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Abstract. In this paper we propose DKIBO, a Bayesian optimiza-
tion (BO) algorithm that accommodates domain knowledge to tune
exploration in the search space. Bayesian optimization has recently
emerged as a sample-efficient optimizer for many intractable scien-
tific problems. While various existing BO frameworks allow the in-
put of prior beliefs to accelerate the search by narrowing down the
space, incorporating such knowledge is not always straightforward
and can often introduce bias and lead to poor performance. Here
we propose a simple approach to incorporate structural knowledge
in the acquisition function by utilizing an additional deterministic
surrogate model to enrich the approximation power of the Gaussian
process. This is suitably chosen according to structural information
of the problem at hand and acts a corrective term towards a better-
informed sampling. We empirically demonstrate the practical utility
of the proposed method by successfully injecting domain knowledge
in a materials design task. We further validate our method’s perfor-
mance on different experimental settings and ablation analyses.

1 Introduction

Observing physical phenomena often requires a careful design of ex-
periments [5] to gain useful insights and discover new knowledge.
Such a design can be impractical due to the combinatorially large
and convoluted space of choices one has to consider. Bayesian op-
timization (BO) [16, 31] has emerged as a sample-efficient agent to
optimize over large spaces through iteratively querying potentially
unknown, expensive to evaluate objectives (i.e., black-box) that often
involve noisy measurements. BO has been successful across various
disciplines including tuning machine learning [3, 22], robotics [21],
online learning [34] reinforcement learning [26], selection of chemi-
cal compounds [12] and in the design of new materials [6].

Formally BO seeks to find the global optimum in the following
problem

x� = argmax
x∈X

f(x), (1)

where f : X → R is a function on the compact subset X ⊆ R
d.

Usually no formulation or information over f(·) is given, but we
rather capture our beliefs about its behavior through a prior distribu-
tion which is progressively updated as new data is acquired. BO acts
iteratively with the first step involving the selection of a surrogate
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model that approximates the correlation of the observed measure-
ments with the parameter space. The next step requires the design of
mechanisms to determine new points to query the objective in each
iteration, i.e., designing an acquisition function. This normally in-
volves calculating the expected informativeness of learning f(x) for
every point and in practice acts as a trade-off between exploration
versus exploitation in the sampling behavior of the optimizer. As
new measurements are collected, the surrogate model is updated ac-
cordingly and this two-step procedure is repeated until convergence.
Gaussian processes (GP) [29] are typically used as surrogate models
in most BO instantiations mainly due to their efficiency and simplic-
ity, i.e., having an amenable analytical form of the posterior distri-
bution. They form a collection of random variables where the joint
distribution of any finite subset is still a Gaussian distribution. In
practice, a zero-mean GP prior is often employed and some common
choices for a covariance kernel are the square exponential kernel and
Matérn kernel [29].

Most recently there has been an increasing interest over how
to exploit external knowledge in BO towards accelerating conver-
gence [28]. Many of these contributions primarily focus on em-
ploying external knowledge in a form of prior distribution added
to the model towards guiding the optimization to more fruitful re-
gions [36, 19, 15]. In most scientific tasks however, external knowl-
edge cannot always be fairly translated in a form of prior distribu-
tion. More importantly, such strategies hinder the induction of prior
bias in the problem and may ultimately shift the search into unex-
citing regions. Another series of works attempts to instead introduce
domain-specific knowledge or rules in a form of constraints [11].

In practice, it may make more sense to introduce other types of
external knowledge to the problem, such as structural information
about the optimization space or about the relationship between the
input parameters and the target objective, e.g., linear or non-linear,
etc. This type of domain knowledge can be more amenable for phys-
ical science problems such as materials science for example where
an optimal linear mixture of chemical compositions is sought [6].
In such domains especially, due to the inherent extreme imbalance
of optimality conditions, most surrogate models resort to smoothing
over the optimum or over-predicting near its location which can often
result to a local-minima confinement [35, 32]. While other choices of
surrogate models have been used in BO such as Random forests [14]
and Bayesian neural networks [37], these have empirically shown to
predominate exploration and lead to poor performance [7].
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Instead, in this work we propose a simple, yet novel approach that
can capture such domain-specific knowledge in BO by adaptively
augmenting the acquisition function with a suitably chosen predic-
tive model trained iteratively over previously sampled points in an
online learning fashion [22]. Instead of using a predictive model as a
surrogate model, we integrate its prediction power in the acquisition
function as a corrective term, allowing the benefits of both GP and
predictive model to be utilised. The proposed approach allows for
more flexibility in the choice of acquisition functions and appears
to improve upon standard BO on a materials design simulation task
when suitable prognostic models are chosen. Extensive empirical re-
sults and ablation analyses demonstrate that our method maintains a
competitive and robust performance overall.

The rest of the paper is organised as follows. Section 2 presents
recent works related to external knowledge exploitation in BO, while
Section 3 outlines the details of the proposed methodology. The per-
formance and robustness of our algorithm is evaluated and discussed
in Section 4 and Section 5 concludes our work and highlights some
future directions.

2 Relation to existing methods

External knowledge injection in BO has recently become fashion-
able with a number of interrelated approaches having been proposed
over the last few years. A common issue in BO in general is the
so-called “cold start” problem, i.e., the initial, usually randomly cho-
sen points, fail to adequately capture the landscape of the optimizing
objective. Most recently, a new branch of research explored the chal-
lenging task of utilizing knowledge from prior BO “campaigns”, e.g.,
meta-learning [23], to help warm-start the optimization as well as in-
jecting external information [17]. Transfer learning has been success-
fully applied to chemical reaction optimization [13] to bias the search
space by weighting the acquisition function of the current campaign
with past predictions.

A major line of works propose BO frameworks that incorporate
external knowledge in a form of prior beliefs from a fixed set of dis-
tributions [3]. A number of variants have been proposed that can ac-
commodate generative models coupled with user defined priors into
pseudo-posteriors [36] where the prior distribution is modeled us-
ing the “positive observations” for more efficient sampling. Other
works incorporate prior user beliefs with observed data and compute
the posterior distribution through repeated Thompson sampling [19].
New sampling points are approximated using a linear combination
of posterior samplings. In [28] prior beliefs are used to highlight
high-probable regions in terms of optimality through the probabil-
ity integral transform method. Finally, the work of [15] adaptively
integrates prior beliefs in the acquisition function as a decayed mul-
tiplicative term towards improved sampling, maintaining at the same
time standard acquisition function convergence guarantees. The use
of external knowledge as a GP prior provides a means to correct GP
predictions; however the customized mean function tends to domi-
nate as the optimization progresses in practice [30] and has shown to
negatively affect the performance overall [7].

While the accommodation of expert beliefs either as a surrogate
or in a form of acquisition function has been well studied recently,
structural aspects of the optimization have been at the forefront of
knowledge injected BO. In particular such methods employ struc-
tural priors, other than the GP kernel to model how the objective
function is expected to behave [14]. Such priors can either model
the monotonicity of the objective [20] or its non-stationarity [34].
Another series of works attempts to alleviate the issue of overex-

ploring the boundaries of the search space using multi-task Gaussian
process [38]. The work of [25] proposes a cylindrical kernel that ex-
pands the center of the search space and shrinks the edges, while [33]
propose adding derivative signs to the edges of the search space to
steer BO towards the center. Nevertheless, most of the aforemen-
tioned methods address specific only structural aspects tailored to
the problem at hand that are not directly generalizable. In this work
we instead propose a generalized strategy for structural knowledge
injection where a suitable predictive model is used to augment the
acquisition function and enrich the search with structural properties
of the problem at hand towards more effective exploitation in the op-
timization.

3 Enriching acquisition functions with domain
knowledge

In this section we propose a straightforward approach to inject gen-
eral type of external knowledge in BO by augmenting the acquisi-
tion function through a tunable predictive model acting as an assis-
tive surrogate to enrich the approximation power of the Gaussian
process model. Let D = {(xi, yi)}ni=1 be an observation dataset
and α(x,D) be an acquisition function, i.e., a criterion used to ob-
tain new candidate samples to evaluate across the various iterations
of BO. A commonly used acquisition function is upper confidence
bound (UCB) defined as

x� = argmax
x∈X

μ(x) + κσ(x), (2)

where μ(x) is the posterior prediction, σ(x) is the uncertainty and
the total objective represents a trade-off between exploration versus
exploitation in the search. We now enrich Eq. (2) with the output
of a predictive model ξ(x,D) such as a random forest or any other
tree-based model [14] at x as

x� = argmax
x∈X

α(x,D) + γξ(x,D). (3)

That is, the assistive predictive model is being trained sequentially
on new sample points as these arrive independently from the BO
procedure in a self-supervised regime. The addition of the predic-
tion output itself works as a correction to the sampling space without
affecting the parameters of the original Gaussian process. This can
be a suitably chosen deterministic model capturing various structural
information of the problem at hand towards a better-informed sam-
pling. Figure 1 further exemplifies the effects of augmenting the ac-
quisition in Eq. (3) by showing the different approximations of the
Ackley function by a GP and random forest regressor, as well as their
combined approximation power. Evidently, the latter panel demon-
strates a better approximation power by the new acquisition and thus
a richer sampling strategy.

While this iterative training process can incur a running-time off-
set, especially as the number of samples increases, this practically
becomes negligible in real-world tasks where measuring physical
phenomena is a time-consuming process. We further discuss and ex-
emplify this later in the experiments section where we demonstrate
that the proposed approach inhibits no delay in a materials design
optimization problem.

Depending on the choice of acquisition function, a weighting pa-
rameter γ needs to be chosen to ensure the predictive model term is
up to scale, without however affecting the prediction output of the
Gaussian process. For UCB, we select γ = 1 as the predictive model
output naturally acts as a correction to the posterior mean of the GP,
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Figure 1: Approximation of the Ackley function by two different sur-
rogate models and their combination. Red points represent datapoints
upon which the models are trained.

being at a similar scale. For EI and POI, which reflect the possible
improvement on the best score, a suitably designed scaling factor is
used to normalise the predictive contribution and bring the two terms
in the acquisition function to scale as follows

γ =

∑
α(xinit,D)∑
ξ(xinit,D)

, (4)

where xinit stands for the initial set of points used to seed the op-
timizer. This can be selected either randomly or through a careful
design of experiments.

In practice, the utility of the predictive model term tends to be
negligible during the initial steps of the optimization due to lack
of training data. Therefore, we employ a monotonically increasing
weight for the correction term that deemphasizes its contribution in
the initial stages, allowing a more GP-dominated sampling to take
effect, while boosting its contribution further down the optimization
process as soon as enough training data is made available. This can
be achieved by introducing the following quadratically increasing
weight function normalized to be in [0,1]

h(i) = min
(
1,

4i2

i2max

)
, (5)

where i denotes the optimization iteration number and imax is the
predefined total number of iterations. We therefore adjust the pro-
posed acquisition function as follows

α̃(x,D, i) = α(x,D) + γh(i)ξ(x,D). (6)

Furthermore, we have empirically observed that depending on the
problem at hand, the predictive model in the acquisition function can
dominate the search over the GP model and get stuck into local op-
tima affecting overall performance. To address this issue we further
propose an early stopping strategy so that the predictive model can be
dropped when such phenomena are observed, allowing the optimizer
to carry on only using standard GP prediction in a warm-start fash-
ion. We particularly monitor such cases by examining the closeness
of the different sampling points between consecutive BO iterations.
The following condition describes our proposed early stopping crite-
rion

‖xi − xi+1‖∥∥∥xi+1 − 1
i

∑i
k=1 xk

∥∥∥ < ε. (7)

Algorithm 1 summarizes the main steps of our proposed algo-
rithm, termed throughout the rest of the paper as DKIBO.

4 Experimental comparisons

We present a set of experiments to demonstrate the practical utility
of the proposed method on a wide range of problems, including the

Algorithm 1 Domain Knowledge Injected Bayesian Optimization
Require: Acquisition function α̃, maximum iteration number imax,

model prediction ξ(x,D), ε = 0.05.
1: Initialize observation dataset by random sampling D ←

{(xinit, yinit)};
2: if α(·) is UCB then

3: δ ← 1;
4: else

5: δ ←
∑

α(xinit,D)∑
ξ(xinit,D)

;
6: end if

7: i ← 0;
8: while i < imax do

9: Fit the predictive model ξ(x,D) with D;
10: Fit the Gaussian process GP ∼ N (0,KMatérn) with D;
11: Maximize α̃(x, i) and get new observation point x�;
12: Probe x� to get y�) and D ← D + {(x�, y�)};

13: if
‖xi−xi+1‖

‖xi+1− 1
i

∑i
k=1

x‖ < ε then

14: γ ← 0;
15: end if

16: i ← i+ 1;
17: end while

physical-world task of searching for new materials. We empirically
compare performances across various methods and demonstrate the
robustness of the proposed method. Section 4.1 details the various
experimental settings along with the selected comparison methods
used for benchmarking. Sections 4.2, 4.3, 4.4 and 4.5 present results
for four experimental settings, namely an analytical function opti-
mization task [7], a hyperparameter optimization task [1], a robotic
swimming simulation task [39] and a materials mixture design prob-
lem [6]. Finally, Section 4.6 details some ablation studies that further
highlight the robustness of the proposed methodology.

4.1 Experimental setup

We empirically test the performance of the proposed algorithm
across the following tasks:

• Synthetic functions Synthetic benchmark functions (as used
in [7]) of varying dimensionality with multiple local optima used
to test precision, convergence speed and robustness of BO meth-
ods. Simple regret and cumulative mean regret are used to measure
the performance of the optimization result and convergence speed,
respectively. The maximum number of iterations is set to 100 and
the median value of 50 repeated trials is reported.

• BBO challenge Black-box optimization challenge (NeuIPS
2020) [1] is a hyperparameter tuning challenge over a large num-
ber of machine learning models such as SVM, random forest, etc.
The score is computed by the bayesmark package using the
minimum value achieved by an algorithm normalized by the ex-
pected minimum and maximum objective function values f , fol-
lowing the equation: si = 100 ∗ fmax−fi

fmax−fmin
.

• Robotic swimming task Robotic swimming simulation environ-
ment MuJoCo [39] that is used for testing reinforcement learning
tasks, where the goal is to swim as fast as possible. Here we adapt
the task to a black-box optimization one by linearly mapping the
observation space matrix to the action space as a 16-dimensional
optimization problem where the target is the average reward. The
maximum number of iterations is set to 100 and the median value
of 50 repeated trials is reported.
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• Photocatalytic hydrogen production We replicate the materials
design problem addressed in [6] to maximize photocatalytic hy-
drogen evolution rate (HER) out of mixture of different materials.
Here, we employ a rather cost-efficient approach where new HER
measurements are interpolated through a multi-layered auto-ML
ensemble model of neural networks, namely Autogluon [8]. Sec-
tion 4.5 provides a detailed description of this task. The maximum
number of iterations is set to 100 and the median value of 50 re-
peated trials is reported.

We experiment with the following optimizers:

• Standard Bayesian optimization (SBO) Standard BO algo-
rithm [24] employing a scikit-learn [27] GP with Matern kernel
(ν = 2.5) optimized with L-BFGS-B algorithm [18] by the SciPy
package [40], warm-started with 5 initial points.

• Sequential model-based algorithm configuration (SMAC) A
surrogate-based optimization algorithm [14] using random forest
as its surrogate model. Random sampling or variance from trees is
used to acquire new points. The SkOpt package is used here [10].

• Tree-structured Parzen estimator (TPE) TPE [3] uses a trun-
cated Gaussian mixture with two densities to model p(x|y) and
calculate p(y|x) according to the Bayesian rule. We use the im-
plementation provide by [4].

• Opentuner (OT) Opentuner[2] is based on the idea of stacking;
several search techniques are included as ensembles to allocate
probe points, while AUC bandit algorithm controls the weight and
number of different search techniques which allocate. The search
techniques include differential evolution, many variants of Nelder-
Mead search and Torczon hillclimbers, a number of evolutionary
mutation techniques, pattern search, particle swarm optimization
and random search.

• Random search (RS) Random search under uniform distribution
over the search space.

Throughout our analyses, we use preset hyperparameters for
each of the compared methods. For all GP-based models, includ-
ing the proposed, a Matérn kernel (ν = 2.5) with added white
noise, optimized with L-BFGS-B algorithm [18] and warm-started
with 5 initial points is used. Random seed for each trial is set
to the trial number. The default acquisition function is UCB with
κ set to 2.6. The benchmark results and code can he found in
https://github.com/XieZikai/DKIBO.

4.2 Synthetic functions

In this section we experiment with a set of synthetic set functions [7]
of varying landscapes and dimensionalities to test the performance
of the proposed method on different objectives with potentially large
number of local optima. Table 1 presents the simple regret which
measures the optimality performance of the different algorithms
while Table 2 shows the cumulative mean regret which evaluates
the convergence speed. The median value across all repeats along
with standard deviation is reported in both tables. Here we enrich the
DKIBO acquisition functions with a random forest regression model
using 20 estimators with maximum depth of 5 tree splits and an early
stopping hyperparameter set to 0.05.

The proposed method appears to perform best in terms of simple
regret while maintains a competitive performance in terms of cumu-
lative mean regret across of a set of diverse synthetic functions, as
shown in Table 2. Compared to standard BO, DKIBO offers a con-
sistent improvement on both measures.

4.3 BBO challenge

Table 3 reports the BBO score for each method. For standard BO
and the proposed method we report performances over three differ-
ent acquisition functions. In this experiment we enrich the DKIBO
acquisition functions with a random forest regression model using
20 estimators with maximum depth of 5 tree splits and an early stop-
ping hyperparameter set to 0.05. Evidently, the enriched acquisition
function of DKIBO improves upon the standard ones which further
highlights the generalizability of the proposed methodology. Over-
all, SMAC outperforms but DKIBO (using EI) appears to achieve the
second best score, demonstrating a very competitive performance.

4.4 Robotic swimming task

We now test our algorithm on the MuJoCo [39] swimmer environ-
ment, which is a physical simulation of a 3D robotic swimmer with
three segments and two articulation joints (rotors) to connect two of
the segments to form a linear chain. The goal is to move forward as
fast as possible by applying torque on the rotors using fluids fric-
tion. The environment contains a 2-dimensional action space for the
rotors and 8-dimensional observation space. Since the environment
is specifically designed for reinforcement learning tasks rather than
black-box optimization, we wrap the problem using a (2, 8) matrix
as a linear mapping weight from observation space to action space so
that the problem transforms to a 16-dimensional black-box optimiza-
tion problem where the target is to maximize the average reward.

Figure 2 demonstrates DKIBO’s competitive performance against
other compared methods. Here we again use a random forest regres-
sion as predictive model using 20 estimators with maximum depth
of 5 tree splits and an early stopping hyperparameter set to 0.05. It
is evident that DKIBO maintains very competitive performance in
terms of convergence and simple regret, indicating that the optimiza-
tion process generally benefits from the augmented knowledge. No-
tably, a plateauing effect on simple regret can be observed in the last
few stages of the optimization in the right-most panel of Figure 2
which could be owed to a possible local optima confinement. Table 4
further details DKIBO’s performance in terms of simple regret and
cumulative mean regret.

4.5 Photocatalytic hydrogen production optimization

In this section we take on a materials design problem [6] where the
goal is to find an optimal composition of materials that maximizes
hydrogen production through photocatalysis [41]. In this experiment
10 different materials on various concentrations were used increasing
the search space (full simplex) to 98,423,325 possible combinations.
Due to the increasing demand for tractable optimizers for costly real-
world tasks, BO has emerged as a competitive method in the physi-
cal sciences community. Here, we recast the problem in a simulated
fashion and take advantage of the underlying linear relationship be-
tween the input and output parameters (structural knowledge). We
specifically enrich our acquisition function with a linear regression
model trained by a least-squares error and simulate the HER mea-
surements by fitting existing lab measurements reported in [6] using
Autogluon [8], a strong ensemble model that can approximate new
measurements at new sampled points. While the simulated measure-
ments are only approximate, our goal here is to successfully utilise
underlying structural knowledge as a proof-of-concept.

Figure 3 demonstrates the dominance of BO-based algorithms
over other baseline algorithms in terms of HER and simple regret.
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DKIBO SBO TPE RS OT SMAC
Colvilled=5 31.61±20.87 39.52±22.55 383.28±353.20 813.56±652.85 157.90± 269.58 825.70±636.69

Michalewiczd=10 3.57± 0.61 3.94± 0.59 4.16± 0.44 4.46± 0.41 2.41±0.87 3.74± 0.50

Ackleyd=2 0.13±0.28 0.31±0.50 5.76±1.79 8.02±2.51 2.71±2.23 2.65 ± 5.47
Branind=2 6.75×10−5±1.49×10−4 6.67×10−5±1.17×10−4 0.17±0.24 0.26±0.34 0.018±0.28 0.073±0.65

Eggholderd=2 1.12±4.30 1.92±3.55 13.79±29.36 83.76±54.51 8.77±50.68 35.86±236.81
Goldstein priced=2 2.86± 4.80 3.04±4.30 2.92±8.47 12.12±18.63 0.63±26.77 33.85±74.01

Hartmannd=6 0.012±0.24 1.67×10−3±0.061 0.77±0.28 1.33±0.40 0.14±0.13 0.33±0.41
Rosenbrockd=2 0.10±0.19 0.12 ± 0.18 2.38±4.25 3.75±10.63 0.95±4.09 4.82±9.72

Six hump cameld=2 3.14×10−4±4.42×10−3 1.26×10−3±0.013 0.049±0.074 0.14±0.16 6.06×10−3±0.094 8.24×10−3±0.23
StyblinskiTangd=2 7.14×10−4± 9.04×10−4 7.50×10−4± 1.13×10−3 0.99±4.34 2.76±4.30 0.21±4.49 1.49±9.4

Table 1: Simple regret performance on synthetic functions with various dimensionalities d. Best performances appear boldfaced.

DKIBO SBO TPE RS OT SMAC
Colvilled=5 2851.95±2753.50 3003.76±2964.77 2908.38±2447.89 3134.14± 2224.16 2466.44±2227.98 3923.27±3044.18

Michalewiczd=10 4.47±1.09 4.60±0.94 4.65±0.71 4.79±0.54 3.57±1.57 4.570.96
Ackleyd=2 2.96± 2.74 3.06±2.67 9.27±3.91 11.38±3.79 6.37±4.20 8.01±6.27
Branind=2 1.42±1.42 1.33±1.33 1.69±1.49 2.13±1.81 1.92±1.82 2.00±1.77

Eggholderd=2 73.57±71.21 70.75±68.01 77.25±60.08 180.71±106.84 118.94±101.52 177.84±211.39
Goldstein priced=2 312.02±307.81 263.4±267.2 262.7±275.9 200.97±183.86 235.69±225.09 248.62±207.54

Hartmannd=6 0.70±0.63 0.71±0.68 1.41±0.69 1.73±0.60 0.86±0.70 0.95±0.62
Rosenbrockd=2 257.91 ± 257.75 285.44 ± 285.34 358.14±354.28 745.21±737.69 488.60±486.10 316.92±308.64

Six hump cameld=2 0.55±0.55 0.55±0.54 0.59±0.52 0.80±0.63 0.62±0.60 0.63±0.57
StyblinskiTangd=2 4.78±4.78 5.83±5.83 7.96±6.65 10.11±7.05 6.54±6.32 12.01±9.36

Table 2: Cumulative mean regret performance on synthetic functions with various dimensionalities d. Best performances appear boldfaced.

SMAC OT TPE RS SBO DKIBO
UCB EI POI UCB EI POI

BBO score 94.16 86.90 92.26 83.09 89.87 91.83 87.43 92.86 93.10 87.99

Table 3: BBO scores for different optimization algorithms. Larger scores are better and best performance appears boldfaced.

Figure 2: Average reward (left) and simple regret (right) performance comparison on the robotic swimming task. Solid lines show the median
values while shaded areas represent the [25, 75] percentile area.

CMR Simple Regret
DKIBO 142.81±94.45 47.29±60.53

SBO 155.35± 103.21 42.62±44.31

TPE 163.51±88.91 75.38±55.04
OT 191.33±107.92 129.26±79.13
RS 218.62±66.08 175.68±47.69

SMAC 194.85±95.70 118.64±59.58

Table 4: Simple regret and cumulative mean regret performances on
the robotic swimming experiment. Best performance appears bold-
faced.

CMR Simple Regret
DKIBO 5.57±3.57 1.95±2.14

SBO 7.76±5.12 2.72±2.62
TPE 10.94±0.50 10.54±0.28
OT 10.83±1.14 10.27±0.91
RS 11.22±0.41 10.89±0.24

SMAC 10.71±0.44 10.29±0.15

Table 5: Simple regret and cumulative mean regret performances on
the simulated photocatalysis experiment. Best performance appears
boldfaced.
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Figure 3: HER (left) and simple regret (right) performance comparison on the photocatalysis optimization task. Solid lines show the median
values while shaded areas represent the [25, 75] percentile area.

Furthermore, the right-most panel highlights that the enrichment of
DKIBO with linear regression significantly boosts performance in
early stages and validates the utility of external knowledge injec-
tion in real-world problems, which is consistent with our observa-
tion in experiment 4.4. The left-most panel accordingly shows that
the sample points suggested by the proposed approach are consis-
tently better than standard BO (HER measurements are slightly dif-
ferent compared to the ones reported in [6] due to being interpo-
lated by Autogluon; also, no batching is used here). At late stages
however, the predictive model appears to induce fluctuations to the
overall performance, which highlights the need for further improved
adaptation strategies in future works. It is noteworthy that employing
a random forest predictive model actually degrades DKIBO’s per-
formance, further highlighting the importance of injecting suitable
knowledge for the task at hand. Table 5 further highlights the domi-
nance of the proposed method in terms of simple regret and cumula-
tive mean regret.

4.6 Ablation studies

In this section we perform a series of ablation studies and analyses to
further investigate the performance and robustness of the proposed
methodology.

4.6.1 Exploration of scaling effect in acquisition

We firstly explore the robustness of the proposed acquisition aug-
mentation against scaling effects on the exploration aspects of the
optimization. We specifically focus on the UCB acquisition func-
tion here mainly because its hyperparameter κ directly controls the
exploration scale. We empirically show that adding the predictive
model term in the acquisition offers a consistent improvement on the
model’s overall performance regardless of the choice of the κ hyper-
parameter in Eq. (2) in most cases. We vary κ in {1.3, 2.6, 5.1} and
compare DKIBO with standard BO performance in Table 6 across a
variety of settings.

To further demonstrate the flexibility of our proposed methodol-
ogy we report performance using another predictive model, namely
gradient boosted regression tree (GB) [9] based on 20 estimators and
a maximum depth of 3. Due to space limitations we do not report
performance using a linear predictive model here, as it empirically
showed to only perform well for the photocatalysis experiment due

to its underlying problem structure, and the best overall score was al-
ways achieved for κ = 2.6. Results demonstrate a consistent win of
our methodology using a random forest predictive model (RF), with
the gradient boosted (GB) showing a competitive performance across
a variety of search spaces. This importantly highlights the ability of
the added corrective term to learn to “rebalance” the exploration-
exploitation trade-off under different parametrizations of the acqui-
sition and emphasizes the potential to generalize to various predictive
models depending on the problem at hand.

4.6.2 Comparison to a linear mean function GP

We further validate the utility of the added linear predictive model in
the photocatalysis scenario by comparing against a simple GP surro-
gate with a linear mean function, highlighting major differences be-
tween the two approaches. A comparison in terms of both pure HER
and simple regret exposes local optima confinement problems for the
GP with a linear mean function which appears to dominate long-term
predictions throughout the optimization process; a phenomenon also
confirmed by [30]. We empirically confirm this here by employing an
early stopping approach (ES) where the linear mean term is swapped
with a zero-mean GP throughout the rest of the optimization based
on the criterion of Eq. (7). HER and simple regret performance is
shown in Figure 4 for the two linear mean variants and DKIBO. Evi-
dently, a platauing effect is observed after iteration number 25 for the
linear mean term BO in contrast to its respective ES variant, where a
rapid performance boost follows after swapping to a zero-mean GP
in that iteration. DKIBO on the other hand appears to perform best
overall and maintain the correct balance between exploration ver-
sus exploitation in the acquisition term between UCB and the linear
model.

4.6.3 Corrective term usage analysis

Finally, we report results on the average usage duration of DKIBO’s
adaptive corrective term to further investigate the utility of DKIBO’s
early stopping strategy. Figure 5 shows at which iteration the correc-
tive term is being dropped by the early-stopping strategy proposed
in Eq. (7). Evidently, in most cases the corrective term appears to be
useful throughout the whole run, while in some cases appears to be
dropped in early stages. Nevertheless, even an early stage use only
appears to significantly boost performance acting as a warm-start for
the optimization.
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κ = 5.1 κ = 2.6 κ = 1.3

SBO DKIBORF DKIBOGB SBO DKIBORF DKIBOGB SBO DKIBORF DKIBOGB

Colvilled=5 79.59 61.66 72.79 39.52 31.61 40.32 24.52 31.00 24.90
Michalewiczd=10 20.1 2.33 1.63 1.9 1.53 1.67 2.15 1.97 2.05

Ackleyd=2 2.06 1.53 0.66 0.280 0.10 0.20 0.13 0.13 0.11

Branind=2 3.01×10−4 2.86×10−4 1.77×10−4 6.63×10−5 6.73×10−5 7.58×10−5 1.00×10−4 4.91×10−5 7.72×10−5

Eggholderd=2 7.66 7.54 4.87 3.04 1.11 1.23 0.48 0.27 0.03
GoldsteinPriced=2 6.02 5.64 5.24 3.04 2.85 3.58 1.14 1.64 1.84

Hartmann6d=6 0.51 0.24 0.075 0.0017 0.012 0.0024 0.18 0.12 8.75×10−4

Rosenbrockd=2 0.37 0.34 0.16 0.11 0.10 0.072 0.10 0.067 0.055

SixHumpCameld=2 0.034 0.033 0.029 0.0012 3.10×10−4 3.02×10−4 8.03×10−5 7.20×10−5 5.84×10−5

StyblinskiTangd=2 0.0018 0.0017 0.0012 7.54×10−4 7.11×10−4 6.79×10−4 0.0010 5.73×10−4 3.93×10−4

Robotic swimming 102.37 77.08 74.18 43.00 47.67 63.65 35.81 57.96 48.71

Table 6: Median regret performance on all tasks for various κ choices in UCB and predictive model choices. All experiments are conducted in
50 trials of 100 iterations. Due to space limitations standard deviation information is not reported here. Best performances for each κ choice
appear boldfaced.

Figure 4: HER (left) and simple regret (right) performance comparison on the photocatalysis optimization ablation study between DKIBO and
BO using linear mean GP and an early stopping strategy (ES). Solid lines show the median values while shaded areas represent the [25, 75]
percentile area.

Figure 5: Box plots for average usage duration of DKIBO’s adaptive corrective term in various problems. Outlier and percentile [25,75]
information is also reported.

5 Conclusions and future works

In this work we present a novel Bayesian optimization method to
inject domain-specific knowledge about the structure of the search
space in physical-world problems. We realize this by enriching the
acquisition function with a predictive model that adaptively corrects
the selection of new sample points in a form of penalty. The pro-
posed approach is simple to implement, generalizable across a wide
range of surrogate-based optimization methods and performs com-
petitively on various different settings. Future directions of this work
include the development of meta-models that will adaptively control
the selection of the predictive model and early stopping criteria in an
auto-ML fashion and testing our algorithm on other materials tasks.
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