) 

leads to an estimate of the uncertainty in the probability q given that the 

stochastic processes have been fitted to a finite time series: (0.780%, 12.3%) 

for the AR(1) model and (1.34%, 19.4%) for the FD model (Table 4.5). The 

estimate of q(z) is significantly lower if instead it is assumed that the NAO index 

can be modelled as a white noise stochastic process, i.e. with no short- or long- 

range dependence, for which q(z) = 0.600% (Table 4.5). This aligns with results 

from Section 4.4.2 which found that ignoring the year-to-year dependence when 

modelling the NAO timeseries will lead to critically underestimating the 

exceedance probabilities for moving window trends. 

 

 

Model q Uncertainty 

White noise 0.600 % NA 

AR(1) 3.46 % (0.780, 12.3) % 

FD 6.06 % (1.34, 19.4) % 

Table 4.5. Extreme trend exceedance probabilities for maximum 31-year 

trends in the period 1862-2005. Probabilities (shown as percentages) of trend 

exceedance q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) for 31-year maximum NAO 

trends using stochastic model fits to HadSLP2r with parameters ρ = 0.169 and 

d = 0.123 (Table 4.2) relative to the observed maximum trend 

z = 0.737 sd/decade (Table 4.1). For AR(1) and FD model fits, average 

q = 4.76% ~ 1/20. The intervals in brackets represent the uncertainty from the 

stochastic model fits (based on empirical 2.5th and 97.5th percentiles for ρ, see 

Section 4.5.1). 

 

 

4.6. Summary 

This chapter has confirmed that the NAO trend for the period 1963-1993 is the 

maximum in the observed record for all three observation datasets assessed. 

Applying the approaches from Chapter 3 to assess the distribution of extreme 
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31-year trends in the NAO, the exceedance probability estimates for 31-year 

trends relative to this threshold (0.737 sd/decade) are: 

• A 1 in 20 chance for the block maxima NAO trend in a block of length 

144 years (1862-2005), estimated using stochastic simulations from the 

fitted stochastic processes with weak year-to-year memory. 

• A 1 in 200 chance for the block maxima NAO trend estimate if the year-

to-year memory is ignored (using a fitted white noise process) 

• A 1 in 1000 chance if the 1963-1993 NAO trend is treated as occurring in 

a randomly chosen single window, i.e. neglecting to account for it being 

chosen specifically as it is the maximum trend in the historical record. 

 

The NAO multi-decadal variability over the full historical period has been shown 

to be consistent with the fitted stochastic models, however the 1963 to 1993 

extreme NAO trend is described as a “very unlikely” occurrence based on the 

block maxima probabilities above. This result is only valid if the NAO variability 

in the historical period is stationary, as shown in Section 4.4.4. This is in 

agreement with the literature summarised in Sections 2.4.1 and 2.4.2, which 

found that the NAO multi-decadal variability in the full historical period is 

consistent with simple models of internal variability, but this consistency is 

weaker when just assessing the late 20th century period. The stochastic models 

are not sufficient to partition the variability into internal variability, feedback 

mechanism and externally forced components as some of the short- and long- 

range dependence detected in the observed NAO index may itself be coming 

from the feedback mechanisms and external forcing. The stochastic models are 

a useful tool for estimating the distribution of extreme NAO trends, as it is not 

possible to do this using observations alone, and will provide a useful 

framework for testing the ability of GCMs to simulate extreme NAO trends. 
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5. Climate modelling of trends in the North 

Atlantic Oscillation 

5.1. Introduction 

This chapter uses Coupled General Circulation Model (CGCM) experiments 

(described in Section 5.2) to simulate the NAO, using the standardised NAO 

index as defined in Section 4 (Equation 4.1) for the observational analysis, 

based on mean sea level pressure (MSLP). The goal is to quantify the CGCM 

based probability of seeing such extreme trends as those identified in the 

observed NAO index trend series (Section 4) under present day climate 

conditions. CGCM simulations are used to estimate the distribution of extreme 

31-year trends in the winter NAO index (Section 5.3.1) and relate this to the 

distribution of moving window trends (Section 5.3.2). Methods from Chapter 3 

are used to fit stochastic models to the CGCM simulations of the NAO index to 

compare the level of dependence in CGCMs relative to that seen for the 

observed NAO and assess the effect of this on the trend distributions (Section 

5.3.3). The method applied in Chapter 4 assumed that the observed NAO index 

is a stationary process. The stationarity of the historical CGCMs is assessed in 

Section 5.3.4. The observed maximum 31-year NAO trend occurred at the time 

of the maximum Azores and minimum Iceland MSLP trends and the 31-year 

moving window trend series at these locations have a high magnitude of anti-

correlation. This level of co-variability is found to be less apparent in the 

historical CGCMs (Sections 5.3.5). The sensitivity of results to NAO index 

definition, window length, winter season definition and extreme trend definition 

are discussed in Section 5.4. 

 

5.2. Climate models 

5.2.1 Climate model data 

Historical simulations from state-of-the-art CGCMs from the Coupled Model 

Intercomparison Project Phase 6, CMIP6 (Eyring et al., 2016) are assessed 

alongside those from Phase 5, CMIP5 (Taylor et al., 2012) to form a large 

ensemble of MSLP output. From CMIP6 there are 435 simulations from 56 

models (Appendix A, Table A.1), while from CMIP5 there are 103 simulations 

from 42 models (Appendix A, Table A.2) making a total of 77472 years (538 
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simulations x 144 years). These are continuous transient simulations driven by 

external historical forcings (solar, volcanic, and anthropogenic). They cover the 

common period of winters 1862-2005, where January is used to define the year. 

 

5.2.2 NAO indices 

NAO index time series are calculated as in Section 4.2 (Equation 4.1, replicated 

as Equation 5.1 in Section 5.4.1 below) for each individual CGCM simulation 

separately with standardisation using the sample standard deviation from the 

same common period of 1862-2005. Where the model ensemble has size 

greater than one, the sample standard deviation is calculated across all 

members combined. These time series are then filtered in the same way as for 

the observed NAO to calculate the 31-winter moving window linear trends. 

 

Figure 5.1 shows the first EOF pattern for winter mean MSLP over the North 

Atlantic (20-90N and 90W-40E) using observations (HadSLP2r, Allan and 

Ansell, 2006) and the multi-model mean of the first EOF patterns from the 

combined set of CMIP6 and CMIP5 CGCM experiments (see Appendix B.5 for 

code details). Where the model ensemble has size greater than one, the EOF is 

calculated across all members combined. The CGCM EOF patterns are similar 

to those from the MSLP observations. The similarity of the CGCM and 

Observed EOF patterns, and the closeness of the main nodes of variability to 

Iceland and the Azores, indicates that the NAO index definition from Equation 

4.1 is suitable for a comparison of NAO behaviour in observations and CGCMs. 
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Figure 5.1. First EOF for MSLP DJF seasonal mean. HadSLP2r observations 

(a) and the multi-model mean of the EOF patterns from CGCMs (b) using the 

full period available for each dataset, with the Iceland and Azores NAO node 

locations marked as black crosses. 
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5.3. Climate model distribution of NAO extreme trends 

5.3.1. Empirical distribution of extreme trends 

Figure 5.2 shows the moving window trend series for each of the CGCM 

simulations (ensemble members) for their common period of 1862-2005, and for 

the observation dataset HadSLP2r and the 20th century reanalysis data V2 

(C20C, Compo et al., 2011). For the specific time window 1963-1993, for which 

the observed NAO trend is at the maximum value, the multi-model ensemble 

mean across all simulations has only a very weak positive trend and none of the 

individual simulations predict a trend as large as that observed (Figure 5.2). 

 

The empirical distribution of extreme trends in the CGCMs is calculated by 

taking the maximum 31-winter trend from each CGCM simulation, over the 

period 1862-2005 (block maxima for blocks of length 114 trend points). There is 

no consistency in the timing of maximum linear trends across the models, with 

maxima spread fairly evenly across the whole time period (Figure 5.2). This 

suggests that the NAO multi-decadal variability in the CGCMs for this period is 

primarily caused by internal variability and is not responding strongly to their 

common boundary condition forcing (solar, volcanic, and anthropogenic). 

 

 

 

Figure 5.2. Multi-decadal NAO trends in CGCMs. The 31-winter moving 

linear trend estimate is shown for the set of CMIP5 and CMIP6 CGCM 

simulations of the NAO (grey solid lines) and for the multi-model ensemble 

mean (grey dot-dash line). The HadSLP2r (black solid line) and C20C (black 

dash line) observed trends are overlaid, with the maximum trend shown as a 

horizontal black line, centred on 1978. 
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Figure 5.3 shows the distribution of maximum NAO trends from the CGCM 

simulations, applying a kernel density fit (see Appendix B.6 for details) to the 

538 CGCM values. The observed maximum NAO (shown for HadSLP2r) is 

outside of the empirical 95% prediction interval based on the 2.5th and 97.5th 

percentiles from the CGCM maximum trend distribution. Of the 538 CGCM 

simulations, only 2 have a maximum trend greater than the maximum observed, 

so the empirical estimate of the exceedance probability 

q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) (Equation 4.4) is therefore 2/538 (Table 5.1) 

which would be termed an exceptionally unlikely occurrence (less than 1 in 100 

chance) using the Intergovernmental Panel on Climate Change (IPCC) 

likelihood scale (Appendix B.2). These results are similar to those from 

Bracegirdle et al. (2018) which found that the CMIP5 historical experiments very 

rarely simulate a 30-year trend in the winter NAO index or Atlantic jet strength of 

magnitude comparable to that observed in the 1960s to 1990s anywhere in their 

150-year period of simulation. 

 

 

 

Figure 5.3 Empirical distribution of block maxima NAO trends in CGCMs. 

The probability density function (kernel density estimate, see Appendix B.6 for 

details) for the CGCM maximum 31-year NAO trend values with empirical 95% 

prediction interval (thick black horizontal lines). The observed HadSLP2r 

maximum trend is shown as a dashed vertical line. 
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Model Prob. q as %  

CGCM 0.372%   (2/538) 

White Noise 0.600% 

AR(1)  3.46%    (0.780%, 12.30%) 

FD  6.06%    (1.34%, 19.40%) 

Table 5.1. Trend exceedance probabilities for maximum 31-year trends in 

the period 1862-2005. Probabilities (shown as percentages) of trend 

exceedance q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) in the historical period 1862-

2005, where z is the maximum observed NAO trend (0.737 sd/decade from 

Table 4.3). Stochastic model probabilities are included from Table 4.5 where 

stochastic processes were fitted to the HadSLP2r NAO index. For the AR(1) 

and FD model fits, average q = 4.76% ~ 1/20 (intervals in brackets represent 

the uncertainty from the stochastic model fits, see Section 4.5.1). 

 

 

The CGCM empirical distribution of extreme NAO trends considerably 

underestimate exceedance probabilities compared to the stochastic model 

estimates from Chapter 4. Given there are 538 CGCM simulations in this study, 

it is expected that around 18 to 32 of them will simulate a maximum NAO trend 

greater than the observed maximum based on the fitted stochastic model 

probabilities in Table 5.1 (538 × q). Instead, only two CGCM simulations 

exceed the observed maximum trend which leads to the empirical probability 

estimate q = 2/538. This CGCM probability estimate is only around 10% of the 

probability estimates from Section 4 using stochastic model fits which averaged 

around a 1 in 20 chance (Table 5.1). The CGCM probability estimate is below 

the lower bound of the uncertainty range based on the stochastic model fits to 

observations (defined in Section 4.5.1) and is even lower than the white noise 

estimate which assumes no short- or long- range dependence between winter 

seasons (Table 5.1). This suggests that the CGCMs significantly underestimate 

the exceedance probabilities for extreme NAO trends, and this may in part be 

due to an underestimation of the year-to-year dependence in the winter NAO 

index.  
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Semenov et al. (2008) used two CGCMs to deduce that the distribution of 30-

year NAO trends in CGCMs is not significantly different to the observed 

distribution. However, their assessment is for the distribution of all moving 

window trends in the series rather than the distribution of maximum trends. 

They suggest that any differences between the observed distribution and the 

CGCM distribution can be explained by the short length of the observed trend 

series. However, they state that their 3150 year simulation (moving window 

trend series of length 3121) only exceeds the maximum observed 30-year NAO 

trend once, i.e. the exceedance probability estimate would be 

1/3121 = 3.20x10-4, compared to the CMIP5+6 estimate of 

2/(538 × 114) = 3.26x10-5. For the large CGCM ensemble used in this thesis, it 

cannot be argued that the lack of extreme multi-decadal NAO trends in CGCM 

simulations is due to the CGCM sample size being too small. Using the data 

from Semenov et al. (2008), the approximate probability of a maximum trend 

exceeding the maximum observed 30-winter NAO trend would be 

~ 1/21 = 0.0476 (sub-setting the 3150 years into 21 intervals of length 144 to 

match the CMIP5+6 simulations), which is consistent with the results from Table 

5.1, i.e. that the 1960s to 90s trend is a very unlikely occurrence in CGCMs.  

 

5.3.2. Empirical distribution of moving window trends 

The distribution of extreme trends in a series is related to the distribution of 

moving window trends (Section 3.4). For the maximum trend in the observed 

NAO trend series, the distribution of such trends is unknown and must be 

estimated using a model such as the stochastic models in Section 4.5 and the 

CGCMs in this chapter. However, for the distribution of moving window trends, 

the empirical distribution can be obtained directly from the observation trend 

series for comparison with model-based distributions. 

 

Figure 5.4 shows the distribution of moving window trends in terms of the 

exceedance probability p = Pr(Zi ≥ z) (top axis) and return period 1/p (bottom 

axis) for the CGCM NAO simulations. The CGCM empirical probabilities are 

calculated from the total multi-model ensemble of 61332 moving window trend 

values (538 simulations x 114 trend values), shown as grey crosses (based on 

sample rank values). The CGCM empirical probability curve leads to 

exceedance probabilities that are considerably lower than those from the fitted 
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AR(1) model from Section 4.4.2 (black dash line marked “0.169” in Figure 5.4) 

and are closer to those of the fitted white noise model from Section 4.4.3 (black 

dash lines marked “0.0” in Figure 5.4). This suggests that the CGCMs 

underestimate the magnitude of moving window multi-decadal NAO trends and, 

as for the distribution of extreme NAO trends (Section 5.3.1), this can be 

partially explained by a lack of year-to-year memory compared to the observed 

NAO index. 

 

The grey shading in Figure 5.4 represents the 95% prediction interval for 

exceedance probabilities estimated from a single trend-series. To quantify this 

uncertainty on the exceedance probability p when estimated from a single finite 

trend-series (e.g. one CGCM member or one observation dataset), the 

empirical 97.5th and 2.5th percentiles of the sample of trend variance estimates 

from the 538 individual CGCM members are chosen here to define upper and 

lower bounds for the Gaussian distribution (with zero mean) exceedance 

probabilities. The empirical exceedance probabilities for NAO observations 

(from Section 4.4.1), shown as open circles in Figure 5.4 (using the period 

1862-2005 to match the length of CGCM experiments), are far outside of the 

CGCM prediction interval suggesting that the CGCM experiments significantly 

underestimate the observed exceedance probabilities for 31-year moving 

window NAO trends. 

 

It was argued in Section 4.4.3 that the observed NAO trend series are too short 

to estimate the trend distribution directly from moving window trend data, 

however for this large sample of CGCM NAO data (61332 moving window 

trend), a more robust distribution estimate should be possible. Figure 5.5 shows 

the empirical distribution of 31-year moving window NAO trends from the 

CGCM simulations (black curve). A Gaussian distribution can be fitted to the 

NAO trend values, using the total variance calculated across these 61332 trend 

values and a mean value of zero. The sample mean for the CGCM trends is 

very close to zero, so fixing the mean to be zero has little influence on the 

results. This Gaussian probability density function and the associated 

exceedance probability curve are displayed in Figure 5.5 (grey curve) and 

Figure 5.4 (black dot-dash lines marked “CGCM”) respectively. The Gaussian 

distribution is a fairly good statistical model fit when compared to the empirical 
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distribution of the CGCM moving window trends for moderate trend thresholds 

(Figure 5.5 grey and black curves). 

 

 

 

Figure 5.4. Return period plot for NAO moving window trend. Empirical 

exceedance probabilities (top axis) and return period (bottom axis) from CGCM 

simulations (grey crosses) and observations (black open circles) of 31-year 

moving window NAO trends. Black dot-dash curve shows the Gaussian 

distribution fitted to the CGCM trends with the 95% prediction interval for a 

single time-series shaded in grey (Section 5.3.2). Black dashed curves show 

the exceedance probabilities using the covariance approach (Section 4.4.2) for 

the AR(1) (ρ = 0.169) and white noise (ρ = 0.0) processes fitted to the observed 

NAO index time series. 

 

 

For extreme trend thresholds the Gaussian fit marginally overestimates 

exceedance probabilities (Figure 5.4) compared to the empirical probabilities 

(grey crosses), though this difference is overly accentuated due to the 

logarithmic scale of the probability axes. These slight differences in the tails of 



113 

 

the CGCM Gaussian and empirical probability curves are likely just due to the 

increased uncertainty in the rank probability estimates since in these cases 

there is a lack of occurrence of large trends in the CGCMs comparable to the 

maximum observed. Overall, the CGCM empirical probabilities for moving 

window trends are well represented by the Gaussian distribution fit which is 

good evidence that the covariance approach from Section 4.4.2 is justified in 

modelling the NAO trend series as Gaussian. 

 

 

 

Figure 5.5 Empirical distribution of Moving Window NAO trends in 

CGCMs. The probability density function (kernel density estimate, see Appendix 

B.6 for details) for the CGCM 31-year moving window NAO trend values (black 

curve) with empirical 95% prediction interval (black horizontal line). The 

probability density function of the Gaussian fit is overlaid (grey curve). The 

observed HadSLP2r maximum trend is shown as a dashed vertical line. 
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5.3.3. Fitting stochastic processes to climate models 

The distribution of moving window trends is related to the variability of the 

underlying index by Equations 3.3 and 3.4 (Section 3). The NAO index has 

been standardised (Equation 4.1) so it is only the autocorrelation function that is 

important here. Figure 5.6 shows the maximum NAO trend for each CGCM 

simulation relative to the model lag-1 year autocorrelation estimate ρ for the 

winter mean NAO index, with just two simulations having a maximum trend 

greater than the observed HadSLP2r maximum trend (shown by the horizontal 

black line). Where the model ensemble has size greater than one, ρ is 

calculated by first concatenating all the members so that it represents a model 

characteristic rather than a single simulation characteristic. The scatterplot 

spread is represented by the 95% prediction interval ellipse (for details see 

Appendix B.7). This shows no clear relationship between the level of 

autocorrelation in the CGCMs and the magnitude of extreme NAO trends. The 

correlation across the scatterplot points is very small (r = 0.079) and although 

the p-value is small (p = 0.066) it is still above the standard threshold of 0.05 

used to reject the null hypothesis that the correlation is equal to zero, so the 

correlation value is not significant in this case. The models with the highest 

autocorrelation estimates in Figure 5.6 just have one member per model. Using 

the model with the largest ensemble size (CMIP6-MIROC6) to estimate 

autocorrelation for single members, the spread in these estimates (-0.17 to 

+0.15) is as large as the spread between model estimates, while the total model 

estimate is just 0.01, thus single members are not sufficient to identify if one 

model has autocorrelation greater than another (large ensembles are needed). 

This means that for this set of CGCMs the autocorrelation metric ρ does not 

seem able to identify single models that are superior for simulating more 

extreme NAO trends, despite the expected relationship between the maximum 

trend and lag-1 year autocorrelation ρ (Equation 3.3). This is likely due to a 

general lack of year-to-year memory in the CGCM NAO indices, where the 

spread in ρ estimates about zero is due to noise from sampling short time 

series, rather than a physical difference between models. 
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Figure 5.6. The relationship of maximum NAO trends to NAO 

autocorrelation in CGCMs. The maximum NAO trend for each CGCM 

simulations is shown relative to the model estimate of the lag-1 year 

autocorrelation ρ (grey “x” with 95% prediction ellipse) with the correlation (r) 

and p-value (p) displayed in the bottom right. Observed values are shown for 

HadSLP2r (black circle, and horizontal line) and C20C (black square). 

 

 

Figure 5.7 uses a boxplot to show the distribution of the lag-1 year 

autocorrelation ρ estimates from the 538 individual CGCM NAO simulations 

using empirical estimates of the prediction intervals (2.5th to 97.5th percentiles 

whiskers, 25th to 75th percentile box, and central median line shown). The 

expected distribution of ρ estimates from a white noise process of the same 

length is included using the Bartlett formula (Bartlett 1946; Equation 3.13) for 

the uncertainty in the estimates of lag-1 autocorrelation parameter given the 

finite time series length n = 144 and ρ = 0. The observed estimates of lag-1 year 

autocorrelation ρ are significantly larger than the CGCM estimates (outside of 

the empirical 95% prediction intervals) and only five of the 538 CGCM estimates 

are greater than the HadSLP2r estimate (13 greater than the C20C estimate). 
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The HadSLP2r estimate of ρ is also outside the white noise model 95% 

prediction interval (though the C20C estimate is slightly smaller). The CGCM 

distribution of ρ estimates is centred close to zero and has very similar 75% and 

95% prediction intervals to the expected intervals from the white noise process. 

This is further evidence that the CGCMs underestimate the level of 

autocorrelation in the NAO index series and are more consistent with a white 

noise process. Similar results were found for the jet stream variability in 

Simpson et al. (2018). 

 

 

 

Figure 5.7 Empirical distribution of lag-1 year autocorrelation for NAO 

index. Box plots of the empirical distribution of lag-1 year autocorrelation (ρ) 

estimates from the 538 individual CGCM simulations and the expected 

distribution of sample ρ estimates from a white noise model using the Bartlett 

formula (Bartlett, 1946) (Section 5.3.3; Equation 3.13). The box plots show the 

median line in the centre of the 25- to 75- percentile box with thick black 

whiskers showing the 95% prediction interval (2.5- to 97.5- percentiles). For the 

CGCM distribution thin black total range whiskers are included. Observed 

values are shown for HadSLP2r (black circle) and C20C (black square). 

 

 

5.3.4. Stationarity of the NAO in climate models 

The stationarity of the CGCM NAO index series can be examined in the same 

way as for the observed NAO index (Section 4.3), by assessing the distribution 

of time mean trends (�̅�; Equation 4.4). Figure 5.8 shows the CGCM distribution 

of time means of 31-year trend series (�̅�) for the period 1862-2005 using the 
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538 estimates of �̅� from the CMIP5+6 historical experiments (black curve). The 

distribution of �̅� for a white noise process of the same length is shown (grey 

curve) using the 5000 white noise stochastic model simulations from Chapter 4. 

The CGCM historical distribution of �̅� is shifted towards slightly more positive 

values than the stationary white noise process, with 68% of the CGCM �̅� values 

greater than zero but only 15% greater than the observed value of �̅� for the 

same period using HadSLP2r observations (Figure 5.8 dashed line). The 

sample mean of �̅� is small (0.0103 sd/decade) but is significantly different to 

zero (using a standard hypothesis test at the 5% level, see Appendix B.3) which 

suggests a weak level of non-stationarity in the CGCMs. Despite this positive 

shift in �̅�, the CGCMs still underestimate the distribution of multi-decadal trends 

compared to observations and fitted stochastic models (Section 5.3.2). 

 

 

 

Figure 5.8: Empirical distribution of time mean trends for CGCM historical 

NAO. The probability density function (kernel density, see Appendix B.6) for the 

CGCM time means of 31-year moving window NAO trend series for the period 

1862-2005 (black curve). The probability density function for the Gaussian white 

noise model overlaid (grey curve). Empirical 95% prediction intervals are shown 

by black (CGCM) and grey (white noise) horizontal lines. The observed time 

mean trend for 1862-2005 (HadSLP2r) is shown (dashed black vertical line). 
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5.3.5 Co-variability of pressure at NAO nodes 

The NAO index has been defined using winter mean MSLP at the two main 

nodes of North Atlantic MSLP variability: Ponta Delgada, Azores and Reykjavík, 

Iceland. It was shown in Chapter 4 that there is a high level of anti-correlation 

between the moving window trend series at these points (-0.849 for HadSLP2r 

NAO for the period 1862-2005) and the observed maximum 31-year MSLP 

trend for the Azores occurs at the same time (within a year) as the minimum 31-

year trend for Iceland. The CGCM historical experiments greatly underestimate 

this measure of co-variability with an average correlation of -0.559 across all 

538 simulations (time period 1862-2005). The observed estimate of trend co-

variability is on the very edge of the CGCM empirical 95% prediction interval 

(-0.853, -0.0809) (defined by the 2.5th and 97.5th percentiles), with only 14 out 

of the 538 simulations (2.6%) having a correlation value greater in absolute 

magnitude than that observed. This is consistent with the lack of coincident 

timing of CGCM extreme trends at the two node locations as only 19.7% of the 

CGCM simulated 31-year trend series have the maximum Azores trend within a 

year of the minimum Iceland trend. This CGCM deficiency in co-variability on 

multi-decadal timescales does not seem to be due to a problem on seasonal 

timescales as the CGCM co-variability for winter seasonal mean MSLP at 

Iceland and the Azores is consistent with that observed. For winter mean 

MSLP, the observed Azores and Iceland time series are fairly strongly anti-

correlated, with correlation -0.520 (HadSLP2r), as would be expected based on 

the first EOF pattern for winter mean MSLP over the North Atlantic (Figure 5.1). 

The CGCM experiments are consistent with observations for this interannual 

variability, with the average of correlation values across all simulations for the 

period 1862-2005 being -0.592. The CGCM deficiency in the co-variability of 

NAO node trend series is of interest as it might relate to the CGCM’s 

underestimation of maximum NAO trends. 

 

To test the effect of coincident timing of maximum and minimum trends at the 

Azores and Iceland nodes on the NAO maximum trends, pseudo maximum 

NAO trends are calculated by combining the maximum 31-year MSLP trend at 

the Azores southern node and the minimum MSLP trend at the Iceland northern 

node regardless of their timing. Figure 5.9 shows the distribution of these 
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pseudo maximum NAO trends (grey curve) relative to the original distribution of 

CGCM maximum NAO trends (black curve) as in Figure 5.3. The pseudo 

maximum trend distribution is clearly shifted towards larger trend values, but the 

observed maximum NAO trend is still beyond the new empirical 95% prediction 

interval (grey horizontal line). The new empirical estimate of exceedance 

probability q is 8/538 = 1.49%, which is four times the original CGCM probability 

(2/538, Table 5.1), but this is still termed a very unlikely occurrence (less than 1 

in 10 chance, IPCC likelihood scale, Appendix B.2) and is still smaller than the 

AR(1) and FD fitted model estimates (3.46% and 6.06% from Table 5.1). Thus, 

for the CGCM simulations, the lack of coincident timing of extreme trends for 

the individual NAO nodes likely contributes to the underestimation of extreme 

NAO trends relative to those observed, but this may itself be related to the lack 

of autocorrelation in the winter mean NAO index series which has a greater 

overall effect on the estimation of extreme trends. 

 

Figure 5.10 shows the CGCM distribution of maximum MSLP trends at the 

Azores NAO node and minimum MSLP trends at the Iceland NAO node. The 

empirical 95% prediction intervals are shown by horizontal lines, using the 

empirical 2.5th and 97.5th percentiles from the CGCM extreme trend output. 

The observed extreme trend values (HadSLP2r; dashed vertical lines in Figure 

5.10) are on the extreme edge of these prediction intervals. Of the 538 CGCM 

simulations, only 19 have maximum trends at the Azores NAO node greater 

than the maximum observed (block maxima empirical exceedance probability 

0.0353 for trends above observed maximum) and only 15 have minimum trends 

at the Iceland NAO node less than the minimum observed (block minima 

empirical probability 0.0279 for trends below observed minimum). None of the 

individual simulations appear in both of these subsets. This analysis of MSLP 

trends at the individual NAO nodes shows that the CGCM underestimation of 

maximum NAO trends is related to the underestimation of the magnitude of both 

Azores maximum trends and Iceland minimum trends. 

 

 



120 

 

 

Figure 5.9 Empirical distribution of block maxima NAO trends and pseudo 

maximum NAO trends in CGCMs. The probability density function (kernel 

density, see Appendix B.6) for the CGCM pseudo maximum NAO trend values 

calculated from the maximum and minimum trends at the Azores and Iceland 

NAO nodes respectively regardless of timing (grey curve) as described in 

Section 5.3.5 with the empirical 95% prediction interval (thick grey horizontal 

line). The distribution for the original CGCM block maxima trends is shown 

(black solid line) as in Figure 5.3, with the observed (HadSLP2r) maximum 

trend shown by the dashed vertical line. 
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Figure 5.10. Empirical distributions of MSLP extreme trends at NAO nodes 

in GCMs. The probability density function (kernel density, see Appendix B.6) for 

(a) the maximum MSLP trend at the Azores NAO node and (b) the minimum 

MSLP trend at the Iceland NAO node using the CGCM (black curve) 

simulations for MSLP over the period 1862-2005. Horizontal black lines show 

the empirical 95% prediction intervals for the CGCM simulations. Observed 

(HadSLP2r) estimates are shown as black dashed vertical lines. 
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5.4. Sensitivity to NAO trend definitions 

5.4.1. NAO index definition  

The analysis of NAO trends has so far focussed on a single NAO index 

definition from Hurrell et al. (1995) which is the standardised difference of 

standardised winter mean MSLP series at Ponta Delgada (P) in the Azores and 

Reykjavík (R) in Iceland (using the nearest grid boxes) with the notation from 

Section 4.2.1 (Equation 4.1) replicated below: 

 

1. NAO Standardised point index: 

𝑁(𝑡) =
(𝑃(𝑡) − �̅�)

𝑠𝑃
−

(𝑅(𝑡) − �̅�)

𝑠𝑅
 

𝑁𝐴𝑂(𝑡) =
(𝑁(𝑡) − �̅�)

𝑠𝑁

(5.1) 

�̅� and �̅� are the sample means and 𝑠𝑃 and 𝑠𝑅 are the sample standard 

deviations of the P and R MSLP index series respectively, calculated over the 

full period available i.e. different periods for different datasets. �̅� and 𝑠𝑁 are the 

sample mean and standard deviation of N, calculated over the CGCM common 

period 1862-2005.  

 

To test the sensitivity of CGCM results to the NAO index definition, alternative 

definitions are considered as defined below: 

 

2. NAO Standardised regional average index: Stephenson et al. (2006) 

define an NAO index using large regions rather than single grid boxes, noting 

that this should allow for shifts in the precise NAO position with time. They use 

the difference in regionally averaged DJF MSLP between the subtropical Mid-

Atlantic to Southern Europe region 90W-60E, 20-55N and the North Atlantic-

Northern Europe region 90W-60E, 55-90N. This index is defined as in Equation 

5.1 but using the northern and southern regional means in place of R and P 

point values. 

 

3. NAO Empirical Orthogonal Function (EOF) index: The leading principal 

component of winter MSLP variability in the North Atlantic region, defined here 

as 20-90N and 90W-40E as in Hurrell (1995) but extended to 90N as in Deser 
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et al. (2000) and Ambaum et al (2001). The full length of the MSLP dataset is 

used to calculate the EOF pattern (see Appendix B.5 for code details), i.e. 

different periods for different datasets. By definition, this index is in a 

standardised form, and for fair comparison between observation and model 

values the index time series is then re-standardised over the CGCM common 

period 1862-2005. 

 

4. NAO Anomalised point index: The difference in DJF MSLP for Ponta 

Delgada (P) minus Reykjavík (R) but without standardisation so the actual 

pressure difference in hPa can be considered (e.g. Scaife et al., 2005).  

𝑁𝐴𝑂(𝑡) = 𝑃(𝑡) − 𝑅(𝑡) − (𝑃 − 𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (5.2) 

This index time series is calculated as an anomaly with respect to the sample 

mean (𝑃 − 𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  calculated over the CGCM common period 1862-2005. 

 

5. NAO Anomalised regional average index: The difference in large regional 

averages (as described in definition 2) but based on anomaly MSLP output 

using Equation 5.2 (with the northern and southern regional means in place of R 

and P point values).  

 

Table 5.2 shows the CGCM maximum trend exceedance probability 

q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) for CGCM NAO trend series, computed as in 

Section 5.3.1 for the period 1862-2005, using each of the alternative NAO index 

definitions as displayed in column 1. In each case, the threshold z is defined as 

the maximum observed 31-year NAO trend for the observed trend series which 

has also been computed using the NAO index definition displayed in column 1. 

The empirical CGCM exceedance probabilities are shown in columns 2 and 3 

as percentages, relative to the z thresholds calculated from the two observation 

datasets HadSLP2r and C20C. All of the exceedance probabilities are less than 

those from the fitted stochastic models in Table 5.1, except for the NAO 

anomalised regional average index (definition 5) which is marginally higher than 

the AR(1) model estimate but lower than the FD model estimate. However, 

NAO definitions 4 and 5 in Table 5.2 are in units of hPa (anomalised NAO point 

index and anomalised NAO regional average index), so these CGCM 

exceedance probabilities are not directly comparable to the stochastic model 

estimates in Table 5.1 as the interannual variance of the NAO index needs to 
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be considered as well as the autocorrelation (Equation 3.3). In general, the 

result that CGCMs underestimate extreme NAO trends is insensitive to the NAO 

definitions and observation datasets used. 

 

 

NAO index definition (a) (b) 

(1) Standardised point index 0.372 % 0.558 % 

(2) Standardised regional average index 1.86 % 0.929 % 

(3) EOF index 1.30 % 0.186 % 

(4) Anomalised point index n/a 1.86 % 

(5) Anomalised regional average index n/a 3.72 % 

Table 5.2. Sensitivity of maximum trend exceedance probabilities to NAO 

definitions. CGCM empirical probabilities (shown as percentages) for 

q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) in the historical period 1862-2005, where z is 

the maximum observed 31-year NAO trend using the NAO index definition 

displayed in column 1 and the observed NAO trend series from (a) HadSLP2r 

and (b) C20C. Probabilities for definitions (4) and (5) are not included for (a) as 

HadSLP2r underestimates MSLP variability. 

 

 

Figure 5.11 shows the CGCM distribution of interannual standard deviation 

estimates for NAO index definitions 4 and 5. HadSLP2r is known to 

underestimate MSLP interannual variability (e.g. Semenov et al. 2008), and this 

can be seen in Figure 5.11 comparing the NAO standard deviation from 

HadSLP2r to the CGCM distribution of sample standard deviations. For this 

reason, the probability estimates for definitions 4 and 5 in Table 5.2 are only 

included for C20C and not HadSLP2r as CGCM exceedance probabilities could 

be greatly over-estimated. For NAO index definition 5 the CGCMs over-estimate 

the NAO index standard deviation relative to the C20C estimate, whereas this is 

not an issue for definition 4. The higher exceedance probability for definition 5 

compared to the other NAO index definitions is likely due to the CGCMs 

overestimating the NAO index standard deviation, leading to an overestimate 

compared to the stochastic models which are fitted to the observed NAO 

standard deviation. 
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Figure 5.11 Empirical distribution of NAO interannual variability in 

CGCMs. Box plots showing the empirical distribution of standard deviation (sd) 

estimates for the period 1862-2005 from the 538 individual CGCM simulations 

for (4) “Anomalised point index” and (5) “Anomalised regional average index” 

(labelled as in Table 5.2). The box plots show the median line in the centre of 

the 25 to 75 percentile box with thick black whiskers showing the 95% 

prediction interval (2.5 to 97.5 percentiles) and thin black total range whiskers. 

Observed standard deviation estimates are shown for the same period using 

HadSLP2r (black circle) and C20C (black square). 

 

 

5.4.2. Window length  

As mentioned in the introduction, it is important to remember that the NAO trend 

from 1963 to 1993 (or close to this time interval) has been a feature of interest 

in the climate literature as it has already been identified as unusual in the 

historical record. Percival and Rothrock (2005) account for this in their analysis 

by considering a range of different window lengths. Figure 5.12 shows the 

CGCM empirical exceedance probabilities q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) 

for maximum NAO trends in the historical period 1862-2005 relative to the 

observed (HadSLP2r) maximum trend thresholds z for window lengths in the 

range 11 to 81 years. The observed maximum trends are very unlikely in the 

CGCM models for windows of length 29 to 53 years (probabilities less than 

10%) and exceptionally unlikely for windows of length 31 to 45 (probabilities 

less than 1%), using categories from the IPCC likelihood scale (Appendix B.2). 

Exceedance probabilities are also shown for the fitted white noise process and 
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the fitted AR(1) and FD processes with autocorrelation ρ = 0.169 and d = 

ρ/(1+ρ) = 0.145 (from Chapter 4). The FD model gives the highest exceedance 

probabilities but for trend windows of length 31 to 47 the observed maximum 

trends are still very unlikely with probabilities less than 10%, while CGCM 

probabilities are less than 1% and close to the fitted white noise probabilities. 

For window lengths of around three to four decades, the observed maximum 

NAO trends are termed very unusual, even when using the fitted AR(1) and FD 

models which should capture some of the observed short- and long- range 

dependence characteristics. The CGCMs underestimate maximum NAO trend 

exceedance probabilities for window lengths up to at least 71 years compared 

to the fitted FD and AR(1) models, and are generally more comparable to the 

white noise probability estimates. This underestimation of long-term NAO trends 

is also noted in Blackport and Fyfe (2022) for the specific single window trend 

1951-2020. This CGCM deficiency has also been noted in terms of multi-year 

mean NAO variability by Kravtsov (2017) who finds that the standard deviation 

of low-pass filtered winter NAO index series is consistently underestimated by 

CMIP5 models for filter timescales up to at least 61 years. In general, the result 

that CGCMs underestimate extreme NAO trends is insensitive to the window 

length and the observed maximum trends for window lengths of three to four 

decades are the most unusual. 
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Figure 5.12 Likelihood of maximum trends versus window length. Trend 

exceedance probabilities for block maxima NAO trends for a range of window 

lengths. Probabilities of maximum NAO trend exceedance 

q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) for window length 11 to 81 years (K in range 

5 to 40) in the historical period 1862-2005 using the empirical probabilities from 

CGCM experiments (black solid line) relative to the observed (HadSLP2r) 

maximum trend thresholds z. Probability thresholds 10% and 1% are shown as 

labelled grey horizontal lines, representing very unlikely and exceptionally 

unlikely categories of the IPCC likelihood scale. 

 

 

5.4.3. Minimum multi-decadal NAO trends  

Figure 5.13 is like Figure 5.12 but for minimum multi-decadal NAO trends, 

showing the CGCM empirical exceedance probability 

q’ = Pr(min{Z1+K, Z2+K, … Zn-K} ≤ z) for minimum 31-year NAO trends in the 

historical period 1862-2005 relative to the observed (HadSLP2r) minimum trend 

thresholds z. The observed minimum trends are very unlikely in the CGCM 

models for windows of length 43 to 81 years and exceptionally unlikely for most 

of the windows lengths in range 47 to 81 years. The FD model again gives the 
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highest exceedance probabilities, but for trend windows of length 47 to 81 the 

observed maximum trends are still mainly very unlikely with probabilities less 

than 10%. For these minimum NAO trends, the CGCMs again underestimate 

exceedance probabilities for all window lengths, but in this case it is the longer-

term observed trends that are most unusual. 

 

 

 

Figure 5.13 Likelihood of minimum trends versus window length. Trend 

exceedance probabilities for block minima NAO trends for a range of window 

lengths. Probabilities of minimum NAO trend exceedance q’ = Pr(min{Z1+K, Z2+K, 

… Zn-K} ≤ z) for window length 11 to 81 years (K in range 5 to 40) in the 

historical period 1862-2005 using the empirical probabilities from CGCM 

experiments (black solid line) as relative to the observed (HadSLP2r) minimum 

trend thresholds z. Probability thresholds 10% and 1% are shown as labelled 

grey horizontal lines, representing very unlikely and exceptionally unlikely 

categories of the IPCC likelihood scale. 

 

 

 



129 

 

5.4.4 Winter season definition 

To test the sensitivity of the CGCM results to the precise definition of the winter 

season, the analysis has been repeated using HadSLP2r and CGCMs for the 

extended winter season December-to-March (DJFM) and the individual months 

December to March for the standardised NAO index. For the DJFM season, the 

results are consistent with those for DJF, with none of the CGCM simulations 

reproducing the magnitude of the DJFM observed maximum 31-year NAO trend 

(period 1862-2005). Breaking down the trend analysis to look at individual 

winter months, it seems that the inconsistency between the CGCM and 

observed block maxima winter NAO trends is concentrated in January, the only 

single winter month for which the observed maximum trend is outside of the 

CGCM empirical 95% prediction interval (Figure 5.14). January has a 

considerably higher maximum observed 31-year NAO trend than for the other 

months, whereas the CGCM maximum trend distributions are unchanged for 

the different months. This is consistent with findings from Simpson et al. (2018) 

who showed that there is greater multi-decadal variability for the observed North 

Atlantic zonal mean wind in late winter than early winter, but that this 

seasonality is not apparent in the large ensemble of CMIP5 CGCM pre-

industrial control experiments they analysed. This issue is also apparent in 

more recent models as Bracegirdle (2022) showed that in reanalysis datasets 

the multi-decadal atmospheric variability in the North Atlantic peaks in late 

winter for NAO and jet indices, while CMIP6 and CMIP5 historical experiments 

underestimate this variability. This lack of seasonality is also apparent in the 

CGCM distributions of extreme NAO trends (Figure 5.14) so may relate to the 

underestimation of extreme winter NAO trends in the CGCMs. This could be 

related to the ocean-atmosphere interactions being stronger in the real world 

than in CMIP models, especially in late winter (Gastineau and Frankignoul, 

2015; Bracegirdle, 2022). 
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Figure 5.14 Distribution of block maxima NAO trends for winter months. 

The probability kernel density functions for the CGCM maximum 31-year NAO 

trend values with empirical 95% prediction interval (thick black horizontal lines) 

for the winter season DJF, extended winter season DJFM and individual months 

December to March. Observed (HadSLP2r) maximum trends are shown as 

dashed vertical lines and the percentage of CGCM values above these 

thresholds displayed as q. 
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5.5. Summary 

CGCMs underestimate the magnitude of extreme multi-decadal NAO trends, 

characterising the maximum observed trend as having around a 1 in 200 

chance of occurrence (block maxima trend exceedance probability in period 

1862-2005), which is only about 10% of the magnitude of the estimates using 

the stochastic AR(1) and FD model fits from Chapter 4. This suggests that the 

observed extreme NAO trends are far more likely than is simulated by CGCMs.  

 

The result that CGCMs underestimate extreme multi-decadal NAO trends is 

fairly insensitive to the choice of window length, as CGCMs underestimate 

maximum NAO trend exceedance probabilities for window lengths up to at least 

71 years compared to the fitted FD and AR(1) models. This result is also 

insensitive to the precise NAO index definition and to the observation data sets 

used. This result is insensitive to the winter definition, with similar results for 

DJF and DJFM winter seasons. When analysing individual months, it seems 

that the CGCMs are especially deficient in January. This agrees with results 

from Simpson et al (2018) and Bracegirdle (2022) who identified differences in 

observed North Atlantic atmospheric variability in late winter compared to early 

winter, but this element of seasonality is not apparent in CGCMs. Likewise, the 

distribution of maximum 31-year NAO trends in CGCMs does not demonstrate 

any seasonality when comparing individual months whereas the observed 

January maximum trend appears more extreme than for other winter months. 

 

The underestimation of multi-decadal NAO trends in the CGCMs appears as a 

lack of autocorrelation in the NAO index series compared to the observed NAO. 

There is also a lack of co-variability between the MSLP trend series at the NAO 

nodes (Azores and Iceland) for the CGCMs, but this plays a secondary role in 

the underestimation of extreme NAO trends and likely relates to the 

underestimation of autocorrelation.  

 

As summarised in Section 2.4.4, likely causes of the deficiencies in CGCM 

simulations of the NAO are: An underestimation of the natural internal variability 

of the atmosphere; a failure to realistically respond to external forcing; an 

underestimation of the ocean-atmosphere interactions. The lack of 
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autocorrelation in the CGCM NAO series could be related to any or all of these 

hypotheses. For the CGCMs, there is no consistency in the timing of extreme 

NAO trends, suggesting that the CGCM NAO response to external forcing is 

weak. This is an issue that has been identified in recent studies relating to a 

signal-to-noise paradox whereby the magnitude of the CGCM NAO forced 

signal is weaker than expected from the magnitude of the correlation with 

observations (Scaife et al., 2014; Eade et al., 2014; Scaife and Smith, 2018; 

Smith et al., 2020; Klavans et al., 2021). The CGCM lack of autocorrelation for 

the NAO is likely related to the signal-to-noise paradox (Zhang et al., 2019; 

Strommen and Palmer, 2018; Strommen, 2020). Thus, it may be that CGCMs 

are underestimating a forced component of NAO multi-decadal variability as 

well as the internal multi-decadal variability component as represented by 

stochastic processes. Chapter 6 proposes a method to increase the 

autocorrelation of the CGCM NAO index series and thereby improve the 

simulation of extreme multi-decadal NAO trends. 
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6. Reddening post-processing of the North 

Atlantic Oscillation Index in climate models 

6.1. Introduction 

From Equation 3.3 in Section 3.3.1, it can be seen that an increase in the 

variance of multi-decadal trends in Coupled General Circulation Model (CGCM) 

simulations of climate indices can be achieved by increasing the variance of the 

original index series and/or increasing the autocorrelation. It was shown in 

Section 5.4.1 and Figure 5.11 that the variance of the NAO Anomalised point 

index series is fairly well captured by the CGCMs, and for the NAO 

Standardised point index the time series have already been post-processed 

such that the variance equals one for the CGCMs and observations. However, it 

was shown in Section 5.3.3 and Figure 5.7 that the lag-1 year autocorrelation of 

the NAO index series is underestimated by virtually all of the CGCMs. For other 

climate indices it may be useful to adjust the variance of the original index, 

which is as simple as the standardisation method mentioned above, but for the 

NAO it is the lack of autocorrelation that is of interest to correct. This chapter 

proposes a post-processing technique to increase the autocorrelation in CGCM 

simulations of the NAO index, so that the CGCMs better match the year-to-year 

dependence of the observations. Two methods are proposed here, one to 

increase the short-term dependence of a climate index using the first order 

auto-regressive (AR(1)) model and one to increase the long-range dependence 

using the fractional difference (FD) model. Key questions in this chapter are: 

• Can the reddening methods enable CGCMs to simulate the observed 

NAO multi-decadal variability?  

• What is the effect of reddening on the CGCM distribution of maximum 

multi-decadal NAO trends? 

• Which method is more effective, the AR(1) or FD reddening? 

The reddening methods are outlined in Section 6.2 and tested on random 

stochastic model processes. In Section 6.3 the reddening methods are applied 

to CGCM NAO index series from the Coupled Model Intercomparison Project 

Phase 6 (CMIP6) (Eyring et al., 2016) and Phase 5 (CMIP5) (Taylor et al., 

2012) historical experiments, as used in Chapter 5. 
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6.2. Reddening method 

It was shown in Chapter 5 that the CGCM NAO index series underestimated the 

distribution of extreme multi-decadal trends, which is related to an 

underestimation of the low frequency variability due to the lack of 

autocorrelation. To correct for this, a low-pass linear filter approach is proposed 

to increase the autocorrelation of the NAO index series using filters based on a 

Fractional first order Auto-Regressive (FAR(1)) process which involves two 

parameters, the auto-regressive parameter φ ϵ (-1, 1) and the difference 

parameter d ϵ (-0.5, 0.5). Given an original index series Y, the filtered or 

“reddened” series YR using a FAR(1) process is given by 

𝑌𝑅 = 𝛾(1 − 𝜑𝐵)−𝑑𝑌 (6.1) 

(Hosking, 1981) where B is the backward shift operator such that BY(t) = Y(t - 1) 

and γ is a constant chosen to retain the variance of the original series. The 

parameters for this reddening filter are determined such that the resulting 

reddened CGCM NAO index series will have the same fitted FAR(1) parameters 

as for the observed NAO index series. Higher order stochastic models could be 

considered, but in general, NAO index series are too short to robustly estimate 

multiple parameters simultaneously. Two special cases are chosen here using d 

= 1 such that the filter is an AR(1) process or φ = 1 such that the filter is a FD 

process as these types of process have already been shown to be fairly good at 

modelling the NAO (Section 4.3) and they only have one parameter. 

 

6.2.1 First order auto-regressive process 

If it is assumed that the observed and CGCM NAO index series can be 

approximated as AR(1) processes, but with the CGCM index series 

underestimating the level of autocorrelation found in the observations, then it is 

appropriate to apply an AR(1) filter to increase the level of autocorrelation in the 

CGCM index series. In this case, the CGCM NAO index series can be written 

as: 

𝑌 = (1 − 𝜌𝑌𝐵)−1𝜀 (6.2) 

where 𝜌𝑌 is the lag-1 year autocorrelation parameter for the raw CGCM index 

series Y and ε are independent Gaussian variables. The new reddened index 

YR is defined using Equation (6.1) with d = 1:  

𝑌𝑅 = 𝛾(1 − 𝜑𝐵)−1𝑌 = 𝛾(1 − 𝜑𝐵)−1(1 − 𝜌𝑌𝐵)−1𝜀. (6.3) 
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Expanding out these brackets shows that for non-zero 𝜌𝑌, YR is a second order 

auto-regressive process, AR(2): 

𝑌𝑅 = 𝛾(1 − (𝜑 + 𝜌𝑌)𝐵 + 𝜑𝜌𝑌𝐵2)−1𝜀. (6.4) 

 

Using the Yule-Walker equations for auto-regressive processes (Hamilton, 

1994), the lag-1 year autocorrelation for this new AR(2) process YR is given by 

𝜌𝑅 =
𝜑 + 𝜌𝑌

1 + 𝜑𝜌𝑌
 . (6.5) 

Thus, for given values of 𝜌𝑅 estimated from the observed index series and 𝜌𝑌 

estimated from a CGCM index series, φ is found using: 

𝜑 =
𝜌𝑅 − 𝜌𝑌

1 − 𝜌𝑅𝜌𝑌
 . (6.6) 

 

The scaling parameter γ is chosen to ensure that the expected variance of YR 

equals the expected variance of Y. It can be shown that the variance of the 

AR(1) process Y and the AR(2) process YR are given by: 

𝑉𝑎𝑟(𝑌) =
𝑉𝑎𝑟(𝜖)

1 − 𝜌𝑌
2

(6.7) 

𝑉𝑎𝑟(𝑌𝑅) =
𝛾2𝑉𝑎𝑟(𝜖)

1 − (𝜑 + 𝜌𝑌)2 (1 − 𝜑𝜌𝑌)
(1 + 𝜑𝜌𝑌)

− 𝜑2𝜌𝑌
2

 (6.8)
 

(Hamilton, 1994). To make these variances equal, the scaling parameter γ is:  

𝛾2 =
1 − (𝜑 + 𝜌𝑌)2 (1 − 𝜑𝜌𝑌)

(1 + 𝜑𝜌𝑌)
− 𝜑2𝜌𝑌

2

1 − 𝜌𝑌
2

 . (6.9)
 

 

It was shown in Chapter 5 that the NAO index series in CMIP5+6 historical 

experiments have lag-1 year autocorrelation close to zero. For this special case 

where 𝜌𝑌 ≈ 0, Y is a white noise process and YR is an AR(1) process, which 

means that Equations 6.6 and 6.9 can be simplified to: 

𝜑 ≈ 𝜌𝑅 (6.10) 

𝛾2 ≈ 1 − 𝜌𝑅
2. (6.11) 

 

6.2.2 Fractional difference process 

If it is assumed that the observed and CGCM NAO index series can be 

approximated as FD processes, but with the CGCM index series 
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underestimating the level of long-range dependence found in the observations, 

then it is appropriate to apply a FD filter to increase the level of autocorrelation 

in the CGCM index series. In this case, the CGCM NAO index series can be 

written as:   

𝑌 = (1 − 𝐵)−𝑑𝑌𝜀 (6.12) 

where 𝑑𝑌 is the difference parameter for raw CGCM index series Y (Hosking, 

1981). The new reddened index YR is defined using Equation (6.1) with φ = 1:

  

𝑌𝑅 = 𝛾(1 − 𝐵)−𝑑𝑌 = 𝛾(1 − 𝐵)−𝑑(1 − 𝐵)−𝑑𝑌𝜀 . (6.13) 

Expanding out the brackets shows that the difference parameters are additive 

and YR is also a FD process: 

𝑌𝑅 = 𝛾(1 − 𝐵)−(𝑑+𝑑𝑌)𝜀 . (6.14) 

 

For given values of 𝑑𝑅 estimated from the observed index series and 𝑑𝑌 

estimated from a CGCM index series, d is found using: 

𝑑 = 𝑑𝑅 − 𝑑𝑌 . (6.15) 

 

The scaling parameter γ is again chosen to ensure that the expected variance 

of YR equals the expected variance of Y. It can be shown that the variance of 

the FD processes Y and YR are given by: 

𝑉𝑎𝑟(𝑌) =
𝑉𝑎𝑟(𝜖)Γ(1 − 2𝑑𝑌)

(Γ(1 − 𝑑𝑌))
2

(6.16) 

𝑉𝑎𝑟(𝑌𝑅) =
𝛾2𝑉𝑎𝑟(𝜖)Γ(1 − 2𝑑𝑅)

(Γ(1 − 𝑑𝑅))
2

(6.17) 

where Γ(.) is the Gamma function (Hosking, 1981). To make these variances 

equal, the scaling parameter γ is given by: 

𝛾2 =
Γ(1 − 2𝑑𝑌)(Γ(1 − 𝑑𝑅))

2

Γ(1 − 2𝑑𝑅)(Γ(1 − 𝑑𝑌))
2  . (6.18) 

 

For the special case where 𝑑𝑌 ≈ 0, Equations 6.15 and 6.18 can be simplified to 

𝑑 = 𝑑𝑅 (6.19) 

𝛾2 =
(Γ(1 − 𝑑𝑅))

2

Γ(1 − 2𝑑𝑅)
 . (6.20) 
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6.2.3 Example reddening of white noise simulations 

For the simple case where the original index series Y is a stochastic white noise 

process, application of the AR(1) or FD reddening methods will convert Y into 

an AR(1) or FD process respectively. Figure 6.1 (a) shows a sample white noise 

time series (black) of length 144 years with variance equal to one. The variance 

has been constrained to be identically equal to one by dividing the series by the 

sample standard deviation of that series. The AR(1) reddening method is 

applied to this time series using Equations 6.3, 6.10 and 6.11 with lag-1 

autocorrelation parameter 𝜌𝑅  = 0.3. The value 0.3 is chosen as it is large 

enough to clearly see differences between the white noise and reddened time 

series, while still being a plausible estimate for the observed NAO index series 

(Chapter 4). The FD reddening method is applied using Equations 6.13, 6.19 

and 6.20 with difference parameter 𝑑𝑅 = 0.23 which is related to 𝜌𝑅 using 

d = ρ/(1+ρ) (Hosking, 1981). Both reddening methods retain the original timing 

of peaks and troughs but lead to accentuated clusters of positive or negative 

index values (Figure 6.1a). Both reddening methods successfully lead to a 

substantial increase in the absolute magnitude of 31-year moving window 

trends for both positive and negative trend periods (Figure 6.1b), and so widen 

the moving window trend distribution in both directions. 
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Figure 6.1: Reddening effect on white noise time series. (a) A length 144 

time series from a stochastic white noise process with variance one (black solid 

line). Dotted lines show the reddened version of this time series using the AR(1) 

(red) and FD (blue) method with lag-1 autocorrelation parameter 𝜌𝑅  = 0.3 and 

fractional difference parameter 𝑑𝑅 = 0.23. (b) Moving window trend series for 

the time series in (a). 
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6.3. Distribution of NAO trends after reddening climate 

models 

6.3.1 Application of reddening methods to climate models 

The reddening post-processing methods are applied here to the NAO index 

series simulated by the CMIP5+6 historical experiments to increase the 

autocorrelation. The set of CGCM historical experiments assessed is the same 

as in Chapter 5 (a total of 538 simulations), using the same definition of the 

NAO index (the standardised difference of the standardised winter mean MSLP 

series at grid points closest to the Azores and Iceland using the climate period 

1862-2005, Equation 4.1). It is assumed that the raw CGCM NAO index series 

have a lag-1 year autocorrelation of zero (as shown in Chapter 5) such that the 

reddening process is the same as that applied to the white noise process time 

series in Section 6.2.3. 

 

Figure 6.2a shows that the distribution of lag-1 year autocorrelation parameter 

estimates for the 538 raw NAO simulations is centred around zero. After 

applying the AR(1) and FD reddening methods with observed estimates of 

autocorrelation and fractional difference parameters (𝜌𝑅 = 0.17 and 𝑑𝑅 = 0.15), 

these distributions are shifted up to the observed values as expected and retain 

roughly the same width as for the raw output. The 95% confidence interval for 

the estimate of the autocorrelation in the observed NAO index series shows 

considerable uncertainty (Section 4.5.1), thus this interval is also considered 

when reddening the climate models (ρ 0.02 to 0.32; d 0.02 to 0.24). The lower 

values in these intervals are so close to zero that there will be little-to-no effect 

from reddening so only the upper values are shown in subsequent figures. 

Figure 6.2b shows the multi-model ensemble mean of lagged autocorrelation 

estimates for lags up to ten years. The weak long-range dependence apparent 

in the observed NAO series is better captured by the FD reddened CGCMs than 

the AR(1) reddened, especially if the upper parameter estimate 𝑑𝑅 = 0.24 is 

used. 
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Figure 6.2: Reddening effect on autocorrelation function of CGCM NAO 

index. (a) The distribution of lag-1 year autocorrelation parameter estimates for 

all the individual raw CGCM historical simulations (black dashed line). The 

distributions are also shown for the reddened CGCM output using the AR(1) 

method with stochastic parameters shown in brackets (𝜌𝑅 = 0.17, 0.32; 𝑑𝑅 

=0.15, 0.24). The HadSLP2r observed estimate is shown by the thick black 

vertical line (ρ = 0.17). (b) The average lag autocorrelation value across all 

individual CGCM ensemble members for lags zero to ten years for the raw and 

reddened CGCM output as in (a). The observed estimates are shown by the 

thick black solid line. 

 

 

Figure 6.3 shows the effect of the reddening process on a single CGCM 

simulation of the NAO index (HadGEM3-GC3.1-MM) using the AR(1) and FD 

methods with 𝜌𝑅 = 0.3 and 𝑑𝑅 = 0.23 (as in Section 6.2.3). As expected from 

Section 6.2.3, both reddening methods lead to accentuated clusters of positive 

or negative phases of CGCM NAO index values while retaining the original 

timing (Figure 6.3a). This reddening leads to a widening of the CGCM moving 

window trend distribution in both directions and a substantial increase in the 

absolute magnitude of both maximum and minimum 31-year NAO trends 

(Figure 6.3b). 
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Figure 6.3: Reddening effect on a single CGCM NAO simulation. (a) Raw 

NAO Index time series (black) from a single CGCM simulation (CMIP6 

HadGEM3-GC3.1-MM). Dotted lines show the reddened version of this time 

series using the AR(1) (red) and FD (blue) method with lag-1 year 

autocorrelation parameter 𝜌𝑅 = 0.3 and fractional difference parameter 𝑑𝑅 = 

0.23. (b) The 31-year moving window trend series of the CGCM NAO index 

series in (a), relative to the central year of the window. 
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Figure 6.4 shows how the FD reddening method can improve the ability of the 

CGCM multi-model ensemble to simulate 31-year moving window NAO trends. 

Figure 6.4a shows the time evolution of the raw CGCM 31-year NAO trend 

series in terms of the multi-model ensemble mean, ensemble range, and 95% 

prediction interval (based on the empirical 2.5th and 97.5th percentiles). In 

Figure 6.4b and c, two levels of NAO long-range dependence are considered 

for the FD reddening method: 𝑑𝑅 = 0.15 computed from 𝜌𝑅 = 0.17 which is the 

lag-1 autocorrelation estimate from Chapter 4 for the observed NAO index 

series, and 𝑑𝑅 = 0.24 computed from 𝜌𝑅 = 0.32 which is an upper estimate of 

plausible autocorrelation values from Chapter 4 (97.5th percentile). Over the 

historical period, the observed 31-year moving window NAO trend series is 

frequently on the boundary of the raw CGCM ensemble 95% prediction interval. 

After applying the FD reddening method, the 95% prediction interval and range 

are inflated to better encompass the observed multi-decadal variability, with 

higher strengths of reddening leading to a larger increase in the total ensemble 

standard deviation of moving window trends (Table 6.1). The standard deviation 

of the observed trend series is about 40% larger than the total standard 

deviation of the raw CGCM ensemble (Table 6.1). The upper level of 

autocorrelation is needed for the FD reddened CGCMs to simulate the 

observed level of trend variability and this also leads to a doubling of the 

standard deviation of the ensemble mean (Table 6.1). Similar results are found 

for the AR(1) reddening method but with a smaller increase in standard 

deviation such that the total ensemble standard deviation of NAO trend series is 

still a little weak compared to that observed (Table 6.1). The FD reddening 

method is a useful post-processing tool to enable the CGCM multi-model 

ensemble to simulate 31-year moving window NAO trend series comparable to 

those observed, provided the magnitude of reddening is large enough. 
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Figure 6.4 Reddening effect on CGCM ensemble distribution of NAO trend 

series. Ensemble mean NAO 31-year trend series for CMIP5+6 simulations 

using (a) raw model output, or FD reddened output with difference parameter 

(b) 𝑑𝑅  = 0.15 and (c) 𝑑𝑅  = 0.24 (black dashed curves), relative to the central 

year of the window. The light and dark grey shading shows the ensemble range 

and empirical 95% prediction interval respectively. The observed 31-year trend 

series is shown for HadSLP2r (black solid curve) with the maximum value 

identified (horizontal thin dotted black line). 
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Data Total S.D. S.D. of Ens. Mean Ens. Range Z1978 

Observations 0.269 n/a n/a 

Raw CMIP 0.195 0.0100 1.04 

Reddened CMIP:    

AR(1)  𝜌𝑅 = 0.17 0.227 (16%) 0.0117 (17%) 1.20 (16%) 

FD 𝑑𝑅  = 0.15 0.248 (27%) 0.0150 (50%) 1.31 (27%) 

AR(1)  𝜌𝑅 = 0.32 0.261 (34%) 0.0135 (35%) 1.38 (33%) 

FD 𝑑𝑅  = 0.24 0.283 (45%) 0.0198 (98%) 1.47 (42%) 

Table 6.1. Effect of the reddening methods on the CGCM ensemble 

variability of moving window trends. The standard deviation of 31-year 

moving window NAO trend series from CMIP5+6 simulations for the total CGCM 

ensemble and for the CGCM ensemble mean over the historical period 1862-

2005 (in units of sd/decade), and also the ensemble range for the linear trend 

on the specific time window centred on 1978 (Z1978, 1963-1993). CGCM 

standard deviations are shown using the raw NAO index series and for the 

AR(1) and FD reddened NAO index series with autocorrelation and difference 

parameters as indicated by 𝜌𝑅 and 𝑑𝑅  in the first column. The percentage 

increase in standard deviation and range values for the reddened CGCMs 

relative to the raw CGCM values are shown in brackets. The standard deviation 

of the observed trend series is shown using HadSLP2r. 

 

 

For the specific time window 1963-1993 (centred on 1978), the observed 31-

year NAO trend is the maximum in the historical record (0.737 sd/decade) and 

is outside of the raw CGCM spread for this specific 31-year time window, while 

the CGCM ensemble mean is relatively small (0.0262 sd/decade). After 

applying the FD reddening method using the upper estimate of 𝑑𝑅 = 0.24 the 

CGCM ensemble range is inflated by 42% (Table 6.1) to encompass the 

observed 1963-1993 trend (two members out of 538 have a trend greater than 

that observed), and the multi-model ensemble mean is inflated by 121% 

(0.0579 sd/decade) though it is still less than 10% of the observed maximum 

trend. The FD reddening method using the fitted estimate of 𝑑𝑅 = 0.15 does not 

sufficiently widen the distribution of CGCM trends to encompass the observed 

value, and neither does the AR(1) reddening method (using 𝜌𝑅 = 0.32 or 
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𝜌𝑅 = 0.17). The FD reddening method improves the ability of the CGCM 

ensemble to simulate NAO trends comparable to the maximum observed in that 

specific time window, but only if the magnitude of reddening is large enough. 

 

The effect of the reddening process on CGCM moving window trend 

exceedance probabilities is shown in Figure 6.5 for 31-year trends. The black 

solid curve shows the empirical exceedance probabilities and the return period 

(i.e. the reciprocal of these exceedance probabilities) using the raw CGCM NAO 

trend series. The observation based empirical exceedance probabilities (using 

HadSLP2r) are shown as black circles, and these are considerably 

underestimated by the raw CGCM probability curve (as shown in Section 5.3.2). 

The pink shading represents an uncertainty range for exceedance probabilities 

after applying the AR(1) (Figure 6.5a) and FD (Figure 6.5b) reddening methods 

to the CGCM NAO series using the fitted and upper level estimates of 

autocorrelation and difference parameters (𝜌𝑅 = 0.17 to 0.32; 𝑑𝑅 = 0.15 to 0.24). 

For moderate trend thresholds, the observed exceedance probabilities are fairly 

well represented by the reddened CGCMs with the observed points situated 

mainly within the pink shaded interval of reddened CGCM probabilities. For 

more extreme trend thresholds, the observed empirical probabilities are beyond 

the pink shaded interval of reddened CGCM probabilities but are closest to the 

FD reddened curve using 𝑑𝑅 = 0.24. Both the AR(1) and FD reddening methods 

lead to a substantial improvement over using the raw CGCM NAO series which 

considerably underestimate the exceedance probabilities, but the FD method 

leads to a better match with the observed distribution. 
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Figure 6.5: Return Period Plots for NAO moving window trends for 

reddened CGCMs. Empirical exceedance probabilities (top axis) and return 

period (bottom axis) for CGCM 31-year moving window NAO trend series after 

applying (a) the AR(1) reddening method (𝜌𝑅 = 0.17 and 𝜌𝑅 = 0.32) and (b) the 

FD reddening method (𝑑𝑅 = 0.15 and 𝑑𝑅 = 0.24) shown as red curves identified 

in the key by solid and dashed lines respectively. Probabilities are also shown 

for the raw CGCM simulations (black solid curve) and observations (black open 

circles, using HadSLP2r). The maximum observed trend is identified by the 

horizontal black line. 

 

 

6.3.2 Distribution of extreme NAO trends after reddening 

The effect of the reddening methods on CGCM extreme trend exceedance 

probabilities are shown in Figure 6.6 for the block maxima 31-year trends in the 

period 1862-2005. The AR(1) and FD reddening methods increase the CGCM 

exceedance probabilities in accordance with the level of reddening (Figure 6.6), 

as would be expected from the stochastic model analysis in Chapter 4. 

 

The CGCM block maxima exceedance probabilities relative to the observed 

maximum NAO trend threshold (0.737 sd/decade) are shown in Table 6.2 

(second column) for the raw CGCM NAO series and for the CGCM NAO series 

after application of the reddening methods listed in the first column. Note that 

probabilities in Table 6.2 are presented as percentages to overcome the issue 

of displaying very small values. Exceedance probabilities based directly on 
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stochastic processes (from Chapter 4) are shown for comparison (fourth 

column) using the same levels of lag-1 year autocorrelation and difference 

parameters displayed in the first column. As shown in Chapter 5, raw CGCM 

NAO output estimates the observed maximum NAO trend to have around a 1 in 

200 chance of occurrence (block maxima in period 1862-2005), which is only 

about 10% of the probabilities derived from the fitted stochastic AR(1) and FD 

processes (using 𝜌𝑅 = 0.17 and 𝑑𝑅 = 0.15 respectively). After applying the 

AR(1) and FD reddening methods to the CGCM NAO series with these same 𝜌𝑅 

and 𝑑𝑅 parameters, the exceedance probabilities (relative to 0.737 sd/decade) 

are increased to around a 1 in 20 chance, matching the stochastic model 

probabilities from Chapter 4 (Table 6.2 second vs fourth column). If the upper 

estimates of AR(1) and FD reddening parameters are applied (𝜌𝑅 = 0.32 and 

𝑑𝑅 = 0.24) these exceedance probabilities increase to around a 1 in 10 and a 1 

in 6 chance respectively. Application of the reddening methods to the CGCM 

NAO index series are effective post-processing tools for increasing the CGCM 

maximum trend exceedance probabilities towards those estimated in Chapter 4 

using fitted stochastic processes. 
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Figure 6.6: Return Period Plots for NAO maximum trends for reddened 

CGCMs. Empirical exceedance probabilities (top axis) and return period 

(bottom axis) for the maximum 31-year NAO trend in the 144 year historical 

record (1862-2005) computed from the reddened CGCM trend series after 

applying (a) the AR(1) reddening method (𝜌𝑅 = 0.17 and 𝜌𝑅 = 0.32) and (b) the 

FD reddening method (𝑑𝑅 = 0.15 and 𝑑𝑅 = 0.24), shown as red curves identified 

in the key by solid and dashed lines respectively. Probabilities are also shown 

for the raw CGCM simulations (black solid curve) and the maximum observed 

trend is identified by the horizontal black line. 
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Reddening Method CGCM, 𝜌𝑌 = 0 CGCM, 𝜌𝑌 <= model Stochastic  

Raw/White Noise 0.372%  (2/538) 0.372%  (2/538) 0.600% 

AR(1)  𝜌𝑅 = 0.17 3.90%    (21/538) 1.85%    (10/538) 3.46% 

FD 𝑑𝑅 = 0.15 7.99%    (43/538) 4.27%    (23/538) 6.06% 

AR(1) 𝜌𝑅= 0.32 10.2%    (55/538) 7.43%    (40/538) 12.30% 

FD 𝑑𝑅 = 0.24 16.5%    (89/538) 10.0%    (54/538) 19.40% 

Table 6.2. Trend exceedance probabilities for maximum 31-year trends in 

the historical period. Probabilities (shown as percentages) of trend 

exceedance q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ z) in the historical period 1862-

2005, where z is the maximum observed trend (0.737 sd/decade).  CGCM 

probabilities are shown using the raw NAO index series and for the reddened 

NAO index series where the original CGCM lag-1 year autocorrelation is either 

assumed to be zero (“𝜌𝑌  = 0”) or implied by the sample estimate for each model 

separately (“𝜌𝑌  <= model”). Probabilities for both AR(1) and FD reddening 

methods are shown, with autocorrelation and difference parameters as 

indicated by 𝜌𝑅 and 𝑑𝑅 in the first column. Probabilities for matching stochastic 

processes are also shown (“Stochastic”) and are comparable to the values in 

Table 4.5. 

 

 

6.3.3 Sensitivity of results to parameter estimates 

In Section 6.3.1, the reddening method assumed that the raw CGCM NAO 

index series have a lag-1 year autocorrelation of 𝜌𝑌 = 0. Repeating the analysis 

to use the individual (non-zero) model sample estimates of 𝜌𝑌 does not 

substantially change the results but leads to slightly lower exceedance 

probabilities (Table 6.2, third column “𝜌𝑌  <= model” vs. second column). This is 

because the distribution of CMIP5+6 model 𝜌𝑌 estimates is centred around zero 

but with a fairly large range (Chapter 5). Under the assumption that 𝜌𝑌 = 0, the 

new range of autocorrelation estimates from the reddened simulations will have 

a similar width to the original range of 𝜌𝑌 sample estimates as all simulations 

are reddened by the same magnitude. In contrast, if the sample estimate of 𝜌𝑌 

is used for the reddening of each individual simulation, the range of 

autocorrelation estimates from the reddened simulations will be much narrower 

than the original range of 𝜌𝑌 sample estimates as each simulation is reddened 
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just enough to achieve an autocorrelation of 𝜌𝑅. This means that the distribution 

of maximum trends is likely to be narrower using the 𝜌𝑌 sample estimates than 

when assuming that 𝜌𝑌 = 0. Despite these subtle differences, the assumption 

that 𝜌𝑌 = 0 is deemed valid for subsequent analysis as the sensitivity of 

exceedance probabilities to this assumption is small compared with the 

sensitivity to the choice of reddening method (AR(1) versus FD) and to the 

strength of reddening applied (magnitude of 𝜌𝑅 or 𝑑𝑅). 

 

For the convenience of making direct comparisons between the AR(1) and FD 

reddening methods, the difference parameter 𝑑𝑅 has so far been defined based 

on the observed estimate of 𝜌𝑅. Estimating 𝑑𝑅 directly by fitting a FD process to 

the observations leads to a slightly lower value (fitted 𝑑𝑅 = 0.12 compared to 

𝑑𝑅 = 0.15 computed from the fitted estimate of 𝜌𝑅 = 0.17). Applying the FD 

reddening method with this slightly lower estimate of 𝑑𝑅 = 0.12 will lead to 

maximum trend exceedance probabilities that are slightly lower than when using 

𝑑𝑅 = 0.15, but the two estimates of 𝑑𝑅 are so close that these differences in 

probabilities will be very small, based on the sensitivity of the variance of trends 

relative to the magnitude of autocorrelation (Figure 3.1). The direct estimate of 

𝑑𝑅 could itself be an underestimation of the observed level of long-range 

dependence as the observed time series is fairly short and the long-range 

dependence of FD processes mean that a longer time series is needed to 

robustly estimate the difference parameter. Overall, the sensitivity of maximum 

trend exceedance probabilities to these methods of parameter estimation is 

small and does not change the results in this chapter, so it seems reasonable to 

use the originally proposed reddening method with 𝑑𝑅 estimated from 𝜌𝑅 and 

the assumption that 𝜌𝑌 = 0. 

 

6.4. Summary 

This chapter has outlined post-processing techniques to increase the 

autocorrelation in CGCM simulations of climate indices using an AR(1) 

reddening method and a FD reddening method. Results after application to the 

NAO index time series show that: 

• Application of the AR(1) and FD reddening methods to the CGCM NAO 

index series lead to a widening of the distribution of moving window 
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multi-decadal NAO trends that better match the observed multi-decadal 

variability. After application of the FD reddening method with 𝑑𝑅 = 0.24, 

the total standard deviation of the historical ensemble of 31-year moving 

window trends is 0.283 sd/decade which is 45% greater than for the raw 

ensemble and closer to the observed standard deviation 

(0.269 sd/decade) (Table 6.1). The standard deviation of the ensemble 

mean is increased by 98%. 

• Both of the reddening methods transform the CGCM distributions of 

maximum multi-decadal NAO trends to match those of the fitted 

stochastic models from Chapter 4 when applying the same levels of 

autocorrelation, as would be expected. 

• The FD reddening method is more effective than the AR(1) reddening 

method for enabling the CGCMs to simulate multi-decadal NAO trends 

as large as those seen in the observations, but a relatively large 

difference parameter is required (𝑑𝑅 = 0.24) for the CGCMs to simulate 

moving window trend exceedance probabilities close to those from 

observations. 

• The FD reddening method with 𝑑𝑅 = 0.24 widens the CGCM ensemble 

sufficiently to encompass the maximum observed NAO trend in that 

specific time window 1963-1993. In this window, the ensemble mean is 

increased by 121% and the ensemble range is increased by 42% relative 

to the raw model output (Table 6.1). Use of lower levels of 𝑑𝑅 or the 

AR(1) reddening method with plausible 𝜌𝑅 values are not sufficient for 

the CGCM ensemble to encompass the magnitude of the observed trend 

here. 

 

Relative to the observed maximum 31-year NAO trend threshold 

(0.737 sd/decade), the fitted stochastic models and the reddened CGCM 

simulations (applying these fitted levels of autocorrelation) estimate the block 

maxima 31-year trend exceedance probability (for the period 1862-2005) to be 

around a 1 in 20 chance which would be termed a very unlikely occurrence 

(less than 1 in 10 chance) using the IPCC likelihood scale (Appendix B.2). This 

is 10 times the probability based on raw CGCM simulations, which were shown 

to underestimate trend exceedance probabilities relative to the fitted stochastic 

model probabilities (Chapter 5). If upper estimates of autocorrelation are used in 
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the FD reddening method (𝑑𝑅 = 0.24) the exceedance probability is increased to 

around a 1 in 6 chance, which would be termed an unlikely occurrence. 

 

The reddening method has here been assessed for multi-decadal trends in 

continuous historical simulations for a large-scale seasonal mean index, but it 

could equally be applied to indices on smaller temporal and spatial scales. This 

method could also be applied to shorter term prediction systems such as 

seasonal-to-decadal forecasts and may help to improve the representation of 

clusters of positive or negative NAO years (Section 6.3.1). The advantage of 

using CGCMs rather than stochastic processes is that the reddened CGCM 

NAO index series will still retain dynamical properties of the NAO for example 

those related to the response to external forcings. This is important for future 

projections of the NAO as it is of interest to determine how different future 

forcing scenarios may affect the distribution of extreme multi-decadal NAO 

trends. However, use of the raw NAO from future projections will likely lead to 

the same underestimation of multi-decadal NAO variability as was found for the 

historical experiments. The FD reddening method has been shown to be 

adequate for adjusting CGCM’s to better simulate the observed multi-decadal 

NAO variability in the past, so it can now be used on climate projections to 

better simulate multi-decadal NAO variability in the future. 
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7. Future trends in the North Atlantic 

Oscillation Index 

7.1. Introduction 

This chapter uses Coupled General Circulation Model (CGCM) future climate 

projections from the Coupled Model Intercomparison Project Phase 6, CMIP6 

(Eyring et al. 2016) and the fractional difference (FD) reddening method 

(Chapter 6) to assess potential changes in the distribution of multi-decadal 

North Atlantic Oscillation (NAO) trends and extreme trends in the future. Key 

questions are: 

• Does the future radiative forcing scenario effect the distribution of moving 

window NAO trends in the future? 

• Is stationarity a valid assumption for the recent past and future NAO 

trend series? 

• How is the distribution of extreme multi-decadal NAO trends likely to 

change in the future? 

• What are the best near-term projections of NAO multi-decadal trends? 

 

7.2 Future climate projections of NAO trends 

7.2.1 CMIP6 future projection experiments 

Experiments from CMIP6 use a single set of historical external forcings for the 

period up to 2014 representing past natural changes such as solar irradiance 

and volcanic aerosol due to past eruptions and also past anthropogenic 

changes such as emissions of greenhouse gases and aerosols. From 2015 to 

2100 multiple future scenarios have been defined to determine the levels of 

external forcing applied. These scenarios are known as Shared Socio-economic 

Pathways (SSP) and represent a range of possible futures with different 

anthropogenic forcings. Four scenarios are analysed in this chapter: SSP126, 

SSP245, SSP370 and SSP585 going from optimistic reductions of greenhouse 

gas and aerosol emissions (compatible with a 2°C target level of global mean 

warming by 2100) to the more pessimistic “business as usual” scenario where 

emissions continue to increase (O’Neill et al, 2016). All future scenarios have 
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the same natural external forcings with a regular 11-year solar cycle and a 

background level of volcanic forcing without future eruptions. Figure 7.1 is 

adapted from the Intergovernmental Panel on Climate Change (IPCC) 6th 

Assessment Report (AR6), showing how the effective radiative forcing varies 

according to the different scenarios. All scenarios show an increase of the 

anthropogenic effective radiative forcing out to 2100 except SSP126 which has 

a slight decrease in the second half of the 21st century but levels are still higher 

than historical values. 

 

 

 

Figure 7.1: CMIP6 Effective Radiative Forcing. Time series showing the total 

anthropogenic part of the effective radiative forcing (Wm-2) for historical CMIP6 

experiments (black solid curve) and for future scenarios SSP126 (blue), 

SSP245 (green), SSP370 (orange) and SSP585 (red). The natural part of the 

effective radiative forcing is shown separately for the historical (black dashed 

curve) and future (black dotted curve) experiments. This figure has been 

adapted from the IPCC AR6 Technical Summary to just show the scenarios 

discussed in this chapter and to have more contrasting colours that match later 

figures. Source: Arias et al. (2012) Figure TS.4. 

 

 

For this analysis of future projections, CMIP6 models are only used if they are 

available for all four future scenarios so that consistent models are used for 

each scenario and differences in future responses can be attributed to the 

differences in external forcings rather than model differences. CGCMs from 

CMIP5 are not included in this analysis so as to avoid having to account for any 
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differences in the way the future scenarios have been defined. Historical and 

future CMIP6 simulations are paired by model name and "ripf" code (this 

identifies the precise model and member setup) so that continuous series of the 

NAO can be constructed from 1851 to 2100 with winter means and linear trends 

calculated across the forcing boundary 2014 to 2015. This results in a set of 32 

models with a total of 165 members (Appendix A.3). 

 

7.2.2 NAO variability in future projections 

Figure 7.2 shows the observed winter mean (December to February, DJF) NAO 

index using HadSLP2r (1851-2021) (Allan and Ansell, 2006) and Figure 7.3 

shows the 31-year moving average of this NAO series. The NAO index is based 

on the standardised difference of the standardised winter mean MSLP series at 

grid points closest to the Azores and Iceland using the climate period 1862-

2005 when calculating the mean and variance (as in previous chapters; 

Equation 4.1). The same index is calculated from CMIP6 MSLP model output, 

noting that for years beyond 2014 there is a choice of future scenario. 

 

 

 

Figure 7.2: Interannual variability of the NAO. Time series of observed NAO 

winter mean index using HadSLP2r (grey line, relative to left axis) in units of 

standard deviation (sd). CMIP6 multi-model ensemble mean series (relative to 

right axis with a smaller range) for historical (black line) combined with four 

different future SSP scenarios (coloured lines) from 2015 onwards.  
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Figure 7.3: Multi-decadal variability of the NAO. Time series of 31-year 

moving window average of HadSLP2r observed winter NAO index (black solid 

line). CMIP6 multi-model ensemble mean series for historical (black dashed 

line) combined with four different future SSP scenarios (coloured dashed lines). 

The multi-model range and 95% prediction interval are shown by light and dark 

grey shading for the historical experiments and future scenario SSP585. The 

vertical dashed line marks where the CGCM values begin to diverge due to 

inclusion of future projections and the vertical dotted line marks from where the 

values purely use future projections. 

 

 

The CMIP6 multi-model ensemble mean for the historical NAO series exhibits 

interannual (Figure 7.2) and multi-decadal variability (Figure 7.3) but, as 

discussed in Chapter 5, this is much weaker than the observed variability 

(noting different scales for observations and CGCMs in Figure 7.2). Despite the 

seemingly weak model response to external forcings, there are clear differences 

between the future scenarios, with increased forcing scenarios leading to 

increased long-term trends in the NAO (Figure 7.2 and 7.3). This is especially 

noticeable for SSP585 which continues with a positive trend similar to that in the 

historical experiments versus SSP126 which exhibits a negative trend back 

towards early 20th century values (Figure 7.3), such that by the end of the 

century the ensemble mean 31-year mean values are 0.223 and -0.0257 
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respectively (in units of standard deviations) and are significantly different 

(standard hypothesis test comparing the ensemble mean of paired differences 

to zero, see Appendix B.3). The projection of an increase in the NAO index 

under higher emissions scenarios is also noted in the recent IPCC report (Lee 

et al., 2021) but they state that it is likely that any such forced response will be 

smaller than the magnitude of natural internal variability. Under the high-

emissions scenario, the projected future increase in winter mean NAO generally 

leads to an increase in extreme positive NAO winters and a related increase in 

the severity of precipitation impacts in Europe such as flooding and drought 

(McKenna and Maycock, 2022). 

 

Figure 7.3 includes the ensemble spread for the historical and SSP585 

experiments, with the total ensemble range shaded light grey and the 95% 

prediction interval (based on the empirical 2.5th and 97.5th percentiles of the 

165 ensemble members) shaded dark grey. The observed 31-year mean NAO 

index is within the total spread of the CMIP6 ensemble members (independent 

of time), but for the specific trend windows centred around the 1950s to 1970s, 

which coincide with the start of the maximum observed NAO trend period 1963-

1993, the CMIP6 NAO simulations seem to underestimate the strong negative 

values observed and the observed index is sometimes outside of the CMIP6 

ensemble range. 

 

Figure 7.4 shows the 31-year moving window NAO trend series for the 

observations and for the CMIP6 multi-model ensemble mean and ensemble 

spread. The difference in CMIP6 future long term NAO trends influences the 

multi-decadal moving window trends, with the ensemble mean of the 31-year 

NAO trend series being generally more positive for the SSP585 experiments 

than for the SSP126 experiments (Figure 7.4). As discussed in Chapter 5, the 

observed maximum NAO trend (1963-1993) is clearly unusual in the context of 

the CMIP6 historical NAO trend series, and it also continues to be unusual in 

the context of the future NAO projections (Figure 7.4). In Chapters 4 and 5 it 

was shown that stationarity is a valid assumption for the historical NAO 

observations and the historical CMIP5+6 NAO simulations. If this stationarity 

assumption becomes less valid for future NAO variability, this could lead to a 

shift in the distribution of extreme multi-decadal NAO trends compared to the 
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historical distribution, and application of the FD-reddening should help to 

identify this shift. 

 

 

 

Figure 7.4: Multi-decadal trends in the NAO. Time series of observed 31-year 

moving window linear trends of winter NAO index using HadSLP2r (black solid 

line). CMIP6 multi-model ensemble mean series for historical (black dashed 

line) combined with four different future SSP scenarios (coloured dashed lines). 

The multi-model range and 95% prediction interval are shown by light and dark 

grey shading for the historical experiments and future scenario SSP585. The 

vertical dashed line marks where the CGCM values begin to diverge due to 

inclusion of future projections and the vertical dotted line marks from where the 

values purely use future projections. 

 

 

7.2.3 Stationarity of NAO trend series in future projections 

The stationarity of the CMIP6 NAO trend series can be examined by assessing 

the ensemble distribution of time mean trends (�̅�), as for the analysis in Section 

5.3.4. In this chapter, �̅� is calculated over 75-year blocks as the future part of 

the projections relative to the completion date of this PhD thesis is 2024-2098 

(75-years in length). The distribution of �̅� (calculated from the 165 ensemble 

members) is shown in Figure 7.5a for each of the CMIP6 SSP future 

experiments. For SSP585 and SSP370 the sample means of �̅� are positive and 
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significantly different to zero (using a standard hypothesis test at the 5% level, 

for the sample mean, see Appendix B.3) (Table 7.1). SSP126 has a negative 

sample mean of �̅� which is also significantly different to zero (Table 7.1). 

SSP245 has a small sample mean of �̅� that is not significantly different to zero. 

The greatest shifts are for scenarios SSP126 (negative) and SSP585 (positive). 

Application of the FD reddening method to these future CMIP6 experiments 

more than doubles the median of �̅� when using 𝑑𝑅 = 0.24 (Table 7.1), and also 

widens the spread in the distribution of �̅� in both directions (Figure 7.5b) such 

that the percentage of ensemble members with �̅� greater than zero is left 

unchanged. These shifts suggest a small non-stationary response to external 

forcings in the future which is underestimated by the raw CMIP6 NAO index 

series due to the lack of autocorrelation. 

 

 

CMIP6  Mean �̅�,  Median �̅�,  Median �̅� Median �̅�, 

Experiment raw raw 𝑑𝑅 = 0.15 𝑑𝑅 = 0.24 

SSP126  -0.0160* -0.0173 (37%) -0.0286 (35%) -0.0364 (32%) 

SSP585   0.0295*  0.0318 (69%)  0.0618 (72%)  0.0805 (74%) 

Historical   0.00659  0.00726 (58%)  0.0291 (64%)  0.0483 (65%) 

Table 7.1 Long-term trends in future CMIP6 NAO trend series. The CMIP6 

ensemble mean and median of time mean trend �̅� for the future block 2024-

2098 for the SSP126 and SSP585 experiments using raw CMIP6 output 

(column 2 and 3), with * indicating the ensemble mean is significantly different 

to zero (see Section 7.2.3). The median for FD reddened CMIP6 output using 

𝑑𝑅 = 0.15 and 𝑑𝑅 = 0.24 (columns 4 and 5). �̅� has units of sd/decade. The 

percentage of ensemble members with �̅� greater than zero is shown in 

brackets. Values are also shown for the historical experiments for the block 

1947-2021, using SSP585 projections for years beyond 2014. 
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Figure 7.5 Distribution of time-mean 31-year trends in future NAO series. 

The probability density function (kernel density, see Appendix B.6) of time 

means of 31-year trends (�̅�) computed for each of the 165 ensemble members 

over the 75-year period 2024-2098 is shown for the four different CMIP6 SSP 

future experiments (coloured curves identified in key) using (a) raw model 

output and (b) FD reddened model output with 𝑑𝑅 = 0.24. 
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7.3 Stationarity of NAO trend series in the recent past 

7.3.1 Time-mean of NAO trend series 

The future period 2024-2098 (75 years) is relatively short compared to the full 

historical period 1862-2005 (141 years) assessed in Chapter 5. To make direct 

comparisons of the CMIP6 future experiments to the historical experiments, 

especially for block maximum trends (discussed further in Section 7.4), it is 

useful to consider just the most recent 75 years in the historical observation 

record which for HadSLP2r is the period 1947-2021. A combination of future 

and historical CMIP experiments are needed for this analysis as the historical 

CMIP experiments only cover the period up to 2014. Applying the test for 

stationarity from Section 7.2.3 to CMIP6 historical simulations for the period 

1947-2021 (using SSP585 beyond 2014), the ensemble mean of �̅� 

(0.00659 sd/decade) is not significantly different to zero and only 58% of the 

raw ensemble members have �̅� greater than zero (Table 7.1). This suggests 

that the small non-stationary response to external forcings found in Chapter 5 

for the period 1862-2005 is not strong enough to be noticeable on the shorter 

period 1947-2021. 

 

The HadSLP2r observed estimate of �̅� in the period 1947-2021 is 

0.178 sd/decade. This is considerably larger than the observed estimate for the 

historical period 1862-2005 (0.0354 sd/decade) which was computed in Section 

4.4.4. To test whether this observed �̅� estimate for the more recent period is 

consistent with a stationary process, it can be compared to the empirical 

distribution of time mean trends �̅� as estimated from fitted stochastic model 

simulations using the method from Section 4.4.4, but for the shorter period 

length of 75 years (trend series of length 45). For the fitted FD process with 

difference parameter in range (0.15, 0.24) the probability of a time mean trend 

with absolute magnitude greater than the observed estimate of 

�̅� = 0.178 sd/decade is in the range 5% to 12%. Applying standard hypothesis 

testing of this time mean at the 5% level (see Appendix B.3), there is no 

evidence to reject the assumption of stationarity in the observed NAO index in 

this more recent period. 
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The recent observed estimate of �̅� calculated above (0.178 sd/decade) is 

outside of the range for raw CMIP6 historical experiments (-0.168 to 

0.161 sd/decade) for the same time window (combined with SSP585 future 

experiments beyond 2014). After applying the FD reddening method with 𝑑𝑅 in 

the range (0.15, 0.24), the percentage of reddened ensemble members with �̅� 

greater than 0.178 sd/decade has the range 2% to 8%. Even after FD 

reddening of the CMIP6 ensemble, the observed estimate of �̅� is a very unlikely 

occurrence (less than 1 in 10 chance, using the IPCC likelihood scale, Appendix 

B.2) relative to the CMIP6 distribution of �̅�. This is further evidence that the 

CGCMs underestimate multi-decadal NAO trends, especially in the more recent 

decades. 

 

7.3.2 Longer-term NAO trends 

Blackport and Fyfe (2022) identified a related issue when assessing the 

distribution of 70-year trends in CMIP6 models for the recent historical period. 

They found that the 1951-2020 linear trend for the NAO is the largest 70-year 

trend in the historical observation record but only 0.7% of CMIP6 simulations 

achieve this magnitude of trend for the same period (2 out of 300 members). 

Similar results are found for the set of 165 CMIP ensemble members used in 

this chapter: Figure 7.6a shows the 71-year moving window NAO trend series 

for the HadSLP2r observations and for the CMIP6 ensemble mean for the 

historical experiments and four future scenario experiments. Shading is used to 

show the range (light grey) and 95% prediction interval based on the empirical 

2.5th and 97.5th percentiles (dark grey) for the historical experiments combined 

with SSP585 experiments beyond 2014. A 71-year window length has been 

chosen as the methods described in Chapter 3 onwards are based on odd-

number window lengths. The 1950-2020 linear NAO trend is the largest 71-year 

trend in the historical record (0.186 sd/decade), seen as the second-to-last point 

on the observed trend series in Figure 7.6a. For this specific time window, the 

observed 71-year trend is outside of the raw CMIP6 range (Figure 7.6a, light 

grey shading). Blackport and Fyfe (2022) suggest that this may be due to 

models underestimating the response to human emissions or underestimating 

the magnitude of internal multi-decadal variability. 
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Figure 7.6: Longer-term trends in the NAO. Time series of HadSLP2r 71-year 

moving window winter NAO trends (black solid line). CMIP6 ensemble mean 

series for historical (black dashed line) combined with four future SSP scenarios 

(coloured lines), with shading for the multi-model range (light grey) and 95% 

prediction interval (dark grey) (using SSP585 beyond 2014). The vertical 

dashed line marks where the CGCM values begin to diverge due to inclusion of 

future projections and the vertical dotted line marks from where the values 

purely use future projections. (a) uses raw CMIP6 output, (b) and (c) use FD 

reddened CMIP6 output with 𝑑𝑅 = 0.17 and 0.24 respectively. 
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Application of the FD reddening method to the CMIP6 NAO series (using 

𝑑𝑅 = 0.17 and 0.24) leads to a widening of the distribution of 71-year trends that 

increases with the value of 𝑑𝑅 (Figure 7.6b, c). This increases the CMIP6 

exceedance probability, for a 1950-2020 NAO trend greater than that observed, 

to 0.7% with 𝑑𝑅 = 0.17 (1 member out of 165) and 3.64% with 𝑑𝑅 = 0.24 (6 

members out of 165). Even after strong levels of FD reddening, the observed 

1950-2020 NAO trend is greatly underestimated by the CMIP6 models and 

would be termed a very unlikely occurrence using the IPCC likelihood scale 

(Appendix B.2). 

 

The CMIP6 model underestimation of linear NAO trends in the specific 1950-

2020 window isn’t evidence on its own for non-stationarity in the observed trend 

series as the window has been pre-selected as an extreme trend window (as 

discussed in Chapter 3). Also of note is the minimum observed 71-year trend 

(1903-1973) which has a larger absolute magnitude (-0.215 sd/decade) than the 

maximum 71-year trend and is also outside of the raw CMIP6 range for that 

specific time window (Figure 7.6a). Even after applying the upper estimate of 

FD reddening (𝑑𝑅 = 0.24) to the CMIP6 NAO series, only 2 members out of 165 

simulate a trend more negative than the observed value for the 1903-1973 

window (probability 1%) (Figure 7.6c). For these extreme 71-year NAO trends, it 

is necessary to apply the extreme trend methodology from Chapter 3 and utilise 

the full historical period of the CMIP6 experiments to better understand whether 

these extreme trends can be explained by natural internal variability within a 

stationary climate or whether there is evidence of an externally forced trend in 

the NAO series. 

 

The observed 1950-2020 and 1903-1973 NAO trends are the block maximum 

and minimum 71-year NAO trends respectively in the historical block of length 

160 years (1862-2021). The CMIP6 exceedance probability for a maximum 

71-year trend above the observed maximum threshold (0.186 sd/decade) in the 

160-year block is 4% when using the raw model output, which makes it a very 

unlikely occurrence (IPCC likelihood scale, Appendix B.2). For the reverse 

case, the observed minimum 71-year NAO trend (-0.215 sd/decade) is outside 

of the raw CMIP6 range of minimum trends (an exceptionally unlikely 

occurrence). The maximum (minimum) 71-year trend windows start (end) 
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around the 1950s to the 1970s, which was the period noted in Section 7.2.2 

where the observed 31-year average NAO index is below the raw CMIP6 model 

spread, whereas the observations are well within the model range elsewhere in 

the historical record. Application of the FD reddening method to these CMIP6 

simulations (1862-2021) with 𝑑𝑅 in the range (0.15, 0.24) considerably 

increases the NAO multi-decadal variability increasing the maximum trend 

exceedance probabilities to be in the range 27% to 49%. For the reverse case, 

minimum 71-year trends below -0.215 sd/decade, probabilities are increased to 

be in the range 4% to 12%, which would be termed an unlikely/very unlikely 

occurrence. When considered in the context of extreme 71-year trends, the 

1903-1973 minimum NAO trend is more unusual than the 1950-2020 maximum 

NAO trend relative to the CMIP6 extreme trend distributions. 

 

The FD reddening method with 𝑑𝑅 = 0.24 enables CMIP6 models to easily 

simulate maximum 71-year trends as large as the maximum observed 

(exceedance probability 49%), but these FD reddened models still 

underestimate the magnitude of minimum 71-year trends (probability 12% for 

minimum trends less than the minimum observed). This suggests that the 

observed maximum 71-year NAO trend may be underestimated in CMIP6 

models due to an underestimation of the autocorrelation in the NAO index which 

leads to an underestimation of the magnitude of internal multi-decadal 

variability. However, the observed minimum 71-year NAO trend is still 

underestimated in CMIP6 models after FD reddening, which suggests that a 

higher level of reddening may be needed, or that the CMIP6 models are 

underestimating or missing processes that are needed to simulate such a 

negative trend. 

 

7.4 Distribution of NAO extreme trends in future climate 

projections 

The distribution of maximum NAO trends is sensitive to the total block length, 

i.e. the period over which the trend series is computed, as well as the window 

length for which the individual trend values are estimated (Chapter 3). The 

future period is constrained to be 75-years long (2024-2098), so to make direct 

comparisons to the distribution of maximum trends in the historical period the 
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most recent 75-year block available from the observed HadSLP2r dataset is 

chosen: 1947-2021 (as in Section 7.3.1). Figure 7.7 shows the raw CMIP6 

distributions of maximum 31-year NAO trends for the historical period (historical 

experiments combined with SSP585 beyond 2014) and for the future period 

(four different future SSP experiments). All four SSP experiments fail to 

simulate a maximum 31-year NAO trend as large in magnitude as that observed 

for the window 1963-1993 when using the raw model output. The distributions 

of maximum NAO trends for the four future SSP experiments do not show a 

noticeable shift in location of the centre of the distribution compared to the 

historical distribution, but the SSP585 distribution generally has the fattest 

upper tail while the SSP126 distribution has the least fat upper tail (Figure 7.7). 

The biggest differences in the distribution of future time mean trends (�̅�) were 

also for experiments SSP585 (positive median) and SSP126 (negative median) 

(Figure 7.5), so it is these contrasting scenarios which will be the focus of the 

rest of this chapter. 
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Figure 7.7 Historical and future distributions of maximum 31-year NAO 

trends. The probability density function (kernel density, see Appendix B.6) of 

maximum 31-year NAO trends in the 75-year period 2024-2098 for the four 

different CMIP6 SSP future experiments using raw model output (coloured 

curves). The distribution of historical CMIP6 maximum trends is shown for the 

75-year period 1947-2021 (black curve), using SSP585 beyond 2014 and the 

maximum observed (HadSLP2r) trend for this period is shown in grey (vertical 

line). 

 

 

Figure 7.8 uses box and whisker plots to display the raw and FD reddened 

(𝑑𝑅 = 0.24) CMIP6 distribution of maximum 31-year NAO trends with the multi-

model ensemble median value shown as a central line within a box representing 

the empirical 25th to 75th percentiles and whiskers representing the total range. 

After FD reddening with 𝑑𝑅 = 0.24, the historical and future CMIP6 distributions 

of maximum NAO trends are shifted in location towards more positive values 

than for the raw CMIP6 simulations and the variance is increased leading to a 

widening of the distribution (Figure 7.8).  

 

The CMIP6 exceedance probabilities for 31-year block maximum NAO trends 

relative to the observed threshold (0.737 sd/decade) are shown in Table 7.2 for 
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the historical experiments (block 1947-2021). Note that the exceedance 

probabilities for the historical experiments are smaller here (Table 7.2) than in 

Chapter 6 (Table 6.1) as the distribution of maximum NAO trends is sensitive to 

the total block length within which the trend series is computed (75 years in 

Table 7.2, 144 years in Table 6.1). For the raw CMIP6 experiments in the recent 

historical period, none of the ensemble members have a maximum trend 

greater than the maximum observed (0.737 sd/decade). The application of the 

FD reddening method increases this CMIP6 probability estimate to around 10% 

(Table 7.2, Figure 7.8), similar to the results from Chapter 6 (which used a 

longer historical period and larger multi-model ensemble). Even after FD 

reddening of the CMIP6 models, the observed maximum trend is still estimated 

to be a very unlikely occurrence (IPCC likelihood scale, Appendix B.2) in the 

historical period. 

 

 

 P(Max Trend > 0.737) P(Min Trend < -0.737) 

Experiment FD (0.15) FD (0.24) FD (0.15) FD (0.24) 

Historical 3.03% 10.3% 2.42% 6.67% 

SSP126 0.606% 2.42% 4.85% 10.3% 

SSP585 3.03% 6.67% 1.21% 4.24% 

Table 7.2 CMIP6 Extreme NAO trend exceedance probabilities. Exceedance 

probabilities (as percentages) for CMIP6 maximum and minimum 31-year NAO 

trends in the 75-year periods 1947-2021 (historical) and 2024-2098 (future 

SSP), relative to +/-0.737 sd/decade respectively (the magnitude of the 

maximum observed 31-year NAO trend). Probabilities are shown using the FD 

reddened model output with difference parameter 𝑑𝑅 = 0.15 or 0.24 as specified 

in brackets. 
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Figure 7.8 Effect of reddening on distribution of future maximum NAO 

trends. Box and whisker plots of the distribution of maximum 31-year NAO 

trends in the 75-year period 2024-2098 for the SSP126 and SSP585 future 

experiments using raw model output (grey box plots) and after applying the 

fractional difference (“+FD”) reddening method with 𝑑𝑅 = 0.24 (red box plots), 

displaying the median line in the centre of the 25 to 75 percentile box and total 

range whiskers. Box and whisker plots for the historical (HIST) CMIP6 

maximum trends are shown for the 75-year period 1947-2021, using SSP585 

beyond 2014. The observed maximum 31-year trend is shown as the dashed 

horizontal line, and the percentage of model members exceeding this threshold 

is displayed above each box plot. 
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Under future scenario SSP585, the FD reddened distribution of maximum NAO 

trends is similar to that of the historical period for the same set of models 

(Figure 7.8). Using the uncertainty range for 𝑑𝑅 of (0.15, 0.24) from Chapter 6, 

the likelihood of seeing a trend of similar magnitude to the 1963-1993 observed 

NAO trend in the future is 3 to 7%, which is similar to the estimate of 3 to 10% 

for the recent 75-year historical period (Figure 7.8; Table 7.2). The occurrence 

of such large magnitude NAO trends in the future could potentially lead to 

decades where the climate warming signal is considerably enhanced in the 

northern extra-tropics (Iles and Hegerl, 2017), thus it is concerning that the 

exceedance probability of such occurrences is greatly underestimated when 

using raw CGCM output (Figure 7.8). 

 

For scenario SSP126, where the time mean NAO trend is slightly negative, the 

FD reddened distribution of maximum NAO trends has a total range that is 

similar to that of scenario SSP585, but the whole distribution is shifted towards 

slightly smaller maximum trend values (Figure 7.8). This shift in the SSP126 

maximum trend distribution leads to exceedance probabilities (relative to 

threshold 0.737 sd/decade) that are smaller than for SSP585: 0.6% to 2% 

(SSP126) compared to 3% to 7% (SSP585) for 𝑑𝑅 in the range 0.15 to 0.24 

(Figure 7.8; Table 7.2). This shows that the future radiative forcing scenario can 

cause a small shift in the distribution of maximum NAO trends, related to the 

shift in time mean trend (�̅�), while keeping the ensemble spread fairly 

unchanged. 

 

To consider the reversed case where an extreme negative NAO trend might 

partially offset the climate warming signal, the future CMIP6 distribution of 

minimum trends can be assessed. In this case the probability of seeing a 

negative 31-year trend of absolute magnitude comparable to the maximum 

observed (-0.737 sd/decade), using FD reddened CMIP6 experiments, is higher 

for the future SSP126 experiments (exceedance probability 5% to 10% using 𝑑𝑅 

in the range 0.15 to 0.24) than for the future SSP585 experiments (probability 

1% to 4%). This relates to the distribution of �̅� having a slightly negative 

average value for SSP126 and a slightly positive average value for SSP585 

experiments (Table 7.1). The partial enhancement of northern extra-tropical 

regional climate warming discussed in Iles and Hegerl (2017) is more likely 
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under SSP585 than SSP126 whereas the partial offsetting of regional climate 

warming is more likely under SSP126 than SSP585. At the time of writing, the 

SSP585 scenario seems more realistic than the SSP126 scenario. For the up-

coming 75 years under this “business as usual” scenario, the probability of 

extreme positive 31-year NAO trends large enough to enhance regional climate 

warming is similar to the probability estimated for the previous 75 years. Without 

the FD reddening method these probabilities would be greatly underestimated. 

 

7.5 Near-term NAO trend projections  

It is of interest to make near-term forecasts of NAO trends specifically for the 

next 31-years, as well as predictions of extreme trends over the coming 

decades. For forecasts of regional climate change, a key timescale is out to the 

middle of the 21st century, for example the UK Climate Projections (UKCP, 

Lowe et al., 2018) issue forecasts for the UK for 2041-2060 as this is a 

planning-based timescale that can be more important for their users than longer 

climate projections out to the end of the century. 

 

Figure 7.9 uses box and whisker plots to show the CMIP6 distribution of 31-year 

NAO trends for the specific future period 2024-2054 (the nearest 31-years in the 

future relative to the completion date of this thesis) for future scenarios SSP126 

and SSP585 using raw model output (grey boxes) and FD reddened output with 

difference parameter 𝑑𝑅 = 0.24 (red boxes). None of the raw future experiments 

simulate a trend as large as the maximum observed NAO trend. Similar results 

have been noted by Schurer et al. (2023) who found that none of the CMIP6 

near-term projections of 28-year NAO trends (2023-2050) are as large as the 

maximum observed. 

 

The distribution for the maximum observed NAO trend window 1963-1993 is 

also shown, using the CMIP6 historical experiments. The raw CMIP6 historical 

experiments for the 1963-1993 NAO trend have an ensemble median close to 

zero and the ensemble range does not encompass the observed trend value 

(Figure 7.9). FD reddening with the upper estimate of 𝑑𝑅 = 0.24 is needed to 

widen the distribution sufficiently to encompass the observed trend, though still 

only one member out of 165 has a trend exceeding this observed value (similar 
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to the Chapter 6 results of 2 members out of 538 for the full CMIP5+6 

ensemble). It is assumed that this level of FD reddening will also be needed for 

realistic future projections of NAO trends. 

 

For future scenario SSP585, the raw ensemble mean trend (2024-2054) is very 

close to zero and the FD reddening method (with 𝑑𝑅 = 0.24) reduces the 

magnitude of the mean trend by 91% so it is even closer to zero (Table 7.3). For 

scenario SSP126 the raw ensemble mean trend for 2024-2054 is slightly 

negative and this is accentuated after applying the FD reddening method, 

inflating the magnitude of the ensemble mean trend by 33% (Table 7.3). The 

SSP585 and SSP126 distributions have a similar ensemble range for the raw 

data. Combining the SSP126 with SSP585 experiments, the multi-model 

ensemble total range of possible NAO trend values for 2024-2054 is (-0.901, 

0.847) sd/decade after FD reddening and this range is 52.4% greater than for 

the raw CMIP6 model output. These near-term projections of NAO trends for 

2024-2054 are not overly sensitive to the choice of radiative forcing scenario, 

with ensemble mean trends close to zero and large uncertainty across the 

ensembles, though the SSP126 experiments predict slightly more negative 

trends compared to the SSP585 experiments. 
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Figure 7.9 Near-term NAO trends. Box and whisker plots for CMIP6 historical 

(“HIST”) 1963-1993 NAO trends and for CMIP6 future 2024-2054 NAO trends 

using scenarios SSP126 and SSP585. Grey box plots use the raw CMIP6 

model output (median line in centre of 25 to 75 percentile box; total range 

whiskers). Red box plots use CMIP6 model output after applying the fractional 

difference reddening method (“+FD”) with 𝑑𝑅 = 0.24. The observed 1963-1993 

NAO trend is shown as the dashed horizontal line. 
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Model Ensemble Mean 95% P.I. Ensemble Range 

SSP585 Raw  -0.00977 (-0.374, 0.379) (-0.603, 0.540) 

SSP585 FD -0.000853 (-0.518, 0.547) (-1.15, 0.847) 

SSP585 % change -91.3% 41.4% 74.7% 

SSP126 Raw  -0.0402 (-0.481, 0.362) (-0.607, 0.528) 

SSP126 FD -0.0534 (-0.632, 0.458) (-0.901, 0.592) 

SSP126 % change 32.7% 29.3% 31.6% 

Table 7.3. Near-term NAO trend projections. The ensemble mean, 95% 

prediction interval (P.I.) and range of near-term projections for the 2024-2054 

NAO trend in CMIP6 SSP585 future experiments for raw model output and for 

FD reddened output with 𝑑𝑅 = 0.24 (in units of sd/decade). The percentage 

increase (or decrease) in the mean and the length of the P.I. and range are 

shown for the reddened CGCMs relative to the raw CGCM values. 

 

 

In the interest of equating the magnitude of projected NAO trends to actual 

changes in MSLP, the near-term NAO trend projection is shown in Figure 7.10 

for the alternative NAO anomaly index definition based on the simple difference 

between pressure at the Azores and Iceland, leading to NAO trend units of 

hPa/decade (Equation 5.2). In this case the observed 1963-1993 NAO trend is 

displayed for C20C (5.59 hPa/decade) rather than HadSLP2r as the latter is 

known to underestimate MSLP variability (e.g. Semenov et al., 2008; Section 

5.4.1). Figure 7.10 shows similar results to that of the original standardised 

NAO index so the FD reddened SSP126 and SSP585 experiments are again 

combined. These CMIP6 projections for the coming 31-years show a large 

range of possible NAO trends due to natural internal variability (-7.41 to 7.68 

hPa/decade) that could have considerable impacts on regional climate trends, 

despite showing no discernible externally forced NAO trend (ensemble mean 

-0.131 hPa/decade, i.e. -0.393 hPa over the 31-years). As for the standardised 

NAO index, the ensemble mean trend for the anomaly index is relatively 

unchanged compared to the raw estimate (-0.154 hPa/decade) while the range 

has been inflated by 69% (raw range -4.20 to 4.73 hPa/decade). The large 

underestimation of the plausible range of near-term future NAO trends when 

using raw CMIP6 model output is concerning as this could cause the range of 
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plausible near-term northern hemisphere regional winter climate trends to also 

be greatly underestimated. 

 

 

 

Figure 7.10 Anomaly index near-term future NAO trends. As Figure 7.9 but 

using the anomaly based NAO index (without standardisation) so that units are 

in hPa/decade, and the observed maximum trend 1963-1993 is based on the 

C20C MSLP data (5.59 hPa/decade). Box and whisker plots for CMIP6 

historical (“HIST”) 1963-1993 NAO trends and for CMIP6 future 2024-2054 

NAO trends using scenarios SSP126 and SSP585. Grey box plots use the raw 

CMIP6 model output (median line in centre of 25 to 75 percentile box; total 

range whiskers). Red box plots use CMIP6 model output after applying the 

fractional difference reddening method (“+FD”) with 𝑑𝑅 = 0.24. The observed 

1963-1993 NAO trend is shown as the dashed horizontal line. 
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7.6 Summary 

The FD reddening post-processing method from Chapter 6 has been applied, 

with 𝑑𝑅 in the range 0.15 to 0.24, to quantify the likelihood of extreme multi-

decadal NAO trends in the future. The CMIP6 projections show that: 

• The CMIP6 models of the NAO index show a small non-stationary 

response to external forcings in the future, with increased radiative 

forcing scenarios leading to a systematic increase in the long-term NAO 

trends, though the magnitude is underestimated by the raw CMIP6 NAO 

index series consistent with the lack of autocorrelation. This leads to an 

associated increase in the likelihood of extreme positive multi-decadal 

NAO trends under the higher radiative forcing scenarios. 

• The long-term trend for 1950-2020 is unusually positive relative to the 

raw CMIP6 models (shown for window 1951-2020 in Blackport and Fyfe, 

2022). However, this window has been pre-selected as an extreme 

window - it contains the maximum 71-year NAO trend in the historical 

record. Treating this as a block maximum trend (in the 1862-2021 block), 

the likelihood of the observed magnitude of trend is 27% to 49% when 

using the FD reddened model output (𝑑𝑅 = 0.15 to 0.24), i.e. not 

especially unusual. In this case the underestimation of maximum 71-year 

NAO trends in the raw CMIP6 models is consistent with an 

underestimation of the autocorrelation.  

• The minimum observed 71-year NAO trend (1903-1973) is more unusual 

than the recent maximum trend, with likelihood 4% to 12% using the FD 

reddened models (𝑑𝑅 = 0.15 to 0.24). This could mean that a higher level 

of reddening is required, or that the CMIP6 models are underestimating 

or missing processes needed to simulate such a negative trend. 

• In the future (2024-2098) under the “business as usual scenario” 

(SSP585), the CMIP6 distribution of extreme NAO trends is similar to 

that of the historical experiments in the recent past (1947-2021). The 

probability of a future maximum 31-year NAO trend larger than the 

maximum observed trend (0.737 sd/decade) in the coming 75-years is 

3% to 7% when using the FD reddened model output (𝑑𝑅 = 0.15 to 0.24), 

while the probability of a minimum 31-year trend less than 

-0.737 sd/decade is 1% to 4%. In the next 75 years under SSP585, there 
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is more chance of a period where the NAO positive trend partially 

enhances regional climate warming than of a period where the NAO 

negative trend partially offsets the regional warming signal. 

• Near term projections of the next 31 years (2024-2054) show a large 

range of possible NAO trends due to natural internal variability (-7.41 to 

7.68 hPa/decade), noting that for specific single window trends (such as 

the 1963-1993 window), application of the FD reddening method with 

𝑑𝑅 = 0.24 is needed for the CMIP6 models to fully represent the 

observed multi-decadal NAO variability. On this timescale, results are not 

particularly sensitive to the choice of radiative forcing scenario, and there 

is no discernible externally forced NAO trend in the models. 

 

Use of raw CMIP6 model output greatly underestimates the plausible range of 

near-term future NAO trends and extreme multi-decadal NAO trends. The 

relationship of multi-decadal NAO trends to northern hemisphere regional winter 

temperature and European precipitation means that the range of plausible multi-

decadal regional winter temperature and precipitation trends are also likely to 

be greatly underestimated which will have a concerning impact on the fidelity of 

near-term climate projections in these regions. The FD reddening method is a 

simple tool to improve the multi-decadal variability of the NAO in future 

projections. 
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8. Conclusions 

This chapter is a summary of the main findings in this thesis in relation to the 

key questions from Chapter 1, with some suggestions for future research. 

 

8.1. Summary 

1.  How can we better diagnose and quantify extreme trends in 

climate indices? 

Stochastic processes are a useful tool for quantifying extreme trends in climate 

indices as the observational record is too short to estimate the distribution of 

extreme trends directly. Chapter 3 defined a covariance approach to 

mathematically determine the distribution of moving window trends for an index 

series that can be represented as a first order stationary process such as an 

Auto-Regressive Moving Average (ARMA) process. This approach is also 

applicable to time series that consist of a stationary part and a deterministic 

signal such as a long-term linear trend as the trend distribution is simply shifted 

to be centred around the long-term trend instead of zero. For the distribution of 

block maxima trends, it was found that a simulation method was necessary as 

the moving window trend series has very high autocorrelation (due to the 

overlapping windows) so it is not possible to use mathematical derivations of 

the appropriate generalised extreme value distribution. Results show that for 

moderate levels of autocorrelation in the original index time series (ρ < 0.4 is 

typical for atmospheric seasonal mean climate indices) the variance of moving 

window trends increases with this level of autocorrelation, leading to an 

associated increase in exceedance probabilities of extreme trends. 

 

Chapter 4 applied trend analysis methods from Chapter 3 to the NAO index 

case study using gridded observation and reanalysis datasets of mean sea level 

pressure (MSLP) to calculate the NAO index. Modelling methods, such as 

stochastic models or GCMs, are required to quantify the distribution of extreme 

NAO trends as the observed record is too short to estimate the distribution of 

trends from the observed series directly. In this chapter, fitting first order auto-

regressive (AR(1)) and fractional difference (FD) stochastic processes to the 
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observed NAO index series shows some weak year-to-year memory which is 

shown to have a considerable effect on the distribution of trends.  

 

The maximum 31-year NAO trend in the observed record occurs in the window 

1963-1993 (0.737 sd/decade). Exceedance probability estimates for 31-year 

trends relative to this threshold are: 

• A 1 in 1000 chance for the single window 1963-1993 NAO trend, using 

the derived moving window trend distribution from Chapter 3 for the fitted 

stochastic processes. 

• A 1 in 20 chance for the block maxima NAO trend in the observed record 

length of 144 years (1862-2005), estimated using stochastic simulations 

from the fitted stochastic processes with weak year-to-year memory. 

• A 1 in 200 chance for the block maxima NAO trend in the observed 

record length of 144 years (1862-2005), estimated using stochastic 

simulations from the fitted white noise processes (with no year-to-year 

memory). 

 

When considering a trend such as the 1963-1993 NAO trend, it is important to 

admit that it has been specially identified due to its unusual nature. If it is 

treated as a randomly chosen single window, then the exceedance probability is 

greatly reduced compared to when it is treated as a block maxima trend. 

Ignoring the autocorrelation in the NAO index also leads to a considerable 

underestimation of exceedance probabilities. If it is assumed that the NAO 

behaviour will remain stationary into the future, then the block maxima 

probability will remain the same for the next 144-year block. Even in the context 

of block maxima trends, the observed 1963-1993 NAO trend is termed a very 

unlikely occurrence (IPCC likelihood scale, Appendix B.2) with respect to the 

fitted stochastic models which suggests there may be a role for drivers or 

mechanisms that are not included in these simple stochastic models of internal 

variability. 
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2.  How realistically do General Circulation Models simulate 

extreme trends in the NAO? 

Chapter 5 uses the Coupled Model Intercomparison Project 5 and 6 (CMIP5+6) 

large ensemble of Coupled General Circulation Model (CGCM) historical 

simulations to quantify the distribution of maximum 31-year NAO trends. These 

CGCMs considerably underestimate the magnitude of multi-decadal NAO 

trends, as found in other recent studies (Bracegirdle et al., 2018; Bracegirdle, 

2022; Blackport and Fyfe, 2022; Schurer, 2023). The CGCM exceedance 

probability estimate for 31-year trends relative to the 1963-1993 observed trend 

threshold is: 

• A 1 in 200 chance for the block maxima NAO trend in the observed 

record length of 144 years (1862-2005). 

This CGCM exceedance probability estimate is only about 10% of the 

magnitude estimated using the fitted stochastic processes with year-to-year 

memory. The CGCM exceedance probabilities are much closer to the white 

noise process estimates, and the CGCM underestimation of multi-decadal NAO 

trends is consistent with a lack of autocorrelation in the modelled NAO index. 

 

3. Can post-processing of GCM simulations improve the 

representation of extreme trends in the NAO? 

Chapter 6 proposes useful new post-processing reddening methods to improve 

the representation of extreme trends in the NAO by increasing the 

autocorrelation in the CGCMs, using the known behaviour of AR(1) and FD 

processes. Increasing the autocorrelation of the CGCM NAO index series to 

match that of the observed NAO index series shifts the distribution of extreme 

trends to match those of the fitted stochastic processes from Chapter 4. 

Reddening methods widen the CGCM distribution of moving window trends and 

increase the variability of the ensemble mean. For the specific window 1963-

1993, a relatively large increase in difference parameter is required (𝑑𝑅 = 0.24) 

for the FD reddened CGCMs to encompass the observed trend. This level of 

reddening leads to: 
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• A 42% increase in the ensemble range for the 31-year NAO trend in the 

specific 1963-1993 window. 

• A 45% increase in the total ensemble standard deviation of historical 31-

year moving trends over the period 1862-2005, becoming comparable 

with observations. 

• A 98% increase in the standard deviation of the ensemble mean moving 

window trend series over the period 1862-2005. 

Compared to stochastic processes, reddened CGCMs have the advantage of 

including dynamical properties related to the NAO response to the external 

forcing. 

 

4. How might extreme trends in the NAO change in the future? 

Chapter 7 finds that CMIP6 models show a systematic increase in long-term 

NAO trends for future scenarios with higher radiative forcing and this has a 

small effect on the distribution of 31-year trends. It is assumed that the FD 

reddening method (𝑑𝑅 in range 0.15 to 0.24) is necessary for realistic future 

NAO projections as well as for historical simulations. The reddened CMIP6 

block maxima exceedance probability estimates for 31-year trends greater than 

the 1963-1993 observed trend thresholds are then: 

• 3-7% in the next 75-years with a high radiative forcing (2024-2098, 

SSP585) 

• 1-2% in the next 75-years with a low radiative forcing (2024-2098, 

SSP126) 

• 3-10% for the previous 75-years (1947-2021) 

Probability estimates for the next 75-years under a high radiative forcing 

scenario are similar to those for the previous 75-years whereas probability 

estimates for the next 75-years under a low radiative forcing scenario are 

considerably lower.  

 

In contrast, near-term projections of the NAO trend for the next 31-years (2024-

2054) are relatively insensitive to the forcing scenario, showing no externally 

forced trend in the models but with a large level of uncertainty related to natural 

internal variability: 
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• -7.41 to 7.68 hPa/decade is the ensemble range for the 31-year trend in 

the NAO anomaly point index using FD reddened future projections. 

• -4.20 to 4.73 hPa/decade is the ensemble range for the raw future 

projections 

This range of plausible NAO trends using FD reddened CGCMs encompasses 

the observed maximum 31-year NAO trend (5.59hPa/decade) so could greatly 

increase (or decrease) regional climate change signals in the northern 

hemisphere, as the 1960s to 1990s NAO trend has been shown to account for 

at least half of the winter warming in the northern hemisphere extra-tropics in 

that period (Scaife et al., 2005). This NAO influence is underestimated when 

using the raw CGCM output. 

 

8.2. Future research 

There has been considerable research showing how extreme multi-decadal 

trends in the NAO can have serious implications for regional climate change 

and society relevant impacts in the northern hemisphere (Scaife et al., 2005; 

Deser et al., 2017; O’Reilly et al., 2021; Smith et al., 2022a). Having developed 

post-processing reddening methods to improve the multi-decadal variability of 

the NAO in CGCMs, an important next step is to assess how this might 

influence future projections of atmospheric multi-decadal variability in the 

northern hemisphere, e.g. regional temperature and precipitation trends. 

Comparisons could be made with other methods to improve models of NAO 

multi-decadal variability using particle filter methods (Schurer et al., 2023) or 

synthetic observationally-constrained ensembles (O’Reilly et al., 2021). It would 

also be interesting to see if the autocorrelation and multi-decadal trends for 

other atmospheric variables are similarly underestimated in CGCMs and if so, to 

test the application of the reddening method directly on other useful climate 

indices. If multiple climate indices are being considered, it will be important to 

make sure that these indices are still dynamically consistent after post-

processing, or perhaps they could be jointly post-processed. 

 

 

Future work should also investigate the cause of the lack of autocorrelation in 

CGCMs, which could be related to differences in the atmospheric internal 
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variability, the response to external forcings, and the strength of ocean-

atmosphere coupling (Gastineau and Frankignoul, 2015; Blackport and Fyfe, 

2022; Bracegirdle, 2022). A topic of great interest in the last decade is the issue 

of a signal-to-noise paradox in CGCMs. This was originally noticed in seasonal 

forecasts of the winter NAO which exhibit a high correlation between the 

ensemble mean and observations (a measure of the predictable component in 

the observations) but a relatively low signal-to-total-variance ratio (a measure of 

the predictable component in the CGCMs defined as the ratio of the standard 

deviation of the ensemble mean to the total ensemble standard deviation), 

leading to the ratio of predictable components being greater than the expected 

value of one (Scaife et al., 2014; Eade et al., 2014; Scaife and Smith, 2018; 

Smith et al., 2020; Klavans et al., 2021). The lack of autocorrelation or 

persistence for the NAO in CGCMs has been shown to be closely linked to the 

signal-to-noise paradox (Zhang et al., 2019; Strommen and Palmer, 2018; 

Strommen, 2020). The FD reddening method to increase year-to-year 

persistence was shown in Chapter 6 to almost double the standard deviation of 

the ensemble mean trend series for historical CGCM experiments while only 

inflating the total ensemble standard deviation by 45%, i.e. increasing the 

signal-to-noise ratio for the historical CGCM trend series. It would thus be 

interesting to see how reddening methods might influence the ratio of 

predictable components for the NAO index series and whether similar 

adjustments give rise to realistic results on both interannual and multidecadal 

timescales. Finally, there is still a lack of understanding as to the cause of the 

signal-to-noise paradox. Seeking to explain why the autocorrelation of the NAO 

index is underestimated in CGCMs may help with this quest. 
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A. Tables of CMIP5 and CMIP6 Models 

 

Institution Model name Realisations 

AS-RCEC TaiESM1 1 

AWI AWI-CM-1-1-MR; AWI-ESM-1-1-LR 5; 1 

BCC BCC-CSM2-MR; BCC-ESM1 3; 3 

CAMS CAMS-CSM1-0 ripf code f1; f2 2; 1 

CAS CAS-ESM2-0; FGOALS-f3-L; FGOALS-g3 4; 3; 6 

CCCma CanESM5 ripf code p1; p2; 

CanESM5-CanOE 

25; 40; 3 

CCCR-IITM IITM-ESM 1 

CMCC CMCC-CM2-HR4; CMCC-CM2-SR5; 

CMCC-ESM2-1 

1; 1; 1 

CNRM-CERFACS CNRM-CM6-1; CNRM-CM6-1-HR; 

CNRM-ESM2-1 

30; 1; 10 

CSIRO-ARCCSS ACCESS-CM2 3 

E3SM-Project E3SM-1-0; E3SM-1-1 5; 1 

EC-Earth-

Consortium 

EC-Earth3; EC-Earth3-CC; EC-Earth3-Veg; 

EC-Earth3-Veg-LR 

22; 1; 8; 3 

FIO-QLNM FIO-ESM-2-0 3 

HAMMOZ-

Consortium 

MPI-ESM-1-2-HAM 2 

INM INM-CM4-8; INM-CM5-0 1; 10 

IPSL IPSL-CM6A-LR 32 

KIOST KIOST-ESM 1 

MIROC MIROC6; MIROC-ES2L 50; 10 

MOHC HadGEM3-GC31-LL; HadGEM3-GC31-MM; 

UKESM1-0-LL ripf code f2; f3 

4; 3; 13; 3 

MPI-M MPI-ESM1-2-HR; MPI-ESM1-2-LR 10; 10 

MRI MRI-ESM2-0 5 

NASA-GISS GISS-E2-1-G-CC; GISS-E2-1-G ripf code 

p1f1; p1f2; p1f3; p3f1; p5f1; GISS-E2-1-H 

ripf code p1f1; p1f2; p3f1; p5f1 

1; 12; 8; 5; 

7; 6; 10; 5; 

5; 5 

NCAR CESM2; CESM2-FV2; CESM2-WACCM; 3; 1; 2; 1 
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CESM2-WACCM-FV2 

NCC NorCPM1; NorESM2-LM; NorESM2-MM 2; 2; 1 

NIMS-KMA KACE-1-0-G 2 

NOAA-GFDL GFDL-CM4; GFDL-ESM4 1; 3 

NUIST NESM3 5 

SNU SAM0-UNICON 1 

THU CIESM 3 

UA MCM-UA-1-0 ripf code f1; f2 1; 1 

 

Table A.1: CMIP6 CGCM historical experiments used to model the NAO with 

columns showing the institution, model names and the number of realisations 

(ensemble members). Where institutions have submitted realisations for 

multiple models, the individual model names and ensemble sizes are separated 

by a semi-colon. Where institutions have submitted realisations from different 

model configurations, the individual configurations (identified by the “p” and/or 

“f” parts of the "ripf" codes which identify the precise model setup) and 

ensemble sizes are separated by a semi-colon. All experiments are from the 

CMIP6 database https://esgf-index1.ceda.ac.uk/search/cmip6-ceda (Eyring et 

al., 2016). 
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Institution Model name Realisations 

BCC BCC-CSM1-1; BCC-CSM1-1-m 3; 3 

BNU BNU-ESM 1 

CCCma CanESM2 5 

CMCC CMCC-CM; CMCC-CESM; CMCC-CMS 1; 1; 1 

CNRM-CERFACS CNRM-CM5-2; CNRM-CM5 1; 5 

CSIRO-BOM ACCESS1-0; ACCESS1-3 2; 1 

CSIRO-QCCCE CSIRO-Mk3-6-0 5 

FIO FIO-ESM 1 

INM INMCM4 1 

IPSL IPSL-CM5A-LR; IPSL-CM5A-MR; 

IPSL-CM5B-LR 

5; 3; 1 

LASG-CESS FGOALS-g2 1 

MIROC MIROC5; MIROC-ESM; 

MIROC-ESM-CHEM 

5; 3; 1 

MOHC HadGEM2-ES; HadGEM2-CC; HadCM3 4; 1; 1 

MPI-M MPI-ESM-LR; MPI-ESM-MR; MPI-ESM-P 3; 3; 1 

MRI MRI-CGCM3; MRI-ESM1 3; 1 

NASA-GISS GISS-E2H 5 

NCAR CCSM4 5 

NCC NorESM1-M; NorESM1-ME 3; 1 

NIMR-KMA HadGEM2AO 1 

NOAA-GFDL GFDL-ESM2M; GFDL-ESM2G; 

GFDL-CM2p1; GFDL-CM3 

1; 1; 10; 5 

NSF-DOE-NCAR CESM1-BGC; CESM1-CAM5; 

CESM1-FASTCHEM; CESM1-WACCM 

1; 1; 1; 1 

Table A.2: CMIP5 CGCM historical experiments used to model the NAO with 

columns showing the institution, model name and the number of realisations 

(ensemble members) as in Table A.1. All experiments are from the CMIP5 

database https://esgf-node.llnl.gov/search/cmip5 (Taylor et al., 2012). 
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Institution Model name Realisations 

AS-RCEC TaiESM1 1 

AWI AWI-CM-1-1-MR 1 

BCC BCC-CSM2-MR 1 

CAMS CAMS-CSM1-0 ripf code f1 2 

CAS CAS-ESM2-0; FGOALS-f3-L; FGOALS-g3 1; 1; 2 

CCCma CanESM5 ripf code p1; p2; 

CanESM5-CanOE 

25; 25; 3 

CMCC CMCC-CM2-SR5; CMCC-ESM2-1 1; 1 

CNRM-CERFACS CNRM-CM6-1-HR 1 

CSIRO ACCESS-ESM1-5 40 

CSIRO-ARCCSS ACCESS-CM2 3 

EC-Earth-

Consortium 

EC-Earth3-Veg-LR 3 

INM INM-CM4-8; INM-CM5-0 1; 1 

IPSL IPSL-CM6A-LR 6 

MIROC MIROC6; MIROC-ES2L 3; 10 

MOHC UKESM1-0-LL ripf code f2 5 

MPI-M MPI-ESM1-2-LR 10 

MRI MRI-ESM2-0 1 

NASA-GISS GISS-E2-1-G ripf code p1f2;p3f1; p5f1 3; 4; 4 

NCC NorESM2-LM; NorESM2-MM 1; 1 

NIMS-KMA KACE-1-0-G 2 

NOAA-GFDL GFDL-ESM4 1 

UA MCM-UA-1-0 ripf code f2 1 

 

Table A.3: CMIP6 CGCM historical and future SSP experiments used to model 

the NAO with columns showing the institution, model names and the number of 

realisations (ensemble members) as in Table A.1. This is a subset of the 

models from Table A.1 that are available for the historical experiments and all 

four SSP scenario experiments assessed in Chapter 7 (SSP126, SSP245, 

SSP370, SSP585). All experiments are from the CMIP6 database https://esgf-

index1.ceda.ac.uk/search/cmip6-ceda (Eyring et al., 2016). 
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B. Statistical methods and code references 

B.1 Stochastic simulations 

Stochastic simulations are generated using the R function fracdiff.sim from the 

R package fracdiff (Maechler, 2020). 

 

B.2 IPCC Likelihood scale 

The Intergovernmental Panel on Climate Change (IPCC) has a likelihood scale 

(Mastrandrea et al., 2010, Table 1) that is used as a convenient interpretation of 

exceedance probabilities: 

 0 - 1% Exceptionally unlikely 

 0 – 10% Very unlikely 

 0 – 33% Unlikely 

 33 – 66% About as likely as not 

 

B.3 Significance test for data statistics 

A standard hypothesis test for the mean (�̅�) of an ensemble of predictions is to 

test whether it is likely to come from a distribution with population mean μ = 0, 

i.e. H0: μ = 0 vs. H1: μ ≠ 0. To test for this, a 95% confidence interval can be 

defined as �̅� ± 1.96𝑠/√𝑛 where s is the sample standard deviation and n is the 

ensemble size (e.g. Wilks, 2006). This interval assumes that �̅� has a Gaussian 

distribution, which is generally a satisfactory assumption due to the central limit 

theorem. If the confidence interval does not contain zero, i.e. |�̅�| > 1.96𝑠/√𝑛 

then the null hypothesis H0 is rejected (at the 5% level in this case) and the 

ensemble mean is often described as being “significantly different to zero”. An 

extension of this method is to test whether a data statistic (such as the mean or 

autocorrelation parameter) is likely to have come from a known distribution such 

as that derived from a stochastic model. To test for this, a large number of 

sample statistics can be generated from the stochastic model to create an 

empirical distribution which can then be used to compare with the data statistic 

in the same way as the Gaussian distribution method above. 
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B.4 Generalised extreme value distribution 

To estimate the generalised extreme value distribution parameters for a sample, 

the maximum likelihood method is applied using the R function fgev from the R 

package evd (Stephenson, 2002). 

 

B.5 Empirical Orthogonal Function 

Empirical Orthogonal Function (EOF) patterns are calculated using the Python 

library eofs (Dawson, 2016). 

 

B.6 Kernel density 

The kernel density is chosen as a simple method to display the empirical 

distributions of trends in this thesis as it enables multiple distributions to be 

visualised more clearly on one figure than when histograms are used, but it is 

not used to mathematically compare the different distributions. The R function 

density is used from the stats package (R Core Team, 2020) with default 

parameters, namely the choice of smoothing kernel method is set as “gaussian” 

and the method to compute the bandwidth is set as “nrd0” which refers to the 

“rule of thumb” method from Silverman (1986). Kernel density estimation is a 

non-parametric method to estimate the probability density function from a 

sample of data by fitting a kernel, in this case a gaussian kernel, to each data 

point and combining these to form a smooth probability density function with 

standard characteristics (non-negative, integrates to 1). 

 

B.7 Prediction interval ellipse 

A 95% prediction interval ellipse is used in Figure 5.6 to display the 

2-dimensional characteristics of the distribution of points in the scatter plot. The 

R function ellipse is used from the mixtools package (Benaglia et al., 2009) 

with parameter alpha set to be 0.05 such that 95% of the scatter plot points are 

included within the ellipse. The ellipse represents a bivariate normal density 

contour based on the covariance matrix of the original data. 
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