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A B S T R A C T   

Intervention studies combining cognitive and motor demands have reported far-transfer cognitive benefits in 
healthy ageing. This systematic review and meta-analysis evaluated the effects of music and rhythm intervention 
on cognition in older adulthood. Inclusion criteria specified: 1) musical instrument training; 2) healthy, musi-
cally-naïve adults (≥60 years); 3) control group; 4) measure of executive function. Ovid, PubMed, Scopus and the 
Cochrane Library online databases were searched in August 2023. Data from thirteen studies were analysed (N =
502 participants). Study quality was assessed using the Cochrane Risk of Bias tool (RoB 2; Sterne et al., 2019). 
Random effects models revealed: a low effect on inhibition (d = 0.27, p = .0335); a low-moderate effect on 
switching (d = -0.39, p = .0021); a low-moderate effect on verbal category switching (d = 0.39, p = .0166); and 
a moderate effect on processing speed (d = 0.47, p < .0001). No effect was found for selective visual attention, 
working memory, or verbal memory. With regards to overall bias, three studies were rated as “high”, nine studies 
were rated as having “some concerns” and one was rated “low”. The meta-analysis suggests that learning to play a 
musical instrument enhances attention inhibition, switching and processing speed in ageing.   

1. Introduction 

An increasingly ageing population has prompted a vast body of 
research on cognitive training programmes with the aim to maintain or 
restore cognitive functions in later adulthood (Corbett et al., 2015; 
Melby-Lervåg et al., 2016; Jaeggi et al., 2008; Holmes et al., 2019). 
Typical cognitive ageing is characterised by a slowing of “fluid” intel-
ligence, which refers to the ability to process and learn new information, 
generate new solutions, and interact with novel environments (Harada 
et al., 2013), compared with “crystallised” intelligence, which refers to 
familiar skills and knowledge that accumulate throughout the lifespan 
(e.g., vocabulary and general knowledge; Park et al., 2001). Age-related 
decline in fluid abilities hampers other cognitive functions, notably 
executive functions (EF), i.e., higher-level cognitive processes involved 
in planning, problem-solving, and multi-tasking abilities, that largely 
(but not exclusively) rely on fluid abilities (Roca et al., 2014). 

Fluid intelligence and EF have received particular attention within 
the cognitive training literature of ageing because they play an impor-
tant role in an individual’s competence to live independently, carry out 
daily functions, have a good quality of life and engage in social and 

meaningful activities (Diamond & Ling, 2016; Salthouse, 2012). For 
example, EF have been found to be significantly related to daily func-
tioning (Vaughan & Giovanello, 2010) as measured with the Instru-
mental Activities of Daily Living (IADL; Fillenbaum, 1985), notably to 
performance-based rather than self-report IADL. 

Thus, the primary focus of this meta-analysis was on the assessment 
of training effects on cognitive domains that are known to recruit fluid 
abilities and to be impacted by age, notably EF but also processing 
speed, visuo-spatial attention, and episodic memory. Processing speed 
refers to time taken to receive, process and respond to information in the 
environment (Salthouse, 2000). This ability begins to decline from 
midlife and continues to decrease with age, and a reduction in pro-
cessing speed is a contributing factor to declines in other cognitive do-
mains (Salthouse, et al., 2003, 2009), and is also associated with the 
need for assistance in daily activities (Bezdicek et al., 2016). Visuo- 
spatial attention refers to the ability to identify specific environmental 
information and ignore irrelevant information, and is impacted in 
ageing (Lezak et al., 2012). Episodic memory refers to recollection of 
events or information of a specific time and place (Harada et al., 2013). 
Episodic memory shows lifelong decline (Rönnlund, et al., 2005), and is 
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often measured in terms verbal memory, which is an individual’s ability 
to encode, store and recall or recognize verbal information within a test 
session. 

Fluid intelligence and EF abilities are thought to be negatively 
affected by ageing because they rely on optimal functioning of the 
prefrontal cortex (PFC) and its connected regions. According to the 
retrogenesis (first in last out) hypothesis (Raz, 2005), the PFC, as one of 
the late-maturing brain regions, is particularly susceptible to age-related 
grey and white matter atrophy (Resnick et al., 2003; Salat et al., 2004; 
Douaud et al., 2014). PFC structure and function (Liston et al., 2009; 
Cerqueira et al., 2007) and hence EF and fluid abilities, are also 
disproportionately impacted when a person is experiencing adverse life 
events, feeling sad, lonely, or in poor physical health (Diamond & Ling, 
2016). 

Attention switching/divided attention, inhibitory control of dis-
tracting information, and updating of information stored in working 
memory have been proposed as core EF components (Miyake et al., 
2000) which decline in ageing (Cepeda et al., 2001; Spieler et al., 1996; 
Braver & West, 2011). In a large-scale longitudinal study of 354 number 
of participants between the ages of 10–86 years old, age-related EF 
decline was shown to commence in middle adulthood, with working 
memory capacity and inhibitory control showing reductions in as early 
as the third decade (Ferguson et al., 2021). 

Previous attempts to enhance EF (most commonly working memory 
capacity) were often targeted through computerised training formats. 
Commercially available “brain training” programmes such as Lumosity 
(Lumos Labs Inc., San Francisco), Cogmed (Klingberg et al., 2005) and 
BrainHQ (Posit Science) have been widely used in an attempt to reduce 
or prevent cognitive decline in older adults. However, there is now a 
general consensus among researchers that such computerised training 
programmes have limited transfer effects (Holmes et al., 2019; Melby- 
Lervåg et al., 2016; Kelly et al., 2014; Dahlin et al., 2008), effect sizes of 
benefits on global cognition are low, and there is little evidence for 
long-term benefits (Gates et al., 2020). Computerised programmes may 
be unsuccessful because they tend to be unimodal or single-domain 
(Sutcliffe et al., 2020), and occur in “impoverished” computer 
learning environments, which do not mimic the complexity of 
real-world problems and therefore lack ecological validity (Moreau & 
Conway, 2014). Furthermore, computerised trainings tend to encourage 
single-domain strategies that cannot be transferred to other problems (i. 
e. do not encourage fluid abilities). 

It has been argued that the brain has evolved for movement, rather 
than for thinking alone, and that EF have evolved as an extension of the 
motor control system to facilitate optimal interaction with the envi-
ronment (Koziol et al., 2012). Besides the PFC and connected cortical 
parietal areas, the cerebellum and basal ganglia, which have been 
traditionally associated primarily with motor control, are now widely 
recognised as playing an important role in EF (Stoodley, 2012; Strick 
et al., 2009; Baillieux et al., 2008; Hazy et al., 2006, 2007). Thus, the 
learning of new cognitive-motor skills which require a combination of 
multi-sensory-motor integration and interaction between complex 
cognitive processes may provide a more ecologically valid and hence a 
more effective approach in delivering far transfer effects than compu-
terised programmes. This may be because such an approach may mimic 
the complex and fluid planning and problem-solving abilities needed in 
everyday life. In response, there have been calls for more “ecological” 
and holistic approaches to cognitive training which combine both 
cognitive and motor demands in real-life settings (Moreau & Conway, 
2014; Bernard & Seidler, 2014; Diamond & Ling, 2016). 

1.1. Music-based approaches to cognitive training 

Accumulating evidence suggests that music-based approaches to 
cognitive intervention, that combine complex cognitive and motor de-
mands, may hold potential as interventions to enhance EF. Therapeutic 
instrumental music performance (TIMP; Elliott, 1982), for instance, is a 

form of neurologic music therapy (NMT) that uses musical instruments 
to exercise movement patterns. In stroke rehabilitation, TIMP-based 
therapies have been shown to improve motor abilities and EF (mental 
flexibility) (Rodriguez-Fornells et al., 2012; Haire et al., 2021; Koshi-
mori & Thaut, 2019). 

Rhythmic auditory stimulation (RAS) interventions, which use 
metronomes or music as external triggers for movements (Koshimori & 
Thaut, 2023), have been used to improve motor symptoms and quality of 
life in Parkinson’s disease patients (Pantelyat et al., 2016; see Burrai 
et al., 2021; Lee & Ko, 2023 for reviews), and in stroke patients (Street 
et al., 2020). There is also preliminary evidence in Huntington’s disease 
(HD), that rhythmic stimulation (drumming) may improve EF and white 
matter microstructure in the genu of the corpus callosum which con-
nects the PFC of both hemispheres (Metzler-Baddeley et al., 2014) and in 
connections between the right Supplementary Motor Area (SMA) and 
the putamen (Casella et al., 2020). A systematic review found that 
benefits to global cognition were associated with microstructural 
changes in HD following rhythm training (Schwartz et al., 2019). The 
key mechanism of these rhythmic-based trainings which led to cognitive 
enhancement is thought to be the stimulation of basal ganglia and 
cerebellar networks and their connections to fronto-parietal regions 
associated with EF (Casella et al., 2020). 

Playing a musical instrument is considered a complex multimodal 
task which requires the integration and synchronization of auditory, 
visual, motor, and somatosensory information and places high demands 
on fluid EF processes (Herholz & Zatorre, 2012). Learning to play a 
musical instrument, such as the piano, also involves learning to read 
musical notation, known as sight-reading. Sight-reading necessitates the 
coordination of bimanual fine motor responses based on complex visual 
stimuli, the simultaneous monitoring of auditory information produced, 
and the adjustment of motor responses based on auditory and somato-
sensory feedback (Jäncke, 2009). Furthermore, playing music involves 
modulation of neuronal plasticity via the reward circuitry, including the 
basal ganglia (Herholz & Zatorre, 2012), which involves neurochemistry 
which may reinforce learning (Chanda & Levitin, 2013; Ferreri et al., 
2019). Multi-sensory integration, EF demands, and reward feedback 
may all be important contributors to neuroplastic effects observed due to 
training (Herholz & Zatorre, 2012). Taken together, learning to read and 
play music could be an optimal task for targeting feedforward mecha-
nisms associated with cortico-cerebellum network involved in EF. 

All of these mechanisms may contribute to differences in cognition 
and brain structure and function that have been reported between mu-
sicians and non-musicians, which are reviewed elsewhere (Herholz & 
Zatorre, 2012, Jäncke, 2009; Schlaug, 2001). Notably, cross-sectional 
studies suggest that learning to play an instrument can enhance cogni-
tion in later life (e.g., Verghese et al., 2003). In a correlational study, 
older musicians were found to perform better in nonverbal memory as 
well as naming and executive processing tasks compared with non- 
musicians whilst controlling for age, education, history of physical ex-
ercise, age of instrument acquisition and number of years of formal 
training (Hanna-Pladdy & MacKay, 2011). Further, Moussard et al. 
(2016) found that older musicians out-performed a group of age- and 
education-matched non-musicians on a GoNoGo task, with task accu-
racy linked with N2 amplitude measured with electroencephalography 
(EEG) in musicians, which suggests an executive control advantage. In 
addition to the variability of the definition used for “musician” across 
these studies (e.g. various degrees of expertness, professionalism, prac-
tice hours, and age of commencement), cross-sectional research presents 
challenges in establishing cause-and-effect relationships due to possible 
confounding effects such as education, socio-economic status and 
amount of music experience. This systematic review and meta-analysis 
was conducted because recent years have seen an increase in rando-
mised controlled intervention studies investigating the potential of 
short- or long-term musical training interventions to benefit cognition in 
older music novices. 
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1.2. Previous meta-analytical work and the current study 

A recent systematic review and meta-analysis conducted by Ma et al., 
(2023) investigated the effects of interventions involving rhythmic ex-
ercise or physical activities performed to music, (e.g., dancing), on 
physical and cognitive function. They concluded that such rhythmic 
movement interventions improved physical function, global cognition, 
and quality of life in healthy older adults. However, no effect was found 
on executive function. The meta-analysis included only three rhythmic 
music studies, and did not include any studies using TIMP or learning to 
play an instrument. A key difference between exercise to rhythm in-
terventions and learning to play a musical instrument is the manipula-
tion of an object using fine or gross motor control, and the consequential 
auditory and somatosensory feedback which can continuously shape 
motor behaviour (Herholz & Zatorre, 2012). As outlined above, taxing 
complex sensory-motor integration and feedback loops may be a crucial 
training component for enhancing EF. 

A previous meta-analysis on musical instrument training suggested 
that learning to play the piano may protect against cognitive decline in 
ageing (Roman-Caballero et al., 2018). A subsequent meta-analysis 
conducted on older adults and adults with mild cognitive impairment 
(MCI) concluded that musical training has promise as a cognitive 
intervention to deliver far-transfer benefits in processing speed, atten-
tion control and working memory capacity in healthy older adults due to 
active, rather than receptive engagement involved in the learning of a 
new instrument (Kim & Yoo, 2019). It was also found that cognitive 
demands varied depending on the instrument trained. Percussion in-
terventions which emphasized improvisation and multitasking were 
categorized as “immediate involvement” and were found to be more 
common in populations with MCI. “Sustained engagement” in-
terventions involved playing the piano and the application of memo-
rized information (music theory) to concurrent reading and playing of a 
score. However, at time of publishing, only four intervention studies in 
healthy older adults were available for inclusion in these two meta--
analytic papers (Roman-Caballero et al., 2018; Kim & Yoo, 2019). 

The current systematic review and meta-analysis is timely and novel 
as recently larger-scale, higher quality studies in older adults without 
any diagnosis of cognitive impairment have been published, which 
provide sufficiently large sample sizes to review the impact of learning 
to play an instrument on EF in healthy older adults. EF were chosen as 
the primary measures of interest (specifically, switching, inhibition and 
working memory capacity and updating) due to the important role they 
play in daily functioning and the hypothesized underlying neural links 
between motor skill learning and EF outlined above. Other fluid abilities 
that are negatively impacted by age were also examined: processing 
speed was analyzed given that age-related response slowing tends to 
impact performance in other cognitive domains (Salthouse, 2010; Revie 
& Metzler-Baddeley, 2023) and previous meta-analytic evidence sug-
gests that musical training may help improve processing speed (Kim & 
Yoo. 2019). Visuospatial attention and verbal memory were also 
examined given the potential for transfer of playing an instrument to 
these domains as evinced by cross-sectional research (Sluming et al., 
2007; Franklin et al., 2008). 

2. Method 

2.1. Search strategy and Inclusion criteria 

This systematic review and meta-analysis was conducted in line with 
recommendations from Preferred Reporting Items for Systematic Re-
views and Meta-Analysis (PRISMA, Page et al., 2021). A completed 
PRISMA checklist is available in the Supplementary Material. Electronic 
databases Ovid, PubMed, Scopus and the Cochrane Library were 
searched for intervention studies involving training on a musical in-
strument in healthy older adults, published in English. References lists 
were also hand-searched for relevant studies. Inclusion and exclusion 

criteria for studies to be included in the meta-analysis are presented in 
Table 1. 

The following search equation was used in the databases search in 
August 2023: (ageing OR aging OR older*) AND (music training OR 
piano training OR keyboard training OR music intervention) AND 
(cogniti* OR executive function*) without any time restrictions. The 
review was not pre-registered. EndNote referencing software was used 
to organise the literature from the four databases and to remove dupli-
cates. After 621 duplicates were removed, titles and abstracts of the 
remaining 1,581 articles were screened by the first author (FR) to 
exclude articles which did not meet the inclusion criteria (Fig. 1). 

Fifteen studies met inclusion criteria for meta-analyses. Where in-
formation was missing from a paper, corresponding authors were 
emailed to request the data (MacRitchie et al., 2020; Bugos et al., 2022; 
Lister et al., 2023). Two studies could not be included because 
descriptive statistics were unavailable (Lister et al., 2023; Bugos et al., 
2022). Data were collected from eligible studies by FR and transferred 
into an Excel spreadsheet. See Table 2 for study design information. The 
domains of EF (switching, inhibition, working memory capacity and 
updating, verbal fluency), processing speed, visuospatial attention, and 
verbal memory were investigated. With regards to verbal fluency, three 
sub-domains were investigated: letter fluency, category fluency and 
category switching. Letter fluency refers to the ability to generate words 
beginning with a given letter within a time limit (e.g., words beginning 
with “F”). Category fluency refers to the number of words generated 
which belong to a given category (e.g., supermarket items). Category 
switching refers to the number of words generated when alternating 
between two given categories (e.g., alternating between vegetables and 
furniture items each time a word is spoken). Verbal memory was 
examined in three ways: 1) total number of words recalled after five 
trials where the same word-list was presented for each trial; 2) 
immediate/short-delay recall, where verbal information was tested 
shortly after it was presented or 3) long-delay recall, where verbal in-
formation was requested following an approximate 20-minute delay. 
Specific tests used to assess EF, processing speed, visuospatial attention 
and verbal memory in each study are reported in Table 3. 

Table 1 
Inclusion and exclusion criteria for studies to be entered in meta-analysis.  

Inclusion Criteria Exclusion Criteria 

Intervention studies which required the 
production of music using a pitched 
and/or percussion instrument(s) 

Music-based interventions which did not 
require training in a pitched or 
percussion instrument (e.g., singing, 
dancing or exercise to music 
interventions) 

Cognitively healthy adults as assessed by 
screening for cognitive impairment 
and/or neurological disorders over the 
age of 60 

Studies that exclusively examined 
participants with diagnoses of cognitive 
and/or neurological impairment or 
younger adults, adolescents or children 

In addition to the above, participants 
who were musically-naïve, defined as 
having < 3 years of formal training on 
a musical instrument and were not 
involved in any other music-based 
activities 

Inclusion of participants with > 3 years 
formal music training or those who were 
actively involved in regular music-based 
activities 

Inclusion of a control group (either RCT 
or matched control groups) 

Correlational studies or within-subjects 
designs without a comparative control 

Inclusion of at least one outcome 
measure of EF from a test designed to 
measure one of the following domains: 
distractor inhibition (Stroop test); 
attention switching (Trail-Making Test 
Part B); working memory capacity 
(digit span tests) and updating (N- 
back); verbal fluency (letter, category, 
and category switching tests) 

Lack of EF outcome measure 

EF, executive functions; RCT, randomised controlled trial. 
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2.2. Risk of bias assessment 

The Cochrane Risk of Bias Tool (RoB2; Sterne et al., 2019) was used 
to assess the validity of the included studies. RoB2 requires the reviewer 
to answer a series of signalling questions in order to elicit information 
about specific study features which are relevant regarding risk of bias, 
and then provides risk of bias judgment which is generated by a com-
puter algorithm. Studies are evaluated as “low”, having “some concerns” 
or “high” on the following six criteria: random sequence generation; 
allocation concealment; blinding of participants; blinding of outcome 
assessment; incomplete outcome data; and selective outcome reporting. 
Overall study bias was judged as “low”, “some concerns” or high” based 
on combined scores of these six categories. Judgements reported in this 
meta-analysis were based on evaluations by FR, combined with RoB2 
algorithm. Overall bias was determined as low only when all six domains 
were scored as low. 

2.3. Statistical analysis 

Random-effects models were chosen for the meta-analyses because 
they control for differences in study methods and sample characteristics, 

which could introduce heterogeneity among the true effects (Field & 
Gillett, 2010; Viechtbauer, 2010). This was relevant given the hetero-
geneous intervention parameters across the thirteen studies (see 
Table 2). 

Effect sizes were calculated from the descriptive statistics reported in 
each study. Pooled Cohen’s d estimates were analysed for each of the 
cognitive domains measured using the metafor package in R (Viecht-
bauer, 2010). Effect sizes were considered as follows: low (0.2–0.4); 
moderate (0.5–0.7); or large (>0.8) (Cohen, 2013). Heterogeneity 
across studies was calculated using the I2 statistic (Higgins & Thompson, 
2002), and was determined as low, medium or high at 25, 50, or 75 %, 
respectively. 

Additional exploratory analyses were undertaken for each cognitive 
domain. A “leave-one-out” sensitivity analysis (Viechtbauer & Cheung, 
2010), whereby one study was removed from the analysis at a time, 
whilst pooled effect size was recalculated, was undertaken to determine 
the influence of each study on overall effect size for each cognitive 
domain. 

Cohen’s d effect sizes were also calculated for the two individual 
studies which reported three-month follow-up data (Bugos et al., 2007; 
Bugos & Wang, 2022). 

Fig. 1. PRISMA flowchart of screening strategy for studies to be included in the meta-analysis.  
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3. Results 

Thirteen studies were included in the analyses, one of which was a 
PhD dissertation, and it should be noted that this study was not pub-
lished and peer-reviewed (Thorne, 2015). Following attrition in each 
study, a total of 502 participants were analysed. As not all thirteen 
studies examined all five of the cognitive domains of interest, the 
number of total samples for the meta-analyses for each cognitive domain 
ranged between 211 and 360 participants. For this reason, funnel plots 
were not created to assess publication bias for any cognitive domain 
tested, given that statistical power was too low to detect meaningful 
asymmetry in fewer than ten studies (Higgins et al., 2011). The pooled 
mean age across all studies was 71.95 years (SD = 4.83), ranging from 
67.5 to 83.7 years old. All studies which were included in the analysis 
were conducted on healthy older adults (see Table 2 for cognitive 
screening tools used). One study included in the meta-analyses also 
included participants with MCI (Biasutti & Mangiacotti, 2018). 

In three studies, piano training was compared with a music listening 
intervention which provided training in music appreciation and active 
listening skills (Bugos, 2010; Bugos, 2019, Thorne, 2015). For five 
studies, music intervention was compared with a passive, no-treatment 
control group (Bugos et al., 2007; Guo et al., 2021; Kim & Yoo, 2020; 
Bugos & Wang, 2022). One study used a waitlist design where one group 
was tested pre- and post- piano training, while the control group 
remained inactive during the intervention period. The control group 
later received the intervention after the second testing and were tested a 

third time after they had received the intervention (MacRitchie et al., 
2020). In one study, the intervention group acted as their own control, 
with testing occurring pre- and post- a two week no-treatment period, 
and then again after the piano training. However, the order was not 
counterbalanced across participants because of potential long-term ef-
fects of the intervention (Bugos & Kochar, 2017). Other studies 
compared music training with other leisure activities (Seinfeld et al., 
2013), gymnastic activities (Biasutti & Mangiacotti, 2018) or choir 
participation (Dos Santos et al., 2020). For studies which included two 
control groups, effect sizes were calculated from control groups 
requiring no instrument training – a passive control group (Bugos & 
Wang, 2022; Degé & Kerkovius, 2018) or music listening intervention 
group (Bugos & Kochar, 2019), because these controls did not require 
learning a motor skill and were therefore comparable with control 
groups used in the other studies. 

3.1. Risk of bias 

Of the thirteen studies, nine studies used randomization in assigning 
participants to a music intervention group or a control group. Only five 
studies explicitly stated that outcome assessors were blind to group 
allocation. Attrition rates ranged from 20 to 34 %. Overall bias was rated 
as “high” for three studies and as “some concerns” for nine studies. One 
study was rated as having “low” overall bias. Overall percentages of 
studies with “high”, “some concerns” or “low” risk of bias are displayed 
in Fig. 2. Summary of risk of bias within each study for six domains of 

Table 2 
Design details of music intervention studies in healthy older adults.  

Year Author Study Design N 
(Int/ 
Con) 

Mean 
Age 
(Int/ 
Con) 

Cognitive 
Screening 
tool 

Intervention Type Control Group(s) Intervention intensity, 
frequency, duration 

2007 Bugos et al. RCT 16/15 71.4/ 
69.6  

Individualised piano 
training 

No treatment 30 min, 1/week, 6 months, 
(min. 3 h practice per week) 

2010 Bugos Age- and IQ-matched 
active control 

24/22 69.3/ 
67.7 

TICS Group piano playing Music Listening 
Intervention 

45 min, 1/week, 16 weeks; 
(30 mins daily practice) 

2013 Seinfeld et al. Cluster sampling – 
Active control 

13/16 69.3/ 
69.6 

MMSE Group piano playing Other leisure activities 90 min, 1/week, 4 months; 
45mins practice 5 days per 
week (min. 4 h practice per 
week) 

2015 Thorne RCT 10/10 71.5/ 
71.7 

MMSE Group piano playing Music listening 
intervention 

30 min, 1/week, 6 months 
(30 mins practice per day) 

2017 Bugos & 
Kochar 

Within-subjects 
(Subjects as own 
control) 

34 70.79 TICS Short-term, intense 
piano training 

Subjects as own control 
(pre-test and then second 
pre-test after 2-week 
period) 

3 h per day for 2 weeks (total 
30 h) 

2018 Biasutti & 
Mangiacotti 

RCT 
(participants with MCI 
also included) 

18/17 83.39/ 
83.76 

MMSE Cognitive music 
training 

Gymnastic activities 12 bi-weekly 70 min 

2018 Degé & 
Kerkovius 

RCT 8/7/9 77.9/ 
76.6/ 
77.5  

Group drumming and 
singing training 

Literature programme; 
no treatment 

60 min, 1/week, 15 weeks 

2019 Bugos Age and IQ-matched 
active control groups 

49/ 
38/48 

67.9/ 
69.13/ 
68.83 

TICS Group piano playing   Percussion group; Music 
listening course 

45 min 1/week, 16 weeks 
(30 min practice per day or 
3 h per week) 

2020 Guo et al.  Pseudorandomized 
(fMRI) 

27/26 73.3/ 
72.9 

MMSE Keyboard Harmonica 
(R.H. only) 

No treatment 60 min, 1/week, 4 months 

2020 MacRitchie 
et al. 

RCT 8/7 70.9 ACE-III Group piano training: 
ensemble playing, 
Figure notes 

Waitlist (no treatment) 60 min, 1/week, 10 weeks 
(30 mins practice per day) 

2021 Dos Santos 
et al. 

RCT 15/12 68.4/ 
67.3 

MMSE Improvisation and 
percussion activities 

Choir singing 60 min. 1/week, 8 weeks 

2021 Kim & Yoo RCT 10/10 78.8/ 
70.2  

MMSE Rhythm-motor dual 
tasks 

No treatment  30 min. 2/week, 8 weeks 

2022 Bugos & 
Wang 

RCT 30/ 
35/50 

67.2/ 
69.29/ 
67.64 

TICS Group piano playing Computer-assisted 
cognitive training; no 
treatment 

90 min, 2/week, 16 weeks 
(no outside practice) 

ACE-III, Addenbrooke’s Cognitive Examination-III (Hsieh et al., 2013); Con, control; fMRI, functional magnetic resonance imaging; Int, intervention; MCI, mild 
cognitive impairment; MMSE, Mini-Mental State Examination (Folstein et al., 1975); RCT, randomised controlled trial; TICS, Telephone Interview for Cognitive Status 
(Brandt et al., 1988), 
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Table 3 
Cognitive domains tested and outcome measures used in each music intervention study.   

Executive Functions Processing Speed Visuospatial 
Attention 

Verbal Memory 

Study Switching Inhibition Verbal 
fluency 

Working 
Memory   

Total word- 
list recall 
after 5 
trials 

Immediate/ 
Short-delay 

Long-Delay 

Bugos et al. 
(2007) 

TMT-B n/a n/a Digit span Digit Symbols TMT-A n/a n/a n/a 

Bugos (2010) TMT-B Stroop (error 
rates) 

D-KEFS 
(LF, CF, 
CS) 

n/a PASAT TMT-A n/a n/a n/a 

Seinfeld et al. 
(2013) 

TMT-B Stroop 
(correct 
responses) 

n/a Digit span SDMT TMT-A n/a n/a n/a 

Thorne (2015) TMT-B Stroop (error 
rates) 

n/a n/a Digit symbols TMT-A CNS Vital 
signs 

Immediate word- 
list recognition 
hits 

Delayed word- 
list recognition 
hits 

Bugos and 
Kochar 
(2017) 

n/a n/a D-KEFS 
(LF, CF, 
CS) 

n/a WAIS-IV (coding 
and symbol search 
index scores) 

n/a RAVLT Short-delay 
word-list recall 
(RAVLT) 

Long-delay 
word-list recall 
(RAVLT) 

Biasutti and 
Mangiacotti 
(2018) 

n/a n/a LF n/a n/a TMT-A n/a n/a n/a 

Degé and 
Kerkovius, 
(2018) 

n/a n/a n/a Digit span n/a n/a n/a Immediate word- 
list recall 

n/a 

Bugos (2019) TMT-B Stroop D-KEFS 
(LF, CF, 
CS) 

n/a PASAT TMT-A n/a n/a n/a 

Guo et al. 
(2021) 

TMT-B  LF, CF Digit span n/a TMT-A n/a Immediate story 
recall (WMS-LM 
I) 

Delayed story 
recall (WMS-LM 
II) 

MacRitchie 
et al. (2020) 

TMT-B n/a n/a n/a n/a TMT-A n/a n/a n/a 

Dos Santos et al. 
(2021) 

n/a n/a LF n/a n/a TMT-A n/a n/a n/a 

Kim and Yoo 
(2020) 

TMT-B n/a n/a n/a n/a TMT-A n/a n/a n/a 

Bugos and 
Wang (2022) 

TMT-B Stroop D-KEFS 
(LF, CF, 
CS) 

N-back PASAT n/a RAVLT n/a n/a 

CF, category fluency; CNS, Computerised Neurocognitive Assessment (CNS Vital Signs, Inc: Morrisville, NC); CS, category switching; D-KEFS, Delis-Kaplan Executive 
Function Systems (Delis et al., 2001); EF, executive functions; LF, letter fluency, PASAT, Paced Auditory Serial Addition Test (Gronwall, 1977); RAVLT, Rey Auditory 
Verbal Learning Test (Rey, 1941); TMT-A, Trail-Making Test (Part A); TMT-B, Trail-Making Test (Part B; Reitan & Wolfson, 2009); WAIS-IV, Wechsler Adult Intel-
ligence Scale IV (Wechsler, 2008); WMS-LM, Wechsler Memory Scale – Logical Memory (Wechsler, 1987). 

Fig. 2. Percentage risk of bias summary from Cochrane Risk of Bias tool (Stern et al., 2019).  

F. Rogers and C. Metzler-Baddeley                                                                                                                                                                                                          



Brain and Cognition 175 (2024) 106137

7

Cochrane RoB 2 is presented in Fig. 3. 

3.2. Main findings 

With regards to EF, statistically significant effect sizes were found for 
attention switching (low-moderate effect size), distractor inhibition 

(low effect size), and the category switching verbal fluency subtest (low- 
moderate effect size). No statistically significant effect size was found for 
working memory capacity/updating or the other verbal fluency subtests 
(letter and category). 

A significant moderate effect size was found for processing speed, but 
no significant effects were found for visuospatial attention, or any 

Fig. 3. Summary of risk of bias within each study for six domains of Cochrane RoB 2.  
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measure of verbal memory (immediate, short- or long-delay measures). 
Sensitivity analyses for all cognitive domains tested are reported in 

detail in the following subsections. Table 4 reports the full statistical 
models for each domain with statistically significant effect sizes indi-
cated (*p < .05, **p < .01 *** p < .001). Forest plots for each domain 
are presented in Fig. 4 with statistically significant effect sizes indicated 
(*p < .05, **p < .01 *** p < .001). 

3.2.1. Executive functions 

3.2.1.1. Switching. Nine studies used TMT-B completion times or delta 
scores as a measure of attentional switching. However, one study 
(Bugos, 2010) did not report descriptive statistics. A random-effects 
model conducted on the remaining 8 studies revealed a moderate ef-
fect size (d = -0.42, p = .0143), with moderate heterogeneity (I2 = 51.62 
%). One study was rated as having overall “high” bias (Seinfeld et al., 
2013), while the other six were rated as “some concerns”. 

Notably, when the study rated as “high bias” (Seinfeld et al., 2013) 
was removed from the analysis, the effect size dropped to a low effect (d 
= -0.28, p = .0202) with low heterogeneity (I2 = 4.53 %), thus sug-
gesting a considerable impact on the model, and therefore this study was 
omitted. 

In a final exploratory synthesis, one study (Guo et al., 2021) which 
required training in keyboard harmonica (an instrument played with 
one hand only – and therefore did not involve practice in bimanual 
coordination) was removed from the model. The final model, which 
included 6 studies, revealed a small-moderate effect size (d = -0.3868, p 
= .0021), with 0 % heterogeneity. This suggests that musical instrument 
interventions which require a switching attentional component from 
one hand to the other may show strongest transfer to TMT-B perfor-
mance. This final model is presented in Table 4 and Fig. 4 (A). 

3.2.1.2. Inhibition. Five studies measured inhibitory control using the 
incongruent condition of the Stroop test. Two of these studies were rated 
as “high” for overall bias (Bugos, 2010; Seinfeld et al., 2013), while the 
other three were rated as “some concerns”. The model which included 
these 5 studies revealed no effect, and was non-significant (d = 0.03, p =
.9236), with high heterogeneity (I2 = 76.63 %). 

During the leave-one-out analysis, Thorne (2015) was found to have 
a substantial impact on the overall effect size and therefore omitted from 
the final model in Fig. 4 (B). The final model suggests a small, but sta-
tistically significant, effect size for inhibition (d = 0.27, p = .0335, I2 = 0 
%), but should be interpreted with caution given that two of the four 

studies were rated high for overall bias. 

3.2.1.3. Working memory capacity and updating. Four studies utilised 
digit span tasks as a measure of working memory capacity, and one 
study measured updating using the N-back task (see Table 3). One study 
was rated high for risk of bias (Seinfeld et al., 2013). A random effects 
model using data from these five studies revealed a moderate effect size 
which was not statistically significant (d = 0.4729, p = .1374), and 
contained high heterogeneity (77.17 %). 

When only working memory capacity was investigated (i.e. when 
Bugos & Wang, 2022 was removed), a moderate effect which 
approached statistical significance (d = 0.6420, p = .0882) was detec-
ted, however heterogeneity remained high (74.17 %). 

When the high bias study was removed, random effects model of the 
other four studies revealed a drop in the effect size to below the “low” 
threshold and was non-significant. (d = 0.1576, p = .4112), with mod-
erate heterogeneity (31.24 %). This is the final model presented in 
Table 4 and Fig. 4 (C). 

3.2.1.4. Verbal fluency (letter fluency, category fluency and category 
switching subtests). Three studies employed the category switching 
subtest of verbal fluency. Category switching is a subtest of the D-KEFS 
verbal fluency assessment which requires alternating between words of 
two categories as many times as possible within 60-second limit. Of the 
three studies which used this measure, one of which was rated as having 
“high” risk for overall bias (Bugos & Kochar, 2017), and the other two 
were rated as “some concerns”. A statistically significant small-to- 
moderate effect was found for category switching (d = 0.39, p =
.0166, I2 = 36 %, Fig. 4 (F)). 

Analyses of other verbal fluency tests (letter fluency and category 
fluency) did not reveal effect sizes larger than 0.20, and none of which 
were statistically significant. However, effect sizes for letter and cate-
gory fluency approached the 0.2 “low” effect size threshold (d = 0.19, p 
= .0795) and (d = 0.18, p = .1144) respectively (see Figures (D) and (E)). 

3.2.2. Processing speed 
A random-effects model for processing speed was conducted on 7 

studies which included a measure of processing speed (see Table 3 for 
specific tests used). A moderate effect size was found, which was sta-
tistically significant (d = 0.60, p = .0004), with moderate heterogeneity 
(I2 = 54 %). 

Notably, during the exploratory “leave-one-out” analysis, pooled 
effect size for processing speed dropped to low-moderate range when 

Table 4 
Random-effects models for executive functions, processing speed, visuospatial attention, and verbal memory.   

Model Heterogeneity  

d P CI lower CI upper Q df p I2 T2 

Executive Functions          
Switching − 0.39** 0.0021 − 0.6335 − 0.1402 1.31 5 0.93 0 0 
Inhibition 0.27* 0.0335 0.0212 0.5237 1.97 3 0.58 0 0 
Working memory capacity/updating 0.16 0.4112 − 0.2182 0.5333 4.33 3 0.23 31.24 0.05 
Verbal fluency (letter fluency) 0.19 0.08 − 0.0220 0.3970 4.51 5 0.48 0 0 
Verbal fluency (category fluency) 0.18 0.11 − 0.0429 0.3982 3.44 4 0.49 0 0 
Verbal fluency (category switching) 0.39* 0.0166 0.0715 0.7158 3.11 2 0.21 36 0.03  

Processing speed 0.47*** <0.0001 0.2513 0.6850 3.21 5 0.67 0 0  

Visuospatial attention − 0.05 0.70 − 0.3110 0.2101 15.63 9 0.08 29.16 0.05  

Verbal Memory          
Total recall after 5 trials 0.1955 0.3310 − 0.1987 0.5896 3.7893 2 0.1504 31.87 0.0394 
Immediate/ short-delay recall 0.2327 0.1689 − 0.0988 0.5641 0.3599 2 0.8353 0 0 
Long-delay recall 0.2681 0.1536 − 0.1001 0.6363 1.0517 1 0.3051 4.91 .0594 

*p < .05, **p < .01 *** p < .001. 
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Seinfeld et al. (2013), a study which had been rated as high bias, was 
removed (d = 0.47, p < .0001, I2 = 0). Therefore, Seinfeld et al. (2013) 
was omitted from the final forest plot for processing speed depicted in 

Fig. 4 (G) to minimise risk of inflating effect sizes. It should also be noted 
that, of the six remaining studies which were included in the final model, 
two were rated as high for bias (Bugos, 2010; Bugos & Kochar, 2017), 

Fig. 4. Forest plots for cognitive domains tested, with statistically significant effect sizes indicated (*p < .05, **p < .01 *** p < .001). (A) Switching, (B) Inhibition, 
(C) Working Memory Capacity/Updating (D) Verbal fluency (letter fluency) (E) Verbal fluency (category fluency) (F) Verbal fluency (category switching) (G) 
Processing Speed (H) Visuospatial Attention (I) Verbal memory (total recall) (J) Verbal fluency (immediate/short-delay recall) (K) Verbal memory (long-delay recall). 
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and four were rated as having some concerns. Removal of the two high 
bias studies did not impact effect size and so were left in the final model. 
However, this result should be interpreted with caution given that the 
Bugos group constitute five of the six studies, which may introduce bias 
given that the majority of the data was collected by the same lab. 

3.2.3. Visuospatial attention 
Ten studies employed the TMT-A as a measure of visuospatial 

attention. Two studies were rated as having high risk for overall bias 
(Bugos, 2010; Seinfeld et al., 2013), one was rated as having low overall 
bias (Dos Santos et al., 2020), and the remaining 7 studies were rated as 
some concerns. No effect size was found (d = -0.0505, p = .7042). 

Fig. 4. (continued). 
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Fig. 4. (continued). 
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Heterogeneity was moderate (I2 = 29.16 %). After visual inspection of 
the forest plot, the analysis was repeated whilst omitting Thorne (2015), 
but effect size and significance p values remained virtually unchanged 
(d = 0.0370, p = .7342, I2 = 0). Therefore, Thorne (2015) was left in the 
final model reported in Table 4 and Fig. 4 (H). 

3.2.4. Verbal memory 

3.2.4.1. Total word-list recall following five trials. Three studies reported 
total word recall following five successive trials where the same word 
list was presented (Thorne, 2015; Bugos & Kochar, 2017; Bugos & Wang, 

Fig. 4. (continued). 
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2022). The analysis indicated an effect size which approached the “low” 
threshold, but was non-significant (see Table 4; Fig. 4 (I)). However, 
further research is needed given that only three studies included this 
measure, one of which had been rated as high bias (Bugos & Kochar, 
2017), and one which had not been peer-reviewed (Thorne, 2015). 

3.2.4.2. Immediate and short-delay recall. Four studies measured im-
mediate or short-delay verbal memory using different measures (see 
Table 4). The random effects model revealed a moderate effect size, 
which was non-significant (d = 0.6064, p = .1265), with high hetero-
geneity (Q(3) = 9.7770; p = .0206; I2 = 79.53 %). 

When Degé and Kerkovius (2018) was removed from the analysis, 

Fig. 4. (continued). 
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effect size was low and heterogeneity dropped to 0 %, but remained non- 
significant. This study was therefore omitted from the final model pre-
sented in Table 4 and Fig. 4 (J). 

3.2.4.3. Long-delayed recall. Three studies employed measures of long- 
delay verbal recall (see Table 3). The model indicated a moderate effect 
size which approached statistical significance (d = 0.4602, p = .0758) 
with moderate heterogeneity (Q(2) = 4.0866; p = .1296; I2 = 50.42 %). 

When Thorne (2015) was removed from the analysis, effect size 
dropped to a low effect, with only 4.91 % heterogeneity, but remained 
non-significant (see Table 4; Fig. 4 (K)). 

3.3. Three-month follow-up effect sizes 

Of the thirteen studies included in the meta-analyses, only two con-
ducted long-term follow-up testing. Effect sizes calculated from 
descriptive statistics reported in Bugos et al. (2007) indicated large ef-
fect sizes at 3-month follow-up testing in processing speed (d = 1.36) 
and switching (d = -0.77). Moderate effects were calculated for pro-
cessing speed (d = 0.47), working memory (d = 0.51), inhibition (d =
0.38) and switching (d = 0.34) from 3-month follow-up data in Bugos 
and Wang (2022). No effect was found for verbal fluency at follow-up. 

4. Discussion 

The purpose of this systematic review and meta-analysis was to 
examine the effects of learning to play a musical instrument in older 
adulthood on cognition. This review is novel and timely given the shift 
in interest in recent years from computerised training programmes to-
wards more ecologically-valid cognitive interventions which tax multi-
ple sensory and motor modalities. Data from thirteen studies were 
included in this meta-analysis, which represents nine more studies than 
the most recent meta-analyses papers which were published when only 
four musical instrument intervention studies on older adults were 
available (Kim & Yoo, 2019; Roman-Caballero et al., 2018). 

Training in a pitched or rhythm instrument was found to have a 
positive effect on EF – specifically: a low-moderate effect on switching; 
and a low effect on inhibition. No effect was found on working memory 

capacity/updating. With regards to verbal fluency, a low-moderate ef-
fect size was found for the category switching subtest, but no statistically 
significant effects were found for letter fluency or category fluency 
subtests. With regards to other fluid domains tested, a moderate effect 
was found for processing speed, but no effects were found for visuo-
spatial attention or verbal memory. 

4.1. Effects of musical instrument training on EF and fluid intelligence 

The benefits of learning to play an instrument to EF found in this 
study are in line with previous meta-analyses (Kim & Yoo, 2019; 
Roman-Caballero et al., 2018). However, the findings are in contrast to a 
meta-analysis which examined effects of rhythmic exercise interventions 
(e.g., dancing and exercise to music) on EF (Ma et al., 2023). This sug-
gests that some features of playing an instrument such fine motor control 
or concurrent auditory feedback could be important for EF beyond the 
effects of movement to music, although further research is needed given 
that only three out of the forty-four rhythm studies included in Ma et al. 
(2023) investigated EF. 

The findings are also in agreement with cross-sectional research 
suggesting an inhibitory control advantage for musicians versus non- 
musicians (Moreno et al., 2014; Moreno & Farzan, 2015; Moussard 
et al., 2016; Hanna-Pladdy & MacKay, 2011), as well as with evidence 
from a neuropsychological study showing that event related potentials 
(ERPs) were associated with inhibitory control during a GoNoGo task 
over right frontal regions in older adults following three months of 
percussion training (Alain et al., 2019). 

Inhibition requires the ability to regulate incoming sensory input and 
behaviour so as to override automatic responses or external distractions 
to ensure more appropriate actions or behaviours (Diamond, 2013). 
Similarly, switching involves the disengagement of an irrelevant task 
and subsequent engagement of a relevant task (Miyake et al., 2000). 
Taken together, music training is suggested to improve supervisory 
mechanisms which act to ensure desired responses and reinforce inter-
ference monitoring. 

It is unclear as to why music training may impact cognitive mecha-
nisms responsible for controlling automatic responses. Continuous and 
dynamic suppression of motor responses for incorrect notes in favour of 

Fig. 4. (continued). 
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playing the correct ones, for the correct length of time (e.g. without 
releasing a piano key too soon), may tax inhibitory processes while 
playing music. Interestingly, the best-fitting model for switching data 
(TMT-B completion times) was when only bimanual instruments were 
included. It may be that inter-hemispheric sensory-motor integration 
and synchronization which occurs from continuously switching atten-
tion between right- and left-hand auditory output may train this 
particular domain of EF, although further research is needed given that 
only one study used a unimanual instrument. This could perhaps also 
explain the far-transfer effect found on verbal category switching, but 
again, further research is needed with larger trials given that only three 
studies examined this domain. 

The moderate effect on processing speed was the largest detected 
effect size in this meta-analysis, and this finding is in line with Kim and 
Yoo (2019), and musician-versus-nonmusician cross-sectional research 
(Faßhauer et al., 2015). The finding is also in line with functional 
magnetic resonance imaging (fMRI) data from Guo et al. (2021) which 
found reduced left putamen and right superior temporal gyrus func-
tional activity post-music training which was associated with greater 
improvement in memory performance post-training, suggesting 
increased neural efficiency. Processing speed is associated with general 
cognitive performance (Sliwinski & Buschke, 1999). It is possible that 
the improvement in processing speed may have contributed to the sta-
tistically significant effect sizes in other cognitive domains (switching 
and inhibition). 

In contrast to Kim and Yoo (2019), no effect was found for visuo-
spatial attention (TMT-A completion times) when more recent large- 
scale studies were included. However, this lack of finding may be due 
to the populations sampled, as Kim and Yoo (2019) also included older 
adults with MCI, whereas this study focused only on healthy older adults 
without cognitive impairment. No effect was found on working memory 
capacity/updating, or in verbal memory in contrast to the cognitive 
benefits reported in cross-sectional studies comparing musicians and 
novices (Jäncke, 2009). This suggests that these abilities may take 
longer to train, or may be more dependent on sensitive development 
periods in childhood. It is also possible that further data are needed, 
given that only a small number of studies investigated working memory 
and verbal performance. 

4.2. Limitations 

A limitation of this meta-analysis is the relatively small sample size of 
studies (N = 13), particularly given that not all studies examined the 
same cognitive abilities, which limits the extent to which publication 
bias can be investigated. Furthermore, one research group is over- 
represented across studies. Five out of the thirteen studies (38.4 %) 
were conducted by Bugos and colleagues which potentially increases the 
risk of bias in the analyses, particularly for processing speed and 
inhibition. 

A number of methodological limitations were identified in the 
literature. Three studies ranked as “high”, and nine ranked as “some 
concerns” for overall bias. Only three studies utilised both an active and 
a passive control group. Three studies compared music intervention to a 
no-treatment passive control only. Absence of an active control group 
presents difficulties in ruling out possible placebo effects and in deter-
mining the mechanisms of action in the intervention. Due to the nature 
of the intervention, managing participant expectations through blinding 
is impossible, but only five studies reported that assessors were blind to 
group allocation. Taken together, this raises concerns about the possi-
bility of inflated effect sizes through participant and assessor expecta-
tions. Furthermore, study sample sizes were relatively small, with only 
two studies including samples with over one hundred participants. 

Music training studies may be subject to participant selection bias. 
For example, older adults with upper-limb weakness, or back pain may 
not have the physical capacity to sit and practice an instrument, such as 
the piano, for extended periods of time. Educational background and 

socio-economic status may also impact an individual’s interest, adher-
ence and retention to training. 

Attrition rates were relatively high amongst studies. Notably, when 
Bugos and Wang (2022) examined low-dosage participants, they found 
significantly lower baseline full-scale IQ compared to the group which 
completed training, suggesting that pre-existing ability may affect 
adherence. Consistent with global “g” intelligence theories (Deary et al., 
2010) individuals with higher IQ are more likely to have good aptitude 
for music, when controlling for training duration and socio-economic 
status (Swaminathan et al., 2017). Whereas high-functioning in-
dividuals may be more likely to complete training, it is most effective in 
those with lower baseline cognitive ability (Bugos & Wang, 2022), 
indicating a potential mismatch between acceptability and need in 
previous studies. 

Additionally, not all studies explicitly stated how participants 
accessed an instrument for practice. In some studies, instruments were 
provided (Guo et al., 2021) or were accessed in community buildings 
(Bugos et al.), but other studies did not indicate how participants could 
fulfill practice requirements. Inclusion of participants who already had 
access to instruments (e.g., piano) increases the risk of confounding 
factors regarding actual level of experience, pre-exposure to music or 
socio-economic status. This also highlights the potential costliness of 
running large-scale “ecologically valid” music RCTs, where instruments 
and instructors need to be funded – an issue which does not apply to 
computerized programmes. 

4.3. Future directions 

This meta-analysis suggests that musical instrument training in later 
adulthood can benefit EF and processing speed. However further 
research is needed to address the specific processes involved in musical 
training which enhance cognition. 

Firstly, the specific intervention parameters which lead to improved 
cognition could be explored. In the present meta-analysis there was not a 
sufficient number of studies to conduct meaningful moderation analyses 
to investigate the variables that may have impacted on the size of 
training effects such as intervention frequency, duration, nature of the 
control group, effects of pitched versus percussion instrument training. 
Kim and Yoo (2019) previously reported that percussion or “immediate” 
involvement interventions tend to be more common in MCI and clinical 
populations, whereas “sustained” involvement instruments, which 
require the reading and playing of music, are more common in healthy 
populations. The extent to which different elements such as finger 
dexterity training, sight-reading or ear-training play a role in far-transfer 
therefore in healthy older adults still requires further investigation. 
Furthermore, near-transfer measures are lacking in the studies included 
in this meta-analysis, and relationships between improvements in 
instrument-playing and cognitive improvements could be examined in 
future studies. 

Secondly, more longitudinal studies are needed to determine 
longevity of effects. Long-term effects of training in middle-aged par-
ticipants could also be examined, given that some EF begin to decline 
from 30 to 40 years of age (Ferguson et al., 2021), and playing an in-
strument has recently been shown to protect against age-related brain 
atrophy in both grey (Marie et al., 2023) and white (Jünemann et al., 
2022) matter. Training interventions which begin in middle adulthood 
may also help address acceptability and attrition issues highlighted 
above. 

Thirdly, although there have been some studies showing training- 
induced neural plasticity (e.g., Worschech et al., 2022), the neural un-
derpinnings of training-induced EF enhancements are still not well un-
derstood. For example, one study found that both music listening 
training and piano training lead to increased volume in the caudate 
nucleus, Rolandic operculum and inferior cerebellum (Marie et al., 
2023), indicating that ear training alone must also be taken into account 
when examining the impact of music training on cognition and 
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neuroplasticity. Further research is needed to examine how music- 
induced neural changes are related to cognition. 

5. Conclusion 

In conclusion, there is promising evidence that engagement in a 
musical instrument training positively impacts EF and processing speed 
in healthy older adults. In addition, motivation can be maintained over 
time with learning an instrument, and may be more likely to lead to 
long-term benefits. Whereas computerized cognitive training may be 
discontinued, there are a limitless number of musical pieces or songs 
which can be learned after an intervention has ended (Sutcliffe et al., 
2020). Given the capacity for plasticity into later adulthood, the po-
tential for motor activities to engage networks important for cognition, 
and the benefits of music to well-being, music training may be an 
ecological and enjoyable activity which benefits cognitive function in 
older adulthood. 
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