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Abstract: Over the last decade, a 3D reconstruction technique has been developed to present the
latest as-is information for various objects and build the city information models. Meanwhile, deep
learning based approaches are employed to add semantic information to the models. Studies have
proved that the accuracy of the model could be improved by combining multiple data channels
(e.g., XYZ, Intensity, D, and RGB). Nevertheless, the redundant data channels in large-scale datasets
may cause high computation cost and time during data processing. Few researchers have addressed
the question of which combination of channels is optimal in terms of overall accuracy (OA) and
mean intersection over union (mIoU). Therefore, a framework is proposed to explore an efficient data
fusion approach for semantic segmentation by selecting an optimal combination of data channels.
In the framework, a total of 13 channel combinations are investigated to pre-process data and the
encoder-to-decoder structure is utilized for network permutations. A case study is carried out to
investigate the efficiency of the proposed approach by adopting a city-level benchmark dataset and
applying nine networks. It is found that the combination of IRGB channels provide the best OA
performance, while IRGBD channels provide the best mIoU performance.

Keywords: data channels; point cloud; semantic segmentation; data fusion; 3D reconstruction; city
information modelling

1. Introduction

Over the last decade, the concept of city information modelling (CIM) has received a
growing interest in many fields, such as surveying engineering and civil engineering [1].
Generally, CIM provides valuable benefits for stakeholders, including enhancing the public
management process and establishing an intelligent digital platform to store, control, and
understand big data. Xu et al. [2] suggested that geographic information systems (GIS) and
building information modelling (BIM) can be integrated to facilitate and achieve the CIM
concept. GIS models are utilized to represent graphical and geometrical information, while
BIM models are applied to characterize semantic and topological information. Nonetheless,
issues of model accuracy and timely information update are challengeable [3]. Furthermore,
it is challenging to automatically identify the discrepancies between the as-built and as-
planned models, which would cause significant delays, for example, in responding to
project modification management [4,5].

A popularly used technique to create the as-built model is the 3D reconstruction,
which has been developed to present the latest as-is information for infrastructures and the
city. To acquire the point cloud data, laser scanning technologies such as light detection
and ranging (LiDAR), terrestrial laser scanning system (TLS), and aerial laser scanning
system (ALS) have been usually adopted. Many studies have presented that the main
advantages of the TLS technologies include high point density (about one billion points
per scan) and high geometric accuracy (up to millimeters) [6,7]. Therefore, TLS is more
appropriate for CIM applications (requires high accuracy and density data). In addition,
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unlike the data collected in the typical remote sensing applications (e.g., satellite images
and ALS), the TLS can collect image information of the scene immediately after completing
the laser scanning. With the coordinate transformation matrix (usually provided by the
manufacturer), the color information (RGB) can be directly mapped to the corresponding
laser point. In this case, the data obtained through TLS usually has seven aligned channels
of data: RGB from the camera sensor and XYZ and I (intensity).

After acquiring raw point clouds that can provide accurate geometric information
for CIM, the semantic segmentation technique is usually adopted to obtain the semantic
information from the raw point cloud. In addition to the seven channels in the raw point
cloud, additional channels can be derived to describe the scene. The widely used two
types are the depth channel and the normal vector channel generated by XYZ. However,
in practice, not all channels can bring a positive improvement to semantic segmentation.
Several studies in the remote sensing application have indicated the importance of selecting
an optimal combination of data channels regarding multispectral datasets. For instance,
Yang et al. [8] presented a novel hyperspectral band approach to select an optimal band for
image classification based on clustering-based selection methods. Their results indicated
that the proposed method was more effective and able to generate better band selection
results. Li et al. [9] utilized discrete particle swarm optimization to model the various
errors (i.e., reconstruction, imaging, and demosaicing errors) associated with spectral
reconstruction for optimal channel combination. The optimization results reduced the time
in the computational process. Abdalla et al. [10] developed a robust DL method to group the
RGB channels for automatic color calibration for plants. Bhuiyan et al. [11] experimented
with testing the optimal three-channel combination in model prediction using very high
spatial resolution (VHSR) multispectral (MS) satellite images. Their findings emphasized
the importance of considering input MS channels and the careful selection of optimal
channels of DL network predictions for mapping applications. Park et al. [12] presented a
novel image prioritization method to select the limited channel based on cloud coverage
for nanosatellite application. By reducing the channels, they achieved an extremely low
computational power and light network on a nanosatellite.

The abovementioned studies have provided insightful guidance for optimal channel
combinations for image channels. However, these researches mainly investigated the opti-
mal combination of channels in land-use mapping, agricultural, and disaster monitoring,
focusing on the region highlight field (e.g., ice-wedge polygons). There is no agreement on
the optimal combination of channels that should be used for CIM applications in urban
scenes. For example, Pierdicca et al. [13] presented the deep learning (DL) framework
using 12 channels as input: XYZ coordinates, X’Y’Z’ normalized coordinates, color features
(HSV channels), normal features (in X, Y, and Z direction) for cultural heritage point cloud
segmentation. Alshawabkeh [14] developed a novel dataset to evaluate the feasibility of
combined LiDAR data and images for object segmentation by integrating RGB-D channels
(i.e., color and depth information). In the joint 3D object detection and semantic segmenta-
tion, Meyer et al. [15] used RGB together with aligned LiDAR information (point’s range,
height, azimuth angle, intensity, and indication of occupation) as the input of their net-
works. Lawin et al. [16] transformed the XYZ channels into depth and normal information
and particularly investigated the improvements in 3D semantic segmentation by using the
depth, color, and normal information.

Thus, the present paper aims to explore a simple optimal combination of data chan-
nels based on their semantic segmentation performance in the urban scenario. To more
objectively evaluate the gain from the combination of channels, the performance of various
channel combinations will be tested on different published encoder-to-decoder segmen-
tation networks in this study. Objectives are set to accomplish the aim as follows: (1) To
determine the optimal group of channels in terms of its overall accuracy (OA) and mean
intersection over union (mIoU); and (2) to empirically verify the robustness of the optimal
channel combination across different networks.
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The remainder of this paper is organized as follows. The second section will introduce
the selected benchmark dataset and the proposed framework and experiment arrangement
for the optimal channel combination selection. Then, the performance of various channel
combinations on different networks is summarized in the third section. Findings are drawn
in the fourth section and the final section.

2. Materials and Methodology
2.1. Paradigms for Semantic Segmentation

According to the comprehensive survey proposed by Guo et al. [17], point cloud
semantic segmentation approaches in the DL framework can be divided in three paradigms:
Projection-based, point-based, and discretization-based. The projection-based methods
usually project a 3D point cloud into 2D images, including multi-view and spherical images.
The point-based methods directly work on irregular point clouds by applying dedicated
local features convolutions. The discretization-based methods usually convert a point
cloud into volumetric rasterization to create an ordered grid of point clouds.

The point-based and discretization-based approach is directly processed on the 3D
data, which is extremely time-consuming or memory-costly in sampling training and
inferencing. For example, in the work of RandLA-Net [18], they evaluate the time con-
sumption of recent representative works on the Sequence 08 of the SemanticKITTI with
81,920 total number of points, where the best test result was 442 points/s. On the contrary,
the SnapNet [19] test 30 M points used even worse arithmetic. The average processing time
is about 32 min, and the corresponding process speed is about 15,625 points/s, which is
35 times faster than the point-based method. Meanwhile, for the CIM application, the total
number of points is up to 108 per scan. Therefore, the point-based and discretization-based
approaches are not efficient enough in terms of time. On the other hand, the performance
of multi-view segmentation methods is dependent on viewpoint selection and occlusions.
Therefore, in the present paper, spherical images-based semantic segmentation is adopted.

2.2. Study Materials

The online large-scale point cloud segmentation benchmark dataset Semantic3D is
used in this case study [20]. This benchmark dataset contains 15 annotated point clouds
representing different city scenes, where the points are labelled as eight classes (i.e., 1:
Man-made terrain, 2: Natural terrain, 3: High vegetation, 4: Low vegetation, 5: Buildings,
6: Hard scape, 7: Scanning artefacts, 8: Cars). Each point cloud is obtained by a separate
scanning. The basic information of 15 labelled point clouds is summarized in Table 1.

Table 1. Summary of basic information of 15 labelled point clouds.

Index Preview Name Number of Points Description Train/Test

1 bildstein1 29,302,501 church in bildstein Train

2 bildstein3 23,765,246 church in bildstein Test

3 bildstein5 24,671,679 church in bildstein Train
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Table 1. Cont.

Index Preview Name Number of Points Description Train/Test

4 domfountain1 35,494,386 cathedral in
feldkirch Train

5 domfountain2 35,188,343 cathedral in
feldkirch Test

6 domfountain3 35,049,972 cathedral in
feldkirch Train

7 untermaederbrunnen1 16,658,648 fountain in balgach Train

8 untermaederbrunnen3 19,767,991 fountain in balgach Test

9 neugasse 50,109,087 neugasse in st.
gallen Test

10 sg27_1 161,044,280 railroad tracks Train

11 sg27_2 248,351,425 town square Train

12 sg27_4 280,994,028 village Test

13 sg27_5 218,269,204 crossing Train

14 sg27_9 222,908,898 soccer field Train

15 sg28_4 258,719,795 town Train

2.3. Methodology

The way to select the optimal group of data channels for semantic segmentation
consists of two parts: Data preprocessing and two-step verification.

In the data preprocessing stage, which is shown in Figure 1, the first step is to convert
the data of different channels in the point clouds into a panoramic (PAN) image separately.
The next step is to slip the PAN image into subsets. The data in the panoramic form usually
have a large resolution. For example, PAN image resolution for a normal-scale single laser
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scan station with around thirty million laser points can be higher than 3000 x 7200. Such
a large resolution requires a high graphic memory size for the hardware. The PAN form
data need to be split into pieces with smaller sizes according to the hardware performance.
The PAN images are augmented by random cropping with 512 x 512 and random horiz-
ontal flipping.

Figure 1. Detailed steps of the data preprocess.

Additionally, for the laser data in CIM, the “invalid” data often occurs. When the
emitted laser beam points to the sky and does not return, there would be no valid coordi-
nates and intensity, as a result, “zero” appears in the dataset. Therefore, to accelerate the
convergence speed of neural network training, the proportion of such anomalous data in
the comprehensive data is required to be adjusted.

Before grouping the data from different channels into different combinations, the
image entropy (H) for each channel should be calculated [21]. Entropy is a statistical
measure of randomness that can be used to characterize the texture or the contained
information of the input image. The entropy of an image can be calculated by the first
order from its histogram which provides the occurrence frequency (or probability) of all
different grey levels in the image. The first-order image entropy is calculated as follows,
where pi is the probability of grey level i:

H = −
255

∑
i

pi log pi (1)

Using the entropy, those possible channels that are richer in information can be
roughly determined. Therefore, in the subsequent channel grouping, some meaningless
combinations are targeted and filtered out so as to reduce the time for choosing the optimal
channel combination. In the channel grouping, the R, G, and B channels from the image
are integrated with the I (intensity) channel acquired by the laser scanner to investigate the
effect of intensity on semantic segmentation results. Alternatively, the R, G, and B channels
from the image can be combined with the X, Y, and Z channels from the laser scanner,
respectively, to compare the performance gained from the different channels. After that,
the datasets for semantic segmentation are prepared, and all the images with appropriate
sizes are stored according to the predefined combinations.

In selecting the optimal channel combination, a two-step verification strategy is
applied to speed up identifying potential optimal combinations. First, networks with fewer
parameters are applied to quickly estimate the potential optimal channel combinations.
Then, networks with the deeper structure are adopted to verify the robustness of the
optimal channel combinations. If the results show a high consistency across all the different
networks, a reliable basis can be achieved for further subsequent substitutions or changes
to the neural networks.

The encoder-to-decoder architecture for semantic segmentation is applied in this
research. The encoder generates the feature maps for the input image, while the decoder
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uses the learned deconvolution layers to recover the image to the original size from the
feature maps. The encoder-to-decoder structure can achieve better performance in reducing
the information loss problem than those of the fully convolutional structure [22]. In
addition, the structure of encoder-to-decoder is more flexible, as the encoder and decoder
can be chosen from the commonly used neural network structures, respectively. For
example, the encoder can be chosen from the ResNet, MobileNet, and Xception [23–25].
The performance of different neural networks with varying complexity are evaluated in
terms of overall accuracy (OA) and mean intersection over union (mIoU).

2.4. Experiment Arrangement

It is necessary to ensure that the test data is similar to the data used for network
training [26]. Therefore, the selection of test data is based on the following reasons. First, it
is noticed that point clouds 1–3, point clouds 4–6, and point clouds 8–9 are collected from
three city scenes, respectively. Hence, a random point cloud from each scene is selected
as the test data (i.e., point clouds 2, 5, and 8). Since the remaining 6 point clouds (i.e.,
point clouds 9–15) are collected from six different city scenes, to keep the test-to-train ratio
similar to the previous selection (around 1/3), two point clouds (i.e., point clouds 9 and 12)
are randomly selected as the test data. Therefore, a total of five labelled point clouds were
selected for testing, and the remaining ten are used to train the semantic segmentation
networks, as shown in Table 1.

The preprocessing of the dataset follows the proposed method demonstrated
in Section 2, where the size of the input images is taken as 512 × 512 to contain enough
context information for semantic segmentation. Before deciding the combination of chan-
nels, it is necessary to check the image entropy first to avoid the combination with very
little information.

As indicated in Figure 2, among the 15 scans provided by the Semantic 3D, the
entropy values of RGB tend to be consistent. All of them remain in the top three, followed
by intensity, but the performance is not stable for the other four channels (X, Y, Z, D).
Therefore, the RGB channels from the image sensor dominate the subsequent channel
combinations. Moreover, to verify the improvement of the data from the laser scanning on
the semantic segmentation, the remaining channels are combined with RBG separately.

Figure 2. The entropy of different channel data.

As shown in Table 2, a total of 13 combinations of channels are investigated in this
research. These combinations are designed to investigate the effect of channels X, Y, Z,
D, and intensity on the segmentation performance. Nine popular networks are used in
this study, which include two basic U-net with different depths, seven networks having
the same decoder (i.e., DeepLab v3+), and different backbones (i.e., ResNet18, ResNet50,



Remote Sens. 2021, 13, 1367 7 of 17

ResNet101, MobileNetV2, Xception, Inception-ResNet-v2, HRCNet). All the structures of
networks are the same as the original implementation, and detailed network structures
refer to [25,27,28]. Finally, the cross-entropy loss is used in this study.

Table 2. Combinations of channels.

Index 1 2 3 4 5 6 7
Combination 8 Channels RGB XYZD IXYZD IRGB IRGBX IRGBY

Index 8 9 10 11 12 13 -
Combination IRGBZ IRGBD RGBX RGBY RGBZ RGBD -

The experiment is carried out on a PC with a processor of AMD Ryzen 9 3950X, RAM
of 64 GB, and two GPUs of NVIDIA GeForce GTX 2080Ti. In addition, MATLAB 2020b
is used for programming on the operating system of Windows 10. For a fair comparison
through the whole experiment process, all the training used the same training protocol,
which is a widely used strategy in deep learning research [29–31]. More specifically, the
SGD optimizer with a base learning rate of 0.05, a momentum of 0.9, and a weight decay
of 0.001 was adopted in this study. The step learning rate policy was applied, which
drops the learning rate by a factor of 0.1 every 10 epochs. For data augmentation, random
image extraction and random horizontal flipping were applied (as described in the data
process step). The total number of augmented images was 384 K, which were divided
into 50 groups for training (50 epochs). Due to the limited physical memory on GPU
cards, the “batchsize” was set as 16 (a total of 24 K iteration), and synchronized batch
normalization across GPU cards was adopted during training. Similar with [29–31], by
applying random data augmentation and batch normalization, all the networks used in
this study are considered to be resistant to overfitting.

3. Results

Figures 3 and 4 demonstrate the mIoU and OA performance of the 13 combinations
using nine networks. It is found that only the intensity channel brings a stable improvement
of the segmentation performance. As shown in Table 3, the intensity channel improves
mIoU and OA by an average of 3.24% and 2.01%, respectively. In contrast, it is found that
the X, Y, and Z channels impair the segmentation performance. Table 3 shows that the X, Y,
and Z channels reduce the mIoU by 2.84%, 2.97%, and 0.63%, respectively, and reduce the
OA by 2.69%, 4.05%, and 3.46%, respectively. Finally, it is found that the effect of D channel
depends on the criteria used for performance evaluation. More specifically, an additional
channel of distance improves the mIoU by 3.09%, while reduces the OA by 2.0%. Since
mIoU represents the average of the segmentation accuracy of each class, which indicates
that the D channel is beneficial for the segmentation of imbalanced classes (classes with
less data, i.e., difficult for segmentation).
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Figure 3. Mean intersection over union (mIoU) on test point clouds.

Figure 4. Overall accuracy (OA) on test point clouds.
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Table 3. Average improvement by adding different channels.

Base
Channels

Additional
Channels

Improvement on
mIoU

Improvement on
OA

RGB +Intensity 1.95% 1.43%
XYZD +Intensity 4.47% 6.06%
RGBX +Intensity 1.87% 0.63%
RGBY +Intensity 3.17% 0.21%
RGBZ +Intensity 1.50% 1.54%
RGBD +Intensity 6.46% 1.74%

AVE 3.24% 2.01%

RGB +X −3.69% −1.52%
IRGB +X −1.90% −3.85%

AVE −2.84% −2.69%

RGB +Y −3.62% −3.60%
IRGB +Y −2.31% −4.43%

AVE −2.97% −4.05%

RGB +Z −0.47% −3.47%
IRGB +Z −0.72% −3.36%

AVE −0.63% −3.46%

RGB +D 0.77% −2.00%
IRGB +D 5.47% −1.88%

AVE 3.08% −2.00%

4. Discussion

Based on the aforementioned results, it is inferred that the combination of IRGBD
channels provides the best mIoU performance, while the combination of IRGB channels
provides the best OA performance. These inferences are confirmed in Tables 4 and 5, where
the highest value of mIoU and OA for each network is highlighted as green and yellow,
respectively. It is observed that the optimal combination of channels is the same for all
networks, which shows the robustness of the optimal combination.

Table 4. The mIoU of seven networks regarding different combinations of channels (the highest mIoU for each network is
marked as green).

8C RGB XYZD IXYZD IRGB IRGBX IRGBY IRGBZ IRGBD RGBX RGBY RGBZ RGBD
U-Net-3 Layer 22.3% 29.5% 12.9% 18.2% 31.3% 31.2% 27.0% 29.5% 37.2% 27.9% 23.0% 25.6% 31.0%
U-Net-4 Layer 24.2% 34.3% 6.3% 17.1% 35.4% 32.5% 36.9% 34.4% 41.0% 30.3% 25.8% 36.3% 34.4%

ResNet18 33.4% 37.2% 32.6% 32.5% 39.7% 40.5% 38.6% 38.7% 42.7% 37.5% 36.4% 35.9% 40.6%
ResNet50 36.6% 42.6% 28.5% 36.2% 43.6% 40.6% 39.0% 41.7% 49.0% 39.0% 37.1% 41.6% 40.9%
ResNet101 37.3% 44.1% 33.7% 37.5% 45.2% 40.8% 40.9% 44.1% 50.8% 40.9% 39.2% 42.5% 42.4%

Mobilenetv2 42.1% 40.8% 37.6% 40.3% 45.3% 39.3% 39.7% 43.7% 53.3% 38.5% 38.0% 39.7% 45.6%
Xception 40.3% 41.6% 36.4% 41.2% 44.0% 44.0% 44.5% 44.6% 49.3% 43.1% 42.1% 45.8% 45.2%

Inception-ResnetV2 42.8% 43.6% 40.9% 43.4% 45.6% 44.7% 44.9% 45.6% 47.9% 41.9% 42.3% 41.7% 40.4%
HRCNet 43.0% 44.6% 40.8% 43.6% 45.7% 44.8% 43.2% 46.6% 53.7% 42.7% 42.2% 46.0% 45.9%

In the meantime, by ranking the mIoU and OA of all the 13 channel combinations for
seven networks, as shown in Tables 6 and 7, it is found that the worst channel combination
also presents a high consistency across the seven networks, but the consistency decreases
for other combinations ranked in the middle. This indicates that the channel combinations
with respect to extreme cases are more consistent than others.
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Table 5. OA of seven networks regarding different combinations of channels (the highest OA for each network is marked as yellow).

8C RGB XYZD IXYZD IRGB IRGBX IRGBY IRGBZ IRGBD RGBX RGBY RGBZ RGBD
U-Net-3 Layer 55.7% 74.3% 27.6% 37.7% 75.3% 74.8% 71.0% 68.1% 72.0% 71.8% 65.6% 63.7% 67.9%
U-Net-4 Layer 57.5% 76.2% 37.6% 38.1% 78.5% 77.6% 72.4% 74.8% 76.7% 71.9% 67.2% 67.5% 74.8%

ResNet18 64.3% 83.1% 60.8% 63.6% 83.7% 80.7% 80.7% 82.2% 81.3% 78.8% 79.9% 80.0% 81.6%
ResNet50 72.5% 84.5% 54.0% 66.9% 85.6% 81.7% 81.2% 81.8% 82.4% 81.8% 79.8% 84.5% 82.8%
ResNet101 73.2% 84.7% 60.7% 67.1% 86.9% 81.9% 82.0% 82.5% 85.8% 81.5% 79.9% 84.6% 82.9%

Mobilenetv2 83.2% 86.0% 65.4% 66.8% 86.7% 80.0% 76.8% 85.8% 85.4% 81.1% 80.7% 79.9% 85.8%
Xception 70.2% 87.0% 64.3% 70.5% 87.6% 83.2% 85.4% 82.5% 86.0% 83.1% 87.5% 84.2% 86.2%

Inception-ResnetV2 77.1% 82.5% 64.4% 72.0% 87.0% 81.2% 83.0% 83.9% 85.3% 84.7% 86.2% 85.0% 77.4%
HRCNet 83.9% 87.6% 65.3% 72.2% 87.8% 83.3% 82.9% 87.1% 87.3% 84.3% 86.6% 85.1% 87.1%

Table 6. Ranking of the mIoU performance of 13 channel combinations for seven networks.

1 2 3 4 5 6 7 8 9 10 11 12 13

U-Net-3 Layer IRGBD IRGB IRGBX RGBD RGB IRGBZ RGBX IRGBY RGBZ RGBY 8C IXYZD XYZD
U-Net-4 Layer IRGBD IRGBY RGBZ IRGB IRGBZ RGBD RGB IRGBX RGBX RGBY 8C IXYZD XYZD

ResNet18 IRGBD RGBD IRGBX IRGB IRGBZ IRGBY RGBX RGB RGBY RGBZ 8C XYZD IXYZD
ResNet50 IRGBD IRGB RGB IRGBZ RGBZ RGBD IRGBX IRGBY RGBX RGBY 8C IXYZD XYZD
ResNet101 IRGBD IRGB RGB IRGBZ RGBZ RGBD IRGBY RGBX IRGBX RGBY IXYZD 8C XYZD

Mobilenetv2 IRGBD RGBD IRGB IRGBZ 8C RGB IXYZD IRGBY RGBZ IRGBX RGBX RGBY XYZD
Xception IRGBD RGBZ RGBD IRGBZ IRGBY IRGB IRGBX RGBX RGBY RGB IXYZD 8C XYZD

Inception-ResnetV2 IRGBD IRGB IRGBZ IRGBY IRGBX RGB IXYZD 8C RGBY RGBX RGBZ XYZD RGBD
HRCNet IRGBD IRGBZ RGBZ RGBD IRGB IRGBX RGB IXYZD IRGBY 8C RGBX RGBY XYZD

Table 7. Ranking of the mIoU performance of 13 channel combinations for seven networks.

1 2 3 4 5 6 7 8 9 10 11 12 13

U-Net-3 Layer IRGB IRGBX RGB IRGBD RGBX IRGBY IRGBZ RGBD RGBY RGBZ 8C IXYZD XYZD
U-Net-4 Layer IRGB IRGBX IRGBD RGB IRGBZ RGBD IRGBY RGBX RGBZ RGBY 8C IXYZD XYZD

ResNet18 IRGB RGB IRGBZ RGBD IRGBD IRGBX IRGBY RGBZ RGBY RGBX 8C IXYZD XYZD
ResNet50 IRGB RGB RGBZ RGBD IRGBD IRGBZ RGBX IRGBX IRGBY RGBY 8C IXYZD XYZD
ResNet101 IRGB IRGBD RGB RGBZ RGBD IRGBZ IRGBY IRGBX RGBX RGBY 8C IXYZD XYZD

Mobilenetv2 IRGB RGB IRGBZ RGBD IRGBD 8C RGBX RGBY IRGBX RGBZ IRGBY IXYZD XYZD
Xception IRGB RGBY RGB RGBD IRGBD IRGBY RGBZ IRGBX RGBX IRGBZ IXYZD 8C XYZD

Inception-ResnetV2 IRGB RGBY IRGBD RGBZ RGBX IRGBZ IRGBY RGB IRGBX RGBD 8C IXYZD XYZD
HRCNet IRGB RGB IRGBD RGBD IRGBZ RGBY RGBZ RGBX 8C IRGBX IRGBY IXYZD XYZD
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Moreover, it is noticed that the simple mixture of all the available channels (i.e., column
8C in Tables 4 and 5) often results in a worse performance compared to that of combinations
with fewer channels. To explore this thoroughly, for channel combinations 8C, RGB, IRGB,
and IRGBD, the training curves for networks with the Inception-ResnetV2 backbone
are plotted in Figure 5, and two test images are used to obtain the feature maps and
corresponding segmentation results for comparison, as demonstrated in Figures 6 and 7.
From Figure 5, it is observed that the training process of combination of 8C converges
much slower than others, which might indicate that the network struggled to learn the
“correct” feature when there is a mixture of “useful” and “useless” data input. Taking the
segmentation results in Figure 6 as an example, compared to the result of RGB combination,
the additional I channel (i.e., IRGB) does help remove the mislabeled pixels in the wall
region, but it also causes the mislabeling of the whole bottom part of the wall. The
segmentation result is even worse for the 8C combination, which completely fails to
distinguish the building and the road. A similar situation occurs for the street view test, as
shown in Figure 7. Compared to the segmentation results for the RGB combination, the 8C
combination causes a large mislabeling area around the road sign. Both test image results
show that the IRGBD combination yields the best segmentation results.

Figure 5. Training accuracy for combinations of 8C (all the channels), RGB (color), IRGB (intensity and color), and IRGBD
(intensity, color and depth) using networks of Inception-ResnetV2 backbone.
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Figure 6. Feature maps and segmentation results for four combinations for the building-road joint image.

Figure 7. Feature maps and segmentation results for four combinations in the street view image.
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The average time of single training for nine networks are summarized in Figure 8,
where the average time of Xception (17.2 h) is two times more than that of ResNet18 (7.5 h).
Moreover, since the channel analysis requires a series of comparative tests to ascertain the
optimal channel combination, the differences in training time between the networks are
magnified. For example, the total channel analysis time for ResNet18 and Xception are
97.4 and 193.6 h, respectively. Since the previous investigation shows a high consistency
of optimal channel combination across different networks, the efficiency can be improved
significantly by conducting the channel analysis on a small network before training on
more sophisticated networks. In addition, the total inference time (including PAN image
generation, inference, back-projection) is around 170 k points/s.

Figure 8. Summary of the average time of single training for nine network structures.

Finally, since the IRGBD channel combination and HRCNet got the best performance
(mIoU is more critical than OA) in our previous testing, they were selected to evaluate
the performance on the Semantic3D (reduced-8) test dataset. The reason to choose the
reduced-8 rather than the high-density test dataset is that previous methods (especially
point-based methods) are often tested on the reduced-8 test dataset as they cannot handle
high-density point clouds efficiently. The complete training dataset (15 point clouds) was
used in this stage, and the training protocol remains the same as mentioned in Section 2.3.
The quantitative segmentation results are summarized in Table 8 below, where XJTLU
outperforms previous best image-based methods by 4.4% regarding mIoU, and even
outperforms several recently published point/discretization-based methods, which show
the effectiveness of our proposed methods.
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Table 8. Quantitative results of different approaches on Semantic3D (reduced-8) [20]. Accessed on 16 March 2021 (the overperformed methods are marked in grey).

Year mIoU (%) OA (%) Man-Made Natural High Veg Low Veg Buildings Hard Scape Scanning Art Cars

Point/discretization-
based

Methods

SEGCloud [32] 2017 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
RF MSSF [33] 2018 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

Edge-Con. [34] 2019 59.5 87.9 84.5 70.9 76.6 26.1 91.4 18.6 56.5 51.4
ShellNet [35] 2019 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2

OctreeNet [36] 2020 59.1 89.9 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0
GACNet [37] 2020 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

RandLA-Net [18] 2020 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8

Projection-
based

Methods

DeePr3SS [16] 2017 58.5 88.9 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
SnapNet [19] 2017 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
XJTLU(Ours) 2021 63.5 89.4 85.4 74.4 74.6 31.9 93.0 25.2 41.5 82.0
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5. Conclusions

With the development of CIM, there is an increasing demand for high-precision
semantic segmentation information. Data fusion is an emerging method to improve the
segmentation performance. However, without a selection of effective data fusion sources,
extra effort is required in both data collection and processing. Therefore, an efficient data
fusion approach is proposed in this article by exploring the optimal combination of data
channels. The analysis on the performance of different combinations of data channels
is applied to obtain the optimal combination by adopting various neural networks. The
robustness of the optimal combination is proved using a case study, which demonstrates
the feasibility of the proposed data fusion channel selection. The findings can be utilized to
achieve a significant improvement on efficiency by adopting a simple structured network
for the channel analysis before applying a more complex network. In addition, the case
study demonstrates that, without adopting this framework, a simple mixture of available
data sources impairs the segmentation performance, which shows the necessity of channel
selection in data fusion. Finally, using the selected channel combination and network, we
achieved the best performance among image-based methods and outperformed several
recent point/discretization-based methods.

Although the feasibility of the proposed method has been investigated on 2D convo-
lutional neural networks, other types of networks exist that could be used for semantic
segmentation in CIM, such as vision transformer [38] and point-based network [18]. There-
fore, our future work will focus on the investigation of the robustness of the optimal
combination of data sources among different types of networks.
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