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Abstract  

 Data-driven prognostic and health management technologies are instrumental in accurately monitoring the health of 

mechanical systems. However, the availability of few-shot source data under varying operating conditions limits their ability 

to predict health. Also, the global feature extraction process is susceptible to temporal semantic loss, resulting in reduced 

generalization of extracted degradation features. To address these challenges, a transferable autoregressive recurrent adaptation 

method is proposed for bearing health prognosis. In the enhancement of few-shot data, a novel sample generation module with 

attribute-assisted learning, combined with adversarial generation, is introduced to mine data that better matches the source 

sample distribution. Additionally, a deep autoregressive recurrent model is designed, incorporating a statistical mode to 

consider the degradation processes more comprehensively. To complement the semantic loss, a semantic attention module is 

developed, embedded into the basic model of meta learning. To validate the effectiveness of this approach, extensive bearing 

prognostics are conducted across six tasks. The results demonstrate the clear advantages of this proposed method in bearing 

prognosis, especially when dealing with limited bearing data. 

 
Keyword  
Autoregressive regression; Remaining useful life; Adversarial augmentation; Meta learning; Semantic attention mechanism 
 
1 Introduction 

Rotating machinery is widely applied across various industries, including aviation, aerospace, automotive, and others, 

such as engines and wind turbines. However, over extended periods of operation, faults in these systems become inevitable [1]  

and can even result in catastrophic losses [2]. As an integral component of Prognostics and Health Management (PHM) [3], 

the health monitoring of rotating machinery plays a vital role in accurately diagnosing the current condition of the machine, 
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ensuring safe and reliable continuous operation [4]. Rolling bearings serve as critical components in rotating machinery, and 

the presence of faults within them can directly lead to significant equipment accidents. The degradation of normal bearings is 

a gradual process, starting from the initial anomaly and progressing through various degradation stages until the final failure 

occurs [5]. Real-time and precise prediction of bearing health trends, along with early failure warnings, holds paramount 

importance in guaranteeing the long-term safe operation of rotating machinery.  

In industrial settings, bearings often contend with diverse loads, speeds, and complex environmental factors [6]. Collecting 

run-to-failure vibration data from bearings under varying operating conditions can be time-consuming. In essence, the actual 

Remaining Useful Life (RUL) prediction of bearings is typically hindered by the limited availability of few-shot data. 

1.1 Challenges of Limited Data Prediction 

For the issue of distribution discrepancies in the few-shot data under different operating conditions, interestingly, the 

Domain Adaptation (DA) approach provides a new solution for its study. Huang et al. [7] developed a novel network framework 

with the DA module and implemented transfer fault prediction between machines with different structures, measurement 

settings, and operating conditions. Wang's work [1] has brought inspiration from a wide range of scholars, and it is a job worth 

recognizing. Zhu et al. [8] combined an implicit Markov model and a multilayer perceptron and generalized it to another 

operating condition. Mao et al. [9] designed a transfer learning module to adjust the target features, significantly improving the 

model's generalization. Most DA-based methods attempt to mitigate domain bias by learning a domain-invariant representation 

within the global via a statistical metric. In addition, Costa et al. [10] used a domain adversarial neural network to learn domain-

invariant features that can provide more reliable RUL predictions under datasets with different operating conditions and failure 

modes. Chen et al. [11] proposed a deep convolutional generative adversarial network and employed it to set thresholds to 

monitor the health status of wind turbine generators. Ragab et al. [12] improved the accuracy of RUL regression by considering 

target-specific mutual information in domain adversarial adaptation. Most studies on adversarial strategies have focused on 

fault diagnosis [13], aiming to train feature extractors to deceive domain discriminators and generate domain-invariant features. 

Although existing methods have achieved significant prediction results, using DA only to find target transitions similar to the 

source domain fails to guarantee optimal transmission performance in few-shot data scenarios. Implementing the methods 

described above relies heavily on having ample samples from both the source and target domains.  

In the industry, only a limited number of samples from the source domain are accessible. This limitation arises because an 

abundance of labeled samples would lead to substantial economic losses and require a significant investment in manpower and 

resources, rendering it impractical. Moreover, training deep models necessitates a substantial volume of raw data support. As 

a result, the scarcity of source data in a few-shot context places constraints on the cross-domain prognostication capabilities of 

the deep model. 

1.2 RUL Prediction with Limited Data 

Recently, meta learning [14] and Generative Adversarial Networks (GANs) [15] have become attractive learning methods 

to handle fault diagnosis and prognosis in few-shot sample scenarios. Unfortunately, a substantial portion of research in the 



field of meta learning has been primarily directed towards fault identification [16]. Our previous work utilized adversarial 

learning [17] and domain generalization [18] to achieve the generation of samples and mining of latent domains, successfully 

applying to bearing RUL prediction. Long et al. [19] used meta learning to train a meta learner across a large number of 

randomly generated meta tasks, quickly generalizing it to target fault diagnosis tasks containing only a few-shot labeled samples. 

Ren et al. [20] presented a training framework based on meta learning for learning domain-invariant strategies in fault 

prediction under unknown operating conditions. Notably, Xu et al. [21] emphasized the challenges in acquiring high-quality 

samples in real-world applications and underscored the significance of developing few-shot learning-based models to broaden 

their applicability in engineering. Zhang et al. [22] proposed a prior knowledge-enhanced self-supervised feature learning 

framework for few-shot diagnosis. However, these methods are only developed for few-shot sample scenarios suitable for 

effective global feature extraction, but ignore local attributes in the raw data, leading to feature semantics being lost. In 

particular, it is more evident in few-shot samples. Thus, the motivation for this work is to utilize few-shot learning to address 

remaining life predictions with limited data under different operating conditions. 

To address these challenges, a transferable autoregressive recurrent adaptation framework is proposed for bearing 

prognosis in few-shot source data scenarios. Specifically, a deep autoregressive recurrent model is constructed based on the 

statistical mode for extracting more effective degradation features. Then, a new sample adversarial augmentation module with 

attribute-assisted learning is developed to generate data that more closely matches the source sample distribution. A meta learner 

with complementary semantic loss is learned by embedding a semantic attention module to accomplish the prognostic task with 

a small number of samples. Finally, the approach is validated by acquiring signals from accelerated bearing degradation tests. 

The main contributions of this paper are as follows. 

(1) A transferable autoregressive recurrent adaptation framework is proposed to realize data augmentation and semantic 

information learning, thus accomplishing the prognosis task of bearings under few-shot data. 

(2) A data augmentation scheme embedded with attribute-assisted learning is developed to ensure that the new data 

matches the source sample distribution better. 

(3) A semantic attention module is designed to construct more robust meta learning by embedding it into the basic model 

and ensuring that each subtask learns semantic information. 

The rest of the article is organized as follows. The second section presents the related works. Next, the proposed TARA 

framework and the detailed methodology are described in Section 3. The case study is reported in Section 4. Finally, Section 5 

concludes. 

 
2 Related Works 
2.1 Data Augmentation for Adversarial Learning 

Generative adversarial networks (GANs) [23] are proposed for generating data using adversarial training and game 

strategy, in which the generator G and discriminator D are trained separately by a max-min alternating optimization strategy, 



as shown in Fig. 1. GAN aims to generate pseudo samples with similar distributions to real samples through a mutual adversarial 

process between the generator and the discriminator. Specifically, the generator attempts to capture the latent distribution of 

the real data and generate fake samples that can deceive the discriminator. The training objective of the discriminator is to 

determine whether the input sample is real or fake. The objective function of GAN can be defined as follows. 

 ( ) ( ) ( ) ( )( )min  max log 1,
datax P z Q zG D

D G D x D G z  = + −   



   (1) 

where dataP  denotes the distribution of the training data, z  refers to the training random noise, and ( )Q z  is the prior 

distribution of the noise. Minimizing the loss of the generator can generate more realistic pseudo samples, while maximizing 

the loss of the discriminator can enable pseudo samples to be further identified. The new samples constructed by adversarial 

generation can further expand the sample space, which is one of the main strategies for few-shot learning [16]. 

The majority of methods employ an adversarial generation strategy to create a substantial number of auxiliary samples 

from a limited set of raw few-shot samples, thereby achieving the RUL prediction task through the integration of the generated 

data. Ren et al. [24] a dual multi-scale generative adversarial network that incorporates feature fusion to maintain the similarity 

between generated samples and real samples while enhancing the diversity of the generated samples. Ding et al. [25] proposed 

an adversarial out-domain augmentation framework to generate pseudo-domains, thus increasing the diversity of available 

samples. Thus, training the generator in an adversarial manner and generating pseudo-domains by maximizing the domain 

discrepancies of the potential representations is an effective method for data enhancement. Lu et al. [26] stated that the use of 

available time-series degradation data to generate synthetic data can enhance the predictor's learning performance, thus 

improving the RUL prediction accuracy. These methods employ adversarial generation to accomplish data augmentation, but 

ignore the attribute links between the source samples and the generated samples, which is necessary for the augmentation of 

the samples. The similarity between the new and source samples is not measured, resulting in attribute links not being 

considered. This can lead to adversarial generation of new samples that may be negatively informative, which is detrimental to 

the training of the model. It may lead to adversarial generation of new samples with negative information, which is detrimental 

to the training of the model. 

 

Fig. 1 Data augmentation for adversarial generation 



2.2 Meta Learning 

The lack of run-to-failure bearing data has been one of the challenges in developing and practically implementing robust 

bearing prediction models [26]. Thus, few-shot learning has been attempting to give a more significant advantage to diagnosis 

and prognosis in this scenario [27]. This paper is expected to generalize quickly to new tasks with trained agents and a priori 

knowledge of a limited test sample. The general description is as follows. 
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where θ   is a few-shot learning model and ( ),i i trainx y D∈   denotes training samples and labels. Fortunately, meta learning 

provides a practical learning framework to deal with the challenges of few-shot learning [28]. Unlike traditional methods, meta 

learning is a flexible framework, aiming to learn a priori experiences from multiple related tasks and rely on previously acquired 

learning parameters to improve learning performance on the target task, as shown in Fig. 2. Overall, the learning objectives of 

meta learning can be defined as follows. 
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where *θ   is the optimal learning parameter of the meta learner, mθ   is the learning parameter of each learning task, an

( )p oss  denotes the different distributions of each task. It can be seen from Eq. (3) that meta learning demonstrates the 

ability to "learn to learn" meta-knowledge *θ . It ensures that applying the model to tasks with different distributions is more 

generalizable and adaptable. In Fig. 2, the optimal parameters *θ  obtained by meta learning can be fine-tuned in each task 

and successfully reach their optimal training mode, which can significantly avoid local optimization and retraining of the model. 

It is worth noting that *θ  in meta learning is learned across multiple tasks during the learning process, and the optimal *θ  

minimizes the loss of new tasks.  

Using meta learning as a few-shot learning tool, a lot of research works have applied meta learning to the PHM field [29]. 

The core idea of meta learning is to obtain the initial parameters of a model by gradient descent in meta training, and apply 

them to obtain the best performance by updating the existing parameters through several gradient computations when applied 

to unknown tasks with limited data. However, these methods ignore localized attributes in the raw data, resulting in feature 

semantic loss. It is especially obvious in few-shot samples. 



 
Fig. 2 Meta learning process 

3 Methodology 
3.1 Overview 

For the bearing RUL prediction under few-shot source data, a transferable autoregressive recurrent adaptation (TARA) 

framework is proposed in this paper, as shown in Fig. 3. The main steps of TARA include deep autoregressive recurrent 

modeling, data augmentation, semantic attention module, and meta learning prognosis. First, a deep autoregressive recurrent 

model based on statistical mode is constructed to enhance the model's focus on the degradation process. Second, a new sample 

augmentation module with attribute-assisted learning is constructed based on the adversarial generation scheme to mine data 

that more closely matches the distribution of source samples. Then, a semantic attention mechanism is developed to supplement 

the global learning of semantic information. Also, the RUL prognosis for few-shot samples is accomplished by constructing a 

meta learning process. The flowchart of the proposed method is presented in Fig. 4. 

 

Fig. 3 Transferable autoregressive recurrent adaptation framework 



 

Fig.4 Flowchart of the proposed methodology 

3.2 Deep Autoregressive Recurrent Modeling 

Classical deep models attempting to learn jointly from multiple time series usually encounter effective degradation 

features extracted that are not remarkable. In the run-to-failure bearing signal, most of the degradation information has a severe 

deviation in the distribution of the percentage of different stages, leading to a slightly poorer effect of the effective degradation 

features extracted. Thus, a deep autoregressive recurrent model incorporating a statistical mode is designed, as shown in Fig. 

5. 

Given the sequence value ,i tx  , 
0 0 0,1 , 2 , 1 ,1: 1[ , , , ]i i t i t i tx x x− − −= x  , of a time series i   at the moment t   and the deep 

autoregressive recurrent model distribution 
0 0, : ,1: 1 ,1:( , )i t T i t i TQΘ − ∆x x x , the conditional probability distribution for each future 

time series 
0 0 0, , 1 , , :[ , , , ]i t i t i T i t Tx x x+ = x  is established and expressed as follows. 

 
0 0, : ,1: 1 ,1:( , )i t T i t i TP − ∆x x x  (5) 

where 0t  denotes the time of prediction ,i tx  and ,1:i T∆x  represents the difference between the current moment ,i tx  and 

the previous moment , -1i tx  . In this paper, the likelihood function is employed to represent the composition of the model 

distribution, which is described as follows. 
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where , ,( ( ))i t i tp x θ ϑ  is the likelihood function, ,( , )i tθ Θϑ  is the parameter of the deep autoregressive recurrent model, and 

,i tϑ  is the model parameterization expression, , , -1 , 1 ,( , , , )i t i t i t i tx −= ∆ Θxϑ ϑ . Note that the value , 1i tx −  at moment -1t , 

,i t∆x , and output , 1i t−ϑ  will be used as inputs at moment t . Thus, the iterative computation of the moment 01, , 1t t= −  is 

performed to obtain its output 
0, 1i t −ϑ  and the corresponding model distribution 

0, : ,( ( , ))i t T i tx p θ⋅ Θ


 ϑ . The predicted value 

0, 1i tx −  and quartile for future time periods are estimated by the likelihood function. 

 In this paper,   is set up as a 4-layer Bidirectional Long Short-Term Memory (BiLSTM) network and Θ  denotes the 

BiLSTM parameters. Specifically, BiLSTM can make predictions by utilizing the previous and subsequent information in the 

sequence through multiple successive feedforward layers. The constructed transformation function models temporal 

dependencies in time series by combining forward LSTM and backward LSTM, obtaining more comprehensive contextual 

information and thereby capturing bidirectional semantic dependencies. The structure of a deep autoregressive recurrent model 

consists of an input layer, a convolutional layer, a BiLSTM layer, a likelihood estimation layer, and an output layer, where a 1-

dimensional convolutional layer is employed to extract features from the data ,i tx  and ,1:i T∆x . In addition, the convolved 

features are fused with the raw data using the residual structure, and the result is utilized as an input to the 4-layer BiLSTM. In 

the likelihood estimation layer, the output of the BiLSTM network is used to compute its mean and variance and parameterize 

the model distribution. The error between the predicted ˆiy  and true value iy  is calculated. 

 2

1

1 ˆ( )
n

mse i i
i

y y
n =

= −∑  (7) 

where n  is the number of samples. 



 
Fig. 5 Deep autoregressive recurrent network 

3.3 Data Augmentation of Few-shot Source 

 Although meta learning [30] can utilize the learning of multiple basic models to cognize more meta-knowledge within 

multiple tasks, a small number of samples still constrains the feature learning of each basic model. Thus, a data augmentation 

scheme embedded with attribute-assisted learning is proposed for solving the few-shot source sample problem to ensure that 

the new data generated is more consistent with the source sample distribution, as shown in Fig. 6. The scheme consists of three 

main steps, including attribute assisted extraction, adversarial generation, and attribute semantic metrics. Specifically, attribute-

assisted vectors are obtained by attribute-assisted extraction and are employed as information fusion in an adversarial 

generation to generate new samples with more similarity. Also, the attribute-assisted vectors are utilized as semantic metrics of 

the features of the new samples to encourage the model to update its own parameters within each gradient descent, thus meeting 

the needs of the adversarial generation goal. 

 Given source samples sx   and source labels sy  , we aim to learn a generator G: n× →e z x  , where random 

embeddings i
s ∈e   and Gaussian noise Ζ∈z  are taken as input. In attribute-assisted extraction, the source sample is 

extracted as attribute-assisted vectors i
s  in feature extractor 1, where { }1,2i∈ . It is represented as follows. 

 ( )i i
s s s⋅= E x  e  (8) 

 The generator G is a downsampling-up sampling structure. Random noise 3
s ×e z  is fed into the encoder for feature 

coding and intermediate vectors   are obtained. The attribute-assisted vectors are embedded into the intermediate coding 



constructs, which are described as follows. 

 ( ) ( )3 1 2
s s s= ⊕ ⊕ ⊕      (9) 

where 3
s  is the vector constructed by attribute-assisted learning, and new samples nx  are reconstructed in the decoder. 

Specifically, the downsampling convolution is employed to extract key features from the samples, and then the samples are 

reconstructed using the upsampling transposed convolution. 
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( , , , , )
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e z
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  (10) 

where ny  is a pseudo-label promoted by an indicator in combination with a source label. The generated new sample and 

source sample are utilized as inputs to the discriminator D. Also, a max-min alternating adversarial training strategy is used to 

optimize G and D. The adversarial loss can be described as follows. 

 ( )( ) ( )( )2min max , , ,i
DA G n s D n sG D

d E σ= = =x x x    (11) 

where G  refers to the generator loss, D  is the discriminator loss, ( )2E ∗  denotes the feature extractor 2, ( )σ ∗  is the 

cross-entropy function, and ( )d ∗  is the attribute semantic metric function. This paper uses Maximum Mean Discrepancy 

(MMD) [30] as a metric between new sample features and attribute-assisted vectors. The general description of MMD is as 

follows. 
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where SH  and TH  are the output for the source and target data, respectively, ⋅
 is a reproducing kernel Hilbert space, and 

the kernel map ( )φ ⋅  is defined as a combination of kernel tricks{ }k , ( , ) ( ( ), ( ))S T S Tk H H H Hφ φ= → . Extending it to 

attribute semantic metric can be transformed into Eq. 13. 
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where   denotes the new sample features and { }1, 2N ∈ . Defining the kernel function as a Gaussian kernel, Eq. 13 can 

be converted as follows. 

 2 2 2
1 1 1 1 1 1 1
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Fig. 6 Data augmentation module 

3.4 Meta Learning Prognosis 
3.4.1 Semantic Attention 

 The semantic attention module aims to enhance the representation of each feature by exploiting the sequential relationships 

within each sample. Convolutional features ( )conv   and degradation features   are adopted as inputs to generate the 

correlation attention map 1 in a softmax function, thus multiplying it with   to obtain the semantic attention embedding. 

Considering the correlation between the sequences, the representation of the sequences is enhanced, as shown in Fig. 7(a). The 

correlation attention map 1 is computed through convolutional, matrix multiplication, and softmax layers. 
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i
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e
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    (15) 

where i   denotes the i-th sequence value and ( )( ),i icovn     is the unnormalized relation function. The attention 

semantic embedding can be expressed as follows. 

 1=Map ⊗   (16) 

Attention relations between sequences are established through preliminary augmented representations. Then, an 

augmented representation between the preliminary semantic attention embedding    and the convolutional features 

( )conv   is obtained in the second layer of attention embedding, as shown in Fig. 7(b). The correlation attention map 2 can 

be defined as follows. 
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 ( )( ) ( )( )2
ˆ =conv Map conv conv⊗ ⊕    (18) 

where ̂  denotes the augmented representation. From Eq. 25, it can be seen that the augmented attention representation fuses 



the information between the convolutional degradation features and the raw degradation features. The deep autoregressive 

recurrent model is employed in meta learning as the basic model. Also the semantic attention module is embedded into the 

basic model and placed at locations between each layer. The ablation analysis of the attention module at different locations is 

demonstrated in Subsection 4.2.3. 

 
Fig. 7 Semantic attention mechanism embedding 

3.4.2 Meta Learning Construction 

During the meta training process, the model is based on multiple prediction tasks for known operating conditions, acquires 

a priori knowledge by optimizing the initialization parameters, and then uses the learned knowledge to achieve fast and accurate 

few-shot bearing RUL prediction under new operating conditions. It can improve the generalization ability of all deep neural 

network learning models, enabling deep learning models to be quickly and accurately applied to new tasks. In the meta learning 

framework, h basic models are employed for training, as shown in Fig. 8. The meta objective is to find the best model parameters 

across multiple tasks by minimizing the total loss. 

The basic model for a given task can be defined as θ , where θ  is the trainable parameter provided by the meta learner 

in the base model. In meta training, the target loss is minimized for each basic model. 

 ( )min
i θθ    (19) 

where 
i

  denotes the loss function of the basic model in the i-th task i . After one iteration on task i , the trainable 

parameters updated by 1i+  can be obtained as follows. 

 ( )1Ni i

N
i i θ θ

θ θ α −= − ∇     (20) 

where ( )i iθ θ∇    is the gradient of the loss function in the task i , α  is the learning rate of the basic model, and N
iθ



denotes the N-th training parameter. The basic model is applied to supervised RUL regression and the regression task loss using 

mean square error can be defined as follows. 

 ( ) ( )
2

,
i i i

ix y
x yθ θ

∈

= −∑


    (21) 

where ( )
i

xθ  denotes the RUL prediction result of the i-th model. Feedback ( )i i iθ θ∇    to the meta learner, the objective 

of the meta learner can be defined as follows. 

 ( )min
i i

i

θθ ∑ 


    (22) 

 The loss function gradient can be employed to update the parameters θ  of the meta learner. It can be defined as follows. 

 ( )i i
i

θ θθ θ β← − ∇∑ 


   (23) 

where β  denotes the learning rate of the meta learner. In each task learning, the support and query sets are used as inputs to 

each basic model. The key parameters of the proposed method are reported in Table 1. 

 

Fig. 8 Meta learning construction for RUL prediction 

TABLE 1 Description of the parameters of TARA 

Parameters Value Parameters Value 

Max_epoch 1000 Learning rate 0.001 

Optimizer Adam 1λ  0.7 

α  0.001 2λ  0.4 

1
s  Linear (1024, 100) 2

s  Linear (1024, 100) 

3
s  Linear (1024, 100) β  0.01 

 

4 Case Experiment 



4.1 Dataset Description 

The run-to-failure test data of the bearings are obtained from the accelerated bearing degradation test on the ABLT platform, 

as shown in Fig. 9. Measurements of run-to-failure vibration and temperature can be obtained utilizing temperature sensors and 

PCB acceleration sensors. Three accelerometers are employed to measure the vibration information, and the specific test 

parameters and RUL prediction tasks are shown in Table 2. In run-to-failure experiments, the test stops when the root mean 

square of the vibration signal reaches a threshold. The platform enables testing of general-purpose rolling bearings closer to 

industrial applications and includes a control module, a hydraulic cylinder drive loading device module, a bearing test module, 

an oil pressure regulation module, and a data acquisition module. The bearings are lubricated by lubricating oil during the run-

to-failure test. To quantify the performance, two evaluation metrics are employed, including root mean square error (RMSE), 

mean absolute error (MAE), and R-square (R2) [31]. 
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Fig. 9 Experimental test rig 

 

TABLE 2 Test parameters and RUL prediction tasks 

 Operating condition A Operating condition B 

Bearing type 6308 rolling bearings 

Load (N), Speed (rpm) 15000, 3000 17500, 3000 

Data saving interval (s) 30 30 

Proportion of data (%) 20, 30, 50 20, 30, 50 

Threshold for shutdown 20 45 

Sampling frequency (Hz) 25600 25600 



Bearing Bearing 1-1, Bearing 1-2, Bearing 1-3 Bearing 2-1, Bearing 2-2, Bearing 2-3 

A  B 

Task 1 Support Set: Bearing 1-1 Query Set: Bearing 2-1 

Task 2 Support Set: Bearing 1-2 Query Set: Bearing 2-1 

Task 3 Support Set: Bearing 1-3 Query Set: Bearing 2-1 

Meta-testing Set Bearing 2-2, Bearing 2-3 

B  A 

Task 4 Support Set: Bearing 2-1 Query Set: Bearing 1-1 

Task 5 Support Set: Bearing 2-2 Query Set: Bearing 1-1 

Task 6 Support Set: Bearing 2-3 Query Set: Bearing 1-1 

Meta-testing Set Bearing 1-2, Bearing 1-3 

 

4.2 Ablation Study 

4.2.1 Different Sensitivity Parameters 

The different sensitive parameter settings of the model exhibit different effects on the prediction performance. In addition, 

combinations of these parameters can cause different sensitivity behaviors to RUL predictions. The prediction effects of 

different sensitive parameter combinations on the model are discussed in this subsection, and different parameter combinations 

are employed for the training and prediction of TARA. Note that these different parameters are subjected to a global exploration 

by the grid search algorithm, thus finding a set of best-fit parameter combinations. The RUL prediction results of different 

parameter combinations are shown in Fig. 10. It is evident that when 1λ  and 2λ  are set too large, the stability of the model 

can be significantly affected, resulting in catastrophic prediction results. In the appropriate range [ ] [ ]( )1 20 3 0 8 0 3 0 7. , . , . , .λ λ∈ ∈ , 

the model can accurately predict the RUL of the bearing and obtain a low prediction error. It is clear from the results that the 

prediction performance of the model becomes more and more robust in the combined effect as 1λ  and 2λ  increases within 

the appropriate range. Obviously, TARA exhibits the best combined performance at 1 20 7 0 4. , .λ λ= = . 

 



Fig. 10 Comparison results of different sensitivity parameters 
4.2.2 Different Backbone Models 

The deep autoregressive recurrent model is able to effectively extract the degradation features from the time series. To 

verify its effectiveness, a comparative analysis of six backbone networks is performed, including Convolutional Neural 

Network (CNN), Gate Recurrent Unit (GRU), Multiscale Convolutional Network (MCNN) [32], LSTM, Temporal 

Convolutional Network (TCN), and Residual Network (ResNet). Note that 1D convolutional operations are employed for CNN, 

MCNN, and ResNet. These models are adopted to replace the backbone network of TARA. TARA with different backbone 

networks is retrained and tested to perform RUL prediction. The comparison results of the different backbone models are shown 

in Fig. 11. Note that these results are generated in A  B (Bearing 2-2). Evidently, the prediction ability obtained by the 

proposed model far exceeds that of the other six methods and has significant advantages. In contrast, CNN, TCN, ResNet, and 

MCNN appear incapable of the prediction task in scenarios with few-shot samples. For recurrent networks, the prediction of 

GRU is stronger than LSTM but still has a significant gap with the proposed model. A comparative analysis of different 

backbone networks shows that the proposed model is competitive in handling time series data in a few-shot sample scenarios. 

It can be attributed to the fact that the statistical mode is embedded into the deep model, thus having a more sensitive focus on 

temporal information. 

 
Fig. 11 Comparison results of different backbone models 

4.2.3 Analysis of Attention Mechanism 

The semantic attention module aims to construct a complementary channel of local semantic information in each meta 

learning task. To validate the effectiveness of the attention module, different locations of the attention module are performed 

for ablation comparisons, and the results are reported in Table 3. The 1-th attention module is placed between the first and 

second layers of the LSTM. Note that the attention modules are placed sequentially between the layers of the BiLSTM. How 

the attention mechanism affects the learning of a task by a model piqued our interest. Thus, the features output from the modules 

in A  B (Bearing 2-3) are visualized in Fig. 12. It can be found that the prediction results that can be obtained by the model 

without the attention module are relatively poor, and its feature distribution is not obvious in the front period, thus preventing 



the model from fully capturing the degradation features. The model prediction can be effectively improved by embedding the 

1-th layer of attention module, but the features show a tendency to be weak in the latter period. Overall, the 2-th layer of 

attention module achieves the best prediction results. Although the feature distribution fluctuates, it is still relatively stable, and 

the features are more prominent and noticeable, as shown in Fig. 12 (c). Instead, the 3-th layer attention module becomes more 

volatile in feature presentation, which increases in magnitude. In the specific quantitative metrics, this uncontrolled feature bias 

is detrimental to the model's stable prediction. 

 
Fig. 12 Feature analysis of attention mechanism 

TABLE 3 The metric results of the attention module 

Attention module 
A  B 

RMSE MAE R2 

--Without multi-scale semantic attention 0.1212±0.019 0.1503±0.018 0.7521±0.023 

--1-th layer of attention module 0.1025±0.014 0.0881±0.012 0.8523±0.011 

--2-th layer of attention module 0.0823±0.011 0.0631±0.017 0.9192±0.009 

--3-th layer of attention module 0.1006±0.020 0.0853±0.015 0.8613±0.017 

 

4.3 RUL Prediction 

 The meta training of the model and RUL prognostic tests are performed in different tasks, and the RUL results for different 

task scenarios are shown in Fig. 13. Quantitative analysis is conducted for all results reported in Table 4. It can be clearly 

observed that the proposed TARA has achieved impressive results in different prognostic scenarios. Although there are 

substantial fluctuations in the predicted RUL curves, all amplitudes are within acceptable limits. In particular, the predicted 

fluctuations in Bearing 1-3 and Bearing 2-2 appear to be relatively flat later in the forecast. Satisfactorily, the predicted RUL 

curves consistently exhibit a clear trend and monotonicity, which are generally consistent with the actual RUL trends. Moreover, 

the 95% confidence bands obtained by the model always cover all the actual RULs over the full lifetime. The quantitative 

results show that the proposed TARA obtains commendable prediction errors in all scenarios. These errors are relatively 

concentrated and not divergent, which is sufficient to indicate that the prediction performance of the proposed model is stable. 

Particularly, it can be noticed that in the Bearing 2-2 prediction, the early period's prediction curves are unsatisfactory, and 

these error fluctuations are obviously difficult to match the actual degradation trend. We suspect that the early bearings are in 



the break-in damage stage, where the degradation features of the signal are weak, thus affecting the discrimination of 

degradation feature extraction by the model and resulting in more pronounced error fluctuations. 

 

Fig. 13 Predicted results under different tasks [B  A: (a), (b); A  B: (c), (d)] 

 

TABLE 4 The metric results of TARA 

 Bearing RMSE MAE R2 

A  B 
Bearing 2-2 0.1185±0.017 0.0970±0.013 0.8390±0.010 

Bearing 2-3 0.0823±0.011 0.0631±0.017 0.9192±0.009 

B  A 
Bearing 1-2 0.1090±0.011 0.0803±0.014 0.8583±0.021 

Bearing 1-3 0.0603±0.027 0.0889±0.012 0.9058±0.016 

 

4.4 Comparison with State-of-the-art Methods 

 Different ablation experiments can further illustrate the feasibility of the proposed TARA in self-constructed comparisons. 

However, it is insufficient to illustrate that the proposed method is still significantly contestable among similar methods. This 

subsection analyzes the proposed TARA compared to four similarly motivated and efficient methods. The four methods include 

an adversarial generation-based method 1 [25], two meta learning-based methods 2 [33] and 3 [28], and a domain adaptation-

based method 4 [17]. Note that the descriptions of the different comparison methods are reported in Table 5, which allows 

further observation of the differences between them. The key parameters of these methods are reported in Table 6. The results 

obtained by these methods are quantified, as reported in Table 7. 

TABLE 5 Description of differences in comparison methods 

Methods Description of differences 

Method 1 
Domain generalization method. The adversarial generation approach is utilized to generate new samples and perform RUL 

prediction using domain generalization for training, where the adversarial generation approach is different from our work. 

Method 2 
Meta learning method. A meta learning model is developed through CNN and GRU, which embeds a model of the domain 

adaptation learning. This is different from our approach. 



Method 3 
Meta learning method. A multi-head attention mechanism is employed to enhance feature capture, which is different from our 

approach, and we develop a semantic attention module. 

Method 4 
Domain adaptation method. The transfer of the source and target domains is achieved by means of adversarial learning, where the 

adversarial approach used is different from that of our method. This is an adversarial training of the model. 

 

TABLE 6 Description of key parameters of different methods 

Methods Structures 

Method 1 

Generator (Conv1d(k = 7, s = 1, p = 3), InstanceNorm1d(), ReLU(), 2 × {Conv1d(k = 4, s = 2, p = 1), InstanceNorm1d(), ReLU()}, 

2 × ResidualConnect{Conv1d(k = 3, s = 1, p = 1), InstanceNorm1d(), ReLU()}, 2 × {ConvTranspose1d(k = 4, s = 2, p = 1), 

InstanceNorm1d(), ReLU()}, ConvTranspose1d(k = 7, s = 1, p = 3), InstanceNorm1d(), Tanh()).Classifier (ResNet18-1d, Linear(2), 

Softmax()).Regressor (ResNet18-1d, Linear(1), Sigmoid()) 

Method 2 

Block 1 (Convolution {2×2-32}, Activation function {ReLU}, Batch normalization {32}, Max pooling {1×2}). Block 2 

(Convolution {2×2-64}, Activation function {ReLU}, Batch normalization {64}, Max pooling {1×2}). Block 3 (Convolution {2 × 

2-64} Activation function {ReLU}, Batch normalization {64}, Max pooling {1×2}). Block 4 (Convolution {2×2-128}, Activation 

function {ReLU}, Batch normalization {128}, Max pooling {1×2}). Fully-connected {1×1×1152} 

Method 3 

G1 (Convolution (k=5, s=1), Position encoding, multi-head self-attention (), Reshape, Convolution (k=1, s=1)). G2 (Convolution 

(k=5, s=1), multi-head self-attention (),Reshape, Convolution (k=1, s=1)). G3 (Convolution (k=5, s=1), multi-head self-attention 

(), Reshape, Convolution (k=1, s=1)). Regressor (Liner (64), Liner (32), Linear(1), Sigmoid()) 

Method 4 

Feature extractor (2 × {Dilated Causal Conv2d (k = 3, s = 1, p = 1, d = 1/2), weighetNorm (), ReLU (), Dropout (0.3), Dilate Causal 

Conv2d (k= 7, s = 1, p = 1, d = 1)}; 2 × Residual Connect{Conv2d (k = 3, s= 1, p = 1/2)} Maxpooling (2), Dual self-attention () 2 

× {Dilated Causal Conv2d (k = 3, s = 1, p = 1, d = 1/2), weighetNorm (), ReLU (), Dropout (0.3), Dilate Causal Conv2d (k= 7, s = 

1, p = 1, d = 1)}; 2 × Residual Connect{Conv2d (k = 3, s= 1, p = 1/2)}). RUL regressor(Dual self-attention (), Maxpooling (2), 

Liner (64), Liner (32), ReLU (), Dropout (0.3), Liner (1), Sigmoid). Discriminator (Liner (32), ReLU (), Liner (16), ReLU (), Liner 

(2), Softmax ()) 

 

In Fig. 14, it can be found that in a few-shot sample, it is insufficient to use only domain adaptation to transfer new working 

conditions. In other words, a small amount of sample data fails to support the training of domain adaptation, which leads to the 

learning ability of the model for the target working conditions is not sufficient. Also, considering the few-shot learning 

strategies into modeling and training, all of these methods are able to obtain a significant improvement in prediction 

performance, as in methods 1, 2, and 3. Fortunately, the advantages of the proposed TARA are still significant compared to 

these methods. In Method 1, the data augmentation method can further be used to obtain more accurate RUL predictions by 

expanding the sample data. However, in the AB scenario, the prediction results of method 1 are more catastrophic, where the 



fluctuations of prediction errors in the early stages are not normally accepted. The problem of few-shot samples is solved by 

expanding the sample distribution through the adversarial generation strategy. Although method 1 ensures that the samples are 

sufficient for model training, the prediction stability of method 1 is not sufficiently guaranteed. It can be attributed to the fact 

that these expanded samples may be irrelevant to the target data, i.e., these learnings are not valid for the target domain. 

Compared to methods 2 and 3, the meta learning method can further obtain more accurate RUL predictions by learning to 

update the parameters in different subtasks. In method 3, the training strategy with few-shot samples is the one that can satisfy 

the learning of a small number of samples, where the prediction results achieved by method 3 are second only to the proposed 

TARA. It lets us know that the training strategy of utilizing a few-shot learning can further improve the performance of the 

model, which is a direction worth exploring. Overall, the prediction performance of the proposed TARA is significantly 

competitive and effective among similar state-of-the-art methods. 

 



Fig. 14 Prediction results of different tasks (a. method 1, b. method 2, c. method 3, d. method 4) 

TABLE 7 The metric results of different methods 

Bearings 
Method 1 Method 2 Method 3 Method 4 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

Bearing 1-2 0.1631 0.1231 0.6832 0.1311 0.1014 0.7953 0.1458 0.1333 0.7465 0.3035 0.2312 0.3966 

Bearing 1-3 0.1732 0.1620 0.6498 0.1352 0.0953 0.7853 0.1302 0.1076 0.7983 0.3493 0.3072 0.4780 

Bearing 2-2 0.1503 0.1206 0.7320 0.1399 0.0947 0.7668 0.1139 0.0944 0.8453 0.2749 0.1765 0.4995 

Bearing 2-3 0.1954 0.2749 0.5171 0.1502 0.1284 0.7259 0.1253 0.1065 0.8093 0.3525 0.3189 0.4723 
 

4.5 Additional Dataset Validation 

 To further validate the generalizability of the proposed method on other data, the XJTU-SY bearing dataset is used for 

further validation. The bearing vibration data are obtained from the accelerated degradation experimental platform, as shown 

in Fig. 15. Two unidirectional accelerometers are mounted horizontally and vertically on the test bearing to collect vibration 

signals from operation to failure. Different operating conditions tests are executed with a sampling frequency of 25.6 kHz, a 

sampling interval of 1 Min, and a sampling duration of 1.28 s. Bearing testing stops when the bearing reaches 90% of its 

reliability for its basic rated life. The tasks in Case II are similar to those in Case I, as shown in Table 8. 

 
Fig. 15 Accelerated degradation experimental platform. 

TABLE 8 Prediction task description for XJTU-SY dataset 

Condition 1  Condition 2 

Task A Support Set: XJTU Bearing 1-1 Query Set: XJTU Bearing 2-1 

Task B Support Set: XJTU Bearing 1-2 Query Set: XJTU Bearing 2-1 

Task C Support Set: XJTU Bearing 1-3 Query Set: XJTU Bearing 2-1 

Meta-testing Set XJTU Bearing 2-2, XJTU Bearing 2-3 

Condition 2  Condition 1 

Task D Support Set: XJTU Bearing 2-1 Query Set: XJTU Bearing 1-1 

Task E Support Set: XJTU Bearing 2-2 Query Set: XJTU Bearing 1-1 

Task F Support Set: XJTU Bearing 2-3 Query Set: XJTU Bearing 1-1 



Meta-testing Set XJTU Bearing 1-2, XJTU Bearing 1-3 

 

 The results of all methods are reported in Table 9. It can be found that the proposed TARA is also able to achieve 

satisfactory results in all tests. Compared to other methods, our method still has significant advantages. The best performance 

values are achieved on RMSE, MAE, and R2. In contrast, Method 1 is still not adapted to the prediction task with limited 

samples. Also, it can be noticed that the results of Method 2 and Method 3 are very close. It also illustrates that meta learning 

does achieve few-shot learning. Method 4 predicts even worse, which also suggests that simple domain adaptation is not able 

to perform these prediction tasks effectively. In Method 4, the predicted results are largely skewed from the actual RUL values. 

Our proposed method can focus on more obvious degradation features in few-shot learning and construct significant feature 

representations of them in the semantic attention mechanism. In summary, the proposed method also achieves the best 

performance in other datasets. 

TABLE 9 The metric results under XJTU-SY dataset 

Bearings 
Method 1 Method 2 Method 3 Method 4 Our 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

XJTU 1-2 0.2038 0.1783 0.5138 0.1511 0.1242 0.7112 0.1507 0.1238 0.7195 0.3822 0.3433 0.4206 0.1103 0.0921 0.8640 

XJTU 1-3 0.2291 0.1947 0.5005 0.1494 0.1355 0.7290 0.1439 0.1326 0.7483 0.3629 0.3072 0.4506 0.1372 0.1101 0.7598 

XJTU 2-2 0.2113 0.1884 0.5198 0.1572 0.1282 0.6899 0.1528 0.1269 0.7095 0.4031 0.3884 0.3994 0.1244 0.1038 0.8114 

XJTU 2-3 0.2454 0.1995 0.4937 0.1522 0.1277 0.7108 0.1533 0.1287 0.7027 0.3605 0.3402 0.4525 0.1129 0.0970 0.8499 

 

5 Conclusion 
 This paper introduces the Transferable Autoregressive Recurrent Adaptation (TARA) method for predicting the remaining 

useful life (RUL) of bearings in situations with limited source data. The deep autoregressive recurrent model we construct 

incorporates a statistical mode to enhance the extraction of degradation features efficiently. Augmented learning for few-shot 

samples is achieved through attribute-assisted learning and adversarial generation schemes, generating new data that closely 

aligns with the source sample distribution. Additionally, to ensure that the global feature extraction process retains semantic 

information, we develop a semantic attention module and embed it into the basic model of meta learning, thereby enhancing 

semantic comprehension. Furthermore, we conduct numerous RUL experiments to validate the effectiveness of TARA. The 

experimental results demonstrate that TARA competently addresses RUL prediction in few-shot sample scenarios. Ablation 

studies are also included to showcase the impact of various backbone networks, sensitive parameter settings, and modules on 

prediction performance. 

 Although the proposed method can achieve the RUL prediction under different operating conditions with a limited sample, 

our method is still limited by physical information. Only deep virtual degradation features are not able to describe the 

interpretability of the model. In future research work, physical information-guided learning will be searched to accomplish the 

RUL prediction.  
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