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Abstract 

 

Pain is a complex sensation comprised of biological, psychological, and social components. 

Accurate pain assessment is imperative for effective pain management in both acute and 

chronic pain. Self-reported measures are currently the gold standard for pain assessment but 

are not suitable for numerous populations due to a reliance on social and linguistic skills. 

Consequently, vulnerable populations such as individuals with dementia, cognitive 

impairments, and disorders of consciousness often receive sub-optimal pain management 

due to the challenges associated with assessing their pain. Moreover, research demonstrates 

that healthcare practitioners typically underestimate patient pain intensity in such scenarios, 

reducing the likelihood of effective pain management. Therefore, techniques enabling 

objective pain assessment, which negate the use of self-report and alleviate observational 

bias, are urgently needed to improve pain management in these populations. 

 

The combination of Electroencephalogram (EEG) and Machine Learning (ML) has 

demonstrated promise for decoding neural responses to infer an individual’s internal state. 

Previous research suggests that subjective pain intensity can be reasonably predicted by 

training ML models on EEG activity. However, methodological limitations including small 

sample sizes and a paucity of recommended practices such as external validation, hinder the 

interpretability of previous research, which limits the translational clinical potential of the 

approach. Moreover, to our knowledge, no research has considered decoding neural 

responses during the observation of visual pain stimuli, which could enhance the 



 xvii 

understanding of empathic responses, e.g., in a patient-clinician interaction, or medical 

education.  

 

This thesis aimed to conduct the first external validation paradigms for the prediction of both 

subjective pain intensity and observation of visual pain stimuli to provide realistic estimates 

of the potential of ML and EEG for decoding pain-related neural responses, overcoming the 

limitations of the field. The findings of this thesis demonstrated that subjective pain intensity 

can be predicted with above-chance levels using features derived from EEG. Features 

predominantly from frontal, central, and parietal scalp regions in theta, alpha, beta, and 

gamma frequency bands enabled accurate pain prediction. Specifically, our results 

demonstrated that subjective pain intensity could be predicted in novel samples with 

accuracies up to 69%. In addition, our results demonstrated that pain observation could not 

be reliably decoded using EEG and ML, providing evidence of the current limitations of the 

approach.  

 

For the first time, the effectiveness of ML and EEG for the prediction of pain intensity and 

pain observation has been evaluated using gold-standard external validation procedures. Our 

results suggest that the existing literature has overestimated the potential of the method, 

with highly promising performance metrics possibly due to methodological issues. Further 

developments and improvements in methodological rigour are imperative to provide 

sufficient evidence for the effectiveness of ML and EEG for the prediction of pain intensity. 

Overall, this thesis provides the most robust estimates of the potential of EEG and ML for pain 

intensity and pain observation decoding. 



 1 

Chapter 1:  

General Introduction 

 

1.1 Pain Perception, Impact, and Measurement 

1.1.1 Pain Perception 
 

Pain is an imperative function of the nervous system that provides information about a 

potential injury threat or the occurrence of an injury to the body (Julius & Basbaum, 2001; 

Raja et al., 2020). In 2020, the International Association for the Study of Pain (IASP) redefined 

pain as “an unpleasant sensory and emotional experience associated with, or resembling that 

associated with, actual or potential tissue damage” (Raja et al., 2020, p. 1977). The term pain 

encompasses the subjective experience of the sensation, whilst nociception refers to the 

encoding and transmission of noxious stimuli from the peripheral nervous system to the 

central and autonomic nervous systems and not the subjective percept (Q. Chen & Heinricher, 

2022; Dubin & Patapoutian, 2010; Garland, 2012; Mischkowski et al., 2018; Sneddon, 2018; 

W. D. Tracey, 2017). 

 

Three broad categories of pain have been proposed: nociceptive, neuropathic, and nociplastic 

(Fitzcharles et al., 2021; IASP, 2017; Kosek et al., 2016; Woolf, 2010, 2011). Nociceptive pain 

occurs due to threatened or actual damage to tissue and is initiated through nociceptor 

activation (Fitzcharles et al., 2021; IASP, 2017; Kosek et al., 2016; Woolf, 2010, 2011). 

Nociceptive pain offers a protective function, detecting and minimising the impact of noxious 
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or potentially noxious stimuli (Fitzcharles et al., 2021; Kosek et al., 2016; Woolf, 2010). 

Neuropathic pain can occur due to a disease or lesion of either the peripheral or central 

somatosensory nervous systems, resulting in nerve damage (Fitzcharles et al., 2021; IASP, 

2017; Kosek et al., 2016). Finally, nociplastic pain arises from alterations in peripheral and 

central nervous system function, leading to enhanced sensitivity (Fitzcharles et al., 2021; IASP, 

2017). Nociplastic pain stems from altered nociceptive processing which does not have clear 

evidence of threatened or actual tissue damage or evidence of a lesion or disease of the 

somatosensory system (IASP, 2017). Nociplastic pain differs mechanistically from both 

nociceptive and neuropathic pain and relates to chronic pain conditions (e.g., fibromyalgia; 

Fitzcharles et al., 2021; Kosek et al., 2016). 

 

The experience of pain arises through a complex interplay of biological, psychological, and 

social components (Fillingim, 2017; Garland, 2012; Gatchel et al., 2007). Pain is modulated 

through both top-down (e.g., cognitive influences) and bottom-up factors (e.g., sensory 

inputs; Chen & Heinricher, 2022; Hauck et al., 2015; Legrain et al., 2009; I. Tracey & Mantyh, 

2007). For example, diverting attention (top-down process) away from nociceptive stimuli has 

been shown to reduce both subjective pain intensity and pain-related neural responses, 

whilst increased attention is associated with enhanced subjective pain intensity (Hauck et al., 

2015; Legrain et al., 2005, 2009; Wiech et al., 2008). Furthermore, bottom-up processes are 

exogenous and can be manipulated via alterations to sensory inputs such as stimulus intensity 

(Hauck et al., 2015; Tiemann et al., 2015; Torta et al., 2017). Due to the complexity and 

subjectivity of pain, significant variability in pain experience is observed both across and 

within individuals (Fillingim, 2005, 2017; Nielsen et al., 2009; Quiton & Greenspan, 2008). 
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1.1.2 Pain Impact 
 

Whilst pain is often advantageous to protect the body from tissue damage, chronic pain is not 

protective and may result from abnormal nervous system function (Woolf, 2010). Chronic 

pain is defined as persistent pain exceeding three months in duration (Crofford, 2015; Treede 

et al., 2015), which persists after removal of the injurious stimulus, or after the tissue has 

healed (Hylands-White et al., 2017). Approximately 20% of adults globally are affected by 

chronic pain (Breivik et al., 2006; Dahlhamer et al., 2018), with estimates suggesting that up 

to 43% of British adults are impacted (Fayaz et al., 2016). Moreover, the estimates suggest 

that between 10.4% and 14.3% of the UK population suffer from moderately or severely 

debilitating pain (Fayaz et al., 2016), which demonstrates the profound impact of chronic 

pain. On an individual level, chronic pain impairs the quality of life, professional prospects, 

and personal life, leading to an increased risk of psychopathologies and suicidal ideation 

(Ataoğlu et al., 2013; Demyttenaere et al., 2007; Fishbain et al., 1997; Hadi et al., 2019; 

Ratcliffe et al., 2008). Whilst it is challenging to quantify the economic impact, estimates in 

the US from 2010 suggest that the total costs associated with chronic pain exceed that of 

heart disease, cancer, and diabetes, ranging from $560 - $635 Billion (Gaskin & Richard, 2012). 

To provide effective pain management for individuals with chronic pain, improved pain 

assessment remains imperative (Breivik et al., 2008; Dansie & Turk, 2013). The assessment of 

pain in chronic pain conditions is often complex, resulting in underestimated pain and 

ineffective treatment recommendations (Dansie & Turk, 2013; Zanocchi et al., 2008). 

Consequently, improving pain assessment through personalised medicine and improved 

clinical tools may significantly improve pain management and treatment outcomes (Zanocchi 

et al., 2008). 
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1.1.3 Pain Measurement 
 

Accurate pain assessment is imperative for effective pain management (Breivik et al., 2008). 

Self-report approaches are the current gold standard and should be used where possible 

(Breivik et al., 2008). Rating scales, such as a visual analogue scale (VAS) or numerical rating 

scale (NRS), are effective for quantifying pain intensity (Breivik et al., 2008; Dansie & Turk, 

2013; Melzack & Katz, 2013). Despite being the preferred approach, self-report methods 

necessitate the capacity to accurately communicate pain, requiring both linguistic and social 

skills (Hadjistavropoulos et al., 2001; Schiavenato & Craig, 2010). Consequently, these 

measures are not suitable for populations who cannot accurately communicate their internal 

state, such as individuals with dementia (Breivik et al., 2008; Hadjistavropoulos et al., 2001; 

Herr et al., 2011; Kunz et al., 2009), cognitive impairments (Hadjistavropoulos et al., 2001; 

Herr et al., 2011; Voepel-Lewis et al., 2002), traumatic brain injury (Arbour & Gélinas, 2014), 

disorders of consciousness (Herr et al., 2011; Schnakers & Zasler, 2007), non-verbal 

individuals (Herr et al., 2011; D. Li et al., 2008; McGuire et al., 2016), and young children or 

infants (Hadjistavropoulos et al., 2001; Herr et al., 2011; Witt et al., 2016).  

 

Alternatively, observational methods, which assess non-verbal indicators such as grimacing, 

can be used to approximate pain (e.g., Hadjistavropoulos et al., 2001; Malviya et al., 2006). 

However, observational approaches are also imperfect (Hadjistavropoulos et al., 2001). 

Healthcare professionals often underestimate pain intensity from patient interactions when 

compared to self-report ratings (Kappesser et al., 2006; Seers et al., 2018), which may lead to 

ineffective pain management (e.g., undertreatment or overtreatment; Kelley et al., 2008; King 

& Fraser, 2013). Observational methods are also at risk of bias due to several reasons 
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including economic, individual, and social factors (Atkins & Mukhida, 2022; Hoffman et al., 

2016; Pierson et al., 2021). In one study, researchers examined the impact of inaccurate 

beliefs about biological differences between black and white individuals on pain estimation 

and treatment (Hoffman et al., 2016). They found that approximately 50% of the sample 

endorsed inaccurate beliefs and were more likely to underestimate the pain of a black 

individual (Hoffman et al., 2016). Consequently, improved pain assessment techniques, and 

understanding of pain observational and evaluation, are also desirable to improve clinical 

training.  

 

Given the complexity of pain assessment, the advent of objective measures is desirable to 

improve pain management. However, it has been argued that objective pain assessment is 

impossible due to the subjectivity of pain (Breivik et al., 2008). Despite the difficulty 

associated with “objectively” assessing pain, proxy measures for use in populations where 

current methods fail, would demonstrate significant clinical utility and are a target of 

considerable research. In particular, biological markers, or biomarkers, may prove effective 

for pain assessment, with neuroimaging-based methods demonstrating promise (van der 

Miesen et al., 2019). Therefore, in this thesis, we assess the feasibility of neuroimaging-based 

pain assessment techniques in healthy individuals. Whilst an objective pain assessment 

technique is desirable for clinical populations; the current thesis aims to develop a proof of 

concept for the approach in healthy individuals. Consequently, one of the aims of this thesis 

is to assess the effectiveness of ML and EEG for pain intensity decoding, which would provide 

insight into the clinical potential of the measure. Another aim is to consider decoding pain 

observation processes, which could help to improve clinical training regarding bias and 

empathy for patient-practitioner interactions.  
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Throughout the remainder of this introduction, we discuss the biological mechanisms of pain, 

ranging from peripheral mechanisms of cutaneous nociception to neural correlates. 

Subsequently, we overview the current approaches for predicting pain intensity from 

electroencephalogram (EEG) data. In addition, in this thesis, we also assess the predictive 

capability of neural responses during pain observation. Therefore, we also provide an 

overview of the empathic processing of pain, discussing the neural mechanisms before 

describing the existing literature. 

 

1.2 Pain Processing in Healthy Individuals 

1.2.1 Peripheral Mechanisms of Cutaneous Nociception 
 

The human body contains three primary classes of neurons: sensory/afferent, 

motor/efferent, and interneurons (Yam et al., 2018). Cutaneous afferents that innervate the 

skin are responsible for sensing a range of tactile, thermal, pain, and itch stimuli (Abraira & 

Ginty, 2013; McGlone & Reilly, 2010). Cutaneous sensory afferents are classed as either Ab, 

Ad, or C-fibres, depending on their axon diameter, myelination, conduction velocity, and cell 

body sizes (Abraira & Ginty, 2013; Yam et al., 2018). Most Ab fibres respond to innocuous 

mechanical stimulation such as touch (Abraira & Ginty, 2013; Julius & Basbaum, 2001). 

Whereas Ad and C-fibres are nociceptors responsible for first- and second-pain, respectively 

(Bishop & Landau, 1958; Julius & Basbaum, 2001; Schaible et al., 2011). Nociceptors are free 

nerve endings of primary sensory neurons which are responsible for the transduction of 

numerous environmental stimuli including cold, heat, chemical, and mechanical (Dubin & 

Patapoutian, 2010; R. Z. Hill & Bautista, 2020; Kandel et al., 2012). Figure 1.1 illustrates the 

organisation of cutaneous receptors in the skin. 
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Ad fibres are lightly myelinated, medium diameter (approx. 2 - 5 μm), with conduction 

velocities between 5 and 30 m/s (Abraira & Ginty, 2013; Crawford & Caterina, 2020; McGlone 

& Reilly, 2010; Yam et al., 2018). Ad fibres have small receptive fields, resulting in well-

localised acute pain sensations (Basbaum et al., 2009; Ploner et al., 2002). C-fibres are 

unmyelinated and thin (< 2 μm in diameter), resulting in slower conduction velocities (< 2 

m/s; Abraira & Ginty, 2013; Smith & Lewin, 2009; Yam et al., 2018). C-fibres are responsible 

for second pain, a duller, longer-lasting sensation that persists long after the injury (Dubin & 

Patapoutian, 2010). C-fibres have relatively large receptive fields (100 mm2 in humans; 

Schmidt et al., 1997) and poor stimuli localisation (Basbaum et al., 2009; Voscopoulos & Lema, 

2010; Yam et al., 2018). 

 

 Figure 1.1 The organisation of cutaneous mechanoreceptors in the skin. Reprinted from 

Neuron, 79(4), by V.E. Abraira & D.D. Ginty. “The sensory neurons of touch”, 618-639, 

copyright (2013), with permission from Elsevier. 
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Type I nociceptors, located in hairy and Glabrous skin, are polymodal and respond to 

mechanical and chemical stimulation, but have high heat activation thresholds (> 50oC; 

Abraira & Ginty, 2013; Basbaum et al., 2009; Djouhri & Lawson, 2004). The heat threshold of 

type 1 receptors is reduced during sustained heat stimulation or tissue injury (Basbaum et al., 

2009; Treede et al., 1998). As these cells have low mechanical and chemical thresholds, they 

likely account for the first pain evoked by the noxious mechanical stimulation (Basbaum et 

al., 2009; Granovsky et al., 2005). Type II nociceptors, located in hairy skin, have much lower 

heat and higher mechanical thresholds compared to type I receptors, which mediates the 

acute pain response to noxious heat stimulation (Basbaum et al., 2009; Djouhri & Lawson, 

2004; Dubin & Patapoutian, 2010). In the present thesis, we deliver mechanical stimulation 

to the finger-nail bed of the left-hand index finger. 

 

C-fibres account for between 60 to 70% of skin afferents (Basbaum et al., 2009; Lewin & 

Moshourab, 2004). C-fibres are heterogeneous and polymodal, responding to mechanical, 

thermal, and chemical stimulation in a slowly adapting manner (Basbaum et al., 2009; Lewin 

& Moshourab, 2004; Smith & Lewin, 2009; Wooten et al., 2014). However, not all C-fibres are 

polymodal (Smith & Lewin, 2009). For example, a subset of silent C-fibres is unresponsive to 

thermal and mechanical stimulation (Handwerker et al., 1991; Schmidt et al., 1995). However, 

silent C-fibres can become responsive to both heat and mechanical stimulation following 

sensitisation (Kress et al., 1992). For example, sensitisation can be induced using capsaicin or 

repeated mechanical or heat stimulation (Banik & Brennan, 2008; Torebjörk et al., 1992). 

Finally, a class of low threshold C-fibres are responsive to innocuous touch, which may 

contribute to the encoding of pleasant touch (Löken et al., 2009; Olausson et al., 2007).  
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1.2.2 Spinal Cord Projections  
 

From initial peripheral processing, nociceptive information is relayed to the spinal cord for 

further projection (D’Mello & Dickenson, 2008). The cell bodies of primary sensory neurons 

reside in the dorsal root ganglia (DRG; Abraira & Ginty, 2013; Dubin & Patapoutian, 2010; 

Smith & Lewin, 2009). The fibres that carry somatosensory information are combined into 

peripheral nerve fibre bundles as they enter the DRG (Kandel et al., 2012). Consequently, the 

spinal cord is the first relay station for nociceptive information, with the terminals of primary 

afferents terminating in the dorsal horn before projecting to higher-order brain regions 

(Brooks & Tracey, 2005; D’Mello & Dickenson, 2008). DRG neurons have two axonal 

projections, one to peripheral sites and the other to the central nervous system (Kandel et 

al., 2012). The axons of second-order neurons cross the midline and ascend before synapsing 

with a third-order neuron located in the thalamus, which projects to sensory regions of the 

cerebral cortex (R. S. Snell, 2009).  

 

The spinal cord comprises 31 pairs of spinal nerves, consisting of both white (e.g., axons) and 

grey matter (e.g., cell bodies, dendrites, glial cells; Diaz & Morales, 2016; Henmar et al., 2020; 

Purves et al., 2017). Spinal cord grey matter contains several tissue layers which have been 

divided into 10 laminae (lamina I to X) based on variations in neuronal size and compactness, 

known as cytoarchitectonics (Diaz & Morales, 2016; Rexed, 1952). Lamina I and II, the nucleus 

marginalis, and substantia gelatinosa transduce pain and temperature signals (D’Mello & 

Dickenson, 2008; Diaz & Morales, 2016; Purves et al., 2017). Lamina III and IV process pressure 

touch and vibration, whilst neurons in lamina V encode stimuli from muscle, cutaneous, joint 

mechanical, and visceral nociceptors, whilst lamina VI contributes to the flexion reflex 
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(Basbaum et al., 2009; Diaz & Morales, 2016; Purves et al., 2017). Lamina VII, VIII, IX, and X 

contribute to proprioception and autonomic functions (Diaz & Morales, 2016; Purves et al., 

2017). 

 

The dorsal horn comprises lamina I to VI, with most Ad and C-fibres terminating in superficial 

layers (lamina I/II), with some terminating in deeper layers, whilst most Ab-fibres terminate 

in laminae III to VI (Basbaum et al., 2009; Craig, 2002; D’Mello & Dickenson, 2008; Diaz & 

Morales, 2016; Kandel et al., 2012; Todd, 2010). Inputs to lamina V receive both innocuous 

and noxious input from monosynaptic A-fibre afferents directly, and C-fibres indirectly, which 

are polysynaptic (Basbaum et al., 2009). Wide dynamic range neurons receive input from 

several sensory fibres and respond to noxious, visceral, and innocuous mechanical stimuli 

(Basbaum et al., 2009; D’Mello & Dickenson, 2008). Wide dynamic range neurons exhibit 

wind-up, a form of synaptic plasticity, which through repeated stimulation increases the 

magnitude and frequency of the evoked response (D’Mello & Dickenson, 2008; Herrero et al., 

2000). 

 

The axons that enter the spinal cord from the dorsal root ganglion progress to the posterior 

grey column (R. S. Snell, 2009). Here, they bifurcate into both ascending and descending 

branches that traverse one to two spinal cord segments (relative to the segment of origin), 

forming the posterolateral tract of Lissauer (R. S. Snell, 2009; Steeds, 2009). The fibres of first-

order neurons synapse with cells in the posterior grey column, which includes neurons in the 

substantia gelatinosa (R. S. Snell, 2009). Subsequently, most second-order neuronal axons 

cross the anterior grey and white commissures and ascend contralaterally in the white 

column, forming the spinothalamic tract (Craig, 2002; Kandel et al., 2012; R. S. Snell, 2009). 
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The spinothalamic tract is located in the anterolateral white matter of the spinal cord and 

consists of the lateral and anterior spinothalamic tracts, which relay somatosensory 

information from the dorsal horn to the thalamus and cortex (Craig, 2002; Kandel et al., 2012; 

Steeds, 2009; Yam et al., 2018). Specifically, the spinothalamic tract ascends through the 

spinal cord, with collateral branches to the reticular formation of the medulla oblongata, pons 

and brainstem, which includes the gigantocellularis and paragigantocellularis nuclei and the 

periaqueductal grey (Almeida et al., 2004; Kandel et al., 2012; R. S. Snell, 2009; Steeds, 2009). 

Both lateral and anterior tracts ascend alongside each other and form the anterolateral 

system. Here, the lateral spinothalamic tract relays pain and temperature information, whilst 

the anterior spinothalamic tract relays touch and firm pressure signals (Kandel et al., 2012; 

Yam et al., 2018). Ad and C-fibres ascend via the spinothalamic tract, with Ad travelling 

through the neospinothalamic tract and C-fibres through the paleospinothalamic tract 

(Bussone & Grazzi, 2013; Steeds, 2009). The neospinothalamic tract experiences minimal 

modulation before reaching the cortex, and is responsible for the sensory-discriminative 

aspects of pain (Bussone & Grazzi, 2013; Steeds, 2009). Whereas the paleospinothalamic tract 

receives modulation throughout and contributes to the affective nature of pain (Bussone & 

Grazzi, 2013; Steeds, 2009). Figure 1.2 illustrates the spinothalamic tract (Betts et al., 2013). 
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After ascending through the midbrain, many spinothalamic tract fibres synapse with third-

order neurons that project to the ventral posterolateral thalamus (Craig, 2002; Kandel et al., 

2012; R. S. Snell, 2009). The axons of the spinothalamic tract terminate in either the medial 

or lateral nuclei (Steeds, 2009; Yen & Lu, 2013). The lateral thalamic nuclei consist of ventral 

Figure 1.2 Illustration of the spinothalamic tract. Adapted with permission 

from Betts et al. (2013). 
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posterior and posterior nuclei, whilst the medial thalamic nuclei comprise intralaminar, dorsal 

and midline nuclei (Yen & Lu, 2013). Subsequently, axons ascend and traverse the posterior 

limb of the internal capsule and the corona radiata, reaching the somatosensory area of the 

postcentral gyrus; located in the cortex (Craig, 2002; Kandel et al., 2012; R. S. Snell, 2009). 

 

Nociceptive information is transmitted to cortical and subcortical regions including the 

primary (SI) and secondary (SII) somatosensory cortices, insular cortex, anterior cingulate 

cortex, prefrontal cortex, amygdala, hypothalamus, periaqueductal grey, cerebellum, and 

basal ganglia (Apkarian et al., 2005; Garland, 2012; Kandel et al., 2012; Steeds, 2009). SI and 

SII are involved in processing temporal, spatial, and intensity characteristics of pain (Bornhövd 

et al., 2002; Coghill et al., 1999). Whereas a neural circuit comprised of frontal regions, the 

periaqueductal grey, and the brainstem contributes to the emotional modulation of pain 

(Bushnell et al., 2013). The core regions involved in pain processing were originally described 

using the term pain neuromatrix (Melzack, 1999, 2001), before progressing to the pain matrix 

(Su et al., 2019; I. Tracey & Mantyh, 2007). More recently, the use of the term pain matrix has 

declined due to perceived issues regarding the specificity of the observed neural responses 

(Iannetti & Mouraux, 2010; Mouraux & Iannetti, 2018). Consequently, concepts such as the 

neurologic pain signature have been proposed to encompass the neural mechanisms of pain 

(Wager et al., 2013). Figure 1.3 shows the core brain regions involved in pain processing 

(reprinted from Bushnell et al., 2013). 
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1.3 Neuroimaging of Pain in Humans 

 
Human neuroimaging techniques have allowed researchers to explore neural representations 

of pain. Pain processing relies on a distributed network of brain regions including the 

somatosensory cortex, insular cortex, and cingulate cortex (Duerden & Albanese, 2013; 

Figure 1.3 Illustration of the brain regions involved in pain processing. Arrows represent 

projection directions. ACC, anterior cingulate cortex; AMY, amygdala; BG, basal ganglia; PAG, 

periaqueductal grey; PB, parabrachial nucleus; PFC, prefrontal cortex, SI, primary 

somatosensory cortex; SII, secondary somatosensory cortex. Reproduced from Cognitive and 

emotional control of pain and its disruption in chronic pain, M.C. Bushnell, M. Čeko, and L.A. 

Low, Nature Reviews Neuroscience, 13, Springer Nature, 2013, with permission from SNCSC. 
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Jensen et al., 2016; Tanasescu et al., 2016; A. Xu et al., 2020). A recent coordinate-based 

activation-likelihood estimation (ALE) meta-analysis of 222 fMRI experiments identified pain-

related activation in bilateral SII, thalamus, brainstem, amygdala, left insula and midcingulate 

cortex and right middle frontal gyrus (A. Xu et al., 2020). Further ALE meta-analyses of 138 

(Jensen et al., 2016), 266 (Tanasescu et al., 2016), and 140 fMRI studies (Duerden & Albanese, 

2013) support the importance of the bilateral insula, SII, prefrontal cortex, SI, anterior 

cingulate cortex, thalamus, and cerebellum in pain processing. In one study, the thalamus, SII, 

midcingulate cortex, and insula were the most consistently activated regions across 

experimental paradigms and were reliably activated regardless of stimulation type, location, 

and gender (A. Xu et al., 2020). Moreover, similar research has demonstrated the importance 

of the bilateral insular cortices for pain processing, with 66% of studies included in the review 

reporting pain-related activations (Tanasescu et al., 2016). Moreover, the authors 

investigated the differences in pain-related activations between healthy controls and 

individuals with chronic pain, demonstrating that pain-related activations were comparable 

between the groups, with no significant spatial differences observed during nociceptive 

processing (Tanasescu et al., 2016). However, increased activity in several clusters (ACC, 

bilateral insular, right SII, left striatum, right middle frontal gyrus) was shown to be correlated 

with central sensitisation (Tanasescu et al., 2016). 

 

Xu and colleagues (2020) also investigated whether different experimental stimuli resulted in 

varied pain-related neural activation. Mechanical stimulation resulted in peak activation 

magnitudes in the bilateral insular, supramarginal gyrus, thalamus, and right midcingulate 

cortex. Electrical stimulation paradigms demonstrated peak activations in the bilateral 

thalamus, right midcingulate cortex, right Rolandic operculum, and left postcentral gyrus. 
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Contrasts demonstrated that electrical stimulation exhibited larger activation in the right 

Rolandic operculum, thalamus, and superior temporal gyrus. Moreover, chemical pain 

stimulation activated the brainstem, bilateral insular, thalamus, left Rolandic operculum, 

midcingulate cortex, supplementary motor area, and the right postcentral gyrus. Finally, 

thermal stimulation was associated with activation in the right Rolandic operculum, 

midcingulate cortex, precentral gyrus, and left cerebellum. Thermal pain stimulation resulted 

in a larger convergence of activation in the bilateral midcingulate cortex, whilst non-thermal 

experiments resulted in stronger activation in the right insular and left Rolandic operculum 

(A. Xu et al., 2020).  

 

A recent mega-analysis of 11 fMRI studies has supported the notion of distributed pain 

processing by investigating the neural correlates of evoked pain intensity (Petre et al., 2022). 

Several areas were predictive of evoked pain intensity including regions involved in processing 

sensory stimuli and nociception including the dorsal posterior insular, ventral posterior 

medial thalamus, and the periaqueductal grey, areas associated with motor control including 

the cerebellum, supplementary motor area, and red nucleus, and regions associated with 

attention, including the lateral prefrontal cortex, frontal operculum, and anterior cingulate 

cortex. Additionally, the findings demonstrated that the somatomotor, ventral attention, 

dorsal attention, and visual resting state networks accurately predicted pain intensity. Here, 

the somatomotor and ventral attention networks predicted pain intensity with reasonable 

accuracy, with a positive association between predicted pain and true pain intensity being 

observed. Therefore, this research provides evidence for the existence of a core pain network, 

which may be important to brain-based decoding of pain. 
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1.3.1 Electrophysiology of Pain  
 

Spreng and Ichioka ((1964); cited by Apkarian et al., 2005) were the first to investigate evoked 

potentials elicited by transient painful stimuli. Early studies investigating neural responses 

during experimental pain stimulation have measured both event-related potentials (ERPs; 

Carmon et al., 1976; Chatrian et al., 1975) and neural oscillations (Backonja et al., 1991; 

Ferracuti et al., 1994), providing insight into the electrophysiological correlates of pain 

experience. For example, one study identified alpha desynchronisation over contralateral 

parietal regions during noxious cold stimulation (Ferracuti et al., 1994). Subsequently, a 

plethora of research articles have been published exploring electrophysiological measures of 

pain (See J. A. Kim & Davis, 2021; Ploner et al., 2017; Zis et al., 2022 for reviews). Throughout 

the remainder of this section, we provide an overview of the relationship between cortical 

oscillations and pain which will form the basis of EEG-based pain decoding approaches later 

in this thesis.  

 

Before discussing the existing literature, it is important to note that much of the research 

conducting time-frequency analysis of EEG transforms individual frequencies into canonical 

frequency bands through averaging (Keil et al., 2022; Schomer & Lopes, 2010). Demarcations 

of such frequencies are usually determined by the speed and power, with traditional 

frequency bands comprised of delta (< 3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) 

and gamma (> 30 Hz; Keil et al., 2022; Schomer & Lopes, 2010). The different frequency bands 

also differ exponentially in terms of their power, with the slower frequency bands typically 

exhibiting greater power (Keil et al., 2022; Pritchard, 1992; Schomer & Lopes, 2010).  
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Existing research has demonstrated that pain elicits changes in neural oscillations in delta, 

theta, alpha, beta, and gamma bands across the scalp (J. A. Kim & Davis, 2021; Ploner et al., 

2017; Zis et al., 2022). Research investigating the association between delta oscillations and 

pain provides conflicting results (Zis et al., 2022). Several studies have reported augmented 

delta oscillations associated with pain stimulation (Ferracuti et al., 1994; Giehl et al., 2014; 

Gram et al., 2015; Huber et al., 2006; Stevens et al., 2000). For example, research has 

observed increased bilateral frontal delta activity during noxious stimulation (Chang et al., 

2001; Ferracuti et al., 1994). Additionally, tonic cold pain stimulation leads to increased delta 

power when averaged across EEG electrodes, when compared to resting state (Gram et al., 

2015). However, several studies have shown no association between delta and painful 

stimulation (Bunk et al., 2018; Chang et al., 2003; Dowman et al., 2008; Huishi Zhang et al., 

2016; Shao et al., 2012). Although, one study demonstrated that delta power was associated 

with stimulus intensity, but not subjective pain intensity (Bunk et al., 2018). Therefore, delta 

oscillations may be associated with pain, but the evidence is contentious.  

 

Similarly to delta activity, the role of augmented theta oscillations is contradictory, with 

research demonstrating increased theta power during experimental pain stimulation 

(Babiloni et al., 2002; Ferracuti et al., 1994; Michail et al., 2016; Misra, Wang, et al., 2017), 

whilst other studies report opposite or null findings (Bunk et al., 2018; Chang et al., 2001; 

Huishi Zhang et al., 2016). For example, Michail and colleagues (2016) observed increased 

theta amplitudes over central and parietal regions during touch and pain stimulation. Painful 

stimuli elicited larger increases in theta power than tactile stimulation (Michail et al., 2016). 

Bunk et al. (2018) report contradictory findings, demonstrating that increased subjective pain 

intensity during tonic heat stimulation was associated with decreased theta power (Bunk et 
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al., 2018). They also found no association between stimulus intensity and theta activity (Bunk 

et al., 2018). 

 

Despite conflicting evidence regarding the association between theta oscillations and 

experimental pain stimulation, augmented theta activity is associated with several chronic 

pain disorders including neurogenic pain (Sarnthein et al., 2006; Stern et al., 2006), 

neuropathic pain (Boord et al., 2008; Vuckovic et al., 2014), and fibromyalgia (Fallon et al., 

2018). Stern and colleagues (2006) identified enhanced theta power in the insular cortex, 

anterior cingulate cortex, prefrontal regions, and SI and II in neurogenic pain patients 

compared to controls. Therefore, augmented theta oscillations are often observed in 

individuals with chronic pain.  

 

Changes in alpha and beta bands are regularly associated with subjective pain perception 

during phasic and tonic pain stimulation, with parietal alpha suppression and temporal beta 

enhancement often observed (Bunk et al., 2018; Chang et al., 2001; Gram et al., 2015; L. Hu 

et al., 2013; Huishi Zhang et al., 2016; Mouraux et al., 2003; Nickel et al., 2017; Nir et al., 2012; 

Ploner et al., 2006; Shao et al., 2012). However, altered alpha and beta oscillations occur 

across scalp regions during pain stimulation, with research demonstrating global changes 

(Mouraux et al., 2003). Furthermore, research has reported lower global alpha and higher 

beta power during cold pain stimulation relative to control (Shao et al., 2012). Source analysis 

revealed decreased alpha activity in bilateral frontal and parietal cortices, and mid to 

posterior cingulate regions and decreased beta oscillations in bilateral posterior cingulate 

areas during noxious cold stimulation relative to controls. Moreover, increased beta activity 

was observed in frontal, parietal, temporal, insular, anterior cingulate, occipital, and 
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parahippocampal regions. Finally, decreased alpha power over posterior parietal-occipital 

regions and increased beta power across bilateral frontal-temporal areas have been recorded 

during noxious cold stimulation (Chang et al., 2002).  

 

Recently, peak alpha frequency has been shown to be an effective predictor of subjective pain 

sensitivity (Furman et al., 2018, 2019, 2020; McLain et al., 2022; Millard et al., 2022). Recent 

research has demonstrated an association between peak alpha frequency and subjective pain 

intensity, with slower peak frequency correlated with increased pain during prolonged 

experimental pain stimulation (Furman et al., 2018). Further research identified that peak 

alpha frequency was negatively associated with sensitivity to prolonged painful stimulation 

and could be used to predict high-pain sensitivity individuals in a novel sample (Furman et al., 

2020). Finally, resting peak alpha frequency has also been shown to be able to predict 

musculoskeletal pain intensity (modelled using nerve growth factor injections), with lower 

peak frequency associated with greater pain (Furman et al., 2019). Consequently, the 

evidence suggests that pain experience is associated with EEG features, supporting the 

feasibility of an EEG-based pain decoding tool. 

 

Finally, increased gamma band activity has been observed during experimental pain 

stimulation and is correlated with both pain and stimulus intensity (Babiloni et al., 2002; Gross 

et al., 2007; Z. Li et al., 2023; Nickel et al., 2017; Schulz et al., 2015; Zhang et al., 2012), making 

it a potential candidate for brain-based pain decoding approaches. For example, research has 

shown that gamma-band oscillations over SI reliably predict subjective pain intensity (Zhang 

et al., 2012). Interestingly, the authors concluded that the association remained even during 

reduced stimulus saliency, providing evidence for the involvement of the gamma band in the 
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perception of pain. Moreover, further research has shown that gamma amplitudes were 

positively associated with both subjective pain intensity and stimulus intensity (Gross et al., 

2007). Here, SI gamma oscillations were more closely related to pain intensity compared to 

stimulus intensity.  

 

In addition to SI, prefrontal regions are also associated with the subjective experience of pain 

(L. Li et al., 2016; Nickel et al., 2017; Schulz et al., 2015). Research has shown that oscillations 

over the medial prefrontal cortex were positively correlated with subjective pain ratings 

(Nickel et al., 2017). Here, gamma oscillations were more correlated with subjective pain 

intensity than stimulus intensity. Moreover, further research has shown that gamma 

oscillations predicted pain intensity independent of the stimulus delivery site (Nickel et al., 

2017). Schulz et al. (2015) report similar findings, with prefrontal gamma oscillations 

associated with subjective pain intensity, but not stimulus intensity during noxious tonic heat 

stimulation (Schulz et al., 2015). A recent review found that phasic stimulation resulted in 

gamma oscillations over central regions, likely originating from sensorimotor regions, 

whereas tonic and chronic pain resulted in gamma oscillations over frontal regions (Z. Li et 

al., 2023). Taken together, gamma oscillations may be directly related to subjective pain 

intensity. Consequently, gamma features could enable accurate pain prediction using ML.  

 

1.4 The Decoding of Pain-related EEG  

Throughout the previous section, we have outlined the observed changes in different 

frequency bands during pain stimulation. The differences in EEG activity can be used to 

predict subjective pain intensity, providing a proxy measure. Given that the focus of this thesis 
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is to validate algorithms for decoding neural responses to pain stimulation (inclusive of 

subjective pain intensity and pain observation), we now provide a brief overview of the 

research predicting subjective pain intensity using EEG data and ML. In Chapter 3, we 

conducted a systematic review of the effectiveness of ML and EEG for the classification of 

pain intensity, pain phenotypes, and response to treatment, which provides a more 

comprehensive overview of the current state-of-the-art approaches.  

 

Several studies have attempted to predict subjective pain intensity using event-related 

potentials (Bai et al., 2016; G. Huang et al., 2013; L. Li et al., 2018; Tripanpitak et al., 2020). 

Huang et al. (2013) aimed to predict pain intensity using single-trial laser-evoked potentials 

at both binary and continuous levels using a naïve Bayes classifier and linear regression, 

respectively. They found that the naïve Bayes classifier could accurately classify low and high 

pain trials with accuracies of above 80% both across and within subjects (G. Huang et al., 

2013). Moreover, the linear regression model was able to predict subjective pain intensity on 

a continuous scale (0-10), achieving a mean absolute error of below 2 for cross and within-

subject predictions. Similar research has reported comparable findings to Huang et al. (2013) 

achieving accurate predictions using ML and event-related potentials (see; Bai et al., 2016; L. 

Li et al., 2018; Tripanpitak et al., 2020). 

 

Additionally, previous research has used ML and time-frequency transformed EEG data to 

predict subjective pain intensity (Alazrai, Momani, et al., 2019; Alazrai, AL-Rawi, et al., 2019; 

T. Cao et al., 2020; Elsayed et al., 2020; Furman et al., 2018, 2019, 2020; Kimura et al., 2021; 

Misra, Wang, et al., 2017; Okolo & Omurtag, 2018; Vatankhah et al., 2013; Vijayakumar et al., 

2017; M. Yu, Sun, et al., 2020). Misra and colleagues (2017) assessed spectral power changes 
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during low and high-pain thermal stimulation. Their results demonstrated increased theta 

and gamma power and decreased alpha and beta power over frontal regions, with high pain 

stimulation resulting in larger theta and gamma band power increases. Additionally, 

decreased alpha and beta power in both conditions were observed over sensorimotor 

regions, with a significant reduction in beta during high-pain stimulation, and increased theta 

power during low pain. Using gamma and theta band activity from the medial prefrontal 

domain, and lower beta band activity from the sensorimotor regions, the authors used a 

Gaussian support vector machine (SVM) to classify the data into low and high pain classes, 

achieving a cross-validation accuracy of 89.58%. Furthermore, the gamma and lower beta 

bands were most important for classification performance, yielding a classification accuracy 

of 87.5%. 

 

In addition, Schulz et al. (2012) used ML and EEG to predict a subject’s pain sensitivity during 

painful laser stimulation. The results demonstrated increased theta and gamma oscillations 

and reduced alpha waves predominantly over central regions. Subsequently, the authors 

developed a SVM to predict pain sensitivity across subjects, achieving a maximum accuracy 

of 83% (Schulz et al., 2012). Finally, recent research has developed a convolutional neural 

network (CNN) for the classification of subjective pain intensity during tonic noxious cold 

stimulation (M. Yu, Sun, et al., 2020). Using alpha, beta, and gamma oscillations, the authors 

successfully classified EEG data into no pain, moderate pain, and severe pain, achieving an 

accuracy of 97.37%. Overall, these findings suggest that ML and EEG may provide an effective 

tool for pain assessment.  
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1.4.1 Limitations and Knowledge Gaps 

Firstly, most previous research delivers either laser, noxious cold, or heat stimuli. Currently, 

there is limited research exploring mechanical stimulation (e.g., pressure). Pressure 

stimulation exhibits greater clinical relevance, resulting in achy, somatic pain that is 

comparable to muscle soreness and musculoskeletal pain (Birnie et al., 2014). To our 

knowledge, only one study explored experimental pressure stimulation, EEG, and ML (Okolo 

& Omurtag, 2018). However, the sample size consisted of only 9 subjects, questioning the 

generalisability of the findings, especially as the results exhibited significant variability in the 

individual subjects’ classification accuracies (e.g., range > 20% for rest and maximum stimuli 

classification). Small samples increase variability leading to inflated metrics (Varoquaux, 

2018), which reduces confidence in the results. Research has shown that across several 

domains (e.g., prediction models for psychiatric diagnosis), prediction model accuracy 

decreases as a function of sample size, that is, larger samples are associated with reduced 

model performance (Varoquaux, 2018). However, from our systematic review in Chapter 3, 

we identified that the median sample size for EEG and ML-pain studies was only 24. Given 

that small samples are susceptible to overfitting, resulting in exaggerated performance 

(Vabalas et al., 2019), larger samples are required to ascertain improved estimates of ML 

performance for pain intensity prediction. 

 

Further methodological improvements such as external validation are imperative to achieve 

clinical translation (Mechelli & Vieira, 2020). Briefly speaking, external validation is the 

process of evaluating model performance on data independent of the training set (Cabitza et 

al., 2021; Collins et al., 2015; Lever et al., 2016). The novel data should be obtained from 
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different cohorts, facilities or repositories, or collected at a different location, time, or using 

a different experimental paradigm (Cabitza et al., 2021; Collins et al., 2015). External 

validation is imperative, as internal validation methods often fail to control overfitting, 

leading to inflated, un-generalisable performance (Bleeker et al., 2003; Ramspek et al., 2021; 

Steyerberg & Harrell, 2016; Vabalas et al., 2019). Additionally, research has shown that ML 

models often exhibit reduced performance when evaluated on external data (X. Li et al., 2019; 

Mari et al., 2023; Siontis et al., 2015). In Chapter 4, we show that ML can predict low or high 

pain intensity with an internal validation accuracy of 73.18%, but performance reduces to 

68.32% when tested on a new cohort, and to 60.42% when the experimental stimuli are 

altered in the new cohort (Mari et al., 2023). Therefore, improved validation procedures are 

needed to sufficiently evaluate ML performance to prevent a new replication crisis (Hutson, 

2018). In Chapter 2, we provide a more comprehensive overview of ML evaluation (e.g., 

external validation). 

 

In the present thesis, we aimed to conduct the first external validation paradigms of EEG and 

ML for pain intensity prediction. Here, we prioritised improving methodological rigour by 

including multistage validation procedures and increasing the overall sample size, to provide 

the most robust estimates of model performance for pain intensity prediction, to date. In 

Chapter 4, we aimed to externally validate ML and EEG for the prediction of low and high pain 

trials using a multistage validation procedure. Here, the models were evaluated on both a 

novel sample and using novel experimental pain stimuli. Moreover, in Chapter 6, we 

externally validated ML and EEG for both continuous pain prediction (e.g., 0 – 100) and binary 

classification (low, high) using both cross-subject and within-subject external validation 

procedures.  
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1.5 Empathic Processing of Pain Observation 

 
In this thesis, we also aimed to classify neural response during pain observation, or pain 

empathy. Empathy is a vital human concept which is challenging to define (Batson, 2009; Cuff 

et al., 2016; Decety et al., 2012). However, empathy can be considered:  

 

an emotional response (affective), dependent upon the interaction between trait 

capacities and state influences. Empathic processes are automatically elicited but are 

also shaped by top-down control processes. The resulting emotion is similar to one’s 

perception (directly experienced or imagined) and understanding (cognitive empathy) 

of the stimulus emotion, with recognition that the source of the emotion is not one’s 

own. (Cuff et al., 2016, p.150) 

 

Pain empathy, which refers to the ability to share and resonate with another individual’s pain, 

is imperative for avoiding dangerous scenarios and promoting prosocial behaviour (Decety et 

al., 2016; Hein et al., 2010; Zhou et al., 2020). Empathy for observed pain serves an aversive 

function, resulting in negative cognitive or affective states (Fallon et al., 2020). Pain empathy 

can be elicited using images depicting painful scenarios (e.g., physical injury), or through facial 

expressions (e.g., grimacing; Coll, 2018; Jauniaux et al., 2019). Moreover, both bottom-up and 

top-down processes contribute to empathic processing. Prior experience with a specific type 

of pain leads to increased empathic responses and exemplifies top-down processing, whilst 

bottom-up cues arise from both verbal and non-verbal components such as facial expressions 

(Goubert et al., 2005). Consequently, pain empathy in clinical settings can be impacted by 

several factors, which could influence clinical decision-making. Consequently, objective 
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neural measures of both pain intensity and pain observation could enable improved 

treatment practice and medical education (Preusche & Lamm, 2016). 

 

1.6 Neuroimaging Investigations of Empathy 

Empathic processing results in the activation of numerous brain areas. Fan and colleagues 

(2011) conducted a meta-analysis of 40 fMRI studies and identified that the dorsal anterior 

cingulate cortex, anterior midcingulate cortex, supplementary motor area, and bilateral 

anterior insular were consistently activated during empathy regardless of task and stimuli (Y. 

Fan et al., 2011). They also observed that the right anterior insular was predominantly 

involved in affective-perceptual empathy paradigms, whilst the left anterior insular was 

involved in both affective-perceptual and cognitive-evaluative paradigms (Y. Fan et al., 2011). 

During cognitive-evaluative types of empathy, the dorsal anterior midcingulate cortex was 

more commonly activated.  

 

The brain regions involved in empathic processing share significant neural representations 

with pain empathy. Timmers et al. (2018) investigated the overlap between empathy and pain 

empathy by conducting a coordinate-based activation likelihood estimation meta-analysis of 

128 fMRI studies. They identified a core neural network for empathy (regardless of pain 

component), which included bilateral anterior insular, bilateral midcingulate cortex, 

supplementary motor area, SI, inferior parietal lobe, thalamus, amygdala, and brainstem. In 

addition, their conjunction analysis demonstrated significant overlap in the core brain regions 

for empathy and pain empathy, with the inferior and superior frontal areas, thalamus, globus 

pallidus, amygdala, left midcingulate cortex, and left anterior insular being activated during 
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pain empathy tasks (Timmers et al., 2018). Additionally, a recent meta-analysis demonstrated 

empathy-specific activations in supramarginal, occipitotemporal, and inferior frontal regions 

which were distinct from pain processing (Fallon et al., 2020). Further meta-analyses support 

the importance of the insular and cingulate cortex for pain empathy (Fallon et al., 2020; Lamm 

et al., 2011).  

 

Pain empathy also leads to differences in EEG activity. Numerous research studies have 

demonstrated that pain observation suppresses mu/alpha and beta oscillations in the 

sensorimotor system when compared to no-pain conditions (Cheng et al., 2014; Fabi & 

Leuthold, 2016; Perry et al., 2010; Riečanský et al., 2015; Whitmarsh et al., 2011). Perry et al. 

(2010) showed participants images depicting hands being stimulated by either a needle (pain) 

or cotton bud (no pain). Their results demonstrated that pain observation increased 

suppression of mu/alpha oscillations over frontal-central regions when compared to the 

neutral condition. Furthermore, similar research further demonstrated sensorimotor alpha 

suppression during pain observation (Whitmarsh et al., 2011). Using magnetencephalography 

(MEG), Whitmarsh and colleagues (2011) found greater alpha suppression during pain 

observation over sensorimotor regions when compared to non-painful images. However, the 

authors found no significant differences in beta power between the two conditions. Taken 

together, pain observation elicits observable differences in neural responses, predominantly 

in the mu/alpha frequency band. 
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1.6.1 Event-related Potentials in Pain Empathy Research 
 

Differences in event-related potentials (ERPs; See Chapter 2) have also been observed during 

pain observation. The P3 and late positive potential (LPP) components are associated with 

pain observation (Coll, 2018). A meta-analysis of 36 studies found that viewing pain images 

increased P3 amplitudes, with the maximal effect observed at central-parietal electrodes 

(Coll, 2018). Moreover, a similar effect was identified for the LPP, with pain observation 

increasing LPP amplitudes over central-parietal regions. Furthermore, some studies report 

significant differences over frontal regions for the N1 and N2 components (Coll, 2018). 

However, the meta-analysis demonstrated that the overall effect of pain observation on N1 

and N2 amplitudes is non-significant. The authors highlight the heterogeneity of the direction 

of the effect in the individual studies (e.g., both increased and decreased N1 amplitudes are 

reported; Coll, 2018). Therefore, the evidence suggests that the observation of pain reliably 

enhances P3 and LPP amplitudes over central-parietal electrodes.  

 

Fan and Han's (2008) seminal study provided insight into the electrophysiological responses 

during pain observation. They presented participants with images depicting neutral and pain 

conditions for both human and cartoon conditions. Subjects were required to perform a pain 

judgement task, which involved rating the perceived pain intensity of the image, or a counting 

task to divert attention. They found that pain observation positively shifted early negative 

components over frontal-central electrodes. Moreover, larger P3 amplitudes during pain 

observation over central-parietal regions were observed. Moreover, the amplitudes were 

altered by the attention, with larger amplitudes recorded in the pain judgement task. 
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Consequently, the enhanced P3 amplitudes over central-parietal regions may reflect pain 

observation, which could be used to decode pain empathy neural responses. 

 

Further evidence of P3 enhancement during pain observation has been published since the 

work of Fan and Han (2008). Numerous studies have reported larger P3 amplitudes during 

pain observation when compared to neutral conditions (Cheng et al., 2012; Cui et al., 2016; 

Decety et al., 2010; Y. Fan & Han, 2008; Galang et al., 2020; Han et al., 2008; Ibáñez et al., 

2011; Liao et al., 2021; Suzuki et al., 2015). Research has demonstrated larger P3 amplitudes 

during pain observation across electrodes, with maximum amplitudes observed over Pz and 

Cz, respectively (Decety et al., 2010). Moreover, Suzuki and colleagues (2015) showed 

participants photographs of human or robot hands in either a neutral or painful condition. 

They found that the pain condition resulted in larger P3 amplitudes over frontal electrodes in 

both the ascending and descending aspects of the P3 component (Suzuki et al., 2015).  

 

Moreover, differences in the LPP component have been reported across several studies (C. 

Chen et al., 2012; Cheng et al., 2012; Cui et al., 2016; Fallon, Li, Chiu, et al., 2015; Y. Fan & 

Han, 2008; Galang et al., 2020). For example, previous research by our group has 

demonstrated that images depicting pain resulted in enhanced LPP amplitudes over central-

parietal electrodes when compared to situation-matched non-painful images in both healthy 

participants and a chronic pain population (Fallon, Li, Chiu, et al., 2015). Moreover, research 

has demonstrated an enhanced LPP over several scalp regions: frontal, central, temporal, 

parietal, and occipital during pain observation when compared to neutral-matched stimuli (C. 

Chen et al., 2012). Interestingly, research has demonstrated that medical professionals 

exhibit reduced ERP (e.g., P3) and behavioural (e.g., pain ratings) responses during pain 



 31 

observation (Decety et al., 2010). Therefore, elucidating the neural mechanisms of empathy 

has important applications in clinical contexts, such as medical education (Preusche & Lamm, 

2016). Overall, ERP components may enable effective classification of pain observation. 

 

1.7 Decoding Neural Responses 

1.7.1 Visual Stimuli 
 

To our knowledge, EEG and ML classification of pain empathy has yet to be attempted. 

Despite this, previous research has classified EEG responses during the observation of discrete 

image categories (Bagchi & Bathula, 2022; Cudlenco et al., 2020; Ghosh et al., 2021; Kaneshiro 

et al., 2015; Stewart et al., 2014; Yavandhasani & Ghaderi, 2022; Zheng et al., 2020). Stewart 

et al. (2014) presented colour photographs of common objects such as lightbulbs and aimed 

to use EEG data to predict the presence or absence of a visual object during a given EEG 

segment. They developed a SVM for each of the 7 subjects which could classify the presence 

or absence of an object with an average accuracy of 87%. For most subjects, EEG components 

over occipital (visual processing) areas were imperative to classification performance. 

Furthermore, recent studies suggest that ML and EEG can be combined to decode the 

observation of discrete image classes. Using neural network classifiers, Zheng et al. (2020) 

used EEG responses from 6 subjects to classify 40 image classes from the ImageNet database. 

The results demonstrated that the neural network achieved an accuracy greater than 90% on 

the classification task. Comparable findings have also been reported for discrete categories 

of visual stimuli including scenes, objects, humans (including facial expressions), and animals 

(Bagchi & Bathula, 2022; Cudlenco et al., 2020; Ghosh et al., 2021; Kaneshiro et al., 2015; 

Yavandhasani & Ghaderi, 2022).  
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1.7.2 Empathic Stimuli 
 

Despite a paucity of EEG-based empathy prediction models, previous research has shown that 

empathic responses can be predicted using facial mimicry (Drimalla et al., 2019) and fMRI 

(Christov-Moore et al., 2020; Vaughn et al., 2018; Zhou et al., 2020). For example, Drimalla et 

al. (2019) aimed to classify electromyography (EMG) responses during the observation of 

images depicting either cognitive or emotional empathy. They found that ML models could 

discriminate the two conditions, achieving accuracies of up to 72% (Drimalla et al., 2019). 

Furthermore, recent research has classified empathic responses using resting-state fMRI 

connectivity (Christov-Moore et al., 2020). They found that empathic concern could be 

predicted using the resting-state connectivity of the sensorimotor network (Christov-Moore 

et al., 2020).  

 

Empathic neural responses can also accurately predict group allegiance using fMRI and ML 

(Vaughn et al., 2018). The previous research trained ML models to predict ingroup and 

outgroup allegiance using neural responses from the empathy network, which consisted of 

the insular cortex, anterior cingulate cortex (affective), lateral occipital cortex, and the 

fusiform supramarginal gyrus (sensorimotor), the relief network comprised of the left inferior 

frontal gyrus, right middle frontal gyrus, right posterior insular, precentral gyrus, precuneus, 

bilateral posterior superior temporal sulci, and the bilateral angular gyri. Using these regions, 

the ML model was able to successfully discriminate group allegiance, achieving an accuracy 

of 72%. The ML model generalisability was then assessed in two further experiments where 

group allegiance was arbitrarily assigned. The results demonstrated that neural responses 
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could predict group allegiance in arbitrarily assigned groups with accuracies of 64% and 71% 

for experiments two and three, respectively.  

 

Previous research has used a linear SVM and fMRI to classify pain empathy in response to 

vicarious pain scene images and facial expressions and matched neural control images (Zhou 

et al., 2020). The results showed that neural responses during the observation of pain scene 

images (Figure 1.4A) could accurately discriminate the neutral and pain images, achieving a 

cross-validation accuracy of 88%. Similar results were found for the facial expression images, 

with neural activation (Figure 1.4B) accurately discriminating neutral and painful classes with 

an accuracy of 80%. Additionally, the authors investigated whether the neural responses 

observed during vicarious pain scene images could classify empathic neural responses elicited 

through facial expression stimuli and vice versa. The cross-modality prediction demonstrated 

that neural responses during the observation of scene images could discriminate painful and 

neutral expressions with an accuracy of 69%, whilst neural responses during the observation 

of facial expressions could decode neutral and painful scenes with an accuracy of 78% (Zhou 

et al., 2020). Taken together, the results demonstrate that neural responses recorded during 

pain empathy tasks can be accurately classified using ML, providing evidence for the feasibility 

of the empathy classification task in Chapter 5. 
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1.7.3 Limitations and Knowledge Gaps 
 

Whilst the previous research provides evidence supporting the notion of empathic response 

decoding using biological measures such as fMRI and EMG, to our knowledge, no research 

has attempted to classify pain empathy using EEG features. Empathic processing of pain has 

clear electrophysiological correlates, particularly alpha suppression, and the enhancement of 

ERP components such as the P3 or LPP, providing support for the feasibility of decoding EEG 

responses during pain empathy. We also aim to improve upon the established research for 

visual imagery decoding. Much of the existing research that decodes neural responses during 

visual stimuli has small sample sizes, often consisting of less than 10 subjects (e.g., Bagchi & 

 
 

Figure 1.4 Neural responses that contribute to the decoding of vicarious pain. Neural activity 

associated with pain scene images (A) and facial expressions (B). Adapted from Elife 9, e56929 

by F. Zhou et al., “Empathic pain evoked by sensory and emotional-communicative cues share 

common and process-specific neural representations”, copyright (2020) by Zhou et al., 

Adapted with permission. 
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Bathula, 2022; Cudlenco et al., 2020; Kaneshiro et al., 2015; Stewart et al., 2014; 

Yavandhasani & Ghaderi, 2022; Zheng et al., 2020). As previously discussed, small samples 

are at greater risk of overfitting and are associated with inflated and un-generalisable ML 

performance metrics (Vabalas et al., 2019; Varoquaux, 2018). Therefore, we aimed to conduct 

the first pain empathy decoding study using EEG and ML, with a specific focus on increasing 

sample size and thus the generalisability of the models. Moreover, we aimed to externally 

validate the ML models to provide robust, initial estimates of ML and EEG for decoding pain 

empathy neural responses.  

 

In this thesis, we aimed to classify EEG responses associated with empathic processing, 

elicited through the observation of images depicting inflicted pain, painful expressions, or 

neutral-matched control images. Much of the previous research was conducted in small 

sample sizes without sufficient external validation procedures. Therefore, we aimed to 

significantly increase the sample size to provide more robust estimates of model 

performance. Moreover, we also externally validate the models both across and within 

subjects. To our knowledge, our study is the first to attempt to classify EEG activity during 

pain observation.  

 

1.8 Research Problems and Hypotheses 

Given the prevalent limitations of research at the intersection of ML and neuroscience, the 

core aim of this thesis is to robustly develop and evaluate ML models and EEG for the 

prediction of both subjective pain intensity and pain observation. To achieve this, we aimed 

to follow recommended standards and improve methodological rigour. For example, we 
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assess model calibration, which is rarely reported but is imperative to the successful 

development of models with clinical potential (Christodoulou et al., 2019; Mari et al., 2022; 

Van Calster et al., 2019). Based on the existing literature regarding pain prediction using ML-

EEG approaches, it is currently unknown whether model performance generalises to novel 

samples. Moreover, we aim to investigate whether pain observation can be decoded using 

EEG and ML, which, to our knowledge, has not yet been attempted. Consequently, this thesis 

aims to evaluate the effectiveness of ML for decoding pain-related neural responses and to 

provide evidence for the potential for the method to progress towards practical applications.  

 

This thesis aimed to evaluate the effectiveness of ML for decoding pain-related neural 

responses. Firstly, we aimed to systematically review the existing literature that implements 

ML and EEG for the prediction of subjective pain intensity, pain phenotypes, and response to 

treatment. Here, we aimed to identify knowledge gaps and areas for development. 

Subsequently, we aimed to externally validate ML and EEG for binary pain intensity prediction 

in response to experimental pain stimuli delivered using a mechanical pressure stimulator. 

Furthermore, we also aimed to develop and externally validate ML and EEG for the decoding 

of pain empathy during passive viewing of visual pain stimuli. Finally, we aimed to increase 

the predictive capability of ML and EEG by predicting continuous subjective pain intensity 

during graded levels of mechanical stimulation. 

 
1.8.1 Thesis Hypotheses 

 

H1)  The combination of EEG and ML will be able to classify low and high pain levels with 

above-chance performance (>50%) on external validation. 
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H2)  ML and EEG will successfully classify the observation of pain, compared to neutral 

stimuli, with accuracies greater than chance levels. 

H3)  ML models will predict subjective pain intensity (0 – 100) in novel samples more 

accurately (lower error) than simple heuristic models. 

 

1.8.2 Thesis Chapters 
 

Chapter 2 provides an overview of the methods used in this thesis. Specifically, this chapter 

describes the principles of EEG, covering the physiological mechanisms, acquisition, pre-

processing, and analysis, whilst also highlighting the strengths and limitations of the method. 

Moreover, this chapter also introduces ML and the underpinning principles. We provide an 

overview of supervised learning, before progressing to model development (e.g., feature 

selection, hyperparameter optimisation) and evaluation (e.g., internal validation, model 

discrimination and calibration). Finally in this section, we introduce systematic review 

methodologies.  

 

Chapter 3 describes a systematic review of research that has investigated the use of ML and 

EEG for the prediction of pain intensity, pain phenotypes, or response to treatment. Here, 

studies applying ML to EEG data to predict pain-related outcomes were reviewed and 

summarised. Moreover, we conducted reporting standards and risk of bias assessments to 

evaluate the current state of the field and to identify knowledge gaps and areas of 

development. The review aimed to identify the effectiveness of ML for predicting pain-related 

outcomes from EEG and to critically appraise the previous research. 
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Chapter 4 explored the effect of differing levels of experimental pain stimuli (low, high) on 

single-trial effects on cortical oscillations (H1). Two experimental studies were conducted, 

with study one being used for model development and study two for external validation. The 

second experimental study consisted of new subjects and alternative experimental pain 

stimuli. In both studies, a custom pneumatic pressure stimulator was used to deliver differing 

levels of pain intensity, whilst EEG was used to record changes in cortical oscillations during 

the stimulation. Subsequently, seven popular ML models were trained on single-trial EEG to 

classify data into either low or high-intensity trials. 

 

Chapter 5 investigates the neural correlates of pain empathy and develops ML models to 

classify the observation of neutral or pain images (H2). Again, we aimed to externally validate 

the ML models by recruiting three different samples. Here, the model was evaluated for both 

cross and within-subject predictions. During the experimental paradigm, participants were 

shown either neutral or pain expressions or scenes, whilst EEG was recorded. Features 

calculated from single-trial ERP waveforms were used to train a Random Forest (RF) model to 

predict the observation of the different classes. Here, three classifications (face – scene, 

scenes: neutral – pain, faces: neutral – pain) were attempted. 

 

Chapter 6 expands on the work of Chapter 4 by attempting to predict continuous subjective 

pain intensity using ML and EEG (H3). Here, 10 levels of stimulus intensity, ranging from light 

touch to moderately-strongly painful, were delivered using the pneumatic pressure 

stimulator, whilst EEG responses were recorded. Three samples were recruited to perform 

both cross-subject and within-subject external validation. A RF model and neural network 

were developed for pain intensity prediction and compared to simple heuristic models. 
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Moreover, we aimed to replicate our findings from Chapter 4, by externally validating ML and 

EEG for the classification of low and high pain trials. 

 

Chapter 7 provides a general discussion of the results from the experimental studies of this 

thesis. Here, we identify and discuss the core themes and implications of this thesis. 

Moreover, we provide several recommendations for future research which can help to 

advance the field towards clinically meaningful results and offer support and suggestions for 

the development of translational tools. 
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Chapter 2:  

General Methods 

 

2.1 Principles of EEG 

2.1.1 Physiological Mechanisms of EEG 
 

The human brain consists of approximately 86 billion neurons, which communicate through 

a combination of chemical and electrical activity (e.g., action potentials; APs; Azevedo et al., 

2009; Kandel et al., 2012; Lovinger, 2008; Stuart et al., 1997). The biophysical mechanisms of 

APs have been well-established since Hodgkin and Huxley’s investigation of the giant squid 

axon (Hodgkin & Huxley, 1952; Schwiening, 2012). APs are discrete voltage spikes generated 

in axon cell bodies, which propagate through the axon, reaching inhibitory or excitatory 

synapses (Kandel et al., 2012; Luck, 2014; Yam et al., 2018). APs are transient events, with a 

duration of approximately one to two milliseconds (usually < 10ms), and occur with a limited 

potential (Kandel et al., 2012; Luck, 2014).  

 

Selective permeability of the cell membrane to specific cations enables changes in membrane 

potential and APs (Kandel et al., 2012; F. H. Yu & Catterall, 2003). Incoming signals initiate 

depolarisation via an influx and efflux of sodium and potassium ions through voltage-gated 

ion channels (Kandel et al., 2012; Kirschstein & Köhling, 2009; Tivadar & Murray, 2019; F. H. 

Yu & Catterall, 2003). Following sufficient depolarisation, an AP is generated and propagates 

along the axon by depolarising the adjacent membrane (Barnett & Larkman, 2007; Tivadar & 

Murray, 2019). Subsequently, voltage-gated sodium and potassium channels are 
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automatically inactivated and activated respectively, leading to repolarisation (Kandel et al., 

2012; Kirschstein & Köhling, 2009).  

 

APs are usually not synchronous, and any electrical field is cancelled out due to the biphasic 

properties of APs, meaning that they are not detectable at the scalp (Buzsáki et al., 2012; 

Jackson & Bolger, 2014; Luck, 2014). Therefore, EEG does not directly measure APs. Rather, 

postsynaptic potentials, which occur for tens of milliseconds (typically between 15-20ms), 

enable synchronous activity, resulting in potential changes that are observable at the scalp 

due to temporal overlap and signal summation (Buzsáki et al., 2012; Kirschstein & Köhling, 

2009; Luck, 2014; Olejniczak, 2006).  

 

Both excitatory and inhibitory postsynaptic potentials contribute to the EEG signal 

(Olejniczak, 2006). Excitatory currents (Na+ and Ca2+), known as passive return currents, flow 

from intracellular to extracellular space, whilst inhibitory currents (Cl+ and K+) flow in opposite 

directions (Olejniczak, 2006). Consequently, scalp electrodes record the potential differences 

arising from the postsynaptic potentials (Olejniczak, 2006). Volume conduction enables 

observable EEG, as the current can flow through biological tissue between the source and an 

electrode (Olejniczak, 2006).  

  

The spatial organisation and morphology of cortical neurons is essential for the summation 

of postsynaptic potentials (Jackson & Bolger, 2014). Pyramidal neurons located in layers III, V, 

and VI are the main excitatory and most numerous cortical cells which have the optimal 

configuration for signal summation (DeFelipe & Fariñas, 1992; Elston, 2011; Spruston, 2008). 

Pyramidal cells are often oriented perpendicular to the scalp, contributing to the generation 
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of an open field (Jackson & Bolger, 2014; Luck, 2014; Nunez & Srinivasan, 2006; Olejniczak, 

2006). Pyramidal cells consist of several basal dendrites and one apical dendrite, with the 

apical dendrite organised perpendicular to the cortical surface (Luck, 2014). The release of an 

excitatory neurotransmitter at the apical dendrite initiates the flow of positively charged ions 

into the cell, resulting in a negative charge in the extracellular space and positive polarity (an 

inhibitory current will have the opposite effect; Luck, 2014). This process results in the 

formation of a dipole. Through the summation of numerous dipoles, electrical activity is 

observable at scalp electrodes (Luck, 2014). A single EEG electrode records the synchronised 

synaptic activity of over 1 million cortical synapses arranged over a small surface area (Nunez 

& Srinivasan, 2006).  

 

2.1.2 EEG Acquisition  
 

EEG acquisition relies on metal electrodes placed across the surface of the scalp which are 

connected to an amplifier (Górecka & Makiewicz, 2019; Teplan, 2002). Electrodes’ contacts 

on the scalp have electrical impedance, which is usually measured in kW, and must be 

monitored and maintained below a given level (e.g., <10 kW; Górecka & Makiewicz, 2019). To 

reduce electrical impedance, a conductive liquid such as a gel or saline solution is applied to 

the electrode site (Tallgren et al., 2005).  

 

EEG electrodes are positioned according to derivatives of the international 10-20 system. The 

10-20 system places electrodes at 10% and 20% points along both latitude and longitude 

planes of the head using standard anatomical landmarks including the inion, nasion and the 

left and right preauricular points (Jasper, 1958; Klem et al., 1999). Extensions of the 10-20 
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system exist (e.g., dense electrode arrays). Throughout this thesis, we utilised a Geodesic EEG 

system (Electrical Geodesic Inc., EGI, now Magstim EGI, Eugene, Oregon, USA), which consists 

of 129 electrodes that are equidistant from each other. Although the Geodesic layout differs 

from the 10-20 international system, many of the electrode locations have a direct 

correspondence to the International 10-20 system (see Figure 2.1 for a schematic of the 

electrode array; Luu & Ferree, 2005). 

 

In healthy adults, the raw EEG amplitude is usually < 100 μV and is amplified by a factor of 

1000-50000 known as the gain, before digitisation, for data visualisation and analysis (Luck, 

2014). To construct the signal for a single EEG channel, three different electrode types are 

required, namely active, reference and ground electrodes (Luck, 2014). The EEG signal 

recorded represents the potential for current to move between the active and ground 

electrodes (Luck, 2014). EEG systems also use a differential amplifier, which utilises a 

reference electrode to subtract electrical noise from the true signal, due to potential electrical 

interference from the ground circuit (Luck, 2014). The subtraction is computed as the 

difference between the reference and ground electrodes and the active and ground 

electrodes (Luck, 2014). As the electrical noise is equivalent in both electrode pairs, the 

interference will be removed during subtraction (Lei & Liao, 2017; Luck, 2014).  

 

Theoretically, reference systems should have either constant or zero potential (Lei & Liao, 

2017; Yao et al., 2019). However, no electrode sites conform to this assumption (Lei & Liao, 

2017; Yao et al., 2019). Average referencing overcomes this limitation. The average reference 

is based on the assumption that the integral of potentials across the scalp is zero, making it 

an ideal reference system (Bertrand et al., 1985; Yao, 2017). As the coverage of the scalp 
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increases (e.g., dense electrode arrays), the average potential across all electrode sites tends 

to zero, providing a suitable reference signal (Lei & Liao, 2017; Yao et al., 2019). Throughout 

this thesis we use the average reference approach. 

 

In the present thesis, we conduct several EEG studies using a 129-channel sponge-based 

geodesic sensor net (Electrical Geodesic Inc., EGI, now Magstim EGI, Eugene, Oregon, USA). 

A schematic of the net array is provided in Figure 2.1, demonstrating both the electrode 

layout and the equivalent 10-20 system electrodes’ locations. The geodesic sensor net covers 

the entire head and suborbital areas of the face. Due to the composition of the system, the 

net application is quick, relying on a saline solution to minimise electrical impedances. The 

positioning of the net was aligned to three anatomical points including two preauricular 

points and the nasion. In all EEG studies, a sampling rate of 1000 Hz was used, with a recording 

band-pass filter set at 0.001 – 200 Hz. Finally, electrode Cz was used as the reference 

electrode, whilst the COM electrode was used as the ground.  
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Figure 2.1 Schematic diagram of the distribution of the Geodesic sensor net. 

 

2.1.3 Artefact Correction 
 

The EEG signal is highly susceptible to artefacts (Keil et al., 2022). Artefacts can be segmented 

into two components: physiological and non-physiological (Gabard-Durnam et al., 2018; Luck, 

2014; Teplan, 2002). Physiological artefacts are associated with biological processes and 

include electrocardiographic (ECG), electrooculographic (EOG), electromyographic (EMG), 

and electrodermal activity (EDA; Keil et al., 2022; Luck, 2014; Teplan, 2002). Whereas non-

 

 

HydroCel™ Geodesic Sensor Net 
Nets With and Without Sponges 

128-Channel Map 
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Use this map for 128-channel Nets that are used with EGI’s Net Amps 300 and Net Amps 200 amplifiers. Refer to 
the GES Hardware Technical Manual for detailed descriptions of all system equipment. For additional questions, 
contact your EGI support engineer at 1-800-970-6670 or supportteam@egi.com. 
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physiological artefacts result from hardware issues and electrical interference (Keil et al., 

2022). EEG suffers from electrical artefacts arising from alternating mains power supply which 

introduces cyclic interference at 50 Hz in Europe and 60 Hz in the US, referred to as line noise 

(Luck, 2014; Teplan, 2002). Finally, EEG is susceptible to other hardware issues, such as 

fluctuations in impedances or cable and connector issues which cause interference and 

artefacts (Teplan, 2002). 

 

The simplest artefact correction approach is trial rejection after manual inspection. Here, 

researchers visually inspect the data for artefacts, identifying contaminated trials, which are 

marked for rejection. However, manual inspection is laborious, time-consuming, and open to 

subjectivity, hindering reproducibility (Gabard-Durnam et al., 2018). Additionally, manual 

rejection is not feasible for large EEG datasets. Consequently, both automated and semi-

automated approaches have been developed. Recurring artefacts (e.g., EOG) can be 

corrected using principal component analysis (PCA). One implementation of PCA-based 

methods is an adaptive artefact-correcting algorithm implemented in the Brain Electrical 

Source Analysis Software (BESA; MEGIS GmbH, Germany; Berg & Scherg, 1994; Ille et al., 

2002). The method implements a spatial filter technique which decomposes the EEG signal 

into either brain activity or artefact (Berg & Scherg, 1994; Ille et al., 2002). Given that eye 

components and genuine neural data are overlapping processes, they can be separated by 

their topographies (Berg & Scherg, 1994). Example artefact topographies are calculated using 

PCA and the artefact is removed by projecting out the artefact component’s waveform from 

the data (Berg & Scherg, 1994). 
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2.1.4 Automated EEG Pre-processing 
 

Recently, automatic pre-processing pipelines are gaining popularity as they afford the 

consistent application of the artefact rejection criteria, easy application to large samples, and 

facilitate comparison and collaboration across research labs (Gabard-Durnam et al., 2018). 

Several programs have been developed including the Harvard automated processing pipeline 

for electroencephalography (HAPPE; Gabard-Durnam et al., 2018), the standardised early-

stage EEG processing pipeline (PREP; Bigdely-Shamlo et al., 2015), and fully automated 

statistical thresholding for EEG artefact rejection (FASTER; Nolan et al., 2010) to name but a 

few. In this thesis, HAPPE was used to pre-process the data of Chapters 5 and 6. Consequently, 

in this section, we outline the HAPPE pipeline. 

 

HAPPE is an automated EEG pre-processing software written in MATLAB, which utilises 

EEGLAB functions (Delorme & Makeig, 2004; Gabard-Durnam et al., 2018). The software can 

pre-process both resting state and task-related EEG for low (≤ 32 Channels) and high-density 

(> 32 Channels) systems (Gabard-Durnam et al., 2018). Filtering, artefact rejection, and re-

referencing to prepare the data for time-frequency analysis can be conducted using HAPPE 

(Gabard-Durnam et al., 2018). Recently, HAPPE has been extended for ERP studies 

(Monachino et al., 2022).  

 

Low-pass, high-pass, and line noise filtering can be conducted using user-specified 

parameters within HAPPE (Gabard-Durnam et al., 2018). Line noise removal is achieved using 

CleanLine (Mullen, 2012), which utilises a multi-taper regression to remove line noise around 

(± 2 Hz) the user-specified frequency (Gabard-Durnam et al., 2018). The data can be 
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subsequently downsampled to 250, 500, or 1000 Hz. For ERP studies, HAPPE allows the user 

to select filter cut-offs using either a Hamming windowed sinc FIR filter or an IIR Butterworth 

filter (Monachino et al., 2022). 

 

Bad channel detection can also be performed. Here, the software locates bad channels that 

exceed three standard deviations from the mean of the normed joint probability of the 

average log power between 1 and 125 Hz (Gabard-Durnam et al., 2018; Monachino et al., 

2022). For ERP analysis, further steps are conducted including detecting flatline channels 

(duration > 5s), rejecting channels > 3 or <-5 standard deviations from the mean power, 

rejecting channels with remaining line noise contamination (> 6 standard deviations from the 

line noise mean), and rejecting channels with outliers based on their correlation with other 

channels. Correlation coefficients less than .8 lead to channel rejection (Monachino et al., 

2022). 

 

To minimise trial rejection, HAPPE conducts artefact correction using either wavelet 

thresholding or independent component analysis (ICA; Gabard-Durnam et al., 2018; 

Monachino et al., 2022). Wavelet thresholding detects artefacts using both time- and 

frequency-localisation and removes it without distorting the brain signal (Gabard-Durnam et 

al., 2018; Monachino et al., 2022). Wavelet thresholding is more computationally efficient 

than ICA, completing within the order of seconds (Gabard-Durnam et al., 2018; Monachino et 

al., 2022). In wavelet thresholding for ERPs, soft or hard margins, which determine the 

stringency of the correction depending on the data type (e.g., soft margin for adult samples; 

Monachino et al., 2022) are applied. Alternatively, ICA can be applied, which decomposes the 

data into independent components reflecting artefact and neural data (Monachino et al., 
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2022). We use wavelet thresholding in Chapters 5 and 6 due to its effectiveness and 

computational efficiency. 

 

Subsequently, data segmentation is conducted by defining a time window relative to a trigger. 

If ERP analysis is required, baseline correction can be applied. Furthermore, segments 

containing bad data are interpolated, with channels containing artefacts being interpolated 

using the FASTER software (See Nolan et al., 2010). Segment rejection is then performed by 

defining an amplitude threshold (e.g., -150 to 150 for adults), and/or through joint probability 

rejection, which identifies artefacts such as muscle movements (Monachino et al., 2022). Two 

criteria are used for segment rejection. Firstly, single electrode probability is measured by 

computing the joint probability of a channel’s activity at a given segment relative to the 

activity of the same channel across all other segments. Secondly, electrode group probability 

is calculated for each section by computing the joint probability between activity at a given 

channel relative to the activity of all other electrodes in the same segment (Monachino et al., 

2022). Segments exceeding three standard deviations from the mean on either criterion are 

rejected. Following segment rejection, bad channels are interpolated using spherical 

interpolation (Gabard-Durnam et al., 2018; Monachino et al., 2022). The data can then be re-

referenced by performing average re-referencing or using a subset of channels.  

 

2.1.5 Time-Frequency Analysis 
 

Electrophysiological recordings demonstrate neural rhythmicity, characterised as brain 

oscillations (Keil et al., 2022). Neural oscillations demonstrate a periodic pattern of activity 

from synchronous neuronal populations (Kirschfeld, 2005). The rhythmicity of EEG was first 
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observed during EEG recordings conducted in the 1920s by Hans Berger, one of the inventors 

of EEG (J. A. Kim & Davis, 2021; Prerau et al., 2017). Berger initially characterised waves of 

the first order, or alpha rhythms (İnce et al., 2021), which were oscillations at 10Hz observed 

near the occipital cortex in awake subjects with eyes closed (Adrian & Matthews, 1934; J. A. 

Kim & Davis, 2021; Kropotov, 2009). Berger also noted that alpha waves were attenuated 

once the subject opened their eyes, which were defined as waves of the second order or beta 

waves, which were faster and had a lower amplitude (J. A. Kim & Davis, 2021; Kropotov, 2009). 

 

Cortical oscillations can be quantified using metrics including frequency, time, amplitude, 

phase, and morphology, following spectral decomposition. Spectral decomposition, or 

estimation, aims to separate a waveform into distinct component oscillations, which are 

linked by the component frequency (Prerau et al., 2017). Much of the research performing 

EEG time-frequency analysis relies on averaging spectral power across frequencies to 

summarise the activity in a frequency band. The spectrum can be divided into canonical bands 

such as: delta (< 3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (> 30 Hz; 

Keil et al., 2022; Schomer & Lopes, 2010). However, minor variations in the definitions of the 

frequency bands exist. In this thesis, namely Chapters 4 and 6 we use the following 

definitions: theta (4 – 7 Hz), alpha (8 – 12 Hz), lower beta (16 – 24 Hz), upper beta (25 – 32 

Hz) and gamma (33 – 70 Hz). 

 

2.1.5.1 Discrete, Fast, and Short-Time Fourier Transformations 
 

The Fourier transform is imperative for signal processing and is the foundation of EEG data 

analysis (Cohen, 2014). The theoretical underpinning of Fourier analysis is that any signal can 
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be represented by a combination of sine waves, provided each wave has a distinct frequency, 

amplitude, and phase. That is, any signal can be represented by a linear combination of 

trigonometric functions that have different frequencies and amplitudes (Prerau et al., 2017; 

Sawa et al., 2022). Consequently, Fourier analysis decomposes a time-domain signal by 

calculating the dot product, the sum of two vectors after elementwise multiplication, 

between the EEG time series and sine waves with different frequencies (Cohen, 2014). The 

Fourier transformation is theoretically lossless, providing a perfect representation of the 

original signal. 

 

Several implementations of the Fourier Transform have been developed including the 

Discrete Fourier Transform, Fast Fourier Transform (FFT) and the Short-Time Fast Fourier 

Transform. The Discrete Fourier Transform involves constructing a sine wave of equal length 

to the signal for a given frequency and computing the dot product. This process is repeated 

for n sine waves of varying frequency, where n is the number of time points in the original 

signal. Moreover, the Fast Fourier transform refers to a family of more efficient algorithms 

(e.g., Cooley-Turkey algorithm; Cooley & Tukey, 1965), which are several orders of magnitude 

faster than the Discrete Fourier transform (Cohen, 2014).  

 

Whilst Fourier analysis provides the average power across the signal, the Short-Time Fast 

Fourier Transform segments the signal, iteratively calculating the spectral characteristics 

using a sliding time window (Cohen, 2014; Subha et al., 2010). First the segment is tapered to 

attenuate the edges (due to edge spectral distortions referred to as edge artefacts), reduce 

spectral leakage (smearing of power due to non-periodicity in the window), and control 

frequency smoothing (Cohen, 2014; Kropotov, 2009). The Fourier transform is then applied 
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to the tapered signal. The sliding window is then shifted by t time points and the process is 

repeated (Cohen, 2014). Common types of window functions include Boxcar, Hann/Hanning, 

Hamming, and Blackman windows (Sawa et al., 2022).  

 

2.1.5.2 The Multi-taper Method 
 

An alternative approach to time-frequency decomposition is the multi-taper method. The 

multi-taper method calculates an average across several tapers to extract different frequency 

components (Prerau et al., 2017). Tapers are discrete prolate spheroidal sequences, known 

as Slepian sequences (Cohen, 2014; Slepian & Pollak, 1961). The sequences are orthogonal, 

meaning that they extract different frequency spectra properties (Cohen, 2014; Keil et al., 

2022; Prerau et al., 2017). The multi-taper method first extracts a segment, which is 

multiplied with several tapers simultaneously (the number of tapers dictates the smoothness 

of the resulting spectra), which results in a tapered time series (Cohen, 2014; Prerau et al., 

2017). After obtaining the set of tapered time series, the FFT of each series is calculated and 

the resulting spectra are averaged together (Cohen, 2014; Keil et al., 2022; Prerau et al., 

2017). A schematic of the multi-taper method from Prerau et al. (2017) is presented in Figure 

2.2. 

 

The multi-taper method has several advantages and limitations when compared to other 

approaches. Firstly, the multi-taper method is advantageous in noisy data and small trial 

samples, as the method limits the impact of noise (Cohen, 2014). Secondly, the multi-taper 

method is appropriate for single-trial analyses and is preferred for the analysis of frequencies 

greater than 30 Hz (Cohen, 2014). For example, at gamma-band frequencies (>60 Hz), the 
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multi-taper method improves the signal-to-noise ratio due to frequency smoothing (Cohen, 

2014). Furthermore, the multi-taper method reduces edge artefacts, as information lost 

through certain tapers can be captured using alternative tapers (Babadi & Brown, 2014; S. E. 

Kim et al., 2018). However, the multi-taper method results in the smearing of lower 

frequencies (<30 Hz), meaning it can be challenging to isolate discrete time-frequency 

characteristics (Cohen, 2014). However, this is less problematic when assessing power at 

bandwidth resolution, when compared to finer resolutions. In addition, other methods may 

be more appropriate when precise temporal characteristics are required, as the multi-taper 

method suffers from relatively low temporal resolution (Cohen, 2014). In this thesis, we apply 

the multi-taper method due to its suitability for analysing single-trial and higher frequency 

data (e.g., gamma band; Cohen, 2014). 

 

 
 
 

 

 

Figure 2.2 Schematic of the multi-taper method for time-frequency decomposition. Adapted 

from Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis by M. 

J. Prerau, R. E. Brown, M.T. Bianchi, J.M. Ellenbogen, and P. L. Purdon, 2017, Physiology, 32(1), 

60-92, Copyright (2017) by Int. Union Physiol. Sci./Am. Physiol. Soc. Adapted with permission. 
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2.1.6 Quantification of Event-related Changes in Cortical Oscillations 
 

EEG oscillations can be assessed in terms of amplitude (μV) or power (μV2; Mathewson et al., 

2015). In addition, power spectra can be evaluated using either absolute or relative power. 

The absolute power of a frequency band is calculated by integrating all power values within 

a given frequency range (Govindan et al., 2017; Yuvaraj et al., 2014). It is notable that due to 

anatomical variations, absolute power differs significantly across individuals (Kropotov, 

2009). Alternatively, relative power can be calculated by dividing the absolute power of each 

frequency band by the sum of powers across all frequency bands (Govindan et al., 2017). 

Relative power has lower inter-individual variation when compared to absolute power and is 

more suited to comparing across subjects (Harmonya et al., 1993; Nuwer, 1988). 

 

Changes in time-locked oscillations which are associated with experimental stimuli can be 

evaluated using the event-related desynchronisation method (ERD; Pfurtscheller & Aranibar, 

1979). Traditionally, ERD values are calculated across trials, whereby trials are averaged to 

reduce variability and improve the signal-to-noise ratio (Pfurtscheller & Aranibar, 1977; 

Pfurtscheller & Lopes da Silva, 1999). In the current thesis, single-trial ERD values are used to 

train ML models. Whilst single-trial data is inherently noisier, information is lost during the 

averaging process. ERD can be calculated for a given trial using the equation below.  

 

𝐸𝑅𝐷	(%) = 	 )
𝐴 − 𝑅
𝑅 , ∗ 100 

 

ERD reflects the change in power, represented as a percentage, following the onset of a given 

event, or active period (A), relative to the corresponding baseline period (Pfurtscheller & 
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Aranibar, 1977, 1979). Negative ERD values represent a decrease in band power, indicating 

increased cortical excitation. Positive values, known as event-related synchronisation (ERS), 

represent band power increases, reflecting cortical inhibition (Pfurtscheller & Aranibar, 1977, 

1979). 

 

2.1.7 Event-related Potentials 
 

An alternative approach for analysing EEG data is the event-related potential (ERP) technique. 

Time-locked voltage changes in the EEG signal due to the onset of an event or stimulus (e.g., 

visual, auditory, somatosensory) are commonly referred to as Event-related potentials (Lopes 

da Silva, 2011; Luck, 2014; Sur & Sinha, 2009). ERP analysis assumes that the electrical 

response evoked by the presentation of stimulus is time-locked, or delayed relative to the 

onset of the stimulus and that the ongoing EEG activity is stationary (Lopes da Silva, 2011). 

Consequently, like the ERD method, ERP identification relies on improving the signal-to-noise 

ratio, which is achieved by averaging across numerous trials (Lopes da Silva, 2011; Luck, 2014). 

Averaging trials improves the signal-to-noise ratio as time-locked activity is preserved, whilst 

voltage fluctuations which are not time-locked to the stimulus (e.g., noise) are minimised 

(e.g., positive, and negative deflections cancel out and approach zero; Luck, 2014). Therefore, 

the number of trials is an important consideration as the signal-to-noise ratio improves 

proportionally to the square root of the number of trials (Lopes da Silva, 2011). 

 

To compute an ERP it is important to define a period of fixed length and extract segments or 

epochs from continuous data (Luck, 2014). Epochs contain a baseline period, spanning a few 

hundred milliseconds before stimulus onset, and a period after stimulus presentation, which 
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often has a duration of 500-1500ms depending on the component of interest (Luck, 2014). To 

account for offset and drift in the EEG, which can be produced by factors such as skin 

hydration, a baseline correction procedure is applied (Luck, 2014). Pre-stimulus EEG is often 

appropriate for baseline correction as the period provides a good estimate of the EEG offset 

and does not contain EEG activity relating to the stimulus (although this assumption is 

sometimes violated as the pre-stimulus period may contain residual activity from the 

preceding event such as anticipation effects; Luck, 2014). Baseline correction is conducted by 

calculating the average voltage during the pre-stimulus period and subtracting this value from 

the entire waveform (Luck, 2014). Without performing baseline correction, the data would 

include additional cross-trial variability due to different offsets, significantly increasing data 

variance, and impairing statistical analysis (Luck, 2014). Finally, in traditional ERP analysis, 

following the baseline correction, the data is averaged by summing all trial waveforms and 

dividing by the number of waveforms (Luck, 2014). 

 

Positive and negative deflections are referred to as components. Specifically, ERP 

components exist within the overall complex waveform but are represented by specific 

characteristics such as positive and negative deflections. ERP components are defined by their 

polarity (P: positive; N: negative) and their post-stimulus latency (e.g., P300) or the order of 

the component (e.g., P3; Luck, 2014; Woodman, 2010). Exogenous components (early 

components approximately occurring between 60 and 100ms) are triggered by the onset of a 

stimulus and reflect automatic processing and the physical features of the stimulus (Luck, 

2014; Sur & Sinha, 2009). Whereas endogenous components (later components > 150ms) are 

entirely related to the task and reflect cognitive processing, which can be altered due to 
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factors such as attention (Luck, 2014; Sur & Sinha, 2009). In addition to time-frequency 

analysis, the analysis of ERPs is also explored in this thesis (See Chapter 5).  

 

2.1.8 Strengths and Limitations of EEG 
 

EEG benefits from several strengths. Firstly, EEG has an excellent temporal resolution which 

enables sub-millisecond sampling (Lau-Zhu et al., 2019; Michel & Murray, 2012; Ploner & 

May, 2018; Tivadar & Murray, 2019). The temporal resolution facilitates an improved 

understanding of the neural underpinnings of stimuli processing and responses, which is 

challenging to measure accurately using behavioural approaches such as reaction times. 

Secondly, EEG is advantageous over other neuroimaging techniques because the method 

provides a direct measure of population-level neural activity (Cohen, 2017; Lau-Zhu et al., 

2019). Alternative methods rely on proxy measures of neural activity, such as the 

haemodynamic response in fMRI, which is dependent on the assumption that increased 

neural activity is correlated with increased blood flow to that region (Logothetis, 2008). 

Relying on haemodynamic measures of neural activity results in poor temporal resolution, as 

haemodynamic responses occur over a time scale of several seconds, whilst neural activity 

occurs within the millisecond range (Glover, 2011). Thirdly, EEG hardware is inexpensive 

compared to other popular neuroimaging techniques and there are many free software 

packages for data analysis (Lau-Zhu et al., 2019; Ploner & May, 2018; Tivadar & Murray, 2019). 

Fourthly, EEG is easy to use and is accessible across the entirety of the human lifespan (e.g., 

useable for both neonatal and elderly populations) and in clinical settings and populations 

(Lau-Zhu et al., 2019; Tivadar & Murray, 2019). The utility of EEG is further enabled as some 

modern EEG systems are portable (e.g., Mindo Triolbite 32-channel dry EEG system, Mindo, 
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National Chiao Tung University Brain Research Centre, Taiwan), which do not require 

dedicated environments such as Faraday cages (Tivadar & Murray, 2019). These systems 

often demonstrated comparable results to standard EEG systems (Hinrichs et al., 2020). 

Finally, EEG can be easily combined with other neuroimaging methods such as fMRI, 

neuromodulation techniques such as transcranial magnetic stimulation (TMS) and 

pharmaceutical interventions to name but a few (Ploner & May, 2018; Tivadar & Murray, 

2019).  

 

Whilst EEG offers many advantages over alternative neuroimaging methods, it also suffers 

from several considerable limitations. The most prominent limitation of EEG is poor spatial 

resolution (Lau-Zhu et al., 2019; Michel & Brunet, 2019; Ploner & May, 2018; Tivadar & 

Murray, 2019). EEG electrodes record the electrical activity of the brain using electrodes 

located on the scalp. Consequently, EEG is insensitive to deep and sub-cortical regions (Ploner 

& May, 2018). In addition, neural activity is attenuated by resistive tissues such as the 

meninges or the skull before being recorded by the EEG system (Nunez et al., 1997; Nunez & 

Srinivasan, 2006; Srinivasan et al., 1996). Therefore, EEG is subject to the inverse problem; 

the determination of the intracranial sources that contribute to the recorded scalp potential 

(Michel & Brunet, 2019). That is, the inverse problem aims to identify the source of the signal, 

given that the scalp potentials and volume conduction models are known entities (Caune et 

al., 2014; Olejniczak, 2006). The solution of the inverse problem is not unique as there are 

infinite solutions and combinations which could have resulted in the observed scalp potential 

(Grech et al., 2008; Pascual-Marqui, 1999). Estimates of the source can be obtained using 

source localisation methods (Grech et al., 2008). However, source localisation can be affected 

by head and source modelling errors and EEG noise (Whittingstall et al., 2003). Finally, EEG 
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suffers from a low signal-to-noise ratio (Tivadar & Murray, 2019). The magnitude of the true 

EEG signal is significantly smaller than common artefacts, which hampers the signal-to-noise 

ratio. 

 

2.2 Principles of Machine Learning 

 

ML is a subfield of Artificial Intelligence (AI) that uses data to develop models for pattern 

recognition, classification and prediction using principles from numerous disciplines including 

computer science and statistics (Jordan & Mitchell, 2015; Tarca et al., 2007). In 1959, Arthur 

Samuel defined ML as a discipline that allows computers to learn without explicit 

programming (Samuel, 1959). Generally, ML can be considered an area of applied statistics, 

where the objective is to statistically estimate complex functions (Goodfellow et al., 2016). 

ML algorithms learn directly from data by altering the model’s parameters as a function of 

experience (e.g., training), aiming to identify parameters which produce the optimal solution 

(Jordan & Mitchell, 2015). Following training, ML models can be used to make predictions on 

novel data (Goodfellow et al., 2016; Vu et al., 2018). 

 

Unsupervised, supervised and reinforcement learning algorithms are arguably the core three 

pillars of ML (Jordan & Mitchell, 2015; J. H. Lee et al., 2018; Tarca et al., 2007; Vu et al., 2018). 

Unsupervised learning aims to identify representations (e.g., clustering) in unlabelled data, 

whilst reinforcement learning algorithms aim to learn actions that maximise a reward and are 

analogous to conditioning (Jordan & Mitchell, 2015; Vu et al., 2018). Supervised learning 

algorithms are trained on labelled data to make predictions on novel data (e.g., classification 

or regression; Jordan & Mitchell, 2015; LeCun et al., 2015). Only supervised ML algorithms 
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are implemented in this thesis. Therefore, throughout this section, we will provide an 

overview of supervised learning. For a broad review of ML that includes both unsupervised 

and reinforcement learning see Jordan and Mitchell (2015). 

 

Supervised ML involves training a model to predict the outcome or response variable, given 

a model and input data (LeCun et al., 2015; Pereira & Borysov, 2019; Tarca et al., 2007). The 

aim of supervised ML is to learn a function that achieves the optimal mapping between input-

output pairs using a range of probabilistic, optimisation and statistical techniques (Jordan & 

Mitchell, 2015; LeCun et al., 2015; Osisanwo et al., 2017; Pereira & Borysov, 2019; Samuel, 

1959; Uddin et al., 2019; Vu et al., 2018). Essentially, supervised learning aims to identify a 

function, f, that achieves the optimal mapping of input data, X, to an output or label, Y (Jordan 

& Mitchell, 2015; Osisanwo et al., 2017; L. Yang & Shami, 2020). That is, supervised ML 

algorithms infer a function from input training data, to make predictions on unseen data. 

 

Classification, where models are required to separate the data into discrete categories, is an 

example of supervised ML (Goodfellow et al., 2016; Jordan & Mitchell, 2015; LeCun et al., 

2015). Here, the output or target variable is a discrete class (e.g., cat or dog), which can be 

represented by integers (𝑦! ∈ ℤ). Classification tasks can be either binary, where the number 

of classes is equal to two, or multiclass which extends to three or more classes (Goodfellow 

et al., 2016; Sokolova & Lapalme, 2009; Uddin et al., 2019). Additionally, regression tasks, 

where the model is required to predict a real value given the input data, can also be achieved 

using supervised learning (𝑦! ∈ ℝ; Uddin et al., 2019). Figure 2.3 presents illustrations of 

classification and regression for both linear and non-linear data in two-dimensional space.  
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Figure 2.3 Schematic diagrams of classification (top two panels) and regression (bottom two panels) for 

both linear (left panels) and non-linear (right panels) data. Top left panel. Illustration of a linear 

classification model. The data can be perfectly separated by a straight line. Top right panel. Non-linear 

classification diagram. The data cannot be completely separated by a straight line. Note, in both 

classification plots, the black dotted line represents the decision boundary of the classifier. Bottom left 

panel. Example of linear regression. Bottom right panel. Example of non-linear (quadratic) regression. 

Note, in both regression panels, the red dotted line represents 95% confidence intervals. 
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The process of training allows the model to learn from experience to predict the output for a 

given observation (Jordan & Mitchell, 2015; Mahesh, 2020). Model performance iteratively 

improves until convergence during training. Here, an objective function (also referred to as a 

loss or cost function) is computed which measures the degree of error between the predicted 

and true values (LeCun et al., 2015; Q. Wang et al., 2022; Yamashita et al., 2018). During 

training, ML models alter internal, learnable parameters to minimise the objective (error) 

function using optimisation algorithms such as gradient descent (LeCun et al., 2015; 

Yamashita et al., 2018). To adjust internal parameters to minimise the loss, the algorithm 

calculates a gradient vector for each parameter, which illustrates the change in error given an 

adjustment of the model parameter (LeCun et al., 2015). The model then adjusts the 

parameter in the direction that reduces the error (LeCun et al., 2015). This process can be 

repeated until the optimal parameters have been identified.  

 

2.2.1 Supervised ML Algorithms: Random Forest 
 

In this thesis, we implement 7 traditional supervised ML algorithms including an adaptive 

boosting algorithm (AdaBoost), linear discriminant analysis (LDA), logistic regression (LR), 

gaussian naïve Bayes (NB), random forest (RF), support vector machine (SVM), and an 

extreme gradient boosting algorithm (XGBoost). Additionally, a long short-term memory 

network (LSTM) is developed in Chapter 6. These algorithms were implemented as they were 

amongst common reported in the literature (e.g., SVM, LDA, RF) or represented an area of 

novelty, as they had not been previously assessed (e.g., boosting algorithms; Mari et al., 

2022). The RF model demonstrated superior performance to alternative models, which is 

unsurprising given that it has been shown to perform well on real-world data, requires 
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minimal hyperparameter optimisation, and is robust to problems of overfitting (Bergstra & 

Bengio, 2012; Dong et al., 2020; Fernández-Delgado et al., 2014; Géron, 2019; T. Jiang et al., 

2020; Mienye & Sun, 2022; L. Yang & Shami, 2020). Given that the RF model demonstrated 

the best performance of all traditional models tested in Chapter 4 of this thesis, only the RF 

is described in this section for succinctness. Comprehensive overviews of alternative ML 

methods are presented elsewhere (T. Jiang et al., 2020; Larrañaga et al., 2006; LeCun et al., 

2015; Osisanwo et al., 2017; Sarker, 2021; Tarca et al., 2007; Uddin et al., 2019). Additionally, 

efficient implementations of these models are readily available through software packages 

such as Scikit-learn (Pedregosa et al., 2011).  

 

Given that RF models are comprised of a series of decision trees (DT; Dong et al., 2020; Sagi 

& Rokach, 2018), we first provide a brief overview of DTs. DTs have a hierarchical 

arrangement, resembling a tree-like structure, consisting of a sequence of hierarchical binary 

partitions of input data (Alloghani et al., 2020; Uddin et al., 2019; Venkatasubramaniam et al., 

2017). The DT is comprised of nodes, which have multiple levels and begin with a root node 

(Alloghani et al., 2020; Uddin et al., 2019; Venkatasubramaniam et al., 2017). Internal nodes 

aim to separate the data into two disjoint categories based on set criteria, with the categories 

below the node referred to as the branches (Venkatasubramaniam et al., 2017). The 

segmentation of the data into classes continues recursively along the structure of the DT until 

a leaf node is reached, where a stopping rule is implemented (Alloghani et al., 2020; Uddin et 

al., 2019; Venkatasubramaniam et al., 2017). Predictions can be made on novel observations 

by passing the data through the DT. 
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RFs are a type of ensemble learning algorithm, which combines multiple learners to solve a 

ML task (Dong et al., 2020; Sagi & Rokach, 2018). By combing predictions from multiple 

learners (e.g., DTs), the prediction error of a single learner will be negated by other learners, 

resulting in improved performance (Bentéjac et al., 2021; Dong et al., 2020; Sagi & Rokach, 

2018). Bagging and boosting approaches are utilised during ensemble learning to improve 

performance. Independent frameworks (e.g., bagging - RF) involve creating an inducer that is 

independent of others, meaning that the inducer does not impact the output of other learners 

(Sagi & Rokach, 2018). Whereas dependent approaches (e.g., boosting) use the output from 

one inducer to create the next inducer (Sagi & Rokach, 2018).  

 

RFs utilise bagging, which involves building and averaging across numerous DTs with high 

variance to reduce overfitting (Breiman, 2001; Dong et al., 2020; Mienye & Sun, 2022; Sagi & 

Rokach, 2018). Here, each model is trained on a bootstrapped copy of the dataset. For a 

sample of n length, each model is trained on a bootstrapped sample with n observations, 

ensuring a sufficient training sample size (Bentéjac et al., 2021; Sagi & Rokach, 2018). 

Bootstrapped samples may contain repeated observations (approx. 37%), meaning that some 

samples will be duplicates, whilst others will be omitted for a given learner (Bentéjac et al., 

2021; Sagi & Rokach, 2018). The individual models are trained on variations of the 

bootstrapped data, which is parallelisable, and the resulting models are combined (e.g., 

majority voting), creating the final classifier (Dong et al., 2020; Sagi & Rokach, 2018).  

 

RFs aim to maximise the difference between trees or decrease dependency, which introduces 

additional randomness (Sapir-Pichhadze & Kaplan, 2020). Firstly, each DT within the RF is 

trained on a random subset of data where it randomly selects a set of attributes to identify 
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the optimal split (Bentéjac et al., 2021; Dong et al., 2020; T. Jiang et al., 2020; Sagi & Rokach, 

2018). RFs use a majority voting-based approach to produce an output. The instance is 

classified as the class with the largest number of votes (Bentéjac et al., 2021; Dong et al., 

2020; González et al., 2020). In a regression RF model, the output reflects an average of the 

prediction from each tree. Consequently, the RF architecture minimises overfitting due to 

majority voting and through several injections of randomness (Dong et al., 2020; González et 

al., 2020; T. Jiang et al., 2020; Mienye & Sun, 2022). 

 

2.2.2 Feature Selection  
 

ML models are subject to the curse of dimensionality, the notion that increasing the number 

of features exponentially increases the search space, resulting in an increased likelihood of 

overfitting (Sagi & Rokach, 2018). Dimensionality reduction using feature extraction and 

selection reduces overfitting likelihood (Cai et al., 2018). Feature extraction or 

transformation, reduces the dimensionality of the data, whilst retaining maximum 

information (e.g., Principal component analysis (PCA); Cai et al., 2018; Khalid et al., 2014). 

Whereas, feature selection involves identifying a subset of features which are relevant to the 

prediction task based on evaluation criteria (Cai et al., 2018). Feature selection removes 

superfluous or irrelevant predictors, improving model performance, computation time, and 

interpretability (Cai et al., 2018). In this section, we describe two common approaches for 

feature selection, namely filter and wrapper methods which were implemented throughout 

this thesis. 
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Filter methods are applied before modelling to remove irrelevant variables by ranking the 

features that have the strongest association with the labels (Cai et al., 2018; Chandrashekar 

& Sahin, 2014; J. Miao & Niu, 2016). Therefore, features that are independent of class labels 

will be ranked as the least important (Cai et al., 2018; Chandrashekar & Sahin, 2014). The 

optimal feature set can be determined using a stopping criterion i.e., feature selection is 

iteratively conducted until a predefined, arbitrary threshold is obtained (Hsu et al., 2011). 

Numerous evaluation criteria can be used to rank the variables, which are dependent on type 

of the features and labels (e.g., continuous, categorical, etc.). Examples include the 

correlation coefficient, mutual information, chi-squared, F-score, and maximum relevance-

minimum redundancy algorithm, to name but a few (Cai et al., 2018; Chandrashekar & Sahin, 

2014; Guyon & Elisseeff, 2003; Hsu et al., 2011; J. Miao & Niu, 2016). Filter methods are simple 

to implement, computationally inexpensive, and perform well in applications (Chandrashekar 

& Sahin, 2014; Hsu et al., 2011). 

 

Alternatively, wrapper methods, which use ML performance as the objective function, can be 

implemented (Cai et al., 2018; Chandrashekar & Sahin, 2014; J. Miao & Niu, 2016). Wrapper 

methods include heuristics search and sequential selection algorithms (Chandrashekar & 

Sahin, 2014). Only variations of sequential selection algorithms are implemented in this 

thesis, for an overview of heuristics methods see Chandrashekar and Sahin (2014). Sequential 

feature section initialises with an empty set of features and iteratively adds variables until the 

optimal combination has been identified (Chandrashekar & Sahin, 2014). Alternatively, the 

inverse procedure can be implemented, starting with a set of features and recursively 

removing features until the objective function is maximised (Chandrashekar & Sahin, 2014). 

Wrapper methods can theoretically achieve higher classification accuracy than filter methods, 
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but often have poor generalisation metrics and are more computationally expensive (Cai et 

al., 2018; Chandrashekar & Sahin, 2014; Hsu et al., 2011). In practice, filter and wrapper 

methods are combined which improves performance (Hsu et al., 2011). The dataset is initially 

filtered, reducing the feature space by eliminating irrelevant features, followed by wrapper 

methods, which identify the optimal configuration of the remaining features (Cai et al., 2018). 

The combination of filter and wrapper methods is implemented in this thesis. 

 

2.2.3 Hyperparameter Optimisation 
 

ML models have two types of parameters that can be adjusted. Model parameters are 

internal values that are initialised and updated through training, whilst hyperparameters are 

parameters that cannot be identified during training and must be prespecified (L. Yang & 

Shami, 2020). Many ML algorithms require hyperparameter tuning to achieve optimal 

performance (Syarif et al., 2016). Hyperparameter optimisation algorithms are effective at 

identifying optimal values, especially when compared to hand-tuning (Bergstra & Bengio, 

2012; L. Yang & Shami, 2020). In this section, we provide descriptions of the hyperparameter 

optimisation techniques implemented in this thesis, namely grid and random search. 

Additionally, we present a table adapted from Yang and Shami (2020) which overviews the 

hyperparameters of many ML algorithms (see Table 2.1). 

 

Grid search exhaustively explores the hyperparameter search space for the optimal 

combination in a set of predefined values (Bergstra & Bengio, 2012; Syarif et al., 2016; L. Yang 

& Shami, 2020). That is, grid search evaluates all hyperparameter combinations within a set 

of user-defined values to identify the optimal configuration. Grid search is easy to implement 
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and can be effectively parallelised (L. Yang & Shami, 2020). However, it is unlikely to identify 

the true global optimal solution as the input values are user specified. Moreover, grid search 

is computationally complex, increasing exponentially for every additional hyperparameter 

value (L. Yang & Shami, 2020). Finally, whilst grid search is optimal for categorical 

hyperparameters, it is less practical for numerical hyperparameters, which have infinite 

potential values (L. Yang & Shami, 2020).  

 

Alternatively, random search explores random hyperparameter values between user-defined 

upper and lower bounds for a set number of iterations (Bergstra & Bengio, 2012; Géron, 2019; 

L. Yang & Shami, 2020). Theoretically, given a large enough search space, the global optimum 

hyperparameters can be identified, which is advantageous over grid search (L. Yang & Shami, 

2020). Random search is more efficient than grid search and can search over a significantly 

larger space, which is beneficial for numerical hyperparameters (L. Yang & Shami, 2020). 

Random search can also be parallelised, whilst the number of iterations can be defined, 

providing control over the computational complexity (Géron, 2019; L. Yang & Shami, 2020). 

However, random search may include redundant iterations, as it does not consider previous 

values (L. Yang & Shami, 2020). 
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Table 2.1 A comprehensive overview of common ML models, their hyper-parameters, suitable optimization techniques, and available Python libraries. 

Reprinted from Neurocomputing, 415, by L. Yang & A. Shami. "On hyperparameter optimization of machine learning algorithms: Theory and practice", 

295-316, copyright (2020), with permission from Elsevier. 

ML Algorithm Main HPs Optional HPs HPO Methods Libraries 
Linear Regression - - - - 
Ridge & Lasso Alpha - BO-GP Skpot 
Logistic Regression Penalty, c, Solver - BO-TPE, SMAC Hyperopt, SMAC 
KNN n_neighbours Weights, p, Algorithm BOs, Hyperband Skpot, Hyperopt, SMAC, 

Hyperband 
SVM C, Kernel, Epsilon (for SVR) Gamma, Coef0, Degree BO-TPE, SMAC, 

BHOB 
Hyperopt, SMAC, BOHB 

NB Alpha - BO-GP Skpot 
DT Criterion, Max_depth, Min_samples_split, 

Min_samples_leaf, Max_features  
Splitter, 
Min_weight_fraction_leaf, 
Max_leaf_nodes 

GA, PSO, BO-
TPE, SMAC, 
BOHB 

TPOT, Optunity, SMAC, BOHB 

RF & ET n_estimators, Max_depth, Criterion, 
Min_samples_split, Min_samples_leaf, 
Max_features 

Splitter, 
Min_weight_fraction_leaf, 
Max_leaf_nodes 

GA, PSO, BO-
TPE, SMAC, 
BOHB 

TPOT, Optunity, SMAC, BOHB 

XGBoost n_estimators, Max_depth, Learning_rate, 
Subsample, Colsample_bytree, 

Min_child_weight, 
Gamma, Alpha, Lambda 

GA, PSO, BO-
TPE, SMAC, 
BOHB 

TPOT, Optunity, SMAC, BOHB 

Voting Estimators, Voting Weights  GS Sklearn 
Bagging Base_estimator, n_estimators Max_samples, 

Max_features 
GS, Bos Sklearn, Skpot, Hyperopt, SMAC 
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AdaBoost Base_estimator, n_estimators, 
Learning_rate 

- BO-TPE, SMAC Hyperopt, SMAC 

Deep learning Number of hidden layers, ‘units’ per layer, 
Loss, Optimizer, Activation, Learning_rate, 
Dropout rate, Epochs, Batch_size, Early 
stop patience 

Number of frozen layers 
(if transfer learning is 
used) 

PSO, BOHB Optunity, BOHB 

K-means n_clusters Init, n_init, Max_iter BOs, Hyperband Skpot, Hyperopt, SMAC, 
Hyperband 

Hierarchical 
Clustering 

n_clusters, Distance_threshold Linkage BOs, Hyperband Skpot, Hyperopt, SMAC, 
Hyperband 

DBSCAN eps, min_samples - BO-TPE, SMAC, 
BOHB 

Hyperopt, SMAC, BOHB 

Gaussian mixture n_components Covariance_type, 
Max_iter, Tol 

BO-GP Skpot 

PCA n_components Svd_solver BOs, Hyperband Skpot, Hyperopt, SMAC, 
Hyperband 

LDA n_components Solver, Shrinkage BOs, Hyperband Skpot, Hyperopt, SMAC, 
Hyperband 

BO, Bayesian optimization; DBSCAN, Density-based spatial clustering of applications with noise; DT, Decision tree; ET, Extra trees; GA, Genetic 

algorithm; GP, Gaussian process; GS, Grid search; HB, HyperBand; HP, Hyperparameter; HPO, Hyperparameter optimisation; KNN, k-nearest 

neighbours; LDA, Linear discriminant analysis; NB, Naïve Bayes; PCA, Principal component analysis; PSO, Particle swarm optimisation; RF; Random 

forest; SKOPT, Scikit-optimize; SMAC, Sequential model-based algorithm configuration; SVM, Support vector machine; SVR, Support vector 

regression; TPE, Tree-structured Parzen estimators. 
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2.2.4 Model Evaluation 
 

2.2.4.1 Internal Validation 
 

ML models require validation, which evaluates model performance using novel data, 

providing an estimate of the model’s generalisability (Maleki et al., 2020; Vabalas et al., 2019). 

Validation methods include both internal and external validation. Internal validation is an 

approach to evaluate the predictive capabilities of the model (Moons et al., 2015). Typically, 

internal validation involves partitioning a single dataset into a training set, which is used to 

develop the model and a testing set which evaluates the predictive capability of the model, 

which can be achieved using cross-validation approaches (Browne, 2000; Collins et al., 2015; 

Koul et al., 2018). Throughout the remainder of this section, we provide a brief overview of 

cross-validation techniques, before discussing the importance of external validation. 

 

Hold-out validation is the simplest internal validation method and involves randomly splitting 

a single dataset into training and testing sets (T. Jiang et al., 2020; Koul et al., 2018; Maleki et 

al., 2020). Here, both the training and testing sets contribute to model development, with the 

model being trained using the training data, whilst model performance is evaluated on the 

test set (Maleki et al., 2020). The dataset can be divided in numerous ways, but common splits 

include 80% - 20% or 70% - 30% for training and testing, respectively. Alternative partitions 

include 70% for training, 15% for validation, which includes hyperparameter optimisation, 

and 15% for testing (Maleki et al., 2020). Whilst hold-out validation is simple and 

computationally inexpensive, model performance fluctuates due to random partitioning (T. 

Jiang et al., 2020; Koul et al., 2018; Maleki et al., 2020). 
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Alternatively, k-fold cross-validation, where the data is randomly segmented into k folds, with 

k-1 folds used for model training and the remaining fold used for validation, can be used 

(Maleki et al., 2020). Here, the ML model is trained k times, until all folds have been used as 

the validation set and model performance is calculated as the average of all iterations 

(Fushiki, 2011; T. Jiang et al., 2020; Luo et al., 2016; Maleki et al., 2020; Wong, 2015). Stratified 

k-fold cross-validation preserves class distributions in each set, whereas traditional k-fold 

cross-validation splits the data entirely randomly (Luo et al., 2016; Maleki et al., 2020; Wong, 

2015). Stratified k-fold cross-validation is therefore advantageous, as issues arising due to 

class imbalance are mitigated (Maleki et al., 2020). K-fold cross-validation reduces the 

randomness associated with a single random split, achieving more reliable estimates of model 

performance (Koul et al., 2018; Maleki et al., 2020). However, the method is more 

computationally expensive compared to hold-out validation as each model is trained k times 

(Koul et al., 2018; Maleki et al., 2020). k-fold cross-validation is parallelisable, which can 

reduce overall execution time (Maleki et al., 2020).  

 

Finally, leave-one-out cross-validation is a special instance of k-fold cross-validation, where 

the number of folds is equal to the number of observations (e.g., k=n; Koul et al., 2018; Maleki 

et al., 2020; Wong, 2015). Consequently, the test set is a single observation, and training is 

repeated for all observations. Leave-one-out cross-validation is optimal for small datasets, as 

it maximises the training data and is not subject to the noisy performance estimates 

associated with both k-fold and hold-out validation (T. Jiang et al., 2020; Koul et al., 2018; 

Wong, 2015). However, as the model is trained n times, computational complexity is 

significantly increased (Maleki et al., 2020). In this thesis, we use k-fold validation, as it 

provides an effective trade-off between computation time and robustness.  
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2.2.4.2 External Validation 
 

Whilst internal methods are sufficient to provide an estimate of model generalisability, they 

are not robust enough to provide evidence for practical purposes or clinical translation 

(Bleeker et al., 2003; Ramspek et al., 2021; Vabalas et al., 2019). Internal validation methods 

are at risk of overfitting, resulting in overly optimistic estimates of model performance 

(Cabitza et al., 2021; Vabalas et al., 2019; Varma & Simon, 2006). Simulation research has 

shown that cross-validation methods (e.g., k-fold cross-validation) are prone to overfitting, 

especially in small samples, which is common in neuroscientific research (Vabalas et al., 

2019). Overfitting is the ability of the model to fit both signal and noise, meaning they can fit 

random noise with a seemingly high degree of accuracy (e.g., 81%; see Vabalas et al., 2019). 

The risk of overfitting is further enhanced when hyperparameter optimisation and evaluation 

are combined, which is a common practice (Arbabshirani et al., 2017; Cawley & Talbot, 2010; 

Lever et al., 2016; Varma & Simon, 2006). Therefore, ML performance metrics established 

using internal validation methods may not provide accurate estimates of the model’s 

generalisability. Consequently, it is imperative to assess model performance on independent 

data, which was not used during model development or internal validation (Lever et al., 

2016). 

 

Given the limitations associated with internal validation, external validation is imperative 

(Bleeker et al., 2003; Steyerberg & Harrell, 2016). External validation involves assessing model 

performance on data independent of model development (Cabitza et al., 2021). Specifically, 

external validation can be implemented using data collected from other cohorts (e.g., a 

different population), facilities or locations (e.g., geographical validation), repositories, or 
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collected at a different time (e.g., temporal validation) or using a different experimental 

paradigm (Cabitza et al., 2021; Collins et al., 2015). As the external validation dataset is 

independent from the training and internal validation datasets, any overfitting would fail to 

generalise (Ho et al., 2020). Consequently, external validation provides robust estimates of 

model performance and generalisability, which is essential for models with potential clinical 

applications. 

 

The importance of external validation cannot be understated. A clinical prediction model that 

is poorly validated would result in suboptimal patient care and negative outcomes (e.g., risk 

of undertreatment or even mortality; Ramspek et al., 2021). Research has demonstrated that 

model performance on external data is reduced compared to internal validation (X. Li et al., 

2019; Mari et al., 2023; Siontis et al., 2015). Despite the evident importance of external 

validation, it is rarely assessed, with only 5% of prediction modelling studies published on 

PubMed reporting external validation in either the title or abstract (Ramspek et al., 2021). In 

Chapter 3, we conducted a systematic review to explore the effectiveness of ML to predict 

pain intensity, phenotype, or response to treatment. Our results demonstrated that none of 

the 44 studies included conducted or reported external validation results (Mari et al., 2022). 

Therefore, the performance of ML models in the field is likely inflated and not an accurate 

representation of the current state of the art. Consequently, an important contribution of this 

thesis is to externally validate ML algorithms to provide robust estimates of model 

performance for predicting pain-related outcomes. 
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2.2.4.5 ML Discrimination and Performance Metrics 

 

One approach for quantifying ML performance is by assessing model discrimination, which 

refers to the ability of the model to accurately differentiate between samples in one condition 

against other conditions (Alba et al., 2017; Moons et al., 2015). ML discrimination 

performance can be assessed using numerous metrics depending on the task (e.g., 

classification or regression; Alba et al., 2017; Powers, 2011; Sokolova & Lapalme, 2009). In 

this section, we provide an outline of ML discrimination and corresponding performance 

metrics that are implemented throughout this thesis.  

 

For regression tasks, metrics that describe the error between the predicted outcome and 

observed value are commonly used such as the mean absolute error (MAE) and root mean 

square error (RMSE; Chai & Draxler, 2014; Pereira & Borysov, 2019; Willmott & Matsuura, 

2005). For classification tasks, the performance can be assessed using metrics derived from a 

confusion matrix (Pereira & Borysov, 2019; Tharwat, 2021). Confusion matrices provide 

information regarding the number of correctly and incorrectly classified points per outcome 

label, which can be applied to both binary and multiclass classification problems (Sokolova & 

Lapalme, 2009; Tharwat, 2021; Uddin et al., 2019). The confusion matrix describes the 

number of true positives (TP), which are the positive instances that were correctly classified 

as positive, true negatives (TN), which are negative samples that were correctly identified as 

negative, false positives (FP), which reflect negative samples that were incorrectly classified 

as positive, and false negatives (FN), which represent positive samples that were incorrectly 

classified as negative (Tharwat, 2021; Uddin et al., 2019). Figure 2.4 provides a schematic of 

a confusion matrix for both binary and multiclass classification.  
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Figure 2.4 Schematic diagram of confusion matrices for binary classification (left) and 

multiclass classification (right). For multiclass classification, E represents error. Adapted from 

Classification assessment methods by A. Tharwat, 2021, Applied Computing and Informatics, 

17(1), 168-192, Copyright (2018) by Alaa Tharwat. Adapted with permission. 

 

Metrics that describe different aspects of a classification model’s performance can be 

calculated using the confusion matrix. Table 2.2 provides descriptions of performance metrics 

for both classification and regression tasks which are present throughout this thesis. 

Comprehensive reviews of these topics have been published elsewhere (Alba et al., 2017; 

Assel et al., 2017; Chai & Draxler, 2014; Powers, 2011; Sokolova & Lapalme, 2009; Tharwat, 

2021; Willmott & Matsuura, 2005). Usually, performance metrics for classification tasks are 

observed on a scale between 0 and 1, with 1 representing perfect performance, whilst 0.5 is 

the chance level for a binary classification task. However, for the Brier score, which is affected 

by both model discrimination and calibration, perfect predictions would output 0.
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Table 2.2 ML performance metrics for both classification and regression tasks. 

Task Performance Metric Notation Explanation 
    

Classification   
     

Accuracy  

  

Represents the model's overall effectiveness. Calculated as the ratio of 
correctly classified observations over all observations. 

     
Balanced 
Classification 
Accuracy  

 

 

 

Represents the average of sensitivity and specificity, which is useful for 
imbalanced datasets (e.g., where one class has more observations). 

    
 

Brier Score   
Represents the mean squared error of the model probability forecast (pi) and 
the event outcome (oi). 

    
 

 
F1 Score 

 

 
 
Represents the harmonic mean between recall and precision. 

    
 

False Negative Rate  Represents the ratio of positive labels incorrectly classified as negative labels 
over the total number of positive observations. 

 
  
 

 
 

 
False Positive Rate 

 

Represents the ratio of negative labels incorrectly classified as positive labels 
over the total number of negative observations. 

 
  
 

 
 

 
Negative Predictive 
Value 

 

Represents the ratio of true negatives over the total number of negatively 
predicted labels. 

 
   

𝑡𝑝 + 𝑡𝑛
𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛	
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𝑡𝑝
𝑡𝑝 + 𝑓𝑛

+ 	
𝑡𝑛

𝑡𝑛 + 	𝑓𝑝*
	

1
𝑛
+(𝑝! 	 − 	𝑜!)"
#

!$%

	

2𝑡𝑝
2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛

	

𝑓𝑝
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Positive Predictive 
Value (Precision) 

 Represents the ratio of true positives over the total number of positively 
predicted labels. 

 
  
 

 

 

 
Sensitivity (Recall)  Represents the ratio of true positive samples correctly classified over the total 

number of positive observations.  
 

  
 

 
 

 
Specificity  Represents the ratio of true negative samples correctly classified over the total 

number of negative observations. 
    

Regression  
 

  
  
 

 

 
Mean Absolute 
Error  

Represents the mean absolute error between the true values (yi) and predicted 
values (ŷi). 

  
  
 

 

  Root Mean Square 
Error   

Represents the average error between the true values (yi) and predicted values 
(ŷi). 

𝑡𝑝
𝑡𝑝 + 𝑓𝑝	
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A receiver operating characteristic (ROC) curve is an alternative way to evaluate ML classifiers 

(Fawcett, 2006; Hajian-Tilaki, 2013; Hoo et al., 2017). ROC curves were developed during 

World War two to assess the ability of radar operators to detect true aircraft signals from 

noise (J. Fan et al., 2006). Nowadays, the ROC can be used to determine the effectiveness of 

diagnostic tests or evaluate ML performance (Fawcett, 2006; Hajian-Tilaki, 2013; Hoo et al., 

2017). A ROC is plotted in two dimensions, with the model’s true positive rate (sensitivity) on 

the Y axis and the false positive rate (1 – specificity) on the X axis, providing a visual 

representation of the true positive and negative trade-off (J. Fan et al., 2006; Fawcett, 2006; 

Hoo et al., 2017). A classifier with no discriminative ability would be represented by a 45o line 

(i.e., y=x) on the plot, as the classifier does not exceed chance classification, producing equal 

amounts of true and false positives (Fawcett, 2006; Habibzadeh et al., 2016; Hoo et al., 2017). 

A classifier with reasonable performance should fall above the reference line (Fawcett, 2006; 

Hoo et al., 2017). The point (0,1) represents perfect discrimination (Fawcett, 2006; Hoo et al., 

2017). ROC curves are primarily used with binary classification models, but can be extended 

to multiclass classification problems (Fawcett, 2006; Mandrekar, 2010; Saito & Rehmsmeier, 

2015; Wandishin & Mullen, 2009). Figure 2.5 illustrates a ROC curve for binary classifiers.  
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The area under the ROC curve (AUC) is a popular metric for evaluating model performance 

(Bradley, 1997). The AUC represents the model’s ability to correctly distinguish between two 

classes (Faraggi & Reiser, 2002; Hoo et al., 2017). The AUC is the two-dimensional area under 

the ROC curve which provides a summary of model performance at all classification 

thresholds (Bradley, 1997; Hajian-Tilaki, 2013; Hoo et al., 2017; Kamarudin et al., 2017). The 

AUC score takes values in the interval between 0 and 1, where 0.5 represents a 

chance/uninformative model (J. Fan et al., 2006; Habibzadeh et al., 2016). A score of 1 

represents perfect discrimination, meaning the model is both 100% sensitive and specific (J. 

Fan et al., 2006). AUCs can also be used as a threshold for clinical utility. Previously, it was 

proposed that AUCs £ 0.75 are not clinically useful (J. Fan et al., 2006). Therefore, reporting 

Figure 2.5 The performance of two binary ML classifiers plotted on a ROC 

curve. The black line represents a perfect classifier, whilst the blue dotted 

line represents chance classification. In this example, classifier A is the 

better model. 
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the AUC is imperative and is a requirement of the transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis checklist (Collins et al., 2015). 

 

2.2.4.6 Calibration 

 

Prediction models may demonstrate poor risk estimates despite good discrimination 

performance (Alba et al., 2017; Van Calster et al., 2019). Consequently, evaluating 

discrimination is insufficient to assess the model’s predictive capability (Alba et al., 2017). 

Therefore, it is imperative to assess calibration, which refers to the agreement between the 

ML model predictions and observed or reference values (Alba et al., 2017; Luo et al., 2016; 

Moons et al., 2015; Van Calster et al., 2019). Using a diagnostic example, if a model predicts 

a 40% risk of a condition being present, then the observed frequency of that condition should 

be approximately 40 out of 100 events (Alba et al., 2017; Luo et al., 2016; Van Calster et al., 

2016, 2019). A poorly calibrated model may over or underestimate the probabilities of the 

incidence (Alba et al., 2017; Van Calster et al., 2019). For example, a model for predicting 

mortality rates after cardiac surgery demonstrated good discrimination performance (e.g., 

AUC of .80 for predicting mortality), but demonstrated poor calibration, resulting in 

significantly inflated mortality estimates and potentially negative outcomes (Alba et al., 

2017). Therefore, calibration assessment is essential to ensure accurate probability estimates 

(Van Calster et al., 2019). However, it is rarely reported (Moons et al., 2015). 

 

Calibration can be assessed using mean, weak, moderate, and strong calibration, with each 

level increasing the stringency (Van Calster et al., 2016, 2019). Mean calibration involves 

comparing the model average incidence with the true event rate (Van Calster et al., 2016, 
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2019). If the average predicted value is greater than the observed event rate, the algorithm 

overestimates event probabilities and vice versa (Van Calster et al., 2016, 2019). Weak 

calibration assesses whether, on average, the model is overfitting or underfitting, providing 

inaccurate estimations (Y. Huang et al., 2020; Van Calster et al., 2016, 2019). Weak calibration 

measures the robustness of the estimates, ensuring they are not consistently on the 

boundaries of the scale (0 or 1) or modest (too similar to the observed prevalence of the 

condition; Van Calster et al., 2019). Weak calibration can be assessed using a calibration (Cox) 

slope and intercept, which are equal to 1 and 0, respectively, for perfect performance (Y. 

Huang et al., 2020; Van Calster et al., 2016, 2019). Moderate calibration assesses whether the 

model-predicted probabilities are comparable to the observed values (e.g., if the model 

predicts a 20% risk of a condition being present, then the true condition prevalence should 

be 20%; Van Calster et al., 2016, 2019). Moderate calibration can be assessed using calibration 

curves (Moons et al., 2015; Van Calster et al., 2019). Finally, strong calibration assesses 

whether predicted risks are comparable to the observed event probabilities for all 

combinations of predictor values (Van Calster et al., 2016, 2019). However, strong calibration 

assessment is unrealistic requiring an infinitely large dataset to obtain accurate estimates 

(Van Calster et al., 2016).  

 

Calibration curves (moderate calibration) are the preferred approach to evaluating model 

calibration (Moons et al., 2015; Van Calster et al., 2016). Calibration curves display the 

relationship between the estimated or predicted risks, which are plotted on the x-axis, and 

the observed probabilities, which are plotted on the y-axis (Van Calster et al., 2019). The 

probabilities are separated into bins (e.g., 10 equal intervals between 0 and 1) and the 

probabilities in each bin are plotted (Y. Huang et al., 2020). Perfect calibration occurs when 
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the predicted probabilities perfectly match the true probabilities, which can be represented 

by a 45o line (e.g., y=x; Huang et al., 2020; Van Calster et al., 2019). Figure 2.6 shows examples 

of simulated calibration curves (as well as slopes and intercepts) from Van Calster and 

colleagues (2019). We assess ML models’ calibration using calibration curves in this thesis, as 

it is the recommended assessment method. 

 

  

 

 

 
  

Figure 2.6 Schematics detailing the different types of miscalibration. A) Under- and overestimation 

of probabilities. B) Model predictions that are too extreme or too moderate. Graphics are reflective 

of a model with an AUC of 0.71 with an event rate of 25%. The slope and intercept of the curves 

are also provided in the figure. Adapted from Calibration: the Achilles Heel of predictive analytics 

by B. Van Calster, D.J. McLernon, M. van Smeden et al., 2019, BMC Medicine, 17(230), 1-7, 

Copyright (2019) by B. Van Calster et al., with permission from Springer Nature. 
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2.3 Systematic Review Methodology 

 

A systematic review provides a summary of a research area, utilising reproducible methods 

to systematically identify, critically assess and synthesise a collection of research studies 

(Gopalakrishnan & Ganeshkumar, 2013; Uman, 2011). By using a systematic process, 

systematic reviews often exhibit less bias, such as selection bias, than other review 

methodologies (e.g., narrative review; Uman, 2011). Systematic reviews are therefore 

important tools for healthcare, aiding the development of clinical guidelines (Gopalakrishnan 

& Ganeshkumar, 2013; Shamseer et al., 2015). However, due to the potential implications 

and impact of systematic review conclusions, they are required to be conducted rigorously 

following stringent methodology aided by the creation of a protocol (Shamseer et al., 2015), 

which should be carefully followed and any deviations reported and justified. This process can 

be done internally, alternatively open-access sources exist (e.g., PROSPERO; 

https://www.crd.york.ac.uk/prospero/), which allow systematic reviews to be registered 

online, with the registration identified being cited in the final published manuscript, allowing 

readers to assess any deviations. 

 

Conducting systematic reviews using reproducible methods remains imperative. However, it 

is also essential to accurately report the method and results of a systematic review. 

Fortunately, guidelines exist for conducting systematic reviews, enabling a high degree of 

credibility and reproducibility, which is critical to their value. The Preferred Reporting Items 

for Systematic Review and Meta-Analysis (PRISMA) statement provides clear guidance and 

recommendations to successfully conduct a systematic review (Page, McKenzie, et al., 2021). 

https://www.crd.york.ac.uk/prospero/
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Systematic reviews usually follow the process of formulating a review question, defining the 

inclusion and exclusion criteria, creating the search strategy, selecting the studies, extracting 

data, performing study quality assessment, analysing and interpreting the results, and 

disseminating the findings (Uman, 2011). The PRISMA statement provides guidance for all of 

the stages of reporting the results from the title, where the publication must be identified as 

a systematic review and/or meta-analysis, to the additional information, where the source 

and role of the funders must be accurately document (Page, Moher, et al., 2021). Authors of 

systematic reviews are encouraged to complete the checklist and use the information in the 

explanation and elaboration process to ensure the review is correctly and rigorously reported 

(Page, Moher, et al., 2021).  

 

For this thesis, we conducted a systematic review which investigated the effectiveness of ML 

algorithms and EEG for the prediction of pain intensity, phenotype, and response to 

treatment. The systematic review is presented in chapter 3. The review is reported in-line 

with the recommendations and guidelines from PRISMA. 
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Abstract 

 

Recent attempts to utilise machine learning (ML) to predict pain-related outcomes from 

Electroencephalogram (EEG) data demonstrate promising results. The primary aim of this 

review was to evaluate the effectiveness of ML algorithms for predicting pain intensity, 

phenotypes or treatment response from EEG. Electronic databases MEDLINE, EMBASE, Web 

of Science, PsycINFO and The Cochrane Library were searched. A total of 44 eligible studies 

were identified, with 22 presenting attempts to predict pain intensity, 15 investigating the 

prediction of pain phenotypes and seven assessing the prediction of treatment response. A 

meta-analysis was not considered appropriate for this review due to heterogeneous methods 

and reporting. Consequently, data were narratively synthesised. The results demonstrate that 

the best performing model of the individual studies allows for the prediction of pain intensity, 

phenotypes and treatment response with accuracies ranging between 62% to 100%, 57% to 

99% and 65% to 95.24%, respectively. The results suggest that ML has the potential to 

effectively predict pain outcomes, which may eventually be used to assist clinical care. 

However, inadequate reporting and potential bias reduce confidence in the results. Future 

research should improve reporting standards and externally validate models to decrease bias, 

which would increase the feasibility of clinical translation.  
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3.1 Introduction 

Accurate assessment of pain is challenging due to the complex interplay between biological 

and psychological processes, but it is vital for understanding the effectiveness of clinical pain 

management (Dansie & Turk, 2013; Simons et al., 2014; Younger et al., 2009). Traditionally, 

pain is evaluated using interviews, observations, psychological screening and rating scales 

(Breivik et al., 2008; Dansie & Turk, 2013; Haefeli & Elfering, 2006; Williamson & Hoggart, 

2005). Whilst behavioural tools are valuable, developments are needed to individualise 

clinical care further, as many conventional methods fail in individuals who cannot accurately 

communicate their pain, such as infants and those with dementia (Breivik et al., 2008; Herr 

et al., 2011). Moreover, imperfect tools, coupled with the complexity of pain, also inhibit 

accurate diagnoses and treatment, further limiting the management of clinical pain (Breivik 

et al., 2008; Fine, 2011; Varrassi et al., 2010). Consequently, improved pain assessment is 

required to individualise clinical pain care. 

 

Recent attempts at improving the detection of pain outcomes using neuroimaging and 

Machine Learning (ML) have seen promising results (van der Miesen et al., 2019). ML refers 

to an algorithm that learns complex data patterns and makes predictions without being 

explicitly programmed (Samuel, 1959). Supervised learning is the most applicable method to 

pain prediction, whereby labelled input data are propagated through an algorithm, which 

then learns patterns associated with each label (Kotsiantis, 2007; Lundervold & Lundervold, 

2019; Uddin et al., 2019; Vu et al., 2018). This is achieved by altering internal weights; 

minimising the error between the input and the predicted label using optimisation 

algorithms, such as gradient descent (LeCun et al., 2015; Lundervold & Lundervold, 2019; 
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Whittington & Bogacz, 2019). Therefore, the algorithm learns from experience and can then 

be used to predict the labels of novel, unseen data (Lötsch & Ultsch, 2018). We focus on the 

application of ML on Electroencephalogram (EEG), as it is inexpensive and accessible, making 

it an excellent candidate for clinical applications (Gram et al., 2017; Ta Dinh et al., 2019). 

However, neuroimaging methods of pain classification are not the only promising approach 

within this line of research. Alternative approaches such as pain prediction from facial 

expressions also demonstrate promising results and can be identified elsewhere (Bargshady 

et al., 2020; Littlewort et al., 2009; Roy et al., 2016). Additionally, due to the technicality of 

ML and the corresponding algorithms, we also provide reference to comprehensive overviews 

of ML, which can be retrieved to make ML more accessible and provide an intuition regarding 

the underlying mechanisms of ML algorithms (Alloghani et al., 2020; Dey, 2016; Jordan & 

Mitchell, 2015; Lötsch & Ultsch, 2018; Sarker, 2021; Uddin et al., 2019). 

 

By applying supervised ML, researchers have successfully decoded patterns of neuronal 

activation arising from pain-related outcomes (van der Miesen et al., 2019). The development 

of computational methods of pain assessment may allow for the prediction of pain intensity, 

phenotype or response to treatment should research demonstrate its effectiveness. Pain 

intensity reflects self-reported pain ratings arising from experimental pain stimulation or 

naturally occurring pain. Pain phenotypes broadly reflect characteristics of pain conditions, 

suggesting the presence of a condition, whilst treatment response involves predicting the 

effect of pain treatments. The validation of ML and EEG for clinical use may improve clinical 

provision and mitigate current limitations by introducing objective markers, which could 

guide individualised treatment and diagnosis (Davenport & Kalakota, 2019; Davis et al., 2017). 

For example, predicting treatment effectiveness could reduce ineffective trial-and-error 
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treatment and improve patient outcomes (Ginsburg & McCarthy, 2001; Gram et al., 2015, 

2017). Despite their potential, pain biomarkers have not significantly impacted public health 

or clinical practice to-date (Woo et al., 2017). Therefore, throughout this systematic review, 

we discuss the effectiveness of ML for predicting pain outcomes from EEG whilst concurrently 

discussing the benefits and challenges, alluding to the potential for clinical translation. We 

address the research question: how effective are machine learning algorithms for predicting 

pain intensity, phenotype or response to treatment from EEG data? We included research on 

healthy participants or chronic pain populations. To achieve this, we complete the following 

objectives: 

 

(i) To evaluate the effectiveness of ML by comparing performance metrics. 

(ii) To explore the benefits and challenges of ML, alluding to the feasibility of 

clinical translation. 

(iii) To evaluate the quality of these studies. 

 

3.2 Methods 

This systematic review is reported in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA; Moher et al., 2009). The review protocol 

was registered on PROSPERO on June 5th, 2020 as CRD42020172091.  
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3.2.1 Search Strategy 

 

Electronic databases MEDLINE, EMBASE, Web of Science, PsycINFO and The Cochrane Library 

were searched from inception to May 4th, 2020 and updated on May 10th, 2021, using a 

combination of free text and thesaurus terms and restricted to English language. The searches 

were comprised of terms relating to pain, ML and EEG. Pain terms included pain conditions 

(e.g., neuralgia) and pain synonyms (e.g., nociception), whilst ML terms included methods 

(e.g., decision tree) and ML synonyms (e.g., classification) and EEG mostly included 

unabbreviated terminology (e.g., electroencephalogram). Reference lists of eligible studies 

and similar publications were hand-searched to identify further potentially relevant studies. 

The complete search strategy is presented in supplementary material 1. 

 

3.2.2 Study Selection 

 

Firstly, two reviewers (TM and JH) independently screened the title and abstracts of all the 

unique search results to identify all potentially relevant studies to be retrieved for full-text 

review. Secondly, full-text articles retrieved in stage one were reviewed for inclusion 

independently by two reviewers (TM and JH). The screening stages were guided by the 

eligibility criteria outlined in Table 3.1. Reviewer discrepancies at either stage were resolved 

through discussion or consultation with a third reviewer (NF), who acted as an arbiter, if 

necessary. 
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Table 3.1 Eligibility Criteria 

Inclusion criteria (included if all of the 
following are satisfied)   Exclusion criteria (excluded if any of the 

following are met) 

1. Published peer-reviewed studies 
presenting original data predicting pain 
intensity, phenotype, or response to 
treatment. 

  

1. Non-peer reviewed citations 
(abstracts or conference proceedings, 
letters and commentaries). Non-original 
data or case reports. 

2. Human participants ≥ 18 years old.   2. Non-human sample, or human 
participants < 18 years old. 

3. EEG study.   3. Non-EEG study. 

4. Applied supervised ML.   4. Did not apply supervised ML. 

5. English full text.   5. Non-English texts. 
Abbreviations: EEG, electroencephalogram; ML, machine learning. 

 

 

3.2.3 Data Extraction 

 

A data extraction form was developed to retrieve data regarding the study authors, 

participant demographics, type of painful stimuli, treatment type (where applicable), pain 

condition (where applicable), EEG array, model features, prediction type (binary, multiclass 

or continuous), the algorithm used, model validation and the performance metrics for the 

best performing model. The data extraction was performed independently by one reviewer 

(TM) and checked for accuracy by a second reviewer (JH). Disagreements were resolved 

through discussion or consultation with a third reviewer (NF), who acted as an arbiter, if 

necessary. 

 

The model we report is intended to reflect the best performing algorithm, which is deemed 

as the one with the greatest performance metrics (e.g., highest accuracy), as several models 

are typically developed in each study. If the authors attempt different classifications (binary, 



 93 

multiclass or continuous prediction), we report the best performing model of each 

classification type. The model reported is defined as the best performing either in the original 

studies or based on our judgement when the original studies did not define the best 

performing model. The majority of the studies implement cross-validation methods. The 

cases where cross-validation was not performed or was unclear are highlighted in the 

respective tables. Through reporting the best performing model, we hope to present the 

current state-of-the-art methods, which may eventually be candidates for clinical translation. 

A definition of the typical performance metrics reported in this review can be seen in Table 

3.2. A comprehensive discussion of the performance metrics has been reported elsewhere 

(Chai & Draxler, 2014; Hossin & Sulaiman, 2015; Powers, 2011; Sokolova & Lapalme, 2009; 

Tharwat, 2020; Willmott & Matsuura, 2005). 
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Table 3.2 General definitions of ML metrics 

Metric Notation Explanation 
 
 
Accuracy 
 

 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

 

 
The algorithm's overall effectiveness. Reflects the ratio 
of correctly classified data points over all data points. 
 

 
 
AUC (BCA) 

 
1
2
	 )

𝑡𝑝
𝑡𝑝 + 𝑓𝑛

+
𝑡𝑛

𝑡𝑛 + 𝑓𝑝*
 

 
The AUC represents the ability of the classifier to avoid 
incorrect classification. 
 

 
 
F1 

 
2𝑡𝑝

2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
 

 

 
Represents the harmonic mean of PPV (Precision) and 
Sensitivity (Recall, TPR).  

 
 
FPR 

 
𝑓𝑝

𝑓𝑝 + 𝑡𝑛
 

 

 
Represents the ratio of negative classes incorrectly 
labelled as positive cases over the total number of 
negative labels. 
 

 
 
MAE 

 
1
𝑛
	+ 	|𝑦! 	 − 	𝑦2!|
#

!$%

 

 

 
Represents average absolute error between the actual 
output value (𝑦!) and the predicted output value (𝑦2!). 

 
 
Misclassification 

 
𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

 

 
Represents the ratio of incorrectly labelled predictions 
over all data points. 

 
 
NPV 

 
𝑡𝑛

𝑡𝑛 + 𝑓𝑛
 

 

 
Represents the ratio of correctly labelled negative cases 
over the total negative predictions made. 

 
 
PPV (Precision) 

 
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

 

 
Represents the ratio of correctly labelled positive cases 
over the total positive predictions made. 

 
Sensitivity (Recall; 
TPR) 

 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

 

 
The ability of the algorithm to correctly identify true 
positive cases. 

 
 
Specificity 

 
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

 

 
The ability of the algorithm to correctly identify true 
negative cases. 

Abbreviations: AUC, area under the ROC curve; BCA, balanced classification accuracy; fn, false negatives; 
fp, false positives; FPR, false positive ratio; MAE, mean absolute error; NPV, negative predictive value; PPV, 
positive predictive value, tn, true negatives; tp, true positives; TPR, true positive ratio; ROC, receiver 
operating characteristics. 
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3.2.4 Risk of Bias 

 

Assessment of risk of bias (ROB) was performed by using the prediction model risk of bias 

assessment tool (PROBAST; Wolff et al., 2019), which contains 20 signalling questions to 

assess ROB across four domains: participants, predictors, outcomes and analysis (Moons et 

al., 2019; Wolff et al., 2019). Each domain is assessed as low, high or unclear ROB. An overall 

ROB is calculated for each study, taking all domains into consideration. Studies are deemed 

low ROB providing all individual domains were scored as low ROB. If one or more of the 

domains were scored as unclear ROB, but all other domains were low ROB, the study should 

be labelled as unclear ROB. Finally, if one or more of the domains is scored as high ROB, then 

the overall ROB would be deemed as high, regardless of the scores on the other domains 

(Wolff et al., 2019). Additionally, PROBAST allows assessment of the applicability of each 

study to the review, which is assessed and scored in a similar way as the ROB analysis, with 

studies being scored as low, high or unclear regarding applicability issues. PROBAST does not 

evaluate the applicability of the analysis, so the applicability assessment only consists of the 

participants, predictors and outcome domains. The applicability assessment evaluates 

whether there are any concerns regarding the relevance of an individual study to the review 

question (Wolff et al., 2019). For example, if a model was developed on participants in a 

different setting to the one specified in the review the question, then the model may not be 

applicable to the originally defined setting, and therefore, the study would be deemed as 

having high concerns regarding applicability. No studies were excluded based on the ROB or 

applicability assessments. PROBAST assessment was performed by one reviewer (TM), and a 

random sample of articles (≈ 20%) was checked for agreement by a second reviewer (NF).  
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3.2.5 Reporting Standards 

 

The reporting standards of ML studies were assessed using the transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines 

(Collins et al., 2015). TRIPOD consists of 22 items assessing the reporting standards of 

research studies developing or validating a multivariable prediction model. Items that are not 

relevant for all review outcomes (e.g., treatment details) were denoted as not applicable 

(NA). Additionally, TRIPOD items 4b and 5a were omitted due to lack of relevance. Many 

studies in this review were lab-based, and therefore reporting key dates and study setting is 

uncommon. Items 11, 14b and 17 were removed as they are optional and were not relevant 

to this review. Item 15a was omitted as it was relevant to traditional prediction studies but 

did not apply to ML. Item 15b was removed as it was not fully applicable to ML without 

altering the item. Additionally, all non-development items were excluded as they were not 

applicable to the studies in this review. As the reporting standards of medical ML studies have 

shown low adherence to recommended guidelines (Yusuf et al., 2020), we aimed to assess 

the quality of reporting throughout the literature. Assessment of reporting standards was 

performed by one reviewer (TM), and approximately 20% of articles were randomly sampled 

and checked for consistency by a second reviewer (NF).  

 

3.2.6 Data Synthesis  

 

The heterogeneity of the literature was assessed by the similarity of study populations and 

methods (ML and Neuroimaging). A meta-analysis was not considered appropriate for this 

review due to the absence of consistent reporting standards (see Reporting Standards 
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Assessment), differences in study designs, methods, classification definitions and, in some 

cases, inadequate numerical data presented within the publications. Consequently, we 

performed a narrative synthesis, adhering to the synthesis without meta-analysis (SWiM) 

guidelines (Campbell et al., 2020). The included studies are aligned with one of the three 

review outcomes, pain intensity, pain phenotype or response to treatment. The data has been 

narratively synthesised by presenting the range of the performance metrics reported in each 

section (e.g., accuracy, sensitivity or specificity) for each review outcome. However, 

inconsistent reporting means that the performance metrics reflect a subset of the sample.  

 

3.3 Results  

The searches resulted in the identification of a total of 1384 results, comprised of 1380 

citations from the searches and four studies from manual identification. Following the 

removal of 165 duplicate results, the title and abstracts of 1219 records were screened for 

relevance, resulting in 92 potentially relevant articles retrieved for full-text review. A total of 

48 studies were excluded at the full-text review stage. Reasons for exclusion can be identified 

in the PRISMA flow chart in Figure 3.1. Subsequently, a total of 44 results were included in 

this review, with 22 evaluating the prediction of pain intensity (Alazrai, Momani, et al., 2019; 

Alazrai, AL-Rawi, et al., 2019; Bai et al., 2016; T. Cao et al., 2020; Elsayed et al., 2020; Furman 

et al., 2018; Hadjileontiadis, 2015; Kaur et al., 2019; Kimura et al., 2021; L. Li et al., 2018; 

Misra, Wang, et al., 2017; Nezam et al., 2021; Okolo & Omurtag, 2018; Prichep et al., 2018; 

Sai et al., 2019; Schulz et al., 2012; Tripanpitak et al., 2020; Tu et al., 2016; Vatankhah et al., 

2013; Vijayakumar et al., 2017; M. Yu, Sun, et al., 2020; M. Yu, Yan, et al., 2020), 15 of pain 

phenotypes (Akben et al., 2012, 2016; Z. Cao et al., 2018; De Tommaso et al., 1999; Frid et al., 
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2020; Graversen et al., 2011; Levitt et al., 2020; Paul et al., 2019; Saif et al., 2021; Sarnthein 

et al., 2006; Subasi et al., 2019; Ta Dinh et al., 2019; Vanneste et al., 2018; Vuckovic et al., 

2018; Wydenkeller et al., 2009) and seven of response to treatment (Gram et al., 2015, 2017; 

Graversen et al., 2012, 2015; Grosen et al., 2017; Hunter et al., 2009; Wei et al., 2020). 
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Figure 3.1 PRISMA flowchart 
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3.3.1 PROBAST Assessment 

 

The ROB assessment demonstrated that 42 of the 44 studies in this review were categorised 

as high ROB, as summarised in Figure 3.2. The full assessment is presented in supplementary 

material 1. Concerning the participant domain, the most significant concern for bias resulted 

from sample issues, such as small sample sizes (typically £ 20 participants) or insufficient 

sample diversity (e.g., only male participants), with 12 of the 44 studies being scored high 

ROB. Additionally, five studies were deemed unclear for the participant domain as the 

inclusion and exclusion criteria were not clearly defined. The studies deemed at either high 

or unclear ROB for the outcomes domain were labelled as such due to missing or unclear 

outcome definitions (e.g., grouping justifications). Here, three studies were scored as high 

ROB, whilst one was deemed unclear ROB. The majority of the studies in this review were 

deemed as having high ROB in the analysis domain. The most common reason for high ROB 

arises from insufficient external validation, in-line with the PROBAST expectations (e.g., 

temporal or geographical validation; Moons et al., 2019), with 42 of the 44 studies being 

scored as high ROB on the analysis domain. Overall, the results presented in the synthesis 

should be interpreted with caution. Many of the studies synthesised are at a high ROB, and 

therefore, it is unclear to what extent the results generalise. 
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The applicability assessment demonstrated that only one of the 44 included studies was 

deemed as having applicability concerns (Okolo & Omurtag, 2018). The study was deemed as 

having high applicability concerns on the outcome domain (Okolo & Omurtag, 2018). Here, 

the study predicted stimuli intensity rather than directly predicting pain intensity. All other 

domains had low concerns regarding applicability. No other studies were deemed high or 

unclear regarding applicability to the review question. The full applicability assessment is 

presented in supplementary material 1. 

 

3.3.2 Reporting Standards Assessment 

 

The assessment of reporting standards demonstrated relatively low adherence to reporting 

guidelines. The areas with the lowest adherence across studies included the title and abstract, 

where none of the articles met TRIPOD expectations. Regarding the title, none of the studies 

were entitled as developing a prediction model. The abstract adherence was more varied, but 

generally studies did not report model discrimination or calibration in line with TRIPOD 

expectations. Additionally, the majority did not report the number of outcome events in the 

abstract. Many of the studies included also had low adherence throughout the methods. For 

example, only two of the studies reported their justification for the sample size and only 

around half of the intensity and phenotyping studies reported the presence and handling of 

missing data. Concerning model performance, many of the studies did not sufficiently define 

or report all metrics following the guidance of TRIPOD. Moreover, the majority of the studies 

in the intensity and phenotype clusters did not sufficiently discuss the clinical or research 

implications of the prediction model. Other domains also had relatively low adherence and 

can be seen in the TRIPOD summary in Table 3.3. However, the low adherence to reporting 
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guidelines could be partially explained by the compatibility of the tools used (see review 

limitations).



  

Table 3.3 TRIPOD summary for all of the review outcomes 

    Number Reported, n (%) 

Tripod Item Pain Intensity 
(N = 22) 

Pain Phenotype 
(N = 15) 

Treatment Response 
(N = 7)  

Title      

Identify the study as developing and/or validating a multivariable prediction model, the 
target population, and the outcome to be predicted. 0 (0%) 0 (0%) 0 (0%) 

 
Abstract       

Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions. 0 (0%) 0 (0%) 0 (0%)  

 
Background and Objectives     

Explain the medical context (including whether diagnostic or prognostic) and rationale 
for developing or validating the multivariable prediction model, including references to 
existing models. 

19 (86%) 8 (53%) 6 (86%)  

 
Specify the objectives, including whether the study describes the development or 
validation of the model or both. 4 (18%) 1 (7%) 0 (0%)  

Method       

Describe the study design or source of data (e.g., randomized trial, cohort, or registry 
data), separately for the development and validation data sets, if applicable. 21 (95%) 15 (100%) 7 (100%)  

 
Participants       

Describe eligibility criteria for participants. 17 (77%) 15 (100%) 7 (100%)  

Give details of treatments received, if relevant. NA NA 7 (100%)  
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Outcome       

Clearly define the outcome that is predicted by the prediction model, including how and 
when assessed. 21 (95%) 14 (93%) 7 (100%) 

 

 
Report any actions to blind assessment of the outcome to be predicted. 21 (95%) 15 (100%) 7 (100%)  

Predictors       

Clearly define all predictors used in developing or validating the multivariable prediction 
model, including how and when they were measured. 22 (100%) 14 (93%) 7 (100%)  

 
Report any actions to blind assessment of predictors for the outcome and other 
predictors. 22 (100%) 15 (100%) 7 (100%)  

Sample Size       
Explain how the study size was arrived at. 0 (0%) 1 (7%) 1 (14%)  

Missing Data       

Describe how missing data were handled (e.g., complete-case analysis, single imputation, 
multiple imputation) with details of any imputation method.  11 (50%) 7 (47%) 7 (100%)  

 
Statistical Analysis     

Describe how predictors were handled in the analyses.  22 (100%) 15 (100%) 7 (100%)  

Specify type of model, all model-building procedures (including any predictor selection), 
and method for internal validation.  19 (86%) 14 (93%) 5 (71%)  

 
Specify all measures used to assess model performance and, if relevant, to compare 
multiple models.   0 (0%) 0 (0%) 1 (14%)  

 
Results: Participants     

Describe the flow of participants through the study, including the number of participants 
with and without the outcome and, if applicable, a summary of the follow-up time. A 
diagram may be helpful. 

8 (36%) 12 (80%) 5 (71%)  

 



 106 

Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for 
predictors and outcome.  

5 (23%) 7 (47%) 6 (86%)  

 
Model Development     

Specify the number of participants and outcome events in each analysis.  12 (55%) 12 (80%) 6 (86%)  

Model Performance     

Report performance measures (with confidence intervals) for the prediction model. 
These should be described in results section of the paper. 0 (0%) 0 (0%) 0 (0%)  

 
Discussion: Limitations     

Discuss any limitations of the study. 14 (64%) 8 (53%) 7 (100%)  

Interpretation       

Give an overall interpretation of the results considering objectives, limitations, results 
from similar studies and other relevant evidence.  22 (100%) 15 (100%) 7 (100%)  

 
Implication       

Discuss the potential clinical use of the model and implications for future research.  4 (18%) 6 (40%) 5 (71%)  

Other Information: Supplementary Information     

Provide information about the availability of supplementary resources, such as study 
protocol, web calculator, and data sets. 5 (23%) 3 (20%) 1 (14%)  

 
Funding       

Give the source of funding and the role of the funders for the present study.  3 (14%) 0 (0%) 2 (29%)  

 



  

3.3.3 Pain Intensity 

   

The characteristics of the 22 included studies which investigated pain intensity are reported 

in Table 3.4. The articles attempt binary classification, multiclass classification, continuous 

score prediction or a combination of any of these methods. All of the studies in the intensity 

section predict differing levels of pain intensity. For example, binary classification may 

discriminate classes such as no pain versus pain or low pain versus high pain. In contrast, 

multiclass classification occurs when n (n>2) different levels of pain are used as classes for 

prediction. These classes typically reflect broad pain classes (e.g., low, medium or high pain). 

In some instances, the continuous pain rating scale is converted to classes for classification, 

such that the number of classes reflects the responses on the rating scale. Here the number 

is treated as a label rather than a numerical value. Finally, continuous prediction attempts to 

identify the numerical value of reported pain intensity on a numerical rating scale. Continuous 

prediction differs from the previous example as the prediction is a numerical value rather 

than a discrete label.  

 

Of the 22 included studies, a total of 13 perform binary classification (Alazrai, Momani, et al., 

2019; Alazrai, AL-Rawi, et al., 2019; Bai et al., 2016; T. Cao et al., 2020; Hadjileontiadis, 2015; 

Kaur et al., 2019; Misra, Wang, et al., 2017; Okolo & Omurtag, 2018; Sai et al., 2019; Schulz et 

al., 2012; Tu et al., 2016; Vatankhah et al., 2013; Vijayakumar et al., 2017), eight implement 

multiclass classification (Alazrai, Momani, et al., 2019; Elsayed et al., 2020; Kimura et al., 2021; 

Nezam et al., 2021; Tripanpitak et al., 2020; Vijayakumar et al., 2017; M. Yu, Sun, et al., 2020; 

M. Yu, Yan, et al., 2020) and five conduct continuous prediction (Bai et al., 2016; Furman et 

al., 2018; L. Li et al., 2018; Prichep et al., 2018; Tu et al., 2016). The algorithms used within 
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these studies are Support Vector Machines (SVM; Alazrai, Momani, et al., 2019; Alazrai, AL-

Rawi, et al., 2019; Kimura et al., 2021; Misra, Wang, et al., 2017; Nezam et al., 2021; Okolo & 

Omurtag, 2018; Sai et al., 2019; Schulz et al., 2012; Tu et al., 2016; Vatankhah et al., 2013), 

with one study using a Support Vector Regression (SVR; Tu et al., 2016), regression models, 

including linear and logistic (Bai et al., 2016; Furman et al., 2018; L. Li et al., 2018; Prichep et 

al., 2018), Artificial Neural Networks (ANN), which includes Convolutional Neural Networks 

(CNN), Multilayer Perceptrons, and other feed-forward neural networks (e.g. Sparse Bayesian 

Extreme Learning Machine; SBELM; T. Cao et al., 2020; Elsayed et al., 2020; Kaur et al., 2019; 

Tripanpitak et al., 2020; M. Yu, Sun, et al., 2020; M. Yu, Yan, et al., 2020), Linear Discriminant 

Analysis (LDA; Bai et al., 2016), Random Forest models (RF; Vijayakumar et al., 2017) and one 

study used a Mahalanobis classifier (Hadjileontiadis, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 
Table 3.4 Summary of pain intensity studies. 

Authors Classification 
Type 

Sample Demographics 
EEG 
Montage 

Feature 
Category 

Best 
Algorithm Outcome Performance Metrics 

(Mean age ± Standard 
Deviation) 

Alazrai et al. 
(2019)  Binary 24 Healthy Subjects (12 

F, 22.5 ± 3.2) 
14 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) No Pain vs. Pain 

Accuracy 89.2% ± 3.2% 

F1 (No Pain)  87.4% ± 4.1% 
F1 (Pain) 89.5% ± 3.3% 

Alazrai et al. 
(2019) 

Binary 

24 Healthy Subjects (13 
M, 23.5 ± 2.3) 

14 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) No pain vs. Pain 

Accuracy 93.86% 
Precision 94.02% 
Specificity  93.92% 
Sensitivity 88.88% 
F1 90.58% 

   
  

Multiclass SVM (RBF 
Kernel) 

No Pain vs. No 
Pain-to-pain vs. 
Pain 

Accuracy 90.18% 
Precision 91.34% 
Specificity 95.10% 
Sensitivity 86.99% 
F1 88.75% 

Bai et al. (2016)  

Binary 
34 Healthy Subjects (17 
F, 21.6 ± 1.7) 

64 EEG 
Electrodes 

Event 
Related 
Potentials 

LDA Low Pain vs. High 
Pain Accuracy 70.36% ± 14.18% 

 
  

    

Continuous Linear 
Regression 

Pain Rating (4-10; 
High Pain Trials) MAE  1.173 ± 0.278 

 
 

Cao et al. (2020) Binary 18 Healthy Subjects (10 
M, 25 ± 3.5) 

16 EEG 
Electrodes 

Time 
Frequency 

 
SBELM 

 
No Pain vs. Pain 

 
Train Accuracy  

 
89.3% ± 3.4% 

 

Accuracy  90.1% ± 2.8%  

AUC 0.95  
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Elsayed et al. 
(2020) 

 
Multiclass 

 
30 Healthy Subjects (17 
M, 24 ± 3) 

 
8 EEG 
Electrodes 

 
Time 
Frequency 

 
ANN (Three 
hidden layers) 

 
No Pain vs. Low 
Pain vs. Moderate 
Pain vs. High Pain 

Accuracy 94.83% 

Precision 93.92%  

Recall 95.14%  

F1 94.17%  
Furman et al. 
(2018)  Continuous 44 Healthy Subjects* 

(22 M, 28.4) 
64 EEG 
Electrodes 

Time 
Frequency 

Leave one out 
Regression 

Pain Intensity 
(0:100)  r 0.55 

 
 

Hadjileontiadis 
(2015) Binary 17 Healthy Subjects (9 

M, 23.22 ± 1.72) 
14 EEG 
Electrodes 

Time 
Frequency 

Mahalanobis 
classifier No Pain vs. Pain Accuracy 90.25% ± 2.08% 

 
 

Kaur et al. (2019) Binary 39 Healthy Subjects (34 
M, 24.59 ± 3.03) 

4 EEG 
Electrodes 

Time 
Frequency 

MLPNN (One 
hidden layer 
with 9 
Neurons) 

No Pain vs. Pain 

Train Accuracy 97.29%  

Test Accuracy 90%  

CV Accuracy 82.73%  

Kimura et al. 
(2021) Multiclass 

23 Subjects with hip 
Osteoarthritis or 
Osteonecrosis who 
underwent total hip 
arthroplasty (18 F, 64.6 
± 11.9)  

1 EEG 
Electrode 

Time 
Frequency 

SVM (RBF 
Kernel) 

No Pain vs. Mild 
Pain vs. Moderate 
Pain vs. Severe Pain 

Accuracy 79.6%✢✢  

Precision✢ 78.28% ± 6.03%✢✢  

Recall✢ 77.03% ± 9.05%✢✢  

F1✢ 77.67% ± 7.41%✢✢  

Li et al. (2018)  Continuous 34 Healthy Subjects* 
(17 F, 21.6 ± 1.7) 

64 EEG 
Electrodes 

Event 
Related 
Potentials 

Linear 
Regression 

Continuous Pain 
Ratings MAE 1.19 ± 0.35 

 

 
Misra et al. 
(2017)  

 
Binary 

30 Healthy Subjects (16 
F, 20 ± 2)  

128 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

 
Low Pain vs. High 
Pain 

 
Accuracy 

 
89.58% 

 

Misclassification 10.42%  

Nezam et al. 
(2021) Multiclass 24 Healthy Subjects (15 

M, 25) 
30 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) 

No Pain vs. Low 
Pain vs. High Pain 

Accuracy 83% ± 5%  

Specificity 91% ± 4%  

Sensitivity 93% ± 5%  

No Pain vs. Low 
Pain vs. Moderate 
Pain vs. High Pain 
vs. Intolerable Pain 

Accuracy 62% ± 6%  

Specificity 78% ± 3%  

Sensitivity 87% ± 4%  
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Okolo & Omurtag 
(2018)  Binary 

9 Healthy Subjects (7 
M, Age Range 20 - ≥ 
40) 

19 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

No Pain vs. Low 
Stimulus Accuracy✢ 89.78% ± 5.97%  

No Pain vs. Max 
Stimulus Accuracy✢ 89.51% ± 8.36%  

Low vs. Max 
Stimulus Accuracy✢ 69.2% ± 12.02%  

Prichep et al. 
(2018)  Continuous 

77 Chronic Pain 
Subjects* (53% F, 49.3 
± 15.8) 

19 EEG 
Electrodes 

Time 
Frequency 

Stepwise 
Logistic 
Regression 

Continuous Pain 
Rating (0 - 10) 

r 0.907✢✢  

     

Sai et al. (2019) Binary 10 Parturient Women 
(29.6 ± 4.9) 

16 EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) No Pain vs. Pain 

Accuracy 84%  

Sensitivity 87.20%  

Specificity 81.10%  

Schulz et al. 
(2012) Binary 23 Healthy Subjects (14 

F, 26) 
64 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Low Pain vs. High 
Pain Accuracy 62%  

Pain Sensitive vs. 
Pain Insensitive 

Accuracy 83%  

Sensitivity 50%  

Specificity 100%  

Tripanpitak et al. 
(2020) Multiclass 13 Healthy Subjects (8 

M, 33.2 ± 7.9) 
16 EEG 
Electrodes 

Event 
Related 
Potentials 

ANN (One 
hidden Layer 
with 10 
neurons) 

No Pain vs. Pain vs. 
Max Pain 

Train Accuracy 100%  

Accuracy 100%  

No Pain vs. 
Sensation vs. Pain 
vs. Max Pain 

Train Accuracy 87.50%  

Accuracy 94.40%  

Tu et al. (2016)  

Binary 
96 Healthy Subjects* 
(51 F, 21.6 ± 1.7) 

64 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Low Pain vs. High 
Pain 

Accuracy 83.5% ± 6.8%  

Sensitivity 79.2% ± 14.6%  

Specificity 72.2% ± 14.2%  
   

  
 

Continuous SVR Continuous Pain 
Rating (0 - 10) MAE 1.15 ± 0.32 
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Vatankhah et al. 
(2013)  Binary 15 Healthy Subjects* (8 

F, 28) 
12 EEG 
Electrodes 

Time 
Frequency 

SVM (ANFIS 
adapted RBF) 

No Pain vs. Pain Accuracy 95%  

Pain vs. Intolerable 
Pain  Accuracy 75%  

Vijayakumar et al. 
(2017) 

Binary 
25 Healthy Subjects (11 
F, Median Age 24) 

64 EEG 
Electrodes 

Time 
Frequency 

RF Model No Pain vs. Pain BCA 95.33% ± 0.6% 
 

 
  

 
  

 

Multiclass RF Model Categorised Pain 
Rating (1-10) BCA 89.45% ± 1.05% 

 
 

Yu et al. (2020)  Multiclass 32 Healthy Subjects (20 
F, Age Range 19-35) 

32 EEG 
Electrodes 

Time 
Frequency 

CNN (Adam 
Optimiser) 

No Pain vs. 
Moderate Pain vs. 
Severe Pain 

Accuracy 97.37% ± 0.26%  

Precision 96.05%  

Specificity 98.03%  

Sensitivity 96.06%  

F1 96.05%  

 
 
Yu et al. (2020)  

 
 
Multiclass 

20 Healthy Subjects* 
(11 M, Age Range 23-
42) 

32 EEG 
Electrodes 

Time 
Frequency 

 
 
SFNN (ELM) 

No Pain vs. Minor 
Pain vs. Moderate 
Pain vs. Severe Pain 

 
 
Accuracy 

 
 
68.9% ± 3.12% 

 

 
 

Key: * Number of participants used in the final model is different from the overall reported sample size, ✢ Manually averaged performance metrics. The values here 
represent the average across participants or condition, which is not reported in the original paper. ✢✢ Cross-validation method unclear or not reported.  

 

 
ANFIS, adaptive network fuzzy inference system; ANN, artificial neural network; AUC, area under the ROC curve; BCA, balanced classification accuracy; CNN, convolutional 
neural network; CV, cross-validation; EEG, electroencephalogram; ELM, extreme learning machine; F, females; LDA, linear discriminant analysis; M, males; MAE, mean 
absolute error; MLPNN, multilayer perceptron neural network; RBF, radial basis function; RF, random forest; ROC, receiver operating characteristics; SBELM, sparse Bayesian 
extreme learning machine; SFFN, single-hidden-layer feed-forward neural network; SVM, support vector machine; SVR, support vector regression. 

 

 
 
 



  

Regarding the prediction of no pain conditions relative to pain conditions, the studies in this 

review have yielded accuracies between 82.73% and 95.33% (Alazrai, Momani, et al., 2019; 

Alazrai, AL-Rawi, et al., 2019; T. Cao et al., 2020; Hadjileontiadis, 2015; Kaur et al., 2019; Okolo 

& Omurtag, 2018; Sai et al., 2019; Vatankhah et al., 2013; Vijayakumar et al., 2017), with eight 

of nine studies obtaining an accuracy greater than 85% (Alazrai, Momani, et al., 2019; Alazrai, 

AL-Rawi, et al., 2019; T. Cao et al., 2020; Hadjileontiadis, 2015; Kaur et al., 2019; Okolo & 

Omurtag, 2018; Vatankhah et al., 2013; Vijayakumar et al., 2017). Additionally, five of the 

studies included in this review attempt to discern low pain and high pain classes (Bai et al., 

2016; Misra, Wang, et al., 2017; Okolo & Omurtag, 2018; Schulz et al., 2012; Tu et al., 2016). 

The performance of these studies is more varied than the no pain and pain classification, with 

a range of accuracies between 62% and 89.58%. Here, only two of five studies achieved an 

accuracy of over 80% (Misra, Wang, et al., 2017; Tu et al., 2016). Taken together, the ability 

to discern binary pain intensity classes appears to be greater than chance levels. Here, 

detecting the presence of pain is achievable, with accuracies surpassing 80%, whilst 

discriminating low pain from high pain can be achieved with accuracies greater than 60%, 

with one study demonstrating an accuracy close to 90% (Misra, Wang, et al., 2017). 

  

Despite the promise of binary classification, the clinical utility of merely identifying the 

presence of pain or broad pain categories (low pain vs high pain) may be limited. As such, 

other studies included in this review attempt multiclass or continuous prediction, which 

increases the resolution of pain intensity that can be determined and thus improves the 

potential clinical relevance. For example, differentiating between just three classes of pain 

intensity (no pain, low pain and high pain) allows the inference of the presence of pain but 

also provides some indication regarding the intensity in the same classification, which would 
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not be possible in a single binary classification. Summarising the multiclass performance is 

challenging, as the number of classes differs across studies (range 3 - 10 classes). Therefore, 

individual results should be referred to Table 3.4. Nevertheless, the accuracy range for the 

classification of three or more pain classes is between 62% and 100% (Alazrai, Momani, et al., 

2019; Elsayed et al., 2020; Kimura et al., 2021; Nezam et al., 2021; Tripanpitak et al., 2020; 

Vijayakumar et al., 2017; M. Yu, Sun, et al., 2020; M. Yu, Yan, et al., 2020). These results 

suggest that pain classification at a finer resolution is achievable, with half of the eight studies 

achieving accuracies between 90% and 100% (Alazrai, Momani, et al., 2019; Elsayed et al., 

2020; Tripanpitak et al., 2020; M. Yu, Sun, et al., 2020).  

 

Finally, the ultimate goal of pain intensity prediction is to predict the actual pain intensity 

reported on a rating scale. The majority of the studies that perform a continuous prediction 

attempt to identify the pain rating reported on a 10- or 11-point scale (Bai et al., 2016; L. Li et 

al., 2018; Prichep et al., 2018; Tu et al., 2016), whilst one study attempted pain prediction 

using a 0 to 100 scale (Furman et al., 2018). The performance of these algorithms is either 

evaluated using a correlation coefficient or their mean absolute error (MAE). The studies that 

evaluate their model’s performance using MAE achieved an error between 1.15 and 1.19 (Bai 

et al., 2016; L. Li et al., 2018; Tu et al., 2016). Regarding the studies that evaluate their model 

using a correlation coefficient, the two studies achieved a positive correlation between 

predicted pain intensity and actual pain intensity between 0.55 and 0.907 (Furman et al., 

2018; Prichep et al., 2018).  
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3.3.4 Pain Phenotypes 

 

The characteristics of the 15 phenotyping studies are reported in Table 3.5. To achieve 

consistency within the reporting of this narrative review, the phenotyping studies can be 

further divided into subgroups. Since all of the phenotyping studies utilised binary 

classification, the studies were divided based on the types of groups or conditions predicted. 

One study attempted multiclass classification in addition to binary classification (Levitt et al., 

2020). We do not synthesise the multiclass results, as they are only comprised of a single 

study. However, the performance metrics for the multiclass classification are reported in 

Table 3.5. 

 

Six of the 15 phenotyping studies attempt to predict migraine phenotypes (Akben et al., 2012, 

2016; Z. Cao et al., 2018; De Tommaso et al., 1999; Frid et al., 2020; Subasi et al., 2019). Within 

these six studies, four classified migraine versus healthy controls (Akben et al., 2012, 2016; 

De Tommaso et al., 1999; Subasi et al., 2019), one classified migraine with aura versus 

migraine without aura (Frid et al., 2020) and one classified the interictal phase versus the 

preictal phase of migraine (Z. Cao et al., 2018). Furthermore, five of the 15 studies predicted 

neuropathic or neurogenic pain (Saif et al., 2021; Sarnthein et al., 2006; Vanneste et al., 2018; 

Vuckovic et al., 2018; Wydenkeller et al., 2009). Four of the five studies above predicted the 

presence of neuropathic pain or neurogenic pain versus healthy controls (Saif et al., 2021; 

Sarnthein et al., 2006; Vanneste et al., 2018; Vuckovic et al., 2018), and one study classified 

neuropathic patients into two groups: pain below the lesion versus without pain below the 

lesion (Wydenkeller et al., 2009). Furthermore, one study classified a broad group of chronic 

pain patients versus healthy controls (Ta Dinh et al., 2019). Here, the chronic pain group 
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consisted of various conditions, including chronic back pain, chronic widespread pain, joint 

pain, unspecific neuropathic pain, postherpetic neuralgia and polyneuropathic pain. 

Additionally, one study classified fibromyalgia patients versus healthy controls (Paul et al., 

2019). Moreover, one study classified radiculopathy versus healthy controls (Levitt et al., 

2020). Here, the authors also perform multiclass classification of radiculopathy subjects, 

individuals with chronic lumbar pain scheduled to receive an implanted spinal cord stimulator 

and healthy subjects. Finally, one study predicted experimentally induced visceral 

hypersensitivity versus a placebo condition (Graversen et al., 2011). SVM was the most 

common algorithm (Akben et al., 2016; Z. Cao et al., 2018; Frid et al., 2020; Levitt et al., 2020; 

Paul et al., 2019; Saif et al., 2021; Ta Dinh et al., 2019; Vanneste et al., 2018) including SVR 

(Graversen et al., 2011), whilst ANN (Akben et al., 2012; De Tommaso et al., 1999), 

discriminant analysis (Sarnthein et al., 2006; Vuckovic et al., 2018; Wydenkeller et al., 2009) 

and RF models (Subasi et al., 2019) were also used.  

 

 

 



  

 

 

Table 3.5 Summary of pain phenotyping studies 
     

Authors Classification 
Type 

Sample Demographics 
EEG 
Montage 

Feature 
Category 

Best 
Algorithm Outcome Performance Metrics (Mean age ± Standard 

Deviation) 

Akben et al. 
(2012) Binary 

30 participants; 15 
Migraine (13 F), 15 
Healthy Controls (10 F). 
Age Range 20 - 35 

18 EEG 
Electrodes 

Time 
Frequency 

MLPNN (One 
hidden layer 
with 50 
neurons) 

Healthy Control vs. 
Migraine 

Accuracy 93.33% 

Sensitivity 93.33% 
Specificity 93.33% 

Akben et al. 
(2016) Binary 

60 Participants; 30 
Migraine (21 F), 30 
Healthy Controls (19 F). 
Age Range 20 - 40 

18 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Healthy Control vs. 
Migraine 

Accuracy 88.40% 
Sensitivity 90% 

Specificity 86.70% 

Cao et al. (2018) Binary 

80 Participants; 40 
Migraine (30 F, 38.1 ± 
8.2). 40 Healthy Controls 
(32 F, 36.1 ± 9.8) 

4 EEG 
Electrodes EEG Entropy SVM (RBF 

Kernel) 
Interictal Phase vs. 
Preictal phase 

Accuracy 76% ± 4% 
Sensitivity 
(Recall) 75% ± 5% 

Precision (PPV) 75% ± 5% 
F1 74% ± 6% 

De Tommaso et 
al. (1999) Binary 

120 Migraine (80 F, 36.7 
± 4.5), 51 Healthy 
Controls (36 F, Age Range 
25-46) 

12 EEG 
Electrodes 

Time 
Frequency 

ANN (Two 
hidden 
neurons) 

Healthy Control vs. 
Migraine 

Sensitivity 95.83% 

FPR 4.16% 
 

Frid et al. (2020) Binary 
53 Participants* (All with 
episodic migraine). Age 
Range 18 - 75 

32/64** 
EEG 
Electrodes 

Time 
Frequency 

SVM (RBF 
Kernel) MWA vs. MWoA 

Accuracy 84.62%  

AUC 0.8813  

Graversen et al. 
(2011) Binary 15* Healthy Participants 

(11 M, 32.9) 
3 EEG 
Electrodes 

Time 
Frequency 

SVR (Linear 
Kernel) 

Visceral 
Hypersensitivity 
Sensitisation vs. 
placebo Condition 

Accuracy 91.70% 
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Levitt et al. (2020) 

Binary 57 Participants; 20 
Radiculopathy (11 F, 
54.25), 20 Healthy 
Controls (11 F, 54.15), 17 
Chronic Lumbar 
scheduled to receive 
implanted SCS (10 F, 
56.88) 

 
 
 
16 EEG 
Electrodes 

 
 
 
Time 
Frequency 

 
 
 
SVM (RBF 
Kernel) 

Healthy Control vs. 
Radiculopathy 

Accuracy 82.50% 
AUC 0.8225  

     

Multiclass 
Healthy Control vs. 
Radiculopathy vs. 
Pre-SCS 

Accuracy 71.90%  
AUC 
(Radiculopathy) 0.828  

AUC (Healthy) 0.842  

AUC (Pre-SCS) 0.962  

Paul et al. (2019) Binary 

32 Participants; 16 
Fibromyalgia (12 F, 46.81 
± 4.28), 16 Healthy 
Controls (12 F, 45.19 ± 
4.48) 

8 EEG 
Electrodes 

Time 
Frequency 

SVM 
(Polynomial 
Kernel) 

Healthy Control vs. 
Fibromyalgia 

Accuracy 96.15%  

Sensitivity 96.88%  

Specificity 95.65%  

Precision (PPV) 93.94%  

Saif et al. (2021) Binary 

30 Participants; 10 
Healthy Controls (7 M, 
39.6 ± 10.2), 10 PNP (8 
M, 43.8 ± 9.1), 10 PWP (7 
M, 46.2 ± 9.4) 

61 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Healthy Control vs. 
PWP Accuracy 99% ± 0.49%  

Healthy Control vs. 
PNP Accuracy 97% ± 0.6%  

PWP vs. PNP Accuracy 91% ± 1%  

Sarnthein et al. 
(2006) Binary 

30 Participants; 15 
Neurogenic Pain (9 M, 
Median Age 64), 15 
Healthy Controls (8 F, 
Median Age 60) 

60 EEG 
Electrodes 

Time 
Frequency LDA Healthy Control vs. 

Neurogenic Pain 

Accuracy 87%✢✢  

CI 69% - 96%  

Subasi et al. 
(2019) Binary 

30 Participants; 15 
Migraine (13 F, 27 ± 4.4), 
15 Healthy Controls (10 
F, 26 ± 5.3) 

18 EEG 
Electrodes 

Time 
Frequency RF Model Healthy Control vs. 

Migraine 

Accuracy 85.95%  

Sensitivity 85.20%  

Specificity 86.70%  
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Ta Dinh et al. 
(2019) Binary 

185 Participants; 101 
Chronic Pain*✢ (69 F, 
58.2 ± 13.5), 84 Healthy 
Controls (55 F, 57.8 ± 
14.6) 

64 EEG 
Electrodes 

Time 
Frequency 

SVM (Linear 
Kernel) 

Healthy Control vs. 
Chronic Pain 

Accuracy 57% ± 4%  

Sensitivity 60% ± 5%  

Specificity 57% ± 5%  

Vanneste et al. 
(2018)  Binary 

342 Participants; 78 
Neuropathic Pain (43 M, 
47.39 ± 10.26), 264 
Healthy Controls (152 M, 
49.51 ± 12.54) 

19 EEG 
Electrodes 

Time 
Frequency SVM Healthy Control vs. 

Neuropathic Pain 

Accuracy 92.53% ± 1.59%  

Sensitivity (TPR) 93% ± 2%  

FPR 21% ± 2%  

AUC 0.95 ± 0.01  

Vuckovic et al. 
(2018)  Binary 

21 Participants*; 11 
Neuropathic Pain (7 M, 
44.9 ± 16.9), 10 Healthy 
Controls (7 M, 35.2 ± 7.2) 

48 EEG 
Electrodes 

Time 
Frequency LDA Healthy Control vs. 

Neuropathic Pain 

Accuracy [95 CI] 88% ± 10% [86%-
89%] 

 

Sensitivity [95 
CI] 

89% ± 7% [88%-
90%] 

 

Specificity [95 CI] 86% ± 12% [84%- 
88%] 

 

Wydenkeller et al. 
(2009) Binary 

26 Participants* with 
Spinal cord injury (20 
M,47 ± 15) 

32 EEG 
Electrodes 

Time 
Frequency DA 

Participant with pain 
below the lesion vs. 
Participant without 
pain below the 
lesion 

Accuracy 84.2%✢✢ 

 

 

 
Key: * Number of participants used in the final model is different from the overall reported sample size, ** 3 different EEG caps were used during this study, ✢ Various chronic 
pain conditions including: 47 with chronic back pain, 30 chronic widespread pain, 6 joint pain, 5 unspecific neuropathic pain, 7 postherpetic neuralgia, 6 polyneuropathic pain. 
✢✢Cross-validation method unclear or not reported.  
  

 

ANN, artificial neural network; AUC, area under the ROC curve; CI, confidence interval; DA, discriminant analysis; EEG, electroencephalogram; F, females; FPR, false positive 
ratio; LDA, linear discriminant analysis; M, males; MLPNN, multilayer perceptron neural network; MWA, migraine with aura; MWoA, migraine without aura; PNP, paraplegic 
without neuropathic pain; PWP, paraplegic with neuropathic pain; PPV, positive predictive value; RBF, radial basis function; RF, random forest; ROC, receiver operating 
characteristics; SCS, spinal cord stimulator; SVM, support vector machine; SVR, support vector regression; TPR, true positive ratio. 

 



  

The majority of the studies included in the pain phenotyping section of this review attempt 

to phenotype different aspects of migraine. To summarise the performance of phenotyping 

migraine, we report the ranges of values obtained for accuracy, sensitivity and specificity 

across these studies (Akben et al., 2012, 2016; Z. Cao et al., 2018; De Tommaso et al., 1999; 

Frid et al., 2020; Subasi et al., 2019). However, not all of the studies reported include all three 

metrics and, therefore, each range reflects a proportion of the whole data set. Out of the six 

studies, five report accuracy (Akben et al., 2012, 2016; Z. Cao et al., 2018; Frid et al., 2020; 

Subasi et al., 2019), five report sensitivity (Akben et al., 2012, 2016; Z. Cao et al., 2018; De 

Tommaso et al., 1999; Subasi et al., 2019) and three report specificity (Akben et al., 2012, 

2016; Subasi et al., 2019). The ability to discriminate different characteristics of migraine 

ranges between 76% and 93.33%, 75% and 95.83%, 86.7% and 93.33% for accuracy, sensitivity 

and specificity, respectively. 

 

The remaining studies in the phenotyping sections are more heterogeneous and are therefore 

inherently more challenging to group. However, the remaining studies are grouped based on 

the notion that they attempt to predict one or more chronic pain conditions (inclusive of 

experimentally induced hypersensitivity) compared with a group of healthy controls or 

predict the presence of pain relating to a lesion (Graversen et al., 2011; Levitt et al., 2020; 

Paul et al., 2019; Saif et al., 2021; Sarnthein et al., 2006; Ta Dinh et al., 2019; Vanneste et al., 

2018; Vuckovic et al., 2018; Wydenkeller et al., 2009). Again, not all of the studies report all 

of the required metrics. Consequently, synthesised results are reported from a subset of the 

final sample size of nine. All nine studies reported accuracy, whilst sensitivity and specificity 

were reported from four (Paul et al., 2019; Ta Dinh et al., 2019; Vanneste et al., 2018; Vuckovic 

et al., 2018) and three studies (Paul et al., 2019; Ta Dinh et al., 2019; Vuckovic et al., 2018), 
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respectively. The accuracy range across these studies is 57% and 99%. Here, the sensitivity is 

between 60% and 96.88%, and the specificity is between 57% and 95.65%. Therefore, the 

results demonstrate that various chronic pain conditions can be identified with at least above 

chance level, with six studies surpassing 85% accuracy (Graversen et al., 2011; Paul et al., 

2019; Saif et al., 2021; Sarnthein et al., 2006; Vanneste et al., 2018; Vuckovic et al., 2018). 

 

3.3.5 Response to Treatment 

 

The characteristics of the seven treatment response studies are reported in Table 3.6. Two of 

the six studies classified active treatment or placebo conditions (Graversen et al., 2012, 2015), 

whilst a further four predicted whether treatment was successful (Gram et al., 2015, 2017; 

Grosen et al., 2017; Wei et al., 2020). The final study for the response to treatment conducted 

a continuous prediction to assess the change in the brief pain inventory score after 

medication (Hunter et al., 2009). The models used within the response to treatment studies 

include SVMs (Gram et al., 2015, 2017; Graversen et al., 2012, 2015), regression models, 

including linear and logistic (Grosen et al., 2017; Hunter et al., 2009) and a k-nearest 

neighbours algorithm (Wei et al., 2020)



  

 

Table 3.6 Summary of response to treatment studies 
      

Authors Classification 
Type 

Sample 
Demographics EEG 

Montage 
Feature 
Category 

Best 
Algorithm Outcome Performance Metrics (Mean age ± 

Standard Deviation) 

Gram et al. (2015) Binary 
32 Healthy 
Participants (17 M, 
27.2 ± 7.1) 

62 EEG 
Electrodes 

Time 
Frequency 

SVM 
(Linear 
Kernel) 

Responders vs. Non-
Responders (Response 
to Opioid; Morphine 
day) 

Accuracy 71.90% 

PPV 70% 

NPV 75% 
Responders vs. Non-
Responders (Response 
to Opioid; Placebo 
day) 

Accuracy 71.90% 
PPV 75% 

NPV 68.80% 

Gram et al. (2017) Binary 

81 Participants (45 F); 
51 Responders (26 F, 
64.2 ± 10.4), 30 Non-
Responders (19 F, 
64.9 ± 15.7) 

34 EEG 
Electrodes 

Time 
Frequency 

SVM 
(Linear 
Kernel) 

Responders vs. Non-
Responders (Response 
to Opioid) 

Accuracy 65% 
PPV 76% 

NPV 53% 

Graversen et al. 
(2012) Binary 

28 Participants with 
chronic pancreatitis; 
14 Pregabalin group 
(8 F, 50), 14 Placebo 
group (11 M, 53) 

62 EEG 
Electrodes 

Time 
Frequency 

SVM 
(Linear 
Kernel) 

Pregabalin Group vs. 
Placebo Group Accuracy 85.70% 

 
 

Graversen et al. 
(2015) Binary 21 Healthy Male 

Participants (20.35) 
62 EEG 
Electrodes 

Time 
Frequency 

SVM 
(Linear 
Kernel) 

Remifentanil Group vs. 
Placebo Group Accuracy 95.24% 

 

 
 

Grosen et al. (2017) Binary 
59 Patients with 
Chronic Pain (41 F, 55 
± 16) 

9 EEG 
Electrodes 

Time 
Frequency 

Logistic 
Regression 

Successful vs. 
Unsuccessful Clinical 
Treatment 

OR 1.18✢✢  

SE 0.09  

CI 1.01 - 1.37  
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Hunter et al. (2009) Continuous 

12 Participants* with 
Fibromyalgia (9 F, 
50.1 ± 8.2), 6 in 
treatment group, 6 in 
placebo group. 

35 EEG 
Electrodes 

Time 
Frequency 

Linear 
Regression 

Brief Pain Inventory 
Change at Week 12 
(Duloxetine 
Treatment) 

Coefficient 2.9✢✢  

R2 0.93 
 

 

Wei et al. (2020) Binary 

70 Participants with 
Herpes Zoster; 45 
Responders (25 M, 61 
± 11.8), 25 Non-
Responders (14 F, 
65.5 ± 8.7) 

32 EEG 
Electrodes 

Time 
Frequency KNN (K=5) Responders vs. Non-

Responders 

Accuracy 80% ± 11.7%  

Sensitivity 82.5 ± 14.7%  

Specificity 77.7 ± 27.3%  

AUC 0.85  

Key: * Number of participants used in the final model is different from the overall reported sample size. ✢✢Cross-validation method unclear or not reported. 
  

 

AUC, Area under the ROC curve; CI, confidence interval; EEG, electroencephalogram; F, females; KNN, k-nearest neighbours; M, males; NPV, negative predictive value; OR, 
odds ratio; PPV, positive predictive value; ROC, receiver operating characteristics; SE, standard error; SVM, support vector machine. 

 



  

The three studies that classified whether participants were responders or non-responders to 

treatment achieved accuracies between 65% and 80% (Gram et al., 2015, 2017; Wei et al., 

2020). Here, two studies achieved a positive predictive value (PPV) and negative predictive 

value (NPV) between 70% and 76% and 53% and 75% (Gram et al., 2015, 2017), respectively. 

Moreover, the final study that classified responders and non-responders to medication 

achieved a sensitivity of 82.5% and a specificity of 77.7% (Wei et al., 2020). Regarding the 

classification of active treatment versus placebo groups, the two studies achieved accuracies 

between 85.7% and 95.24% (Graversen et al., 2012, 2015). The remaining two studies used 

regression models to predict treatment response (Grosen et al., 2017; Hunter et al., 2009). 

 

3.4 Discussion  

This review investigated the effectiveness of ML for predicting pain-related outcomes, pain 

intensity, pain phenotypes and treatment response. Here, we focus on the potential 

usefulness of ML and EEG for pain outcome identification, rather than exploring the individual 

patterns of neural activation that constitute a biomarker. Other studies present overviews of 

the excellent utility of biomarkers in pain science (Davis et al., 2020; Mackey et al., 2019; van 

der Miesen et al., 2019). Nevertheless, pain intensity reflects self-reported pain ratings 

resulting from naturalistic or experimentally induced pain. This review demonstrates that the 

presence of pain can be predicted, with all applicable studies demonstrating accuracies 

greater than 80% (Alazrai, Momani, et al., 2019; Alazrai, AL-Rawi, et al., 2019; T. Cao et al., 

2020; Hadjileontiadis, 2015; Kaur et al., 2019; Okolo & Omurtag, 2018; Sai et al., 2019; 

Vatankhah et al., 2013; Vijayakumar et al., 2017). Regarding multiclass prediction, five out of 

eight studies demonstrated an accuracy of over 85% (Alazrai, Momani, et al., 2019; Elsayed 
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et al., 2020; Tripanpitak et al., 2020; Vijayakumar et al., 2017; M. Yu, Sun, et al., 2020), with 

two surpassing 97% (Tripanpitak et al., 2020; M. Yu, Sun, et al., 2020). Furthermore, 

continuous pain ratings can be predicted with an error of approximately 10% on a 10- or 11-

point rating scale (Bai et al., 2016; L. Li et al., 2018; Tu et al., 2016). The ability to detect pain 

intensity with an error of approximately one point on a rating scale demonstrates the 

potential of ML for pain prediction.  

 

Concerning pain phenotyping, which reflects characteristics of pain conditions and may assist 

with diagnosis, our results show that pain conditions, such as migraine or neuropathic pain, 

can be discriminated above chance level (50%), with the majority of studies achieving an 

accuracy greater than 85% (Akben et al., 2012, 2016; Graversen et al., 2011; Paul et al., 2019; 

Saif et al., 2021; Sarnthein et al., 2006; Subasi et al., 2019; Vanneste et al., 2018; Vuckovic et 

al., 2018). Regarding migraine, all relevant studies achieved over 75% accuracy, sensitivity 

and specificity, with four and three studies surpassing 85% sensitivity (Akben et al., 2012, 

2016; De Tommaso et al., 1999; Subasi et al., 2019) and specificity (Akben et al., 2012, 2016; 

Subasi et al., 2019), respectively. Moreover, regarding the prediction of pain conditions 

relative to controls, six of nine studies achieved accuracies of over 85% (Graversen et al., 

2011; Paul et al., 2019; Saif et al., 2021; Sarnthein et al., 2006; Vanneste et al., 2018; Vuckovic 

et al., 2018). Additionally, three studies demonstrated a sensitivity of over 85% (Paul et al., 

2019; Vanneste et al., 2018; Vuckovic et al., 2018), with one demonstrating a sensitivity of 

almost 97% for detecting individuals with fibromyalgia relative to healthy controls (Paul et al., 

2019). However, the heterogeneity of the literature makes identifying specific use cases 

challenging currently. The scope of this review was to assess various phenotypes (as defined 

by the original authors), with no limit on inclusions, allowing for a diverse synthesis. As the 
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field develops, we anticipate that narrower reviews will be conducted, which include 

alternative information such as the instruments used, providing a specific reference to 

researchers and clinicians in the field. However, this was beyond the scope of our review, as 

we believe that a broad synthesis is currently the most appropriate approach. Nevertheless, 

the results demonstrate the potential of EEG and ML to identify pain phenotypes that may 

eventually assist diagnostic assessments. 

 

The results show that responders and non-responders to pain treatments can be classified 

with accuracies above 65% (Gram et al., 2015, 2017; Wei et al., 2020), whilst treatment and 

placebo groups can be predicted with accuracies greater than 85% (Graversen et al., 2012, 

2015). However, the evidence suggests treatment response requires additional investigation, 

as it is currently under-researched. Additionally, the clinical utility of predicting treatment 

response by classifying participants into responders and non-responders is unclear, whilst the 

demarcation can be heterogeneous and arbitrary (Senn, 2003; Snapinn & Jiang, 2007). The 

field might benefit more from parametric outcomes, such as predicting the reduction in 

subjective pain reported on a rating scale. Moreover, two studies that classified participants 

into responder status did so during tonic pain stimulation (Gram et al., 2015, 2017). The 

clinical relevance is therefore currently questionable.  

 

Should future research improve the current limitations and performance, ML may eventually 

be clinically advantageous by reducing trial-and-error treatment (Ginsburg & McCarthy, 2001; 

Gram et al., 2015, 2017). Indeed, the results across all three domains remain promising, but 

considering that 42 of the 44 studies in this review were deemed high ROB, there is a 

possibility that the synthesised results are inflated or are not fully generalisable. Therefore, 
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we suggest that the results and, more importantly, the current clinical relevance of ML and 

EEG are tentatively interpreted. 

 

Despite the concerns, predicting pain outcomes from EEG using ML may demonstrate clinical 

utility, should further research validate the technique. Detecting pain-related outcomes 

remains challenging (Akben et al., 2016; Dansie & Turk, 2013; Pryse-Phillips et al., 1997), with 

many tools failing in those who cannot accurately communicate their pain, such as individuals 

with dementia (Breivik et al., 2008; Herr et al., 2011). Many of the studies in this review used 

ML to classify pain intensity in healthy individuals. However, a recent study demonstrated 

promising performance for identifying pain intensity in those with chronic pain (Kimura et al., 

2021), which demonstrates the potential for pain identification in those with and without 

chronic pain conditions. Moreover, there are limited objective methods to ascertain clinical 

interventions effectiveness for a given patient. Should ML be eventually clinically validated, it 

could automate pain intensity or phenotype detection, benefiting patients and clinicians. 

These tools could enable screening before a clinical assessment or facilitate improved 

diagnosis or prognosis (Davenport & Kalakota, 2019; Davis et al., 2017). For example, ML may 

allow clinicians to identify information in brief appointments, which currently cannot be 

achieved (Davis et al., 2020); reducing patient visits. However, recording EEG from all patients 

is unnecessary and challenging. The most appropriate use case being for individuals who 

cannot communicate their pain accurately or at all. Indeed, improvements may be significant 

in conditions that are challenging to diagnose, such as migraine (Akben et al., 2016; Pryse-

Phillips et al., 1997), where ML could assist both pain specialist and non-pain specialist 

clinicians. Eventually, ML could guide treatment. An algorithm that predicts treatment 

response would decrease ineffective treatments and patient suffering (Gram et al., 2017). 
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Should these algorithms be clinically validated, they could be applied throughout the clinical 

process, providing this is implemented ethically (Davis et al., 2012, 2017). ML should not 

replace clinicians but instead, be used as an additional tool; automating routine tasks and 

increasing time with patients (Ahuja, 2019). 

 

The promise of ML is exciting but not without challenges. Evidence demonstrating that ML 

significantly improves patient care is scarce (Mateen et al., 2020). Consequently, substantial 

clinical implementation is unlikely until the end of the decade (Davenport & Kalakota, 2019). 

Perhaps this is optimistic, as different algorithms and features are used, with little indication 

whether models can be effectively trained using similar features and methods (van der 

Miesen et al., 2019). It is unknown whether models trained on lab-based samples are 

ecologically valid and generalise to other samples or clinical settings (Davis et al., 2017; van 

der Miesen et al., 2019). The current lack of sufficient external validation is the primary ROB 

across the studies in this review and severely limits the clinical applicability of ML. Most of 

the studies in this review performed internal validation; mostly through cross-validation (e.g., 

k-fold). However, issues arise when using certain internal validation methods on small 

samples. For example, research has shown that k-fold validation likely overestimates 

performance in small sample sizes, resulting in overfitting and ungeneralisable models 

(Vabalas et al., 2019). Therefore, as many of the studies in this review had small samples and 

several performed k-fold validation, the generalisability of the prediction model is unclear. 

The authors also note that splitting the dataset into training and test sets provide robust 

estimates in small samples (Vabalas et al., 2019). However, the PROBAST guidelines suggest 

that splitting the data into training and test sets is an insufficient form of internal validation, 

which is often erroneously referred to as external validation (Wolff et al., 2019). Developing 
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and validating a model on the same participants is not appropriate evidence for potential 

clinical applications (Ramspek et al., 2021). Therefore, to demonstrate sufficient evidence for 

clinical translation, extensive external validation is imperative (Bleeker et al., 2003). In line 

with PROBAST recommendations, future prediction models should include either external 

temporal validation, whereby the testing data is collected at a later time period than the 

training data, or geographical validation, whereby data is collected by other investigators in 

a different location (Wolff et al., 2019). The latter, however, may require increased 

international collaboration and data sharing, which we strongly encourage. Alternatively, 

researchers can evaluate the model performance using data from a different study (Collins et 

al., 2015). Nevertheless, external validation is essential for future research to thoroughly 

assess the clinical utility and generalisability of ML and EEG, whilst also reducing bias.  

 

Many ML algorithms require specialist knowledge to implement, whilst EEG signals require 

pre-processing. Currently, ML is too user-dependent, and it is unlikely that clinicians will have 

the time to complete ML training. Convolutional neural networks (CNN), that can learn 

features directly from medical imaging; removing handcrafted feature selection (Lundervold 

& Lundervold, 2019; M. Yu, Sun, et al., 2020), could be a potential solution. Only one study 

reviewed implemented CNNs, achieving 97% accuracy in a three-class paradigm (M. Yu, Sun, 

et al., 2020). In other medical fields such as skin cancer detection, CNNs demonstrate 

comparable accuracy to experts (Esteva et al., 2017). However, CNNs are complex to 

interpret; hindering clinical applications (Rudin, 2019). Nevertheless, CNNs are worth 

exploring due to their potential for superior performance and the current lack of lab-based 

research.  

 



 130 

The lack of standardisation in reporting across studies makes interpretation and replication 

difficult, whilst also increasing bias. This problem appears to be pervasive, and several studies 

have demonstrated that adherence to reporting standards are deficient across medical ML 

research (Heus et al., 2018; Nagendran et al., 2020; W. Wang et al., 2020; Yusuf et al., 2020). 

A recent systematic review exploring the reporting quality of ML for medical diagnosis 

demonstrated that many studies lack sufficient details; hindering interpretation and 

replication (Yusuf et al., 2020). They found that all 28 studies in their review did not follow 

reporting guidelines. Poor reporting makes it difficult for the end-user to assess the utility of 

ML (Mateen et al., 2020); providing a barrier for clinical uptake. Future research should 

adhere to reporting standards, to improve research clarity and allow for replication, which is 

imperative for clinical ML applications. Recently developed tools such as transparency, 

reproducibility, ethics and effectiveness (TREE) may improve reporting standards (Vollmer et 

al., 2020). Additionally, the recent extensions to CONSORT and SPIRIT guidelines to include AI 

studies (Cruz Rivera et al., 2020; Liu et al., 2019, 2020) are welcome and could lead to 

improved research quality with reduced bias.  

 

The goal of this review was to explore the effectiveness of ML for predicting pain-related 

outcomes. Consequently, we reported the best performing algorithms in the respective 

studies identified by the systematic review. Whilst this highlights the potential of ML, it also 

poses the risk of inflating the current capability of ML for predicting pain-related outcomes 

from EEG data. This issue arises as many of the studies perform multiple classifications, using 

various algorithms. Consequently, several studies report models that have worse 

performance metrics than those presented here. Therefore, our results do not represent the 
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full state-of-play regarding ML and EEG for pain prediction, but instead presents the current 

state-of-the-art methods that may hold the potential for clinical translation.  

 

Whilst the use of PROBAST and TRIPOD tools are appropriate for this review, and of an 

excellent standard in traditional prediction model studies, we found that they did not fully 

apply to ML studies. Therefore, the ROB and reporting standards assessments should be 

interpreted with caution. Altering the tools to fit certain studies increases the risk of arbitrary, 

non-replicable decisions, which does not present itself as a systematic process. Additionally, 

many of the TRIPOD items are highly stringent and even slight deviations result in the criteria 

not being met. For example, none of the studies met the title expectations as they were not 

titled as developing (or synonyms) a prediction model. As the tools are not fully applicable to 

ML, these slight differences may explain why many of the studies have low adherence to 

reporting standards. Therefore, more appropriate tools for assessment of ML and 

neuroimaging studies may be needed. Ongoing development of the TRIPOD ML (Collins & 

Moons, 2019), which is intended for ML will be a welcome addition to the tools available and 

will also be useful for researchers to use as a checklist to ensure that reporting standards have 

been sufficiently adhered to. Researchers may wish to use the current version of TRIPOD as 

an approximate guideline, until TRIPOD ML is available. Nevertheless, we strongly 

recommend that new tools are developed for ML and neuroimaging with clinical outcomes, 

that are not diagnostic or prognostic. Alternatively, standardised alterations to PROBAST 

allowing it to be applied to non-clinical and ML research, would also be welcomed. For 

example, altering the participant domain, such that the appropriateness of the sample size is 

assessed, rather than the sources of data would improve the applicability of this tool to lab-

based research. Additionally, the alteration or development of items to fit ML would also 
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benefit the field. For example, an item assessing whether the classes of ML are approximately 

equal, or whether imbalanced classes have been handled appropriately, would be 

advantageous. Many ML algorithms struggle with imbalanced classes, as they typically focus 

on the dominant class, as the minor class does not hold much discriminatory significance, 

which can affect performance (Bauder & Khoshgoftaar, 2018; Holder et al., 2017; J. M. 

Johnson & Khoshgoftaar, 2019). The development or alteration of such tools would improve 

scientific rigour; subsequently increasing clinical translation feasibility. 

 

A formal assessment of certainty of the evidence could not be performed due to limitations 

in applicability of the ROB tools available but also assessment of GRADE domains such as 

inconsistency, and imprecision was hindered by a lack of reporting in the included studies of 

precision estimates such as 95% confidence intervals. 

 

3.5 Conclusion 

The results demonstrate that ML of EEG is an emerging area of research for pain prediction. 

Through further research and external validation, it may become feasible to adopt ML for 

clinical applications, with potential to individualise and improve the management of clinical 

pain. However, our systematic review demonstrates several limitations within the field which 

should be addressed in future research. Firstly, improved reporting standards are imperative 

to allow for thorough model evaluation. This would increase the transparency across studies 

and enable clearer interpretation of the clinical potential of ML. Secondly, future studies 

should be carefully designed, with a particular emphasis on the analysis protocol (e.g., 

external validation), to reduce the ROB. Additionally, we suggest that current ROB and 
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reporting standards tools are adapted, or new tools are developed, to enable a 

comprehensive assessment of quality for ML and neuroimaging studies. The lack of 

appropriate tools limits the current interpretation of the assessments and impacts the 

evaluation of results. Through the development of more appropriate tools and standardised 

processes, the research quality will improve, providing stronger evidence to develop the 

clinical potential of ML. 
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Abstract 

 

Discrimination of pain intensity using machine learning (ML) and electroencephalography 

(EEG) has significant potential for clinical applications, especially in scenarios where self-

report is unsuitable. However, existing research is limited due to a lack of external validation 

(assessing performance using novel data). We aimed for the first external validation study for 

pain intensity classification with EEG. Pneumatic pressure stimuli were delivered to the 

fingernail bed at high and low pain intensities during two independent EEG experiments with 

healthy participants. Study one (n=25) was utilised for training and cross-validation. Study 

two (n=15) was used for external validation one (identical stimulation parameters to study 

one) and external validation two (new stimulation parameters). Time-frequency features of 

peri-stimulus EEG were computed on a single-trial basis for all electrodes. ML training and 

analysis were performed on a subset of features, identified through feature selection, which 

were distributed across scalp electrodes and included frontal, central, and parietal regions. 

Results demonstrated that ML models outperformed chance. The Random Forest (RF) 

achieved the greatest accuracies of 73.18, 68.32 and 60.42% for cross-validation, external 

validation one and two, respectively. Importantly, this research is the first to externally 

validate ML and EEG for the classification of intensity during experimental pain, 

demonstrating promising performance which generalises to novel samples and paradigms. 

These findings offer the most rigorous estimates of ML’s clinical potential for pain 

classification. 
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4.1 Introduction 

Establishing an accurate assessment of subjective pain intensity is imperative for the 

diagnosis, prognosis and treatment of chronic pain conditions (Bendinger & Plunkett, 2016; 

Fillingim et al., 2016). Current pain assessment methods are contingent on self-report 

measures, which are not appropriate for individuals who are unable to communicate their 

pain precisely or entirely, such as those with dementia (Breivik et al., 2008; Herr et al., 2011), 

disorders of consciousness (e.g., coma; Herr et al., 2011; Schnakers & Zasler, 2007), cognitive 

impairments (Arbour & Gélinas, 2014; Herr et al., 2011), non-verbal individuals (e.g., non-

communicative palliative care patients; Herr et al., 2011; McGuire et al., 2016), and children 

(e.g., infants and neo-natal populations; Herr et al., 2011; Witt et al., 2016). Furthermore, 

pain is an inherently subjective and multifaceted sensory process, which is challenging to 

measure objectively (Bendinger & Plunkett, 2016; Breivik et al., 2008). Taken together, the 

complexity of accurate pain assessment, particularly in populations with a reduced capacity 

for self-report, demonstrates the necessity for improved objective evaluation methods. 

 

Recent endeavours to mitigate the necessity of self-report methods have attempted to 

elucidate biological markers of pain intensity using neuroimaging (see Mari et al., 2022; van 

der Miesen et al., 2019). ML analysis of neuroimaging data further enables the identification 

of pain intensity biomarkers. ML refers to algorithms that identify and learn patterns from 

data to make predictions on novel inputs without being explicitly programmed, which is 

achieved using optimisation, statistical and probabilistic techniques (Jordan & Mitchell, 2015; 

Samuel, 1959; Vu et al., 2018). The primary aim of supervised ML is to identify a function, f, 

that achieves the best mapping of an input X, to an output Y (see equation 1; Jordan & 
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Mitchell, 2015; Osisanwo et al., 2017). To identify the optimal function, supervised ML 

algorithms are trained using labelled data to minimise a loss (error) function by altering 

internal parameters (LeCun et al., 2015; Uddin et al., 2019). Following training, the model is 

evaluated on novel data to assess its generalisability. 

 

𝑓 ∶ 𝑋	 → 𝑌 

	 

Pain-related neural activation forms a distributed network (e.g., neurologic signature; R. 

Coghill et al., 1994; Wager et al., 2013) and includes SI, SII, insula, thalamus, anterior and 

midcingulate cortex, prefrontal cortex, amygdala, middle frontal gyrus, cerebellum and 

brainstem (Duerden & Albanese, 2013; Jensen et al., 2016; A. Xu et al., 2020). In addition, 

different regions encode specific characteristics of pain; SI and SII encode temporal, spatial 

and intensity features (Bornhövd et al., 2002; Coghill et al., 1999), whilst the insula 

contributes to encoding stimulus salience (Wiech et al., 2010).  

 

Regarding EEG, pain modulates cortical oscillations in theta, alpha, beta and gamma 

frequency bands across various cortical sites including frontal, central, parietal, temporal and 

occipital regions (J. A. Kim & Davis, 2021; Ploner et al., 2017; Zis et al., 2022). Altered theta 

oscillations (4-7 Hz) are commonly observed in resting state EEG of individuals with chronic 

pain (Ploner et al., 2017), e.g., in fibromyalgia syndrome patients (Fallon et al., 2018). 

Moreover, augmented theta oscillations have been observed during pain and touch 

stimulation over central and parietal regions, with larger increases during painful stimulation 

(Michail et al., 2016). Additionally, tonic pain stimulation is associated with decreased alpha 

and increased beta band power (see J. A. Kim & Davis, 2021; Ploner et al., 2017; Zis et al., 

(1) 



 138 

2022 for reviews). Research has demonstrated decreased global alpha and increased beta 

band power in response to tonic cold pain stimulation (Shao et al., 2012). Source analysis 

identified pain-related oscillations predominantly in prefrontal cortex, SI, SII, insular cortex 

and cingulate cortex (Shao et al., 2012). Recently, peak alpha frequency has been shown to 

reliably predict pain sensitivity (Furman et al., 2018, 2020). Finally, gamma oscillations over 

SI have been shown to predict subjective pain intensity (Gross et al., 2007; Zhang et al., 2012) 

and stimulus intensity (Gross et al., 2007). Consequently, EEG features may be used as a 

neural marker of pain intensity. 

 

Previous research has successfully implemented ML to identify pain intensity using EEG (Mari 

et al., 2022). Our recent systematic review demonstrated that EEG and ML could discriminate 

the presence or absence of pain with accuracies between 82.73 and 95.33% and predict pain 

intensity with accuracies between 62 and 100% (Mari et al., 2022). Moreover, ML classified 

low and high pain intensity, with the best-performing models achieving cross-validated 

accuracies of up to 62%, 69.20%, 70.36%, 83.50%, 86.30% and 89.58% (Bai et al., 2016; G. 

Huang et al., 2013; Misra, Wang, et al., 2017; Okolo & Omurtag, 2018; Schulz et al., 2012; Tu 

et al., 2016). Overall, these findings demonstrate the potential of ML for identifying pain 

intensity in healthy individuals, with all studies performing significantly better than chance.  

 

Specifically, Misra and colleagues (2017) used a Gaussian support vector machine (SVM) to 

successfully classify low and high pain using theta and gamma power over the medial 

prefrontal region and lower beta power over the contralateral sensorimotor region. 

Moreover, a naïve Bayes classifier has been used to discriminate pain intensity using single-

trial laser-evoked potentials (G. Huang et al., 2013). That study found that low and high pain 
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could be classified with accuracies greater than 80% for both within-subject and cross-subject 

classifications. In the same study, the continuous pain rating (0-10) was predicted with a mean 

absolute error of less than 2 for both within-subject and cross-subject levels. Furthermore, 

similar research used EEG and a random forest (RF) to classify pain intensity into 10-classes 

(1-10); achieving accuracies close to 90% for both within- and cross-subject classifications 

(Vijayakumar et al., 2017). Interestingly, the study evaluated the relative contributions of 

each frequency band to the classification performance and found that all frequency bands 

were important to the classification (delta, theta, alpha, beta, gamma), with gamma being 

the most important to the classification performance. Therefore, including a diverse array of 

frequency bands and electrode locations would likely achieve optimal classification 

performance.  

 

Despite previous research demonstrating promising performance, it is unclear if these models 

will successfully generalise to new samples. No studies in the existing literature have reported 

external validation; the process of evaluating a model using novel data, collected at a different 

time, or geographical location, or using a different experimental paradigm (Collins et al., 

2015). Previous research only assessed cross-validation performance. Cross-validation 

involves partitioning a single dataset into training and testing sets, such that the test set is 

used to estimate the model’s prediction error (Fushiki, 2011). Although cross-validation is 

essential in model development, it can lead to overly-optimistic estimates of model 

performance and overfitting (where the model learns idiosyncrasies in the training, which 

diminishes performance on novel data; Cabitza et al., 2021; Siontis et al., 2015; Vabalas et al., 

2019; Varma & Simon, 2006). Consequently, the previous research findings are potentially 

inflated and may not be generalisable (Mari et al., 2022), which is insufficient evidence for 
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clinical translation (Bleeker et al., 2003; Ramspek et al., 2021). However, a recent study found 

that pain-free sensorimotor peak alpha frequency could correctly classify pain-sensitive 

individuals using an external validation paradigm (Furman et al., 2020), providing evidence 

that EEG and ML could be effectively combined to identify pain outcomes. Nevertheless, 

external validation has never been attempted for investigations of pain intensity.  

 

The present study aimed to be the first to externally validate ML for EEG pain intensity 

classification, through a robust two-step process. Given the paucity of external validation 

research, we aimed to (1) train ML classifiers on EEG data to predict pain intensity (low, high) 

and evaluate the cross-validation performance, (2a) to externally validate the classifiers on 

data collected from a novel sample at a different time, which used identical stimulation and 

(2b) to externally validate the models on data obtained at a different time, which used 

different stimulation parameters. We conducted this multistep validation to thoroughly 

assess model performance and generalisability using seven well-researched supervised ML 

models. We hypothesised that all ML algorithms would classify pain intensity with 

performance metrics (accuracy and area under the receiver operating characteristics curve, 

hereinafter AUC) greater than chance level (≈ 50%) on (1) cross-validation and (2a) external 

validation one (same stimulation parameters) and (2b) external validation two (different 

stimulation parameters). 

 

4.2 Methods 

Two independent experiments, separated by approximately four months, were conducted. 

Study one was used for training and cross-validation, whilst study two was used for external 
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validation. Moreover, study two included external validation one, which used the same 

stimulus parameters as study one, and external validation two, which used different 

parameters (external validation datasets were collected simultaneously). Both studies were 

processed using a similar pipeline but were managed independently to prevent data leakage 

(Luo et al., 2016), which could have biased the external validation. The classification was 

performed across all trials, pooled from every participant. The EEG data is freely available 

through the Open Science Framework (https://osf.io/uqt9z/). 

 

4.2.1 Participants 

 

Forty healthy subjects (29 female) aged between 18 and 37 years were recruited across both 

studies using opportunity sampling. Twenty-five participants (19 female) aged 18 – 37 years 

(Mean = 23.64 years, SD = 4.04) completed study one, whilst 15 participants (10 female) aged 

between 19 – 28 years (Mean = 22.13 years, SD = 2.95) completed study two. Both studies 

were temporally independent, with different participants in each study. Only one participant 

from study one also completed study two. Participant overlap was not a concern, as we aimed 

to temporally validate the ML models. The sample size was consistent with previous research 

(See Mari et al., 2022). All participants had normal or corrected-to-normal vision, and no 

neurological disorders, chronic pain disorders or acute pain at the time of participation. 

Participants were reimbursed £10 per hour for their time. Participants provided fully 

informed written consent at the beginning of both experiments. Both studies achieved ethical 

approval from the University of Liverpool Health and Life Sciences Research Ethics 

Committee. All methods in both studies were conducted in compliance with the Declaration 

of Helsinki.  

https://osf.io/uqt9z/
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4.2.2 Pneumatic Pressure Stimulator 

 

For both studies, tonic pain stimulation was delivered to the finger-nail bed of the left-hand 

index finger using a custom-built pneumatic pressure stimulator (Dancer Design, St. Helens, 

UK), as utilised in previous pain research (Watkinson et al., 2013). The pneumatic stimulator 

consisted of a pneumatic force controller, which directed compressed air from an 11.1-litre 

aluminium cylinder into the stimulator, which lowered a 1cm2 probe to deliver the desired 

stimulation force. The stimulator was controlled using a LabJack U3 printed circuit board for 

interface. The pressure was limited to a maximum of 3.5 bar (9kg/cm2) to prevent injury.  

 

4.2.3 Experimental Procedure 

 

4.2.3.1 Study One 

 

Following the EEG cap fitting, participants were seated 1-meter from a 19-inch LCD monitor 

inside a Faraday cage. Participants placed their left-hand index finger into an individualised 

mould that correctly positioned the finger underneath the stimulator probe. A thresholding 

procedure was employed to identify participants’ pain threshold and high pain intensity 

stimulus. Participants were verbally instructed to rate the pain intensity of each stimulus on 

an 11-point visual analogue scale (0 – 10) by using the mouse in their right hand to click the 

desired rating. On the rating scale, 0 reflected no sensation, 3 represented pain threshold and 

10 reflected extreme pain. Participants were informed that any rating below 3 represented 

non-painful sensations. Following the instructions, a staircase thresholding procedure was 

implemented. The stimulus intensity was initialised at 0.5 bar pressure and incremented in 
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steps of 0.2 bar (0.1 if preferred at higher levels) up to a maximum of 3.5 bar. The intensity 

that elicited repeated responses of 6 (±1) on the 11-point scale on three successive trials was 

used as the high pain intensity stimulus. Moreover, the stimuli intensity that produced a 

repeated rating of 3 was determined as the pain threshold. Finally, an additional stimulus 

intensity was defined as two-thirds of the participant’s pain threshold stimulus intensity and 

reflected non-painful touch stimulation. 

 

During the experiment, participants were requested to focus on a fixation cross, displayed on 

the monitor to minimise eye movements. Each trial consisted of the stimulus delivery and the 

post-stimulus rating. The stimuli delivery consisted of the rise time (time for the stimulation 

to increase from 0 bar to the desired intensity) followed by a 3-second hold time (duration 

the desired stimulus was delivered). For the rise time, the stimuli increased by 1/10th of the 

desired pressure every 0.1 seconds (to achieve the desired stimuli after 1-second). 

Subsequently, the stimulus intensity was maintained for three seconds before the probe was 

released, and a fixation cross was presented for a rest period of 5-seconds. Participants 

subsequently rated the pain intensity on a 101-point visual analogue scale, using the mouse 

in their right hand. The scale was anchored at 0, which reflected no sensation, and 100, which 

represented extreme pain. The rating phase continued until the participant successfully rated 

the stimuli. The rating phase was followed by a 2-second rest period and instructions for 

participants to place their finger back into the mould if they had removed it. Participants 

underwent a further 2-second rest period before progressing to the next trial. 

 

The experiment contained three blocks, lasting approximately 15-minutes each, separated by 

intervals of 5 – 10 minutes. Forty trials with a minimum interstimulus interval (ISI) of 16-
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seconds were delivered per block, consisting of the three stimuli intensities. The stimuli were 

pseudo-randomised, such that no two consecutive trials consisted of the same intensity and 

that an equal number of stimuli were presented in each block. There were 13 trials of each of 

the two conditions and 14 trials of the remaining condition in each block, such that all stimuli 

conditions were delivered 40 times over the entire study. Consequently, a total of 120 stimuli 

were delivered in the experiment. Following the completion of all blocks, the EEG cap was 

removed, and participants were debriefed. 

 

4.2.3.2 Study Two 

 

Study two used similar procedures to study one but consisted of different stimulation 

parameters. A 2 x 2 factorial design was employed with 4 conditions: low pain fast rise time, 

low pain slow rise time, high pain fast rise time, and high pain slow rise time. The low and 

high pain intensities were determined using the same thresholding procedure as study one. 

The high and low pain fast rise time conditions were identical to the stimulation in study one 

(1-second rise, 3-second hold). For the slow rise time conditions, the speed at which the probe 

lowered onto the left-hand index finger was reduced, increasing the rise time to three 

seconds. The stimuli increased from 0 bar to the desired intensity, in 1/30th increments of the 

desired stimuli every 0.1 seconds, until the desired intensity was reached and maintained for 

3-seconds. After each stimulus, participants rated their pain on the same 101-point rating 

scale as study one.  

 

Study two was comprised of three experimental blocks, lasting approximately 20-minutes 

each. Blocks were separated by 5 – 10-minute intervals. The experiment consisted of 144 
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trials, with 48 trials with a minimum ISI of 16 seconds in each block. Blocks consisted of 12 

trials of the four conditions, which were pseudo-randomised using similar randomisation as 

study one. On completion of the experiment, the EEG cap was removed, and participants 

were debriefed. Both experiments were delivered using PsychoPy2 (Peirce, 2007). 

 

4.2.4 EEG Acquisition  

 

EEG recordings were continuously obtained using a 129-channel EGI System (Electrical 

Geodesics, Inc., Eugene, Oregon, USA) and a sponge-based Geodesic sensor net. Net 

positioning was aligned with respect to three anatomical landmarks: two pre-auricular points 

and the nasion. Electrode-to-skin impedances were maintained below 50 kΩ for all electrodes 

throughout the experiment. A recording bandpass filter was set at 0.001 – 200 Hz, with 

sampling rate set at 1000 Hz. Electrode Cz was set as the reference electrode. 

 

4.2.5 EEG Pre-processing 

 

EEG pre-processing was performed using BESA 6.1 (MEGIS GmbH, Germany). Firstly, low- and 

high-pass filters were applied at 70 Hz and 0.5 Hz, respectively. Secondly, a notch filter of 50 

± 2 Hz was implemented. Oculographic and electrocardiographic artefacts were removed 

using principal component analysis (PCA; Berg & Scherg, 1994). Additionally, electrode 

channels containing large artefacts were interpolated to a maximum of 10% of channels. 

None of the data in either study surpassed this threshold. Finally, the data were resampled 

to 256 Hz. Consequently, according to Shannon Sampling Theory, the theoretical maximum 

frequency that could be assessed was 128 Hz in this study (sampling rate/2; Keil et al., 2022). 
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Although, more conservative measures recommend a minimum sampling rate of 2.5 times 

the maximum frequency of interest; resulting in a maximum frequency of approximately 102 

Hz (Bendat & Piersol, 2011).  

 

Spectral analyses were conducted using MATLAB 2020a (The MathWorks, Inc., Natick, 

Massachusetts, USA) and EEGLAB 2021.1 (Delorme & Makeig, 2004). Firstly, power spectra 

density (PSD) was estimated using Welch’s method. The power spectra computation spanned 

-4 seconds to 6 seconds relative to the trial onset, in 1-second segments, shifted in 0.05-

second increments. The data were smoothed using multi-taper Slepian sequences. Estimates 

of the PSD were computed between 1 and 70 Hz, with a resolution of 1 Hz. The relative band 

power change was calculated across every time point and frequency, in the entire epoch using 

the event-related desynchronisation (ERD) method (Pfurtscheller & Aranibar, 1979) (See 

Equation 2). The estimate of ERD at each datapoint (e.g., A in the equation) is calculated by 

subtracting the mean PSD of the baseline period (-3.5 to -0.5; R), followed by a numerical 

transform to give relative change in power as a percentage value.  

 

𝐸𝑅𝐷	(%) = 	 )
𝐴 − 𝑅
𝑅 , ∗ 100 

 

Negative ERD values represent decreases of band power in the active, relative to the baseline 

period, indicating cortical activation, while positive values reflect band power increases, 

known as event-related synchronisation (ERS). For the ML analysis, ERD data were collapsed 

across established frequency bands theta (4 – 7 Hz), alpha (8 – 12 Hz), lower beta (16 – 24 

Hz), upper beta (25 – 32 Hz) and gamma (33 – 70 Hz). Topographical maps, to illustrate power 

(2) 
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changes from baseline to both low and high pain stimulation conditions of study one are 

reported in the results section for illustrative purposes. ERD visualisation was conducted and 

reported following recommendations from previous research (Pfurtscheller & Aranibar, 1977, 

1979). 

 

4.2.6 Classification Procedure 

 

Firstly, we identified the trials relating to low and high pain conditions. In the current study, 

high and low pain samples were determined by the stimulation intensity rather than the 

subjective rating, as this may ultimately serve as a proxy measure for subjective reporting for 

populations who cannot accurately report their pain intensity. Secondly, touch intensity trials 

from study one were removed as study two did not contain touch trials. EEG data from two 

participants in study one was heavily contaminated with artefacts. Both participants’ data 

were consistently contaminated with severe artefacts (e.g., muscle movement), which could 

not be resolved without exclusion. No threshold was used to determine exclusions in this 

instance, as it was evident from visual inspection that the data was not useable. Therefore, 

both participants were excluded, resulting in a final population size of 23. One participant was 

removed from study two due to corrupted data, which affected approximately 1/3 of the 

data. As a result, the final population was 14 in study two. All 14 participants from study two 

contributed to both external validation one and two, as both datasets were collected during 

the same session.  

 

Candidate features were created using the single-trial time-frequency transformed data from 

study one. We computed 15 candidate features for ERD outputs in each specified frequency 
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band which were calculated over the entire trial window [-4-6s] for all 128 electrodes, 

resulting in 9600 candidate predictors. The features were primarily descriptive statistics of 

the relative band power changes in each frequency band including the mean, mode, median, 

minimum, maximum, standard deviation, root mean squared, variance, skewness, kurtosis, 

absolute mean, Shannon entropy, log energy entropy, range and squared mean values for the 

time window of each trial. Candidate features used in this study were selected based on 

previous pain research (Alazrai, Momani, et al., 2019; Sai et al., 2019), which were calculated 

using MATLAB built-in functions where possible. Moreover, the features used in this study 

have been extensively explored in other research domains (Anuragi & Sisodia, 2020; Vargas-

Lopez et al., 2021; Vimala et al., 2019; Yasoda et al., 2020). We opted to include this selection 

of different candidate features as, due to the complexity of EEG and ML, it is challenging to 

predict the effectiveness of the features and algorithms prior to modelling. 

 

Due to neural variability and volatility of single-trial EEG (Faisal et al., 2008; Kaplan et al., 2005; 

Marathe et al., 2014), missing values and outliers (values beyond three median absolute 

deviations) were replaced using linear interpolation. Interpolated values were calculated 

from neighbouring non-outlier data per condition using the filloutliers MATLAB function. 

Outliers were interpolated as they do not follow patterns, which hinders ML performance 

(Maniruzzaman et al., 2018). Additionally, outlier management is essential for EEG, as 

artefacts include non-neural activity (Fatourechi et al., 2007). The data were interpolated to 

maximise the dataset size, as larger datasets are less susceptible to overfitting (Vabalas et al., 

2019). Overall, less than 10% (M = 9.84%, SD = 0.55%) of the data were interpolated. 
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The features were scaled between 0 and 1 and univariate feature selection was employed to 

rank feature importance. We opted for a data-driven approach, meaning that all candidate 

features (e.g., all electrode locations and frequency bands) were evaluated during feature 

selection. Following feature ranking, a form of sequential feature selection was implemented 

to identify the optimal number of features. Here, the models were trained and evaluated 

using cross-validation with only one feature initially. Features were added sequentially until 

performance stabilised. Through this process, the highest-ranking 50 features were selected 

as this combination achieved near-optimal cross-validation performance without significantly 

increasing model complexity. The variables identified by the feature selection algorithm were 

distributed across various electrode locations and included features from frontal, central, and 

parietal regions. The electrode locations for all frequency bands assessed are displayed in 

Figure 4.2. Moreover, the number of trials after pre-processing for both studies are presented 

in Table 4.1. 

 

Table 4.1 Number of events per condition for each validation procedure 
 

Condition 
Training and Cross 

Validation Sets 

External Validation 

One Set (Identical 

Stimuli) 

External Validation 

Two Set (Different 

Stimuli) 

Total 

Low Pain 919 503 504 1926 

High Pain 897 504 504 1905 

Total 1816 1007 1008 3831 

 

 

ML was conducted using Scikit-learn, an open-source ML library written in Python, which 

offers efficient implementations of many ML algorithms (Abraham et al., 2014; Pedregosa et 

al., 2011). We implemented an adaptive boosting algorithm (AdaBoost), linear discriminant 
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analysis (LDA), logistic regression (LR), gaussian naïve Bayes (NB), random forest (RF), support 

vector machine (SVM), and an extreme gradient boosting algorithm (XGBoost; see Osisanwo 

et al., 2017; Sarker, 2021; Uddin et al., 2019 for overviews). Additionally, hyperparameter 

optimisation was performed on the cross-validation dataset using grid search, a common 

technique that assesses a fixed set of potential values for each hyperparameter and evaluates 

all possible combinations to identify the optimal configuration (Syarif et al., 2016). Grid search 

has been shown to improve ML performance over unoptimised parameters (Syarif et al., 

2016), and previous research has implemented grid search (Levitt et al., 2020; Misra, Wang, 

et al., 2017). The optimal hyperparameters (except for the NB, which does not require 

optimisation) are presented in Table 4.3 (see Discrimination and Calibration Results). 

 

4.2.7 Model Evaluation 

 

Cross-validation was performed using stratified k-fold validation, whereby the dataset is 

divided into k partitions, with one partition used for validation and the remaining for training. 

Each model is trained k times, with a different validation set at each iteration, meaning all 

data is used for validation (Fushiki, 2011; Luo et al., 2016; Wong, 2015). Model performance 

is then averaged over all iterations. Stratified k-fold is advantageous over traditional k-fold as 

class distributions are preserved in each partition, rather than being random (Luo et al., 2016; 

Wong, 2015). We set the value of k = 10 (Fushiki, 2011). The models were also assessed using 

a two-stage external validation procedure. For each validation, we computed accuracy, 

precision, recall, F1, AUC and brier scores to assess performance (Alba et al., 2017; Assel et 

al., 2017; Powers, 2011; Sokolova & Lapalme, 2009) (See Supplementary Material 2 for 

overviews). A flow chart of the classification procedure is presented in Figure 4.1. 
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Figure 4.1 Flow chart of the classification pipeline. The final dataset from study one was cleaned, and features of 

interest were extracted (1a). The dataset, which was comprised of all 23 participants’ data, was split into 10 

approximately equal folds (1b), with 9 folds used for training and 1 fold used for testing. Candidate models were 

then trained 10 times until all folds had been used for testing. During the training process, the hyperparameters of 

each model were optimised using grid search (1c). After training, the models’ cross-validation performance was 

examined (1d) and the final models and hyperparameters were selected based on the best cross-validation 

performance (1e). The dataset for study two was prepared using a similar pipeline (i.e., data cleaning) to study 

one, but was managed independently to prevent data leakage (2a). The dataset for study two was then split into 

external validation one and two, based on the trial types of the study (fast and slow rise) (2b). All 14 participants 

in study two contributed to both external validation datasets. Finally, the final models were tested separately on 

external validation one and two datasets, and model performance (discrimination and calibration) was assessed. 
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4.2.8 Calibration Assessment  

 

We also assessed model calibration. Calibration assessment evaluates the agreement 

between the model’s prediction and the observed or reference value (Alba et al., 2017; Luo 

et al., 2016; Van Calster et al., 2019). If a model predicts a 30% risk of an outcome being 

present, then the observed outcome frequency should be approximately 30 of 100 events 

(Luo et al., 2016; Steyerberg et al., 2010; Van Calster et al., 2019). For example, in a 

diagnostical context, in individuals with a predicted risk of x% for having a medical condition, 

x out of 100 individuals should have the condition (Van Calster et al., 2016). Calibration is 

important for model evaluation but is rarely evaluated (Christodoulou et al., 2019; Mari et al., 

2022). We assess calibration using calibration curves, whereby the predicted probability is 

plotted on the x-axis, and the true probability is plotted on the y-axis. Perfect calibration 

occurs when the predicted probabilities perfectly match the observed probabilities, which is 

represented by a 45o line in calibration curves. Comprehensive overviews of prediction model 

calibration assessment have been reported elsewhere (Y. Huang et al., 2020; Van Calster et 

al., 2019).  

 

4.2.9 Statistical Analysis  

 

Statistical analyses were conducted to investigate self-reported pain ratings for both studies. 

Firstly, a paired sample t-test assessed whether pain ratings differed between the low and 

high pain stimuli in study one. For study two, we assessed whether pain ratings differed 

between low and high stimuli and the fast and slow rise time conditions, using a 2x2 repeated 
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measures ANOVA with the levels being stimuli intensity (low, high) and rise time (fast, slow). 

Statistical analysis was completed using IBM SPSS 27 (IBM Corp., Armonk, New York, USA). 

 

4.3 Results 

4.3.1 Behavioural Pain Ratings 

 

Descriptive statistics for the behavioural pain ratings for both studies are presented in Table 

4.2. A paired samples t-test demonstrated that subjective pain ratings in the high pain 

condition were significantly greater than those in the low pain condition in study one (t (22) 

= 12.71, p < .001, d = 2.65).  

 

Table 4.2 Descriptive statistics (Mean ± standard deviation) for pain ratings across 

condition and study paradigm. 

Condition Low Pain High Pain 

Study One 
  

 
Cross-validation dataset (fast rise) 36.87 ± 13.44 62.65 ± 15.28 

Study Two 
  

 
External validation one dataset (fast rise) 50.51 ± 12.96 73.53 ± 10.61 

  External validation two dataset (slow rise) 47.22 ± 12.55 68.77 ± 9.83 

 

 

Regarding study two, a 2x2 repeated measures ANOVA demonstrated a significant main effect 

of stimuli intensity on subjective pain ratings (F (1,13) = 53.91, p < .001, ηp
2 = .81), with pain 

ratings being significantly higher in the high pain conditions compared to the low pain 

conditions. Additionally, the analysis demonstrated a significant main effect of rise type on 
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subjective pain ratings (F (1,13) = 14.94, p = .002, ηp
2 = .53), with subjective pain intensity 

being higher in the fast rise time conditions compared to the slow rise time conditions. Finally, 

the ANOVA demonstrated that there was no significant interaction between stimuli intensity 

and rise type on subjective pain intensity (F (1,13) = 1.25, p = .284, ηp
2 = .09).  

 

4.3.2 ERD/S 
 

To provide an overview of the neural characteristics of pain, we provide topographical maps 

demonstrating the difference between high and low pain conditions. It is important to note 

that the ML classification process is separate from the visualisation, which is explained 

hereafter. Figure 4.2 shows the time-frequency changes during rest (-3.5 – -2.5 s relative to 

the onset of stimulation) and the active period (1 – 2 s relative to the onset of stimulation; 

representing a period of maximum pressure level following the completion of stimulation rise 

time) for study one. Topographic plots demonstrating relative band power changes in 

frequency bands Theta (4 – 7Hz), Alpha (8 – 12Hz), Lower Beta (16 – 24Hz), Upper Beta (25 – 

32Hz), and Gamma (33 – 70Hz) are shown. The left pair of columns represent rest and active 

periods for the low pain condition, whilst the right pair of columns represent the high pain 

condition. During both low and high pain stimulation conditions, theta-band ERS was evident 

over anterior frontal regions. In the high pain condition, lateralised ERS over right and left 

temporal electrodes was also observed in theta frequency range (Figure 4.2A). Importantly, 

strong bilateral ERD in the alpha band was observed over sensorimotor regions in both low 

and high pain conditions (Figure 4.2B) with visibly stronger alpha ERD present in high-pain 

condition. Bilateral ERD was also evident in both lower and upper beta bands over 

sensorimotor regions for both pain intensity conditions. ERD is comparatively weaker for 
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upper beta compared to lower beta (Figure 4.2C/D). The bilateral ERD observed with painful 

stimulation in alpha and beta bands is consistent with previous research (Ploner et al., 2006). 

Finally, for Gamma band changes, we identified bilateral ERD across temporal-parietal regions 

and ERS over anterior frontal electrodes for both low and high pain conditions (Figure 4.2E).  
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Figure 4.2 Grand average band power changes during rest (-3.5 s – -2.5 s) and during active 

pressure stimulation (1 s – 2 s) from study one. The trial period spanned from -4 s to 6 s 

relative to trial onset, with a baseline from -3.5 s to -0.5 s. The active period for visualisation 

was selected in line with previous recommendations (Pfurtscheller & Aranibar, 1977, 1979) 

and reflected 1 s of continued pressure after the stimulator reached the desired intensity 

level. Topographic maps show the band power changes in low and high pain intensity 
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conditions and from rest to active periods in Theta (A), Alpha (B), Lower Beta (C), Upper Beta 

(D), and Gamma (E) for study one. P = percentage power change from baseline. The white 

circles on the low pain rest plots represent the electrode locations of the features used in the 

ML models. Note: In the original publication, topographies were displayed in supplementary 

material.   

 

4.3.3 Discrimination and Calibration Results 

 

The classification performance metrics and optimal hyperparameters are reported in Table 

4.3. The ROC curves for both external validation stages are presented in Figure 4.3. In 

addition, the confusion matrices are reported in supplementary material 2, allowing for the 

calculation of additional metrics, which may be of interest to readers and to those conducting 

meta-analyses. 

 

 
  



  

 

Table 4.3 Classification performance metrics for cross validation and both external validation procedures. 

Model Optimal Parameters Cross Validation (Mean ± SD) External Validation One External Validation Two 
AdaBoost Learning rate = 0.1, 

Number of estimators 
= 2500 

Accuracy 0.7732 ± 0.0374 Accuracy 0.6385 Accuracy 0.5595 

 AUC 0.8644 ± 0.0199 AUC 0.6995 AUC 0.5823 

 Brier 0.2450 ± 0.0011 Brier 0.2473 Brier 0.2488 

  F1 0.7596 ± 0.0469 F1 0.6459 F1 0.5681 

  Precision 0.7983 ± 0.0538 Precision 0.6336 Precision 0.5573 

  Recall 0.7302 ± 0.0717 Recall 0.6587 Recall 0.5794 

          
          

Linear 
Discriminant 
Analysis 

Shrinkage = 0.4, Solver 
= Least squares 

Accuracy 0.6965 ± 0.0249 Accuracy 0.6008 Accuracy 0.5625 
AUC 0.7707 ± 0.0307 AUC 0.6248 AUC 0.5724 

Brier 0.2007 ± 0.0135 Brier 0.2609 Brier 0.2888 

  F1 0.6809 ± 0.0450 F1 0.5630 F1 0.5127 

  Precision 0.7114 ± 0.0473 Precision 0.6226 Precision 0.5786 

  Recall 0.6665 ± 0.1042 Recall 0.5139 Recall 0.4603 

          
          

Logistic 
Regression 

C = 1.0, Penalty = 
Lasso (L1), Solver = 
LibLinear 

Accuracy 0.6910 ± 0.0301 Accuracy 0.5899 Accuracy 0.5476 

AUC 0.7676 ± 0.0283 AUC 0.6170 AUC 0.5615 

 Brier 0.1990 ± 0.0108 Brier 0.2544 Brier 0.2793 

  F1 0.6793 ± 0.0391 F1 0.5663 F1 0.5043 

  Precision 0.7024 ± 0.0548 Precision 0.6013 Precision 0.5577 

  Recall 0.6687 ± 0.0856 Recall 0.5357 Recall 0.4603 
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Naïve Bayes - Accuracy 0.7137 ± 0.0432 Accuracy 0.6395 Accuracy 0.6012 

  AUC 0.8011 ± 0.0362 AUC 0.6746 AUC 0.6288 

  Brier 0.2382 ± 0.0378 Brier 0.2978 Brier 0.3437 

  F1 0.6806 ± 0.0807 F1 0.6142 F1 0.5830 

  Precision 0.7532 ± 0.0513 Precision 0.6613 Precision 0.6109 

  Recall 0.6377 ± 0.1339 Recall 0.5734 Recall 0.5575 

          
          

Random 
Forest 

Criterion = Entropy, 
Maximum depth = 10, 
Maximum features = 
Log2, Number of 
estimators = 350 

Accuracy 0.7318 ± 0.0556 Accuracy 0.6832 Accuracy 0.6042 
AUC 0.8129 ± 0.0392 AUC 0.6910 AUC 0.6088 

 Brier 0.2008 ± 0.0100 Brier 0.2217 Brier 0.2409 

 F1 0.6748 ± 0.0961 F1 0.6216 F1 0.5481 

 Precision 0.8315 ± 0.0757 Precision 0.7729 Precision 0.6385 

  Recall 0.5830 ± 0.1253 Recall 0.5198 Recall 0.4802 

          
          

 
 
Support 
Vector 
Machine 

 
 
C = 1.0, Gamma = 0.1, 
Kernel = RBF 

 
 
Accuracy 

 
 
0.6773 ± 0.0189 

 
 
Accuracy 

 
 
0.6187 

 
 
Accuracy 

 
 
0.5645 

AUC 0.7844 ± 0.0226 AUC 0.6647 AUC 0.5956 

Brier 0.1927 ± 0.0084 Brier 0.2369 Brier 0.2653 

 F1 0.6669 ± 0.0454 F1 0.6265 F1 0.5675 

  Precision 0.7279 ± 0.0515 Precision 0.6145 Precision 0.5636 

  Recall 0.6298 ± 0.1013 Recall 0.6389 Recall 0.5714 
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XGBoost Column sample by 
tree = 1.0, Gamma = 
1.5, Maximum depth = 
2, Minimum child 
weight = 1, Subsample 
= 1.0 

Accuracy 0.7527 ± 0.0337 Accuracy 0.6246 Accuracy 0.5645 

 AUC 0.8362 ± 0.0270 AUC 0.6770 AUC 0.5956 
 Brier 0.1657 ± 0.0134 Brier 0.2336 Brier 0.2653 
 F1 0.7282 ± 0.0591 F1 0.6205 F1 0.5675 
 Precision 0.7922 ± 0.0405 Precision 0.6280 Precision 0.5636 

 Recall 0.6845 ± 0.1019 Recall 0.6131 Recall 0.5714 



  

The results can be segmented based on the type of validation performed. Regarding cross-

validation discrimination, the results demonstrate that all the models perform better than 

chance on all metrics. The models achieved accuracies between 67.73 and 77.32% and AUCs 

between 0.7676 and 0.8644. Out of the seven models tested, four achieved accuracies greater 

than 70%. Moreover, the AdaBoost model achieved the best performance overall, recording 

the highest accuracy (77.32%) and AUC (0.8644) during cross-validation.  

 

Regarding external validation one, the results demonstrate that the models performed better 

than chance on most of the performance metrics. The accuracy of the models ranged from 

58.99 to 68.32%, whilst the AUC ranged from 0.6170 to 0.6995. Here, six out of the seven 

models achieved accuracies greater than 60%. Moreover, the RF model achieved the highest 

accuracy (68.32%), whilst the AdaBoost model recorded the best AUC (0.6995) on the first 

external validation dataset. However, it must be noted that the AdaBoost model only 

marginally exceeded the RF at this validation stage, with the RF achieving an AUC of 0.6910.  

 

Lastly, for the discrimination results, the models achieved accuracies between 54.76 and 

60.42% and AUCs ranging from 0.5615 to 0.6288 on external validation two. Two models (RF 

and NB) achieved accuracies greater than 60%. In line with the first external validation, the 

RF achieved the best accuracy (60.42%) on the second validation dataset, whilst the NB 

algorithm achieved the greatest AUC (0.6288).  
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Finally, we also assessed the calibration of the models. The calibration plots for all models 

across both external validation stages are presented in Figure 4.4. Regarding the 

interpretation of the calibration curves, if the model line is above the reference line, it 

suggests that the model is underestimating the probability of the incidence, whilst the inverse 

insinuates that the model is overestimating the incidence prevalence. Finally, the Brier score 

provides a metric of the disparity between predicted and true outcome probabilities is 

reported in Table 4.3. 

 

 

 

 

 

 

 

 

Figure 4.3 Discrimination results for both external validation stages. (a) ROC curve for all models assessed on the 

first external validation dataset. (b) ROC curve assessment on the second external validation dataset. The dotted 

blue line represents chance classification (a classifier with no skill) as a reference. 
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4.4 Discussion 

This study represents the first successful attempt to externally validate ML to discriminate 

between pain intensity using EEG. We hypothesised that all ML algorithms would achieve 

greater than chance performance (≈50%) on (1) cross-validation, (2a) external validation one 

(same stimulation parameters as training data), and (2b) external validation two (different 

stimulation parameters to training data). Our results demonstrated that all models surpassed 

chance performance, achieving accuracies of up to 78%, 69% and 61% on cross-validation and 

external validation one and two, respectively. The RF model demonstrated the highest 

accuracy on both external validation stages. Overall, the findings support our hypothesis. This 

study is the first to demonstrate that ML and EEG can be effectively combined for binary 

classification of pain intensity with accuracies approaching 70% using external validation. 

Moreover, the second external validation confirms the robustness of the results, 

Figure 4.4 Calibration results for both external validation stages. (a) Calibration curve for all models assessed on 

the first external validation dataset. (b) Calibration curve for the second external validation dataset. The blue 

dotted line (45o) represents perfect calibration (complete agreement between predicted and observed 

probabilities). When the colour line is above the reference, the model underestimates the true probability, whilst 

the model overestimates probabilities when the line is below the reference line. 
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demonstrating that ML can accurately classify experimentally induced pain intensity using 

different stimulation parameters, which is imperative for translation when minor variations 

in the nature of pain should not invalidate the algorithm. Therefore, this study advances the 

field, correcting widespread limitations and providing the first rigorous and generalisable 

estimates of the effectiveness of ML and EEG for pain intensity classification.  

 

Our findings support previous literature demonstrating that subjective pain intensity can be 

accurately classified using EEG and ML (Mari et al., 2022; van der Miesen et al., 2019). The 

cross-validation performance in this study is comparable to previous research (Mari et al., 

2022). Previous attempts to classify low and high pain intensity from EEG have produced 

comparable results, with accuracies ranging between 62 and 89.58% (Bai et al., 2016; G. 

Huang et al., 2013; Misra, Wang, et al., 2017; Okolo & Omurtag, 2018; Schulz et al., 2012; Tu 

et al., 2016). Similar research successfully classified 10-classes of pain intensity using a RF 

model and multichannel EEG (Vijayakumar et al., 2017). Our findings support the existing 

literature, as both studies demonstrate the importance of using a diverse array of frequency 

bands to achieve optimal classification performance. In addition, Huang and colleagues 

(2013) developed models using single-trial laser-evoked potentials, capable of accurately 

classifying low and high pain for both within-subject and cross-subject predictions. Alternative 

neuroimaging (e.g., fMRI) approaches also demonstrate promise for pain outcome prediction 

(van der Miesen et al., 2019). For example, the neurologic signature of pain demonstrated 

93% sensitivity and specificity in discriminating between no pain and pain conditions in a 

novel sample (Wager et al., 2013). Overall, the previous research demonstrates the potential 

of neuroimaging and ML for pain intensity classification. However, EEG may prove to be the 

optimal method after further validation, due to the accessibility, ease of use, and low cost 
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(Mackey et al., 2019; Tivadar & Murray, 2019), which offers potential for the method to be 

used in a more diverse array of use cases.  

 

Whilst our results are comparable to the best-performing models of the existing literature 

(e.g., classifying better than chance), it must be noted that several models reported across all 

studies had reduced performance, demonstrating the importance of careful evaluation. 

Moreover, the literature is comprised of positive results, which may be a result of publication 

bias and therefore should be carefully interpreted. In addition, previous research assessed 

model performance using only internal validation methods (e.g., cross-validation), meaning 

that overfitting and generalisability had not been sufficiently evaluated (Mari et al., 2022). 

Therefore, the novelty and impact of the present research stem from the extensive external 

validation. Presently, the clinical potential of ML and EEG for pain prediction has likely been 

overestimated (Bleeker et al., 2003; Ramspek et al., 2021; Vabalas et al., 2019) and significant 

developments are required before the clinical potential can be accurately assessed. However, 

although our results are modest, the current study extends upon previous research, 

demonstrating that ML and EEG can accurately classify novel samples which provides more 

robust evidence for the clinical utility of ML. 

 

Beyond EEG, alternative proxy pain measures have been proposed (e.g., behavioural 

assessments). Many behavioural approaches rely on facial expressions (e.g., PACSLAC; Fuchs-

Lacelle & Hadjistavropoulos, 2004) or ML techniques (Prkachin, 2009), which is time-

consuming (Prkachin, 2009) and can be erroneous in individuals with dementia (e.g., Lewy 

Body; Oosterman et al., 2016), Parkinson’s disease (Priebe et al., 2015), or facial paralysis 

(e.g., locked-in syndrome; Pistoia et al., 2010), as well as children who can suppress pain 
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expressions (Larochette et al., 2006). EEG and ML may provide effective pain assessment in 

these challenging conditions. Pain-related neural activity is observable across populations 

(e.g., infants; Slater et al., 2010) and should not be affected by intentional suppression. 

Therefore, EEG-ML methods could become useful adjunctive pain assessment tools, 

specifically in situations that have previously proved challenging.  

 

EEG-ML approaches may also prove advantageous over other pain biomarker techniques. 

Physiological measurements including heart rate variability (HRV), electrodermal activity 

(EDA), and pupillometry demonstrate potential (Cowen et al., 2015). However, such 

approaches also exhibit significant limitations, which often result in reduced effectiveness in 

certain populations (e.g., paediatric postoperative patients (Choo et al., 2010). Moreover, 

alternative neuroimaging techniques remain promising (e.g., fMRI; van der Miesen et al., 

2019; Wager et al., 2013). However, many neuroimaging techniques are impractical for 

widespread clinical implementation, due to financial and infrastructure restrictions (Mechelli 

& Vieira, 2020). EEG is inexpensive compared to fMRI and can be easily implemented in a 

multitude of settings (e.g., doctor’s office) using dry or mobile EEG (Hinrichs et al., 2020; 

Mackey et al., 2019; Ploner & May, 2018; Tivadar & Murray, 2019). Furthermore, EEG can be 

used during surgery (X. Xu & Huang, 2020) and can also be further simplified using a single 

electrode (Kimura et al., 2021). Taken together, EEG may be advantageous over other 

methods, demonstrating diverse utility in clinical settings.  

 

The findings from this study also highlight the importance of external validation, as cross-

validation metrics did not consistently reflect external validation metrics, which challenges 

previous EEG and ML research. It is established that ML performs better on data from the 
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same cohort (internal validation) when compared to novel samples (external validation; 

Cabitza et al., 2021; Siontis et al., 2015). Consequently, cross-validated metrics are potentially 

biased and not representative of prediction errors (Cabitza et al., 2021; Vabalas et al., 2019; 

Varma & Simon, 2006). In this study, the AdaBoost model achieved the best cross-validation 

metrics but performed worse than the RF on both external validations. As the RF performance 

only reduced minimally during external validation, we have increased confidence that the 

model has learned pain-related information, rather than fitting random noise. Furthermore, 

small reductions in performance when progressing from cross-to-external validation 

procedures are common and should not invalidate the model’s clinical utility (Cabitza et al., 

2021; Salehinejad et al., 2021; Siontis et al., 2015). Given the subjective nature of pain 

(Bendinger & Plunkett, 2016; Breivik et al., 2008) and variability of neural activity (e.g., single-

trial EEG; Faisal et al., 2008; Kaplan et al., 2005; Marathe et al., 2014), a reduction of only 5% 

demonstrates the RF’s robustness, providing evidence for the clinical potential of this 

approach. Overall, our research emphasises that failing to include external validation in 

experimental paradigms reduces clinical interpretation (Bleeker et al., 2003; Ramspek et al., 

2021) and should be avoided in future research. We also recommend caution when 

interpreting research that only reports cross-validation, to avoid presenting over-optimistic 

results, which could hinder future efforts towards clinical translation. 

 

Models that are not sufficiently evaluated are potentially damaging to the clinical utility of 

ML and EEG. A biased algorithm risks that patients could receive sub-optimal care (e.g., under-

treatment), which has significant dangers (Ramspek et al., 2021; Wilson & Pendleton, 1989). 

Indeed, ML models failing due to biases are common and may be overlooked without 

sufficient validation (e.g., skin markings in dermoscopic images inflating the probability of an 
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input being classified as a melanoma using a convolutional neural network; Winkler et al., 

2019). Such biases may render the algorithm useless. Therefore, our research provides a 

foundational development toward clinical translation and paves the way for improved 

standards in ML-EEG studies for pain classification.  

 

ML and artificial intelligence (AI) are rapidly advancing society (e.g., route planning and self-

driving vehicles), but successful medical applications are rare (Seneviratne et al., 2020; Shah 

et al., 2019). Clinical translation requires significant developments spanning external 

validation to dissemination (Mechelli & Vieira, 2020). Whilst our best model is an important 

initial development, the performance is not currently clinically applicable. Further external 

validation is imperative, particularly through international multi-centre collaborations (Mari 

et al., 2022; Mechelli & Vieira, 2020; van der Miesen et al., 2019) to demonstrate clinically 

relevant performance. This would evaluate algorithms using larger, more diverse samples, 

allowing for greater confidence that the algorithm is not biased by dataset idiosyncrasies, 

which are specific to a single lab’s apparatus or procedures (Mackey et al., 2019). Moreover, 

progression to research in clinical populations which attempts to classify clinical rather than 

experimental pain is critical to establish the clinical utility of the method. Subsequently, the 

clinical translation pipeline should be carefully navigated. Real-world and utility assessments 

(e.g., randomised controlled trials) should ensure the algorithm is useful to clinicians 

(Mechelli & Vieira, 2020; Seneviratne et al., 2020). Moreover, feasibility, safety, ethical and 

acceptability considerations will be essential to establish appropriate deployment standards 

to limit risk before dissemination (Mackey et al., 2019; Mechelli & Vieira, 2020; Seneviratne 

et al., 2020). However, before attempting these stages significant further research is required. 

Establishing a substantial body of external validation research, including multi-centre 



 169 

collaborations must be the primary objective. The long-term future of clinical ML applications 

for pain is contingent on the collective research community successfully addressing the 

clinical translation stages.  

 

The current study has several limitations. Firstly, the calibration assessment demonstrated 

that the predicted probabilities were not consistently representative of the true probabilities. 

Consequently, the clinical potential of the findings at this early stage should be interpreted 

with caution. Imperfect calibration is suggestive of potential overfitting, reducing validation 

performance due to the idiosyncrasies in the training data (Van Calster et al., 2019). However, 

given the volatility of neural activity (Faisal et al., 2008; Kaplan et al., 2005; Marathe et al., 

2014), it is to be expected that the models capture some random noise. As calibration is rarely 

assessed (Christodoulou et al., 2019; Mari et al., 2022), future research should aim to assess 

and improve model calibration (e.g., Platt scaling; Y. Huang et al., 2020). Moreover, whilst this 

study consists of two temporally independent datasets, our overall sample size is relatively 

small, which reduces the confidence in the results. For ML to exhibit clinical relevance, a 

larger, more diverse sample is required. Future research should increase sample sizes to 

provide more robust conclusions, which would offer substantial further evidence for clinical 

translation. In addition, there was some overlap between the samples, with one participant 

contributing to both the development and validation samples. Future research could avoid 

participant overlap, or specifically explore the differences between within- and cross-subject 

prediction. However, in the current study, both samples were temporally independent and 

consisted of different experimental paradigms. Therefore, participant overlap is unlikely to 

significantly affect the results. Moreover, although the sampling rate in this study was 

sufficient (sampling rate > 2.5 times the maximum frequency analysed) to retrieve gamma 
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band frequencies and avoid aliasing issues (Bendat & Piersol, 2011), future research should 

maximise the sampling rate to ensure that the highest frequencies are precisely sampled. 

 

The current study predicted stimulation intensity rather than subjective intensity, as this may 

ultimately serve as a better proxy method for individuals who cannot self-report their pain. 

However, on a trial level, there were a few instances where a low-intensity stimulus produced 

a high subjective response and vice-versa. Consequently, such trials may have hindered the 

learning algorithms’ performance. Future research should investigate both subjective pain 

intensity and stimulus intensity. Additionally, it is possible that EEG signals used in the 

classification were not pain-specific, which should be explored in further research. Research 

has suggested that EEG responses to pain may be more directly related to stimulus saliency 

rather than pain perception (Iannetti et al., 2008). Moreover, whilst classifying discrete pain 

classes has clinical potential, predicting parametric outcomes would improve the impact of 

the research. The ability to accurately predict subjective pain intensity to a finer resolution 

would increase clinical utility. Therefore, future research should externally validate regression 

models to demonstrate greater clinical relevance. Concurrent attempts to improve binary 

classification performance are also warranted before clinical translation. Finally, although the 

models in this study outperformed chance, we cannot definitively state that the models are 

exclusively reflective of neural processing. EEG signals can often contain non-brain responses 

e.g., muscle movements (Goncharova et al., 2003), which could affect the results. Many of 

the features were from electrodes located over feasible brain regions and not exclusively 

from those electrodes most commonly impacted by movement artefacts such as peripheral 

sites (Goncharova et al., 2003), which provides confidence in the results. Moreover, model 

performance generalised to two external validation datasets, which included different 
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experimental pain stimulation. Therefore, we can reasonably suggest that pain-related brain 

information was the predominant contributor to accurate classification. However, despite 

thorough artefact correction, residual non-brain activity may be present in the EEG signal. 

Whilst our artefact correction procedure is extensively validated, it is possible residual non-

brain activity may still contribute to the features and classification. For example, whilst similar 

research has used prefrontal theta as a feature for pain classification (Misra, Wang, et al., 

2017), we cannot rule out the possibility that residual oculographic (e.g., saccades) or facial 

muscle movements may also contribute to the EEG data in the present study. Therefore, we 

propose that the importance of the frontal theta features should be interpreted with caution. 

Future research should aim to explore the role of non-brain responses on EEG pain 

classification using additional techniques such as the characterisation of electromyographic 

(EMG) signals or concurrent evaluation of facial expressions. In addition, future research 

should investigate the impact of different pre-processing procedures on pain classification 

performance, with a goal to develop standardised, reproducible pre-processing.  

 

4.5 Conclusion 

This research study is the first to demonstrate that ML and EEG can be used in tandem to 

discriminate between low and high pain intensity using a comprehensive two-stage external 

validation paradigm. Our best-performing model (RF) classified low and high pain with around 

70% accuracy on external validation with matched stimulation and around 60% with different 

experimental pain stimuli. The results presented here are a significant development for the 

research field, as we begin to address limitations that have hindered clinical interpretation in 

the past. Consequently, this study provides the current best estimates of the effectiveness of 
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ML and EEG for pain intensity classification. Future research should strive to build on the work 

presented here by consistently externally validating models, before progressing to multi-

centre validation studies. Overall, the current study demonstrates the potential of ML and 

EEG for successful pain intensity prediction and provides the first robust estimates of ML 

generalisability which have eluded all previous research in this field. 
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Abstract 

 

Previous studies have demonstrated the potential of machine learning (ML) in classifying 

physical pain from non-pain states using electroencephalographic (EEG) data. However, the 

application of ML to EEG data to categorise the observation of pain versus non-pain images 

of human facial expressions or scenes depicting pain being inflicted has not been explored. 

The present study aimed to address this by training Random Forest (RF) models on cortical 

event-related potentials (ERPs) recorded while participants passively viewed faces displaying 

either pain or neutral expressions, as well as action scenes depicting pain or matched non-

pain (neutral) scenarios. Ninety-one participants were recruited across three samples, which 

included a model development group (n=40) and a cross-subject validation group (n=51). 

Additionally, 25 participants from the model development group completed a second 

experimental session, providing a within-subject temporal validation sample. The analysis of 

ERPs revealed an enhanced N170 component in response to faces compared to action scenes. 

Moreover, an increased late positive potential (LPP) was observed during the viewing of pain 

scenes compared to neutral scenes. Additionally, an enhanced P3 response was found when 

participants viewed faces displaying pain expressions compared to neutral expressions. 

Subsequently, three RF models were developed to classify images into faces and scenes, 

neutral and pain scenes, and neutral and pain expressions. The RF model achieved 

classification accuracies of 75%, 64%, and 69% for cross-validation, cross-subject, and within-

subject classifications, respectively, along with reasonably calibrated predictions for the 

classification of face versus scene images. However, the RF model was unable to classify pain 

versus neutral stimuli above chance levels when presented with subsequent tasks involving 

images from either category. These results expand upon previous findings by externally 
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validating the use of ML in classifying ERPs related to different categories of visual images, 

namely faces and scenes. The results also indicate the limitations of ML in distinguishing pain 

and non-pain connotations using ERP responses to the passive viewing of visually similar 

images. 
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5.1 Introduction 

Machine learning (ML) and EEG have demonstrated promise for predicting discrete categories 

of visual stimuli (e.g., objects, scenes, faces etc.; Bagchi & Bathula, 2022; Cudlenco et al., 

2020; Ghosh et al., 2021; Kaneshiro et al., 2015; Stewart et al., 2014; Yavandhasani & Ghaderi, 

2022; Zheng et al., 2020), subjective pain intensity in response to physical pain (Mari et al., 

2022, 2023; van der Miesen et al., 2019), and response to pharmaceutical intervention (Gram 

et al., 2017; Graversen et al., 2012; Jaworska et al., 2019), to name but a few. Research from 

our group previously demonstrated that high and low pain stimuli can be predicted with 

approximately 70% accuracy using time-frequency analysis of EEG features distributed across 

the scalp (Mari et al., 2023). However, the effectiveness of ML and EEG for the classification 

of human facial expressions and scenes depicting pain and non-pain conditions has yet to be 

explored. This is despite a wealth of research demonstrating the importance of 

neurobiological empathic responses to observed pain, which has particular relevance to 

clinical, physiological, and societal domains (Decety & Jackson, 2004; Lamm et al., 2011; 

Singer et al., 2004; Singer & Lamm, 2009). For example, elucidating the neurobiology of 

empathy is important for understanding the development of empathy and for clinical 

conditions where empathy is reduced or absent (e.g., autism; Decety & Holvoet, 2021; Y.-T. 

Fan et al., 2014; Oberman et al., 2005). Moreover, from a societal perspective, understanding 

the neurobiology of empathy may support areas such as medical education (Preusche & 

Lamm, 2016). Therefore, this study aimed to address this gap by developing ML models using 

single-trial EEG responses during the passive observation of both facial expressions and action 

scenes depicting neutral and painful conditions.  
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Traditional ERP research studies exploring empathic responses to the observation of pain 

demonstrate differences in ERP amplitudes, which may enable accurate ML classification at 

the single-trial level. A meta-analysis of up to 36 studies demonstrated an enhanced P3 and 

late positive potential (LPP) during pain observation, with the maximal effect observed at 

central-parietal sites (Coll, 2018). Previous research by our lab demonstrated that images 

depicting pain scenes elicited an enhanced LPP over central-parietal regions compared to 

situation-matched neutral images in both healthy people and a chronic pain population 

(Fallon, Li, Chiu, et al., 2015). Therefore, single-trial EEG responses over central-parietal 

electrode sites may be an important candidate feature for the ML algorithm. 

 

In addition to classifying EEG responses to images depicting neutral and pain conditions, we 

also aimed to externally validate ML for the classification of single-trial neural responses to 

broad categories of visual stimuli (faces versus scenes) regardless of the pain component, 

which to the best of our knowledge has yet to be attempted. Here, the N170 component may 

be the most informative feature for classification. The N170 component is an early negative 

waveform deflection which is maximally observed over occipitotemporal regions between 

140 and 200ms after stimulus onset, peaking at approximately 170ms, which is enhanced 

during the observation of faces (Bentin et al., 1996; Bötzel et al., 1995). The N170 is maximal 

when viewing faces and is attenuated or missing in response to other stimulus categories 

(Bentin et al., 1996; Itier, 2004). The N170 has been reliably reproduced in stationary and 

mobile EEG experiments (Bentin et al., 1996; Bötzel et al., 1995; Eimer, 2000; Itier, 2004; Itier 

& Taylor, 2004; Johnston et al., 2015; Soto et al., 2018). Additionally, the vertex positive 

potential (VPP), which is a large positive potential across frontal-central regions peaking 

between 140ms and 180ms, is observed after the presentation of a face stimulus (Bötzel et 
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al., 1995; Jeffreys, 1989, 1996). Given the similarity in the characteristics of the N170 and VPP, 

the evidence suggests that both components originate from the same neural dipole (Itier & 

Taylor, 2002; Joyce & Rossion, 2005). Therefore, neural responses located over 

occipitotemporal and frontal-central regions may enable accurate classification of face versus 

scene images.  

 

Indeed, previous research has successfully combined EEG and ML to classify neural responses 

to visual stimuli including faces, objects, and scenes. A support vector machine (SVM) trained 

on EEG components over occipital electrodes has successfully classified the presence of visual 

objects in 7 subjects; achieving a cross-validated accuracy and AUC of 87% and 0.7, 

respectively (Stewart et al., 2014). Additionally, research has demonstrated that neural 

networks could successfully classify 40 image classes from the ImageNet database (e.g., 

animals, objects, food) with an average accuracy of 90.16% using EEG recorded from 6 

subjects (Zheng et al., 2020). Further research exhibits comparable results in decoding neural 

responses to objects, scenes, human and animal bodies and faces (Bagchi & Bathula, 2022; 

Cudlenco et al., 2020; Kaneshiro et al., 2015; Yavandhasani & Ghaderi, 2022). Finally, an 

attention-based convolutional bidirectional long short-term memory network has been 

developed to classify EEG responses to familiar and unfamiliar faces (Ghosh et al., 2021). 

Using time-frequency features from pre-frontal, frontal, and temporal regions, the authors 

classified familiar and unfamiliar faces with an accuracy of 91.34%. Therefore, the literature 

suggests that EEG and ML can potentially be used to successfully decode brain responses to 

categories of visual stimuli. 
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Despite promising results, the field is not without significant limitations. ML research is often 

insufficiently validated, with only internal validation methods used to evaluate models. This 

potentially leads to inflated performance estimates, overfitting and un-generalisable models 

(Cabitza et al., 2021; Vabalas et al., 2019; Varma & Simon, 2006). Therefore, ML models 

should be evaluated using data independent of model development (Lever et al., 2016). One 

such approach is external validation, whereby ML performance is assessed using novel data 

obtained from other cohorts, facilities, and repositories or collected from a different location 

(geographical), time (temporal) or experimental paradigm (Cabitza et al., 2021; Collins et al., 

2015). Research has demonstrated reduced performance on external validation datasets (X. 

Li et al., 2019; Mari et al., 2023; Siontis et al., 2015). Due to the omission of external validation, 

it is challenging to reasonably interpret the generalisability of existing research, as the results 

are potentially inflated. 

 

The present study aimed to externally validate ML and EEG for visual stimuli decoding both 

across and within subjects for the first time. Firstly, we trained a Random Forest (RF) model 

on EEG features to classify data into either faces or scenes. Moreover, we developed two 

further RF models to classify EEG data into either neutral or pain classes for both scenes and 

faces respectively. All models were externally validated using two separate samples: cross-

subject which consisted of a new cohort, and within-subject which consisted of participants 

from the model development sample who were recruited for a second experimental session 

at a later time (temporal validation). We hypothesised that the RF model would classify visual 

stimuli with an accuracy significantly greater than the chance level (≈ 50%) for each 

classification task: (1) faces – scenes, (2) scenes: neutral – pain, and (3) faces: neutral – pain 

for both external validation samples. 
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5.2 Methods 

5.2.1 Participants 
 

A total of three samples, consisting of 116 EEG sessions, were collected for this study. Forty 

participants (22 female; 7 left-handed) aged between 18 and 52 (Mean = 27.70 years, 

standard deviation {SD} = 7.43) years were recruited for sample one (model development 

sample/cross-validation). Sample two (cross-subject validation) consisted of 51 participants 

(34 female; 6 left-handed) aged between 19 and 60 (Mean = 27.63 years, SD = 9.65), whilst 

sample three consisted of 25 participants aged between 21 and 53 (14 female; 4 left-handed; 

Mean = 28.96 years, SD = 8.01). Twenty-five participants from sample one completed a 

second experimental session a minimum of 12 weeks after their first session (Mean = 108.68 

days, SD = 10.92). This cohort represented a temporal within-subject validation sample 

(sample three) for the ML analysis. We aimed to recruit a large sample, particularly for 

external validation, to provide robust estimates of model generalisability, as small external 

validation datasets can also provide imprecise estimates of model discrimination and 

calibration (K. I. E. Snell et al., 2021). Participants provided written informed consent before 

participation and all methods were conducted in compliance with the Declaration of Helsinki. 

The study received ethical approval from the University of Liverpool Health and Life Sciences 

Research Ethics Committee. Eligibility criteria included: at least 18 years old, normal, or 

corrected-to-normal vision, no acute pain at the time of participating, no history of chronic 

pain, and no neurological conditions. Participants were compensated with a total of £40 for 

time and travel expenses. The raw data is available on reasonable request. 
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5.2.2 Materials 
 

5.2.2.1 Pain Faces 
 

In the present study, we employed a passive viewing paradigm where participants were 

required to observe a series of visual stimuli but were not required to respond. This differs 

from a free viewing task, as participants were requested to pay attention to the image, which 

imposes a task and is arguably not truly free viewing (A. Li et al., 2020). Here, a 2x2 factorial 

design was used in this study: faces (expressions) and scenes, each with two levels, namely 

neutral and pain. The neutral and pain faces were selected from the Delaware Pain Database 

(Mende-Siedlecki et al., 2020). The Delaware Pain Database is an image database that 

contains photographs of the faces of individuals who are displaying a painful expression (e.g., 

grimacing) and matched neutral controls. We selected a total of 56 faces (28 painful and 28 

matched neutral images). The faces were selected using several criteria. Firstly, we aimed to 

broadly recreate the ethnicity and gender distribution of the UK to provide representative 

stimuli. A total of 22 white subjects (80%) consisting of 11 males and females, 3 Asian subjects 

(10%) including 2 males and 1 female and 3 black subjects (10%) consisting of 1 male and 2 

females were selected, which broadly matched the racial distribution of the UK (Office for 

National Statistics, 2021). Within the individual categories (e.g., white males) the images with 

the highest pain rating were selected, providing pain was listed as the dominant emotion. The 

28 neutral images were selected as the matched version (e.g., same subject) of the pain 

expressions. Face images were approximately 1382x925 in size. Figure 5.1A demonstrates an 

example of neutral and pain expressions.  
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5.2.2.2 Pain Scenes 
 

Additionally, still, photograph images of action scenes depicting pain or matched non-pain 

scenarios (hereinafter referred to as neutral or pain scenes) were employed in the present 

study. The pain scene images consisted of 28 images depicting either hands or feet in 

scenarios that elicit pain. For example, images of a knife cutting through bread in a way that 

would endanger the finger (e.g., placed under the knife). Twenty-eight matched neutral 

scenes, which replicate the scene but did not demonstrate pain, were also used. For example, 

the image depicted a knife cutting through bread without endangering the finger (e.g., the 

finger not placed under the knife). The same distribution of ethnicities implemented in the 

facial expression images was applied to the pain scene images. The images were selected 

from a larger internal pool of photographs depending on their pain rating. A small pilot study 

was conducted (n = 5) to rate each of the images in terms of pain intensity. The images that 

elicited the highest average pain rating in the pilot study were selected for the final 

experiment. The images used in this study are similar to previous research (Akitsuki & Decety, 

2009; Fallon, Li, & Stancak, 2015; Fallon, Li, Chiu, et al., 2015; Y. Fan & Han, 2008; Han et al., 

2008). Pain scene images were 774x518 in size. Figure 5.1B demonstrates examples of neutral 

and pain scene images used in this study. 
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5.2.3 Procedure 
 

Participants attended the EEG laboratory at the University of Liverpool between June and 

October 2022. Following the fitting of the EEG cap, participants were seated inside a Faraday 

cage 1 metre away from a 23-inch 1080p LCD monitor. The experimenter verbally explained 

the passive viewing task and the participants’ questions were answered. During this time, 

participants were requested to pay attention to the images and minimise movement during 

trials. The experiment consisted of a total of 336 trials, split into three blocks of 112 stimuli. 

Within each block, 28 stimuli for each of the four conditions were presented. Each block 

lasted 6 minutes and was separated by approximately 15-minute periods. During the block 

Figure 5.1 (A) Example of neutral and pain face stimuli from the 

Delaware Pain Database (Mende-Siedlecki et al., 2020). (B) Example 

neutral and pain scene stimuli.  
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intervals, electrode impedances were checked, and additional saline solution was applied as 

required.  

 

Each trial was initiated with a 2-second rest interval, where participants were shown a blank 

grey screen. Following the rest period, a colour photograph, that was randomly selected, was 

displayed for 1 second. Subsequently, the image disappeared, and the 2-second rest interval 

occurred before the presentation of the next image. This was repeated until all 112 images 

had been presented.  

 

Following the completion of all blocks, the EEG cap was removed, and a subjective rating block 

was completed. Here, participants were informed that they were required to rate their 

perceived pain intensity of the images on a 0 – 100 scale with 0 reflecting no pain and 100 

reflecting extreme pain. The rating scale included vertical bars denoting increments of 10. 

During the rating period, participants were presented with an image positioned above the 

rating scale and were required to rate the image by clicking the scale with the mouse in their 

right hand. The presentation of the images was randomised, and for each image, an infinite 

response time was employed. Once the participant had successfully rated the image, the 

screen was cleared, and the next image and scale were presented 100ms later. Following this, 

participants completed the pain catastrophizing scale (PCS; M. J. L. Sullivan et al., 1995) and 

were subsequently debriefed and compensated for their time and expenses.  
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5.2.4 EEG Acquisition 
 

Continuous EEG recordings were acquired using a 129-channel EGI System (Electrical 

Geodesic Inc., EGI, now Magstim EGI, Eugene, Oregon, USA) and a sponge-based Geodesic 

sensor net. The net was positioned with respect to three anatomical landmarks: two pre-

auricular points and the nasion. Throughout the experiment, electrode-to-skin impedances 

were maintained below 50 kΩ. A recording bandpass filter was applied between 0.001 – 200 

Hz and the sampling rate was set at 1000 Hz. Cz was used as the reference electrode. 

 

5.2.5 EEG Data Analysis 
 

The data were pre-processed using the Harvard Automated Processing Pipeline for 

Electroencephalography (HAPPE version 3; Gabard-Durnam et al., 2018). Firstly, low-pass and 

high-pass filters were applied to the data at 45 and 0.1 Hz, respectively. Secondly, the data 

were downsampled to 500 Hz and re-referenced using the common average approach 

(Lehmann, 1987). Moreover, bad channel detection and interpolation were performed, and 

data contaminated by artefacts (e.g., oculographic) underwent wavelet thresholding (soft 

margin) to separate artefact and neural data. The data were then segmented into epochs of 

-200ms to 800ms relative to stimulus onset (500 total time points) and baseline corrected (-

200ms to 0ms). Automated epoch rejection was then performed based on segment amplitude 

and similarity criteria. The thresholds were set at minimum and maximum segment amplitude 

of -150 and 150, respectively in line with HAPPE recommendations (Gabard-Durnam et al., 

2018). The number of trials (mean ± SD) retained after automated trial rejection was 60.18 ± 

8.44 (72% of total trials) for neutral scenes, 61.23 ± 6.19 (73%) for pain scenes, 62.93 ± 7.87 

(75%) for neutral faces, and 62.15 ± 6.90 (74%) for pain faces, in sample one. In sample two, 
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the mean number of trials remaining was 61.88 ± 5.14 (74%) for neutral scenes, 61.78 ± 6.22 

(74%) for pain scenes, 62.63 ± 4.81 (75%) for neutral faces, and 62.27 ± 5.19 (74%) for pain 

faces. Finally, for sample three, the remaining number of trials was 62.76 ± 6.36 (75%) for 

neutral scenes, 60.20 ± 5.89 (72%) for pain scenes, 63.80 ± 5.97 (76%) for neutral faces, and 

64.08 ± 6.49 (76%) for pain faces. Following pre-processing, the ERPs were analysed in 

MATLAB 2020b (The MathWorks, Inc., Natick, Massachusetts, USA) and EEGLAB 2021.1 

(Delorme & Makeig, 2004). Multiple comparisons were accounted for using the false 

discovery rate (FDR) method. A minimum window width of 10ms was implemented to assess 

significant differences between the ERP waveforms.  

 

5.2.6 Machine Learning Procedure 
 

Following EEG pre-processing, the data were prepared for ML analysis. Each of the datasets 

(model development, cross-subject, and within-subject validation sample) were processed 

independently to prevent data leakage which could bias the external validation procedure 

(Luo et al., 2016). Candidate features were calculated from single-trial ERP waveforms. A total 

of 18 candidate features, which primarily represented descriptive statistics of the ERP 

waveform, were calculated for each trial between 0-800ms relative to stimulus onset. The 

features consisted of the mean, mode, median, minimum, maximum, standard deviation, 

root mean squared, variance, skewness, kurtosis, absolute mean, Shannon entropy, log 

energy entropy, range, mean squared, number of peaks, number of troughs, and the ratio 

between peaks and troughs. The features calculated in this study are comparable to previous 

research, both by our lab and external groups (Anuragi & Sisodia, 2020; Mari et al., 2023; Sai 

et al., 2019; Vargas-Lopez et al., 2021; Vimala et al., 2019). The 18 features were calculated 
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using MATLAB functions, where possible, and were computed for each of the 129 electrodes, 

resulting in 2322 candidate features. 

 

Single-trial EEG is significantly impacted by noise and variability (Faisal et al., 2008; Kaplan et 

al., 2005; Marathe et al., 2014). In line with our previous research, outlier feature values, 

defined as values beyond three median absolute deviations, were linearly interpolated. The 

interpolated values were calculated from neighbouring non-outlier data points for each 

condition using the MATLAB function filloutliers and were implemented as outliers impair the 

ML performance (Maniruzzaman et al., 2018). Interpolation was selected over data removal 

to maximise the dataset, as smaller datasets are more prone to overfitting (Vabalas et al., 

2019). A total of 4.77 ± 0.49%, 5.16 ± 0.31%, and 4.74 ± 0.15% of the data were interpolated 

for the model development sample, cross-subject validation sample, and within-subject 

validation sample, respectively.  

 

After outlier interpolation in MATLAB, all ML processing and analysis were conducted using 

Python and Scikit-learn (Pedregosa et al., 2011). Here, the random seed was set to 123 for all 

ML analyses. The features for each dataset were scaled to between 0 and 1 and univariate 

feature selection was conducted. All candidate features were ranked in terms of importance 

using F-tests and a custom sequential feature selection was implemented. Here, a baseline 

RF model, with no hyperparameter tuning, was developed with one feature initially. Features 

were sequentially added, up to a maximum of 100 features (to limit computational 

complexity), to identify the optimal feature configuration. The optimal number of features 

for each classification task (scenes - faces; scenes: neutral – pain; and faces: neutral – pain) 
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was defined as the baseline model that achieved the best cross-validation accuracy. Stratified 

k-fold validation (k = 10) was used as the cross-validation procedure.  

 

Following the identification of the optimal features, the final ML model was developed for 

each task. Here, a RF model was trained on the model development dataset. Hyperparameter 

optimisation was achieved using random search, which searches within a range of upper and 

lower bounds for the optimal hyperparameter values for a user-specified number of iterations 

(Bergstra & Bengio, 2012; Géron, 2019; L. Yang & Shami, 2020). The external validation 

datasets did not inform model development as this can lead to overfitting. Therefore, 

hyperparameter optimisation was only performed in relation to cross-validation 

performance. For training and cross-validation, we evaluated model performance using 

stratified k-fold validation (k = 10) with accuracy as the scoring function. A maximum of 5000 

iterations was specified for hyperparameter tuning. Once the optimal hyperparameters were 

identified, the model was refitted to the entire training dataset. This resulted in the final 

model that was evaluated using the external validation datasets. 

  

5.2.7 Model Evaluation: Discrimination and Calibration 
 

The predictive capability of each model was assessed using several performance metrics for 

each of the validation sets (cross-validation and two external validation datasets). The 

primary discrimination metrics in this study were the model accuracy and area under the 

receiver operating characteristics curve (AUC). In addition, we also assessed model 

performance using alternative metrics including the Brier score, F1 score, precision, and 

recall. Overviews of these metrics have been reported elsewhere (Alba et al., 2017; Assel et 
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al., 2017; Mari et al., 2022, 2023; Sokolova & Lapalme, 2009). For the external validation 

datasets, we calculated model performance for each subject and averaged across the entire 

sample to achieve both individual subject and whole sample accuracies.  

 

In addition to model discrimination performance, we also assessed calibration for models that 

exceed chance discrimination performance. Prediction algorithms can be subject to bias even 

when the models demonstrate excellent discrimination performance (Van Calster et al., 

2019). Consequently, model calibration, which evaluates the agreement between the model’s 

predicted probability of an event compared to the reference or observed value, should be 

assessed (Alba et al., 2017; Luo et al., 2016; Van Calster et al., 2019). We assessed model 

calibration using calibration curves for both the cross-subject and within-subject validation 

sets, segmenting each dataset into 20 bins (see Van Calster et al., 2019). Calibration curves 

display the predicted probability on the x-axis and the true probability on the y-axis. Perfect 

calibration is represented by a 45o line, whereby the predicted and observed probabilities are 

identical (Mari et al., 2023). Calibration has been extensively reviewed elsewhere (Y. Huang 

et al., 2020; Van Calster et al., 2019). Calibration assessment is only necessary when the ML 

models demonstrate good discrimination ability, as models with poor performance do not 

require additional calibration assessment (Alba et al., 2017). 

 

5.2.8 Statistical Thresholding  
 

Theoretically, the chance level for a binary classification task with infinite sample size is 50%. 

However, sample sizes are not infinite and are often small in neuroscience, resulting in 

variable chance levels. To quantitatively evaluate whether the ML model significantly 
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outperformed the chance level for each subject, we implemented a statistical thresholding 

approach based on a binomial cumulative distribution method proposed by Combrisson and 

Jerbi (2015). The statistical threshold to exceed the chance level can be calculated using the 

following approach that applies the binoinv MATLAB function: 

 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙	𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑏𝑖𝑛𝑜𝑖𝑛𝑣 )1 − 	𝛼, 𝑛,
1
𝑐, ∗ 	

100
𝑛 	 

 

Where a is the significance level, n is the number of trials per participant, and c is the 

number of classes.  

 

For a given participant with n = 200 and c = 2, the model accuracy must be above 56%, 58%, 

and 61% to be significant at the .05, .01, and .001 levels, respectively (Combrisson & Jerbi, 

2015). If the model accuracy exceeds the given threshold, the performance is significantly 

greater than the chance level. A minimum of 100 data samples is required to achieve 

comparable results to permutation testing (Combrisson & Jerbi, 2015). For all classification 

attempts, all subjects had more than 100 trials meaning that the use of binomial testing is 

acceptable. In all classifications, we use a threshold of p = 0.05. The average chance level for 

cross-subject and within-subject predictions was 55.20 ± 0.20% and 55.26 ± 0.24%, 57.34 ± 

0.37% and 57.41 ± 0.39%, and 57.39 ± 0.36% and 57.24 ± 0.38%, for faces – scenes, scenes: 

neutral – pain, and faces: neutral – pain classifications, respectively. Finally, to test whether 

the average sample performance exceeded the average chance threshold for each sample 

and classification attempt, the individual subject accuracies and chance levels were compared 

using paired samples t-tests. 



 191 

5.3 Results 

5.3.1 Self-report Ratings 
 

Descriptive statistics of the average self-report pain ratings for each of the four image types 

across the three samples are presented in Table 5.1. A 2 x 2 repeated measures ANOVA was 

conducted using IBM SPSS 27 (IBM Corp., Armonk, New York, USA) to assess the differences 

between participant pain ratings for the different conditions. The data from samples one 

(model development) and two (cross-subject validation) were combined for the analysis. 

There was a significant main effect of image type on the participant’s perceived pain intensity 

ratings (F (1,90) = 19.89, p < .001, hp
2 = .18), with the action scene images being rated as more 

painful than faces. Moreover, there was a significant main effect of pain condition (F (1,90) = 

1568.26, p < .001, hp
2 = .95). Here, the pain condition images received significantly higher 

pain ratings than the neutral condition images. Additionally, there was a significant 

interaction between image type and pain condition (F (1,90) = 22.10, p < .001, hp
2 = .20). Post 

hoc paired samples t-tests demonstrated that pain ratings were significantly higher in the pain 

scenes condition when compared to the pain faces condition (t (90) = 4.89, p < .001, d = .51). 

There was no significant difference between pain ratings for the neutral faces or scenes 

conditions (t (90) = 0.68, p = .497, d = .07). Furthermore, the pain scene images had 

significantly higher pain ratings when compared to the neutral scene images (t (90) = 38.72, 

p < .001, d = 4.06). Finally, the pain face images received significantly higher pain ratings when 

compared to the neutral face images (t (90) = 31.09, p < .001, d = 3.26). 
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Table 5.1 Mean ± SD of perceived pain intensity for each condition and sample.  

Sample Neutral Scenes Neutral Faces Pain Scenes Pain Faces 

Development Sample 5.96 ± 8.32 4.87 ± 8.35 61.74 ± 14.04 52.63 ± 18.19 

Cross-subject Validation Sample 3.80 ± 3.98 3.93 ± 5.10 63.55 ± 14.49 57.28 ± 14.80 

Within-subject Validation Sample 4.87 ± 8.31 4.56 ± 8.91 61.59 ± 10.69 58.38 ± 14.84 

 

 

5.3.2 ERP Analyses 
 

Figures 5.2A, B, and C show the averaged ERP waveform from select electrodes and the scalp 

isopotential maps for each condition and comparison (scenes – faces, scenes: neutral – pain, 

faces: neutral – pain). A significantly stronger negative deflection in response to face images 

compared to scene images was observed over bilateral occipital-temporal electrodes during 

the N170 time window (142 – 214ms; peak 170ms; p < .00001). Regarding neutral and pain 

scene images, a significantly stronger positive deflection was observed in a cluster of central-

parietal electrodes during the LPP (524 – 796ms; p < .05), peaking at 578ms. Similarly, for 

neutral and pain faces, a significantly enhanced P3 potential (270 – 348ms; peak 318ms; p < 

.05) was observed over central-parietal electrodes in the pain condition relative to the neutral 

condition.  
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Figure 5.2 Average ERP waveforms and scalp isopotential maps for each comparison from the 

unique 91 subjects within samples one and two. (A) Brain responses to scene and face images. 

Left: Average ERP waveforms from electrodes 58 (P7) and 96 (P8) for each condition. Right: 

Average scalp potential for each condition between 150 and 190ms. (B) Brain responses to 

neutral and pain scenes. Left: Average ERP waveforms from electrodes Cz, 55, and 62 (Pz). 

Right: Average scalp potential between 524 and 674ms for each condition. (C) Brain responses 

to neutral and pain face images. Left: Average ERP waveforms at electrodes Cz, 55, and 62 

(Pz). Right: Average scalp potential between 270 and 348ms for each condition. White circles 

indicate electrode locations of the average ERP waveforms. Light grey bars denote significant 

differences at p < .05. Dark grey bars represent significant differences at p < .00001. 
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5.3.3 Machine Learning Analyses 
 

Following ERP analyses, the ML analysis was conducted for each of the three classification 

attempts. From the feature selection procedure, a total of 89, 94, and 90 features were 

deemed optimal for each classification task, respectively. The scalp locations of the optimal 

features for each of the different classification paradigms are presented in Figure 5.3. 

Additionally, the number of trials/observations used in the ML analysis for each condition and 

each sample is presented in Table 5.2. 

 

 

 

 

 
 
 
 
 
 

Figure 5.3 Scalp locations of the important features determined during feature selection and 

model development for each classification task: scenes – faces (A), scenes: neutral – pain (B), 

and faces: neutral – pain (C). 
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Table 5.2 The number of observations/trials per condition and sample used in the ML 

analysis. 

 
Scenes Faces 

 
Sample Neutral Pain Neutral  Pain Total 

Development/Cross-validation (n = 40) 2407 2449 2517 2486 9859 

Cross-subject (n = 51) 3156 3151 3194 3176 12677 

Within-subject (n = 25) 1569 1505 1595 1602 6271 

Total 7132 7105 7306 7264 28807 

 

 

5.3.3.1 Faces – Scenes Classification  
 

The average of each sample’s classification performance metrics and optimal 

hyperparameters for the classification of face versus scene photographs are reported in Table 

5.3. Additionally, Figure 5.4 shows the accuracies and chance thresholds for individual 

subjects in the cross-subject and within-subject validation samples. The average sample 

results demonstrate that the RF model achieved an accuracy (±SD) of 0.7456 (0.0459), 0.6415 

(0.0634), and 0.6880 (0.0792) on the cross-validation and two external validation sets, 

respectively. Moreover, the model achieved an average AUC of 0.8189 (0.0406) on cross-

validation, 0.7088 (0.0753) on cross-subject validation, and 0.7558 (0.0922) on within-subject 

validation. Paired samples t-tests demonstrated that the average sample accuracy was 

significantly greater than chance levels for the cross-subject sample (t (50) = 10.08, p < .001, 

d = 1.41) and the within-subject sample (t (24) = 8.46, p < .001, d = 1.69). 
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Table 5.3 Mean sample performance metrics for scenes - faces classification.  

 Cross Validation Cross-subject 

Validation 

Within-Subject 

Validation 

Metric Mean SD Mean SD Mean SD 

Accuracy 0.7456 0.0459 0.6415 0.0634 0.6880 0.0792 

AUC 0.8189 0.0406 0.7088 0.0753 0.7558 0.0922 

Brier Score 0.1707 0.0164 0.2152 0.0253 0.1970 0.0358 

F1 Score 0.7854 0.0299 0.6972 0.0460 0.7388 0.0557 

Precision 0.6924 0.0495 0.6129 0.0583 0.6597 0.0959 

Recall 0.9111 0.0240 0.8207 0.0890 0.8560 0.0802 

Optimal hyperparameters: Number of estimators = 766, Maximum depth = 53, Minimum 

samples to split = 9, Minimum samples at leaf = 2, Maximum features = sqrt, Bootstrap = 

False. 

       

Regarding the individual subject classification performance, the results demonstrate that the 

model accuracy for 47 of 51 subjects was significantly greater than the chance level (p < .05) 

for the cross-subject validation sample. Moreover, for all participants (25/25) in the within-

subject sample, the model achieved accuracies significantly greater than the chance levels. 
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Figure 5.4 Accuracies for each individual participant for the scenes – faces 

classification. (A) Cross-subject validation dataset. (B) Within-subject validation 

dataset. The black lines denote the significance threshold for chance 

classification performance at p = .05. 
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Finally, we also assessed model calibration for the two external validation datasets. The 

calibration curves for both validation stages are presented in Figure 5.5. To interpret the plots, 

if the model line falls above the reference line it is indicative of underestimating the 

probability of the outcome, whilst a line below the reference suggests the model is 

overestimating the probability of the event (Mari et al., 2023; Van Calster et al., 2019). The 

RF model for the faces versus scenes classification task generally demonstrates reasonable 

calibration for both cross-subject and within-subject datasets. The calibration curves follow 

the expected trend. Overall, the model is reasonably well-calibrated for both cross-subject 

and within-subject predictions.  

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Calibration curves for both cross-subject and 
within-subject validation datasets for the scenes – faces 
classification task. The black dotted line (45o) represents 
perfect calibration. 
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5.3.3.2 Scenes: Neutral – Pain Classification  
  

The average classification performance and optimal hyperparameters for the neutral versus 

pain scenes classification are reported in Table 5.4. The average accuracy (SD) was 0.8038 

(0.0208), 0.2837 (0.0358), and 0.5065 (0.0504) for cross-validation, cross-subject validation, 

and within-subject validation, respectively. The AUCs produced a similar trend, with the 

evaluation procedure demonstrating an AUC of 0.8348 (0.0234), 0.2747 (0.0361), and 0.5123 

(0.0518) for the three validation stages. Paired samples t-tests demonstrate that both the 

cross-subject (t (50) = 57.15, p < .001, d = 8.00) and within-subject (t (24) = 6.67, p < .001, d = 

1.33) performance is significantly lower than the chance threshold. Regarding individual 

subject performance, the classification accuracy was less than the chance level for all 51 

participants of the cross-subject sample. For the within-subject sample, only 2 of the 25 

subjects recorded an accuracy significantly greater than the chance level. The results for 

individual subjects are reported in Figure 5.6. Finally, as the models do not outperform chance 

levels for discrimination, we do not assess calibration.  
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Table 5.4 Mean sample performance metrics for neutral - pain scenes classification. 

 Cross Validation Cross-subject 

Validation 

Within-Subject 

Validation 

Metric Mean SD Mean SD Mean SD 

Accuracy 0.8038 0.0208 0.2837 0.0358 0.5065 0.0504 

AUC 0.8348 0.0234 0.2747 0.0361 0.5123 0.0518 

Brier Score 0.1480 0.0093 0.3966 0.0232 0.3044 0.0257 

F1 Score 0.8344 0.0151 0.3866 0.0423 0.4798 0.0554 

Precision 0.7277 0.0231 0.3379 0.0340 0.4960 0.0473 

Recall 0.9788 0.0204 0.4553 0.0635 0.4682 0.0758 

Optimal hyperparameters: Number of estimators = 735, Maximum depth = 46, 

Minimum samples to split = 28, Minimum samples at leaf = 17, Maximum features = 

sqrt, Bootstrap = False. 

       

5.3.3.3 Faces: Neutral – Pain Classification 
 

Finally, the average classification metrics and hyperparameters for the neural and pain faces 

classification are reported in Table 5.5. The results demonstrated that the RF model achieved 

an average accuracy (SD) of 0.6132 (0.0300), 0.5473 (0.0501), and 0.5076 (0.0383) for the 

cross-validation, cross-subject, and within-subject validation samples, respectively. In terms 

of AUC, the cross-validation AUC was 0.6717 (0.0396), the cross-subject AUC was 0.5629 

(0.0667), and the within-subject AUC was 0.5241 (0.0557). Paired samples t-test indicated 

that the average sample accuracy was significantly lower for the cross-subject validation 

sample (t (50) = 3.82, p < .001, d = 0.53) and the within-subject sample (t (24) = 8.57, p < .001, 
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d = 1.71). The individual subject accuracies for both the cross and within-subject samples are 

reported in Figure 5.6. Sixteen participants from the cross-subject sample and 2 participants 

from the within-subject sample achieved classification accuracies significantly greater than 

chance. As the model performance did not significantly exceed the chance threshold, we do 

not assess model calibration.  

 

Table 5.5 Mean sample performance metrics for neutral - pain faces classification. 

 Cross Validation Cross-subject Validation Within-Subject Validation 

Metric Mean SD Mean SD Mean SD 

Accuracy 0.6132 0.0300 0.5473 0.0501 0.5076 0.0383 

AUC 0.6717 0.0396 0.5629 0.0667 0.5241 0.0557 

Brier Score 0.2268 0.0073 0.2523 0.0155 0.2594 0.0108 

F1 Score 0.5944 0.0505 0.5046 0.1053 0.3942 0.1003 

Precision 0.6216 0.0353 0.5585 0.0720 0.5182 0.0834 

Recall 0.5788 0.0930 0.4932 0.1804 0.3355 0.1200 

Optimal hyperparameters: Number of estimators = 161, Maximum depth = 27, Minimum 

samples to split = 2, Minimum samples at leaf = 4, Maximum features = log2, Bootstrap = 

False. 
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Figure 5.6 Individual subject accuracies for both cross-subject (top panels) and within-subject 

(bottom panels) for both scenes: neutral – pain (left panels) and faces: neutral – pain (right 

panels). The black lines denote the significance threshold for above chance classification 

performance at p = .05. 

 
5.3.3.4 Exploratory Analysis  
 

As the RF model was unable to significantly exceed the chance thresholds for both neutral 

and pain scenes and faces classification, we performed exploratory analyses to assess 

whether a different number of features could improve the classification performance on the 

external validation datasets. To assess this, we developed and evaluated 100 RF models for 

each classification attempt, sequentially adding features on each iteration. We initially 

trained the model with 1 feature and progressed to a maximum of 100 features. The model 
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was then assessed on both validation datasets. The RF was trained using the same procedure 

as the other models developed in this study, but the number of iterations of hyperparameter 

optimisation was capped at 500 to reduce computation complexity. The mean, standard 

deviation, minimum, and maximum values for each of the classification tasks that did not 

exceed chance performance (scenes: neutral – pain and faces: neutral – pain) are reported in 

Table 5.6. The results of the exploratory analysis demonstrated comparable results to the 

original models developed. Minor performance improvements were observed, however, the 

model accuracy for both external validation sets remain around the chance classification 

level. 

 

Table 5.6 Exploratory analysis results (accuracy) for feature combinations (1-100). 

Classification  Sample Mean SD Minimum Maximum 

Scenes  Cross-validation 0.7048 0.1155 0.5282 0.8186 

  Cross-subject 0.3968 0.1226 0.2689 0.5362 

  Within-subject 0.5063 0.0058 0.4889 0.5218 

       

Faces  Cross-validation 0.5978 0.0014 0.5359 0.6128 

  Cross-subject 0.5435 0.0063 0.5148 0.5540 

  Within-subject 0.5166 0.0068 0.4952 0.5364 

 

 

 

 

 



 204 

5.4 Discussion 

We aimed to externally validate and classify single-trial EEG data elicited in response to visual 

stimuli using ML. Our results demonstrated that the RF model could classify images of scenes 

and faces with above-chance classification performance for all samples. However, the ML 

model could not discriminate between neutral and pain depictions of faces or scenes, 

achieving accuracies comparable to the chance classification rate, or lower. The results 

support our first hypothesis that the RF model would outperform the chance level for the 

scenes versus faces classification task. However, the remaining two hypotheses that the RF 

model would outperform chance for both cross-subject and within-subject samples on both 

the neutral and pain conditions for face and scene images were not supported as the model 

performance was significantly lower than chance on all classification attempts. Consequently, 

the results suggest that large broad category differences (e.g., faces – scenes) are sufficient 

to achieve above-chance classification performance using external single-trial EEG data. 

However, more nuanced differences, such as those observed in the neutral–pain 

classifications, cannot be used to accurately discriminate classes with novel data using the 

current paradigm. 

 

Our ERP analysis demonstrated an enhanced N170 over bilateral occipital-temporal 

electrodes in response to face images when compared to scenes, which has been reliably 

demonstrated previously (Bentin et al., 1996; Bötzel et al., 1995; Eimer, 2000; Itier, 2004; Itier 

& Taylor, 2004; Johnston et al., 2015; Soto et al., 2018). Moreover, an increased LPP over a 

cluster of central-parietal electrodes was identified in the pain scene images compared to the 

neutral condition. Finally, an increased P3 over central-parietal electrodes was observed in 
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response to pain faces compared to neutral expressions. The ERPs elicited in response to the 

empathic pain processing are also consistent with previous research (Coll, 2018; Fallon, Li, 

Chiu, et al., 2015). Meta-analyses of the ERP components observed during the empathic 

processing of painful stimuli demonstrated a positive shift in both the P3 and LPP components 

during the observation of painful stimuli, with the effect maximally observed over the central-

parietal region (Coll, 2018). Therefore, our ERP analysis validates the data quality and 

experimental paradigm and replicates the effects previously reported in a comparatively large 

sample of healthy participants. 

 

The findings from this study are comparable and build upon the findings of previous research 

which demonstrated that discrete categories of visual stimuli could be accurately classified 

by ML and EEG. We successfully classified images into either faces or scenes, using features 

predominately located across frontal-central and occipitotemporal regions, which are active 

during the observation of faces (e.g., N170 and VPP; Bentin et al., 1996; Bötzel et al., 1995; 

Jeffreys, 1989, 1996). Previous research has successfully classified neural responses to visual 

stimuli including faces, objects, and scenes (Bagchi & Bathula, 2022; Cudlenco et al., 2020; 

Ghosh et al., 2021; Kaneshiro et al., 2015; Stewart et al., 2014; Yavandhasani & Ghaderi, 

2022). The present study extends the previous research by externally validating ML and EEG 

for image classification for both cross and within-subject prediction tasks using a large sample 

size. Much of the existing literature consisted of small samples (e.g., £ 10 subjects; Bagchi & 

Bathula, 2022; Cudlenco et al., 2020; Kaneshiro et al., 2015; Stewart et al., 2014; 

Yavandhasani & Ghaderi, 2022; Zheng et al., 2020), which are at higher risk of overfitting, 

resulting in potentially biased results (Arbabshirani et al., 2017; Vabalas et al., 2019). 

Furthermore, previous research did not rigorously assess model performance using external 
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validation, which further increases the risk of poor generalisability (Collins et al., 2014). 

Therefore, the performance and utility of previous models should be interpreted with 

caution. In addition to generalising to external data, our classification of scenes and faces 

demonstrated well-calibrated estimates, which provides further evidence of an effective 

prediction model (Y. Huang et al., 2020; Van Calster et al., 2019). Calibration is often omitted 

in prediction modelling research, but it is essential to evaluating model performance 

(Christodoulou et al., 2019; Mari et al., 2022). Consequently, our research provides 

methodologically superior estimates of the effectiveness of ML and EEG for classifying visual 

stimuli during passive viewing. To our knowledge, we are the first to externally validate ML 

models for EEG visual task decoding, providing robust estimates of model discrimination and 

calibration, and allowing for the interpretation of model generalisability.  

 

The current study demonstrated that ML and EEG were unable to accurately classify neutral 

or pain faces or scenes. We believe that the low signal-to-noise ratio of EEG and the use of a 

passive task may have contributed to poor classification performance. Firstly, EEG has a low 

signal-to-noise ratio which may have resulted in poor discriminative ability for the neutral and 

pain stimuli classifications (Tivadar & Murray, 2019). The N170 component offers a 

distinguishing characteristic between images of face and non-face classes. However, the ERP 

waveforms for neutral and pain images in either face or scene conditions are similar in their 

spatio-temporal profile, with differences mainly implicated as enhanced or augmented 

component fluctuations (Coll, 2018; Fallon, Li, Chiu, et al., 2015). Therefore, we can speculate 

that the differences at the single-trial level may be attenuated by noise and not detectable. 

Indeed, ML-EEG research often implements spatial filters to improve the signal-to-noise ratio 

and classification performance (Blankertz et al., 2008; Rivet et al., 2009). However, we opted 
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against spatial filtering as it has a high risk of overfitting (Blankertz et al., 2008; Grosse-

Wentrup et al., 2009). Alternatively, the improved signal-to-noise ratio of 

magnetencephalography may allow for improved classification performance (S. Singh, 2014). 

Moreover, the use of a passive viewing paradigm may have contributed to the classification 

performance. Research has demonstrated that passive viewing tasks result in reduced P300 

amplitudes when compared to active viewing (Bennington & Polich, 1999), whilst other 

component amplitudes (e.g., LPP) are associated with, and altered by, attention and 

engagement (Dunning & Hajcak, 2009; Hajcak et al., 2013; Kam et al., 2014). Therefore, any 

further attenuation of ERPs arising from passive viewing may have hindered the ML 

algorithm’s ability to detect patterns. Consequently, nuanced differences (such as those 

elicited due to empathic responses to pain) may not enable accurate classification on the 

single-trial level during passive viewing. It is possible that active viewing tasks (e.g., requiring 

image classification performed by the viewer) may improve EEG signal and consequently ML 

performance. However, requiring input from the subject raises questions about the 

usefulness of such brain decoding tools, which should preferably allow inferences on 

behaviour without specific behavioural requirements. Additionally, active viewing may 

introduce additional confounds, leading to spurious results. Research has demonstrated that 

stimulus properties could be decoded solely using eye movements in an active viewing task, 

which was not possible during passive viewing within the same sample (Thielen et al., 2019). 

Whilst the impact of active viewing on EEG-ML classification systems should be investigated, 

it is important to note that, for the method to be genuinely useful and offer novel insight, it 

should preferably be able to accurately classify responses during passive viewing. Overall, the 

inability of the ML algorithm to classify neutral and pain images likely stems from poor signal-

to-noise ratio and attenuated ERP responses. 
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Our results highlight the importance of external validation in ML research. Without 

performing robust, external validation, the generalisability of the ML model cannot be 

effectively assessed as the results may stem from overfitting (Cabitza et al., 2021; Vabalas et 

al., 2019; Varma & Simon, 2006). Our cross-validation analysis of the pain scenes classification 

appears promising, with the model achieving an accuracy of approximately 80%. However, by 

implementing external validation, it was evident that the model was overfitting, achieving an 

accuracy below the chance level (28%) for the cross-subject dataset and comparable to 

chance (51%) for the within-subject validation. Therefore, through the external validation 

protocol, we were able to identify a model with poor generalisability, which may have 

otherwise been reported as an important finding. Indeed, we are not the first to demonstrate 

reduced performance when using an external validation (X. Li et al., 2019; Mari et al., 2023; 

Siontis et al., 2015), which is a significant, but often overlooked consideration when designing 

applied ML projects. Much of the prediction modelling research (regardless of research 

domain) does not assess model performance using external validation (e.g., only 5% of 

prediction modelling articles on PubMed report external validation in the title or abstract; 

Ramspek et al., 2021). Caution is advised when reporting or interpreting past ML-EEG results 

which have only been assessed using internal methods such as cross-validation, as the models 

are prone to overfitting, resulting in inflated, un-generalisable performance metrics (Cabitza 

et al., 2021; Siontis et al., 2015; Varma & Simon, 2006). Overall, our study highlights the 

importance of robust evaluation procedures when using ML, to minimise the risk of a new 

replication crisis (Hutson, 2018). 

 

The present study has several limitations. Firstly, we used a passive viewing experimental 

paradigm, which may have resulted in attenuated ERP responses (Bennington & Polich, 1999). 
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Whilst we observed significant differences in both the P3 and LPP components in response to 

neutral and pain images, the differences between the conditions on a single trial level may 

have not been preserved due to the reduced neural responses associated with passive 

viewing, the low signal-to-noise ratio, and single-trial variability which may have contributed 

to poor ML performance (Blankertz et al., 2011). Additionally, informal feedback from 

participants indicated that the passive viewing task was perceived as ‘boring’, which may have 

reduced attention, further impacting the neural responses (Dunning & Hajcak, 2009; Hajcak 

et al., 2013; Kam et al., 2014). Therefore, passive viewing may not be appropriate to elicit 

adequate responses that are detectable using ML at the single trial level using the approach 

outlined in the present study. Future research should implement active viewing paradigms 

and assess ML performance to build on our findings. For example, a two-alternative forced 

choice paradigm whereby participants are required to determine the presence or absence of 

pain may be more suitable for ML classification than passive viewing tasks. Similar forced 

choice tasks within pain empathy research have been widely reported (Coll, 2018). Secondly, 

whilst the images in the study were similar to previous research (Fallon, Li, & Stancak, 2015; 

Fallon, Li, Chiu, et al., 2015; Y. Fan & Han, 2008; Han et al., 2008; Mende-Siedlecki et al., 2021), 

they may not be extreme enough to be detectable at the single trial level. Future research 

may wish to explore more intense pain imagery, such as those depicting injury (Osborn & 

Derbyshire, 2010), which may elicit larger ERP and behavioural responses. Additionally, the 

two stimuli categories used in this study (faces and scenes) were not matched for all physical 

properties (e.g., luminance), which may have confounded the EEG and impacted the 

classification. Research has demonstrated that properties such as brightness can alter EEG 

responses (Eroğlu et al., 2020). Therefore, we cannot entirely rule out the notion that 

confounds such as the physical properties of the image contributed to the classification 
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performance. Moreover, we did not record the racial background of the participants in this 

study. Research has shown that neural responses during pain observation are attenuated 

when viewing individuals of a different race (Y. Cao et al., 2015). Therefore, collecting and 

reporting the racial background of the subjects in this study could have provided important 

additional insight. Finally, the current study only recorded neural responses. Future research 

should aim to record composite measures (e.g., galvanic skin response) to supplement the 

EEG, which may improve classification performance. 

 

The current study has important significance in the research field. Specifically, we provide the 

most robust estimates of EEG-ML visual stimuli decoding due to the extensive external 

validation procedure. We identified a potential limit of ML-EEG techniques, as ML models 

were unable to accurately classify pain observation above chance levels. However, assuming 

model performance can be improved, developing an empathy classification tool has 

important applications in healthcare, such as a supplementary tool for empathy training for 

healthcare workers (Bas-Sarmiento et al., 2020). However, performance improvements are 

imperative before such applications are considered. Currently, we can reasonably predict 

whether an individual was observing a face or a scene on external data, which represents an 

important knowledge contribution. However, the criteria typically applied to clinical contexts 

suggest that models that demonstrate an AUC less than or equal to 0.75 are not deemed 

practically useful (J. Fan et al., 2006). Given that most of the AUCs in this study do not exceed 

this threshold, we recommend that improved model performance is pursued to increase the 

practical significance of the results, with a particular focus on empathic response prediction. 
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5.5 Conclusion 

To the best of our knowledge, this is the first study to externally validate ML and EEG for the 

classification of various classes of visual stimuli including pain or neutral facial expressions 

and scenes with pain being inflicted on another person, or without pain. Our results 

demonstrate that ML and EEG can be used to decode neural responses and successfully 

classify face versus scene images with better-than-chance accuracy. However, the ML models 

were unable to discriminate between neutral and painful depictions of either face or scene 

images. Additionally, the ML result questions the suitability of passive viewing tasks for brain-

based decoding algorithms. Overall, the study demonstrates promising results for decoding 

discrete categories of visual stimuli but is unable to identify the observation of pain using 

single-trial ERP responses. Finally, our results reiterate the importance of robust, external 

validation procedures to sufficiently evaluate ML-EEG performance; without which may lead 

to a new wave of impressive, but not replicable, findings. 
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Chapter 6:   

External Validation of Machine Learning and EEG for 
Continuous Pain Intensity Prediction in Healthy Individuals  

 
Tyler Mari1, Jessica Henderson1, S. Hasan Ali1, Danielle Hewitt1, Christopher Brown1, Andrej 
Stancak1, Nicholas Fallon1 

1 Department of Psychology, University of Liverpool, Liverpool, UK 

This study aimed to externally validate ML and EEG for the prediction of continuous pain 

intensity. 
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Abstract 

 

Previous research has predicted subjective pain intensity from electroencephalographic (EEG) 

data using machine learning (ML) models. However, there is a paucity of externally validated 

ML models for pain assessment, particularly for continuous pain prediction (e.g., decoding 

pain ratings on a 101-point scale). We aimed to conduct the first external validation paradigm 

for ML regression models for continuous pain intensity prediction from EEG data. Ninety-one 

subjects were recruited across three samples. Sample one (n = 40) was used for model 

development, sample two (n = 51) was used as a cross-subject external validation set, whilst 

sample three (n = 25) was used as a within-subjects temporal external validation set. 

Pneumatic pressure stimuli were delivered to the left-hand index fingernail bed at 10 graded 

intensity levels. Single-trial time-frequency features of peri-stimulus EEG were used to train a 

Random Forest (RF) model and long short-term memory (LSTM) network to predict 

continuous (0 – 100) pain intensity responses. Results demonstrated that both the RF model 

and LSTM network predicted pain intensity significantly more accurately than a random 

prediction model, with the mean absolute error (MAE) of the RF (best performing model) at 

19.59, 21.29, and 18.90 for internal validation, cross-subject external validation, and within-

subject external validation, respectively. However, neither model was able to predict pain 

intensity better than a baseline dummy model, which predicted the mean behavioural rating 

of the training set and did not have access to neural data. Moreover, in a replication of our 

recent work, we developed a RF model for the classification of low and high-pain trials, which 

demonstrated internal and external validation accuracies up to 64% and 58%, respectively. 

Taken together, our results suggest that using ML and EEG to predict continuous pain ratings 

is not currently feasible. However, classification models demonstrate some potential, 
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consistently outperforming chance across validation samples. Further improvements such as 

composite measures are required to elevate ML performance to a clinically meaningful level. 
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6.1 Introduction 

Pain is subjective, complex, and challenging to measure due to an intricate interplay between 

biological, psychological, and social factors (Bendinger & Plunkett, 2016; Breivik et al., 2008; 

Gatchel et al., 2007; Younger et al., 2009). The current gold standard of pain assessment is 

self-report measures, requiring high-level linguistic and social skills, which are unsuitable for 

individuals who cannot accurately communicate their pain (Herr et al., 2011; Schiavenato & 

Craig, 2010). Vulnerable populations including non-verbal individuals (Herr et al., 2011; D. Li 

et al., 2008; McGuire et al., 2016) or individuals with cognitive impairments (Herr et al., 2011; 

Voepel-Lewis et al., 2002), traumatic brain injury (Arbour & Gélinas, 2014), dementia (Breivik 

et al., 2008; Herr et al., 2011; Kunz et al., 2009), or disorders of consciousness (Herr et al., 

2011; Schnakers & Zasler, 2007), and children (Herr et al., 2011; Witt et al., 2016) are often 

unable to self-report their pain, which can prevent effective pain management. Therefore, 

pain assessment techniques that are independent of self-report may facilitate improved pain 

management in these populations.  

 

Numerous brain regions contribute to pain processing, including the primary (SI) and 

secondary (SII) somatosensory cortex, insular cortex, anterior and midcingulate cortex, 

prefrontal cortex, thalamus, amygdala, periaqueductal grey, cerebellum, and brainstem 

(Duerden & Albanese, 2013; Jensen et al., 2016; Petre et al., 2022; Peyron et al., 2000; A. Xu 

et al., 2020). A recent coordinate-based activation-likelihood estimation (ALE) meta-analysis 

demonstrated consistent pain-related activations independent of stimulus modality, location, 

and gender in bilateral SII, amygdala, thalamus, brainstem, right middle frontal gyrus, left 

insula and midcingulate cortex (A. Xu et al., 2020). The brain regions implicated in pain 
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processing are often considered a distinct pattern, such as the pain matrix or neurologic 

signature, which exhibits activity changes that encode pain intensity (Garcia-Larrea & Peyron, 

2013; Wager et al., 2013). Consequently, neural markers of pain may enable proxy pain 

assessment. 

 

Electroencephalography (EEG) may demonstrate clinical utility as a proxy pain assessment 

technique as it is low-cost and easy to use (Mackey et al., 2019; Tivadar & Murray, 2019). 

Importantly, pain-related changes in cortical oscillations are observable across scalp regions 

in established frequency bands, which may enable pain assessment (J. A. Kim & Davis, 2021; 

Ploner et al., 2017; Zis et al., 2022). Augmented theta oscillations have been observed during 

the resting state EEG of individuals with fibromyalgia (Fallon et al., 2018). Additionally, 

research has demonstrated increased theta amplitudes over central and parietal regions 

during tactile and painful stimulation, with larger amplitudes observed during painful 

stimulation (Michail et al., 2016). The contribution of alpha and beta bands in pain processing 

is well-established, with research consistently demonstrating alpha suppression and beta 

enhancement during tonic pain stimulation (A. C. N. Chen & Rappelsberger, 1994; Dowman 

et al., 2008; Huber et al., 2006; Shao et al., 2012). Finally, gamma-band oscillations over SI 

predict both stimulus and subjective pain intensity (Gross et al., 2007; Zhang et al., 2012). 

Overall, EEG activity could reliably decode pain intensity. 

 

Supervised machine learning (ML) has been successfully implemented to decode pain-related 

outcomes using several neuroimaging modalities (Mari et al., 2022; van der Miesen et al., 

2019). Specifically, we previously externally validated ML and EEG for low and high pain 

intensity classification through a multistage validation procedure (Mari et al., 2023). Using 50 
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time-frequency features consisting of theta, alpha, lower beta, upper beta, and gamma bands 

from frontal, central, and parietal regions, we classified low and high pain with a cross-

validation accuracy of 73.18% using a random forest (RF). Importantly, the model generalised 

to a novel sample with an accuracy of 68.32%. Further, the model achieved an accuracy of 

60.42% on additional external data that used different experimental pain stimulation. 

Consequently, our results provided robust estimates of ML performance for pain classification 

on novel samples. However, regression models, which demonstrate finer prediction 

resolution, should be assessed to improve clinical utility. Obtaining more precise pain 

estimates may enable improved pain management. For example, predicting continuous 

ratings enables finer monitoring of pain over time and allows for changes after treatment to 

be more accurately assessed (e.g., small changes in pain intensity can be identified, which is 

not possible with broad binary classification; Shirvalkar et al., 2023). 

 

Previous research has used linear regression to predict subjective pain intensity (0-10) from 

single-trial laser-evoked potentials (LEPs), achieving a mean absolute error (MAE) of 1.03 and 

1.82 (lower scores represent better performance) for within- and cross-subject predictions, 

respectively (G. Huang et al., 2013). Furthermore, Bai and colleagues (Bai et al., 2016) 

developed a normalisation technique to reduce EEG inter-individual variability and improve 

model performance, achieving a MAE of 1.17 for cross-subject prediction. Using the same 

dataset, Li et al. (2018) predicted subjective pain intensity with a MAE of 1.19. Finally, 

research has demonstrated that subjective pain intensity could be predicted with a MAE of 

1.15, using pre- and post-stimulus time-frequency features (Tu et al., 2016). The evidence 

suggests that EEG and ML can be combined to predict continuous pain ratings.  
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The previous findings are promising but lack external validation. To comprehensively assess 

ML performance, models should be evaluated on data that is independent of the training set, 

as internal validation methods often result in inflated performance metrics (e.g., accuracy) 

due to overfitting (Cabitza et al., 2021; Lever et al., 2016; Siontis et al., 2015; Vabalas et al., 

2019; Varma & Simon, 2006). External validation, which evaluates model performance on 

novel data obtained from different cohorts, facilities, repositories or collected at a different 

time, location or using a different experimental paradigm, is essential to obtain robust 

estimates of model generalisability during prediction model development (Cabitza et al., 

2021; Collins et al., 2015). As model performance is often diminished on external data (X. Li 

et al., 2019; Mari et al., 2023; Siontis et al., 2015), the generalisability and utility of studies 

that only employ internal validation are unclear and not sufficient evidence to support clinical 

translation (Bleeker et al., 2003; Ramspek et al., 2021). Although significant further research 

is required, studies that externally validate pain prediction models are emerging (Furman et 

al., 2020; Mari et al., 2023). 

 

The present study aimed to externally validate ML and EEG for the prediction of subjective 

pain intensity both across and within subjects. Firstly, we trained a RF model to predict 

subjective pain intensity (0-100) using hand-crafted time-frequency EEG features. Secondly, 

we developed a long short-term memory (LSTM) network to predict subjective pain intensity 

using the EEG time series from each electrode and frequency band for each trial. 

Furthermore, model performance was assessed using a multi-stage validation approach 

consisting of cross-validation (RF model only), internal validation, and external validation 

(both across and within subjects). The cross-subject validation sample consisted of a new 
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cohort, whilst the within-subject temporal validation sample consisted of participants from 

the model development sample who completed a second experimental session.  

 

To assess whether the ML models predicted pain intensity better than chance levels, we 

compared the ML algorithms to two additional dummy models, including a random prediction 

model and a baseline model that predicted the mean value of all subjective pain responses 

from the training set. We hypothesised that the RF and LSTM would predict subjective pain 

intensity (0 – 100) using EEG data more accurately than both the random and baseline 

models, achieving lower MAE scores for all samples. Secondly, we hypothesised that the LSTM 

would predict subjective pain intensity more accurately than the RF model on all samples.  

 

6.2 Methods 

6.2.1 Participants 
 

A total of 116 EEG recordings were collected across model development, cross-subject 

validation, and within-subject temporal validation samples. Participants were recruited using 

an opportunity sampling method. The model development sample consisted of 40 

participants (22 female; 7 left-handed) aged between 18 and 52 (Mean = 27.70 years, 

standard deviation [SD] = 7.43). The cross-subject validation sample consisted of an additional 

51 participants (34 female; 6 left-handed) aged between 19 and 60 (Mean = 27.63 years, SD 

= 9.65). There was no participant overlap between the development and cross-subject 

validation samples. Moreover, a total of 25 participants aged between 21 and 53 (14 female; 

4 left-handed; Mean = 28.96 years, SD = 8.01) from the development sample completed the 

study for a second time after a minimum of 12 weeks had elapsed from their first session 
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(Mean = 108.68 days, SD = 10.92), resulting in a within-subject temporal validation sample. 

Participants were at least 18 years old, had normal or corrected-to-normal vision, no 

neurological conditions, no acute pain at the time of participating, no history of chronic pain 

and no injuries to the left-hand index finger that may affect sensory perception (e.g., nerve 

damage). Participants provided written informed consent before participation and all 

methods were conducted in compliance with the Declaration of Helsinki. This research 

received ethical approval from the University of Liverpool Health and Life Sciences Research 

Ethics Committee. Participation was reimbursed at a rate of approximately £13.33 per hour. 

The raw data is available from authors on reasonable request. 

 

6.2.2 Pneumatic Pressure Stimulator 
 

Tonic pain stimulation was delivered to the fingernail bed of the left-hand index finger using 

a custom-built pneumatic pressure stimulator (Dancer Design, St. Helens, UK), as utilised in 

previous pain research from our lab and others (Mari et al., 2023; Watkinson et al., 2013). 

The pneumatic stimulator consisted of a pneumatic force controller, which directed air from 

an 11.1-L aluminium cylinder into the stimulator. This lowered a 1cm2 probe to deliver the 

desired force. The stimulator was controlled using a LabJack U3 printed circuit board for 

interface. The pressure was mechanically limited to a maximum of 3.5 bar (12kg/cm2) to 

reduce the risk of injury. 
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6.2.3 Procedure 
 

The experiment was conducted in the EEG laboratory at the University of Liverpool between 

June and October 2022. On arrival at the lab, participants were seated 1 metre away from a 

23-inch 1080p LCD monitor inside a Faraday cage. Participants received a verbal description 

of the experiment before reading the information sheet and providing written consent. A 

custom mould of the participant’s left-hand index finger, which correctly positioned and 

maintained the finger underneath the stimulator probe, was created using a two-part silicone 

elastomer. The stimulator probe was aligned to stimulate the fingernail bed of the left-hand 

index finger. Additionally, participants were offered foam earplugs (28dB) to minimise any 

potential noise. Following alignment, participants underwent a thresholding procedure to 

identify their maximum-intensity stimulus.  

 

Before the initiation of the thresholding block, participants were instructed to rate the pain 

intensity of each stimulus on a 101-point (0-100) numerical rating scale by using the mouse 

in their right hand to select the desired point on the scale. Scale anchoring was set at 0 which 

represented no sensation, and 100 which reflected extreme pain. Additionally, 30 

represented the pain threshold and was denoted on the rating scale with the number 30 and 

the term “pain threshold”. The scale rating included vertical bars which denoted increments 

of 10. Participants were informed that ratings below 30 represented non-painful stimulation 

(e.g., touch) and that a rating of 0 indicated that they did not feel the probe, or the probe did 

not touch their finger due to finger compression. Participants were also informed that the 

stimulus intensity that elicited a rating of 70 or above would be used as their maximum 

intensity and that this value reflected upper moderate pain intensity. 
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A staircase procedure was implemented for the thresholding section. Here, the pressure 

intensity was initialised at 0.4 bar and increased in steps of 0.2 bar whilst the participant's 

rating was below 40. Once the rating exceeded 40, the increment was reduced to 0.1 bar. The 

maximum intensity of the stimulus was limited to 3.0 bar (10.5kg/cm2) using custom software. 

The participants initialised the block by pressing the space bar, which began lowering the 

probe. During this period, a black fixation cross was presented on the screen. For each trial, 

the pressure stimulus had a rise time of 1 second, which reflected the time taken for the 

probe to go from 0 bar to the desired intensity. Subsequently, the trial intensity was 

maintained for 3 seconds, released, and followed by a 4-second wait period. The rating scale 

was then displayed until the participant successfully rated their pain intensity. Following the 

rating phase, the scale was replaced with a black fixation cross, and a further two-second wait 

time was implemented. The thresholding block was terminated once the participant had 

rated one of the stimulus intensities as at least 70 representing upper moderate pain. The 

pressure that elicited this rating was set as the maximum intensity. Moreover, participants 

were informed that the intensity could be adjusted throughout the session if it was either too 

painful or not painful enough. Stimuli intensity changes were set at fixed values of 0.1, 0.2, or 

0.3 bar depending on the judgment of the researcher (e.g., an inspection of the pain ratings) 

and discussions with the participant. Following the completion of the thresholding procedure, 

participants exited the Faraday Cage for the EEG cap fitting. 

 

For the main experimental block, a set of 10 stimuli intensities was created for each 

participant. The 10 stimuli intensities were linearly spaced between the minimum pressure 

(0.4 bar) and the upper-pressure limit selected for the participant (e.g., the pressure that 

elicited a pain intensity rating ³ 70 on the thresholding procedure block). In each block, a total 
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of 40 pseudo-randomised stimuli were delivered, which consisted of four randomised 

repetitions of each of the 10 stimuli intensities (see Stimuli Randomisation Procedure). Before 

the start of the block, the participant’s finger was realigned under the stimulator probe and 

occluded from sight. Subsequently, participants were provided with verbal and written 

instructions for the task.  

 

Each trial consisted of a baseline period, stimulus delivery phase, and post-stimulus rating 

segment. A baseline period of 4 seconds was implemented, followed by a 1-second stimulus 

rise time, where the stimulus intensity increased from 0 bar to the desired stimulus intensity 

in 1/10th increments every 0.1 seconds. Once the stimulus had reached the desired intensity, 

it was maintained for a total of 3 seconds before being released. Following the end of the 

stimulation period, a 4-second post-stimulus phase was implemented. A black fixation cross 

was presented on the centre of the screen continuously during the previous segments. 

 

Following the completion of the stimulation period in each trial, participants were required 

to rate their subjective pain intensity using the same 101-point scale as the thresholding 

procedure. However, participants were informed that they could report any subjective pain 

intensity that corresponded to their experience on that trial, i.e., that rating above the 

previous 70 threshold was permitted without the experiment terminating. The rating scale 

section had an infinite duration with a minimum of 2 seconds. Following the rating phase, the 

fixation cross was presented on the screen and a subsequent forced wait period was 

conducted. Each trial had a minimum inter-trial interval of 16 seconds. Following the 

completion of the experimental task, the EEG cap was removed and participants completed 
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the pain catastrophising scale (M. J. L. Sullivan et al., 1995) before being debriefed and 

reimbursed for their time.  

 

The experiment consisted of four blocks, resulting in a total of 160 stimuli, with each block 

lasting approximately 15 minutes. Each block was separated by a distractor task, resulting in 

a minimum inter-block interval of 5 minutes. All experimental procedures were delivered 

using PsychoPy (Peirce, 2007).  

 

6.2.4 Stimuli Randomisation Procedure 
 

Stimuli were pseudo-randomised using a custom randomisation algorithm. Pseudo-

randomisation was conducted to prevent the clustering of high-intensity stimuli, which could 

have become too painful for the participant. Consequently, the 10 stimulus intensities were 

ordered from minimum to maximum and arranged into 5 pools that contained two adjacent 

stimuli. For example, pool one included the two lowest stimuli intensities, whilst pool 5 

contained the two highest stimuli intensities. An empty array was created to store the final 

stimuli ordering. Subsequently, one of the 5 pools was chosen at random and one value in 

that pool was selected, removed, and added to the final ordering array. If the selected pool 

was the highest intensity pool, on the next iteration, the algorithm was forced to select from 

pools one, two, or three which contained stimuli at approximately low and moderate 

intensities. If the maximum intensity pool was not selected, the algorithm could select any of 

the pools that still contained values on the next iteration. This process was repeated until the 

10 stimuli were shuffled and appended to the final ordering list. This process was repeated 4 

times for each block, resulting in a total of 40 stimuli. To prevent high stimuli clustering at the 
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end and beginning of each iteration, additional safety measures were implemented. On the 

second, third, and fourth iterations, the algorithm was prevented from selecting one of the 

highest-intensity pools first if the last intensity from the previous iteration was also high, 

which further prevented high-intensity stimuli from grouping. This process was conducted for 

each block and participant, meaning that all blocks across all participants had a unique 

ordering.  

 

6.2.5 EEG Acquisition 
 

EEG recordings were continuously obtained using a 129-channel EGI System (Electrical 

Geodesic Inc., EGI, now Magstim EGI, Eugene, Oregon, USA) and a sponge-based Geodesic 

sensor net. The correct net position was achieved by aligning the net with respect to three 

anatomical landmarks: two pre-auricular points and the nasion. Electrode-to-skin impedances 

were monitored and maintained below 50 kΩ for all electrodes throughout the experiment. 

A recording bandpass filter was set at 0.001 – 200 Hz, whilst the sampling rate was set at 1000 

Hz. Finally, Cz was used as the reference electrode. 

  

6.2.6 EEG Pre-processing 
 

Automatic EEG pre-processing, using the Harvard Automated Processing Pipeline for 

Electroencephalography (HAPPE; version 3; Gabard-Durnam et al., 2018), was conducted due 

to the large sample size of this study. Line noise at 50 (±  2) Hz was removed using CleanLine 

(Mullen, 2012), high- and low-pass filters of 0.5 and 70 Hz were applied, and the data were 

resampled to 500 Hz. Subsequently, bad channels that did not contain useable brain data 

(e.g., channels affected by excessive movement) were then interpolated and the remaining 
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data underwent wavelet thresholding artefact correction. The data were then segmented into 

trial epochs with a period of -4 seconds to 6 seconds relative to the stimulus onset. Any 

channels with remaining artefacts were interpolated and segment rejection was employed 

for unusable segments. Here, automated epoch rejection was conducted using two criteria: 

the amplitude range, which was set at -150 to 150 mV as recommended by HAPPE authors 

(Gabard-Durnam et al., 2018) and segment similarity. Trial epochs identified in this process 

were marked for rejection. Following the trial rejection, the data were re-referenced using an 

average reference (Lehmann, 1987). Finally, the data was visually inspected. From the visual 

inspection procedure, it was identified that the data still contained excessive line noise. 

Consequently, an additional notch filter (50 ± 2 Hz) was applied to the data to remove any 

remaining line noise. Table 6.1 shows the average remaining number of trials for each of the 

10 stimuli intensities after pre-processing for all three samples. Following pre-processing, a 

total of 81.12%, 80.70%, and 81.53% of trials were retained in the model development, cross-

subject validation, and within-subject validation samples, respectively. There were no 

significant differences between the remaining number of trials for each stimuli intensity in 

the model development sample (p = .153), cross-subject validation sample (p = .818), or 

within-subject temporal validation sample (p = .876). 
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Table 6.1 Average number and percentage of trials retained per subject after EEG pre-

processing. 

 
Sample 

Stimulus Intensity Model Development Cross-subject Within-subject 

1 12.78 ± 1.99 (80%) 12.71 ± 1.85 (79%) 13.20 ± 1.73 (83%) 

2 12.98 ± 2.04 (81%) 12.92 ± 1.84 (81%) 12.92 ± 1.75 (81%) 

3 13.05 ± 1.85 (82%) 13.14 ± 1.93 (82%) 13.24 ± 1.67 (83%) 

4 12.90 ± 2.25 (81%) 12.84 ± 1.67 (80%) 13.08 ± 1.44 (82%) 

5 13.08 ± 1.99 (82%) 12.86 ± 1.88 (80%) 13.20 ± 2.08 (83%) 

6 13.28 ± 1.84 (83%) 12.63 ± 2.16 (79%) 13.28 ± 1.74 (83%) 

7 13.18 ± 1.99 (82%) 13.02 ± 1.84 (81%) 13.04 ± 1.79 (82%) 

8 13.53 ± 1.99 (85%) 12.96 ± 1.77 (81%) 12.76 ± 2.09 (80%) 

9 12.60 ± 1.86 (79%) 12.96 ± 1.78 (81%) 12.68 ± 1.89 (79%) 

10 12.60 ± 1.98 (79%) 13.08 ± 1.72 (82%) 13.04 ± 1.77 (82%) 

 

 

Spectral analysis was conducted using MATLAB 2020b (The MathWorks, Inc., Natick, 

Massachusetts, USA) and EEGLAB 2021.1 (Delorme & Makeig, 2004). The power spectral 

density (PSD) was estimated using Welch’s method. The PSD was calculated for each trial from 

-4 seconds to 6 seconds relative to the onset stimulus onset, in 1-second segments, shifted in 

0.01-second increments. The data were smoothed using 7 multi-taper Slepian sequences. The 

PSD was calculated between 1 and 70 Hz, with a resolution of 1 Hz. Relative band power 

changes were calculated across each time point and frequency in the trial epoch using the 

event-related desynchronisation (ERD) method (Pfurtscheller & Aranibar, 1979; See equation 

below). The ERD estimate at each datapoint (A in the equation) is computed by subtracting 

the mean PSD of the baseline period (-3.5 to -0.5; R) followed by a subsequent numerical 

transformation to express the relative change in power as a percentage value.  
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𝐸𝑅𝐷	(%) = 	 )
𝐴 − 𝑅
𝑅 , ∗ 100 

 

Negative ERD values reflect band power decreases in the active period, relative to the 

baseline segment, which indicates cortical activation (Neuper & Pfurtscheller, 2001; 

Pfurtscheller & Aranibar, 1977; Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller & Neuper, 

1992). Positive ERD values represent band power increases, which generally reflect cortical 

inhibition and are referred to as event-related synchronisation (ERS; Pfurtscheller, 1992, 

2001). The data were transformed into established frequency bands which are distinct in 

spatiotemporal dynamics and functional associations: theta (4 – 7 Hz), alpha (8 – 12 Hz), lower 

beta (16 – 24 Hz), upper beta (25 – 32 Hz) and gamma (33 – 70 Hz) for the ML analysis (Keil et 

al., 2022; Schomer & Lopes, 2010). This was achieved by averaging the time series within the 

boundaries of the five frequency bands. Topographical maps, to illustrate power changes 

from baseline to low and high experimental pain stimulation conditions are reported in the 

results section. ERD visualisation was conducted and reported following recommendations 

from previous research (Pfurtscheller & Aranibar, 1977, 1979) and is consistent with our 

previous work (Mari et al., 2023). 

 

6.2.7 Machine Learning Procedure 
 

The model development, cross-subject, and within-subject validation samples were 

processed using the same pipeline but were handled separately to prevent data leakage 

which could have compromised the external validation procedure (Luo et al., 2016). Firstly, 

we conducted feature engineering by computing candidate predictors from the single-trial 

time-frequency transformed data. Eighteen candidate features were calculated for ERD 
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outputs across the five frequency bands and 128 electrodes, resulting in a total of 11,520 

potential features. The features were primarily comprised of descriptive statistics of the 

relative band power changes in each frequency band. The features were calculated from the 

active segment of the trial window [0-5.5s]. Fifteen of the features were identical to our 

previous research (see Mari et al., 2023), with the number of peaks, number of troughs, and 

peak-to-trough ratio also included in this study in an attempt to provide the model with 

additional features to improve classification performance. All features were calculated using 

in-built MATLAB functions, where possible, and are consistent with previous research 

(Anuragi & Sisodia, 2020; Mari et al., 2023; Sai et al., 2019; Vargas-Lopez et al., 2021; Vimala 

et al., 2019).  

 

Single-trial EEG is significantly hampered by noise and inter-trial variability (Faisal et al., 2008; 

Kaplan et al., 2005; Marathe et al., 2014). Consequently, an outlier interpolation procedure 

was employed as outliers do not follow clear patterns, which impairs ML performance 

(Maniruzzaman et al., 2018). Additionally, interpolation was implemented to maximise the 

dataset size, as smaller datasets are at an increased risk of overfitting (Vabalas et al., 2019). 

Outliers were identified and replaced for each participant through linear interpolation using 

the filloutliers MATLAB function, in line with our previous research (Mari et al., 2023). Outliers 

were identified as values that exceeded three median absolute deviations. Interpolated 

values were calculated from neighbouring non-outlier data points. A total of 6.46 ± 0.67%, 

6.39 ± 0.76%, and 6.33 ± 0.38% of the data were interpolated for the development sample, 

cross-subject validation sample, and within-subjects temporal validation sample, 

respectively.  
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The data were subsequently processed for ML using Python and Scikit-learn (Pedregosa et al., 

2011), with the random seed value set as 123. Firstly, the model development sample was 

split into a cross-validation and an internal holdout test set. Here, 10% (4 participants) of the 

model development sample was selected for the holdout validation set. The participants 

within the holdout validation set were randomly selected from a subset of participants (n = 

15) from the model development sample, who did not participate in the within-subject 

temporal validation sample. The features for each validation set were scaled to between 0 

and 1 and univariate feature selection was implemented. Once the features had been 

successfully ranked, a custom sequential feature selection procedure was conducted. Firstly, 

a baseline RF regressor was developed using only the highest-ranking feature, with no 

hyperparameter optimisation. This was conducted as RF models demonstrate good 

performance with default parameters and require minimal hyperparameter tuning (Bentéjac 

et al., 2021; Fernández-Delgado et al., 2014). Here, we used stratified k-fold validation (k=10) 

for the cross-validation procedure. Subsequent features were sequentially added to the 

model until a maximum of 70 features had been included. Seventy was selected as the limit 

for the number of features as this represented 1/70th of the total of cross-validation sample 

observations (4685 trials). The limit was implemented to reduce model complexity (e.g., the 

curse of dimensionality), whilst providing enough features to enable successful ML training. 

The model and features that achieved the best cross-validation performance were selected 

as the final feature set for the full model development procedure. Through univariate feature 

selection, a total of 55 features demonstrated optimal cross-validation performance. 

 

After identifying the optimal features, the final RF regressor was developed and trained on 

the development sample dataset. A RF model was selected as research has shown that RFs 
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provide optimal real-world performance and are robust to overfitting (Dong et al., 2020; 

Fernández-Delgado et al., 2014; T. Jiang et al., 2020; Mienye & Sun, 2022). Additionally, the 

RF model achieved the best performance in our previous work (Mari et al., 2023). Random 

search with a maximum of 50,000 iterations was conducted for hyperparameter optimisation, 

which evaluated a range of lower and upper bounds for hyperparameter values to identify 

the optimal configuration (Bergstra & Bengio, 2012; Géron, 2019; L. Yang & Shami, 2020). 

Stratified k-fold validation was integrated into the hyperparameter optimisation. A value of k 

= 10 was used for this study. Hyperparameter optimisation was only conducted in relation to 

cross-validation performance, the hold-out, cross-subject, and within-subject validation sets 

did not inform model development. Following hyperparameter optimisation, the model was 

refit to the entire training set. The final model was subsequently evaluated on the internal 

hold-out validation and external validation sets.  

 

6.2.8 Time Series ML 
 

In addition to the RF model, we also developed a bidirectional LSTM network for time-series 

prediction. LSTMs are a type of recurrent neural network that can identify and learn long-

term dependencies in sequence input data through the use of memory cells, which can 

remember inputs across time steps (Hochreiter & Schmidhuber, 1997; LeCun et al., 2015). 

The regulation of the stored information (e.g., when to remove it) is managed by gating 

mechanisms, such as forget gates (Gers et al., 2000; Hochreiter & Schmidhuber, 1997; LeCun 

et al., 2015). Bidirectional LSTMs provide an extension of the original LSTM architecture, by 

extracting information in both forwards and backwards directions. Essentially, two LSTMs are 

developed and trained using the input data, with one of the networks being trained on the 
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original time series and the second being trained backwards on the time series. This allows 

the network to learn relationships in either direction. 

 

We developed a 7-layer LSTM network which had a total of 2.4 million learnable parameters. 

The input layer dimensions were 640x550, with 640 input time-series, which reflected the 5 

frequency bands (theta, alpha, lower beta, upper beta, and gamma) for each of the 128 scalp 

electrodes, by 550 time points. Subsequently, a bidirectional LSTM layer with 256 hidden 

units was implemented. On all LSTM layers, the state activation was the hyperbolic tangent 

function, whilst a sigmoid was used as the gate activation function. Furthermore, a dropout 

layer with a probability of 0.2 was implemented to help reduce the risk of overfitting, which 

was followed by an additional bidirectional LSTM layer, with 128 hidden units. A final dropout 

layer, again with a 0.2 probability, was implemented prior to the fully connected layer. Finally, 

the data was passed through a regression layer to obtain a continuous prediction. The 

network was trained for a maximum of 200 epochs, with a learn rate of 0.001, and a minibatch 

size of 64 samples. Gradient clipping was implemented with a threshold of 1. Finally, the 

network that achieved the best validation loss was selected as the final model. 

 

6.2.9 ML Evaluation  
 

The primary performance metric in this study was the mean absolute error (MAE) which is 

consistent with previous research (Bai et al., 2016; G. Huang et al., 2013; L. Li et al., 2018; Tu 

et al., 2016). The MAE represents the average error between the true label and the predicted 

label (Mari et al., 2022; Willmott & Matsuura, 2005) and can be calculated using the following 

equation: 
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Where yi is the true label and ŷi is the model predicted value. 

 

For each validation set (internal hold-out, cross-subject, and within-subject validation), we 

calculate the MAE for each subject and average across the validation set to obtain both 

individual and sample accuracies.  

 

Unlike binary classification, there is no obvious chance level to ascertain whether the models 

outperform random prediction. Therefore, we developed two additional dummy models that 

allowed us to evaluate the effectiveness of the ML models. Dummy models provide a way of 

establishing a minimum expected baseline performance by using simple heuristics to provide 

predictions without any knowledge of the input features (Fontana et al., 2019; H. R. Johnson 

et al., 2016; Moon et al., 2020). For example, dummy models in classification may always 

predict the majority class, whilst they may predict the mean of the outcome variable in the 

training set for regression tasks (Fontana et al., 2019; H. R. Johnson et al., 2016; Moon et al., 

2020). Simple heuristics can often outperform ML performance, so the use of dummy models 

provides an effective baseline to evaluate the effectiveness of ML models. This process 

ensures that the models are not exploiting simple rules instead of learning from the input 

features (Fontana et al., 2019).  

 

Firstly, we developed a dummy model that predicted a random number between 0 and 100 

for each trial and calculated the MAE for each validation set. This was termed the random 

model. Secondly, we developed a baseline (dummy) model that predicted the mean value of 
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subjective response data from all trials in the training set. The baseline model provided a 

measure of the accuracy of predictions that can be made using only behavioural pain ratings 

(e.g., omitting neural data). To evaluate which models achieved the lowest MAE, we 

conducted three one-way ANOVAs that assessed each of the four models (random, baseline, 

RF, LSTM) using IBM SPSS 27 (IBM Corp., Armonk, New York, USA). Bonferroni correct post-

hoc tests were conducted to investigate significant main effects.  

 

6.3 Results 

6.3.1 Subjective Pain Ratings 
 

The average pain ratings for each stimulus intensity across all three samples is reported in 

Table 6.2. Three simple linear regressions were conducted using SPSS 27 (IBM Corp., Armonk, 

New York, USA) to assess the relationship between stimulus intensity and subjective pain 

intensity in the development sample, cross-subject validation, and within-subject temporal 

validation sample, respectively. For the development sample, the regression model was 

significant and predicted 77% variance (R2 = .77, F (1,5196) = 17531.63, p < .001). Stimulus 

intensity was a significant positive predictor of subjective pain intensity (b = 7.40, se = 0.06, p 

<.001, 95% CI = 7.29 to 7.51). For the cross-subject validation sample, the regression model 

was also significant and predicted 75% variance (R2 = .75, F (1,6583) = 19538.91, p < .001). 

Stimulus intensity was a significant positive predictor of subjective pain intensity (b = 7.38, se 

= 0.05, p <.001, 95% CI = 7.28 to 7.49). Finally, the regression model was significant and 

predicted 73% variance (R2 = .73, F (1,3259) = 8986.29, p < .001) for the within-subjects 

validation sample. Again, stimulus intensity was a significant positive predictor of subjective 
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pain intensity (b = 6.60, se = 0.07, p <.001, 95% CI = 6.46 to 6.74). Figure 6.1 illustrates the 

relationship between stimulus intensity and subjective pain intensity for all three samples. 

 

 
Table 6.2 Descriptive statistics for each stimulus intensity and sample. 

 
Model Development 

 

Cross-subject 

Validation  
 

Within-subject 

Validation  

Stimulus Intensity Mean SD N   Mean SD N   Mean SD N 

1 4.52 5.62 511 
 

4.62 7.62 648 
 

8.35 8.60 330 

2 9.17 8.46 519 
 

9.10 9.40 659 
 

13.46 10.05 323 

3 13.87 9.50 522 
 

14.84 10.62 670 
 

17.92 10.62 331 

4 21.82 12.42 516 
 

22.93 12.50 655 
 

24.55 12.14 327 

5 29.93 13.15 523 
 

30.58 13.54 656 
 

31.33 12.25 330 

6 38.05 13.22 531 
 

39.32 14.38 644 
 

39.17 12.97 332 

7 46.14 14.03 527 
 

47.18 14.70 664 
 

45.36 12.82 326 

8 55.06 12.62 541 
 

55.11 14.09 661 
 

53.50 11.82 319 

9 61.11 11.56 504 
 

61.37 12.75 661 
 

59.55 11.56 317 

10 67.82 10.53 504   67.82 10.97 667   65.97 9.99 326 
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Figure 6.1 The relationship between stimulus intensity and subjective pain intensity for the 

model development sample (A), Cross-subject validation sample (B), and Within-subject 

validation sample (C). The red line represents the least squares regression line. 
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6.3.2 ERD/S 
 

Topographic maps illustrating the difference between low and high pain conditions in the 91 

unique participants are shown in Figure 6.2. The figure shows the time-frequency changes 

during the rest (-3 – -2 s relative to the onset of stimulation) and the active period (1 – 2 s 

relative to the onset of stimulation). The active period represents the first second of 

maximum pressure following the completion of the stimulation rise time. Topographic plots 

demonstrating relative band power changes in frequency bands Theta (4 – 7Hz), Alpha (8 –

12Hz), Lower Beta (16 – 24Hz), Upper Beta (25 –32Hz), and Gamma (33 – 70Hz) are reported. 

The left pair of columns represent the rest and active periods for the low pain condition, 

whilst the right pair of columns represent the high pain condition.  

 

In the Theta band, we observed ERS over frontal electrodes in both low and high pain 

conditions (Figure 6.2A). Moreover, sensorimotor, and occipital ERD was also observed during 

both low and high pain conditions in theta band. There was strong bilateral ERD in the Alpha 

band, observed over sensorimotor regions in both low and high pain conditions (Figure 6.2B). 

Here, the intensity of bilateral Alpha ERD was clearly enhanced during the high pain condition, 

relative to low pain. Bilateral ERD was also observed in both the lower and upper Beta bands 

over sensorimotor regions (Figure 6.2C/D), but the pattern was visibly weaker in the upper 

Beta band when compared to the lower Beta band. In both lower and upper Beta bands, a 

similar pattern to Alpha processing was observed, with stronger ERD evident in the high pain 

condition. Finally, for the Gamma band power changes, we observed ERS over frontal regions 

in both low and high pain stimulation, which appeared to be more widespread during the high 

pain stimulation condition (Figure 6.2E).  
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Figure 6.2 Grand average band power changes during rest (-3 – -2s) and active pressure 

stimulation (1 – 2 s) from all 91 unique participants (combined sample one and two). The trial 

period spanned from -4 s to 6 s relative to the trial onset, with a baseline period of -3.5 s to -

0.5 s. The active period was selected in line with previous recommendations (Pfurtscheller & 

Aranibar, 1977, 1979) and represented 1 s of continued pressure immediately after the 

stimulator reached the desired stimulus intensity level. The topographic maps show the band 
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power changes in low and high pain intensity conditions and from rest to active periods in 

Theta (A), Alpha (B), Lower Beta (C), Upper Beta (D), and Gamma (E). The white circles 

represent the electrode locations of the features used in the ML classification of low and high 

pain trials. P = percentage power change from baseline. 

 

6.3.3 Machine Learning Results 
 

The final number of observations for each validation set/sample is presented in Table 6.3. 

From the feature selection procedure, a total of 55 features were optimal. The features were 

distributed across scalp regions and frequency bands. The theta and alpha features were 

predominantly located over a frontal-central electrode. Features in the beta band were 

located predominantly over frontal regions, with additional features calculated from 

peripheral electrodes. The gamma band provided most features (approximately 50%) and was 

distributed over frontal regions and central-parietal regions, respectively.  

 

Table 6.3 The number of observations for each validation set. 

Validation Set Number of Trials 

Training Sample (n = 36) 4685 

Internal Hold-out Validation (n = 4) 513 

Cross-subject (n = 51) 6585 

Within-subject (n = 25) 3261 

Total 15044 

 

 

The MAE for all the models and validation sets are reported in Table 6.4. For the validation 

sample, the RF model predicted pain intensity on a 101-point scale with a MAE of 19.59 

points, whilst the LSTM demonstrated similar performance with an average error of 19.97. 
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Whereas the random model and baseline model predicted subjective pain intensity with a 

MAE of 32.61 and 19.98, respectively. A one-way ANOVA demonstrated that there was a 

significant main effect of model on the MAE (F (3,12) = 22.74, p < .001, hp
2 = .85). Bonferroni 

post-hoc tests showed that the random model had a significantly higher error for predicting 

subjective pain intensity than the RF model (p < .001), LSTM network (p < .001), and the 

baseline model (p < .001). However, there were no significant differences between the 

baseline model and the RF model (p = 1.00) or the LSTM network (p = 1.00) for pain intensity 

prediction. Finally, there was no significant difference between the RF model and the LSTM 

network (p = 1.00). 

 

Regarding the cross-subject validation sample, the LSTM demonstrated the most accurate 

pain intensity prediction, achieving a MAE of 21.17. Here, the RF predicted subjective pain 

intensity with an error of 21.29, which was less accurate than the baseline model, which 

demonstrated a MAE of 21.19. Finally, the random model demonstrated an error of 33.41. A 

one-way ANOVA demonstrated a significant main effect of ML model on the MAE for the 

cross-subject validation sample (F (3,200) = 169.12, p < .001, hp
2 = .72). In line with the internal 

validation results, the random prediction model had significantly greater error for pain 

predictions when compared to the RF model (p < .001), LSTM network (p < .001), and the 

baseline model (p < .001). Again, there were no significant differences between the baseline 

model and the RF (p = 1.00) or the LSTM network (p = 1.00). No significant difference was 

observed between the RF and the LSTM (p = 1.00). 

 

Finally, the RF demonstrated the most accurate predictions for pain intensity for the within-

subject temporal validation sample, achieving a MAE of 18.90. The LSTM was the next best-
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performing model, achieving an error of 19.03. Finally, the random model and baseline model 

demonstrated less accurate predictions, achieving MAEs of 32.24 and 19.08, respectively. The 

ANOVA demonstrated a significant main effect of model on the MAE (F (3,96) = 121.86, p < 

.001, hp
2 = .79). The random model demonstrated significantly larger prediction error than 

the RF model (p < .001), LSTM network (p < .001), and the baseline model (p < .001). No 

further significant differences were observed between the baseline model and RF model (p = 

1.00), the baseline model and LSTM network (p = 1.00), or the RF model and LSTM network 

(p = 1.00). 

 

Table 6.4 The MAE for each model across all validation sets. 

 
Internal Validation 

 
External Validation 

 
Cross-Validation Hold-out Validation 

 
Cross-subject Within-subject 

  Mean SD Mean SD   Mean SD Mean SD 

RF 20.49 0.69 19.59 2.30 
 

21.29 3.40 18.90 3.34 

LSTM - - 19.97 2.50 
 

21.17 3.53 19.03 2.73 

Random Model - - 32.61 3.24 
 

33.41 2.90 32.34 2.76 

Baseline Model - - 19.98 2.58   21.19 3.51 19.08 3.19 

Optimal RF hyperparameters: Number of estimators = 145, Maximum depth = 8, Minimum samples 

to split = 19, Minimum samples at leaf = 12, Maximum features = sqrt, Bootstrap = True.  
 

 

 

Calibration for regression is not as clearly calculated as classification (Levi et al., 2022). 

Moreover, calibration assessment is only required when the models demonstrate good 

predictive capability (Alba et al., 2017). Therefore, as neither the LSTM nor the RF 

demonstrated predictive performance that surpassed the baseline model, we did not formally 

assess calibration. However, to provide insight into the behaviour of the model, we aimed to 
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visualise the model’s predicted values and the true pain intensity values. We only provide the 

visualisations for the RF as, on average, it demonstrated the most accurate predictions. Figure 

6.3 illustrates the relationship between subjective pain intensity and the RF model’s predicted 

values for all three validation sets. Briefly, the results show that the RF model tended to 

predict values in the middle of the scale, with most of the predictions for all samples falling 

between 25 and 50. Moreover, there is not a clear trend between the predicted values and 

true values, suggesting that the model failed to extract relevant information to provide 

informative predictions. Finally, the model failed to predict extreme values (e.g., < 25 and > 

65), meaning that the model could not accurately predict the lowest and highest intensities.  
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6.3.4 Exploratory Analysis 
 

As the regression model was unable to outperform the baseline model and provide 

informative predictions, we attempted to develop a binary classification RF model for the 

Figure 6.3 The relationship between the RF model’s predicted pain intensity and the reported 

subjective pain intensity for the internal validation set (A), cross-subject validation set (B), and 

within-subject validation set (C). 
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prediction of low and high pain trials, providing a theoretical replication of our prior work 

(Mari et al., 2023). This was achieved by selecting stimulus intensities that were comparable 

to the low and high stimuli intensities of our previous study. Stimuli intensities 4 and 5 were 

chosen for the low intensity, whilst 9 and 10 were chosen for the high intensity set, as these 

elicited comparable subjective pain ratings to our earlier model development sample (Mari 

et al., 2023). The RF model was developed and evaluated using a similar procedure to the 

regression model for feature selection and hyperparameter optimisation. Several common 

performance metrics were used to evaluate the performance of the model. Here, we report 

the accuracy, AUC, Brier score, F1 score, precision, and recall, which is consistent with existing 

research (Mari et al., 2022, 2023). The ML classification results are reported in Table 6.5. 

Moreover, the optimal feature locations for the classification are displayed in Figure 6.2.  

 

Table 6.5 Performance metrics for binary RF model for the prediction of low and high pain intensity. 

    Accuracy SD AUC SD Brier SD F1 SD Precision SD Recall SD 
Internal Validation              

 Cross-validation 0.64 0.05 0.67 0.06 0.23 0.01 0.61 0.08  0.66 0.05 0.58 0.11 

 Hold-out 0.62 0.11 0.68 0.18 0.22 0.05 0.58 0.12  0.61 0.15 0.57 0.15 
               
External Validation              

 Cross-subject 0.57 0.08 0.62 0.10 0.24 0.03 0.52 0.13  0.60 0.11 0.50 0.20 
  Within-subject 0.58 0.09 0.62 0.11 0.25 0.03 0.49 0.19   0.59 0.15 0.47 0.24 
Optimal RF hyperparameters: Number of estimators = 2280, Maximum depth = 15, Minimum samples to split = 3, 
Minimum samples at leaf = 7, Maximum features = log2, Bootstrap = True. 

 
 

 

The results can be separated into internal and external validation procedures. For internal 

validation, the classification results demonstrated that the RF model outperformed the 

theoretical chance level (50%) for the classification of low and high-pain intensity trials using 

EEG features, achieving a cross-validation accuracy and AUC of 64% and 0.67, respectively. 

Similar results were observed for the holdout validation sample, with the RF model exceeding 
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chance level performance. The results demonstrated that the RF classified subjective pain 

intensity with an accuracy of 62% and an AUC of 0.68.  

 

Regarding external validation, the results show that the RF model exceeded chance 

performance on both the cross-subject and within-subject validation samples. Here, for the 

cross-subject validation sample, subjective pain intensity was classified with an accuracy of 

57% and an AUC of 0.62. Similar results were observed for the within-subject validation 

sample, with the model producing an accuracy of 58% and an AUC of 0.62. Overall, the RF 

demonstrated similar, above-chance performance, for both external validation datasets.  

 

Finally, we also assessed calibration as the model performance exceeded chance 

performance. Calibration refers to the agreement between the model’s predicted outcome 

value and the true outcome value (Alba et al., 2017; Luo et al., 2016; Van Calster et al., 2019). 

Calibration curves, which illustrate the relationship between the predicted probabilities (x-

axis) and the observed probabilities (y-axis), are the preferred way to assess binary 

classification models (Moons et al., 2015; Van Calster et al., 2016, 2019). To achieve this, we 

split the data into 10 equal bins, which represented the probabilities between 0 and 1 (Y. 

Huang et al., 2020). The calibration curves for the holdout validation, cross-subject external 

validation, and within-subject external validation samples are presented in Figure 6.4. To 

interpret the calibration curves, when the model performance line is above the reference line 

(which represents perfect calibration), it suggests that the model underestimates the 

probability of the incidence. Whereas a model line below the reference line indicates that the 

model is overestimating the probability of the incidence. The calibration results suggest that 

the predictions from the RF model are reasonably well calibrated. There are instances of the 
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model underestimating the incidence of the event at the lower probabilities and 

overestimating the higher probabilities. However, the calibration curves typically follow the 

expected trend, suggesting that the model provides reasonably accurate probability 

estimates. 

 

 

6.4 Discussion 

We aimed to externally validate ML for the prediction of subjective pain intensity both across 

and within subjects using single-trial EEG. We hypothesised that both the RF model and LSTM 

network would predict pain intensity more accurately than a random prediction model and a 

baseline prediction model across three validation sets. The results partially support the 

Figure 6.4 Calibration curves for the internal holdout 

validation sample, and two external validation samples. The 

black dotted line 45 o represents perfect calibration. 
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hypotheses, with both the RF and LSTM demonstrating more accurate pain intensity 

predictions than the random model on all validation datasets. However, the baseline 

(dummy) model which utilised only behavioural data also outperformed the random model. 

Moreover, neither the RF nor the LSTM outperformed the baseline model on any of the 

validation sets. Our second hypothesis that the LSTM would outperform the RF was not 

supported as no differences in model performance were observed on any of the validation 

sets. The results suggest that regression models trained on oscillatory EEG data cannot predict 

subjective pain intensity more accurately than simple heuristics using the current approach. 

 

As the regression models failed to provide meaningful predictions, we subsequently aimed to 

replicate our previous research by classifying low and high-pain intensity trials (Mari et al., 

2023). Here, the RF model accurately classified the conditions with better-than-chance 

accuracies of 64%, 62%, 57%, and 58% for cross-validation, internal holdout validation, cross-

subject external validation, and within-subject external validation, respectively. Moreover, 

the model demonstrated AUCs of 0.67, 0.68, 0.62, and 0.62 for the validation samples. 

Overall, the classification results are promising but require improvement to demonstrate 

clinically meaningful levels (e.g., AUC ³ 0.75; J. Fan et al., 2006).  

 

Despite not exceeding baseline performance, our regression metrics are comparable to 

previous research. Huang and colleagues (2013) demonstrated that continuous pain ratings 

could be predicted using LEPs with a MAE of 1.03 and 1.82 (11-point scale) for within-subject 

and cross-subject predictions, respectively. Further studies report MAEs of approximately 1.2 

for continuous pain prediction using ML and EEG (Bai et al., 2016; L. Li et al., 2018; Tu et al., 

2016). Therefore, our findings are comparable to existing literature. However, the previous 
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results are not externally validated and should be interpreted cautiously (Cabitza et al., 2021; 

Siontis et al., 2015; Vabalas et al., 2019; Varma & Simon, 2006). Consequently, the results of 

this study provide the most robust estimates of the potential of ML and EEG for pain intensity 

prediction, providing realistic estimates of both model performance and clinical potential. 

 

Our classification results support existing literature that has demonstrated that EEG and ML 

can classify low and high pain trials with cross-validated accuracies between 62 and 89.58% 

(Bai et al., 2016; G. Huang et al., 2013; Mari et al., 2023; Okolo & Omurtag, 2018; Schulz et 

al., 2012; Tu et al., 2016). In addition, the external validation results are comparable to our 

previous work which demonstrated that ML could predict low and high pain trials across 

subjects using two external datasets, previously achieving accuracies of 68% and 60%, 

respectively (Mari et al., 2023). Despite observing slightly reduced performance in the current 

study, the results support the potential of EEG and ML for pain intensity classification.  

 

This study highlights the challenges associated with predicting continuous pain intensity using 

EEG and ML, whilst supporting the potential of classification models. Due to the large sample 

size and multi-stage external validation, our results provide robust performance estimates of 

the effectiveness of ML and EEG for pain intensity prediction. However, the increased rigour 

may explain the observed performance reduction compared to our previous research (Mari 

et al., 2023). Small samples demonstrate increased performance variability (Arbabshirani et 

al., 2017; Vabalas et al., 2019; Varoquaux, 2018). Varoquaux (2018) reviewed ML 

performance across several domains including Alzheimer’s, autism, and depression, and 

identified that model performance decreased as a function of sample size. Furthermore, small 

external validation samples can also result in imprecise model performance estimates (K. I. E. 
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Snell et al., 2021). As much of the previous research consists of small samples, performance 

is likely inflated due to increased variability (Mari et al., 2022). The impact of small samples 

may also explain the observed minor reduction in external validation performance compared 

to our recent research (Mari et al., 2023), which comprised fewer participants. Therefore, this 

study supports our previous work with improved robustness to give increased confidence in 

the findings. Overall, ML and EEG remain promising for pain classification, but improved 

performance from robustly designed studies remains imperative. Finally, whilst continuous 

pain intensity prediction is desirable for finer prediction resolution which would enable 

improved pain assessment and treatment monitoring/recommendations (Shirvalkar et al., 

2023), it appears unrealistic within the current approach. 

 

The current study has several limitations. Firstly, EEG has a low signal-to-noise ratio (Tivadar 

& Murray, 2019), which likely affects the ability of the ML algorithm to extract meaningful 

patterns at the single trial level. Single-trial EEG is inherently noisy due to the variability and 

volatility of neural activity and due to the physical limitations of the apparatus (Faisal et al., 

2008; Kaplan et al., 2005; Marathe et al., 2014; Tivadar & Murray, 2019). The diminished 

signal quality may have impaired model performance. In future, methods to improve the 

signal-to-noise ratio should be explored (e.g., spatial filtering; Miao et al., 2021; Rivet et al., 

2009). Spatial filtering aims to increase the signal-to-noise ratio by maximising the differences 

between two classes and increasing discriminability (Blankertz et al., 2008; Y. Miao et al., 

2021; Rivet et al., 2009). However, spatial filtering techniques are also prone to overfitting 

(Blankertz et al., 2008; Grosse-Wentrup et al., 2009), which could exacerbate an already 

prevalent issue in this research area. Therefore, spatial filtering techniques should be applied 

cautiously to minimise overfitting risk.  
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Moreover, whilst the RF classification model demonstrated reasonably well-calibrated 

predictions, there were instances where the model provided inaccurate estimates. The 

calibration assessment demonstrated that the model estimates were occasionally too 

extreme, as the models occasionally tended to underestimate the lower probabilities and 

overestimate the higher probabilities, which indicates a degree of overfitting (Van Calster et 

al., 2019). However, as single-trial EEG is an inherently noisy signal (Faisal et al., 2008; Kaplan 

et al., 2005; Marathe et al., 2014; Tivadar & Murray, 2019), it is expected that the model 

captures some random noise in the training set. Therefore, we recommend interpreting the 

results with caution. However, the calibration of the present study was arguably improved 

compared to our previous research (Mari et al., 2023), which demonstrates the improved 

robustness of this study. Moreover, as calibration is rarely assessed (Christodoulou et al., 

2019; Mari et al., 2022), the calibration assessment of this study is an area of novelty and 

represents a methodical improvement over the existing literature. Nevertheless, future 

research should improve model calibration through techniques such as Platt scaling or 

isotonic regression (Y. Huang et al., 2020). 

 

Despite promising classification results, further developments are imperative for clinical 

translation. Research has suggested that binary classification models with an of AUC less than 

0.75 are not clinically meaningful (J. Fan et al., 2006). Therefore, future research should 

prioritise improving model performance on external data towards clinically meaningful 

results. The use of composite biological measures as predictive of subjective pain intensity 

may improve performance (Rockholt et al., 2023; I. Tracey et al., 2019). Methods such as heart 

rate variability, skin conductance, and pupillometry have shown promise for pain assessment 

(Cowen et al., 2015). For example, skin conductance has been shown to discriminate the 
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presence or absence of pain in postoperative patients with promising sensitivity and 

specificity (Ledowski et al., 2006). Moreover, recent research has shown that ML, 

electrodermal activity, photoplethysmography, and respiration measures could predict the 

presence or absence of pain with accuracies up to approximately 94% (Fernandez Rojas et al., 

2023), although this finding was not externally validated. In future, the potential clinical utility 

of a combination of several physiological measurements for pain classification should be 

explored. 

 

Alternative neuroimaging techniques may also prove advantageous for improving model 

performance. Magnetencephalography (MEG) may be a potential candidate. MEG records 

magnetic fields as opposed to electrical fields of EEG, which are not distorted by anatomical 

features (e.g., differences in skull thickness), resulting in improved signal-to-noise ratio and 

spatial localisation of signals (S. Singh, 2014). Therefore, MEG may improve signal quality and 

consequently model performance. However, MEG is more expensive and less practical than 

EEG (S. Singh, 2014) which reduces the potential clinical applications, as EEG is easily applied 

and low-cost (Mackey et al., 2019; Tivadar & Murray, 2019). Although MEG is being used 

clinically in the surgical treatment of epilepsy (S. Singh, 2014), currently, there is limited 

research using MEG and ML for pain classification. One recent study demonstrated that ML 

and MEG could classify healthy controls and chronic migraine patients with an accuracy 

greater than 86% (AUC > 0.9). Moreover, the study also demonstrated that ML could correctly 

classify patients into either chronic migraine and episodic migraine, as well as chronic 

migraine or fibromyalgia patients with high accuracies (Hsiao et al., 2022). Moreover, given 

the ongoing development of low-cost MEG that can operate at room temperature (Boto et 

al., 2017), future research should investigate the utility of MEG for pain intensity prediction, 
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perhaps combining it with EEG for multimodal imaging (S. Singh, 2014; Yoshinaga et al., 2002), 

which may further improve performance.  

 

6.5 Conclusion 

Our results suggest that prediction of fine-graded resolution pain intensity, such as 

categorising individual subjective experience on a graded scale, may not be possible using the 

current approach, as model performance including EEG data did not exceed a simple baseline 

model. Despite this, our results remain promising for predicting discrete categories of pain 

(e.g., low, and high pain), with the RF model exceeding chance performance for both cross-

subject and within-subject predictions using external data. Due to the large sample size, the 

current study provides the most robust estimates for the potential of ML and EEG for pain 

intensity classification. Increasing the signal-to-noise ratio of EEG remains a priority, whilst 

composite measures should be explored and externally validated in future research to 

improve the performance of ML algorithms. Overall, ML and EEG can accurately predict 

discrete levels of subjective pain intensity, but performance levels are not currently sufficient 

to be considered clinically meaningful or to support the development of translation tools. 
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Chapter 7:   

General Discussion 

 

This thesis endeavoured to decode neural responses during noxious mechanical stimulation 

and pain observation using ML and EEG. We aimed to improve the understanding of the 

current capabilities and limitations of ML-EEG approaches and improve the understanding of 

the neural processes associated with empathic processing. These aims have potential to 

contribute to real-world applications, including the development of an objective pain 

assessment tool for use in vulnerable populations, or potential implications for patient and 

healthcare provider interactions. Initially, we systematically reviewed the literature to 

identify the state-of-the-art ML approaches for predicting pain-related outcomes using EEG 

(Chapter 3). We identified pervasive methodological limitations, resulting in overestimated 

performance, due to a paucity of externally validated research. Consequently, we robustly 

evaluated the effectiveness and generalisability of ML and EEG for pain intensity prediction 

using rigorous external validation procedures, calibration assessment, and greater sample 

sizes (Chapter 4). We found that ML and EEG could effectively classify binary pain intensity 

with reasonable performance and generalisability. However, model performance was 

considerably lower than the existing literature, suggesting that the performance of previous 

research (that lacks external validation) is likely inflated. In Chapter 6, we further increased 

methodological rigour and externally validated ML both across and within subjects. These 

results provided further support that the capability of ML and EEG for pain prediction is lower 

than reported in the literature. Moreover, we also aimed to assess whether ML and EEG could 

predict the observation of pain, which had not been attempted previously (Chapter 5). The 
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approach successfully classified the observation of faces or scenes regardless of the pain 

component but was unable to classify pain observation, providing potential limitations of ML. 

Overall, this thesis contributes important knowledge to the field, by producing the most 

robust estimates of the effectiveness of ML and EEG for predicting subjective pain intensity 

and pain observation. 

 

7.1 Summary of Findings 

7.1.1 Chapter 3 
 

- The systematic review demonstrated that the combination of EEG and ML could 

accurately predict subjective pain intensity, pain phenotypes, and response to 

treatment with accuracies between 57% and 100%. 

- In previous research, time-frequency and ERP features were used to develop both 

classification and regression models. 

- Methodological and reporting issues significantly hindered the interpretation of ML 

and EEG's effectiveness and clinical potential. 

- Existing research was at a high risk of bias due to insufficient analysis procedures (lack 

of external validation) and small sample sizes, which likely contributed to exaggerated 

performance metrics.  

- Model calibration was consistently omitted, further hindering the interpretability of 

the results. 

 

 

 



 255 

7.1.2 Chapter 4 
 

- We developed ML models that were able to classify low and high-pain-intensity trials 

with cross-validation accuracies of up to 77%. 

- Through an extensive external validation procedure, we demonstrated that pain 

intensity could be predicted with accuracies of up to 69% in a novel sample. 

- The ML models were also able to predict pain intensity with accuracies up to 61% 

during novel experimental pain stimulation in a new sample. 

- Time-frequency features from frontal, central, and parietal regions produced optimal 

classification results. 

- Our results provide the first externally validated ML performance estimates for pain 

intensity prediction. 

 

7.1.3 Chapter 5 
 

- We aimed to conduct the first ML-EEG study for the classification of neural responses 

during the observation of pain. 

- Features calculated from single-trial ERP waveforms enabled accurate classification of 

the observation of faces or scenes, achieving externally validated accuracies of up to 

69%.  

- However, ML and EEG were unable to classify pain or neutral images for either pain 

scenes or faces, demonstrating the potential limits of EEG-ML approaches. 

- The neutral-pain scenes classification reinforces the importance of external validation 

as overfitting was easily identified.  
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- The study demonstrates promise for decoding discrete categories of visual stimuli, but 

not the observation of pain. 

 

7.1.4 Chapter 6 
 

- We attempted to externally validate regression models for the prediction of 

continuous pain ratings. 

- Regression models for ML-EEG outperformed a random model but failed to exceed 

the performance of a baseline dummy model that exploited simple heuristics. 

- The regression results highlight the difficulty in predicting fine-graded pain responses.  

- The classification results remained promising, with low and high pain trials classified 

with accuracies of 64%, 62%, 57%, and 58% for cross-validation, internal holdout 

validation, cross-subject external validation, and within-subject external validation, 

respectively. 

- The study highlights greater potential clinical utility for categorical pain intensity 

classification, whilst also suggesting that predicting continuous scores may not be 

feasible. 

 

The current thesis provides several important contributions to the existing literature. The 

findings provide the most robust estimates of the effectiveness of ML and EEG for predicting 

both pain intensity and pain observation. Our results also provide robust evidence regarding 

state-of-the-art and potential for practical and clinical applications, with performance across 

all chapters failing to reach levels sufficient to justify practical or clinical applications currently 

(J. Fan et al., 2006). Therefore, this thesis highlights the need for both improved performance 
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and methodological rigour before the potential of ML-EEG approaches can be realised, e.g., 

for the development of practical applications or clinical tools. 

 

Regarding the prediction of subjective pain intensity, this thesis provides a realistic framing 

of the current potential of ML-EEG methods and provides important methodological and 

practical considerations. Firstly, our results highlight that the capability of ML is likely 

exaggerated in previous literature. The existing cross-validation performance estimates for 

subjective pain intensity classification suggest that pain states can be classified with 

accuracies between 62 and 96%, with most of the studies demonstrating accuracies of above 

80% (Mari et al., 2022). However, the results of this thesis demonstrate that the performance 

observed on external data may be significantly lower than these metrics, with accuracies 

between 57 and 69% being observed for the best models. Consequently, whilst ML and EEG 

for pain intensity classification remain promising, the potential of the method has likely 

previously been overstated. Moreover, our results also provide important practical 

considerations. For example, this thesis suggests that classification models are more effective 

for identifying subjective pain intensity than regression models. Here, the regression models 

were ineffective as they failed to outperform simple heuristics. Therefore, whilst the concept 

of fine-grade objective prediction is appealing, our results suggest that it may not be feasible, 

with classification methods deemed more promising. Whilst recent research has also 

demonstrated that regression models are ineffective for predicting continuous subjective 

pain intensity using intracranial electrodes (Shirvalkar et al., 2023), we are the first to identify 

this using scalp electrodes. Therefore, we recommend that emphasis should be placed on 

developing highly effective classification models for broad pain states (e.g., low, and high 

pain) as such methods may hold greater clinical potential. 
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Regarding the classification of vicarious pain/visual stimuli, this thesis provides the first 

externally validated results for the classification of visual stimuli both across and within 

subjects. Importantly, our study offers methodological advancements through significantly 

increased sample sizes compared to the existing research that attempted to classify discrete 

visual categories (Bagchi & Bathula, 2022; Cudlenco et al., 2020; Kaneshiro et al., 2015; 

Stewart et al., 2014; Yavandhasani & Ghaderi, 2022; Zheng et al., 2020) and through rigorous 

external validation procedures. The attempted classification of empathic stimuli also 

provided insight into the potential limits of ML. We addressed an important knowledge gap, 

as previous research had not attempted to classify the observation of pain using EEG and ML. 

Moreover, developing an objective measure of pain empathy is important for patient-clinician 

interactions where potential bias can result in the underestimation of pain (Hoffman et al., 

2016). We were the first to attempt to develop a pain empathy classification tool using ML 

and EEG, and our results enhance the existing literature that demonstrated that empathic 

states could be classified using EMG responses or fMRI (Christov-Moore et al., 2020; Vaughn 

et al., 2018; Zhou et al., 2020). Our results demonstrated that ML and EEG were unable to 

successfully classify the observation of pain relative to visually similar neutral stimuli. Overall, 

this thesis generally supports the effectiveness of ML applied to EEG data, demonstrating 

generalisable performance within all empirical chapters of this thesis. However, limited 

performance metrics and unsuccessful classification attempts were observed, suggesting that 

ML-EEG approaches for complex inferences from single-trial data may not be as capable as 

previously believed. Therefore, this thesis highlights the importance of robust external 

validation procedures to prevent the risk of inflated, un-generalisable performance metrics, 

and to support the development of approaches and tools which can achieve clinically 

meaningful performance for practical applications. 
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7.2 Themes 

7.2.1 Importance of External Validation 
 

One of the key themes identified in this thesis is the importance of external validation when 

developing prediction models. Across all experimental chapters in this thesis, we 

demonstrated that ML performance generalised to novel samples, which was previously 

unknown in both pain intensity and visual stimuli classification domains. However, 

performance levels were consistently substantially lower on external validation than on 

internal validation. For example, in our first experimental pain experiment (Chapter 4), we 

identified that although the models often successfully generalised to novel samples and 

experimental pain stimuli, performance was often significantly lower for the external 

validation datasets. Whilst the best-performing models only demonstrated modest 

reductions of around 5%, others demonstrated significant reductions of up to 20%. Similar 

results were obtained during the second experimental pain intensity chapter, with the RF 

classifier demonstrating a reduction of performance of approximately 7% (5% from holdout 

validation). Therefore, based on our findings, it is reasonable to expect that the internal 

validation performance reported in the literature would likely reduce when assessed on 

external data. However, as the previous research has never been evaluated on external data, 

it is impossible to conclude to what extent model performance would diminish.  

 

The importance of external validation is further exemplified by our results for the 

classification of pain empathy in Chapter 5. Here, performance for the faces versus scenes 

classification was reduced by around 10% from internal to external validation. However, the 

pain scene classification further reinforces the importance of external validation, as 
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performance reduced from 80% during cross-validation to 28% and 51% during cross-subject 

and within-subject external validations, respectively. This represents a reduction of up to 

52%, which questions the validity of studies that solely employ internal validation procedures. 

Without external validation, we would have concluded that the model is highly effective at 

discriminating the pain and neutral classes of visual stimuli, when in fact, the model was 

overfitting and could not effectively generalise. Therefore, external validation is imperative 

to assess model performance and control for overfitting. Moreover, conducting external 

validation also reduces the risk of over-optimisation (e.g., overfitting to the test set). As 

external data is easier to process separately than splitting a single dataset, overfitting to the 

test set and data leakage are less likely to occur during an external validation protocol. 

Therefore, it is possible that studies reporting high-performance metrics would not generalise 

and would exhibit larger reductions than those reported in this thesis. These findings further 

reiterate the reasons why the existing literature was deemed at a high risk of bias due to 

insufficient validation procedures, as the model generalisability cannot be accurately 

interpreted. Overall, despite many of our models demonstrating generalisable performance 

that outperformed chance levels, reduced metrics were consistently found when assessing 

model performance using external data. Consequently, this supports the argument that the 

performance metrics reported in the literature are likely inflated. Moreover, given that 

reductions in performance of up to 52% were observed, the effectiveness of ML models that 

have not been externally validated should be interpreted with caution, as the true 

performance could be dramatically lower than the performance observed during internal 

validation procedures. 
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The findings of this thesis reiterate the importance of thoroughly evaluating prediction 

models. Our work provides direct evidence of the potential of inflated internal validation 

metrics, which hinders the interpretation of the previous research. Internal validation 

methods are prone to overfitting, resulting in performance which does not generalise to novel 

data (Cabitza et al., 2021; Ramspek et al., 2021; Siontis et al., 2015; Varma & Simon, 2006). 

Consequently, the model performance may appear promising but cannot be considered 

reflective of the true error due to the risk of overfitting. Moreover, given that small samples 

further exacerbate the likelihood of overfitting (Combrisson & Jerbi, 2015; Vabalas et al., 

2019; Varoquaux, 2018), studies that do not employ external validation, should be deemed 

at a high risk of bias, as the limitations jeopardise the utility of the research. We observed 

that the reduction in performance from internal validation to external validation varied 

between approximately 5% to over 52%. Previous research has further supported the 

reduction in performance observed during external validation (X. Li et al., 2019; Siontis et al., 

2015). Consequently, we argue that by omitting external validation methods, the true 

effectiveness of the model cannot be established, meaning that the findings of previous 

research are insufficient evidence for accurate interpretation or clinical translation (Bleeker 

et al., 2003; Ramspek et al., 2021; Siontis et al., 2015). To successfully progress the research 

field, and to develop an effective prediction model, it is imperative to thoroughly evaluate 

model performance using independent data (Lever et al., 2016). Without improved validation 

protocols, the results cannot be entirely trusted, contributing to the research waste (Collins 

et al., 2014; Collins & Moons, 2019). Alternatively, without sufficient validation, poorly 

developed models may be implemented practically, resulting in inaccurate treatment 

recommendations for the patients including either over or undertreatment (Ramspek et al., 

2021; Wilson & Pendleton, 1989; Winkler et al., 2019).  
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7.2.2 The Ceiling Effect 
 

Despite promising results, we believe that we may have maximised the potential performance 

using the current approach, suggesting that we have reached the theoretical ceiling. 

Specifically, the results from Chapters 4 and 6 support the notion of a ceiling effect, whilst the 

empathy classification results from Chapter 5 also provide insight into this phenomenon. In 

our initial investigation of pain intensity prediction in Chapter 4, we identified promising 

external validation results with accuracies of up to 69%. However, essential methodological 

improvements, which we hypothesised would improve model performance, were identified, 

and implemented. Consequently, we increased both the sample size and number of 

observations significantly, as the lack of data may have hindered ML performance. Increasing 

the amount of high-quality data should have theoretically increased model performance 

(Rajput et al., 2023). From Chapters 4 to 6, we increased the sample size by 60% for the model 

development sample and 340% for the external validation sample. Moreover, we also 

assessed within-subject performance using 25 subjects, which we did not previously 

investigate. Furthermore, we improved the study design by increasing the number of 

observations. Across the entire study, the number of observations was increased fourfold 

compared to the earlier chapter. Consequently, given the increased robustness and data 

quality, it was reasonable to expect a significant increase in performance on the binary 

classification task. Surprisingly, we did not observe increased performance, but rather we 

observed a significant decrease in model performance, reducing by approximately 9% on 

cross-validation and 11% when comparing cross-subject validation samples. 
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These results initially appear counterintuitive, as improving both sample size and study rigour 

should have improved model performance. Simulation research has shown that performance 

gains of 70% can be achieved through improved data quality (Rajput et al., 2023). Moreover, 

larger sample sizes were associated with increased model performance, but performance 

plateaued once a critical sample size had been obtained (Rajput et al., 2023). Therefore, we 

believe that, for the current approach, our results are converging towards the theoretical limit 

of ML-EEG for pain intensity classification, and increasing sample sizes may not yield further 

performance gain.  

 

The increased robustness of our second experimental chapter may actually account for the 

reduced performance. Although simulation research suggests that improved data quality is 

associated with greater model performance (Rajput et al., 2023), the association is less clear 

in empirical research. A recent review of ML prediction models across research domains such 

as Alzheimer’s, schizophrenia, psychosis, and autism demonstrated a negative association 

between sample size and model performance, with smaller samples often exhibiting greater 

performance (Varoquaux, 2018). Smaller samples exhibited greater variability in 

performance, inflating the model estimates. Consequently, it is feasible that by increasing the 

sample size, our estimates of model performance became more precise, reducing the 

observed performance. Further research supports this notion as small samples often lead to 

positive results due to chance, and this also increases the likelihood of publication 

(Algermissen & Mehler, 2018; Combrisson & Jerbi, 2015). For example, in small samples, ML 

models can achieve accuracies greater than 70% for random data (Combrisson & Jerbi, 2015). 

However, this study demonstrated that as the sample size increased, model performance 

trended towards the theoretical chance level (Combrisson & Jerbi, 2015). Therefore, this 
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phenomenon alone may explain the reduction in performance. Given that larger samples are 

less impacted by variability and produce precise estimates (Kokol et al., 2022; Varoquaux, 

2018), the results of our second experimental pain chapter likely provide robust estimates of 

the true capability of EEG-ML approaches, with performance converging towards 60%. As the 

existing literature frequently consists of small samples (Mari et al., 2022), the results are more 

likely to be inflated or obtained by chance (Combrisson & Jerbi, 2015). Furthermore, small 

samples produce significantly more variable results, including both type one and two errors. 

However, spurious positive results are significantly more likely to be published due to 

publication bias (Algermissen & Mehler, 2018; Jannot et al., 2013). Therefore, the estimates 

currently present in the field are also likely positively inflated due to publication bias, as 

positive findings are significantly more likely to be published (Duyx et al., 2017; Jannot et al., 

2013). Consequently, due to the increased methodological rigour, our results provide the best 

estimates of the current capability of ML and EEG for pain intensity prediction. Based on our 

results, we are confident that low and high pain trials can be classified 60% of the time, which 

still represents an improvement on the theoretical chance level of 50%. However, increasing 

the sample size and rigour is unlikely to further improve the model performance (Combrisson 

& Jerbi, 2015; Varoquaux, 2018) resulting in the observed ceiling effect.  

 

7.2.3 Classifying Data with Similar Spatiotemporal Characteristics 
 

This thesis also highlights the challenges associated with classifying data with similar 

spatiotemporal characteristics in terms of electrophysiology. The signal similarity between 

the classes (e.g., low and high pain, neutral and pain scene) and low signal-to-noise ratio could 

also explain the poor performance metrics. As single-trial EEG is inherently noisy, with a low 
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signal-to-noise ratio (Cohen & Cavanagh, 2011; Kaplan et al., 2005; Marathe et al., 2014), it is 

feasible that the differences in the spatiotemporal pattern of the classes observed at the 

grand average level (Coll, 2018; Fallon, Li, Chiu, et al., 2015; Misra, Wang, et al., 2017) are not 

observable at the single-trial level. Low and high pain states share highly similar 

spatiotemporal characteristics, with increased gamma over frontal regions, and decreased 

alpha and beta power over sensorimotor regions often observed, with larger changes 

associated with high pain (Misra, Wang, et al., 2017). Therefore, the neural characteristics of 

low and high pain significantly overlap, with deviations in the magnitude associated with the 

intensity. Moreover, the ERP waveforms for neutral and pain images share a high degree of 

similarity in their spatiotemporal profile, with only minor differences observed as enhanced 

or augmented component variations (Coll, 2018; Fallon, Li, Chiu, et al., 2015). Consequently, 

such differences may not be easily detectable at the single-trial level, resulting in relatively 

poor performance metrics. The findings from the face and non-face stimuli classification 

support this, as the model demonstrated good discrimination and calibration. The N170 

component is significantly enhanced during the observation of faces and is attenuated or 

missing in non-face stimuli (Bentin et al., 1996; Bötzel et al., 1995; Eimer, 2000; Itier, 2004; 

Itier & Taylor, 2004), the spatiotemporal characteristics were significantly different and may 

have led to more effective ML performance, as such distinct spatiotemporal patterns may 

have been detectable at the single-trial level. It is intuitive to expect ML models to perform 

well on data that have very different or distinct characteristics in terms of neural responses. 

Therefore, our results demonstrate the difficulties associated with classifying similar neural 

patterns, such as graded levels of subjective pain. Improving the signal-to-noise ratio through 

spatial filtering may result in increased ML performance (Blankertz et al., 2008; Rivet et al., 

2009). 



 266 

7.2.4 Clinical and Practical Utility 
 

This thesis also provides important evidence for both practical and clinical applications of ML. 

Our findings demonstrate that ML and EEG for pain intensity and visual stimuli prediction do 

not reach the levels required to achieve practical and clinical significance. All the models 

developed in this thesis (apart from the within-subject face and scene visual stimuli 

classification) failed to demonstrate performance sufficient for clinical and practical 

significance. Models that exhibit AUCs of less than 0.75 are not considered 

clinically/practically relevant (J. Fan et al., 2006). Consequently, our findings highlight that 

external validation performance is not currently sufficient to warrant translation attempts to 

develop clinical tools or similar applications, which is an important conclusion from this thesis. 

Based on the existing literature, it could be concluded that ML-EEG methods demonstrate 

sufficient performance for practical implementation, with almost three-quarters of the pain 

intensity studies evaluated in our review reporting accuracies of greater than 80% (Alazrai, 

Momani, et al., 2019; Alazrai, Al-Rawi, et al., 2019; T. Cao et al., 2020; Elsayed et al., 2020; 

Hadjileontiadis, 2015; Kaur et al., 2019; Misra, Ofori, et al., 2017; Nezam et al., 2018; Okolo & 

Omurtag, 2018; Sai et al., 2019; Schulz et al., 2012; Tripanpitak et al., 2020; Tu et al., 2016; 

Vatankhah et al., 2013; Vijayakumar et al., 2017; M. Yu, Yan, et al., 2020). Similar results have 

been reported for visual decoding research, with several studies demonstrating accuracies of 

approximately 90% (Cudlenco et al., 2020; Ghosh et al., 2021; Stewart et al., 2014; Zheng et 

al., 2020).  

 

The findings of previous literature would suggest that the models demonstrate adequate 

performance for immediate practical implementation. However, based on our findings on the 
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reduction of performance from internal to external validation, it is likely that these metrics 

are inflated, resulting in an over-optimistic view of the current clinical potential. This is likely 

an issue for all clinical ML prediction model research, as numerous models are developed 

each year, but few are successfully translated (Seneviratne et al., 2020; Shah et al., 2019). 

Therefore, even in previous models that surpass the (arguably arbitrary) clinical significance 

threshold, the clinical potential of the approach is likely overstated. Beyond performance 

metrics, numerous barriers exist, particularly safety, legal and ethical considerations, which 

reduce the likelihood of successful implementation (Davis et al., 2017; Mechelli & Vieira, 

2020; Seneviratne et al., 2020). Moreover, the difficulty of translating a clinical prediction 

tool, e.g., to objectively predict subjective pain intensity during a clinical examination, is 

enhanced as they are often considered medical devices and are subject to medical device 

regulation legislation (van Maaren et al., 2023). Overall, our findings suggest the performance 

level of ML and EEG is not currently sufficient to warrant the progression to practical and 

clinical applications. Improving external validation performance is imperative before 

attempts to develop practical implementations of ML-EEG-based methods are conducted. 

Beyond external validation, numerous imperative stages of the clinical prediction model 

pipeline must be carefully navigated to ensure the prediction model meets regulatory 

standards, otherwise, such prediction models will fail to demonstrate clinical utility, and could 

even lead to patient harm via over/underestimation of pain.  

 

7.3 Limitations  

The current thesis has several limitations which should be considered. Firstly, all empirical 

chapters lack ecological validity for consideration in a clinical context, having been conducted 
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in a sample of healthy individuals in a laboratory environment. The principal utility of an EEG-

ML pain decoding tool exists outside of the laboratory, for use in individuals with impaired 

ability to accurately communicate their pain (Arbour & Gélinas, 2014; Breivik et al., 2008; Herr 

et al., 2011; Ploner & May, 2018). Therefore, it is unknown whether our approach would work 

outside the laboratory in clinical populations. For example, it is unclear whether our 

prediction models would work in clinical populations such as dementia, which is associated 

with structural changes in prefrontal brain regions that reduce pain inhibition and increase 

pain intensity (Bunk et al., 2021). Therefore, we cannot generalise our findings beyond 

healthy individuals. However, whilst our research lacks ecological validity due to the 

laboratory environment, EEG can be used outside these conditions through dry and portable 

systems (C.-H. Wang et al., 2019; Zander et al., 2011). Such systems demonstrate easier 

application, without the requirement of specialist set-up (e.g., saline to minimise electrical 

impedances) or environments (e.g., faraday cages), with little performance degradation (T. J. 

Sullivan et al., 2008; C.-H. Wang et al., 2019; Zander et al., 2011). Dry electrodes demonstrate 

promise and have already been assessed for pain classification by Kimura and colleagues 

(2021). Therefore, such systems remain promising for improving the ecological validity of the 

approach. However, as the studies in this thesis were conducted in highly controlled, 

laboratory environments, this thesis lacks ecological validity, hindering the generalisability to 

real-world applications. Moreover, our findings are limited as we cannot conclude whether 

the approach would be effective in individuals with conditions that specifically alter brain 

structure and/or function. 

 

A recurring limitation of this thesis is that many of our models demonstrated imperfect 

calibration. Both pain intensity prediction studies demonstrated modest calibration, with 
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instances of overly extreme probability estimates. Whilst the calibration for the faces and 

scenes classification was promising, the pain empathy models are also likely to demonstrate 

calibration issues. However, as the model demonstrated poor discrimination metrics, we did 

not formally assess the calibration (Alba et al., 2017), but given the inaccurate predictions, 

the model can be assumed to be uncalibrated. Therefore, calibration issues are a consistent 

limitation across all empirical chapters. Inaccurate calibration suggests that the model 

provides imprecise probability estimates and is indicative of overfitting (Van Calster et al., 

2019). Calibration issues are particularly problematic for pain intensity predictions as the 

models tend to both underestimate and overestimate the probability of pain. Such 

predictions may result in negative outcomes such as under or overtreatment (Ramspek et al., 

2021; Wilson & Pendleton, 1989). However, as calibration is rarely assessed (Christodoulou 

et al., 2019; Mari et al., 2022), the calibration assessments of the thesis are an area of novelty 

and represent a significant advancement over previous research. Moreover, calibration 

estimates can be improved after ML modelling through the application of calibration models 

such as Platt scaling or isotonic regression (Y. Huang et al., 2020). Therefore, despite modest 

calibration, methods to improve model calibration exist and should be applied, especially 

when discrimination metrics surpass the clinically relevant threshold (J. Fan et al., 2006). 

Overall, continuing to assess and improve model calibration are imperative developments 

required for the approach to demonstrate clinical utility.  

 

Finally, the application of mechanical stimulation in this thesis is both an area of novelty and 

limitation. Mechanical stimulation in the form of mechanical pressure provides an 

approximate model of musculoskeletal pain, which holds relevance to chronic pain conditions 

such as Fibromyalgia syndrome (Birnie et al., 2014; Galvez-Sánchez et al., 2018), which is 
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characterised by widespread pain and tenderness to pressure stimulation (Kosek et al., 1995; 

Wolfe, 1997; Wolfe et al., 1990). However, other pain modalities may offer improved models 

of alternative chronic pain conditions (e.g., electrical stimulation – neuropathic pain). 

Consequently, we cannot generalise our findings to alternative methods of experimental pain 

stimulation. From our findings in Chapter 4, ML performance was slightly reduced when using 

alternative stimuli parameters within the same modality, suggesting the difficulty of 

predicting subjective pain beyond the original intention of the model. Future research should 

assess whether ML models trained on one pain modality would enable pain classification 

when using an alternative stimulation approach. A model that is effective regardless of pain 

modality holds greater clinical potential and would facilitate broader applications. 

 

7.4 Suggestions for Future Research 

7.4.1 Composite Measures 
 

Further external validation paradigms are imperative to assess the true potential of EEG-ML 

methods for pain prediction. Specifically, future research should prioritise improving both 

model discrimination and calibration to demonstrate performance levels sufficient for clinical 

translation. As discussed, clinical prediction models should achieve an AUC of greater than 

0.75 to demonstrate clinically meaningful results (J. Fan et al., 2006). Therefore, developing 

models that exceed this threshold when assessed using external validation paradigms 

remains a priority. Composite measures, e.g., combining EEG data with other physiological 

signals, may enable improved performance and should be thoroughly explored (Rockholt et 

al., 2023; I. Tracey et al., 2019). Due to the complexity of pain, single-measure approaches are 

unlikely to effectively decode pain, with composite approaches holding greater promise 
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(Cowen et al., 2015; I. Tracey et al., 2019). It is possible that through a combination of 

measures, performance may be extended beyond the current observed performance 

maximum, which may result in clinically meaningful results. 

 

Beyond neuroimaging techniques, genetic, physiological (heart rate, skin conductance, 

pupillometry), and biological measures (urine metabolites) may enable pain decoding (Cowen 

et al., 2015; Davis et al., 2020; Eldabe et al., 2022; I. Tracey et al., 2019). The potential of these 

methods is enhanced when combined, as composite measures often significantly outperform 

individual approaches (Cowen et al., 2015). Physiological measures may demonstrate the 

greatest potential due to their accessibility and potential for clinical utility (Ghamari, 2018; 

Mackey et al., 2019; Pantelopoulos & Bourbakis, 2010; Tivadar & Murray, 2019). Moreover, 

physiological measures appear promising for pain identification when combined with ML (Chu 

et al., 2017; Fernandez Rojas et al., 2023; M. Jiang et al., 2019; Teichmann et al., 2018; F. Yang 

et al., 2018). For example, Chu et al. (2017) aimed to develop a composite measure of pain 

intensity during electrical stimulation of 6 subjects. By combining blood volume pulse 

measurements, electrocardiogram, and skin conductance techniques, the authors 

demonstrated that four levels of subjective pain intensity could be classified with accuracies 

of up to 75% (Chu et al., 2017). Further research has demonstrated that heart rate, breath 

rate, skin conductance and facial EMG assessments during thermal and electrical pain 

stimulation could classify three classes of pain intensity with accuracies between 71% and 

83% (M. Jiang et al., 2019). Here, heart rate, respiratory rate, and skin conductance had the 

greatest association with pain intensity and accounted for most of the classification 

performance. Similar research has demonstrated that composite measures can be used to 

predict pain intensity with accuracies up to 94% (Fernandez Rojas et al., 2023; Teichmann et 
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al., 2018). Despite promising results, it is important to note that the previous studies are not 

externally validated, which incorporates all problems for interpretation discussed earlier. 

However, it is certainly possible that the combination of EEG and physiological measures may 

improve pain decoding and should be extensively investigated in future research (Fernandez 

Rojas et al., 2023). 

 

The potential of combined EEG and physiological measures is enhanced due to their potential 

ease of use and applicability in non-specialist environments. Whilst numerous approaches 

and techniques demonstrate promise for pain prediction, few are easily implementable 

clinically. For example, whilst fMRI may be effective for pain assessment (e.g., Wager et al., 

2013), it has reduced clinical potential due to financial and infrastructure limitations (Cowen 

et al., 2015; Mechelli & Vieira, 2020). Measures such as EEG, photoplethysmography, and skin 

conductance are low-cost and easily accessible in clinical environments, which make them 

ideal candidates for pain assessment (Ghamari, 2018; Mackey et al., 2019; Pantelopoulos & 

Bourbakis, 2010; Tivadar & Murray, 2019). Therefore, future research should attempt to 

validate low-cost composite measures for pain assessment, which would further increase the 

likelihood of clinical implementation of pain prediction models.  

 
7.4.2 Real-Time Decoding and Wearable Sensors 
 

In addition to composite measures, the potential of a pain assessment technique could be 

enhanced through the development of real-time pain detection using wearable sensors. 

Currently, our approach requires specialist equipment and environments, with the analysis 

occurring offline. Real-time EEG decoding, which can often produce an outcome (e.g., pain 

classification) in less than 40ms, would significantly enhance the clinical potential of a pain 
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decoding tool (Müller et al., 2008). Research within the brain-computer interface domain 

provides evidence for the potential of real-time decoding tools, with tasks such as speech 

being successfully decoded online using neural responses and ML (Moses et al., 2019). 

Indeed, real-time pain decoding tools are starting to be developed. Recent research has 

developed a real-time pain decoding tool using ML and fNIRS (X.-S. Hu et al., 2019). The 

previous study used a neural network to classify non-pain and pain states in real time, 

achieving an accuracy of 80.37%. Moreover, the authors extended the classification task to 

identify the location of the pain in addition to the presence or absence of pain. Here, the 

authors were able to classify non-pain, left-sided, and right-sided pain with accuracies of 

approximately 74% (X.-S. Hu et al., 2019). Again, it is important to note that these metrics are 

not externally validated and should be interpreted with caution. Nevertheless, the evidence 

suggests that varying pain states can be accurately decoded in real time, further enhancing 

the clinical potential of ML and EEG for pain assessment. 

 

Wearable sensors that are low-cost and easy to use may also further enhance the translation 

potential of a pain assessment tool, especially when coupled with real-time decoding. 

Wearable devices are types of biosensors that can be placed on the body, enabling 

continuous, high-resolution measurements (Leroux et al., 2021). Whilst there is limited 

research on the use of wearable sensors for pain prediction (Leroux et al., 2021), a recent 

study has attempted real-time pain assessment using a wrist-worn electrodermal activity 

monitor (Kong et al., 2021). Kong and colleagues (2021) aimed to decode non-pain and pain 

states using RF models and electrodermal activity recorded using a smartphone in real time. 

They found that non-pain and pain states could be accurately classified with accuracies up to 

82% in ten subjects (Kong et al., 2021). Given that wearable sensors are relatively inexpensive 
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and easy to use (Blasco & Peris-Lopez, 2018), they could be readily translated into a variety 

of clinical settings (e.g., a doctor’s office), providing performance reaches clinically 

meaningful levels. Moreover, wearable sensors could be combined with mobile EEG, enabling 

composite measures outside of the clinic. Therefore, to further enhance the potential 

applications of biological measurements for pain assessment, future research should aim to 

develop models using data from wearable, ideally consumer-level, sensors, to increase the 

clinical potential of the approach. Moreover, focusing efforts on real-time decoding using 

such tools will further increase the feasibility of object clinical pain assessment.  

 

7.4.3 Magnetencephalography and Electrocorticography 
 

Alternative neuroimaging approaches with improved signal-to-noise ratio may facilitate 

greater predictive performance. MEG and electrocorticography (ECoG) may have sufficient 

signal quality to improve ML performance (N. J. Hill et al., 2012; Ploner & May, 2018; Schalk 

& Leuthardt, 2011; Simon et al., 2022; S. Singh, 2014). Firstly, MEG records the magnetic fields 

which are not distorted by anatomical differences such as skull thickness or cerebrospinal 

fluid (Ploner & May, 2018; S. Singh, 2014). Moreover, MEG has improved spatial resolution 

when compared to EEG and is advantageous for neural responses with deeper neural 

generators (Pizzo et al., 2019; Ploner & May, 2018; Pu et al., 2018; S. Singh, 2014). Therefore, 

MEG data may offer improved signal quality, making it a potential candidate for a pain 

assessment technique. MEG has already been implemented to assess neural correlates of 

pain using traditional analyses (e.g., Timmermann et al., 2001). Consequently, there is 

evidence to suggest the utility of MEG for pain assessment. Despite a paucity of research 

investigating the combination of ML and MEG for pain prediction, one study has 
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demonstrated the potential of the approach for classifying individuals with chronic migraines 

(Hsiao et al., 2022). Hsiao et al. (2022) classified healthy controls and chronic migraine 

patients achieving an accuracy of approximately 86% and an AUC of 0.9. Further promising 

accuracies were obtained for the classification of individuals with different phenotypes (e.g., 

chronic migraine – episodic migraine, chronic migraine – Fibromyalgia). However, the 

previous research was not externally validated, which hinders the interpretability of the 

approach. Nevertheless, MEG may facilitate improved pain prediction and should be 

thoroughly investigated to ascertain whether the approach outperforms EEG. 

 

Despite the improved signal quality, MEG is less practical, more expensive, and less available 

than EEG (Ploner & May, 2018; S. Singh, 2014). For example, MEG systems cost several 

millions of pounds with running costs of approximately £100,000 per year (Seki et al., 2012; 

Stefan & Trinka, 2017). Whereas, the most expensive EEG systems can be acquired for 

approximately £150,000, with cheaper systems available for less than £15,000 (Emotiv 

Systems approx. £600; Ledwidge et al., 2018). Moreover, EEG systems are readily available in 

clinical settings, increasing translation feasibility (Ploner & May, 2018). Therefore, the 

financial and infrastructure requirements of MEG reduce the potential utility as a pain 

assessment technique (Levitt & Saab, 2019). Unless MEG enables pain prediction at levels 

that are unobtainable using EEG, it is unlikely to displace EEG. Developments such as low-cost 

MEG sensors, which retain the signal quality, but do not require helium cooling (enabling use 

at room temperature), may increase the feasibility of MEG pain assessment (Boto et al., 

2017). Therefore, the potential of MEG for pain prediction is an exciting avenue for research.  
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Alternatively, ECoG may also enable improved pain prediction due to an increased signal-to-

noise ratio and reduced susceptibility to EMG artefacts (N. J. Hill et al., 2012; Schalk & 

Leuthardt, 2011; Simon et al., 2022). Intracranial electrodes are regularly used in the brain-

computer interface domain, demonstrating effective neural decoding (Liang & Bougrain, 

2012; Schalk & Leuthardt, 2011; Vansteensel et al., 2016). Regarding pain prediction, recent 

research has demonstrated promising results (Shirvalkar et al., 2023). Using ML and local field 

potentials (LFPs) recorded from intracranial electrodes in the ACC and OFC of 4 patients with 

refractory neuropathic pain, the study demonstrated that ongoing low and high pain states 

could be classified with an average AUC of 0.75. Moreover, the authors attempted to classify 

responses during thermal pain. The model only significantly predicted pain in two subjects, 

achieving an AUC of approximately 0.74. Finally, the authors attempted to predict continuous 

pain intensity during chronic pain states. They found that the regression failed to predict pain 

ratings across all subjects, concluding that regression models may not be feasible for pain 

prediction and that binary classification approaches are more pragmatic for clinical 

applications (Shirvalkar et al., 2023). Taken together, intracranial electrodes may enable pain 

prediction, but the approach cannot be widely implemented.  

 

Whilst populations who require intracranial electrodes for adjunct functions such as 

communication (e.g., brain-computer interfaces for individuals with locked-in syndrome; 

Vansteensel et al., 2016) could be useful for pain prediction, it is not feasible to implant 

electrodes into most populations (e.g., infants). Therefore, even if intracranial electrodes 

enable accurate pain classification, they currently lack applicability and have few potential 

applications. Conditions such as locked-in syndrome could benefit from such approaches. 

However, developments in the brain-computer interface domain are allowing providing 
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effective communicative tools for such populations (Metzger et al., 2023; Vansteensel et al., 

2016), negating the potential of a pain assessment tool, as patients would regain the ability 

to accurately communicate their pain. Consequently, whilst intracranial electrodes may 

improve predictive performance, it is unclear whether the approach is necessary due to the 

lack of potential applications and developments from alternative research domains. 

Nevertheless, further research is warranted to determine the potential utility of the method. 

 

7.4.4 Improved Signal Processing and Feature Engineering 
 

Advancements in feature engineering and processing may also improve ML performance to 

clinically meaningful levels. Our feature engineering approach is relatively rudimentary, 

opting to focus on statistical features. Whilst we observed promising results, statistical 

features are the simplest approach and employing more advanced feature engineering 

procedures may improve ML performance (A. K. Singh & Krishnan, 2023). Spatial filtering 

(e.g., common spatial pattern, common spare spatio-spectral pattern) is a potential approach 

to enhance ML performance (A. K. Singh & Krishnan, 2023). Spatial filtering techniques 

increase the signal-to-noise ratio of EEG, and consequently ML performance, by maximising 

the differences between classes (Blankertz et al., 2008; Y. Miao et al., 2021; Rashid et al., 

2020; Rivet et al., 2009). Spatial filtering enhances variance in the first class and decreases 

variance in the second class (Rashid et al., 2020). Spatial filtering remains promising for 

classification approaches, with research demonstrating improved ML performance due to the 

filtering (Blankertz et al., 2011). However, spatial filtering increases the overfitting likelihood, 

which is especially problematic when external validation approaches are not employed 

(Blankertz et al., 2008; Grosse-Wentrup et al., 2009). The use of spatial filters has already 
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demonstrated promise for pain prediction (G. Huang et al., 2013). Therefore, spatial filtering 

techniques should be combined with external validation paradigms in future research, to 

provide insight into the performance gain and the effect on generalisability. Such approaches 

may enhance performance to a clinically meaningful level to provide a robust estimate of the 

potential of the approach. 

 

7.4.5 Increased Collaboration  
 

Finally, increased collaboration and data sharing are imperative for the successful 

development and translation of an AI-guided pain assessment tool (Davis et al., 2020; van der 

Miesen et al., 2019). Currently, prediction models are continuously developed across research 

groups, with few progressing to clinical translation, resulting in research waste (Collins et al., 

2014; Collins & Moons, 2019; Seneviratne et al., 2020; Shah et al., 2019). The benefit of large-

scale collaboration is evident. Increased transparency, external validation by other groups, 

and exponentially increased sample sizes are some of the many potential benefits. 

Furthermore, collaborative work results in enhanced productivity, leading to the acquisition 

of scientific knowledge that is not obtainable through siloed efforts (Katz & Martin, 1997; S. 

Lee & Bozeman, 2005; Wuchty et al., 2007). Consequently, effective collaboration is 

imperative given the number of challenges associated with developing and implementing 

clinical prediction models (e.g., ethical, and legal; Char et al., 2018; Vayena et al., 2018). 

Moreover, it is likely that even after the successful clinical implementation of a pain prediction 

model collaboration will be required. Handling running costs and long-term maintenance and 

monitoring will provide further obstacles to be overcome (Mechelli & Vieira, 2020). The 

creation of guidelines and committees, comprised of specialists with complementary 
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expertise (technical, ethical, legal etc.), will be essential to ensure the appropriate 

maintenance of such a tool. Moreover, the development of an objective measure of pain 

empathy also likely requires enhanced approaches including greater collaboration. Perhaps 

more advanced techniques would yield improved results, necessitating collaboration with 

external experts. The advent of such tools would be useful for medical training and to reduce 

bias in patient-clinician interactions and pain assessment (Hoffman et al., 2016; Pierson et al., 

2021; Preusche & Lamm, 2016). Whilst the development of prediction models for pain 

intensity and empathy remains in its infancy, a collaborative effort will be required 

throughout to overcome the many future obstacles.  

 

7.5 Concluding Remarks 

To conclude, this thesis investigated the effectiveness of ML and EEG for the classification of 

both subjective pain intensity and pain observation. We are the first to incorporate and report 

on external validation procedures, significantly advancing the research field. Our results are 

promising but provide realistic estimates of the current effectiveness of ML and EEG. 

Specifically, we demonstrated that ML and EEG can predict subjective pain intensity with 

above-chance levels in novel subjects and using novel experimental pain stimulation. 

Regarding the pain intensity prediction, we conclude that the current performance estimates 

in the literature are likely inflated. This thesis demonstrates the difficulty of diagnosing and 

preventing model overfitting without external validation, as performance generalisability 

estimates are often positively biased. Consequently, the lack of external validation has likely 

contributed to over-optimism in the research field. In addition, we identified that ML and EEG 

are unable to successfully classify the observation of pain, providing potential limits of the 
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method. The potential of a ceiling effect and the difficulty in classifying data with similar 

spatiotemporal patterns were identified as key themes of this research. Taken together, this 

thesis provides foundational contributions to the field through the novel integration of 

external validation procedures, improved sample sizes and new experimental paradigms. 

Further developments and externally validated research articles are imperative before clinical 

translation attempts can be justified. Improving model performance is also required to 

demonstrate clinically meaningful results, with composite data approaches offering a key 

area for improvement. Our research indicates that an objective tool to measure empathic 

processing, e.g., for clinical training applications, may not be imminently feasible. 

Alternatively, through continued development, a neuroimaging-based pain assessment tool 

may eventually demonstrate sufficient capability to warrant clinical translation. However, 

further significant methodological developments are required before such a tool can exist. 
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Appendices 

Supplementary Material 1 

Search Strategy 
 
MEDLINE  
 
1. exp Electroencephalography/  
2. "EEG*".af.  
3. electroencephalo*.af.  
4. or/1-3  
5. exp Pain/  
6. exp Pain Perception/  
7. pain*.af.  
8. exp Nociception/  
9. nocicept*.af.  
10. or/5-9  
11. exp Machine Learning/  
12. machine learning.af.  
13. supervised.af.  
14. exp Multivariate Analysis/  
15. exp Support Vector Machine/  
16. multivariate*.af.  
17. support vector machine*.af.  
18. SVM.af.  
19. exp Decision Trees/  
20. decision tree*.af.  
21. random Forest.af.  
22. nearest neighbor.af.  
23. nearest neighbour.af.  
24. Naive bayes.af.  
25. exp Bayes Theorem/  
26. exp Regression Analysis/  
27. regression.af.  
28. exp Neural Networks, Computer/  
29. Models, Neurological/  
30. Neural Net*.af.  
31. exp DISCRIMINANT ANALYSIS/  
32. linear discriminant analysis.af.  
33. exp ARTIFICIAL INTELLIGENCE/  
34. "artificial intelligence".af.  
35. or/11-34  
36. 4 and 10 and 35  
37. limit 36 to english language 
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Cochrane 
 
#1 MeSH descriptor: [Electroencephalography] explode all trees  
#2 ("EEG*"):ti,ab,kw  
#3 (electroencephalo*):ti,ab,kw  
#4 {OR #1-#3}  
#5 MeSH descriptor: [Pain] explode all trees  
#6 MeSH descriptor: [Pain Perception] explode all trees  
#7 (pain*):ti,ab,kw  
#8 MeSH descriptor: [Nociception] explode all trees  
#9 (nocicept*):ti,ab,kw  
#10 {OR #5-#9}  
#11 #4 AND #10  
#12 MeSH descriptor: [Machine Learning] explode all trees  
#13 ("machine learning"):ti,ab,kw  
#14 (supervised):ti,ab,kw  
#15 MeSH descriptor: [Multivariate Analysis] explode all trees  
#16 MeSH descriptor: [Support Vector Machine] explode all trees  
#17 (multivariate*):ti,ab,kw  
#18 (support vector machine*):ti,ab,kw  
#19 (SVM):ti,ab,kw 
#20 MeSH descriptor: [Decision Trees] explode all trees  
#21 (decision NEXT tree*):ti,ab,kw  
#22 ("random forest"):ti,ab,kw  
#23 ("nearest neighbor"):ti,ab,kw  
#24 ("nearest neighbour"):ti,ab,kw  
#25 ("Naive bayes"):ti,ab,kw  
#26 MeSH descriptor: [Regression Analysis] explode all trees  
#27 (regression):ti,ab,kw  
#28 MeSH descriptor: [Neural Networks, Computer] explode all trees  
#29 MeSH descriptor: [Models, Neurological] explode all trees 
#30 (Neural NEXT Net*):ti,ab,kw  
#31 MeSH descriptor: [Discriminant Analysis] explode all trees  
#32 ("linear discriminant analysis"):ti,ab,kw  
#33 MeSH descriptor: [Artificial Intelligence] explode all trees  
#34 "artificial intelligence":ti,ab,kw  
#35 {OR #12-#34}  
#36 #11 AND #35  
 
EMBASE 
 
1. exp electroencephalography/  
2. "EEG*".af.  
3. electroencephalo*.af.  
4. 1 or 2 or 3  
5. exp pain/  
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6. exp nociception/  
7. pain.af.  
8. nocicept*.af.  
9. 5 or 6 or 7 or 8  
10. 4 and 9  
11. exp machine learning/  
12. machine learning.af.  
13. supervised.af.  
14. exp multivariate analysis/  
15. exp support vector machine/  
16. multivariate*.af.  
17. support vector machine*.af.  
18. SVM.af.  
19. exp "decision tree"/  
20. decision tree*.af.  
21. random Forest.af.  
22. nearest neighbor.af.  
23. nearest neighbour.af.  
24. exp random forest/  
25. exp Bayesian learning/  
26. Naive bayes.af.  
27. exp regression analysis/  
28. regression.af.  
29. exp artificial neural network/  
30. Neural Net*.af.  
31. exp discriminant analysis/  
32. linear discriminant analysis.af.  
33. exp artificial intelligence/  
34. "artificial intelligence".af.  
35. or/11-34  
36. 10 and 35  
37. limit 36 to english language 
 
 
PsycINFO 
 
S1 DE "Electroencephalography" OR DE "Alpha Rhythm" OR DE "Beta Rhythm" OR DE 
"Delta Rhythm" OR DE "Gamma Rhythm" OR DE "Theta Rhythm"   
S2 "EEG*"   
S3 electroencephalo*   
S4 S1 OR S2 OR S3  
S5 DE "Pain" OR DE "Aphagia" OR DE "Back Pain" OR DE "Chronic Pain" OR DE 
"Headache" OR DE "Myofascial Pain" OR DE "Neuralgia" OR DE "Neuropathic Pain" OR DE 
"Somatoform Pain Disorder"   
S6 pain*   
S7 DE "Pain Perception" OR DE "Analgesia" OR DE "Pain Thresholds"   
S8 nocicept*   
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S9 S5 OR S6 OR S7 OR S8  
S10 S4 AND S9   
S11 DE "Machine Learning" OR DE "Computational Reinforcement Learning" OR DE 
"Inductive Logic Programming" OR DE "Machine Learning Algorithms" OR DE "Pattern 
Recognition (Computer Science)"   
S12 "machine learning"   
S13 supervised   
S14 DE "Multivariate Analysis" OR DE "Factor Analysis" OR DE "Mixture Modeling" OR DE 
"Multiple Regression" OR DE "Path Analysis" OR DE "Principal Component Analysis"   
S15 multivariate*   
S16 "support vector machine*"   
S17 SVM   
S18 "decision tree*"   
S19 "random Forest"   
S20 "nearest neighbor"   
S21 "nearest neighbour"   
S22 DE "Bayesian Analysis"   
S23 "Naive bayes"   
S24 DE "Statistical Regression" OR DE "Linear Regression" OR DE "Logistic Regression" OR 
DE "Multiple Regression" OR DE "Nonlinear Regression"   
S25 regression   
S26 DE "Neural Networks" OR DE "Artificial Neural Networks" OR DE "Biological Neural 
Networks"   
S27 "linear discriminant analysis" OR “artificial intelligence”  
S28 S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR 
S22 OR S23 OR S24 OR S25 OR S26 OR S27  
S29 S10 AND S28  Limit to English 
 
 
Web of Science 
 
TS=(electroencephalo*  OR  eeg)  AND TS=(pain*  OR  nocicept*)  AND TS=("machine 
learning"  OR supervised  OR multivariate*  OR "support vector machine*"  OR SVM  OR 
"decision tree*"  OR  "random Forest"  OR "nearest neighbor"  OR "nearest neighbour"  OR 
"Naive bayes"  OR regression  OR  "linear discriminant analysis"  OR "artificial intelligence") 
Refined by: LANGUAGES: ( ENGLISH ) 
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-
EXPANDED, IC Timespan=All years 
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Risk of Bias 
 

Table S1. ROB assessment for all studies       
    Participants Predictors Outcomes Analysis Overall 
Intensity      

 Alazrai, AL-Rawi, et al. (2019) Low Low Low High High 

 Alazrai, Momani, et al. (2019) Low Low Low High High 

 Bai et al. (2016) Low Low Low High High 

 Cao et al. (2020) High Low Low High High 

 Elsayed et al. (2020) Low Low Low High High 

 Furman et al. (2018) Low Low Low High High 

 Hadjileontiadis (2015) High Low Unclear High High 

 Kaur et al. (2019) Unclear Low Low High High 

 Kimura et al. (2021) Low Low Low High High 

 Li et al. (2018) Low Low Low High High 

 Misra et al. (2017) Low Low Low High High 

 Nezam et al. (2021) Low Low Low High High 

 Okolo & Omurtag (2018) High Low Low High High 

 Prichep et al. (2018) Low Low Low High High 

 Sai et al. (2019) High Low High High High 

 Schulz et al. (2012) Unclear Low Low High High 

 Tripanpitak et al. (2020) High Low Low High High 

 Tu et al. (2016) Unclear Low Low High High 

 Vatankhah et al. (2013) High Low Low High High 

 Vijayakumar et al. (2017) Low Low Low Low Low 

 Yu, Sun, et al. (2020) Low Low Low Low Low 

 Yu, Yan, et al. (2020) High Low Low High High 
Phenotyping      

 Akben et al. (2012) Low Low Low High High 

 Akben et al. (2016) Low Low Low High High 

 Cao et al. (2018) Low Low Low High High 

 De Tommaso et al. (1999) High Low Low High High 

 Frid et al. (2020) High Low Low High High 

 Graversen et al. (2011) High Low Low High High 

 Levitt et al. (2020) Low Low Low High High 

 Paul et al. (2019) Low Low Low High High 

 Saif et al. (2021) Unclear Low Low High High 

 Sarnthein et al. (2006) Low Low Low High High 

 Subasi et al. (2019) Low Low Low High High 

 Ta Dinh et al. (2019) Low Low Low High High 

 Vanneste et al. (2018) Low Low Low High High 
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 Vuckovic et al. (2018) Low Low Low High High 

 Wydenkeller et al. (2009) Unclear Low High High High 
Treatment      

 Gram et al. (2015) Low Low High High High 

 Gram et al. (2017) Low Low Low High High 

 Graversen et al. (2012) Low Low Low High High 

 Graversen et al. (2015) High Low Low High High 

 Grosen et al. (2017) Low Low Low High High 

 Hunter et al. (2009) High Low Low High High 

 Wei et al. (2020) Low Low Low High High 
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Applicability Assessment 
 

Table S2. Applicability assessment for all studies      
    Participants Predictors Outcomes Overall 
Intensity     
 Alazrai, AL-Rawi, et al. (2019) Low Low Low Low 

 Alazrai, Momani, et al. (2019) Low Low Low Low 

 Bai et al. (2016) Low Low Low Low 

 Cao et al. (2020) Low Low Low Low 

 Elsayed et al. (2020) Low Low Low Low 

 Furman et al. (2018) Low Low Low Low 

 Hadjileontiadis (2015) Low Low Low Low 

 Kaur et al. (2019) Low Low Low Low 

 Kimura et al. (2021) Low Low Low Low 
 Li et al. (2018) Low Low Low Low 

 Misra et al. (2017) Low Low Low Low 

 Nezam et al. (2021) Low Low Low Low 

 Okolo & Omurtag (2018) Low Low High High 

 Prichep et al. (2018) Low Low Low Low 

 Sai et al. (2019) Low Low Low Low 

 Schulz et al. (2012) Low Low Low Low 

 Tripanpitak et al. (2020) Low Low Low Low 

 Tu et al. (2016) Low Low Low Low 

 Vatankhah et al. (2013) Low Low Low Low 

 Vijayakumar et al. (2017) Low Low Low Low 

 Yu, Sun, et al. (2020) Low Low Low Low 

 Yu, Yan, et al. (2020) Low Low Low Low 
Phenotyping     

 Akben et al. (2012) Low Low Low Low 

 Akben et al. (2016) Low Low Low Low 

 Cao et al. (2018) Low Low Low Low 

 De Tommaso et al. (1999) Low Low Low Low 

 Frid et al. (2020) Low Low Low Low 

 Graversen et al. (2011) Low Low Low Low 

 Levitt et al. (2020) Low Low Low Low 

 Paul et al. (2019) Low Low Low Low 

 Saif et al. (2021) Low Low Low Low 

 Sarnthein et al. (2006) Low Low Low Low 

 Subasi et al. (2019) Low Low Low Low 

 Ta Dinh et al. (2019) Low Low Low Low 

 Vanneste et al. (2018) Low Low Low Low 
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 Vuckovic et al. (2018) Low Low Low Low 

 Wydenkeller et al. (2009) Low Low Low Low 
Treatment     

 Gram et al. (2015) Low Low Low Low 

 Gram et al. (2017) Low Low Low Low 

 Graversen et al. (2012) Low Low Low Low 

 Graversen et al. (2015) Low Low Low Low 

 Grosen et al. (2017) Low Low Low Low 

 Hunter et al. (2009) Low Low Low Low 

 Wei et al. (2020) Low Low Low Low 
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Supplementary Material 2 

 

Methods 

Model Evaluation 
 

The primary measures of discrimination in the current study were the AUC and accuracy. The 

AUC measures the model’s overall performance, which is the ability of the algorithm to 

correctly discriminate between low and high pain across different classification thresholds. 

An AUC of 0.5 represents chance discrimination, whilst an AUC of 1 represents perfect 

discrimination. Moreover, accuracy assesses the overall effectiveness of the algorithm and 

represents the number of correctly classified events over the total number of events. 

Precision measures the ratio of correctly labelled positive events across all positive 

predictions. In contrast, recall assesses the ratio of true positive cases correctly identified. F1 

represents the harmonic mean of recall and precision. For accuracy, precision, recall and F1, 

outputs of 1 demonstrate perfect predictions, whilst 0.5 represents chance performance for 

binary classification (note, classification metrics, excluding AUC, are reported as a percentage 

in-text for improved readability). Finally, the Brier score measures the mean squared error of 

the probability prediction. Here, 0 represents perfect performance and 1 reflects the worst 

theoretical performance. The Brier score was assessed as it is affected by discrimination and 

calibration, which is advantageous over other metrics. Equations (1) to (5) provide 

mathematical descriptions of the metrics. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛 

 

(1) 
 
(1) 
 
(1) 
 
(1) 
 
(1) 
 



 370 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑡𝑝

𝑡𝑝 + 𝑓𝑝	 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 

 

𝐹1 = 	
2𝑡𝑝

2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 

Where tp, tn, fp, fn represent the number of true positives, true negatives, false positives, 

and false negatives, respectively. 

 

𝐵𝑟𝑖𝑒𝑟	𝑆𝑐𝑜𝑟𝑒 = 	
1
𝑛	M

(𝑝! −	𝑜!)%
"

!#$

 

Where n is the number of samples, pi is the probability prediction and oi is the outcome event. 

 

 

  

(2) 
 
(2) 
 
(2) 
 
(2) 
 
(2) 
 
(2) 
 
(2) 
 
(2) 

(3) 
 
(3) 
 
(3) 
 
(3) 
 
(3) 
 
(3) 
 
(3) 
 
(3) 

(4) 
 
(4) 
 
(4) 
 
(4) 
 
(4) 
 
(4) 
 
(4) 
 
(4) 

(5) 
 
(5) 
 
(5) 
 
(5) 
 
(5) 
 
(5) 
 
(5) 
 
(5) 
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Confusion Matrices 

 

The confusion matrices for all models and external validation assessments are presented in 

Table S3.  

 
 
  

Table S3. Confusion matrices for all models for both external 
validations. 

Model External Validation One  External Validation Two 
  Predicted 

Low Pain 
Predicted 
High Pain 

Predicted 
Low Pain 

Predicted 
High Pain 

AdaBoost        
Low Pain  311 192   272 232 
High Pain  172 332   212 292 

        
LDA        
Low Pain  346 157   335 169 
High Pain  245 259   272 232 

        
LR        
Low Pain  324 179   320 184 
High Pain  234 270   272 232 

        
NB        
Low Pain  355 148   325 179 
High Pain  215 289   223 281 

        
RF        
Low Pain  426 77   367 137 
High Pain  242 262   262 242 

        
SVM        
Low Pain  301 202   281 223 
High Pain  182 322   216 288 

        
XGBoost        
Low Pain  320 183   292 212 
High Pain  195 309   216 288 
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