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A B S T R A C T   

Artificial Intelligence (AI) is a game-changing capability in industrial markets that can accelerate humanity’s 
race against climate change. Positioned in a resource-hungry and pollution-intensive industry, this study explores 
AI-powered climate service innovation capabilities and their overall effects. The study develops and validates an 
AI model, identifying three primary dimensions and nine subdimensions. Based on a dataset in the fast fashion 
industry, the findings show that the AI-powered climate service innovation capabilities significantly influence 
both environmental and market performance, in which environmental performance acts as a partial mediator. 
Specifically, the results identify the key elements of an AI-informed framework for climate action and show how 
this can be used to develop a range of mitigation, adaptation and resilience initiatives in response to climate 
change.   

1. Introduction 

“It is not possible to address our urgent and devastating climate crisis 
with old solutions. We must add a tremendous amount of innovation 
to the mix. Artificial Intelligence can help us find opportunities to 
change our current dynamics at a scale large enough for rapid 
impact. Deployed in a human-centric, responsible and ethical way, 
AI is an accelerator for sustainable development.” 

(Oliver, 2020) 

The fast fashion employs over 75 million people and is worth more 
than 2.5 trillion $USD (Geneva Environment Network, 2023). In recent 
decades, it has experienced an exponential growth. For example, con-
sumers are now buying 60% more garments than in 2000 (Remy, 
Speelman, & Swartz, 2016). Despite the spectacular growth of this in-
dustry, a UNECE 2018 report notes that contributes to 10% of human-
ity’s carbon emissions and is responsible for the widespread pollution of 
rivers and streams and the overuse of water resources. Other reports 
note that it uses approximately 60% of manufactured plastic materials 
(UNEP, 2019), causes 20% of industrial water pollution (World 

Resources Institute and World Business Council for Sustainable Devel-
opment, 2004), and is responsible for the release of 500,000 tons of 
microfibers into the ocean each year from the washing of its products — 
the equivalent of 50 billion plastic bottles (Ellen MacArthur Foundation, 
2017). These environmental costs stress the need for sustainable in-
dustrial marketing practices (Finke, Gilchrist, & Mouzas, 2016; Mattsson 
& Junker, 2023), and in this context, artificial intelligence (or, 
AI)-powered climate service innovations show the promise of improving 
energy efficiency, reducing emissions, and increasing the use of 
renewable energy sources. Indeed, the recent BCG Climate AI Survey 
report (Maher, Meinecke, Gromier, Garcia-Novelli, & Fortmann, 2022) 
identifies that climate-related advanced analytics and AI can provide 
significant service solutions in mitigation (measuring, reducing and 
removing emissions), managing vulnerabilities, forecasting hazards and 
basic climate research and education. However, while some industrial 
marketing literature has highlighted the importance of these types of 
innovations in the drive for climate action (e.g., Vesal, Siahtiri, & 
O’Cass, 2022; Yu & Ramanathan, 2015), there is, to date, only limited 
research on the extent to which AI-powered climate service innovations 
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(AIPCSI) have been adopted and their effectiveness. As Minevich (2022) 
has noted, what research there is, tends to be somewhat anecdotal and 
fragmented. 

According to Pucker (2022, p.1), “The sad truth, however, is that all 
this experimentation and supposed ‘innovation’ in the fashion industry 
over the past 25 years have failed to lessen its planetary impact — a loud 
wake up call for those who hope that voluntary efforts can successfully 
address climate change and other major challenges facing society”. To 
address the formidable environmental challenges of the fast fashion 
industry, a new framework of AIPCSI capability is critical to focus the 
debate on climate innovation and performance in space. We define 
AIPCSI capability as the mechanical or thinking capability of an AI 
platform that can self-learn, improve and adapt to meet climate chal-
lenges (e.g., mitigation, adaptability and resilience) through its con-
nected internet ecosystem of data, machines, objects, humans and earth. 
In the pursuit of environmental performance, some organisations prefer 
incremental innovations for gradual capacity building through routines 
and practices (Adams, Jeanrenaud, Bessant, Denyer, & Overy, 2016; 
Neutzling, Land, Seuring, & do Nascimento, 2018), whereas others 
adopt radical innovations (Epicoco, Jaoul-Grammare, & Plunket, 2022; 
Klewitz & Hansen, 2014). AIPCSI is considered revolutionary in this 
context as it can reconfigure the production ecosystems, resources and 
capabilities (Janssen, Castaldi, & Alexiev, 2016) for mitigation, adap-
tation and resilience insights to make informed decisions (Maher et al., 
2022). According to Maher et al. (2022), “AI’s unique capacity to gather, 
complete, and interpret large, complex data sets means it can help 
stakeholders take a more informed and data-driven approach to 
combating carbon emissions and addressing climate risks. However, 
most existing AI-related climate solutions are scattered, difficult to ac-
cess, and lack the resources to scale. This is what needs to change.” 

This study seeks to address these challenges where, grounded in 
dynamic capability (DC) theory and the micro-foundations of DCs view, 
it illuminates the interplay between AIPCSI capability, environmental 
performance and market performance. The dynamic capability view is 
increasingly identified as a significant theoretical approach in the 
climate service innovation literature due to its ability to inform how 
companies can effect change in their resources, environment, and 
strategy (Arshad, Yu, Qadir, & Rafique, 2023). Based on the micro-
foundations view of DC and environmental orientation (EO) literature, 
this study embraces the managerial recognition of the importance of 
stakeholder pressures and environmental issues for increasing market 
performance (Banerjee, 2001). EO has emerged as a solid theoretical 
foundation and a significant aspect of corporate environmentalism, 
addressing environmental and climate issues in a proactive and inno-
vative manner (Chan, 2010; Chavez, Malik, Ghaderi, & Yu, 2021; Kes-
zey, 2020). 

In this study, the DC view has also been utilized to present the 
strategic orientation of AI for climate actions that consequently enhance 
environmental performance. Specifically, the dynamic capabilities of AI 
can focus on the gathering of complex data on emissions, collaborative 
ecosystems, and future projections (Maher et al., 2022). Further, 
leveraging market orientation (MO) literature, the study sheds light on 
creating superior customer value against competitors by offering crea-
tive service innovations and capabilities (Kohli & Jaworski, 1990; 
Narver, Slater, & MacLachlan, 2004). Thereby, we address the call for 
research on market orientation in environmental contexts (Stone & 
Wakefield, 2000).). As we do so, we examine how AIPCSI capability is 
developed in accordance with market intelligence to identify the trend 
of customers’ choices and preferences and offer environmental solutions 
to business customers (Sultana, Akter, & Kyriazis, 2022). Although there 
is a substantial amount of literature on AI-based service innovations in 
industrial markets (Biemans & Griffin, 2018; Davenport, Guha, Grewal, 
& Bressgott, 2020; Grewal, Hulland, Kopalle, & Karahanna, 2020; 
Huang & Rust, 2018, 2021, 2022), there is limited research on AI- 
powered climate solutions. AI has the capacity to collect, integrate 
and analyze complex climate datasets on emissions, and AIPCSI can be 

leveraged to assist stakeholders in industrial markets in making more 
informed decisions about carbon emissions and a greener value chain 
(Maher et al., 2022). Given the high cost of pollution on both market and 
environmental performance, scholars have yet to leverage AI to develop 
a capability framework for climate service innovations. More funda-
mentally, there is currently little empirical support for such a frame-
work, its dimensions and subdimensions and their holistic effects on 
performance metrics (Vesal et al., 2022; Yu & Ramanathan, 2015). In 
order to fill the research gap, this study aims to answer the following 
research question: 

RQ. What are the antecedents and effects of AI-powered climate ser-
vice innovation capabilities in industrial markets? 

We addressed this research question by gathering data from 211 
managers involved with AI and climate initiatives in the fast fashion 
industry. We collected data from Bangladesh, which is one of the largest 
ready-made garments (RMG) exporters, and also hosts the highest 
number of certified “green” gament manufacturers, in the world 
(BGMEA, 2023). The study makes several theoretical and practical 
contributions. First, the academic literature on AI in marketing covers 
diverse issues ranging from marketing problems to strategic actions (e. 
g., Davenport et al., 2020; Huang & Rust, 2018; Huang & Rust, 2021; 
Rust & Huang, 2014). This study advances the strategic application of AI 
in industrial marketing by constructing a model that guides strategic 
orientations of AI, focusing on the environment, infrastructure, and 
market in an actionable and systematic manner. Drawing on the diverse 
literature on environmental management (Banerjee, 2001), information 
systems (Mikalef & Gupta, 2021), dynamic managerial practices (Akter, 
Wamba, Mariani, & Hani, 2021) and service innovations (Huang & Rust, 
2018, 2021, 2022), the study contributes to industrial marketing man-
agement by establishing the connection between climate innovations, 
environmental performance and market performance. Second, the study 
advances this line of thought by identifying the critical mediating role of 
environmental performance between hierarchical AIPCSI and market 
performance. Third, AI-powered service innovation is at a crossroads; 
the literature shows that 85% of AI initiatives have failed to meet their 
promise (Akter et al., 2021), and 70% show little or no return (Forbes, 
2020). Here, in exploring the micro-foundations of AIPCSI and their 
holistic effects on social and economic outcomes, we show that AI ini-
tiatives do in fact have the potential to drive significant improvements in 
performance. 

2. Literature review 

2.1. The rise of big data and AI 

The extraordinary growth of big data and cutting-edge technologies 
(e.g., cloud) has contributed to the rise of data-driven innovations (DDI). 
It is not only a unique source of competitive advantage but also a critical 
growth foundation of the 21st century (Sundu, Yasar, & Findikli, 2022). 
It encompasses the utilization of data and analytics so that new products, 
services, processes, business models and markets are developed (OECD, 
2015). The extant literature indicates that the growing need to boost 
customer experience, increase employee efficiency and accelerate 
innovation are the key primary factors driving the rise of DDI (Chen, 
Chai, & Lau, 2021). In this vein, the evolution of big data, as well as 
data-driven technologies and innovations, has triggered breakthroughs 
in other innovative practices, such as AI in service innovation (Barja- 
Martinez et al., 2021; Rafaeli et al., 2017). Due to its high learning 
ability, adaptability, and connectivity, AI is increasingly being deployed 
in many service industries, including travel and tourism (Tussyadiah, 
Zach, & Wang, 2020); healthcare (Ruel & Njoku, 2021; Tuomi, Tus-
syadiah, & Stienmetz, 2021); as well as retail industry (Oosthuizen, 
Botha, Robertson, & Montecchi, 2021); and today it is a major source of 
service innovation and revolution (Rust & Huang, 2014). However, AI 
cannot work without purposeful data. Indeed, an AI system needs 
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diverse data to develop its intelligence, and it is big data that consis-
tently fuels AI and enables it to become more rigorous and powerful 
(Obschonka & Audretsch, 2020). 

How well a deployed AI will learn from, adapt and relate to a given 
service environment depends on the quality and depth of training data 
that is fed to its system. Moreover, when combined with data-driven 
approaches like DDI, the capabilities of AI in a service setting can 
accelerate business outcomes (Yablonsky, 2019). For instance, Google-
DeepMind is being used for generating more effective clinical insights 
and proposing innovative medical practices. 

The more the exploitation of DDI, the higher the advancement of AI 
in that the development of DDI triggers more sophisticated technological 
integration, such as the deployment of AI service robots for improving 
in-store operations or personalizing customer experience in the service 
industry (Bolton et al., 2018). Wirtz et al. (2018) found that service 
robot when integrated with AI, cloud, big data and biometrics, have vast 
potential for enhancing frontline service performance. AI can drastically 
transform the service industries (Blöcher & Alt, 2021; Dhanabalan & 
Sathish, 2018). However, AI requires a combination of data-driven ap-
proaches in order to function and learn from the service environment. 
For instance, when a data-driven optimal control system ensures the 
appropriate functioning and movements (Kong, Zhang, & Yu, 2021); a 
data-centric collaborative learning system will assist in the enhanced 
learning of AI in a service context (Liu et al., 2021). 

2.2. Defining AI in service innovations 

AI-driven service innovation is the exploitation of AI-driven tech-
nologies such as big data analytics, machine learning, deep learning, 
natural language processing and other techniques to create innovative, 
personalized, and customised services aimed at enhancing the overall 
consumer experience. According to Jarrahi (2018), AI is the process of 
simulating human behavior by a smart computer system which enables 
it to learn automatically from past experience, solve complex problems, 
and adjust to new environments. Such unique AI capabilities distinguish 
AI-based service innovations from other innovations driven by stan-
dardized technologies (Huang & Rust, 2021). For example, AI-based 
voice assistant (VA) technologies, including Google Assistant from 
Google and Siri from Apple, use advanced ML technologies (e.g., Deep 
Neural Network) to self-learn and adapt to users’ responses and be-
haviours and provide customised experience for each user (Nobles et al., 
2020). In many situations, the capability of AI-powered innovations to 
execute work more efficiently and precisely than humans has led them 
to be adopted in handling customer service (Rodgers & Nguyen, 2022). 
For instance, the deployment of AI-based chatbots on company websites 
and social networking platforms ensures round-the-clock assistance and 
guidance to customers and the management of real-time queries 
(Kushwaha, Kumar, & Kar, 2021). Several brands have also employed 
chatbots that assist customers in making purchase decisions and firms in 
facilitating the brand’s marketing and selling operations. Nike’s Style-
Bot, eBay’s ShopBot, H&M’s bot for Kik, chatShopper, and Masha AI, are 
a few examples of these AI-powered chatbots that interact with clients, 
using natural language processing (NLP) and machine learning (ML) 
techniques (Yang, Oikarinen, & Saraniemi, 2020) to offer customized 
clothing recommendations. These sophisticated chatbots offer user- 
specific knowledge and simulate genuine human conversation (Lee, 
2020). 

However, depending on the nature of the service and the level of 
customer engagement, AI in service can be categorized into three levels; 
mechanical AI, thinking AI, and feeling AI (Huang & Rust, 2018). The 
more the degree of complexity and idiosyncrasy of service, the higher 
the level of AI needed. Mechanical AI facilitates automation across 
standardized, routine, non-cognitive service tasks, like, DoorDash’s 
integration of robots within its existing food delivery chain to maximize 
service efficiency and customer satisfaction (Byrd et al., 2021). On the 
other hand, thinking AI produces personalized service recommendations 

based on customers’ existing profiles and their previous history of ser-
vice adoptions (Huang & Rust, 2021). For example, Tencent’s Xiaowei 
offers its users news headlines, traffic guidelines, music suggestions and 
weather predictions (Özelli, 2019). Finally, feeling AI detects and in-
terprets customers’ emotions through utilizing natural language pro-
cessing and sentiment analysis and responds with empathy and care 
(Cambria, Poria, Hussain, & Liu, 2019). These capabilities are apparent 
in Microsoft’s Cortana, where it engages with the user to enhance per-
sonal productivity, set timelines and reminders, manage calendars, 
operate applications on devices, and searches for information (Arnold, 
Kolody, Comeau, & Miguel Cruz, 2022). In recent times, the application 
of generative AI has also exploded in service industries, and many firms 
are finding ways to incorporate this ground-breaking tool into various 
levels of customer service. Generative AI refers to the ability to imitate 
humanoid responses that can quickly respond to customer inquiries 
either by suggesting personalized recommendations or generating 
different types of customised content in the form of texts, graphics and 
imageries, music, audio, video and other types of data (Jo, 2023). 

In recent years, the unprecedented application of AI in services has 
significantly caught scholars’ attention. Researchers are increasingly 
focussing on how AI is transforming the way various industries (i.e., 
from manufacturing to pure service) are innovating services to satisfy 
their customers (Naumov, 2019) and achieve competitive advantage 
(Akter et al., 2023; Sun, Xu, Yu, & Wang, 2022). For example, after 
reviewing the literature, Tekic, Cosic, and Katalinic (2019) provided 
valuable insights on how manufacturing firms can address and manage 
new service innovation challenges caused by the uptake of AI applica-
tions such as the emergence of big data, the shifting focus towards 
innovation and an increased need for collaboration and customization. 
In the innovation literature, those such as Allam (2016), Cockburn, 
Henderson, and Stern (2018), Huang and Rust (2018), Hutchinson 
(2020), Johnson, Laurell, Ots, and Sandström (2022), Naumov (2019) 
have analyzed how AI is impacting the pace of service innovation, and 
firm performance, while another group of scholars have investigated AI 
as an enabler of service innovation (see Chui, 2017; Paschen, Pitt, & 
Kietzmann, 2020 and Truong & Papagiannidis, 2022). Regardless of the 
type of industry and orientation of service, most of these studies agreed 
upon the fact that AI, combined with big data and analytics, could 
improve product design (Tao et al., 2018), provide better sales and 
support services (Agarwal, Maiya, & Aggarwal, 2021; Rossmann, Zim-
mermann, & Hertweck, 2020), and enhance customer experience 
(Holmlund et al., 2020). 

More recently, a stream of research has also investigated how novel 
approaches to service innovation, such as deploying AI-powered robots 
(Belanche, Casaló, Flavián, & Schepers, 2020), chatbots, virtual assis-
tants (Hsu & Lin, 2023), cobots (Sultanov, Sulaiman, Li, Meshcheryakov, 
& Magid, 2022), and recommender systems (Cui et al., 2020) can 
empower consumers to process information (Birkel & Reppucci, 1983), 
communicate their service needs and specifications (Ki & Kim, 2019), 
and achieve maximum satisfaction (Chakraborty, Siddiqui, Siddiqui, 
Rana, & Dash, 2022). Additionally, the emerging concern for sustain-
ability among firms and other stakeholders has stirred collective efforts 
by researchers to find sustainable AI solutions for addressing various 
social (Goralski & Tan, 2022; Mhlanga, 2021), environmental (Nti, 
Cobbina, Attafuah, Opoku, & Gyan, 2022 and Ong, Doong, Naguib, 
Chee, & Nagar, 2022), and economic challenges (Aghion, Jones, & 
Jones, 2018; Babina, Fedyk, He, & Hodson, 2021). In recent years, a 
good fraction of sustainability science literature has significantly 
focused on AI-based service innovations as unparalleled remedies for 
exceedingly critical phenomena, such as climate change. Ashraf, Meng, 
Bourque, and MacLean (2015), Chen et al. (2023), Kaack et al. (2022), 
Vinuesa et al. (2020), and a number of other scholars have suggested 
how various climate actions such as cutting emissions, adapting to 
climate change and financing needed adjustments can be accelerated 
through applying AI-based climate service innovations. However, 
despite accelerating use of AI-driven innovation to tackle climate 
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change, researchers are yet to investigate the contribution of such in-
novations through the lens of capability building in climate actions. 

2.3. AI in climate initiatives 

The application of AI, along with revolutionary sensing technologies 
and robotics, is expected to significantly impact the way people, com-
munities, relevant authorities, and industries experience and handle 
various climatic issues (Galaz et al., 2021). Due to its capability of 
interpreting, analysing and learning from huge amounts of multi- 
dimensional and unstructured climate datasets (Huntingford et al., 
2019), AI-based technologies are gaining increased usage in predicating, 
analysing and responding to the causes and effects of climate change 
including environmental pollution (Asha et al., 2022), extreme weather 
events and natural disasters (Gupta, Modgil, Kumar, Sivarajah, & Irani, 
2022), impacts on biodiversity (Abdollahi & Pradhan, 2021), rising sea 
levels (Balogun & Adebisi, 2021) and water scarcity (Katimbo et al., 
2023). They are also being increasingly applied as sustainable solutions 
in climate action research areas, including AI-enhanced environmental 
assessment (Hino, Benami, & Brooks, 2018), remotely operated under-
water marine conservation initiatives (Girard & Du Payrat, 2017), AI- 
supported surveillance of illicit wildlife trade (Di Minin, Fink, Hiip-
pala, & Tenkanen, 2019), “smart” urban planning for environmental 
sustainability (Ilieva & McPhearson, 2018; Yigitcanlar et al., 2021), AI 
applications in climatic and Earth system modeling etc. (Reichstein 
et al., 2023; Rasp, Pritchard, & Gentine, 2018). For instance, combating 
environmental pollution necessitates a broad spectrum of responses to 
the situation, including cutting emissions through decarbonization 
(Inderwildi, Zhang, Wang, & Kraft, 2020), promoting low-carbon energy 
systems that incorporate renewable energy and energy conservation 
(Vinuesa, Fdez de Arévalo, Luna, & Cachafeiro, 2016), and moderniza-
tion of waste management systems (Vertakova, 2019). Many of these 
solutions rely heavily on implementing AI-based energy-efficient pro-
jects (Goswami et al., 2021) that include more advanced and sustainable 
solutions, building electric vehicles, establishing smart agribusiness, 
creating smart electricity grids, and developing smart manufacturing 
capabilities (Atitallah, Driss, Boulila, & Ghézala, 2020). 

Some climate actions, such as energy conservation, depend on the 
availability of the vast amount of energy usage and production data. 
Analysing such data and generating insight have always been a chal-
lenge for climate scientists due to the rising complexity of the energy 
system (Pfenninger, Hawkes, & Keirstead, 2014). However, through its 
massive computing power supported by larger language models (LLM), 
AI not only analyses massive amounts of energy consumption data 
(Singh et al., 2023) but also investigates the architectural design and 
construction materials as well as environmental conditions to generate 
actionable insights (As, Pal, & Basu, 2018). Such energy analysis assists 
in identifying potential energy savings and provides recommendations 
on infrastructural improvements that enable firms to meet the sustain-
ability standards of buildings (Molina-Solana, Ros, Ruiz, Gómez- 
Romero, & Martín-Bautista, 2017). Moreover, when transportation 
patterns and urban planning datasets are integrated into this analysis, AI 
can identify areas where infrastructure improvements can have the most 
significant environmental and social impact (Wang, Lu, & Fu, 2023). 

Climate change has significantly contributed to natural hazards and 
extreme weather events (Banholzer, Kossin, & Donner, 2014), causing 
drastic environmental, social, and economic damage. For instance, 
greater rainfall, rising sea levels, and altered climate patterns have 
increased the likelihood of flooding. Being trained with climate data 
captured from meteorological stations, satellite photos, and sensor 
technologies, AI-based real-time disaster applications can assist in 
identifying circumstances in advance that contribute to catastrophic 
weather occurrences like hurricanes, floods, wildfires, and volcanic 
eruptions (Kuglitsch et al., 2022). Climate change is adversely affecting 
biodiversity as well, resulting in altered habitats, genetic variation, and 
species distribution patterns (Chattopadhyay, Garg, Ray, & Rheindt, 

2019). AI-enabled monitoring systems that utilize satellite imagery and 
sensor data can aid in detecting operations such as illicit logging, 
poisoning, and other threats to biodiversity (Minevich, 2022). For 
example, wildlife conservationists and scientists are combining AI- 
powered sound surveillance with drones, cameras and satellite pic-
tures to keep track of rare wildlife species. A wide variety of vegetation 
cover, such as land, forest, dense and sparse vegetation, contributes to 
improving biodiversity by producing oxygen, improving water quality, 
preserving soil cover, and balancing the hydrological cycle. A vegetation 
mapping technique in this circumstance, using Deep Neural Networks 
(DNN) in remote image classification, can help provide biodiversity 
protection and maintain ecological balance (Abdollahi & Pradhan, 
2021). More cases of climate challenges where AI-based approaches can 
provide innovative solutions are given in Table 1. 

Practitioners and researchers in climate action are increasingly 
exploiting the opportunities to deploy AI tools for supporting climate 
change adaptation. However, mitigating the risks associated with 
climate change through the implementation of AI in isolation is an un-
realistic ambition. Instead of perceiving it as mere technical capability, 
scholars consider AI as one of many indispensable tools for tackling 
climate change (Bahadur, Ibrahim, & Tanner, 2013), which therefore, 
must be accompanied by various individual, social, environmental, and 
market factors (Fischer, Beswick, & Newell, 2021). For instance, 
Sebestyén, Czvetkó, and Abonyi (2021) have claimed that strategic 
adaptation to climate change will no longer be effective if it is brought 
by the exclusive analysis of climate factors. These researchers suggest 
the integration of socio-environmental variables in future research 
seeking to develop climate change models. Similarly, Sætra (2023) 
postulates that AI and data are closely connected to a firm’s environ-
mental, social, and governance-related performance and the creation of 
sustainability-oriented impacts, which are consistently evaluated by the 
market and various stakeholders. Gaur, Afaq, Arora, and Khan (2023), in 
their study also encourage the AI community to build AI-based models 
without sacrificing environmental factors so as to ensure sustainable AI 
practices for climate action. Acknowledging the limitations of AI in 
sustainability, Nishant, Kennedy, and Corbett (2020) strongly empha-
size adopting a multilevel view in AI research models to overcome such 
limitations. A multilevel view of the AI research model for climate action 
refers to the inclusion of distinct units of climate analysis from in-
dividuals to society, national, and global stakeholders, as well as the 
exploration of interactions among these units. In the same vein, a recent 
review of the relationship between AI and climate change by Leal Filho 
et al. (2022) also recommend conducting more comprehensive future 
research on the application of AI for stabilizing the climate situation. In 
short, the limitations highlighted by the literature on AI for sustain-
ability and, more specifically, ‘AI for climate action’ indicate the 
pressing need for introducing a holistic view of AI in climate service 
innovation. 

3. Theories 

We have so far shown the wide-ranging and significant impact of AI 
on service innovations and climate initiatives. In this section, we 
examine the use of the dynamic capability view to understand how AI 
can facilitate the development of microfoundations of AIPCSI capability 
to sense, seize and transform a firm’s environmental and market 
performance. 

3.1. Dynamic capability view 

A company’s capabilities can take mainly two forms: operational or 
ordinary capabilities, which focus on maintaining and using existing 
resources to preserve the current status quo, and dynamic capabilities 
(DCs), which may extend or modify ordinary capabilities, leading to 
strategic changes within the company (Schilke, Hu, & Helfat, 2018). 
Companies with DCs are able to consistently and purposefully 
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implement activities to achieve strategic change, as distinct from merely 
addressing problems as they arise. This is important for climate and 
environmental-related actions as planned and proactive initiatives are 
required to avoid catastrophic outcomes. DCs provide a competitive 
advantage, as they enable companies to effect change in their resources, 
environment, and strategy (Teece, Pisano, & Shuen, 1997). As Teece 
(2007, p. 1319) maintains, “these capabilities can be harnessed to 
continuously create, extend, upgrade, protect, and keep relevant the 
enterprise’s unique asset base.” Furthermore, these capabilities consist 
of learned and stable patterns of organizational and strategic routines, 
which help firms to achieve effectiveness (Zollo & Winter, 2002) and 
“achieve new resource configurations as markets emerge, collide, split, 
evolve, and die” (Eisenhardt & Martin, 2000, p. 1107). In the context of 
climate related innovations and initiatives, we argue that DCs are 
essential to utilize a firm’s unique resource base and also develop new 
resource configurations to address climate related issues and deliver 
novel solutions. 

Teece (2007) identifies three broad clusters of DCs: sensing, seizing, 
and reconfiguring. Sensing capabilities allow firms to identify, assess, 
shape, and calibrate opportunities and threats in the environment. 
Seizing capabilities comprise “enterprise structures, procedures, de-
signs, and incentives for seizing opportunities.” (Teece, 2007, p.1334). 
They involve how firms mobilize internal and external resources to seize 
opportunities and manage threats in order to capture value. Reconfi-
guring capability encompasses how firms regularly update and organize 
their resources to ensure that they align with changes in the business 
environment. To stay competitive, this requires ongoing renewal and 
orchestration of resources, or in other words, “continuous alignment and 
realignment of specific tangible and intangible assets” (Teece, 2007, p. 
1340) to stay competitive. In terms of addressing climate and 
environmental-related issues, we posit that firms need to develop ca-
pabilities to continuously sense, seize and reconfigure resources to align 
with the changes occurring in the external environment. 

Researchers have focused on identifying the micro-foundations of 

Table 1 
An overview of AI-driven service innovations in climate initiatives.  

Climate challenges AI solutions 

Reducing carbon emissions Depending on the data on current carbon emissions, 
an AI-assisted ‘energy and carbon footprint 
modeling’ can automatically track the amount of 
future carbon discharge; and based on the findings, 
AI-driven carbon reduction methodologies and 
optimization techniques can be applied to enhance 
production efficiency in industries, transportations 
and thus, reducing carbon emissions (Chen, Chai, & 
Lau, 2021). 

Establishing early warning 
systems 

The combination of wireless sensor networks, IoT, 
and AI can assist in real-time monitoring of the 
factors that cause swift landslides (Elmoulat et al., 
2021). Similar technologies can also be utilized to 
constantly monitor and timely discover the risk of 
liquid metal leakage in heavy metal industries ( 
Sankarasubramanian & Ganesh, 2021). 

Managing vulnerability and 
risk 

By employing the 3D image pattern recognition 
techniques in UAV digital model processing, AI-based 
vulnerability model can assess the degree of 
vulnerability and seismic risk resistance of buildings 
in earthquake-prone areas (Li & Lyu, 2022). 
Likewise, an integrated flood assessment method 
powered by an artificial neural network and other 
numerical computational models can measure flood 
vulnerability and responsiveness (Rehman, Sahana, 
Hong, Sajjad, & Ahmed, 2019). 

Managing crises A hybrid AI-generated flood risk assessment model 
that integrates a multi-criteria decision-making 
approach can identify vulnerable areas and map out 
strategies in advance to reduce the risks and damages 
(Pham et al., 2021). 

Anticipating long-term 
climate change 

By analyzing the historical data, AI can strengthen 
the long-term predictions of local climate trends 
through developing regional and global climate 
models, supplying area-wise climate indicators to the 
local authorities, assessing the risk of natural 
calamities like, earthquake, flood, wildfire and their 
potential impacts on the environment; which 
ultimately, guide the economic and infrastructural 
investment decisions making (Maher et al., 2022). 

Strengthening infrastructure In order to maintain a sustainable infrastructural 
base, AI can enhance the predictive maintenance of 
existing structures like, roadways, overpasses, 
electrical supply facilities; check water condition and 
environmental pollution; and even assist with 
infrastructural design initiatives and their 
vulnerability assessments (Minevich, 2022). 

Preserving biodiversity With the help of image recognition technique, AI- 
based automated agricultural vehicles and field 
robots are used to locate and remove weeds and pests 
from crops and destroy them by the administration of 
pesticide micro doses (Garske, Bau, & Ekardt, 2021). 

Climate research and 
modeling 

Researchers and scientists can advance climate 
research by utilizing the prediction, pattern 
recognition, learning, and natural language 
processing capabilities of AI in managing more 
critical issues related to reducing climate change 
effects and improving adaptation and resilience ( 
Kaack et al., 2022). 

Climate finance Predictive AI and ML-based applications can 
streamline the investment decision-making process 
in the field of climate finance by enhancing carbon 
price forecasts, optimizing energy cost dynamisms, 
and improving other environmental, economic and 
financial information used in taking mitigation and 
adaptation actions (Ahmed, Alshater, El Ammari, & 
Hammami, 2022). 

Education and change in 
customer behavior 

By learning from existing customer buying behavior, 
AI and ML-based algorithms can generate more 
individual recommendations for online climate 
courses or green purchases, enabling customers to 
buy more eco-friendly products and at the same time, 
shifting their preferences towards climate-positive 
consumptions in long-run (Maher, Meinecke,  

Table 1 (continued ) 

Climate challenges AI solutions 

Gromier, Garcia-Novelli, & Fortmann, 2022). For 
example, Klimakarl, is an AI-powered Chabot app 
that stimulates “green employee behavior” in 
day-to-day office interactions (Hillebrand & 
Johannsen, 2021). 

Green economic recovery Through enhancing productivity and its economic 
value, promoting green innovation, and optimizing 
energy and other resource allocation efficiency, AI 
with its deep learning, smart robots, and machine 
vision technologies can help in reducing resource 
consumption and pollution emission and therefore, 
bolstering green economic recovery (Qian, Liu, Shi, 
Forrest, & Yang, 2023). 

Accessibility to climate data “AI Climate Impact Visualizer”, an AI-driven 
interactive personalized visualization tool that 
facilitates users with AI-generated potential future 
images of their locations following the damage of 
climate change like hurricanes, floods, earthquakes, 
wildfires and droughts in 2050 (Luccioni, Schmidt, 
Vardanyan, & Bengio, 2021). These images also 
provide available information about the scientific 
explanations of such changes which is accessible to 
the users. 

Collaboration and 
partnership 

“AI for the Planet”, is a collaborative and 
multidisciplinary alliance, aims to maximize the 
global impact of AI-based climate solutions through 
prioritizing AI for identifying climate crisis, 
promoting advanced analytics and AI-driven climate 
innovations, recognizing and championing the most 
sustainable solutions, and facilitating the 
establishment of networking among the project 
members, investors, corporations and other 
stakeholders (Owe & Baum, 2021).  

S. Akter et al.                                                                                                                                                                                                                                    



Industrial Marketing Management 117 (2024) 92–113

97

DCs to highlight the importance of individual-level and other micro- 
level factors (Helfat & Peteraf, 2015; Suddaby, Coraiola, Harvey, & 
Foster, 2020; Teece, 2007). The DC view has gained significant interest 
in innovation (Akter, Motamarri, et al., 2021; Lenka, Parida, Sjödin, & 
Wincent, 2018), and data analytics is increasingly recognized as a vital 
micro-foundation of DCs in this context (e.g., Akter, Bandara, & Sajib, 
2021; Akter, Fosso Wamba, Barrett, & Biswas, 2019; Mikalef, Boura, 
Lekakos, & Krogstie, 2019). Similarly, the strategic orientation of AI 
using the DC’s micro-foundations view, focuses on data orientation (the 
degree to which big data is integrated for climate service innovations), 
model orientation (the degree to which a firm’s analytics system enables 
the understanding of potential threats and problems in climate services), 
and ethical orientation (the degree to which a firm’s analytics system 
adheres to ethical standards). 

3.2. Environmental orientation 

Environmental orientations (EO) can be understood in relation to 
managerial attitudes, aspirations, motivations, culture, and cognitive 
responses which, in turn, can influence firm decisions and strategic 
practices (Hakala, 2011; Mariadoss, Chi, Tansuhaj, & Pomirleanu, 
2016). EO has emerged as a significant aspect of corporate environ-
mentalism, reflecting a proactive and innovative approach towards 
addressing environmental issues (Chan, 2010; Chavez et al., 2021; 
Keszey, 2020). EO acknowledges the negative impact of organizational 
activities on the environment and emphasizes the need to mitigate it by 
proactively identifying environmental concerns and integrating them 
into organizational strategies and processes (Banerjee, 2001; Chan, He, 
Chan, & Wang, 2012a). 

When examining EO, it is important to understand its three compo-
nents: internal EO, external EO, and environmental practices orienta-
tion. Internal EO refers to a firm’s values, missions, ethical standards, 
and commitments that reflect its stance towards environmental issues. 
As Chan et al. (Chan, He, Chan, & Wang, 2012b, p. 623) argue, internal 
EO “helps firm members develop a collective consciousness of the 
importance of ecologically responsible operations and eventually mo-
tivates them to seek ways to minimize the environmental impacts of 
these operations.” For example, a company’s environmental policies, 
value statements, and employee training can reveal its level of internal 
EO (Chan et al., 2012a; Zameer, Wang, Yasmeen, & Mubarak, 2022). 
External EO pertains to a firm’s efforts to meet the environmental ex-
pectations and demands of external stakeholders and demonstrates its 
level of awareness and responsibility towards environmental concerns. 
Demands from regulatory bodies, customers, competitors, and society as 
a whole are important in this regard (Banerjee, 2001; Chan, 2010; 
Zameer et al., 2022). Environmental practices orientation refers to a 
firm’s systematic integration of environmental concerns into product 
and process design. By incorporating environmental concerns into the 
early stages of product design, firms can address ecological problems 
and add value to their core business initiatives (Cerdan, Gazulla, Raugei, 
Martinez, & Fullana-i-Palmer, 2009; Yang, Roh, & Kang, 2021). Exam-
ples of such practices include reduced energy consumption, the reduc-
tion, reuse, and recycling of materials, eco-packaging, and eco-friendly 
marketing (Delmas & Grant, 2014; Knight & Jenkins, 2009; Sarkis, 
Gonzalez-Torre, & Adenso-Diaz, 2010; Zhu & Sarkis, 2004). Having 
identified the criticality of EO and its dimensions in the climate service 
context, we posit that it is a key microfoundation of AIPCSI capability. 
For instance, we assert that internal orientation will contribute to 
AIPCSI by developing climate-conscious and ecologically responsible 
business values, policies, and operations, ultimately resulting in a 
higher-level climate service innovation capability. Similarly, external 
EO and environmental practices orientation will develop a firm’s ability 
to identify stakeholder demands and expectations for climate protection 
and incorporate them into their core business initiatives. 

3.3. Market orientation 

Market orientation (MO) refers to the deeply rooted values, beliefs, 
and norms of a firm (Homburg & Pflesser, 2000; Kara, Spillan, & 
DeShields, 2005). They are embedded within an organizational culture 
that prioritizes the creation and maintenance of exceptional customer 
value in relation to its competitors (Herhausen, 2016; Kohli & Jaworski, 
1990). MO is driven by various abilities, including a firm’s ability to 
gather intelligence, process information and coordinate diverse func-
tions (Kohli & Jaworski, 1990). This is why several scholars in the past 
have acknowledged that the effectiveness of producing successful new 
products is heavily reliant on the firm’s MO (Baker & Sinkula, 1999; 
Narver et al., 2004). Further, previous research has indicated MO can 
impact innovation (Didonet, Simmons, Díaz-Villavicencio, & Palmer, 
2016; Sultana et al., 2022), determine strategic priorities and increase 
market responsiveness (Didonet, Simmons, Díaz-Villavicencio, & 
Palmer, 2012), and can lead to agility and superior performance (Her-
hausen, 2016; Zelbst, Green, Abshire, & Sower, 2010). 

MO indicates a firm’s understanding and reaction to customers’ 
preferences and behaviours and includes developing new knowledge 
and insights about the firm’s capabilities, products and services, and 
interested markets, including its competitors (Jaworski, Kohli, & Sahay, 
2000; Wilden & Gudergan, 2017). In this vein, we identify customer 
orientation, competitor orientation, and climate orientation as key ele-
ments of MO in AIPCSI capability. These different orientations indicate 
how a firm’s analytics system enables it to identify current market 
movements, competitor dynamics, and customer behavioural patterns, 
including their needs for superior customer value in climate services 
(Sultana et al., 2022). For instance, MO can help firms understand 
consumer climate and environment-related preferences, as well as 
competitor initiatives. This enables them to be more responsive, agile, 
and innovative, leading to higher firm performance. 

4. Conceptual model and hypotheses development 

With regard to the applications of AI in the industrial markets, 
several studies have demonstrated positive outcomes for manufacturing 
and service firms (Akter, Bandara, & Sajib, 2021; Bag, Gupta, Kumar, & 
Sivarajah, 2021; Chen, Esperança, & Wang, 2022; Hossain, Agnihotri, 
Rushan, Rahman, & Sumi, 2022; Mikalef & Gupta, 2021; Mishra, Ewing, 
& Cooper, 2022). AI has been shown to play an instrumental role in 
adapting to rapidly changing business demands, complex buying de-
cisions, and frequent changes in markets (MIT Technology Review In-
sights, 2018). It has also been shown as revolutionizing the industrial 
market’s service ecosystems (Vargo, Wieland, & Akaka, 2015), service 
innovation processes (Kindström, Kowalkowski, & Sandberg, 2013), and 
resources and capabilities (Janssen et al., 2016). In the manufacturing 
sector, research on AI has explored its role in technology mining (Zeba, 
Dabić, Čičak, Daim, & Yalcin, 2021), manufacturing and logistics sys-
tems (Chien, Dauzère-Pérès, Huh, Jang, & Morrison, 2020), technolog-
ical innovation (Liu, Chang, Forrest, & Yang, 2020), supply chain 
resilience (Leoni, Ardolino, El Baz, Gueli, & Bacchetti, 2022) and 
competitive advantage (Hossain et al., 2022). The application of AI has 
now been expanded to almost every innovation attempt, such as agri-
culture, education, chatbots, shopping, weather, healthcare and envi-
ronmental issues. (Podcast - Business and Environment - Harvard 
Business School, 2023; Dimock, 2022; Q.ai, 023; Minevich, 2022). It has 
also expanded capability where it augments both machines and humans 
to support the organizational decision-making process in relation to 
environmental issues. 

In model (see Fig. 1) , the firm’s AI system comprises policies, pro-
cedures, and practices to support AI initiatives. AIPCSI capability in-
cludes the firm’s AI orientation capability, environmental orientation 
capability and market orientation capability. AI orientation refers to the 
firm’s capability to integrate AI-based technology to design service in-
novations to understand the potential climate-related threats and 
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problems while maintaining environmental and ethical standards. EO 
capability refers to the firm’s favourable organizational culture and 
policy to consider environmental concerns and integrate them into 
product and process design while meeting the environmental expecta-
tions, concerns and demands of external stakeholders. MO capability 
refers to the climate-related information to develop relevant customer, 
competitor and climate-related strategies. Despite the importance of the 
capability view to strategically comply with the changing environment 
(technological, competitor, and market conditions), there is a paucity of 
research on AI-powered climate actions.The dynamic capability view 
embcdded in our model can play a key role in facilitating this capability 
alignment, particularly for the high pollution-intensive industries, such 
as fast fashion (Wilden and Gudergan (2015); Mohiuddin Babu, Akter, 
Rahman, Billah, & Hack-Polay, 2022). 

The application of the AIPCSI, as a dynamic capability, warrants 
robust AI, market and environmental understanding to harness climate 
insights. Our model therefore posits that manufacturing firms that are 
operating in a dynamic environment need to develop an AI orientation 
to adapt and innovate with market and technology developments 
(Teece, 2014), which will be essential for EO and MO capabilities. 
AIPCSI can help manufacturing firms reduce emissions, mitigate the 
effect, adapt and respond to the changes, and use natural resources 
efficiently. Such capabilities can enable a firm to react quickly to 
mission-critical applications in information-intensive environments to 
create, extend and modify their tactics (Akter, Michael, Uddin, McCar-
thy, & Rahman, 2022; Eisenhardt & Martin, 2000). 

Based on the microfoundations of DC view, this paper suggests that 
AIPCSI, as a dynamic capability, provides the impetus to develop AI 
orientation, environment orientation and market orientation capabil-
ities and use resources to enhance environmental and market perfor-
mance. As such, the conceptual model is proposed to capture the 
nomological relationship between AIPCSI, environmental and market 
performance (Russo &Fouts, 1997; Jacobs, Singhal, & Subramanian, 
2010; Lucato, Costa, & de Oliveira Neto, 2017; Hirunyawipada & Xiong, 
2018; Wamba, 2022a; Wamba, 2022b). 

4.1. AIPCSI and environmental performance 

The present-day business community is highly concerned about the 
impact of business operations on the environment. Environmental per-
formance refers to the extent of improvements in environmental out-
comes (Song, Fisher, Wang, & Cui, 2018), such as emission of gases, 
energy usage while complying with environmental regulations and 
preventing environmental crisis along with economic value per unit of 
environment loading (Koskela & Vehmas, 2012; Liu, Meng, Li, & Zhang, 
2010). 

In practice, digital innovation has received increased importance 
from firms to improve environmental performance (Ardito, Raby, Al-
bino, & Bertoldi, 2021; Bendig, Schulz, Theis, & Raff, 2023; Cao, Nie, 
Sun, Sun, & Taghizadeh-Hesary, 2021; Garske et al., 2021; Joerss, 
Hoffmann, Mai, & Akbar, 2021; Li, 2022; Li, Dai, & Cui, 2020; Nie-
meijer, 2002; Paschou, Rapaccini, Adrodegari, & Saccani, 2020; Sareen 
& Haarstad, 2021; Wang & Teng, 2022). Previous research has exam-
ined the integration of IT in environmental management processes to 
enhance the efficiency and flexibility of the process (Belhadi, Kamble, 
Zkik, Cherrafi, & Touriki, 2020; Benzidia, Makaoui, & Bentahar, 2021; 
Niemeijer, 2002; Song et al., 2018; Song, Du, & Zhu, 2017; Wang, Chen, 
& Benitez-Amado, 2015). A recent study by Bendig et al. (2023) suggests 
that digital innovations empower firms to implement environmentally 
sustainable practices, policies and business models. Innovative tech-
nologies, such as precision applications, can reduce the amount of water 
and chemicals needed to operate today’s firms, and advanced digital 
technologies like robots, drones, and various types of sensors can all help 
firms become more environmentally friendly (Schwartz, 2021). Mer-
cedes Benz and Analog Devices have, for instance, partnered to achieve 
sustainability by using digital technologies (Yokoi, 2023) while manu-
facturers like Rolls Royce and Silvermill Group have partnered with IFS, 
an enterprise software company (Ouissi, 2022), to reduce emissions in 
the production process, gain better control of materials usage and 
improve environmental efficiency. 

In the fashion industry, several big brands have collaborated with 
other IT-based firms to implement AI and other new-age digital tech-
nologies. For example, H&M and Tommy Hilfiger have recently 

Fig. 1. Research model.  
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implemented AI and predictive technology to understand the environ-
mental nuances of each raw material and input. Inditex, the world’s 
largest fashion retailer (selling brands like Zara, Massimo Dutti), is 
planning to invest 2.7 billion euros to improve their online capabilities 
and technology upgrades (Oliver, 2020). In 2021, Moët Hennessy Louis 
Vuitton (LVMH) and Google Cloud announced a strategic partnership to 
develop new cloud-based AI solutions to enhance demand forecasting 
and inventory optimisation (Daimagister, 2023). In Bangladesh, PacT 
(Advisory Partnership for Cleaner Textile) is a holistic program, devel-
oped with support from Denmark, Netherlands and IFC, that supports 
the entire textile value chain to bring about systemic and positive 
environmental change for the Bangladesh textile sector and contribute 
to the sector’s long-term competitiveness and environmental sustain-
ability. A report published by HSBC and IUCN Sri Lanka (2021) suggests 
that PaCT has partnered with 200 textile factories to support them in 
implementing sustainable, resource-efficiency projects, which have led 
to considerable savings in resources, such as cumulative cost savings of 
USD 16.3 million/year for participating factories. 

The dynamic digital world has enabled firms to access the most 
updated data-driven innovations, including AI, which plays a key role in 
developing the firm’s various capabilities that are instrumental for 
achieving performance (Akter et al., 2020; Akter, Gunasekaran, Wamba, 
Babu, & Hani, 2020; Gartner, 2023; Hossain et al., 2022; Liu et al., 2021; 
Sultana et al., 2022; Sundu et al., 2022; Yablonsky, 2019). Regarding 
improving energy efficiency, reducing emissions, and increasing 
renewable energy sources, AIPCSI as a dynamic capability, facilitates 
mitigation, manages vulnerabilities, forecasts hazards and provides 
basic climate research and education (Maher et al., 2022). AIPCSI gen-
erates and disseminates climate information and converts them into 
actionable forms to aid decision-making. More specifically, it will 
improve the manufacturing firms’ system to create environmental 
indices and knowledge to avoid, mitigate, or offset the environmental 
impacts of the firm’s products, services, or processes while responding to 
social trends, tackling environmental challenges, and preventing 
ecological crises (Blass & Corbett, 2018; Cascone, 2023; Li, Zhao, Ortiz, 
& Chen, 2023; Luzzani, Grandis, Frey, & Capri, 2021; Niehoff et al., 
2022). It enables manufacturing firms to adopt digital innovations to 
reduce the environmental impact of business activities while improving 
energy and material efficiency and managing climate-related risks and 
opportunities (PaCT, 2023; HSBC and IUCN Sri Lanka, 2021; George, 
Merrill, & Schillebeeckx, 2021; Sivarajah, Irani, Gupta, & Mahroof, 
2020; Kaack et al., 2022; Stein, 2020). 

AIPCSI, as a dynamic capability, will enable manufacturing firms to 
adopt proactive, rather than reactive, approaches so as to enhance 
environmental performance, as dealing with environmental and 
climate-related issues requires greater intangible skills, capability and 
resources. With regard to influencing the firm’s environmental perfor-
mance, data-driven innovations powered by fourth-industrial revolution 
Technologies, such as IoT, BDA, AI and cloud computing, has significant 
implication through the automatic optimization of manufacturing pro-
cesses (Lopes de Sousa Jabbour et al., 2018; Kumar & Bhatia, 2021; Liu 
et al., 2020; Dubey et al., 2019; Li et al., 2020; Babu, Rahman, Alam, & 
Dey, 2021; Yablonsky, 2019; Sundu et al., 2022; Sultana et al., 2022; 
OECD, 2015). Adoption of these technological innovations would 
enhance the organization’s sensing, seizing and reconfiguring capa-
bility, which are the foundations of DC theory (Akter, Motamarri, et al., 
2020). Consequently, they will help develop a flexible operational 
model to ensure optimum consumption of natural resources and 
enhanced reduction of pollutants, thereby providing efficient solutions 
for sustainable processes and product designs (Li et al., 2020). 
Furthermore, it enhances the constant flow of information and updates 
that facilitate sustainability in digital innovation and eco-design (Dubey 
et al., 2019; Li et al., 2020), minimises waste and reduces the emission 
and consumption of hazardous/toxic material (Kumar & Bhatia, 2021). 

Fashion brands are now seriously exploring alternative materials 
that have less environmental impact. A recent study shows that fashion 

labels could eventually move to fully interactive and customised design 
and supply in which AI-created mock-ups of garments are made in small 
batches using automated production, which will reduce the usage of 
fewer resources (PWC, 2017). FINESSE, an AI-driven and sustainable 
fashion label, uses natural language processing and machine learning 
algorithms for demand forecasting of their fashion items based on Gen Z 
customers’ perefernces. This provides the exact size of an order, thereby 
lessening overstocking and reducing wastage of resources during pro-
duction (Roberts-Islam, 2021). Datacolor‘s SmartMatch solution em-
ploys AI and ML to improve colour of the clothing by reducing the need 
for unnecessary dye correction and thus reducing the wastage of rele-
vant resources. Fashion houses like Adidas, H&M, Panagia and Wrangler 
have partnered with alternative clothing material producers like Kin-
tara, InfinitedFiber Company and Spinnova, who have developed 
breakthrough technology to produce alternative materials from wood, 
papers or waste, such as leather, agriculture, textile or food waste 
(Roberts-Islam, 2021). 

Chen, Liu, Huang, and Dang (2022) study suggests that the appli-
cation of AI in designing the environmental cost control system of 
manufacturing enterprises can play an instrumental role in realising the 
internalisation of environmental costs. Benzidia et al. (2021) suggest 
that AI technologies improve internal and external environmental 
integration in supply chain processes and further contribute to envi-
ronmental performance. As a result, AIPCSI would enhance environ-
mental performance, such as energy efficiency, controlled pollution, 
reduction of wastage, optimum consumption of natural resources and 
sustainable eco-design. As such, we put forward the following 
hypothesis: 

H1. AIPCSI positively affects the environmental performance. 

AIPCSI as DC enables firms to sense opportunities and threats related 
to climate change, and to then strategically plan and develop structures 
and processes in response to these. In the fashion industry, AI would play 
a key role in predicting customer demand and optimsing the perfor-
mance of manufacturing processes (Mohiuddin Babu et al., 2022). The 
micro-foundations of DC view help the firm to develop the strategic use 
of AI in respect of climate service analytics. Usin AI in this way is 
believed to assist decision makers in crafting marketing strategies 
related to cost reduction, enhancing image, accessing new markets, 
generating more profit, improving market share, and gaining customer 
trust (Akter, Bandara, & Sajib, 2021). 

There are several studies that have established the key role of AI in 
enhancing the perrofmnce of manufacturing firms (Bag et al., 2021; 
Hossain et al., 2022; Mikalef & Gupta, 2021). This enhanced integration 
of industry 4.0 technologies (e.g., BDA and AI) into a firm’s 
manufacturing process can help to generate information about the 
external market and redefine how it manufactures its products leading 
to improved market performance (Kumar & Bhatia, 2021; Zhong, Xu, 
Chen, & Huang, 2017). Several firms use AI-enabled 3D-model yarn 
patterns that provide a more sustainable alternative to synthetic mate-
rials. Brands like Hugo Boss and Tommy Hilfiger have already imple-
mented 3D sampling practices to reduce textile excesses in the garment 
design stage (Daimagister, 2023). Marketing analytics capability, pow-
ered by BDA and AI, has a significant impact on the firms’ performance 
in the manufacturing sector. In sum, AIPCSI enhances the firm’s capa-
bility in terms of climate service innovation and the design and im-
plantation of its environmental strategy. This leaves it strongly 
positioned to achieve sustainability in production processes, manage 
resources efficiently, and meet its environmental targets, all of which 
eventually improve market performance. Thus, we posit: 

H2. AIPCSI positively affects the market performance. 

EO enables firms to adopt ecologically responsible operations to 
minimize the environmental impacts of the production process while 
addressing ecological problems. It also enhances the firm’s environ-
mental and financial performance by optimizing operational efficiency 
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(Chan et al., 2012a; Hart & Ahuja, 1996; Menguc & Ozanne, 2005; Zhou, 
Xia, Feng, Jiang, & He, 2020). A manufacturing firm’s EO results in 
positive environmental performance (Chavez et al., 2021), which 
eventually demonstrates the firm’s positive attitude and commitment 
towards the environment. Moreover, a manufacturing firm’s reputation 
can be improved through the demonstration of reduced environmental 
impacts of production processes, development and maintenance of 
stringent environmental management standards and achieving relevant 
certifications. Such a positive reputation enhances the firm’s capability 
to improve overall financial performance (Jacobs et al., 2010). 

A heightened brand reputation, through improved environmental 
performance, can also enable firms to access new markets, secure new 
sales leads, and generate more revenues. For example, there is high 
demand for fashion clothing produced with organic materials. Global 
apparel brands like Disney, M&S have increased their order of high-end 
clothing in the last two years from Bangladeshi green factories as they 
have become more compliant to environmental and safety regulations 
(Business Standard, 2023; The Daily Star, 2019). Zaber and Zubair 
Fabrics Limited is a Bangladeshi supplier to IKEA, H&M, Lidl, and other 
global brands for over two decades, it has implemented caustic recovery 
plants, which resulted in several environmental (hot water generation of 
28 million litres) and financial benefit (cost-saving 3.8 million US dollar) 
annually. Fakir Apparels invested in exhaust gas recovery boilers, which 
resulted in direct environmental benefits (27,460 kW energy saving) and 
financial benefits (cost savings of $208,000) yearly (HSBC and IUCN Sri 
Lanka, 2021). Moreover, effective environmental management includes 
mitigating risks of losses from crises or regulations and preventing ex-
penses associated with lawsuits and legal settlements. Hence, we 
propose: 

H3. Environmental performance positively affects the Market 
Performance. 

4.2. The mediation effect of environmental performance 

AIPCSI has both a significant direct and indirect effect on market 
performance through environmental performance. The BCG Climate AI 
Survey report (Maher et al., 2022) indicates that AIPCSI can play a 
pivotal role in mitigation, managing vulnerabilities, forecasting hazards 
and in basic climate research and education, which improves energy 
efficiency, reduces emissions and increases the use of renewable energy. 
The integration of technological innovation in environment manage-
ment systems has ensured optimal consumption of resources, reduced 
pollution and emissions, led to efficient and sustainable processes (Li 
et al., 2020), generated a constant flow of real-time information (Dubey 
et al., 2019) necessary to reporting on performance in relation to envi-
ronmental standards and regulations (Li et al., 2020) and has assisted in 
the reduction and consumption of hazardous/toxic material (Kumar & 
Bhatia, 2021). Through environmental and technological capital, 
AIPCSI facilitates environmental innovation capability in the firm’s 
production process and its managing ecological standards, which results 
in cost-effective operations and environmental protection (Ma, Sha, 
Wang, & Zhang, 2023) and improved economic performance (Amores- 
Salvadó, Martin-de Castro, & Navas-López, 2015). Lopes de Sousa Jab-
bour et al. (2018) argued that Industry 4.0 technologies (e.g., BDA, AI) 
can improve environmental and economic performance outcomes and 
contribute towards sustainable development goals. AIPCSI enables the 
firm to convert a large volume of climate data into valuable business 
insight, resulting in improved environmental performance and, subse-
quently, operational efficiency, increased revenue and decreased oper-
ational expenditure. A firm’s environmental performance positively 
influences market performance by increasing revenue, reducing costs 
and enhancing corporate reputation. From the consumers’ point of view, 
a firm’s environmental performance is an important indicator to influ-
ence consumer purchase intentions (Grimmer & Bingham, 2013). 
AIPCSI provides climate insights that eventually enable firms to not only 

to keep a tap on environmental indices, but also to provide key infor-
mation to manage environmental standards and predict future trends, 
which are crucial for market performance. Thus, we put forward the 
hypothesis: 

H4. Environmental performance mediates the relationship between 
AIPCSI and the Market Performance. 

4.3. Moderating and quadratic effects of hierarchical AIPCSI 

The extant literature on dynamic capabilities identifies a few mod-
erators, such as market turbulence (Li, 2022), calculative and affective 
commitments (Guo, Yen, Geng, & Azar, 2021), environmental dyna-
mism (Chan, Yee, Dai, & Lim, 2016; Li et al., 2020), the liability of origin 
(Ellimäki, Gómez-Bolaños, Hurtado-Torres, & Aragón-Correa, 2021), 
environmental culture (Fraj, Martínez, & Matute, 2011), regional factors 
(Li et al., 2019), network capabilities (Kohtamäki, Partanen, Parida, & 
Wincent, 2013), environmental management capability (Wong, Lai, 
Shang, Lu, & Leung, 2012), environment (Mikalef et al., 2019), 
competitive intensity (Chan et al., 2012b), and environmental orienta-
tion (Chavez et al., 2021). However, there is limited research on the 
moderating impact of a hierarchical AIPCSI on performance outcomes. 
Following on from similar studies on hierarchical moderating effects 
(Akter, D’Ambra, & Ray, 2010; Akter, Wamba, & D’Ambra, 2019; Hani, 
Akter, Wickramasinghe, Kattiyapornpong, & Mariani, 2022), we pro-
pose AIPCSI as a hierarchical moderating construct, which might in-
fluence the strength and/or direction of the association between AI- 
powered climate service innovation capability and outcome constructs 
in industrial markets. 

H5. AIPCSI moderates the relationship between environmental per-
formance and market performance. 

This study also argues that AIPCSI might have a non-linear rela-
tionship with both outcome constructs. In other words, AIPCSI might 
self-moderate the associations between outcome constructs. As a result, 
the values of AIPCSI might change the proposed linear relationship 
between AIPCSI-ENPE as well as AIPCSI-MAPE. The logic for intro-
ducing quadratic effects lies in the assumption that the impact of AIPCSI 
on outcome constructs might change in a non-linear manner as the level 
of AIPCSI increases. Past studies in marketing reported various non- 
linear relationships, such as satisfaction and loyalty (Eisenbeiss, Cor-
nelißen, Backhaus, & Hoyer, 2014); promotional expenditure and 
product sales (Hay & Morris, 1991), time and innovation diffusions 
(Bass, 1969), relationship quality and customer value (Hani et al., 
2022). However, there is limited research on the role of AIPCSI capa-
bility on environmental and market performance in industrial markets. 
The extant literature in environmental management indicates that the 
firm’s environmental orientation, influenced by the application of 
modern-day digital technologies, significantly impacts both environ-
mental and market performance. The adoption of such technologies (e. 
g., BDA, AI) enhances a firm’s dynamic capabilities in managing the 

Table 2 
Demographic profile (main study n = 211).  

Gender Age Number of employees (Firm Size) 

Male 81.8% 18–25 11.9% 101–249 5.2% 
Female 18.2%   

25–34 33.1% 
35–44 35.3% 250–999 12.3% 
45 + 19.7% 500–999 25.1%   

1000–2499 30.2% 
2500–4999 15.3% 
5000+ 11.9% 

Experience  Industry type 
< 3 years 34.0% Woven 41.2% 
3–5 years 32.1% Knit 39.8% 
>5 years 33.9% Both 19.0%  
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Table 3 
Measurement items of the constructs.  

Constructs Sub-constructs Definitions Code Measurement Items Sources 

Environmental 
Orientation 

capability (ENOR) 

Internal environment 
orientation (INEN) 

It refers to the firm’s internal values and 
ethical standards regarding the level of 
commitment it should render to 
environmental protection. 

INEN1 Our firm makes concerted efforts to let 
every employee understand the 
importance of environmental 
preservation. 

Chan et al. (2012a) 

INEN2 Our firm has clear policy statements 
urging environmental awareness in 
every area of operations. 

INEN3 Environmental preservation is highly 
valued by our firm members. 

INEN4 Environmental preservation is a central 
corporate value of our firm. 

External 
environment 
Orientation (EXEN) 

It refers to managers’ perceptions of the 
need to satisfy the environmental 
demands of external stakeholders. 

EXEN1 The developments in the natural 
environment affect our firm’s business 
activities. 

Chan et al. (2012b) 

EXEN2 The financial well-being of our firm 
depends on the state of the natural 
environment. 

EXEN3 Environmental preservation is vital to 
our firm’s survival. 

EXEN4 Various external stakeholders expect our 
firm to preserve the environment. 

Environmental 
practices Orientation 
(ENPR) 

The extent to which a firm systematically 
integrates environmental issues into 
product and process design. 

ENPR1 AI-powered service innovations are 
designed for reduced consumption of 
energy. 

Zhu and Sarkis (2004),  
Cerdan et al. (2009),  
Knight and Jenkins (2009), 
and Sarkis et al. (2010). ENPR2 AI-powered service innovations are 

designed for reuse, recycling, recovery of 
material/component parts. 

ENPR3 AI-powered service innovations are 
designed to reduce the use of hazardous 
materials in their manufacturing process. 

ENPR4 AI-powered service innovations are 
designed for eco-friendly marketing. 

AI orientation 
capability (ANOR) 

Data orientation 
(DAOR) 

The degree to which a firm integrates big 
data for AI-powered climate service 
innovations. 

DAOR1 We have access to very large, 
unstructured, or fast-moving data for 
service innovation. 

Mikalef and Gupta (2021) 

DAOR2 We integrate data from multiple sources 
into a data warehouse for new service 
developments. 

DAOR3 We integrate external data with internal 
to facilitate service innovation. 

Model orientation 
(MOOR) 

The degree to which a firm’s AI-powered 
climate solution understands the 
potential threats and problems. 

MOOR1 Our models can understand the nature of 
climate risk. 

Li and Liu (2018); Akter 
et al. (2023) 

MOOR2 Our models consider climate concerns 
from multiple viewpoints. 

MOOR3 Our models can decompose a challenging 
climate problem into parts to attain 
greater understanding. 

Ethical orientation 
(ETOR) 

The degree to which a firm’s AI-powered 
climate solution embraces benevolence in 
providing environmental solutions. 

ETOR1 Our AI-powered service innovations are 
benevolent. 

Gefen, 2002; Akter et al. 
(2010) 

ETOR2 Our AI-powered service innovations 
have good intentions. 

ETOR3 Our AI-powered service innovations are 
well-meaning. 

Market Orientation 
capability (MAOR) 

Customer orientation 
(CUOR) 

The degree to which AI-powered climate 
solutions consider the current market 
movement. 

CUOR1 We constantly monitor our level of 
commitment and orientation to serving 
customers’ needs. 

Nakata et al. (2018) 

CUOR2 We comprehend customers’ needs and 
wants. 

CUOR3 We shape business strategies in order to 
create superior customer value. 

CUOR4 We measure customer satisfaction 
systematically and frequently against our 
service innovations. 

Competitor 
orientation (CMOR) 

The degree to which AI-powered 
solutions consider competitors in 
providing solutions. 

CMOR1 We consistently collect and disseminate 
competitor’s service innovations-related 
information within the business silos. 

Nakata et al. (2018) 

CMOR2 We regularly share information within 
our business concerning competitors’ 
service innovation strategies. 

CMOR3 We rapidly respond to competitive 
actions that threaten our service 
innovations. 

CMOR4 We target new markets and new products 
for data-driven service innovations when 

(continued on next page) 
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firm’s climatic service innovation. However, AI-powered innovations 
must constantly be able to sense the fundamental challenges of climate 
in the relevant market and seize the opportunities and/or avoid threats 
by reconfiguring resources. If AIPCSI fails to tackle climate challenges 
meaningfully, the strength of the overall positive effect of AIPCSI on 
environmental/market performance might decrease in size at some 
point. Thus, we posit: 

H6a. AIPCSI has a non-linear effect on environmental performance. 

H6b. AIPCSI has a non-linear effect on market performance. 

5. Methods 

5.1. Research setting 

Our research setting is the fast fashion industry, which is one of the 
most resource-hungry and pollution-intensive industries ingtne world, 
accounting for 10% of human-caused greenhouse gas emissions, 93 
billion metric tons of clean water consumption and 20% of global 
wastewater each year (Cho, 2021). 

We collected data from Bangladesh as it is the world’s second largest 
readymade garment (RMG) manufacturer. Bangladesh is also home to 
the highest number of green garment factories (BGMEA, 2023) in the 
world. It has >192 Leadership in Energy and Environmental Design 
(LEED) green garment factories and >1500 companies certified by the 
Global Organic Textile Standard (Berg, Chhaparia, Hedrich, & Magnus, 
2021). The RMG industry in Bangladesh produces apparel for all the big 
global brands (Primark, Nike, H&M, Zara, G-Star Raw, Marks & 
Spencer) in 150 countries, which promise their ultimate customers to 
provide fashion with lesser environmental impact. For example, H&M, a 
fast fashion brand, commits to 56% emission reduction and 100% 
renewable electricity in its supply chain and operations by 2030 (RMG 
Bangladesh, 2023). A larger number of clothing brands such as Calvin 
Klein, Tommy Hilfiger and Next also require their supplying factories to 
be green, complying with environmental and safety regulations (Hos-
sain, 2023). To meet this target, the green RMG factories in Bangladesh 
use a basic level of mechanical AI, which is defined as data-driven ser-
vice solutions for routine, repetitive, simple and standardized tasks 
(Huang & Rust, 2021). These include measurement of emissions, 
calculating carbon footprint of individual products, identifying risk 
factors, forecasting demand to reduce waste and climate education. This 
study focuses on RMG firms in Bangladesh, which currently use at least 

one data-driven climate solution (or mechanical AI). 

5.2. Scale development 

We adapted scales from previous studies to measure environmental 
orientation in terms of the internal environment (Chan et al., 2012a), 
external environment (Chan et al., 2012b) and environmental practices 
orientation (Cerdan et al., 2009; Knight & Jenkins, 2009; Sarkis et al., 
2010; Zhu & Sarkis, 2004). To measure AI orientation, we adapted data 
orientation (Mikalef & Gupta, 2021), model orientation (Akter et al., 
2023; Li & Liu, 2018) and ethical orientation (Akter et al., 2010; Gefen, 
2002) scales. Finally, we adapted scales of customer orientation (Nakata 
et al., 2018), competitor orientation (Nakata et al., 2018) and learning 
orientation (Akter et al., 2023; Hossain et al., 2022) from past literature 
to measure market orientation. The outcome constructs were measured 
by adapting environmental performance (Zhu & Sarkis, 2004: Jacobs 
et al., 2010) and market performance (Fosso Wamba et al., 2017) scales. 
We used a 7-point Likert scale to assess all the constructs except for 
control variables (e.g., firm size, firm type and AI experience), which 
were measured using nominal scales. At the pre-test phase of the ques-
tionnaire design, we collected data from 25 respondents to check scale 
format, structure, item contents and overall layout. The pilot phase 
yielded 51 responses to check the nomological chain and dimensionality 
of the conceptual model. We have provided the definitions and sources 
of each measurement scale in Table 3. 

5.3. Data collection 

We collected data through a professional market research firm in 
Bangladesh by approaching managers with decision-making power in AI 
who were at least 18 years old and had at least one year of experience 
using very basic AI-powered climate service solutions (see Table 2). We 
developed the initial version of the questionnaire in English and trans-
lated it into local language (Bengali). We then backtranslated the 
Bengali version into English until a panel of experts proficient in both 
languages confirmed the reasonable similarity between the two versions 
(Hani et al., 2022). The questionnaire was sent to a panel of 524 man-
agers. We received 244 responses in total and analyzed 211 complete 
responses after excluding all spurious responses, such as missing values, 
flatliners, and low response time. The diversity of responses is evident in 
Table 2 through analysis of the demographic profile of the respondents. 

Table 3 (continued ) 

Constructs Sub-constructs Definitions Code Measurement Items Sources 

they bring competitive advantage over 
competitors. 

Climate learning 
orientation (CLOR) 

The degree to which AI-powered climate 
solution learns, adapts and improves. 

CLOR1 We can learn climate preference 
behaviours across all channels. 

Akter et al. (2023) 

CLOR2 We can know climate-related concerns or 
possibilities. 

CLOR3 We can understand the procedures of 
climate actions influencing buyers. 

Environmental performance (ENPE) It refers to an organization’s achievement 
of performance outcomes related to 
pollution control. 

ENPE1 Air emission Zhu and Sarkis (2004) and  
Jacobs et al. (2010). ENPE2 Wastewater 

ENPE3 Solid waste 
ENPE4 Consumption of toxic materials 
ENPE5 Frequency of environmental accidents 

Market Performance (MAPE) 
The degree to which AI-powered climate 
solution enhances market performance in 
B2B markets. 

MAPE1 
Using AI-powered service innovations 
during the last 3 years relative to 
competitors. 

(Fosso Wamba et al., 
2017) 

MAPE2 
We have entered new markets more 
quickly than our competitors 

MAPE3 
We have introduced new climate service 
solutions to the market faster than our 
competitors. 

MAPE4 Our success rate of new climate services 
has been higher than our competitors.  

S. Akter et al.                                                                                                                                                                                                                                    



Industrial Marketing Management 117 (2024) 92–113

103

5.4. Data analysis 

We identified our research model as a hierarchical, reflective 
research model in which the third-order construct is AI-powered climate 
service innovation capability. The third-order construct is reflected 
through three primary dimensions (e.g., AI orientation capability, 
environmental orientation capability and market orientation capability) 
and nine subdimensions. We used partial least squares (PLS)-structural 
equation modeling (SEM) as a data analysis technique to estimate the 
third-order, hierarchical model because of its robust prediction, factor 
identification and factor determinacy capacity (Hair, Hair, Sarstedt, 
Ringle, & Gudergan, 2023). More specifically, we applied the repeated 
indicator approach to estimate the reflective, higher-order models 
(Becker, Klein, & Wetzels, 2012; Sarstedt, Hair, Cheah, Becker, & Ringle, 
2019; Wetzels, Odekerken-Schröder, & Van Oppen, 2009). Following 
the established guidelines, we used SmartPLS 4.0 for estimating both the 
measurement and structural model with the path weighting scheme and 
a nonparametric bootstrapping with 5000 replications for inside 
approximation (Ringle, Wende, & Becker, 2022). 

5.5. Measurement model 

The study estimates the latent scores of the third-order, reflective 
measurement model consisting of nine first-order constructs: internal 
environment, external environment, environmental practices, data 
orientation, model orientation, ethical orientation, customer orienta-
tion, competitor orientation and climate learning orientation. Based on 
the established guidelines (Fornell & Larcker, 1981; Hair et al., 2023), 
first, we estimated the loadings, which exceed 0.70 and are significant at 
p < 0.001 (see Table 4). Second, we calculated composite reliability (CR) 
scores, which meet the minimum cut-off values of 0.80. Furthermore, we 
estimate the average variance extracted (AVE) scores, which exceed the 
threshold level of 0.50. Whereas loadings indicate scale reliability, both 
CR and AVE values reveal convergent validity. The control variables are 
of a formative nature due to their single item, and we estimate their 
weights and variance inflation factors (VIF). The VIF values evidence no 
collinearity among the variables since their values range from 1.071 to 
1.231 (≤ 5) (see Table 4). 

The discriminant validity of the first-order model was estimated in 
Table 5, first, by calculating the square root of the AVEs in the diagonals, 
which exceed the respective correlation coefficients (Fornell & Larcker, 
1981). Second, we checked the cross-loadings, which ensure that the 
target construct has higher loadings of its own items than other 

Table 4 
Assessment of First-Order, Reflective Model.  

Dimensions Reflective 
Constructs 

Items Loadings CR AVE 

Environmental 
orientation 
capability 
(ENOR) 

Internal 
environment 
orientation 
(INEN) 

INEV1 0.749 

0.833 0.556 
INEV2 0.809 
INEV3 0.700 
INEV4 0.749 

External 
environment 
Orientation 
(EXEN) 

EXEN1 0.897 

0.911 0.723 EXEN2 0.910 
EXEN3 0.925 
EXEN4 0.701 

Environmental 
practices 
Orientation 
(ENPR) 

ENPR1 0.840 

0.836 0.562 
ENPR2 0.733 
ENPR3 0.789 
ENPR4 0.702 

AI orientation 
capability 
(AIOR) 

Data orientation 
(DAOR) 

DAOR1 0.897 
0.937 0.832 DAOR2 0.952 

DAOR3 0.886 
Model 
orientation 
(MOOR) 

MOOR1 0.870 
0.937 0.833 MOOR2 0.948 

MOOR3 0.919 
Ethical 
orientation 
(ETOR) 

ETOR1 0.767 
0.842 0.640 ETOR2 0.864 

ETOR3 0.764 

Market 
orientation 
capability 
(MAOR) 

Customer 
orientation 
(CUOR) 

CUOR1 0.854 

0.890 0.671 CUOR2 0.729 
CUOR3 0.878 
CUOR4 0.809 

Competitor 
orientation 
(CMOR) 

CMOR1 0.875 

0.935 0.782 
CMOR2 0.890 
CMOR3 0.897 
CMOR4 0.876 

Climate learning 
orientation 
(CLOR) 

CLOR1 0.863 
0.897 0.745 CLOR2 0.826 

CLOR3 0.899 

Outcome 
constructs 

Environmental 
performance 
(ENPE) 

ENPE1 0.826 

0.879 0.595 
ENPE2 0.701 
ENPE3 0.705 
ENPE4 0.811 
ENPE5 0.858 

Market 
Performance 
(MAPE) 

MAPE1 0.965 

0.977 0.914 MAPE2 0.959 
MAPE3 0.956 
MAPE4 0.943 

Formative construct Items Weights 
t- 
value VIF 

Control variables (COVA) 
Industry 0.342 0.601 1.231 
Firm size 0.075 0.017 1.105 
Experience 0.375 0.167 1.071  

Table 5 
Correlations of LVs, AVEs and descriptive statistics*.  

Construct Mean Standard 
deviation 

INEN EXEN ENPR DAOR MOOR ETOR CUOR CMOR CLOR ENPE MAPE COVA 

Internal environment 
orientation (INEN) 

5.289 1.321 0.745            

External environment 
Orientation (EXEN) 

5.370 1.293 0.477 0.850           

Environmental practices 
Orientation (ENPR) 5.191 1.385 0.443 0.322 0.750          

Data orientation (DAOR) 5.286 1.373 0.320 0.345 0.476 0.912         
Model orientation (MOOR) 5.664 1.265 0.267 0.321 0.421 0.510 0.913        
Ethical orientation (ETOR) 5.453 1.233 0.336 0.452 0.491 0.232 0.471 0.800       
Customer orientation 

(CUOR) 
5.375 1.266 0.290 0.332 0.378 0.439 0.337 0.521 0.819      

Competitor orientation 
(CMOR) 5.711 1.285 0.465 0.472 0.382 0.289 0.393 0.534 0.401 0.885     

Climate learning orientation 
(CLOR) 5.444 1.117 0.478 0.510 0.390 0.342 0.461 0.399 0.366 0.282 0.863    

Environmental performance 
(ENPE) 

5.411 1.211 0.319 0.490 0.421 0.466 0.291 0.433 0.372 0.432 0.330 0.771   

Market Performance (MAPE) 5.584 1.274 0.364 0.343 0.329 0.487 0.479 0.491 0.302 0.390 0.289 0.369 0.956  
Control Variables (COVA) n.a. n.a. 0.071 0.090 0.071 0.082 0.058 0.065 0.091 − 0.064 − 0.042 0.020 0.043 n.a.  

* Square root of AVE on the diagonal. 
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constructs (Chin 2010). Finally, the heterotrait-monotrait (HTMT) cri-
terion indicates that all the values are well below 0.90, confirming 
another layer of discriminant validity (Henseler, Ringle, & Sarstedt, 
2015). 

As part of estimating the higher-order measurement model, we fol-
lowed established guidelines by Sarstedt et al. (2019) to estimate the 
reflective-formative model (see Table 6). Therefore, first, we conducted 
a redundancy analysis to estimate the path co-efficient (β = 0.613, p <
0.001) between AIPCSI as an exogenous latent variable predicting the 
same construct with a single global item (Hair et al., 2020). Second, we 
estimated the path coefficients between higher-order constructs and 
found that ENOR (β = 0.422), AIOR (β = 0.349) and MAOR (β = 0.344) 
are significant antecedents of AIPCSI. The findings show that environ-
mental orientation is reflected by INEN (β = 0.811), EXEN (β = 0.905) 
and ENPR (β = 0.587). Similarly, AI-orientation is reflected by DAOR (β 

= 0.868), MOOR (β = 0.761) and ETOR (β = 0.741). Finally, market 
orientation is reflected by CUOR (β = 0.909), CMOR (β = 0.931) and 
CLOR (β = 0.904). All the relationships are significant at p < 005. 

5.6. Structural model 

In order to test the hypotheses and estimate the key properties of the 
structural model (see Table 7), first, we estimated the path-coefficients 
(β), which indicate significant relationships between AIPCSI-ENPE (β 
= 0.784, p < 0.001), AIPCSI-MAPE (β = 0.488, p < 0.001) and ENPE 
-MAPE (β = 0.366, p < 0.001). Therefore, the findings support H1, H2 
and H3. Second, we estimated the R2, which shows that AIPCSI explains 
62% of the variance of ENPE and 65% of the variance of MAPE (see 
Fig. 2A). Following the guidelines of Preacher and Hayes (2008), Hayes 
et al. (2011) and Hair et al. (2017), we estimated the mediating effects of 
ENPE (β = 0.287, p < 0.001), which is significant. Thus, we support H4 
and confirm that ENPE is a significant partial mediator between AIPCSI 
and MAPE. Furthermore, we estimated the moderating effect of AIPCSI 
on the relationship between ENPE and MAPE using a two-stage 
approach Hair et al. (2017). The findings provide evidence of signifi-
cant moderation by AIPCSI on the ENVE-MAPE relationship (β = 0.106, 
t = 3.780) with a medium effect size (f2 = 0.060). It is evident that the R2 

value of MAPE increases (ΔR2 = R2
interaction - R2

main = 0.673–0.653 =
0.02) with the influence of AIPCSI as a moderator. Hence, we support 
the moderating effect of hierarchical AIPCSI and H5. Finally, we esti-
mated the quadratic effects to calculate the non-linear effects of AIPCSI2 

on ENPE (Fig. 3A) and MAPE (Fig. 3B). Both findings evidence a sig-
nificant, negative, quadratic effect of AIPCSI2 on ENPE (β = − 0.079) and 
AIPCSI2 on MAPE (β = − 0.103) (Kenny, 2015). These findings yield an 
inverse U-shaped curve or a concave curve in Fig. 3A and B. These curves 
show declining relationships between AIPCSI2-ENPE and AIPCSI2-MAPE 
links with each unit of standard deviation increase by AIPCSI. 

Table 6 
Assessment of the higher-order model.  

Model Second-order β t-statistic First-order β t-statistic 

Hierarchical, Reflective-formative 

Environmental orientation capability (ENOR) 0.422 6.563 
INEN 0.811 24.823 
EXEN 0.905 51.606 
ENPR 0.587 9.095 

AI-orientation capability (AIOR) 0.349 4.315 
DAOR 0.868 49.193 
MOOR 0.761 14.237 
ETOR 0.741 19.029 

Market orientation capability (MAOR) 0.344 5.715 
CUOR 0.909 49.530 
CMOR 0.931 74.473 
CLOR 0.904 56.804  

Table 7 
Results of the structural model.  

Hypotheses Main model Path 
coefficients 

Stand. 
error 

t-stat. R2 

H1 AIPCSI → ENPE 0.784 0.031 25.491 0.615 
H2 AIPCSI → MAPE 0.488 0.072 6.809 0.653 
H3 ENPE → MAPE 0.366 0.071 5.130 
H4 AIPCSI → ENPE 

→ MAPE 
0.287 0.059 4.864  

Interaction 
Model 

Path 
coefficients 

Standard 
error 

t-stat. R2 

H5 AIPCSI* ENPE 
→ MAPE 

0.106 0.028 3.780 0.673  

Quadratic 
Model 

Path 
coefficients 

Standard 
error 

t-stat. R2 

H6a AIPCSI2 → 
ENPE 

− 0.079 0.039 2.019 0.627 

H6b AIPCSI2 → 
MAPE 

− 0.103 0.030 3.437 0.672  

Fig. 2. A: Main model. 
B: Moderating Effects of AIPCSI*ENPE on MAPE. 
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5.7. Robustness analysis 

The out-of-sample predictive power of the overall research model 
was tested using PLSpredict (Shmueli et al., 2019). Using the PLSpredict 
procedure of 10 with 10 repetitions, the total sample was divided into a 
training sample of (n = 190) and a holdout sample (n = 21). The analysis 
found that there are smaller mean absolute error (MAE) and root mean 
squared error (RMSE) values for all the indicators of MKPE in compar-
ison with the naïve linear model (LM) benchmark. Thus, the findings 
support the predictivity validity of the third-order AIPCSI construct. 
With regard to common method bias (CMB), we have followed the 
guidelines by Kock (2015) and conducted a full collinearity assessment 
approach. The findings show that VIF values of the latent variables in the 
structural model are >3.3, which evidence the absence of CMB. 

5.8. Summary of findings 

The findings confirm a multidimensional, context-specific, hierar-
chical AI-powered climate service innovation (AIPCSI) capability, which 
has three primary dimensions and nine subdimensions. For example, the 
findings confirm environment orientation, AI orientation and market 
orientation as significant dimensions AIPCSI, in which environmental 
orientation (β = 0.422) is the most important predictor, followed by AI 
orientation (β = 0.349) and market orientation (β = 0.344). These 
findings are aligned with the commitment to sustainability by the fast 
fashion industry. Since the fashion industry is reliant on fossil fuels, 
nature intensive, and wasteful to the extreme and enormous pollution 
impact on its value chain (Arthur, 2022; Cho, 2021), our findings reit-
erate the importance of environmental orientation. The findings also 
highlight the unique positioning of AI and advanced analytics orienta-
tion to address the complex issue of mitigation, adaptation, and resil-
ience initiatives. At the same time, market orientation is critically 
important to meet the demands of large brands that increasingly prior-
itize sustainability and circularity in their value chain. The mediating 
findings confirm the partial indirect role of environmental performance 
between AIPCSI and market performance. Indeed, using the VAF 
(Variance Accounted For) calculation guideline (Akter et al., 2010), the 
findings show that environmental performance explains 38% of the 
overall variance between AIPCSI and MAPE. The findings on moderating 
effects show that environmental performance has a larger impact on 
market performance when AIPCSI is higher (see Fig. 2B). Finally, the 
findings on quadratic effects show that the strength of the overall pos-
itive effect of AIPCSI on environmental/market performance will 
decline in size. Fig. 3A shows a diminishing effect of AIPCSI2 on ENVE 
though the overall relationship is positive. In fact, if AI-powered in-
novations fail to address critical climate challenges, the industry might 
experience a diminishing rate of return from such innovations. 

Similarly, Fig. 3B shows an inverse-u-shaped curve, which indicates the 
declining impact of AIPCSI2 on MAPE over time, and the plausible 
reason might be the lack of novelty and meaningfulness in AIPCSI. 

6. Discussion 

6.1. Theoretical contributions 

The detrimental effects that fast fashion has on the environment are 
concerning, and as a result, there is a growing demand for sustainable 
industrial practices (Finke et al., 2016; Mattsson & Junker, 2023). To 
overcome these challenges, we introduce a new framework of AIPCSI 
capabilities to deliver climate-related service innovation and perfor-
mance. Our research makes two primary theoretical contributions by 
probing into antecedents and outcomes of AIPCSI capabilities. First, we 
identify the components of AIPCSI capabilities and provide detailed 
insights into its dimensions and sub-dimensions. This is a significant 
contribution, as to the best of our knowledge, this is the first study to 
establish a comprehensive theoretical view of AIPCSI capabilities. Spe-
cifically, we extend our current understanding of service innovation in 
the climate space by integrating three theoretical perspectives: dynamic 
capabilities, environmental orientation, and market orientation. 
Through our empirical research, we have established AI, environmental, 
and market orientations as key dimensions of AIPCSI capabilities and 
identified the microfoundations of each. By integrating these three ca-
pabilities and their subdimensions as microfoundations, we showcase 
the complexity of addressing innovative solutions in the climate space. 
In particular, we emphasize that focusing solely on environmental 
orientation is insufficient (Chan, 2010; Chavez et al., 2021; Keszey, 
2020), and researchers must explore various technological and market 
dynamics to understand what constitutes more sustainable innovations 
in this area (Chen, Chai, & Lau, 2021; Ikram, 2022; Maher et al., 2022). 

Second, we establish the significant impact of AIPCSI on two key 
indicators of firm performance: environmental performance and market 
performance. By linking AIPCSI capabilities with these performance 
indicators, we extend existing literature in several ways. We empirically 
justify our theoretical argument that AI-powered solutions in the climate 
space can have a strong and direct impact on a firm’s environmental 
performance. We also demonstrate the ability of AIPCSI capabilities to 
impact market performance directly and indirectly through environ-
mental performance. To further advance our understanding of the ca-
pabilities of AI-powered climate innovations, we illustrate that 
environmental performance can have a substantial impact on market 
performance when a firm has robust AIPCSI capabilities. While 
extending this nomological net, we also reveal an inverse-U-shaped 
relationship between AIPCSI capabilities and outcome constructs (i.e., 
ENPE & MAPE), indicating a diminishing return over time, possibly due 

Fig. 3. A: Quadratic negative effects of AIPCSI2 on ENPE*. 
(*Solid line shows the quadratic term is negative. The dotted line shows that the overall relationship is positive and linear). 
B: Quadratic negative effects of AIPCSI2 on MAPE*. (*Solid line shows the quadratic term is negative. The dotted line shows that the overall relationship is positive 
and linear). 
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to a lack of novelty and meaningfulness in AI-powered innovations in 
this area. Overall, our study contributes to both climate protection 
(Finke et al., 2016; Mattsson & Junker, 2023; Vesal et al., 2022) and AI- 
driven service innovation (Biemans & Griffin, 2018; Huang & Rust, 
2018, 2021, 2022) research streams by revealing the significant impact 
of AIPCSI capabilities on performance parameters in industrial markets. 

6.2. Practical implications 

The findings of this research suggest that managers in the fast fashion 
industry would do well to prioritize development of AI-driven capabil-
ities, such as AIPCSIC so as to minimize the impacts of their business 
operations on the environment and climate whilst simulatneously sus-
taining or improving market performance. That said, the results also 
demonstrate that AI is not a stand-alone solution. They suggest that to 
leverage its potential, considerable investment needs to be made in 
other complementary capabilities; notably environmental orientation, 
AI orientation, and market orientation. Traditionally, firms have tended 
to have a narrow focus on only one of these orientations whereas our 
findings point to their needing to develop all microfoudnations (or 
subdimensions) of AIPCSI capability. On the evidence presented in the 
study, such a multi-orientated response offers a means by which to 
greatly improve a firm’s DCs in the areas of sensing, seizing and 
reconfiguring. There has, for example, been a significant focus on the 
impact of environmental orientation on firms and their climate out-
comes (Chan, 2010; Chavez et al., 2021; Keszey, 2020) whereas our 
study emphsises the value of managers and policymakers taking the 
more multi-orientated approach. It is an approach where the additional 
integration of AI and market orientations into their decision-making 
practice (sensing) enables them to make more effective strategic 
(seizing), data-informed decisions that improve business operations 
(reconfiguring). 

On the basis of our results we suggest that there are significant and 
wideranging opportunities for fashion firms to unlock the potential of AI 
and, more specifically AIPCSI, in practical ways that substantially 
improve their environmental performance. This is particularly apparent 
where one considers AI’s enormous potential to support the identifica-
tion, forecasting, and management of risks directly associated with 
climate change (Minevich, 2022). These risks include legal and repu-
tational risks arising from the firm failing to mitigate climate change by 
putting in place actions that help transition the economy off fossil fuels 
(Nyberg, Wright, & Bowden, 2022). 

For the fashion industry, the need to reduce carbon emissions and 
meet voluntary (e.g. the United Nations Framework Convention on 
Climate Change, 2021) and/or statutory (e.g. Financial Stability Board, 
2017) assurance and reporting standards related to this, is both a major 
challenge and a priority. It needs to intensify efforts, and urgently put in 
place demonstrably effective initiatives, that reduce its significant car-
bon footprint (United Nations Framework Convention on Climate 
Change, 2023). AI could have a significant role to play in achieving these 
objectives. For example, it shows enormous potential for helping com-
panies achieve emissions related targets and meet their reporting and 
assurance obligations related to Scope 1, 2, and 3 emisions as defined 
under the World Resources Institute and World Business Council for 
Sustainable Development (2004). The Protocol categorizes both direct 
and indirect greenhouse gas emissions (GHGs) by industry. Scope 1 
emissions are GHGs released directly from a business as a result of it 
activites (e.g. burning fuel in its own vehicles, generators, pumps or 
other fossil fuelled machinery). Scope 2 emissions are indirect GHGs 
emitted through energy purchased by a business (e.g. emissions pro-
duced by external electricity generators). Scope 3 emissions cover 
emissions not produced by the company itself, but which are the result 
of activities that it is indirectly responsible for up and down its value 
chain (e.g. the purchase, use and disposal of products from suppliers). 
For most firms, including those in the fashion industry, the reduction of 
Scope 3 offers the potential to have the largest impact on their carbon 

footprint. 
Our results indicate that investment in AI could enhance capability to 

comprehensively analyse a fashion firm’s carbon footprint in relation to 
Scope 1, 2, and 3 emsissions across its entire value chain and identify 
areas for improvement. At the same time, AI is also capable of sup-
porting the design of strategies and the reconfiguration of resources 
through which to achieve these improvements. As observed by several 
industry reports and media commentators, such AI-informed strategies 
and the operational changes that they lead to include optimization of 
logistics and supply chains, reduced enery usage and wastage in pro-
duction, and shifts to the use of renewable energy (Berg, Granskog, Lee, 
& Magnus, 2020). These and other potential benefits such as the use of 
AI to analyse data on consumer preferences and the automation of 
design and quality control, result in the production of clothing that is 
stylish and sustainable (Bertagnoli, 2022; Khanna, 2023). It is evident 
that some leading fashion and textile companies are already adopting 
these kinds of AI-driven solutions, seeing them as an important means by 
which to improve the impact of their operations on climate and meet 
their emsissions related targets and reporting requirements. For 
instance, Linda Leopold, Head of Responsible AI and Data at H&M 
Group, has commented that “AI will be an essential tool for H&M Group 
to achieve our vision of creating a climate-positive value chain by 2040” 
(Textiletoday, 2023). 

On the basis of our results we suggest that where firms use AIPCSI 
capability to develop and implement impactful climate action, it can 
reduce reptutional risk. We would also suggest that if AI is adopted in the 
fashion industry at scale and in the ways that we have highlighted, both 
the industry itself, and policymakers, will play a critical role in estab-
lishing ethical standards concerning its use; notably where it impacts 
data privacy, security, and bias management (Ashok, Madan, Joha, & 
Sivarajah, 2022; Chui, Roberts, & Yee, 2022). These considerations are 
particularly important in an era where the decisions and choices of key 
stakeholders (e.g. customers, investors, potential employees) are 
increasingly influenced by whether a firm can demonstrate genuinely 
ethical and sustainable business practices (Chavez et al., 2021; Keszey, 
2020; Nyberg et al., 2022). 

Our findings provide compelling evidence that investing in AIPCSI 
capability in the fashion industry improves not only environmental 
performance but also market performance, which is crucial for any 
profit-driven enterprise. AIPCSI capability can be viewed as a strategic 
investment, as it has been shown to complement and enhance a firm’s 
existing efforts to improve its market performance through environ-
mental performance (i.e., the moderating effect). Therefore, AIPCSI 
capability can bring about performance improvements in multiple ways 
for firms. However, based on the quadratic effects of AIPCSI, we caution 
that AI-powered climate innovations will eventually result in declining 
environmental and market performance if meaningful solutions to 
climate problems are not implemented. Therefore, continuous im-
provements in AIPCSI capability through research and development, 
innovation, and collaboration will be necessary to address the evolving 
needs and expectations of stakeholders and new climate challenges. In 
sum, and from a dynamic capability perspective, firms need to develop 
the microfoundations of AIPCSI so as to be able to continually sense, 
seize, and reconfigure climate opportunities and threats in ways that 
enable them to maintain competitiveness. 

7. Limitations, future research directions, and conclusions 

This study has several limitations. First, the contextual setting of the 
study is based on a very basic level of AI-powered climate solutions. For 
example, most of the AI solutions in this study are identified as me-
chanical, which learn and adapt to a small extent and serve as dash-
boards to visualise carbon emissions and water pollution across the 
supply chain of the fast fashion industry. This type of mechanical AI is 
suitable to serve the homogenous demands of business customers but 
lacks analytical or intuitive solutions. Future research can identify 
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analytical AI solutions in this industry, which are capable of exploring 
meaningful patterns and enhancing service productivity by providing 
customised solutions. Second, the findings are based on a single country 
and a cross-sectional study. Future studies could collect longitudinal 
data focusing on specific types of AI solutions (e.g., mechanical, 
thinking, feeling) so as to generalise the findings. Moreover, the nature 
of cross-sectional survey data is constantly beset with common method 
bias. Future studies could also use multi-method, multi-country ap-
proaches to address such limitations. Third, our study has only examined 
the fast fashion industry, future studies could investigate other high- 
polluting industries (e.g., energy, transport, manufacturing, construc-
tion, agriculture, food and retail sectors). Finally, future studies can 
model the effects of AI-powered climate solutions on customer lifetime 
value or customer equity, thereby extending our research findings from 
market performance. It could also be interesting to develop AI-powered 
dynamic capabilities to provide context-specific sustainable solutions 
into service development considering various environmental dynamism, 
such as market, regulatory and technological turbulence. 

Overall, our study shows that AI-powered climate solutions are an 
important source of competitive advantage and that this particular dy-
namic capability can make a significant contribution to performance in 
the fast fashion industry. The outcomes of our study point to the need to 
assign even greater value to AI which can evaluate data and information 
more easily than ever before and at scale. Specifically, our study has 
shown that AI’s capacity to do this can signficnantly impact planning 
and decision-making in respect of both market and environmental per-
formance. Moreover, it demonstrates that the former can be achieved in 
tandem with the latter and that environmental performance does not 
need to come at the expense of market performance. Indeed, the evi-
dence is that enhancements to the firms business model that are 
designed to improve its sustainability and reduce its impact on climate – 
for example, efficiencies in energy consumption, waste and carbon 
emissions - positively impact market performance. 

Some of the largest fashion retailers (e.g., H & M, Wal-Mart) are 
implementing initiatives to establish a green supply chain in the RMG 
industry across the world so as to reduce chemical, energy, and water 
usage. Other industries (e.g., automobile, technology) have been seri-
ously exploring avenues for sustainable solutions in raw materials, 
design, delivery, production and recycling/disposal to create fewer 
environmental impacts, increase customer value and transform indus-
trial markets. Given the significant and escalating climate risks that 
society faces there is an urgency to achieving such outcomes. 
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