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ABSTRACT: On the basis of steric hindrance, one carbonyl group in a diketone can be reduced in a regioselective manner, with
high enantioselectivity. The methodology can be extended to ketones with varied length of hydrocarbon chain spacing, and the
products can be converted by oxidation to hydroxy esters or lactones without loss of enantiopurity.

The asymmetric transfer hydrogenation (ATH) of ketones
using ruthenium-based catalysts such as 1 and its tethered

variants such as 2 or 3 (Figure 1A) has been widely applied in

synthetic chemistry.1 Acetophenone and its derivatives are
known to be excellent substrates and give reduction products
for which the major product enantiomer arises through the
transition state model illustrated in Figure 1B.1−3 Several
classes of ketone have been shown to be highly compatible
with ATH reduction using Ru-based catalysts such as 1−3.4,5

Ikariya et al.4a,b reported the first ATH of 1,2-diketones
using catalyst 1, in a reaction which generated 1,2-diols in
>99% ee and 98.6:1/4 dr. Reductions of symmetrical and
unsymmetrical diketones were reported. In later examples, an
extended series of diketones were reduced by ATH,4c and
other Ru-based ATH catalysts have been successfully applied
(Figure 1C).4d,e Although in the majority of diketone
reductions, both ketones are reduced, sometimes just one
ketone can be reduced (Figure 1D, 1E).5 In an important
precedent,5b an unsymmetrical diketone was reduced, under
carefully controlled reaction conditions, to a 3-hydroxy ketone
(Figure 1D). In this case the reactive ketone was adjacent to a
trifluoromethyl group. Catalyst 1 was applied to the successful
reduction of just one ketone of a diketone in high ee, on the
basis of differing levels of steric hindrance.5a In other cases of
selective keto reduction,5b,e a substituted carbon atom is
generally found between the carbonyl groups (Figure 1E).
Herein we report a systematic study of substrates containing
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Figure 1. (A) Examples of Ru-based ATH catalysts, (B) mode of
hydrogen transfer, (C−E) known precedents, (F) work reported here.
In all cases, the descriptor ‘(R,R)-’ refers to the configuration of the
ligand in the complex.
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two ketones in which one is resistant to ATH due to a high
level of steric hindrance from an adjacent aromatic ring. The
less hindered ketone is reduced in high enantioselectivity,
creating hydroxyketone products with a unique structure and
which may form the basis for the synthesis of unusual target
molecules.

We first aimed to establish which aromatic groups might
present sufficient steric hindrance to prevent the ATH of an
adjacent ketone. There are examples of ketones which are
resistant to ATH due to steric hindrance;6 however, we initially
tested ketones 4−7 using catalyst (R,R)-2 in formic acid/
triethylamine 5:2 azeotrope (FA:TEA) and DCM at rt (Figure
2), which represents a catalyst/reductant system adopted for

ATH reactions.2 The diortho-hydroxy ketone 4 was completely
converted to the corresponding alcohol with 73% ee in 24 h (R
configuration tentatively assigned by analogy with acetophe-
none).

In contrast, the attempted ATH of ketone 5, synthesized via
O,O′-dimethylation of 4, yielded no alcohol even after 7 days.
In the ATH of a 1:1 mixture of ketone 5 and acetophenone
under the same conditions, only acetophenone was reduced,
thus ruling out catalyst inhibition by 5 and confirming that it
was likely too hindered for reduction. Ketones 6 and 7,
prepared by acetylation of the penta- and tetramethylbenzene
respectively, also provide resistance to ATH under the same
conditions, even after 7 days. Considering these results,
ketones 5−7 formed the basis of diketones in which one
ketone was designed to be resistant to ATH, providing a
potentially valuable element for directing selectivity.

Toward this end, a series of 1,3-diketones 8a−24a were
prepared by deprotonation of 5−7 with NaH to generate an
enolate, followed by addition of the requisite ester (Figure 3,
Supporting Information). The products, 8b−24b, from the
ATH of the diketones, using 1.0 mol % catalyst (R,R)-2 in FA/
TEA/DCM, are shown in Figure 4.

Figure 2. ATH and attempted ATH of ketones 4−7 using catalyst
(R,R)-2 in FA:TEA (5:2 azeotrope)/DCM at rt.

Figure 3. Synthetic route to 1,3-diketones 8a−24a and subsequent
ATH to alcohols 8b−24b. The diketones were predominantly in the
enol form (by NMR). Yields of 8a−12a were 51−88%, those of 13a−
17a were 29−67%, and those of 18a−24a were 48−86%. Racemic
standards were prepared using a ca. 1:1 mixture of each enantiomer of
the same catalyst.

Figure 4. Products of ATH of diketones 8a−24a using catalyst (R,R)-
2, except for 18a and 21a, for which (S,S)-2 was used. Reaction time
is 24h unless a different time is listed. Full conversion was observed in
all cases, isolated yields are listed. Where an X-ray structure was not
obtained, the configuration was assigned by analogy.
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In all cases, the less hindered ketone was reduced selectively,
and in high ee. The R configuration of product 8b was
confirmed by an X-ray crystallographic structure analysis,
indicating the preference for the para-chlorophenyl ring of the
substrate to adopt the position adjacent to the η6-arene ring of
the catalyst, while the bulky diortho-methoxyphenyl ring
prevented reduction of the adjacent ketone, as predicted.
Unsubstituted product 9b and para-methoxy substituted 10b
were formed in 98% and 97% ee, respectively. The
configurations were assigned as R by analogy with 8b.
Introducing ortho-chloro and ortho-methoxy groups onto one
phenyl ring of the 1,3-diketone substrates provided a route to
products 11b and 12b in 81% and 83% ee, respectively,
indicating that an ortho-substituent causes a slight decrease of
preference for the aromatic ring to create a CH/π interaction
with η6-arene ring of the catalyst.1 However, the electron-rich
heterocyclic product 13b was formed in 99% ee with an R-
configuration assigned to it.

Similar results were obtained with the pentamethylphenyl
series, with products 14b−17b formed in consistently high ee,
including the ortho-substituted examples, and an X-ray crystal
structure of 15b (formed in high ee of 98%) also confirming
that an R- alcohol was formed, analogous to the previous
series.7 In the tetramethyl series, products 18b−24b were
formed in excellent ee, of >99% in several cases and only
slighty lower for the two ortho-substituted examples. The ATH
of 18a was carried out on a 1 mmol scale. The X-ray structures
of two derivatives (20b and 23b) again served to confirm that
the absolute stereochemistry of this series was consistent with
the others. The conversion of the ATH products into esters via
the Baeyer−Villiger reaction was explored. However, both the
reaction of product 8b and its TBS-protected derivative using
mCPBA failed to give the anticipated products. Similar
attempted oxidations of a pentamethyl derivative also failed
(Supporting Information). Donohoe et al. have reported the
conversion of pentamethylphenyl ketones to esters through
reaction with bromine followed by an alcohol.8 For the
conversion of β-hydroxy ketones to esters, however, it was
necessary to convert tetramethylketones to the p-hydroxy
derivative first, followed by oxidation and trapping with an
alcohol.8b,c Following Donohoe’s protocol, (S)-18b (>99% ee)
was reacted with phthaloyl peroxide to give 25, followed by
CAN oxidation to give ester 26 with retention of configuration
in 98% ee (Figure 5). Apart from confirming the configuration
of 18b, this confirms that the Donohoe protocol works without
significant decrease in ee.

1,4-Diketones 27a−30a, the precursors to alcohols 27b−
30b were prepared by the reaction between unsaturated
carboxylic acid 31 with the requisite aldehyde in the presence

of thiazolium salt 32 (Supporting Information).9 Two 1,5-
diketones, 33a and 33b, the precursors to alcohols 33b and
34b, were prepared through the reaction of cyclopropane 35
with 36 and 37 respectively, following a reported method
(Supporting Information).10 Reduction of ketones 27a−30a,
33a, and 34a using 1 mol % catalyst (S,S)-2 again gave ATH
products 27b−30b, 33b, and 34b in high ee (Figure 6) in all

cases other than the thiophene derivative 29b. The oxidation
of 27b (97% ee) following the protocol in Figure 5 resulted in
formation of lactone 38 in >99% ee,11 although with only a
13% yield,12 presumably the result of intramolecular trapping
of the intermediate ester by the hydroxy group following the
oxidation with CAN.

In a final set of studies, diketones 39a−41a were prepared in
order to test the ATH of diketones in which the ketones are in
different environments (Figure 7). The unhindered diketone
39a was converted to diol 39b in high dr and ee; following the
reaction over time revealed that the internal α-alkoxy ketone
was reduced ahead of the peripheral acetophenone, i.e. via 42,
likely due to the activating effect of the electron-withdrawing
ArO group.13 The ATH of 40a and 41a resulted in the
reduction of only the unhindered ketone in 40b and 41b, in
97% and 99% ee respectively, again demonstrating the
complete control of regioselectivity which can be achieved
by strategically placed bulky 2,6-substituents flanking the
ketone (Figure 7). The absolute configuration of 40b was
confirmed by an X-ray crystal analysis (see the Supporting
Information).

In conclusion, we have demonstrated that certain bulky 2,6-
disubstituted-aryls can prevent the ATH of adjacent ketones

Figure 5. Synthetic route to methyl (S)-3-hydroxy-3-phenylpropa-
noate 24.

Figure 6. (A) Reagents used to prepare 1,4- and 1,5-diketones for this
study. (B) ATH products of 1,4-diketones and 1,5-diketones rt. 1 mol
% (S,S)-2 was used in all cases except for 34b. Isolated yields are
listed. The configurations were assigned by analogy with the 1,3-
series. (C) Oxidation product of 27b.
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and hence facilitate the selective reduction of one ketone in a
diketone, with high enantioselectivity. The products can
subsequently be elaborated to further derivatives. This
application may be of value when a regioselective reduction
of one carbonyl is required, leaving the others available for
further transformation.
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