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Aims Electrocardiogram (ECG) is widely considered the primary test for evaluating cardiovascular diseases. However, the use of 
artificial intelligence (AI) to advance these medical practices and learn new clinical insights from ECGs remains largely un
explored. We hypothesize that AI models with a specific design can provide fine-grained interpretation of ECGs to advance 
cardiovascular diagnosis, stratify mortality risks, and identify new clinically useful information.

Methods and 
results

Utilizing a data set of 2 322 513 ECGs collected from 1 558 772 patients with 7 years follow-up, we developed a deep- 
learning model with state-of-the-art granularity for the interpretable diagnosis of cardiac abnormalities, gender identifica
tion, and hypertension screening solely from ECGs, which are then used to stratify the risk of mortality. The model achieved 
the area under the receiver operating characteristic curve (AUC) scores of 0.998 (95% confidence interval (CI), 0.995– 
0.999), 0.964 (95% CI, 0.963–0.965), and 0.839 (95% CI, 0.837–0.841) for the three diagnostic tasks separately. Using 
ECG-predicted results, we find high risks of mortality for subjects with sinus tachycardia (adjusted hazard ratio (HR) of 
2.24, 1.96–2.57), and atrial fibrillation (adjusted HR of 2.22, 1.99–2.48). We further use salient morphologies produced 
by the deep-learning model to identify key ECG leads that achieved similar performance for the three diagnoses, and we 
find that the V1 ECG lead is important for hypertension screening and mortality risk stratification of hypertensive cohorts, 
with an AUC of 0.816 (0.814–0.818) and a univariate HR of 1.70 (1.61–1.79) for the two tasks separately.

Conclusion Using ECGs alone, our developed model showed cardiologist-level accuracy in interpretable cardiac diagnosis and the ad
vancement in mortality risk stratification. In addition, it demonstrated the potential to facilitate clinical knowledge discovery 
for gender and hypertension detection which are not readily available.
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Introduction
Electrocardiogram (ECG) is one of the most commonly performed car
diovascular diagnostic tests in cardiovascular medicine.1 The test pro
vides an assessment of overall rhythm and cardiovascular status.2,3

Interpretation of ECGs is therefore critical to understand, diagnose, 
and stratify the risk of cardiovascular diseases (CVDs).4 However, the 
interpretation varies greatly, even among expert cardiologists; such 
variance between physicians presents a challenge to ensure consistency 
and reliability in ECG diagnosis. Meanwhile, the physician’s recognition 
of abnormal patterns is mostly limited to existing cardiac disorders, and 
it is, therefore, difficult to detect rare or relatively unknown diseases 
and recognize visually imperceptible elements in ECG morphology.

Artificial intelligence (AI) is rapidly emerging as a powerful tool in 
various healthcare applications.3,5,6 Artificial intelligence ECGs have 
been used to predict patients with refractory ventricular fibrillation,7

identify asymptomatic left ventricular dysfunction,8 and diagnose ab
normality.9 While acknowledging the promise of AI-ECGs, previous 

studies indicated that explainability was a key limitation of many deep 
neural network (DNN) models.10,11 Most of these studies focused 
on improving model performance rather than extracting clinically useful 
information or expanding knowledge from ECG recordings. Identifying 
ECG features may offer novel findings that could provide new thera
peutic targets or allow for clinicians to understand what drives the med
ical diagnosis. In addition, it is unreasonable for either the patient or the 
medical professional to accept an automated diagnosis at face value 
without justification.12 There are efforts to develop interpretable 
DNN models to produce explanations for ECG analysis, such as 
morphology segmentation13 and disease-specific feature visualization.14

Nevertheless, the interpretability has been a significant challenge in 
previous studies, attempting to extract meaningful features from 
ECG data.13,14 For instance, these studies often fail to identify import
ant morphological features that have significant cardiac implications. 
They aimed to produce interpretable features from ECG recordings; 
however, the highlighted features included many unrelated ECG com
ponents and did not adequately capture the essential morphological 
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features. More importantly, the visualized features in these studies had 
limited resolutions, making it difficult to explain the importance of ECG 
patterns precisely. In addition, the use of visualized ECG features to 
identify new medical information remains largely unexplored, such as 
identifying important ECG features and dominant leads for more effi
cient medical diagnosis. As highlighted by the PhysioNet/CinC 
Challenge,15 it is still challenging to identify reduced-lead ECGs that 
can capture the wide range of diagnostic information achieved by the 
12-lead ECG recordings.

In this study, we hypothesize that AI models with a specific design can 
provide fine-grained interpretation of 12-lead ECGs for medical diag
nosis, identify new clinically useful information, and that the 
ECG-predicted results can be further used to stratify the risk of mor
tality. To test this hypothesis, we created and trained an interpretable 
DNN model for a variety of medical diagnoses and mortality risk strati
fication using 2.3 million ECG recordings. We first validate the model by 
identifying and interpreting heart rhythm abnormalities. This is because 
arrhythmias are estimated to occur in 1.5–5% of the general popula
tion, making them one of the most prevalent heart disorders.16 In par
ticular, arrhythmia, such as atrial fibrillation (AF), is a major public health 
concern associated with significant morbidity, mortality, and healthcare 
costs, affecting more than 37 million individuals globally.17 Other than 
the diagnosis of heart conditions, we test the developed DNN model 
in a more general task of gender identification. This is highly relevant 
to our central task, because gender differences have been observed 
in the development of CVDs and the risk of mortality. For example, wo
men tend to develop heart diseases later in life than men, while also hav
ing worse outcomes and higher mortality.18 In a further step, we 
perform the third task of hypertension screening to validate the devel
oped model in a wider context of medical practice. Hypertension is the 
largest single contributor to CVDs causing morbidity and mortality, 
with a rising prevalence affecting approximately 1.39 billion people 
worldwide.19 The ECG-predicted results are then used to stratify the 
risk of mortality for cohorts with heart rhythm abnormalities, gender 
differences, and hypertension. To the best of our knowledge, this is 
the first time that an explanatory DNN model with fine granularity 
has been extensively investigated with such a sheer scale ECG data 
set. In particular, we identify fine-grained ECG features from deep 
learning, which are then used to derive reduced-ECG leads for a variety 
of medical diagnostic tasks.

Methods
Population and study design
The study retrieved a data set of 2 322 513 ECG recordings from 1 558 772 
patients through the Telehealth Network of Minas Gerais, Brazil.20 The re
cordings were mostly collected during patients’ clinic visits to primary care 
facilities with follow-ups from 2010 to 2016, and the data were sampled 
with frequency rates from 300 to 600 Hz for a duration of 7–10 s (see 
Supplementary material online, Section SA1). As demonstrated in Figure 1
and Supplementary material online, Tables S1 and S2, we show the dataflow 
and study population for the four medical tasks in this study. (i) In the first 
task, we use 2 315 782 ECG recordings to train the DNN model for the 
diagnosis of cardiac abnormalities, including the first-degree atrioventricular 
block (1dAVb), right bundle branch block (RBBB), left bundle branch block 
(LBBB), sinus bradycardia (SB), AF, and sinus tachycardia (ST). The trained 
DNN model is then tested on an unseen ECG data set, which is rigorously 
annotated by cardiologists. (ii) In the second task, we train the DNN model 
for gender identification using ECGs collected from 1 398 907 subjects 
(female: 59.78%, nFemale = 836 267), which is tested with a holdout ECG 
data set sampled from 155 435 subjects (female: 59.52%, nFemale =  
92 513). (iii) In the third task, the model is trained to screen hypertension 
for 1 398 907 subjects (hypertension: 31.66%, nHypertension = 442 918), 
and tested with 155 435 subjects (hypertension: 31.65%, nHypertension =  
49 202). (iv) In the fourth task, we use the ECG-predicted results to stratify 

the risk of mortality considering cardiac abnormalities, gender differences, 
and hypertension; and the holdout cohort (nSubjects = 155 435) has a 
mortality rate of 3.34% within the 7 follow-up years.

Model development
We developed an interpretable DNN model for ECG interpretation with 
fine granularity, based on a novel isolation-integration strategy for feature 
visualization (see Supplementary material online, Section SA2). The architec
ture of our developed DNN model is illustrated in Supplementary material 
online, Figure S1. For the identification of salient morphologies using the 
DNN model, the ECG data are first processed using our proposed isolation 
strategy, then we integrate the ECG features from all leads and use them for 
the model prediction; Next, we compute the gradient for the predicted 
output with respect to the concatenated feature matrix, and use the aver
aged gradient scores to weight kernels, followed by a ReLU function to filter 
the positive values. By performing dimension alignment between the conca
tenated feature matrix and the ECG data, a feature heatmap can be ob
tained to weigh the data importance in the ECG recording. Notably, the 
concatenated feature matrix is computed using an isolated strategy, which 
enables learning data importance for each ECG lead precisely rather than 
shared weights across different leads. The concatenated feature matrix 
has the half-length of the input ECG recording in the temporal direction, 
and the calculated heatmap only needs to be magnified two times for the 
dimension alignment. Thus, our developed DNN model allows producing 
salient features for fine-grained ECG interpretation.

Results
Diagnosis and interpretation of 
electrocardiogram abnormalities
In the first task, the DNN model has a micro-average area under the 
receiver operating characteristic curve (AUC) score of 0.998 [95% con
fidence interval (CI), 0.995–0.999] and an F1 score of 0.948 (95% CI, 
0.921–0.971) on identifying the ECG abnormalities. We compare the 
performance of our DNN model with the evaluation results from three 
junior professionals with experience in ECGs, two senior cardiologists, 
and the state-of-the-art study.21 It can be seen from Table 1 and Figure 2
that the highest evaluation score from the three junior professionals is 
0.876 (95% CI, 0.830–0.915); the two senior cardiologists have the 
highest F1 score of 0.945 (95% CI, 0.914–0.970); and the 
state-of-the-art benchmark has a score of 0.938 (95% CI, 0.910– 
0.961).21 Compared with the evaluation results yielded by the cardi
ology professionals, our DNN model has better performance than 
the three junior professionals and one senior professional in the diag
nosis of 1dAVb (P = 0.043, Supplementary material online, Table S4), 
and outperforms the diagnostic performance of AF from three junior 
professionals (P = 0.041).

The diagnosis of AF particularly has important medical implications, 
which is a leading cardiac cause of stroke, heart failure, and mortality.22

It can be seen from Table 1 that among all the five professionals, the high
est F1 score for the diagnosis of AF is 0.889 (95% CI, 0.737–1.000); and 
the benchmark model also has moderate performance with a score of 
0.870 (95% CI, 0.667–1.000).21 In contrast, our developed DNN model 
successfully identifies all AF in the data set. To interpret the diagnosis by 
the DNN model, we calculate the heatmap with fine-grained resolution 
for each of the 12 ECG leads, and highlight the salient information that 
has been used for the decision-making. It can be seen from Figure 3A that 
the DNN model uses salient information in the DII and V1 leads for the 
diagnosis, and has the most important features in the DII lead.

Generally, the absence of P waves in an ECG recording can be used to 
diagnose AF. However, artefacts or fibrillatory waves can mimic 
P waves and lead to misdiagnosis.23 Figure 3B shows the fine-grained in
terpretation of the DII lead produced by our DNN models. It can be 
seen from Figure 3B that the P wave is absent in some areas of the 
ECG morphology, e.g. segment A (around 5.18 s); and there are also 
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waves clearly presented in some areas, e.g. segment B (around 7.85 s). 
The inconsistent morphologies in the locations of P waves challenge 
the accurate diagnosis of AF. In contrast, our developed DNN 
model is flexible in identifying important features, and it highlights the im
portance of segment A rather than segment B, which is consistent with 

existing diagnostic criteria.23 As well as identifying the absence of P 
waves, the DNN model also recognizes S waves as important features 
in the DII lead, and other features in the V1 lead. Combining salient in
formation from different ECG leads, our DNN model makes a compre
hensive decision with a prediction probability of 0.961 for the diagnosis.

Figure 1 Dataflow and population characteristics for the three medical tasks in this study. The data were collected in primary care facilities with 
population characteristics as follows. (i) For the first task (Task #1), the electrocardiogram recordings were collected from a population with an average 
age of 53.64 ± 17.42 years , and 60.26% were females (nFemale = 1 395 461). (ii) For the second task (Task #2), the population had an average age of 
51.66 ± 17.58  years and 59.78% were females (nFemale = 836 267). (iii) For the third task (Task #3), subjects with hypertension accounted for 31.66% of 
the whole population; the hypertension group had an average age of 59.33 ± 14.79 years, and 62.71% were females (nFemale = 277 756). (iv) For the 
fourth task (Task #4), the cohort had a total of 155 435 subjects with 5196 death records (mortality rate: 3.34%), and had 7 years follow-up with 
a mean value of 3.69 years and the standard deviation of 1.87 years. We performed the diagnostic Tasks #1–#3 independently, and then, we imple
mented Task #4 for the hypertension cohort using electrocardiogram-predicted results. Detailed descriptions of the data set and population charac
teristics can be found in Supplementary material online, Tables S1 and S2, and Figure S2.
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Other than interpreting the diagnosis of AF, we provide the inter
pretation of diagnosing all other types of ECG abnormalities in 
Supplementary material online, Figures S3–S7. In a further step, we 
derive dominant ECG leads that are derived from the identified sali
ent features. We first filter ECG recordings in the whole data set 
with a prediction probability higher than 0.8, which indicates the 
DNN model having confident outputs for the diagnosis. Then, we 
sum values of the heatmap for each ECG lead, and identify the dom
inant lead with the highest value for the ECG recording. To show dis
tributions of the identified dominant leads, we calculate their 
occurrences and percentages among all the 12 ECG leads. It can be 
seen from Figure 3C–H that the ECG abnormalities have varied distri
butions of dominant leads; the 1dAVb has AVR, V1, and V5 as dom
inant leads; both the RBBB and LBBB have dominant leads of DII, 
AVR, V1, and V5; the SB has a prominent AVR lead; the AF has three 
dominant leads of DII, V1 and V6; and the ST has dominant DII, AVR 
and V4 leads. We investigate the effectiveness of our identified dom
inant leads in the diagnosis of ECG abnormalities. As shown in 
Figure 3C–H, the AVR and V1 leads are two representative leads 
for the ECG abnormalities. Using the two ECG leads, as shown in 
Table 2, our DNN model achieves an AUC score of 0.990 (95% 
CI, 0.982–0.995) and an F1 score of 0.879 (95% CI, 0.834–0.919), 
which is comparable with the best performance of the three junior 
professionals (P = 0.505).

Additionally, we validate our developed DNN model on an external 
data set, which is retrieved from the PhysioNet/CinC Challenge 2017.24

The DNN model was trained using nECGs = 8528 ECG recordings, and 
tested on a holdout validation data set. Supplementary material online, 
Table S6 presents the model performance for classifying the different 
types of ECG recordings. It can be seen from Supplementary 
material online, Table S6 that the DNN model has a micro-average F1 

score of 0.884, precision score of 0.894, and recall score of 0.873 for 
the identification. In particular, our DNN model has an F1 score of 
0.929 on the diagnosis of AF and 0.921 on classifying noise signals. 
The results indicate that despite the widespread noises in ECG record
ings, our model demonstrates robust performance in the diagnosis of 
heart rhythm abnormalities.

Identification and interpretation of 
genders
In the second task, we use the DNN model to identify genders for indi
vidual subjects (nSubjects = 155 435), and our DNN model has an AUC 
score of 0.964 (95% CI, 0.963–0.965) for gender identification 
(Figure 4). As ECG features change over time due to normal ageing,26

we investigate the model performance in different age groups, i.e. young- 
age [years (yr) < 45, nSubjects = 54 341], middle-age (45 ≤ yr < 75, 
nSubjects = 84 640), and old-age groups (yr ≥ 75, nSubjects = 16 454).27

It can be seen from Figure 4A that our DNN model has an AUC score 
of 0.979 (95% CI, 0.977–0.980) on identifying genders for the young-age 
group, which is higher than the AUC score of 0.959 (95% CI, 0.958– 
0.961) for the middle-age group, and 0.914 (95% CI, 0.909–0.918) for 
the old-age group.

We show salient features in ECG recordings for the interpretation of 
gender identification in Supplementary material online, Figures S9 and 
S10. It can be seen from Supplementary material online, Figure S9
that the DNN model mainly uses salient features from the DII, V1, 
and V5 leads for identifying the female subject. For identifying the 
male subject, the model uses the DI, V4, V5, and V6 leads. We then ana
lyse the distribution of dominant leads for gender identification using 
the method as presented in the first task. Figure 4B and C present dis
tributions of dominant leads for identifying male and female subjects 
separately. It can be seen from Figure 4B and C that V5 is the most 
used ECG lead for gender identification by the DNN model, which is 
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a dominant lead for identifying male subjects (nMale = 125 060 ± 299) 
and female subjects (nFemale = 437 449 ± 412). Other than the V5 
lead, V3 also appears as a dominant ECG lead for identifying the male 
subjects (nMale = 60 670 ± 236) and female subjects (nFemale = 113  
764 ± 306).

In addition, we present detailed comparisons of model performance 
using the identified dominant ECG leads for gender identification in 
Supplementary material online, Figures S13–S15 and Tables S7–S9. 
The results show that using DI, V3, and V5 leads, the DNN model 
has the highest performance (P < 0.01) with an AUC score of 0.970 

Figure 2 Performance comparison for the diagnosis of abnormalities, including (A) first-degree atrioventricular block, (B) right bundle branch block, 
(C ) left bundle branch block, (D) sinus bradycardia, (E) atrial fibrillation, and (F ) sinus tachycardia. This figure shows the precision-recall curves for the 
performance of our DNN model, evaluation results from five cardiology professionals, and the result of the benchmark model.21 The solid lines are the 
average precision-recall curves for the diagnosis of arrhythmias, and the shading areas represent standard deviations obtained by the bootstrap method. 
The circle dots correspond to F1 scores for our DNN model, the ‘+’ symbols are used to denote F1 scores for the two senior professionals, ‘X’ for the 
three junior professionals, and ‘Y’ for the benchmark DNN model. The contour plots show the iso-F1 curves with a constant value for each curve, and a 
point closes to the ideal score of ‘1’ in the top-right corner indicating a higher F1 score.
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(95% CI, 0.969–0.972) and a diagnostic odds ratio (DOR) of 145.891 
(95% CI, 139.089–156.331) for gender identification. We note that 
all models have higher performance in identifying genders in the 

young-age group than in the old-age group (P < 0.01), which have the 
highest AUC score of 0.885 (95% CI, 0.880–0.890) in the old-age group 
using the DI, V3, and V5 leads.

Figure 3 Interpretation for the diagnosis of atrial fibrillation and distributions of dominant electrocardiogram leads. (A) The original calculated heat
maps for the diagnosis of atrial fibrillation using 12 electrocardiogram leads, with colour bar ranging from blue to red indicating the increasing weights of 
data importance. (B) The refined view of the DII lead in (A) by removing background colours with values <0.4. Segments A and B show the inconsistent 
morphologies in the locations of P waves in the DII lead. We show distributions of dominant electrocardiogram leads for the diagnosis of (C ) first- 
degree atrioventricular block, (D) right bundle branch block, (E) left bundle branch block, (F ) sinus bradycardia, (G) atrial fibrillation, and (H ) sinus tachy
cardia. We annotate the number of occurrences when the dominant lead accounts for >10% of all the 12 electrocardiogram leads. The number of 
occurrences is presented as mean and standard deviation calculated by the bootstrap method.21.
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Screening and interpretation of 
hypertension
In parallel with the previous two tasks, we implement the third task of 
hypertension screening using our developed DNN model. It can be 
seen from Figure 5A that the DNN model achieves an AUC score of 
0.839 (95% CI, 0.837–0.841) and a DOR of 12.101 (95% CI, 11.794– 
12.447) in screening subjects with hypertension. Considering the 
effects of age and gender on the development of hypertension,26 we 
investigate the model performance of screening hypertension in differ
ent populations. It is shown in Figure 5A that the model achieves an 
AUC score of 0.849 (95% CI, 0.847–0.852) for hypertension screening 
in the female group, which is slightly higher than the AUC score of 
0.823 (95% CI, 0.820–0.827) in the male group (P = 0.011). In terms 
of age differences, as shown in Figure 5B and C, the model has the high
est performance in the old-age female group (P < 0.01), with an AUC 
score of 0.829 (95% CI, 0.822–0.836) and the DOR of 18.172 (95% 
CI, 16.516–20.576).

We identify dominant ECG leads for hypertension screening using 
the salient features produced by our DNN model. It can be seen 
from Figure 5D that our DNN model identifies the DII and V1 leads 
as the dominant ECG leads. When using V1 lead alone, the DNN model 
obtains an AUC score of 0.816 (95% CI, 0.814–0.818) for hypertension 
screening, which is a similar result to the model performance of 0.839 
(95% CI, 0.837–0.841) using 12 ECG leads. As shown in the confusion 
matrix in Figure 5F–H, the DNN model has an accuracy of 74.80% on 
screening hypertension in the whole population using V1 lead alone, 
and it has a higher accuracy of 75.30% in the female group than that 
of 73.96% in the male group. In a further step, we use two ECG leads 
to screen hypertension by including the additional DII lead, which 
achieves the highest AUC score of 0.835 (95% CI, 0.827–0.844) in 
the old-age female group (Supplementary material online, Figure S18). 
We present the detailed results of comparison in Supplementary 
material online, Figures S20–S22 and Tables S11–S13, which include 
hypertension screening using 12 ECG leads and dominant ECG leads 
considering age and gender differences. For the male group, we show 
that the DNN model obtains AUC scores of 0.802 (95% CI, 
0.798–0.806), 0.812 (95% CI, 0.808–0.816), and 0.823 (95% CI, 
0.820–0.827) using the V1 lead, DII and VI leads, and the 12 ECG leads 
separately. For the female group, we obtain AUC scores of 0.826 (95% 
CI, 0.823–0.829), 0.837 (95% CI, 0.834–0.840), and 0.849 (95% CI, 
0.847–0.852) by using the three types of ECG leads. The results in 
Supplementary material online, Figures S20–S22 and Tables S11–S13
demonstrate the effectiveness of our identified dominant ECG leads 
for hypertension screening.

Mortality risk stratification
In a further step, we implement the fourth task of stratifying the risk of 
mortality using our ECG-predicted results. We show the impact of car
diac abnormalities, gender differences, and hypertension on the risk of 
mortality in Figure 6. In particular, as shown in Figure 6D and E, we dem
onstrate gender differences in the development of hypertension and 
mortality, where middle-aged males have a higher rate of mortality 
than middle-aged females, and the hypertensive male group has the 
highest mortality rate among all the population groups.

We compare the risk of mortality for hypertensive subjects esti
mated using the original data set and our ECG-predicted results. As 
shown in Figure 6S, the cohort is estimated with the mortality risk of 
a univariate hazard ratio (HR) of 1.77 (95% CI, 1.68–1.87) using our 
ECG-predicted results, which is similar to the HR of 1.67 (95% CI, 
1.58–1.76) for the hypertensive cohort in the original data set, indicat
ing the effectiveness of our ECG-predicted results for the mortality risk 
stratification. In particular, we show that using V1 lead alone, or the DII 
and V1 leads, our ECG-predicted results obtain similar risk ratios to 
that of the cohort in the original data set, indicating that the two 
ECG leads can be used efficiently for mortality risk stratification for 
the hypertensive cohort. Meanwhile, we investigate the risk of mortality 
considering all covariates, such as cardiac abnormalities, age, gender, 
and hypertension. Figure 6T shows the adjusted HRs for the risk of mor
tality for the cohort in the original data set, and Figure 6U shows the ad
justed HRs for the mortality risk using our ECG-predicted results. The 
comparable values between the adjusted HRs in Figure 6T and U further 
indicate the effectiveness of our ECG-predicted results for mortality 
risk stratification.

In addition, we investigate the risks of mortality for different popula
tion groups using our ECG-predicted results, facilitating personalized 
healthcare of risk management. As shown in Figure 6K and Q, we identify 
the highest mortality risk for the cohort with AF (adjusted HR = 5.09, 
95% CI, 4.68–5.66), followed by cohort with LBBB (adjusted HR = 3.30, 
95% CI, 2.91–3.75). However, as indicated in Figure 6H and N, the sur
vival probabilities for the cohorts with AF and LBBB are less affected by 
hypertension. For the population with 1dAVb and ST, as shown in 
Figure 6J and R, the two cohorts have high risks of mortality with ad
justed HRs of 1.93 (95% CI, 1.64–2.27), and 2.00 (95% CI, 1.75–2.28) 
separately. Nevertheless, as shown in Figure 6G and O, the survival 
probabilities for the two cohorts are affected by hypertension; In par
ticular, the subjects have higher risks of mortality when they have 
hypertension concurrently. Using ECG-predicted results, we also inves
tigate the risks of mortality for different population groups considering 
cardiac abnormalities, gender differences, and hypertension, in 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Performance comparison for the diagnosis of abnormalities using electrocardiogram recordings with dominant 
leads

Dominant AVR and V1 leads Dominant DII, AVR, and V1 leads

Precision (95% CI) AUC (95% CI) F1 score (95% CI) Precision (95% CI) AUC (95% CI) F1 score (95% CI)

1dAVb 0.870 (0.714–1.000) 0.991 (0.982–0.998) 0.784 (0.632–0.898) 0.952 (0.842–1.000) 0.992 (0.982–0.998) 0.816 (0.667–0.927)
RBBB 0.935 (0.833–1.000) 0.996 (0.992–0.999) 0.892 (0.800–0.964) 0.909 (0.800–1.000) 0.997 (0.993–0.999) 0.896 (0.807–0.966)

LBBB 0.966 (0.889–1.000) 0.978 (0.931–1.000) 0.949 (0.875–1.000) 1.000 (1.000–1.000) 0.993 (0.982–1.000) 0.947 (0.880–1.000)

SB 0.762 (0.565–0.947) 0.998 (0.995–1.000) 0.865 (0.722–0.973) 0.842 (0.647–1.000) 0.999 (0.996–1.000) 0.914 (0.786–1.000)
AF 0.857 (0.636–1.000) 0.998 (0.993–1.000) 0.889 (0.727–1.000) 1.000 (1.000–1.000) 0.997 (0.992–1.000) 0.917 (0.750–1.000)

ST 0.868 (0.750–0.972) 0.997 (0.993–0.999) 0.880 (0.786–0.956) 0.878 (0.757–0.973) 0.998 (0.995–1.000) 0.923 (0.844–0.976)

Micro-avg 0.885 (0.830–0.937) 0.990 (0.982–0.995) 0.879 (0.834–0.919) 0.921 (0.875–0.962) 0.995 (0.992–0.997) 0.903 (0.868–0.935)

The term ‘Dominant AVR and V1 leads’ indicates that the model has inputs with only two ECG leads, e.g. AVR and V1 leads, rather than using 12 ECG leads. The bold-faced values highlight 
the model performance of micor average F1 scores using dominant ECG leads.
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Supplementary material online, Figures S23–S25. As indicated in 
Supplementary material online, Figure S23C, males have a higher risk 
of mortality than females for the cohorts with LBBB; and as shown in 
Supplementary material online, Figure S25C, both males and females 
have a high risk of mortality for the cohorts with AF.

Discussion
In this study, we developed an ‘end-to-end’ DNN model with 
state-of-the-art performance on cardiac diagnosis using a large data 
set with 2.3 million ECG recordings, the ECG-predicted results are 
then used for mortality risk stratification. There are studies in the litera
ture using AI models for ECG interpretation.13,14,28,29 For instance, the 
study by Raghunath et al.13 developed a DNN model to predict all-cause 
mortality, and provided interpretation of ECG morphological features 

for the prediction. However, the research has several limitations on in
terpreting the ECGs. First, the study used multiple leads as a combin
ation for model input, and the learned saliency map was shared by 
several leads instead of the weight for each specific ECG lead. 
Although previous study used a guided-back propagation technique to 
derive lead-wise weight,30 the generated heatmap for the ECG record
ing was discrete, e.g. highlighting adjacent data in the ECG morphology as 
disconnected points in the heatmap. As a result, it is difficult to interpret 
the visualized ECG features produced by the DNN model. Second, it is 
understood that ECG morphology may change over time. As demon
strated in Figure 3B in our study, some morphologies (e.g. P waves) 
are not constantly presented in the ECG recording. Thus, the interpret
ation of ECGs needs to be flexible and accurate over time. Moreover, 
the study by Raghunath et al.13 demonstrated the interpretation of 
ECG data segments with a short duration (i.e. 0.6 s), and it is unclear 

Figure 4 Model performance and lead importance for gender identification using our proposed DNN model. (A) Performance comparison of the 
DNN model for gender identification using 12-lead electrocardiogram recordings in different age groups. (B) Distributions of dominant leads for iden
tifying male subjects. (C ) Distribution of dominant leads for identifying female subjects. (D) Performance comparison between different dominant elec
trocardiogram leads. We demonstrate confusion matrices for gender identification using the dominant V5 lead in different age groups, including (E) the 
young-age group (<45 years), (F ) the middle-age group (≥45 and <75 years), and (G) the old-age group (≥75 years). In each of the receiver operating 
characteristic curves, the dot point indicates the optimal cut-off point for the sensitivity and specificity calculated by the G-mean method.25
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Figure 5 Model performance and lead importance for hypertension screening using our developed DNN model. (A) Performance comparison of the 
DNN model for hypertension screening using 12-lead electrocardiograms in terms of gender differences. (B) Performance comparison in terms of age 
differences using 12-lead electrocardiograms. (C ) Diagnostic odds ratios with 95% confidence interval for hypertension screening in different popula
tions. (D) Distributions of the dominant electrocardiogram leads (mean ± standard deviation). (E) Performance comparison of hypertension screening 
using the dominant V1 lead. We demonstrate confusion matrices for hypertension screening using the dominant V1 lead in different population groups, 
including (F ) the whole population, (G) the female group, and (H ) the male group. The confidence interval and standard deviation are calculated by the 
bootstrap method.

256                                                                                                                                                                                                   L. Lu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/article/5/3/247/7610307 by guest on 25 July 2024



how the interpretability changes over time when standard or longer dur
ation ECG recordings are used. In this research, we proposed a new 
isolation-integration strategy for ECG interpretation, enabling to learn 
feature importance for each ECG lead precisely rather than the shared 
weights as presented in Raghunath et al.13 More importantly, as 

presented in Section 3.1, we show the flexibility and robustness of 
our developed DNN model for identifying changes in ECG features 
over time in a variety of diagnostic tasks.

We used a stepwise strategy to validate the effectiveness of our de
veloped DNN model for ECG interpretation, progressing from well- 

Figure 6 Mortality risk stratification for cohorts with age and gender differences, cardiac abnormalities, and hypertension. Panel (A) illustrates the 
prevalence and relationship of cohorts with the different types of covariates. Panel (B) shows the relationship between cardiac abnormalities and mor
tality considering the impact of gender differences and hypertension. Panel (C ) ranks feature importance using the principal component analysis method. 
The principal component analysis features were calculated from the original electronic health records, showing the relative importance and complex 
relationships between demographic features, cardiac abnormalities, gender differences, and hypertension. Panels (D) and (E) demonstrate gender dif
ferences in cohorts with hypertension and mortality records. Panel (F ) shows the cumulative event with increasing follow-up years. Panels (G–I ) and 
(M–O) show the Kaplan–Meier survival curves for different population cohorts. Panels (J–L) and (P–R) are hazard ratios adjusted for hypertension and 
cardiac abnormalities. Panel (S) shows univariate hazard ratios for cohorts with hypertension in the original data set (Hyp_Org) and our 
electrocardiogram-predicted results, using 12 leads (Hyp_ECG), 2 leads (Hyp_DII_V1), and 1 lead (Hyp_V1). (T ) and (U ) are hazard ratios adjusted 
for age, gender, cardiac abnormalities, and hypertension. HR, hazard ratio; Hyp_Org, hypertension records in the original data set; Hyp_ECG, 
electrocardiogram-predicted hypertension using 12 leads; Hyp_DII_V1, electrocardiogram-predicted hypertension using DII and V1 leads; Hyp_V1, 
electrocardiogram-predicted hypertension using V1 lead.
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established tasks to rare medical diagnoses. (i) We first implemented 
the task of interpretable diagnosis of cardiac arrhythmias, where the ex
isting textbook knowledge can be used to validate our findings. For ex
ample, the V1 lead was observed having dominant waves for the 
diagnosis of ventricular arrhythmias,31 and lateral leads, such as the 
V5 lead, were considered to be important in the diagnosis of bundle 
branch blocks.32 Consistent with prior knowledge, our findings also 
provide new insights into the diagnosis of arrhythmias. For instance, 
our DNN model highlights the importance of U waves in identifying 
the SB. Notably, prominent U waves were also reported in asymptom
atic SB in the literature,33 whereas the U waves are difficult to observe 
due to their low amplitudes, which highlights the advantage of our mod
el in computerized ECG interpretation. (ii) After validating our devel
oped interpretable model for the diagnosis of ECG abnormalities, we 
extended the study in a wider context, i.e. the second task of gender 
classification, and the third task of hypertension screening. Again, the 
previous study indicated the importance of V5 lead for gender identifi
cation,29 validating the findings of our identified dominant leads. 
Furthermore, we note that previous studies showed that high blood 
pressure is in association with an increased risk of AF,34 which could po
tentially explain the AF and hypertension having similar dominant ECG 
leads in our study. In particular, it was observed that the reduction of 
R-wave amplitude in V1 lead by ≥ 1 mm after three months of treat
ment was related to better survival.35 Previous studies also indicated 
that P wave in V1 lead and Cornell product were associated with dia
stolic blood pressure.36 These studies could explain our findings that 
the V1 ECG lead plays a crucial role in hypertension screening and 
the stratification of mortality risk in hypertensive cohorts.

We note that previous studies used ECGs to predict mortality and 
identified ST-wave elevation, T-wave morphological features, and 
QRS micro-fragmentation as risk indicators.13,37 However, mortality 
risk stratification in patients with cardiovascular diseases requires con
sidering numerous factors such as age, gender differences, health condi
tions, and comorbidities. In this study, we implemented Tasks #1–#3 
using the ECG data to validate the diagnostic performance and 
interpretability of our developed DNN model. In a further step, as a 
proof-of-concept study, we additionally performed Task #4 to 
demonstrate how to use our ECG-predicted results for healthcare 
applications, such as the stratification of mortality risk. We believe 
that the DNN model developed in this study will contribute to a 
more comprehensive evaluation of mortality risks by taking into account 
these diverse factors alongside the cardiac diagnosis and interpretation. 
In addition, our research provided new insights for the stratification of 
mortality risk using reduced-ECG leads. For example, it could be poten
tially used to develop more convenient devices for monitoring mortality 
risk rather than collecting the standard 12-lead ECGs for the prediction.

Recent advances in ECG technologies have enabled the development 
of small, low-cost, and easy-to-use wearable devices, which typically use 
a subset of the standard 12 leads for remote monitoring. However, as 
highlighted in the PhysioNet/Computing in Cardiology Challenge,15

there is limited research to demonstrate that reduced-lead ECGs can 
capture the wide range of diagnostic information achieved by the 
12-lead ECGs. This study provides substantial evidence to show that 
our developed DNN model enables to automatically identify important 
ECG leads for a variety of medical tasks. By implementing extensive 
comparison studies between our identified dominant leads and the 
12 ECG leads, we show that our identified reduced-lead ECGs can 
achieve comparable performance with the standard 12-lead ECGs 
for lead-specific and disease-specific diagnosis, which can meaningfully 
contribute to the development of reduced-lead wearable devices for 
cardiac monitoring. In addition, our proposed DNN model demon
strates the effectiveness of hypertension screening using reduced-lead 
ECGs, indicating the potential application of cuffless blood pressure 
monitoring as a future direction.

Our work is perhaps best understood in the context of its limitations. 
(i) We note that there is a broad range of heart arrhythmias, and a limited 
category of abnormalities was tested in this study, as they are considered 
to be representative of both rhythmic and morphological abnormalities. 
Notably, the computerized interpretation facilitated by our developed 
DNN model does not depend on any prior assumptions regarding a spe
cific category of cardiac abnormalities. Consequently, our developed for 
ECG interpretation could potentially be applied to other abnormalities 
when they become accessible in the future. (ii) We recognize that it is dif
ficult to accurately label the data set with such a sheer scale, leading to the 
impact on model performance evaluation. The limitation could be miti
gated by evaluating the model across multiple data sets or using unsuper
vised learning for label refinement in our future study. (iii) We used 
ECG-predicted results for mortality risk stratification. Nevertheless, previ
ous study showcased the use of raw ECGs as an outcome predictor,38 pro
viding insights for us to advance our model by integrating a loss function for 
survival analysis. (iv) Apart from hypertension screening as presented in 
this study, there are also other critical health conditions such as heart fail
ure and coronary disease that are associated with the risk of mortality; 
Meanwhile, the prediction of health conditions could be potentially af
fected by confounding factors, such as race disparities.39 Our future re
search will use the developed model for more comprehensive 
healthcare evaluation on a broader scale.

Conclusion
This study developed an end-to-end deep-learning model with 
state-of-the-art granularity for interpretable cardiac diagnosis using 
ECG recordings, and the results predicted by the ECGs were then 
used for mortality risk stratification. By leveraging a large and diverse 
data set consisting of 2.3 million ECGs collected from 1.6 million sub
jects with 7 years follow-up, we validated the model performance 
across a range of medical tasks, including arrhythmia diagnosis, gender 
identification, hypertension screening, and mortality risk stratification. 
Our model shows substantial advantages to promote explainable diag
nosis with cardiologist-level performance outperforming the bench
mark model, and the advance in mortality risk stratification. 
Furthermore, the model demonstrates the potential to discover novel 
patient-relevant information from clinical data measurements.
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