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Abstract

In this thesis, we consider Markov decision processes with actively controlled obser-

vations. Optimal strategies involve the optimisation of observation times as well as

the subsequent action values. We first consider an observation cost model, where the

underlying state is observed only at chosen observation times at a cost. By including

the time elapsed from observations as part of the augmented Markov system, the

value function satisfies a system of quasi-variational inequalities (QVIs). Such a class

of QVIs can be seen as an extension to the interconnected obstacle problem. We prove

a comparison principle for this class of QVIs, which implies uniqueness of solutions

to our proposed problem. Penalty methods are then utilised to obtain arbitrarily

accurate solutions. Finally, we perform numerical experiments on three applications

which illustrate this model.

We then consider a model where agents can exercise control actions that affect their

speed of access to information. The agents can dynamically decide to receive observa-

tions with less delay by paying higher observation costs. Agents seek to exploit their

active information gathering by making further decisions to influence their state dy-

namics to maximize rewards. We also extend this notion to a corresponding mean-field

game (MFG). In the mean field equilibrium, each generic agent solves individually a

partially observed Markov decision problem in which the way partial observations are

obtained is itself also subject to dynamic control actions by the agent. Based on a

finite characterisation of the agents’ belief states, we show how the mean field game

with controlled costly information access can be formulated as an equivalent standard

mean field game on a suitably augmented but finite state space. We prove that with

sufficient entropy regularisation, a fixed point iteration converges to the unique MFG

equilibrium and yields an approximate ε-Nash equilibrium for a large but finite popu-

lation size. We illustrate our MFG by an example from epidemiology, where medical

testing results at different speeds and costs can be chosen by the agents.
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Chapter 1

Introduction

The thesis concerns the control of costly observations in stochastic control models.

We shall work in discrete time, under the framework of Markov decision processes

(MDPs). We will primarily focus on two instances of information structures: the

observation cost model, which toggles between no or full observation, and speed of

information access, which involves the control of one’s observation delay.

The acquisition of information often requires costly effort and time, due to various

factors such as resource capacity [73,75], physical constraints [49] and scarce attention

[1]. Making optimal decisions whilst balancing costs for information is a general

problem that appears in applications including data collection [72, 74] and medical

treatment scheduling [67].

Inferring latent states through imperfect information falls under the classical topic

of filtering and control under partial observations [10, 34]. However, the information

stream there is typically assumed to be fixed and exogeneously given. The models

of consideration in this thesis involve a dynamically controlled information stream.

Specifically, an agent has to first decide on the quality of their observations, upon

which the decision of the next action is based. Thus, the agent aims to exploit their

accurate observations in return for better future rewards, at the expense of a higher

observation cost.

The absence of observations and/or presence of observation delays are circumstances

that frequently occur in models featuring data sampling [29], signal sensing [49,64,70]

and network communications [2,3,33]. The specific information structures we choose

also allow us to retain a finite structure when solving for a suitably augmented belief
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state MDP, so that numerical schemes for discrete frameworks can be employed for

obtaining approximate solutions.

Contributions of the thesis

We present the observation cost model (OCM) in Chapter 2, where agents must

pay a cost to observe the current state. The sequential nature of the controls (the

decision on observing, followed by the change in actions) lead to a quasi-variational

inequality (QVI) in dynamic programming. These are structurally different to the

Bellman-type equations in standard models. We prove a comparison principle for

this class of QVIs, which can be seen as a generalisation of monotone systems with

interconnected obstacles [56]. We establish the existence of solutions constructively

via a penalty scheme and demonstrate the monotone convergence of the penalised

solutions towards the solutions of said QVI. We apply our model to a time-discretised

version of the HIV-treatment model [67]. Our results show qualitatively different

optimal behaviour when dealing with large observation gaps.

In Chapter 3 we present a Markov Controllable Delay model (MCDM), where an

individual agent can exercise dynamic control over the latency of their observations,

with less information delay being more costly. We show that this partial information

problem is equivalent to solving a finite MDP on an augmented finite state space.

We introduce the corresponding Mean Field Game (MFG) where speedy information

access is subject to the agents’ strategic control decisions. A challenge here is to define

the mean-field Nash equilibrium (MFNE) for this problem: although it is defined in

terms of the augmented space, the underlying dynamics and rewards still depend

on the underlying state distribution. Moreover, due to the finite parametrisation,

the barycenter approach for measure-valued belief states in [60] do not apply here.

Instead, we exploit this finite parametrisation to explicitly construct a measure flow

on the underlying space, given that of the augmented space.

By using a sufficiently strong entropy regularisation in the reward functional, we prove

that the regularised MFG has a unique MFNE which is described by a fixed point,

and can serve as an approximate Nash equilibrium for a large but finite population

size. This extends the results in [6, 23] to partially observable MFGs formulated on

infinite horizon with time-dependent measure flows. We demonstrate our model by

an epidemiology example, in which we compute both qualitative effects of information

delay and cost to the equilibrium, and also the quantitative properties of convergence

relating to the entropy regularisation.
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For the rest of this chapter, we shall give a brief overview of the introductory material

related to the thesis. We first introduce the canonical construction of MDPs, as well

as the related POMDP construction, and its equivalence to the belief state MDP.

This is important, particularly for the observation cost model in Chapter 2, as we

deal with the sequential nature of observations followed by actions. We then give an

overview of MFGs in discrete time, together with some of the issues related to the

numerical convergence towards MFNE.

1.1 Markov decision processes

We present here the canonical construction of the MDP model, the partially observ-

able model, and its equivalence to an augmented fully observable MDP model, also

known as the belief state MDP. The material in this section, as well as Section 1.2,

can largely be found in [34,35].

Definition 1.1. A Markov control model is given by a tuple ⟨X , A, p, r⟩, where

– X is the state space,

– A is the action space, and for each x ∈ X there associates a non-empty

A(x) ⊂ A, known as the admissible actions for the state x. The set of state-

action admissible pairs is denoted by

K := {(x, a) | x ∈ X and a ∈ A(x)},

– p : X × A → P(X ) is the transition kernel, where P(X ) denotes the set of

probability measures on the space X ,

– r : X × A→ R is the one-step reward function.

For this thesis, we shall assume throughout that both the state space X and the

action space A are finite. Therefore, the space of measures on X is equivalent to the

simplex on X , and we shall also write ∆X for P(X ). In general, the statements in this

chapter readily extends to the case of Borel spaces for both X and A with sufficient

continuity and compactness conditions, and can be found in more detail in [35].

At each time n = 0, 1, . . ., the system is observed to be in state xn ∈ X , and an

action an ∈ A is applied. A reward r(xn, an) is received and the system moves to

a new state xn+1 ∈ X with probability p(xn+1 | xn, an). A new action an+1 ∈ A is

chosen and the process is repeated. To specify the selection of actions at each time,

3



the notion of policies is required. To this end, define the history sets H0 := X and

Ht := Kt ×X = K ×Ht−1 for t ≥ 1, so that an element ht ∈ Ht is of the form

ht = (x0, a0, . . . , xt−1, at−1, xt),

where (xn, an)
t−1
n=0 ∈ Kt and xt ∈ X . A policy can then be considered as a probability

distribution over A, dependent on the history ht ∈ Ht.

Definition 1.2. A policy is a sequence of kernels π = (πt)t≥0, πt : Ht → ∆A, such

that

πt(A | ht) = 1 for all ht ∈ Ht, t ≥ 0.

The set of policies is denoted by Π. Furthermore,

1. A policy π is deterministic if there exists a sequence of functions ϕt : Ht → A

such that

πt(· | ht) = δϕt(ht)(·).

2. A policy π is Markovian if for all ht = (x0, a0, . . . , xt−1, at−1, xt) ∈ Ht,

πt(· | ht) = πt(· | xt).

An MDP can then be defined to be the set of associated canonical probability spaces.

Take (Ω,F), where Ω is the product space K∞, and F the corresponding σ-algebra.

An element of Ω is then

ω = (x0, a0, x1, a1, . . .),

so that the state and control variables xt and at can be regarded as projections from Ω

to X and A respectively. The Ionescu-Tulcea Theorem ( [34, Appendix C]) states that

for any policy π ∈ Π, and initial condition x ∈ X , there exists a unique probability

measure Pπ
x on (Ω,F) such that

Pπ
x(x0, a0, x1, a1, . . .)

= δx(x0)π0(a0 | x0)p(x1 | x0, a0)π1(a1 | x0, a0, x1) . . .

Definition 1.3. A Markov decision process (MDP) is the stochastic process

(Ω,F ,Pπ
x, (xt)).
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In general, there is not much need to distinguish between a Markov control model

and a Markov decision process. Therefore without loss of generality we shall simply

use the term MDP to refer to both.

For the optimisation problem, we shall focus on the two variants of finite horizon and

discounted infinite horizon problems. For the finite horizon problem, given an MDP,

a policy π ∈ Π, a terminal time T ≥ 0, and an initial condition x ∈ X , define the

reward functional

J(t, x, π) = Eπ
x

[
T−1∑
n=t

r(xn, an) + g(xT )

]
,

where Eπ
x is the expectation under the measure Pπ

x, and g : X → R is the terminal

reward function. The objective is to maximise the reward functional over the set of

policies, that is solving for the value function

v(t, x) := sup
π∈Π

J(t, x, π).

The value function can be solved recursively from the terminal condition via the

dynamic programming equation, which is also sometimes referred to as the Bellman

equation. Intuitively, this states that solving for the optimal policy is the same as

solving for the optimal action at each step, assuming that the optimal policy is taken

afterwards.

Theorem 1.4. The value function v is the unique solution to the dynamic program-

ming equation

v(t, x) = max
a∈A

(
r(x, a) +

∑
y∈X

v(t+ 1, y)p(y | x, a)
)
, v(T, x) = g(x).

Moreover, a deterministic Markovian policy π∗ ∈ Π is optimal if and only if for each

0 ≤ t < T , π∗
t (x) maximises the RHS of the dynamic programming equation for all

x ∈ X , i.e.

v(t, x) = r(x, π∗
t (x)) + γ

∑
y∈X

v(t+ 1, y)p(y | x, π∗
t (x)).

Therefore, for fully observable MDPs, it is sufficient to consider deterministic Marko-

vian policies (with respect to X ) when seeking the optimal policy.
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The discounted infinite horizon case proceeds similarly. For any policy π ∈ Π and

initial state x ∈ X , define the reward functional

J(x, π) = Eπ
x

[
∞∑
n=0

γnr(xn, an)

]
,

where γ ∈ (0, 1) is the discount factor. The value function is given by

v(x) := sup
π∈Π

J(x, π).

The corresponding dynamic programming equation is given as follows.

Theorem 1.5. The value function v is the unique solution to the dynamic program-

ming equation

v(x) = max
a∈A

(
r(x, a) + γ

∑
y∈X

v(y)p(y | x, a)
)
.

Moreover, a stationary, deterministic and Markovian policy π∗ ∈ Π is optimal if and

only if π∗(x) maximises the RHS of the dynamic programming equation for all x ∈ X ,
i.e.

v(x) = r(x, π∗(x)) + γ
∑
y∈X

v(y)p(y | x, π∗(x)).

1.2 Partially observable MDPs

It is not always the case that one has full knowledge of the underlying process (xt)t,

therefore we have to consider instead a partially observable model.

Definition 1.6. A partially observable control model is defined by the tuple

⟨X ,Y , A, p, q, q0, p0, r⟩, where

– X is the (finite) state space,

– Y is the observation space (a Borel set),

– A is the (finite) action set,

– p : X ×A→ ∆X is the transition kernel, which gives the transition probabilities

of the underlying process,

– q : A×X → P(Y) is the observation kernel,

– q0 : X → P(Y) is the initial observation kernel,
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– p0 ∈ ∆X is the initial distribution,

– r : X × A→ R is the one-step reward function.

For the partially observable model, an observation y0 ∈ Y is first generated with

probability q0(y0 | x0), an action a0 ∈ A is applied, so that a reward r(x0, a0) is

received. The system then moves to x1 ∈ X with probability p(x1 | x0, a0) and

generates a new observation y1 ∼ q(· | a0, x1), after which a new action a1 ∈ A is

applied and the new reward r(x1, a1) is received. The process then repeats.

In this setting, policies should only depend on observations, rather than the under-

lying unobserved states. Therefore, define the (observable) history set H0 = ∆X ×Y
and

Ht = Ht−1 × A× Y, t ≥ 1.

Then a policy π = (πt)t is a sequence of stochastic kernels on A given Ht, the set of

which we denote by Π as before. Then, the canonical space is now Ω := (X×Y×A)∞.

Then once again by the Ionescu-Tulcea theorem, given a policy π ∈ Π and initial

distribution p0, there exists a unique probability measure Pπ
p0

on (Ω,F) such that

Pπ
p0
(x0, y0, a0, x1, y1, a1, . . .)

= p0(x0)q0(y0 | x0)π0(a0 p0, y0)p(x1 | x0, a0)q(y1 | a0, x1)π1(a1 | p, y0, a0, y1) . . .

Here the value function for, e.g. the discounted infinite horizon problem, reads

v(p) := sup
π∈Π

Eπ
p

[
∞∑
t=0

γtr(xt, at)

]
, p ∈ ∆X .

Due to the presence of incomplete observations, the problem is non-Markovian in

nature, and dynamic programming cannot be directly applied. However, it is possi-

ble to consider an equivalent fully observable MDP, by considering the belief state as

the new underlying state. The belief state z = (zt)t can be considered as the condi-

tional distribution of the underlying state, given the observations, so that formally

zt = Pπ
p (xt | ht). The idea is that the belief state contains sufficient information such

that the lifted problem now becomes Markovian. The dynamics for z = (zt)t is of the

form

zt+1 = H(zt, at, yt+1),
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where H can be interpreted as

zt+1(x) = H(zt, a, yt+1)(x) = Pπ
p (xt+1 = x | ht+1).

The existence and construction of such a map H is given in [34, Lemma 3.2].

A policy for the belief MDP is then a sequence of stochastic kernels δ = (δt)t on A

given It, where It := Z × (A × Z)t, and denote the set of admissible belief MDP

policies as Π′. Then we can define the value function for the discounted infinite

horizon problem for the belief MDP as

v′(z) := sup
δ∈Π′

Eδ
z

[
∞∑
t=0

γtr′(zt, at)

]
where

r′(z, a) :=
∑
x∈X

r(x, a)z(x).

Note that each ht ∈ Ht induces a corresponding it = (z0, a0, . . . , zt−1, at−1, zt) ∈ It.

Moreover, Π and Π′ can be seen as equivalent, in that any δ ∈ Π′ defines a πδ ∈ Π by

πδ
t (· | ht) := δt(· | it(ht)) for all ht ∈ Ht and t ≥ 0.

Furthermore, πδ
t assigns the same conditional probability on A as that assigned by

δt for any observable history ht. That the POMDP and the belief MDP are two

equivalent problems is established by the following proposition.

Proposition 1.7 ( [34, Theorem 3.11, 3.13]). For any policy π ∈ Π there exists an

augmented policy δ ∈ ∆ such that

J ′(δ, p) = J(π, p), for all p ∈ Z = ∆X .

and moreover

v′(p) = v(p), for all p ∈ Z.

1.2.1 MDPs with information delay

The information delay model for MDPs first appeared in [4], and can be described

by the tuple ⟨X , A, p, r, d⟩, where d is a fixed constant. Suppose that the state of the

system at time t is not known until time t + d. Assume that once applied, all past

actions are known to the user. This differs slightly from the POMDP construction,
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in that the user does not receive an observation about the current state of the system

(possibly corrupted by noise). Instead, the user observes a past state of the system

(thus the notion of the observation kernel q does not apply here). Nevertheless, one

can still augment the state space suitably by incorporating the historical observations

and action sequence to obtain an equivalent Markovian problem as before.

Let Y := X × Ad. The suitable notion of policies is denoted as follows.

Definition 1.8. A d-delay policy π = (πt)t is defined as a sequence of transition

kernels π : Kt → ∆A, with Kd := Y and Kt+1 := Kt × (A × X ) for all t > d, such

that π(A | kt) = 1 for all kt ∈ Kt, t ≥ d.

Remark 1.9. We use the terminology d-delay policy here to keep the notation con-

sistent with the rest of the thesis. In [4], these are referred to as N-SDSI-policies.

The reward functional for the infinite horizon problem here is given by

J(y, π) = Eπ
y

[
∞∑
t=d

γt−dr(xt, at)

]
for all y ∈ Y , where

y := (x0, a0, . . . , ad−1).

The delay MDP is equivalent to an augmented problem, by considering an augmented

process on the space Y . Define the augmented transition kernel q : Y × A→ ∆Y by

q(y′ | y, a) = 1{(a′1,a′2,...,a′d)=(a2,...,ad,a)}p(x
′ | x, a1),

for all y = (x, a1, a2, . . . , ad), y′ = (x′, a′1, a
′
2, . . . , a

′
d) ∈ Y and a ∈ A. Let π′ = (π′

t)t

with π′
t : Y → ∆A be a policy for the augmented MDP. The augmented reward

functional is

J ′(y, π′) := Eπ′

y

[
∞∑
t=0

γtr′(yt, at)

]
,

where

r′(yn, an) = E[r(xn, an)|yn].

Proposition 1.10 ( [4, Proposition 2.1]). The d-delay MDP ⟨X , A, p, r, d⟩ is reducible
to a fully observable MDP without delays, given by the tuple ⟨Y , A, q, r′⟩,

Therefore, the information necessary to choose the optimal action is the most recently

observed history, alongside with the actions taken up to the current time.

9



1.3 Finite N-player stochastic game

The notion of an N -player stochastic game generalises the single player game, which

is modelled by an MDP in the previous subsection. In the game situation, players

are assumed to act rationally and in their own interest, therefore competing against

the rest of all the players. Throughout this thesis, we will use the terms players and

agents interchangeably.

We shall follow the presentation of [59] for the discrete-time N -player stochastic game.

Much like the single agent MDP, this can also be described by a tuple ⟨X , A, p, r⟩.
Here both the transition kernel p : X × A × ∆X → ∆X and the one-stage reward

function r : X ×A×∆X → R now depend on the state distribution of all the players.

For each time t ≥ 0 and each agent i, let xN
i,t ∈ X and aNi ∈ A denote the state and

action of agent i at time t respectively, and denote the empirical distribution by

e
(N)
t (·) := 1

N

N∑
i=1

δxN
i,t
(·) ∈ ∆X ,

where δx is the Dirac measure at x ∈ X . Let µ0 ∈ ∆X be the specified initial state

distribution. The initial states xN
i,0 are distributed i.i.d. according to µ0. At each time

t, agent i receives a reward

r(xN
i,t, aNi,t, e

(N)
t ).

The N agents then move to their new states (xN
1,t+1, . . . , x

N
N,t+1) at time t + 1, with

probability

N∏
i=1

p(xN
i,t+1 | xN

i,t , a
N
i,t , e

(N)
t ).

For the agents’ policies, denote the history spaces H0 := X ×∆X and

Ht := Ht−1 ×X × A×∆X , t ≥ 1.

A policy for a generic agent is a sequence of kernels π = (πt)t on A given Ht, and

a policy is Markovian if each πt is a kernel on A given X . The set of policies for

each agent i is given by Πi, and the set of Markovian policies for each agent i is

denoted by Mi. Let also Π(N) =
∏N

i=1 Πi and M (N) =
∏N

i=1Mi, which represent the

corresponding N -tuple of policies for all the agents.
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For agent i, the infinite horizon discounted cost functional with discount factor

γ ∈ (0, 1) and policy π(N) ∈ Π(N) is given by

J
(N)
i (π(N)) := Eπ(N)

[
∞∑
t=0

γtr(xN
i,t , a

N
i,t , e

(N)
t )

]
,

where the expectation Eπ(N)
is constructed analogously as in the single agent MDP.

The notion of optimality is given by the Nash equilibrium, which intuitively states

that at equilibrium, no player can gain further by deviating from the optimal policy.

Definition 1.11. A policy π(N∗) is a Nash equilibrium if

J
(N)
i (π(N∗)) = sup

πi∈Πi

J
(N)
i (π

(N∗)
−i , πi),

for each i = 1, . . . , N , where π
(N∗)
−i := (πj∗)j ̸=i.

In general, seeking Nash equilibria across all policies is challenging, as agents only

have access to their local states and the empirical distribution. Therefore it is more

reasonable to consider the concept of a Nash equilibrium in terms of Markovian

strategies instead.

Definition 1.12. A policy π(N∗) ∈M (N) is a Markov-Nash equilibrium if

J
(N)
i (π(N∗)) = sup

πi∈Mi

J
(N)
i (π

(N∗)
−i , πi),

for each i = 1, . . . , N , where π
(N∗)
−i := (πj∗)j ̸=i. For a given ε > 0, π(N∗) ∈M (N) is an

ε-Markov-Nash equilibrium if

J
(N)
i (π(N∗)) ≥ sup

πi∈Mi

J
(N)
i (π

(N∗)
−i , πi)− ε, for each i = 1, . . . , N.

Despite the simplification, the problem of searching Nash equilibria is still intractable

and suffers from the curse of dimensionality. This leads to the notion of mean-

field games, which considers the infinite population limit, such that mean-field Nash

equilibria serve as approximate Nash equilibria for finite but large N -player games.

1.4 Mean-field games

Mean-field games were pioneered by the works of [45] and [19], in the setting of

continuous time. The idea is to significantly simplify the analysis required for large

finite N -player games by considering the infinite population limit. The empirical

11



distribution of the agents, in the infinite limit regime, is replaced by a measure flow.

A mean-field Nash equilibrium can then be characterised by a forward equation for

a generic agent’s distribution, coupled with a backwards optimality equation. As

the distribution of the players is replaced by a fixed measure flow in the coupled

equations, the problem of finding an MFNE becomes much more tractable.

We state here the premise of the MFG in discrete-time [59]. A mean-field game is

specified by a tuple ⟨X , A, p, r, µ0⟩, where µ0 ∈ ∆X is the initial state distribution of

the agents. Assume as before that both X and A are finite. Let M be the set of

measure flows on X , and let µ = (µt)t ∈ M be an exogeneously given measure flow,

representing the postulated law of the population. At each state, a representative

generic agent has dynamics according to

xt+1 ∼ p(· | xt, at, µt),

and receives a reward r(xt, at, µt) at each time t. For a policy π ∈ Π, the reward

functional is then defined as

Jµ(π) = Eπ

[
∞∑
t=0

γtr(xt, at, µt)

]
.

A mean-field Nash equilibrium (MFNE) is then characterised by a fixed point as

follows.

Definition 1.13. Defined the set-valued best-response map Φ :M→ 2Π by

Φ(µ) =

{
π∗ ∈M : Jµ(π

∗) = sup
π∈M

Jµ(π)

}
.

Next, define the measure flow map Ψ : Π→M, where for a policy π ∈ Π, µ = Ψ(π)

is defined recursively by Ψ(π)0 = µ0 and

Ψ(π)t+1(·) =
∑
x∈X

∑
a∈A

p(· | x, a, µt)πt(a | x)Ψ(π)t(x).

A pair (π,µ) ∈ Π ×M is a mean-field Nash equilibrium (MFNE) if π ∈ Φ(µ) and

µ = Ψ(π).

Thus, searching for an MFNE amounts to first optimising for a generic agent under

the fixed postulated law of the population given by the measure flow µ ∈ M, and

then ensuring that the state distribution of this agent under the optimal policy is

consistent with µ. Note when µ is fixed, the optimisation problem reduces back to a

single agent MDP.
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The existence of MFNE in discrete-time MFGs is shown in [59]. For finite state and

action spaces, the required assumptions are as follows.

Assumption 1.14. Assume that:

– The stochastic kernel p : X × A × ∆X → ∆X is weakly continuous, i.e. if

(xn, an, µn)→ (x, a, µ), then p(· | xn, an, µn) converges to p(· | x, a, µ) weakly

in the sense of measures, i.e., denoting En and E for the expectation for the

respective measures, then for all bounded and continuous functions f : X → R:

En[f ]→ E[f ].

– The reward function r : X × A×∆X → R is continuous.

Theorem 1.15 ( [59, Theorem 3.3]). Under Assumption 1.14, the MFG

⟨X , A, p, r, µ0⟩ admits an MFNE (π∗,µ∗) ∈M ×M.

An MFNE serves as a valid approximation to Nash equilibria of large but finite N -

player games, given by the result below:

Theorem 1.16 ( [59, Theorem 4.1]). Under Assumption 1.14, assume in addition

that for an MFNE (π,µ) (which exists by Theorem 1.15), πt is weakly continuous for

each t ≥ 0. Then, for any ε > 0, there exists a positive integer M(ε), such that, for

each N ≥M(ε), the policy π(N) = {π, π, . . . , π} is an ε-Markov–Nash equilibrium for

the game with N agents.

1.4.1 Entropy regularisation for MFGs

As the optimal policy for a fixed measure flow is not unique in general, Φ(µ) is set

valued in the definition of the MFNE. Therefore the proof of Theorem 1.15 utilises

the Kakutani fixed-point theorem for set-valued functions, and is non-constructive.

In order to compute for a fixed point, a first approach would be to define any single-

valued map Φ̂ for an optimal policy, then attempt to apply Φ̂ and Ψ repeatedly in

hopes of converging towards an MFNE. To guarantee such a convergence, one would

have to appeal to the Banach fixed point theorem. However, it is shown in [23] that

for finite MFGs, the map Ψ ◦ Φ̂ is non-contractive in general.

Theorem 1.17 ( [23, Theorem 2]). If the image of Φ̂ is finite, then either the MFNE

operator Ψ ◦ Φ̂ is constant, or it is not Lipschitz continuous. Therefore the MFE

operator does not form a contraction.
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A possible workaround is to assume that the Q-function is strongly concave with

respect to a and has a Lipschitz continuous gradient in a, with respect to all other

arguments [5]. This is however a very restrictive condition (the LR problem in [23,

Section 3.1] is a simple counterexample that violates this condition).

Recent focus has turned towards the use of entropy regularisation to aid convergence.

This has been considered in [6] for stationary measure flows, and further extended

to the non-stationary case for finite horizon problems in [23]. Let Ω : ∆A → R be a

differentiable ρ-strongly convex function, that is, for all u, v ∈ ∆A,

Ω(u) ≥ Ω(v) + ⟨∇Ω(v), u− v⟩+ 1

2
ρ∥u− v∥2, ρ > 0,

where ∥·∥ is the 1-norm. Here Ω is considered as a regulariser and is added as an

additional term into the reward functional. The duality between smoothness and

convexity can be exploited to achieve the desired contractiveness. The presence of

the regulariser leads to higher entropy policies across iterations, which encourages

policy exploration. This also overcomes oscillation issues that arises from the hard

maximisation during each optimisation step.

In the case of [23], for a regularised MFG, we consider the regularised value function

J∗
η,µ(t, x) = sup

π∈Π

T∑
n=t

(
Eπ[r(xn, an, µn)]− η Ω(πn)

)
,

where η is the regularisation parameter, also referred to as the temperature. Define

also the associated optimal Q-function, given by

Q∗
η,µ(t, x, a) = r(x, a, µt) +

∑
x′∈X

J∗
η,µ(t+ 1, x′)p(x′ | x, a, µt).

When the regulariser is of the from of the KL divergence with respect to some policy

q ∈ ∆A,

Ω(π) =
∑
a∈A

π(a) ln
π(a)

q(a)
,

then the maximising policy is the softmax policy, given by

πsoft
t (a | x) = q(a | x) exp(Qreg,∗

η,µ (t, x, a)/η)∑
a′∈A q(a | x) exp(Qreg,∗

η,ν (t, x, a′)/η)
,

where Qreg,∗ is the corresponding Q-function. When q is the uniform distribution, Ω

reduces to the negative entropy. Such classes of regularisers leads to the following

contraction theorem for regularised MFGs.

14



Theorem 1.18 ( [23, Theorem 3]). Assume that both the transition kernel p and

one-step reward function r are Lipschitz continuous. Let T be the finite time horizon,

µ = (µt)t ∈ ∆T
X and η > 0. Let q = (qt)t be a reference policy. Define the following

maps:

(i) The best-response map Φreg
η : ∆T

X → Π, given by

Φreg
η (µ)t(a | x) =

qt(a | x) exp(Qreg,∗
η,µ (t, x, a)/η)∑

a′∈A qt(a | x) exp(Qreg,∗
η,ν (t, x, a′)/η)

.

(ii) The measure flow map Ψaug : Π→ ∆T
X , where Ψaug(π)0 = µ0 and for t ≥ 0,

Ψaug(π)t+1(·) =
∑
x∈X

∑
a∈A

p
(
· | x, a,Ψaug(π)

)
πt(a | x)Ψaug(π)t(x).

Then for sufficiently large η, there exists a unique fixed point µ∗ for the map

Ψaug ◦ Φreg
η . In particular, (π∗,µ) is the regularised MFNE, given by µ∗ of Ψaug ◦Φreg

η ,

for which π∗ = Φreg
η (ν∗) (best response map) and µ∗ = Ψaug(π∗) (measure flow induced

by policy) holds.

The selection of an optimal η that allows a fixed point contraction, as well as achieving

a good approximation towards the MFNE remains an open question, with various

heuristics proposed to dynamically change η during the algorithm [23]. We note also

that there are alternatives for the computation of algorithms towards the MFNE,

including fictitious play, online mirror descent [53] and reformulation to constrained

optimisation (MF-OMO) [32]. We refer to the survey [46] for a comprehensive review

of all the related methods.
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Chapter 2

Markov decision processes with
observation costs: framework and
penalty scheme

2.1 Introduction

In this chapter, we examine the observation cost model (OCM) for Markov Decision

Processes (MDPs). A cost must be paid in order to observe the state of the underlying

MDP, and only then can adjustments be made to the action which influences the dy-

namics of the MDP. We propose a penalty scheme for efficient numerical computation

for the resulting system of equations.

MDPs are mathematical tools that model the optimisation of a random process, in

order to maximise the expected profit over time. Applications are common in main-

tenance, portfolio optimisation, sensor detection, reinforcement learning and more.

Most setups implicitly assume a fixed source of information upon which the user relies

to select an optimal action. However, such a steady stream of information might not

be available in situations where resources are constrained, either by the expensive

cost of measurements, or by the impracticality of frequent sampling. This calls for

an extra layer of optimisation, where the user has to decide on the optimal observa-

tion times of the information source, as well as the optimal sequence of actions to

maximise the expected returns.

The literature involving observation control appear across several different fields, and

appear under terms such as ‘optimal inspections’, ‘costly observations’ or ‘controllable

observations’. To the best of our knowledge, the earliest works appear in [43,47], which
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concerns the linear quadratic Gaussian (LQG) problem over a finite horizon with fixed

number of measurements, as well as the papers [7,8], which examines a costly optimal

stopping problem in continuous time. Numerous applications have emerged in the

literature over the years, which we list (non-exhaustively) below, broadly categorising

into the following areas:

– environmental management control models [72–75],

– optimal sampling rates in communications [29,33],

– optimal sensing problems [49,64,70],

– medical treatment cycles [66,67],

– detection of drift in Brownian motion [13,14,24,25],

– empirical works in reinforcement learning [16,17,42].

The standard approach is to formulate the problem in terms of a partially observable

Markov decision process (POMDP). Dynamic programming for the value function

leads to a search for the optimal observation time after the currently observed state,

as well as the optimal action sequence between the observation times. The formulation

of the OCM in such generality, however, suffers from the curse of dimensionality: as

the time between observations is unbounded, the number of actions to be optimised

also grows unbounded. Indeed, non-constant controls between observations are mostly

only treated under the LQG framework [22,64,70]. We will therefore restrict ourselves

in this chapter to consider only constant actions between observations. Such an

assumption applies to models where actions cannot be feasibly changed without an

accompanying observation, such as the medical treatment applications in [66, 67] or

the environmental management control models [72–75].

Due to the nature of the action being fixed upon an observation until the next, the

passage of time has a lingering effect on the optimal control. For example, it might be

optimal to diagnose and repair certain machinery when performance is subpar, but it

might be more favourable to directly purchase new equipment with new technology

if said piece of machinery was left unfixed and unobserved for a prolonged period

of time. When considering the belief MDP for the OCM, we show that the amount

of time elapsed since the last observation becomes a part of the augmented Markov

system. To our knowledge, only the works of [7, 8] and [33] model the OCM in this

specific formulation, but the problems considered were restricted to fixed dynamics

for the underlying Markov chain.

17



As in the other formulations, the OCM with constant actions between observations

can also be represented by a non-standard version of a POMDP. We assume that the

Markov chain takes values in a finite state space X and that its dynamics are known

and are given by the transition matrices {Pa}a∈A, where A is a finite action set. We

also assume that the actions can only be adjusted at the observation times. The

one-step reward function is given by r(x, a) = ra,x and the observation cost is given

by a constant cobs > 0. The inclusion of time elapsed as a variable in the Markov

system leads to a system of discrete quasi-variational inequalities (QVI), which for

the discounted infinite horizon problem, reads:

min

{
vna,x − γvn+1

a,x −
(
P n
a ra

)
x
,

vna,x −
(
P n
a γv1 + r

)
x

+ cobs

}
= 0, (2.1)

where v is the value function, indexed by: x ∈ X , the state of the chain at

the previous observation; n ∈ N≥1, the time elapsed since the previous obser-

vation; and a ∈ A, the action applied at the previous observation. The vector(
γv1 + r

)
x
= maxa∈A(γv

1
a,x + ra,x) represents the ‘inner loop’ optimisation over the

space of actions after an observation is made.

As seen above, the inclusion of the variable of time elapsed n leads to a structurally

different set of optimality equations, in the form of a quasi-variational inequality

(QVI). More generally, we consider the following class of QVIs below, which includes

the specific form of (2.1).

Problem 2.1. Find u = (u1, . . . , ud) ∈ RN×L×d such that

min {Fa(u), ua −Mu} = 0, a ∈ {1, . . . , d} =: A, (2.2)

where

– M : RN×L×d → RN×L is defined by

(Mu)nl =
(
Qnu1 − c

)
l
,
(
u1 − c

)
l
= max

a∈A

(
u1
a,l − ca,l

)
, (2.3)

for a given vector c ∈ RL×d and {Qn} ⊂ RL×L is a sequence of strictly sub-

stochastic matrices;

– Fa : RN×L → RN×L is a continuous function that satisfies the following prop-

erty: there exists a constant β > 0 such that for any u, v ∈ RN×L×d with

un̄
ā,l̄
− vn̄

ā,l̄
= maxn,a,l(u

n
a,l − vna,l) ≥ 0, we have

Fā(u)
n̄
l̄ − Fā(v)

n̄
l̄ ≥ β(un̄

ā,l̄ − vn̄ā,l̄). (2.4)
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The QVI (2.2) is a generalisation of a monotone system with interconnected obsta-

cles [56], which can arise from the discretisation of optimal switching problems in

continuous time. In our case, we shall refer to the operatorM as the inspection op-

erator. Much like the systems with interconnected obstacles, the QVI (2.2) is typically

not amenable to the use of policy iteration, as the matrices arising from the inspection

operator do not necessarily satisfy the M-matrix or weakly chain diagonally dominant

conditions [9]. We propose instead a penalty scheme, which sees use on variational

inequalities [26,36,38] and extensions to HJB VIs [57,68,69]/ QVIs [56], as an approx-

imation. Penalty schemes have seen comparable computational performance to policy

iteration in HJB QVIs , and is robust to the choice of initial estimates [68, 69]. An

adaptation of the penalty scheme to the QVI (2.2) circumvents issues with numerical

instabilities arising from computing iterates of the policy update, and the penalised

equation can be solved with semismooth Newton methods.

Finally, we note a closely related work to ours in [37], which uses the term ‘self-

triggered MDPs’ to refer to the OCM with constant action between observations.

There, however, the time elapsed variable is not considered as part of the Markov

system. Here we also provide the penalty scheme as a viable alternative to the value

iteration scheme given by the authors in [37]. We demonstrate in Section 2.4 that the

penalty method achieves quick convergence within a few iterations on a large system

whilst also mapping out accurately the optimal policy.

The main contributions of this chapter are as follows:

– We formulate the observation cost model (OCM) for Markov decision processes

where the time elapsed after an observation is considered as part of the aug-

mented Markov system. We present the optimality equations obtained from

dynamic programming for the finite horizon problem, discounted infinite hori-

zon problem, and the respective problems with parameter uncertainty. In all

cases the optimality equations are in the form of a QVI, which are structurally

different to the Bellman-type equations from existing approaches in the litera-

ture.

– We establish a comparison principle for the class of QVIs (2.2), of which the

solution to the OCM belongs to. The class of QVIs are a generalisation of

monotone systems with interconnected obstacles as seen in [56]. We propose

a penalty scheme for this class of QVIs (2.2), and demonstrate the monotone
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convergence of the penalised solutions towards the solutions of said QVI, thereby

establishing constructively the existence of solutions.

– We demonstrate the numerical performance of our model by applying it to

the time-discretised version of the HIV-treatment model [67]. Our framework

is compatible with the original results, and also shows qualitatively different

optimal behaviour when dealing with large observation gaps.

The remainder of this chapter is organised as follows. Section 2.2 sets out the frame-

work for the OCM and establishes the corresponding set of discrete QVIs. A model

problem with an explicit solution is also provided to illustrate the setup. We also

outline the case of parameter uncertainty in Section 2.2.3. In Section 2.3 we prove a

comparison principle for a class of discrete QVIs which subsumes the QVIs obtained

in Section 2.2, as well as outlining the penalty method as a numerical scheme for the

QVI. Finally the numerical experiments are presented in detail in Section 2.4.

2.1.1 Notation for MDPs and POMDPs

As the goal of the next section is to layout the OCM precisely by formulating the

model in terms of a POMDP, we shall quote here some of the standard notation for

MDPs, POMDPs and a brief overview of its construction. These are largely taken

from [34, Ch 4] and we refer the reader to the references within for further detail.

We will generally be considering Markov decision processes on finite state spaces.

Whilst most arguments extend naturally to more general state spaces, we shall focus

on the finite setting here to retain a simplified presentation. Let P(X ) denote the

space of probability measures over a set X . If X is finite, we will also identify P(X )
with the simplex ∆X .

Definition 2.2. A Markov control model is a tuple ⟨X , A, p, r⟩, where

– X is the finite underlying state space;

– A is the finite action space;

– p : X × A→ ∆X is the transition kernel ;

– r : X × A→ R is the one-step reward function.

At each time t, a state xt ∈ X is observed. The controller chooses an action at ∈ A

and receives a reward r(xt, at). The system then moves to a new state xt+1 ∈ X with

probability p(xt+1|xt, at) and the process repeats at time t + 1. Actions are chosen
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according to a policy π = (πt)t, which is a sequence of kernels πt : Ht → A, where

H0 := X and Ht := (X × A)t × X for t ≥ 1, known as the history set at time t. The

set of all policies is denoted by Π. Given an initial state x0 ∈ X and policy π ∈ Π, by

the Ionescu-Tulcea theorem (see [34, Appendix C]), there exists a unique probability

measure Pπ
x0

on the canonical sample space Ω := H∞ := (X × A)∞, such that given

ω = (x0, a0, x1, a1, . . .) ∈ Ω,

Pπ
x0
(ω) = δ(x0) π0(a0 | x0) p(x1 | x0, a0) π(a1 | x0, a0, x1) . . .

The objective is to maximise an objective function over the set of policies Π, for

example, in the finite horizon case,

J(π, x0) = Eπ
x0

[
N∑

n=0

r(xn, an)

]
, π ∈ Π, x0 ∈ X ,

where N ∈ N is the time horizon, and Eπ
x0

is the expectation under the measure Pπ
x0
.

The value function is given by

v(x) = sup
π∈Π

J(π, x), x ∈ X .

It is well known that an optimal policy π∗ for an MDP is deterministic

and Markovian, i.e. there exists deterministic functions {ϕt}t≥0 such that for

ht = (x0, a0, . . . , xt) ∈ Ht, π
∗
t (ht) = ϕt(xt), and v(x) = J(π∗, x).

In many cases, rather than having full information of the MDP, one instead has

access to noisy observations correlated to the underlying MDP. This gives rise to the

notion of partially observable Markov decision processes (POMDPs), which can also

be described by a given tuple as follows.

Definition 2.3. A partially observable control model is a tuple

⟨X ,O, A, p, p0, q, q0, r⟩, where

– X is the finite state space;

– O is the finite observation space;

– A is the finite action space;

– p : X × A→ ∆X is the transition kernel ;

– p0 ∈ ∆X is the initial distribution;

– q : A×X → ∆O is the observation kernel ;
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– q0 : X → ∆O is the initial observation kernel ;

– r : X × A→ [0,∞) is the one-step reward function.

In this setting, given an underlying state xt ∈ X , an observation x̄t ∈ O is generated

according to the observation kernel q(x̄t|at−1, xt). The controller chooses an action

at ∈ A based on their observations, rather than the values of the underlying states.

For this, define the observable history sets

H0 := O, Ht := (O × A)t ×O, t ≥ 1.

A policy for a POMDP is now a sequence of kernels πt : Ht → A. Denote the

set of policies for the POMDP as Πpo. By the Ionescu-Tulcea theorem again, given

an initial distribution p0 ∈ ∆X and policy π ∈ Πpo, there exists a unique prob-

ability measure Pπ
p0

on the canonical space Ω = (X × O × A)∞ such that for

ω = (x0, x̄0, a0, x1, x̄1, a1, . . .) ∈ Ω,

Pπ
p0
(ω) = p0(x0) q0(x̄0 | x0) π0(a0 | x̄0) p(x1 | x0, a0) q(x̄1 | x1, a0) π(x1 | x̄0, a0, x̄1) . . .

The maximisation is now performed over π ∈ Πpo, with the objective and value

function

J(π, p0) = Eπ
p0

[
N∑

n=0

r(xn, an)

]
, v(p) = sup

π∈Πpo

J(π, p), π ∈ Πpo, p, p0 ∈ ∆X .

Without knowledge of the underlying states, the POMDP is a non-Markovian prob-

lem. The standard approach to solve a POMDP is to consider an equivalent (fully

observable) problem, known as the belief MDP, on the space Z := ∆X . The Marko-

vian strucutre is recovered when lifted to the belief MDP, so that classical dynamic

programming techniques can be applied. The transition kernel for the belief state

z = (zt)t can be constructed as follows: given the POMDP, construct a kernel

R : Z × A→ X ×O such that

R(x, x̄ | z, a) = q(x̄ | a, x′)p(x′ | x, a)z(x), (x, x̄) ∈ X ×O, (z, a) ∈ Z × A.

It can be shown that there exists a kernel H ′ : Z × A → X , such that R can be

disintegrated into

R(x, x̄ | z, a) = H ′(x | z, a, x̄)R′(x̄ | z, a), (x, x̄) ∈ X ×O, (z, a) ∈ Z × A.
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where R′ is the marginal of R on O. Then, letting Hz,a,x̄ = H ′(· | z, a, x̄) ∈ Z, define

the kernel q′ : Z × A→ Z by

q′(z′ | z, a) =
∑
x̄∈O

δHz,a,x̄(z
′)R′(x̄ | z, a), z, z′ ∈ Z, a ∈ A.

Then one takes q′ as the transition kernel for the belief state, and construct the initial

kernel q′0 analogously. The belief MDP is then ⟨Z,A, q′, q′0, rz⟩, where rz : Z ×A→ R
as rz(z, a) =

∑
x∈X r(x, a)z(x). The belief state can be interpreted as the conditional

distribution of the underlying state xt, given the observed history (x̄0, a0, . . . , x̄t). Let

Πz be the set of policies for the belief MDP, which are now a sequence of kernels on

A, given the history sets Hz
t = (Z × A)t × Z. The objective and value function for

the belief MDP are given by

Jz(π
z, z0) := Eπz

z0

[
N∑

n=0

rz(zn, an)

]
, vz(z) = sup

πz∈Πz

Jz(π
z, z), πz ∈ Πz, z, z0 ∈ Z,

where Eπz

z0
is the expectation over the canonical space (Z ×A)∞ under the policy πz

and initial condition z0 ∈ Z. It can then be shown that policies in Πpo are equivalent

to policies in Πz, in the sense that any ht ∈ Ht can be mapped to a corresponding

hz
t ∈ Hz

t , so that given πz ∈ Πz, one can construct a corresponding π ∈ Πpo via

π(· | ht) := πz(· | hz
t ),

and the conditional probabilities assigned on the action set A are the same. Moreover,

the POMDP ⟨X ,O, A, p, p0, q, q0, r⟩ and the belief MDP ⟨Z,A, q′, q′0, rz⟩ are equivalent
[34, Ch 4]: π∗ ∈ Πpo is optimal for J if and only if π∗,z ∈ Πz is optimal for Jz, and it

holds that

vz(z) = Jz(π
∗,z, z) = J(π∗, z) = v(z), z ∈ Z = ∆X .

Thus, when considering a POMDP, it is sufficient to consider its equivalent MDP in

the belief state, of which the optimal policy is Markovian with respect to z = (zt)t.

2.2 Problem formulation

In the Observation Cost Model, the process evolves sequentially as follows. At each

time t, the controller decides if they would like to pay an observation cost cobs > 0

to observe the state xt ∈ X . If they decide to do so, then the controller applies the

action at ∈ A according to some suitable policy π, and receives a reward r(xt, at).
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Action

an

in = 0 No action change

an = an−1

Observation
Decision

in+1 = 1

in+1 = 0

Figure 2.1: Top: Standard formulation with full observations; Bottom: The
inclusion of observation costs leads to an extra decision step.

If they decide not to observe, then no cost is paid, but the controller cannot change

the action value, so that at = at−1. We assume that the reward r(xt, at) is collected

and ‘locked in’ at time t, but is not observable to the user if xt is not observable. In

both instances, the system moves to a new state xt+1 ∈ X according to the transition

kernel p(xt+1 | xt, at).

We now formally write down the objective function, and shall make precise the terms

appearing within in the rest of this section. In view of the description above, the

controller wishes to maximise (for example, in the finite horizon case)

Eπ

[
N∑

n=0

(r(xn, an)− in · cobs)
]
, (2.5)

where π a suitably admissible control policy to be made precise later. The sequence

i = (in)n takes values in I := {0, 1} and will be referred to as the inspection values.

A value of in = 1 represents an observation made at time n, so that observation cost

cobs is deducted from the total reward in (2.5). Conversely no observations are made

if in = 0. Figure 2.1 illustrates the sequential flow of a standard MDP, compared to

that of the OCM.

We now proceed to establish the OCM as a non-standard form of a POMDP, in order

to fully make sense of (2.5). A policy should output an action value an ∈ A, as well as

an inspection value in ∈ I. The observation space is represented by X ∪ {∅}: either
the underlying chain with values in X is observed, or the dummy variable ∅ nothing

is observed, which represents the case of no observations. A final but subtle point

is the difference in the sequential structure of the OCM compared to a POMDP. In
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the case of a POMDP, first a state xn is generated, follow by the observation x̄n, and

then the action an. Thus a realisation on the canonical space of a POMDP looks like:

(x0, x̄0, a0, x1, x̄1, a1, . . .). (2.6)

In the OCM, as depicted in Figure 2.1, the observation occurs after the inspection

value, after which the action value follows. Thus a realisation of the system of an

OCM will instead look like

(x0, i0, x̄0, a0, x1, i1, x̄1, a1, . . .). (2.7)

In order to obtain the sequential structure of ‘state - observation - action’ for the

OCM, we augment the sequence (2.7) with fictitious state and observation values,

and treat both an and in as an ‘action’. By suitably augmenting the transition and

observation kernels, the OCM takes the form of a POMDP, over the timescale of 1
2
N.

This augmented sequence then takes the form of

(x0, x̄0, π0, x1/2, x̄1/2, π1/2, x1, x̄1, π1, . . .)

:= (x0, x̄0, i0, x0, x̄0, a0, x1, x̄1, i1, . . .). (2.8)

This leads us to the following definition.

Definition 2.4. Given an MDP ⟨X , A, p, r⟩, the associated observation cost model

(OCM) is defined as the POMDP ⟨X ,X∅,A, p, p0, q, q0, robs⟩ (see Definition 2.3), on

the time scale 1
2
N = {0, 1/2, 1, . . .}, where

– X∅ = X ∪{∅} is the observation space, with ∅ a dummy variable representing

no observations.

– A is the disjoint union of A and I, with time dependent admissible sets given

by A(n) = I and A(n+ 1
2
) = A;

– p : X × A → ∆X is the transition kernel, with its domain extended to X × A
by defining

p(· | x, i) = δx(·), i ∈ I.

– q : A×X → ∆X∅ is the observation kernel, given by

q(· | a, x) = δ∅(·), a ∈ A,

q(· | i, x) = i · δx(·) + (1− i)δ∅(·), i ∈ I.
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– robs : X ×A → R is the one-step reward function given by

robs(x, a) = r(x, a), a ∈ A,

robs(x, i) = −i · cobs, i ∈ I.

The kernels p and q above are defined such that transitions of the underlying chain

only occurs at the integer steps, and new observations at the half steps. Let us write

the observable history sets here as

H0 = X∅, Ht = (X∅ ×A)2t ×X∅, t ∈ 1

2
N.

To be precise, we should only consider admissible history sets, that is state-action

pairs that satisfy the constraints A(n) = I and A(n+ 1
2
) = A, but we shall take this

assumption as implicit for ease of notation. A policy π is hence a sequence of kernels

πt : Ht → A.

As before, a policy π as defined above and an initial distribution p0 ∈ ∆X induces

a unique measure Pπ
p0

on the canonical sample space Ω = (X × X∅ × A)∞. With

slight abuse of notation, we also write π for the values applied by the policy. Then,

the action values a = (an)n and inspection values i = (in)n appearing in (2.5) can be

recovered by defining

in = πn, an = πn+ 1
2
.

As we are assuming in the OCM that actions remain constant between new observa-

tions. We will have to consider a smaller class of admissible policies.

Definition 2.5. An admissible policy π = (πt)t for the OCM is a sequence of

kernels πt : Ht → ∆A which satisfies the following: for n ∈ N, if

hn+ 1
2
= (x̄0, π0, . . . , x̄n− 1

2
, πn− 1

2
, x̄n, πn, x̄n+ 1

2
),

with πn = in = 0, then

πn+ 1
2

(
·
∣∣∣ hn+ 1

2

)
= δπ

n− 1
2

= δan−1

The set of admissible policies for the observation cost model is denoted Πobs.

With the above setup, we can give a full meaning to the expression (2.5) by writing

for π ∈ Πobs and p0 ∈ ∆X ,

J(π, p0) := Eπ
p0

[
2N∑
n=0

robs(xn/2, πn/2)

]
= Eπ

p0

[
N∑

n=0

(r(xn, an)− in · cobs)
]
.

26



Remark 2.6. Regarding the initial distribution p0 and observation kernel

q0: for the purposes of this chapter, we will assume that an observation (made at

some previous time) is always available. This allows a consistent characterisation of

the belief state by a finite tuple, which leads to a system of finite-dimensional QVIs in

Sections 2.2.1 and 2.2.2. Thus, we will only consider initial kernels p0 that is in the

form of some n-step transition probabilities of the kernel p, and the initial observation

kernel q0 will be taken as the Dirac measure q0(· | x) = δx(·).

Remark 2.7. The formulation with the half time-steps and the inclusion of fictitious

state/ observation variables above are strictly a theoretical construct, such that the

OCM can be reframed as a POMDP, and thus allowing us to directly appeal to standard

results to formulate dynamic programming. It will be shown later that the half steps

become redundant once dynamic programming is established, and the value function

will only need to be considered over the integer steps.

2.2.1 Finite horizon problem

For the finite horizon problem, let N ∈ N be the time horizon. As we have introduced

the POMDP for the OCM to be defined on the timescale 1
2
N, we now have a total of

2N ‘half steps’, where at each step t, either a value of it or at is applied. Therefore,

for a policy π ∈ Πobs, we write the objective function as

Eπ
p0

[
2N∑
n=0

robs(xn/2, πn/2)

]
= Eπ

p0

[
N∑

n=0

(r(xn, an)− in · cobs)
]
.

With the OCM problem characterised as a POMDP, we consider the belief MDP,

with the belief state given by Pπ
p0
(xt | ht), where ht ∈ Ht. By the Markov prop-

erty, the belief state is fully characterised by the controller’s most recently observed

information, in that

Pπ
p0
(xt | ht) = p(⌊t⌋−k)(xt | xk, ak), (2.9)

where p(⌊t⌋−k) is the (⌊t⌋ − k)-step transition kernel of the underlying process X, and

k ∈ N is the last occurrence such that ik = 1. Note that k = t implies an immediate

observation, and the belief state reduces trivially to a Dirac measure at xt. The belief

state therefore has a finite dimensional parametrisation, and we can consider instead

the augmented state y = (yt)t∈ 1
2
N:

yt :=

{
(k, xk, ak), if N ∋ k = argmaxn≤t{in = 1} ≠ t ,

(t, xt,∅), otherwise,
(2.10)
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where ∅ also acts as a dummy variable here. The three components of yt represent

the most recent observation time k, with the correspondingly observed state xk ∈ X ,
and applied action ak ∈ A.

Given this equivalence in representation, we can consider the OCM as an MDP with

the tuple ⟨Y ,A, py, ry⟩ on the timescale 1
2
N, where

– Y := N×X × A∅ is the augmented state space;

– A is the disjoint union of A and I, with admissible setsA(n) = I andA(n+ 1
2
) =

A;

– py = (py,t)t∈ 1
2
N is a (time-inhomogeneous) transition kernel on Y given Y × A:

for n ∈ N, y = (k, x, a), ŷ ∈ Y , i ∈ I, and a′ ∈ A,

py,n(ŷ | y, i) = i · p(n−k)(x̂ | x, a)1{ŷ=(n,x̂,∅)} + (1− i)1{ŷ=y}, (2.11)

py,n+ 1
2
(ŷ | y, a′) = 1{ŷ=(k,x,a′), a′=a}, (2.12)

and for y = (n, x,∅),

py,n+ 1
2
(ŷ | y, a′) = 1{ŷ=(n,x,a′)}. (2.13)

– ry = (ry,t)t∈ 1
2
N is a time-dependent one-step reward function on Y × A: for

y = (k, x, a), i ∈ I, a′ ∈ A,

ry,n(y, i) = −i · cobs, (2.14)

ry,n+ 1
2
(y, a′) =

∑
x′∈X

r(x′, a′)p(n−k)(x′ | x, a), (2.15)

and for y = (n, x,∅),

ry,n+ 1
2
(y, a′) = r(x, a′). (2.16)

In this augmented problem, define its observable history sets as Hy
t = (Y ×A)2t×Y ,

t ∈ 1
2
N. Policies πy are then a sequence of kernels πy

t : Y → ∆A. For the set of

admissible policies of this augmented MDP, we will have to consider the corresponding

‘image’ of Πobs. This in turn, is equivalent to imposing a state constraint on the

admissible action sets:

A(n+ 1/2, (k, x, a)) = {a}, n ∈ N, a ∈ A.
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With the above constraints noted, we shall not distinguish between a policy π ∈ Πobs

and its corresponding policy πy in the augmented MDP, and write π for both.

For the finite horizon problem, the objective function for the augmented state MDP

is

J(t, y, π) = Eπ
y

[
2N∑
n=t

ry,n
2

(
yn

2
, πn

2

)]
, 0 ≤ t ≤ 2N, y ∈ Y , π ∈ Πobs, (2.17)

with value function

v(t, y) = sup
π∈Πobs

J(t, y, π). (2.18)

The proposition below shows the dynamic programming equation in the form of a

quasi-variational inequality, for which the value function for the OCM satisfies.

Proposition 2.8. For n ∈ N, y = (k, x, a) ∈ Y, define vn,ka,x = v(n, y) as in (2.18).

Then the value function satisfies the following quasi-variational inequality (QVI): for

all 0 ≤ k < n ≤ N − 1, x ∈ X , and a ∈ A,

min

{
vn,ka,x − vn+1,k

a,x −
(
P n−k
a ra

)
x
,

vn,ka,x −
(
P n−k
a vn+1,n + r

)
x

+ cobs

}
= 0, (2.19)

with the terminal condition

vN,k
a,x =

(
PN−kra

)
x
, (2.20)

where P n
a is the n-step transition matrix with constant action a, and

(ra)x = r(x, a), r̄x = max
a∈A

r(x, a), (2.21)(
vn+1,n + r

)
x
= max

a∈A
(vn+1,n

a,x + ra,x). (2.22)

Proof. A standard application of dynamic programming gives us

v(t, y) = sup
π∈Πobs

{
ry,t(y, πt) + Eπ

[
v

(
t+

1

2
, yt+ 1

2

)]}
.

Expanding explicitly, for n ∈ N and y = (k, x, a) ∈ Y ,

v(n, (k, x, a)) = max

{
−cobs +max

a∈A
Ea

[
v

(
n+

1

2
, (n, xn,∅)

)]
, v

(
n+

1

2
, (k, x, a)

)}
,
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where Ea is the expectation taken with respect to a constant a ∈ A. Furthermore

v

(
n+

1

2
, (k, x, a)

)
= Ea [r(xn, a)] + v(n+ 1, (k, x, a)),

v

(
n+

1

2
, (n, x,∅)

)
= max

a∈A
{r(x, a) + v(n+ 1, (n, x, a))}

Thus, by combining the inspection stage and the action stage together, and rearrang-

ing the terms accordingly, we obtain the QVI in the desired form.

The optimal policy π∗ is then Markovian with respect to the augmented state y, i.e.

the optimal policy depends on the most recent observation. Given a solution to the

QVI (2.19), one can retrieve the optimal policy at time n, by first finding the region

where the minimum is achieved, which determines if an inspection is optimal. If an

inspection is optimal, one observes the latest state, say x, and the optimal action is

given by argmaxa∈A(v
n+1,n
a,x + ra,x).

2.2.2 Infinite horizon problem

For the discounted infinite horizon problem of the OCM, we will have to consider

the appropriate stationary formulations. This can easily be obtained by further con-

sidering (n, yn) as an augmented state. Now recall that the transition kernel of y in

(2.11) to (2.13) depends on n and k strictly through the difference n−k. Hence, after

relabelling, it is sufficient to consider y = (n, x, a) as the augmented state, where

here n now represents the time elapsed from the previous observation, rather than

the standard linear passage of time. The objective function of this equivalent MDP

is

J(y, π) = Eπ

[
∞∑
n=0

γ⌊n
2
⌋ry
(
yn

2
, πn

2

)]
, y ∈ Y , π ∈ Πobs, (2.23)

where γ ∈ (0, 1) is the discount factor, the value function is

v(y) = sup
π∈Πobs

J(y, π). (2.24)

This gives us the following QVI for the value function, which we shall state here

without proof.

Proposition 2.9. For y = (n, x, a) ∈ Y, define vna,x = v(y). Then the value function

(2.24) satisfies the following quasi-variational inequality (QVI): for all n ≥ 1, x ∈ X ,
and a ∈ A,

min

{
vna,x − γvn+1

a,x −
(
P n
a ra

)
x
,
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vna,x −
(
P n
a γv1 + r

)
x

+ cobs

}
= 0, (2.25)

where P n
a is the n-step transition matrix with constant action a, and

(ra)x = r(x, a), r̄x = max
a∈A

r(x, a) (2.26)(
γv1 + r

)
x
= max

a∈A
(γv1a,x + ra,x). (2.27)

Note that the QVI (2.25) is defined on the infinite domain N≥1×X ×A. In practice,

we will have to truncate this domain for the time variable. A natural boundary

condition is to enforce an inspection of the underlying chain after some large time N

has elapsed. This is equivalent to further restricting the admissible policies in Πobs

to those such that iN = 1.

2.2.3 Observation cost with parameter uncertainty

We now consider the case of the OCM with parameter uncertainty in the dynamics

of the Markov chain. We shall adopt the approach of Bayesian adaptive control.

Suppose that the transition kernel p now depends on an unknown parameter θ ∈ Θ,

where Θ denotes a finite parameter space. We write pθ(· | x, a) for a fixed value of

θ. To consider a Markov system for the problem, we take X × Θ as our underlying

space, with transition kernel

p((x′, θ′) | (x, θ), a) := 1{θ=θ′}pθ(x
′ | x, a), (x, θ), (x′, θ′) ∈ X ×Θ, a ∈ A. (2.28)

For each value of θ ∈ Θ, we associate a probability measure pθ0 ∈ ∆X , so that the

initial distribution is given by

p0(x, θ) =
∑
θ∈Θ

pθ0(x)ρ0(θ)

for some ρ0 ∈ ∆Θ. Given the half-step construction as laid out in the beginning

of this section, the OCM with parameter uncertainty can be written as a POMDP

⟨X ×Θ,X∅,A, p, p0, q, q0, robs⟩ over the timescale 1
2
N, where the domain of the tran-

sition kernel p is extended to (X ×Θ)×A by defining

p(· | x, θ, i) = δ(x,θ)(·), i ∈ I,

and the observation kernel q is now defined on A× (X ×Θ), with

q(· | a, x, θ) = δ∅(·), a ∈ A,
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q(· | i, x, θ) = i · δx(·) + (1− i)δ∅(·), i ∈ I.

The initial observation kernel q0 will be taken as q0(· | x, θ) = δx(·) (see Remark 2.6).

The set of admissible policies, denoted by ΠΘ
obs in this case, can be established anal-

ogously as in Definition 2.5. Denote the canonical measure here by Pπ
p0
, under which

θ can be considered as a constant process, i.e. θn+1 ≡ θn with θ0 ∼ ρ0 ∈ ∆Θ, and ρ0

can be interpreted as a prior estimate for θ.

When considering the belief MDP for this problem, the observable sequence at time

t remains as previously,

ht = (x̄0, π0, . . . , x̄t−1/2, πt−1/2, x̄t) ∈ Ht.

Then, the belief state Pπ
p0
(xt, θt | ht) can be decomposed as

Pπ
p0
(xt, θt | ht) =

∑
θ∈Θ

Pπ
p0
(xt | θt, ht) Pπ

p0
(θt | ht). (2.29)

For a fixed value of θ, Pπ
p0
(xt | θt, ht) has a finite dimensional characterisation by

the Markov property. As in the previous section, we denote this characterisation by

y = (yt)t, which is a tuple given by

yt :=

{
(k, xk, ak), if k = argmaxn≤t{in = 1} ≠ t ,

(t, xt,∅), otherwise.
(2.30)

The second term on the right hand side of (2.29), Pπ
p0
(θt | ht) can be interpreted as

the posterior distribution of θ at time t. Denote this term by ρt(θt). Note that ρt can

be computed online via the classical Bayes’ Theorem,

ρt(θ) =
Pπ
p0
(x̄t | θ, ht− 1

2
, πt− 1

2
)∑

θ′∈Θ Pπ
p0
(x̄t | θ′, ht− 1

2
, πt− 1

2
) ρt− 1

2
(θ′)

ρt− 1
2
(θ). (2.31)

In the OCM, observations only occur at the half steps, therefore we have in fact

ρn ≡ ρn−1/2 for n ∈ N. Thus, the update (2.31) can be reduced to

ρn(θ) =
Pπ
p0
(x̄n− 1

2
| θ, yn−1, in−1)∑

θ′∈Θ Pπ
p0
(x̄n− 1

2
| θ′, yn−1, in−1) ρn−1(θ′)

ρn−1(θ) (2.32)

=: U(ρn−1, yn−1, in−1), n ∈ N. (2.33)

The belief state at time t can now be represented by yt ∈ Y and ρt ∈ ∆Θ, with its

transitions given by the kernel p′ = (p′t)t∈ 1
2
N on Y ×∆Θ, given (Y ×∆Θ)×A:

p′n(y
′, ρ′ | y, ρ, i) = i ·

∑
θ∈Θ

p
(n−k)
θ (x̂ | x, a)ρ(θ) 1{y′=(n,x̂,∅), ρ′=U(ρ,y,i)}
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+ (1− i)1{ŷ=y, ρ′=ρ}, y = (k, x, a),

p′
n+ 1

2
(y′, ρ′ | y, ρ, a′) = 1{y′=(k,x,a′), a′=a, ρ′=ρ}, y = (k, x, a),

p′
n+ 1

2
(y′, ρ′ | y, ρ, a′) = 1{ŷ=(n,x,a′), ρ′=ρ}, y = (n, x,∅).

As before, we shall not distinguish between policies for the POMDP and policies for

the belief state MDP. For the finite horizon problem, let y = (k, x, a) ∈ Y , ρ ∈ ∆Θ,

and consider

J(t, y, ρ, π) = Eπ
y,ρ

[
2N∑
n=t

rρn/2
(
yn

2
, πn

2

)]
, 0 ≤ t ≤ 2N, π ∈ Πobs, (2.34)

where for y = (k, x, a), i ∈ I, a′ ∈ A, n ∈ N,

rρn(y, i) = −i · cobs,
rρ
n+ 1

2

(y, a′) =
∑
θ∈Θ

∑
x′∈X

r(x′, a′)p
(n−k)
θ (x′ | x, a)ρ(θ),

and for y = (n, x,∅),

rρ
n+ 1

2

(y, a′) = r(x, a′).

The value function is

v(t, y, ρ) = sup
π∈Πobs

J(t, y, ρ, π). (2.35)

As in the previous case without parameter uncertainty, the dynamic programming

equation can be reduced to only the integer time steps. We state the optimality

equation for the observation cost model under parameter uncertainty below.

Proposition 2.10. For y = (k, x, a) ∈ Y and ρ ∈ ∆Θ, the value function (2.35)

satisfies the following equation:

v(n, (k, x, a), ρ) (2.36)

= max

{
v(n+ 1, (k, x, a), ρ) +

∑
θ∈Θ
x′∈X

p
(n−k)
θ (x′ | x, a)r(x′, a)ρ(θ),

∑
θ∈Θ
x′∈X

p
(n−k)
θ (x′ | x, a)ρ(θ)

[
max
a′∈A

(
v(n+ 1, (n, x′, a′), ρ′) + r(x′, a′)

)]
− cobs

}
,

(2.37)

where ρ′ = U(ρ, y, 1) as in (2.32).
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For the infinite horizon case, a similar stationary argument leads us to the objective

function and value function:

J(y, ρ, π) = Eπ

[
∞∑
n=0

γ⌊n
2
⌋rρ
(
yn

2
, πn

2

)]
, y ∈ Y , ρ ∈ ∆Θ, π ∈ Πobs, (2.38)

v(y, ρ) = sup
π∈Πobs

J(y, ρ, π). (2.39)

Proposition 2.11. For y = (n, x, a) ∈ Y and ρ ∈ ∆Θ, the value function (2.39)

satisfies the following equation:

v((n, x, a), ρ) =max

{
γv((n+ 1, x, a), ρ) +

∑
θ∈Θ
x′∈X

p
(n)
θ (x′ | x, a)r(x′, a)ρ(θ),

∑
θ∈Θ
x′∈X

p
(n)
θ (x′ | x, a)ρ(θ)

[
max
a′∈A

(
γv((1, x′, a′), ρ′) + r(x′, a′)

)]
− cobs

}
,

(2.40)

where ρ′ = U(ρ, y, 1) as in (2.32).

It is worth noting that both (2.36) and (2.40) are MDPs over the augmented space

Y ×∆Θ. The inclusion of the simplex ∆Θ makes the MDP non-discrete. For compu-

tation, one would have to approximate the solution, either via computing a discrete

MDP on a finite grid on Y ×∆Θ, or via functional approximation methods such as

the use of neural networks on larger scale problems. We refer the reader to the text-

book [44] and survey paper [58] for a comprehensive review of choosing appropriate

approximating grids. Then, given a finite grid G = {s1, . . . , sG} on the simplex ∆Θ,

one can define the approximating transition kernels by

pG(y
′, si | y, sj, π) =

p′(y′, si | y, sj, a)∑G
i=1 p

′(y′, si | y, sj, a)
, y, y′ ∈ Y , si, sj ∈ G, π ∈ A,

so that one solves the approximating finite MDP on Y × G instead. For the QVIs

resulting from the observation cost problems, we propose to solve the MDPs by a

penalty method, detailed in Section 2.3. In Section 2.4.2, we consider a random

walk with parameter uncertainty, imposing conjugate distributions for the unknown

parameter, such that the distributions {ρn} can be described by a finite number of

values over a finite time horizon.
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2.2.4 Toy problem

To illustrate the framework, we present a model problem involving a two-state Markov

chain and give an explicit solution. We assume the following setup:

– the state space X = {0, 1};

– the action space A = {0, 1};

– the reward function r(x, a) = a · x+ (1− a)(a− x);

– the transition matrix

Pa =

0 1[ ]
a+ p(1− a) (1− p)(1− a) 0
(1− p)a p · a+ (1− a) 1

(2.41)

where p ∈ (0, 1).

This can be seen as a model for a maintenance problem, to find an optimal interval

for inspecting equipment to avoid wear and tear over time. The reward function r

gives a reward of 1 when the state and action values are the same, and zero otherwise.

If no changes are made to the action, the chain eventually arrives at the absorbing

state which does not incur any reward. Figure 2.2 illustrates the chain for the case

p = 0.9.

0 1

0.1

0

0.9 1 0 1

0

0.1

1 0.9

Figure 2.2: Illustration of the two-state Markov chain. Left: a = 0; Right:
a = 1.

Consider the infinite horizon problem. The QVI for x = 0 and a = 0 is

min

{
vn0,0 − γvn+1

0,0 −
(
P n
0 r0

)
x
,

vn0,0 −
(
P n
0 γv

1 + r
)
x
+ cobs

}
= 0. (2.42)

Due to the symmetry of the problem, we have vn0,0 = vn1,1. Moreover, it is clear that

given the knowledge of xn, the optimal action is to set an = xn. Hence we can write

(2.42) as

min{vn0,0 − γvn+1
0,0 − pn, vn0,0 − γv10,0 − 1 + cobs} = 0
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or simply by writing v(n) = vn0,0:

v(n) = max{pn + γv(n+ 1), 1− cobs + γv(1)}. (2.43)

Let T be the first optimal inspection time (where by convention T =∞ if it is optimal

to never inspect). The value function is given recursively by

v(n) =

{
1− cobs + γv(1), if n ≥ T ;

pn + γv(n+ 1), otherwise.
(2.44)

Solving the above for v(1), we obtain the explicit solution

v(1) = max

{
sup
m≥2

(
p
∑m−2

k=0 (γp)
k + γm−1(1− cobs)

1− γm

)
,
1− cobs
1− γ

}
, (2.45)

from which v(n) for n ≥ 1 can be calculated from (2.44). The first term in (2.45) is a

geometric series, where p
∑m−2

k=0 (γp)
k + γm−1(1− cobs) is the expected returns across

the optimal inspection interval, and γm is the discount factor over the whole interval.

We can interpret (2.45) as searching for the optimal inspection interval to maximise

the sum of the rewards, minus the observation cost.

2.3 Comparison principle and penalisation

In this section, we consider a class of discrete QVIs given by Problem 2.12 below.

Problem 2.12. Find u = (u1, . . . , ud) ∈ RN×L×d such that

min {Fa(u), ua −Mu} = 0, a ∈ {1, . . . , d} =: A, (2.46)

where

– M : RN×L×d → RN×L is defined by

(Mu)nl =
(
Qnu1 − c

)
l
,
(
u1 − c

)
l
= max

a∈A

(
u1
a,l − ca,l

)
, (2.47)

for a given vector c ∈ RL×d and {Qn} ⊂ RL×L is a sequence of strictly sub-

stochastic matrices;

– Fa : RN×L → RN×L is a continuous function that satisfies the following prop-

erty: there exists a constant β > 0 such that for any u, v ∈ RN×L×d with

un̄
ā,l̄
− vn̄

ā,l̄
= maxn,a,l(u

n
a,l − vna,l) ≥ 0, we have

Fā(u)
n̄
l̄ − Fā(v)

n̄
l̄ ≥ β(un̄

ā,l̄ − vn̄ā,l̄). (2.48)
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We shall refer to (2.48) as the monotonicity condition. In general the vector c in

(2.47) can also depend on n, and the proofs for such cases extends naturally. We

interpret the indices n ∈ {1, . . . , N} as the time domain, l ∈ {1, . . . , L} as the spatial
domain, and a ∈ A as the action space. For example, for the infinite horizon problem

(2.25), one has N is the size of the truncated time domain (see comments after

Proposition 2.9), L = |X |, with

Fa(u)
n
l = un

a,l − γun+1
a,l − (P n

a ra)l,

Qn = γP n
a ,

ca,l = cobs −
1

γ
ra,l.

Moreover, it is straightforward to see that Fa satisfies the monotonicity condition

(2.48) with parameter β = 1 − γ. For the case with parameter uncertainty, if the

measures ρn(dθ) can be parametrised by a finite number of parameters w, this can

also be considered as part of the spatial domain. In this case L = |X | · |w|.

The monotonicity condition arises naturally, for example, from the discretisation of

QVIs in continuous time involving switching controls. Indeed, one can view, for

example, the terms un
a,l − γun+1

a,l as suitably rescaled finite difference terms. The

operatorM will be referred to as the inspection operator, and is a non-local term in the

QVI that couples the solution u across the different action values. In the case where

the Qn’s are the identity matrix, then (2.46) reduces to a QVI with interconnected

obstacles, see [56] for a more detailed analysis for such classes of QVIs.

In the following, we adapt the argument in [56] to prove a comparison principle of

the QVI (2.46).

Proposition 2.13. Suppose u = (ua)a∈A (resp. v = (va)a∈A) satisfies

min {Fa(u), ua −Mu} ≤ 0 (resp. ≥ 0), a ∈ A; (2.49)

then u ≤ v.

Proof. Let M := un̄
ā,l̄
− vn̄

ā,l̄
= maxn,a,l(u

n
a,l − vna,l). Suppose for a contradiction that

M > 0. Since u is a subsolution, we have Fā(u) ≤ 0 or uā −Mu ≤ 0. First suppose

that uā ≤ (Mu). Then

un̄
ā,l̄ ≤

(
Qn̄u1 − c

)
l̄
. (2.50)
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Similarly, as v is a supersolution, vā −Mv ≥ 0 and

vn̄ā,l̄ ≥
(
Qn̄v1 − c

)
l̄
. (2.51)

Let γ < 1 be the maximum of the row sums of Qn̄. Then by combining both inequal-

ities above we obtain

un̄
ā,l̄ − vn̄ā,l̄ ≤

(
Qn̄u1 − c

)
l̄
−
(
Qn̄v1 − c

)
l̄

≤
(
Qn̄u1 − v1

)
l̄

≤ γ
(
u1 − v1

)
l∗

(for some l∗ ∈ {1, . . . , L})
< u1

a∗,l∗ − v1a∗,l∗ (for some a∗ ∈ A)

which is a contradiction by the maximality of M . Hence, we must have Fā(u)
n̄
l̄
≤ 0,

but then since v is a supersolution and M > 0, we have by the monotonicity property

β(un̄
ā,l̄ − vn̄ā,l̄) ≤ Fā(u)

n̄
l̄ − Fā(v)

n̄
l̄ ≤ 0 (2.52)

which is again a contradiction. Hence we must have M ≤ 0 as required.

We now present a penalty approximation to the QVI (2.46). The motivations behind

this are twofold. Firstly, it presents itself as an alternative numerical scheme to policy

iteration, which can encounter instability issues due to potential singularities at the

matrix iterates. Secondly, it provides naturally a constructive proof of existence to

the solutions of the QVI (2.46). Consider the following penalised problem.

Problem 2.14. Let ρ ≥ 0 be the penalty parameter. Find uρ = (uρ
a)a∈A ∈ RN×L×d

such that

Fa(u
ρ)− ρ π (Muρ − uρ

a) = 0, a ∈ A, (2.53)

where the penalisation function π : R → R is continuous, non-decreasing with

π|(−∞,0] = 0 and π|(0,∞) > 0, and is applied elementwise.

Thus in the penalised problem, a penalty ρ is applied whenever the condition

uρ
a −Muρ ≥ 0 is violated. As ρ ↑ ∞, the penalised solution should then converge

to the solution of the discrete QVI (2.46). We first show below that for each fixed

ρ, (2.53) satisfies a comparison principle. This implies uniqueness for Problem 2.14.

The argument follows similarly to the approach in [56] and Proposition 2.13.
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Proposition 2.15. For any penalty parameter ρ ≥ 0, if uρ = (uρ
a)a∈A (resp., vρ =

(vρa)a∈A) satisfies

Fa(u
ρ)− ρ π (Muρ − uρ

a) ≤ 0 (resp., ≥ 0), (2.54)

then uρ ≤ vρ.

Proof. Let M := uρ,n̄

ā,l̄
− vρ,n̄

ā,l̄
= maxn,a,l(u

ρ,n
a,l − vρ,na,l ). Suppose for a contradiction that

M > 0. From the previous proposition, we have that(
Qn̄uρ,1 − c

)
l̄
−
(
Qn̄vρ,1 − c

)
l̄
< uρ,n̄

ā,l̄
− vρ,n̄

ā,l̄
. (2.55)

As π is non-decreasing,

π
((

Qn̄uρ,1 − c
)
l̄
− uρ,n̄

ā,l̄

)
≤ π

((
Qn̄vρ,1 − c

)
l̄
− vρ,n̄

ā,l̄

)
. (2.56)

As uρ and vρ are respectively sub and super solutions of (2.53), we have

Fā(u
ρ)n̄l̄ − ρ π

(
(Muρ)n̄l̄ − uρ,n̄

ā,l̄

)
−
(
Fā(v

ρ)n̄l̄ − ρ π
(
(Mvρ)n̄l̄ − vρ,n̄

ā,l̄

))
≤ Fā(u

ρ)n̄l̄ − Fā(v
ρ)n̄l̄ − ρ

(
π
((

Qn̄uρ,1 − c
)
l̄
− uρ,n̄

ā,l̄

)
− π

((
Qn̄vρ,1 − c

)
l̄
− vρ,n̄

ā,l̄

))
≤ 0

Hence by (2.56), Fā(u
ρ)n̄

l̄
− Fā(v

ρ)n̄
l̄
≤ 0. The monotonicity assumption of F then

leads to a contradiction, so that M ≤ 0 as required.

The existence of solutions to the penalised equation (2.53) and its convergence to the

QVI (2.46) is a straightforward adaptation of the results in [56], which we shall state

here without proof.

Theorem 2.16 ( [56, Theorem 2.5, 2.6]). For any penalty parameter ρ, there ex-

ists a unique solution uρ to the penalised equation (2.53), satisfying the bound

∥uρ∥ ≤ ∥F (0)∥/β. For a fixed c ≥ 0, uρ converges monotonically from below to a

function u ∈ RN×L×d as ρ→∞. Moreover, u solves the discrete QVI (2.46).

Thus, we have a straightforward computation scheme to solve for the OCM. We first

set up the discrete QVIs arising from the problem, which is then approximated by the

penalised problem. The solution of the penalised problem is in turn approximated

iteratively with semismooth Newton methods [69]. Formally speaking, starting with

an initialisation v(0) to the penalised problem

Gρ(v) := Fa(v)− ρ π (Mv − v) = 0, (2.57)
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we obtain the next iterate by solving for

v(k+1) = v(k) − Lρ(v(k))−1Gρ(v(k)), (2.58)

where Lρ denotes the generalised derivative of the function Gρ.

2.4 Numerical experiments

In this section, we apply our observation cost framework to three numerical exper-

iments. Sections 2.4.1 and 2.4.3 analyse two infinite horizon problems. For these

examples, we examine the numerical performance of the penalty method and Newton

iterations, as well as the effects of the observation cost on the qualitative behavior

of the solutions. For the penalised equations, we will employ the penalty function

π(x) = x+ as in [56]. Section 2.4.2 considers the parameter uncertainty formulation

over a finite horizon. The solutions are obtained through backwards recursion from

the terminal conditions. We examine the impact that the extra parameter uncertainty

has on the optimal trajectories.

2.4.1 Random walk with drift

Consider an integer-valued random walk whose drift depends on the action space

A = {+1,−1}. The probability of each step is parametrised by θ. Specifically, for

any x ∈ X = N,

p(x+ 1 | x,+1) = θ, p(x− 1 | x,+1) = 1− θ;

p(x+ 1 | x,−1) = 1− θ, p(x− 1 | x,−1) = θ. (2.59)

We also adopt the following reward function:

r(x, a) =
1

|x|+ 1
. (2.60)

The mass of this reward function r is concentrated around the origin, so naturally,

the optimal action is one that reverts the process back towards the origin.

For this example, we consider the infinite horizon problem. Recall that the discrete

QVI (2.25) reads: for all n ≥ 0, x ∈ X , and a ∈ A,

min

{
vna,x − γvn+1

a,x −
(
P n
a ra

)
x
, vna,x −

(
P n
a γv1 + r

)
x

+ cobs

}
= 0, (2.61)
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Note that there exists a path from x to y overm units of time if and only ifm ≥ |y−x|
and m ≡ y (mod 2). If Sx

m denotes the set of states that can be reached from x after

m units of time, then for a constant action, the n-step transition probabilties are

given by

p(n)(x′ | x,+1) =

{(
n
k

)
θk(1− θ)n−k , x′ ∈ Sx

n ;

0 , x′ /∈ Sx
n ,

(2.62)

p(n)(x′ | x,−1) =
{(

n
k

)
θn−k(1− θ)k , x′ ∈ Sx

n ;

0 , x′ /∈ Sx
n ,

(2.63)

where k = (n+ x′ − x)/2. Hence, in full, the QVI reads:

min

vn+1,x −
∑
x′∈Sx

n

(
n

k

)
θk(1− θ)n−k

(
1

|x′|+ 1
+ γ

(
θv1x′+1 + (1− θ)v1x′−1

))
+ cobs,

vn+1,x − γvn+1
+1,x −

∑
x′∈Sx

n

1

|x′|+ 1

(
n

k

)
θk(1− θ)n−k

 = 0,

min

vn−1,x −
∑
x′∈Sx

n

(
n

k

)
θn−k(1− θ)k

(
1

|x′|+ 1
+ γ

(
θv1x′−1 + (1− θ)v1x′+1

))
+ cobs,

vn−1,x − γvn+1
−1,x −

∑
x′∈Sx

n

1

|x′|+ 1

(
n

k

)
θn−k(1− θ)k

 = 0. (2.64)

To close the system to ensure a unique solution, we enforce the following time and

spatial boundary conditions. We impose a reflecting boundary at x = ±L, where L

is suitably large. In particular,

p(L | L,+1) = θ, p(L− 1 | L,+1) = 1− θ,

p(L | L,−1) = 1− θ, p(L− 1 | L,−1) = θ,

p(−L | −L,+1) = 1− θ, p(−L+ 1 | −L,+1) = θ,

p(−L | −L,−1) = θ, p(−L+ 1 | −L,−1) = 1− θ, (2.65)

so that the QVI (2.61) for the states x = ±L will use the transition probabilities

(2.65) instead.

For the time boundary, we enforce an observation at some large time N > 0. The
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terminal condition then reads (for −L < x < L):
vN+1,x −

∑
x′∈Sx

N

(
N

k′

)
θk(1− θ)N−k′

(
1

|x′|+ 1
+ γ

(
θv1x′+1 + (1− θ)v1x′−1

))
+ cobs = 0,

vN−1,x −
∑
x′∈Sx

N

(
N

k′

)
θN−k′(1− θ)k

′
(

1

|x′|+ 1
+ γ

(
θv1x′−1 + (1− θ)v1x′+1

))
+ cobs = 0.

(2.66)

where k′ = (N + x′ − x)/2. The analogous equations hold for the spatial boundary

x = ±L, but with the transition probabilities (2.65). These terminal conditions can

be interpreted as the largest possible interval between two observations.

We now proceed to solve the penalised problem for the system (2.64), with boundary

conditions (2.65) and (2.66), through the use of semismooth Newton methods. To

initialise the iteration, we solve for the uncoupled system

vn+1,x − γvn+1
+1,x −

∑
x′∈Sx

n

1

|x′|+ 1

(
n

k

)
θk(1− θ)n−k = 0,

vn−1,x − γvn+1
−1,x −

∑
x′∈Sx

n

1

|x′|+ 1

(
n

k

)
θn−k(1− θ)k = 0,

0 ≤ n < N, −L < x < L,

(2.67)

with the spatial boundary transition probabilities (2.65) and time boundary

vN+1,x =
∑
x′∈Sx

N

(
N

k′

)
θk(1− θ)N−k′

(
1

|x′|+ 1
+ γ

(
θv1+1,x′+1 + (1− θ)v1+1,x′−1

))
− cobs,

vN−1,x =
∑
x′∈Sx

N

(
N

k′

)
θN−k′(1− θ)k

′
(

1

|x′|+ 1
+ γ

(
θv1−1,x′−1 + (1− θ)v1−1,x′+1

))
− cobs,

−L < x < L.
(2.68)

The system (2.67) corresponds to the penalised equation with penalty parameter ρ =

0. The uncoupled time boundary condition is equivalent to enforcing an observation

but with no switching (i.e., assuming that v = va in each equation for va). The

iteration terminates once a relative tolerance threshold of 10−8 is reached.

We investigate the numerical performance of our described methods for the case

θ = 0.75, γ = 0.99, L = 50 and N = 500, across different cost parameters cobs.

Computations are performed using MATLAB R2019b. The numerical solutions are

shown in Table 2.3. Row (a) shows that the number of Newton iterations required to
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ρ 103 2× 103 4× 103 8× 103 16× 103 32× 103

cobs = 0 (a) 2 2 2 2 2 2
(b) 6.33e−3 3.17e−3 1.58e−3 7.92e−4 3.96e−4 1.98e−4

cobs = 1/8 (a) 5 5 5 5 5 5
(b) 4.85e−3 2.42e−3 1.21e−3 6.06e−4 3.03e−4 1.52e−4

cobs = 1/4 (a) 6 6 6 6 6 6
(b) 3.38e−3 1.69e−3 8.47e−4 4.23e−4 2.12e−4 1.06e−4

cobs = 1/2 (a) 6 6 6 6 6 6
(b) 1.54e−3 7.69e−4 3.85e−4 1.92e−4 9.62e−5 4.81e−5

cobs = 1 (a) 7 7 7 7 7 7
(b) 6.21e−4 3.11e−4 1.55e−4 7.76e−5 3.88e−5 1.94e−5

cobs = 2 (a) 8 8 8 8 8 8
(b) 2.08e−4 1.04e−4 5.19e−5 2.60e−5 1.30e−5 6.5e−6

cobs = 4 (a) 7 7 7 7 7 7
(b) 8.52e−5 4.26e−5 2.13e−5 1.53e−5 5.3e−6 2.7e−6

cobs = 6 (a) 6 6 6 6 6 6
(b) 3.07e−5 1.54e−5 7.7e−6 3.8e−6 1.9e−6 1.0e−6

Table 2.3: Numerical results for the random walk with drift problem. Line (a):
number of Newton iterations to reach the relative tolerance threshold
of 1e−8. Line (b): the increment sizes ∥vρ − v2ρ∥∞.

reach the tolerance threshold is independent from the size of the penalty parameter

ρ. Fewer iterations are required for more extreme values of cobs, but the overall

number of iterations remains low across different observation costs. Row (b) shows

the increments ∥vρ − v2ρ∥∞. The values suggests a first-order convergence of the

penalisation error with respect to the penalty parameter ρ, which is in line with the

analogous theoretical results in [56, Theorem 3.9, 4.2].

cobs 0 1/8 1/4 1/2 1 2 4 6
x = 5 5 5 7 9 11 15 25 37
x = 10 10 12 12 16 20 26 36 48
x = 30 30 40 42 46 54 62 78 110

Table 2.4: List of optimal observation times across various states x and costs
cobs.

We now discuss the qualitative behaviour of the solution. It is clear that if the chain

is observed to be at a positive state, then the control should be switched to a = −1
for a negative drift and vice versa. Table 2.4 lists the optimal observation time gap for

selected states across different observation costs cobs. As the problem is symmetric by

construction, it is sufficient to only examine the behavior for the positive states. In

general, the optimal observation time increases as cobs increases. A longer unobserved
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period of time then leads to a lower average reward. This is illustrated in Figure 2.5,

where the function n 7→ vn−1,30 is plotted for various values of cobs. In the absence of an

observation cost, i.e., for cobs = 0, the optimal observation time equals the magnitude

of the last observed state, as there is no need to observe until it is possible for the

walk to cross the origin again.
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Figure 2.5: Difference in total reward obtained when altering the observation
cost cobs. Each line shows the graph of n 7→ vn−1,30. The cross
indicates the optimal observation time.

2.4.2 Random walk with drift with parameter uncertainty

In this subsection, we consider a random walk with drift, as set up in Section 2.4.1,

but with the additional assumption that the true value of the drift parameter θ is

unknown to the user. To avoid complications with boundary conditions and infinite

domains, we shall only consider the finite horizon problem. Recall that for a fixed

value of θ and constant action, the n-step transition probabilities are given by

p
(n)
θ (x′ | x,+1) =

(
n

k

)
θk(1− θ)n−k, p

(n)
θ (x′ | x,−1) =

(
n

k

)
θn−k(1− θ)k, x′ ∈ Sx

n ,

(2.69)

where Sx
n is the set of states that can be reached from x after n units of time, and

k = 1
2
(n+x′−x). As remarked at the end of Section 2.2.3, we choose the prior from a

family of beta distributions to obtain conjugacy in the parameter distributions. This

reduces (2.36) to a finite QVI. The posterior can be updated as follows. Suppose the

prior ρ0 ∼ Beta(α, β) and the next observation occurs at time n at a state x′ ∈ X .
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Then a standard calculation shows that∫
Θ

p
(n)
θ (x′ | x,+1) ρ0(dθ) = g(k | n, α, β),∫

Θ

p
(n)
θ (x′ | x,−1) ρ0(dθ) = g(n− k | n, α, β),

where

g(k | n, α, β) =
(
n

k

)
B(k + α, n− k + β)

B(α, β)
, k =

1

2
(n+ x′ − x), (2.70)

and g is the probability mass function of the Beta-binomial distribution, B(α, β) is

the Beta function. The posterior distribution is then given by

ρn ∼
{
Beta(α + k, β + n− k), a0 = +1,

Beta(α + n− k, β + k), a0 = −1.
(2.71)

Since {ρn}n can now be characterised by the parameters of the Beta distribution

(α, β), we write v(n, (k, x, a), (α, β)) for v(n, y, ρ). Let us first consider the same

reward function r(x, a) = r(x) = 1
|x|+1

as in the previous section. We can write the

QVI (2.36) as

v(n, (k, x, a), (α, β))

= max

{
v(n+ 1, (k, x, a), (α, β)) +

∑
x′∈X

g′(x′, x | n− k, α, β) r(x′),

∑
x′∈X

g′(x′, x | n− k, α, β)
[
max
a′∈A

(
v(n+ 1, (n, x′, a′), (α′, β′)) + r(x′)

)]
− cobs

}
,

(2.72)

where we define g′(x′, x | n, α, β) := g((n−x′+x)/2 | k, α, β). The terminal conditions

are

v(N, (N − k, x, a), (α, β)) =
∑
x′∈Sx

k

g′(x′, x | k, α, β) r(x′), k < N. (2.73)

For our experiment, we set the true value of θ = 0.3 and a time horizon of N = 50.

Figure 2.6 illustrates a sample realisation of an optimal trajectory, given a prior of

Beta(5, 2), as well as the evolution of the estimate over θ over time.

We consider three different choices of (α, β) for the prior ρ0 as well as varying the

observation cost. For each parameter combination we compute the optimal policy and
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Figure 2.6: Left: sample realisation of the controlled random walk along the
optimal trajectory. Right: prior and posterior distribution of θ; the
grey lines indicate ‘intermediate posteriors’ obtained from earlier
observations.

compare their respective performances across 5000 sampled trajectories. A typical

criteria of measuring the performance of the policy is to examine its regret, defined

as

reg(N, π) = Jθ∗

0 (π∗)− JN(π),

where Jθ∗
0 (π∗) = Eπ∗

[
∑

r(x, a)] is the reward functional with no observation cost, with

known parameter θ∗ and optimal policy π∗, and JN(π) is the reward functional (2.34)

under a policy π ∈ Πobs. In this case we consider π to be the optimal policy under

observation costs and parameter uncertainty. The regret is therefore the cumulative

sum of the suboptimal gap from the optimal policy. For the observation cost problem,

the control between observations are constant and therefore suboptimal in general, as

such we do not expect the regret to achieve asymptotically sublinear growth. Instead,

we consider the following alternative criteria:

regcobs(N, π) = Jθ∗

cobs
(π∗)− JN(π),

where here Jθ∗
cobs

is the reward functional with known parameter θ∗ and observation

cost cobs, so that regcobs measures the contribution of the regret that arises from

parameter uncertainty. On the left of Figure 2.7, we show the overall regret for

varying the observation cost for a fixed prior, and on the right, regcobs is plotted with

a fixed observation cost of cobs = 0.1 across different initial priors ρ0. As expected, the

regret is generally higher when the prior estimate ρ0 is less accurate, or when a larger

cobs value is used. Moreover the regret grows in a rather linear fashion. However,

when examining the graph involving regcobs on the right side, we empirically observe

sublinear growth. This can be interpreted as a gradual learning of the unknown
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parameters, despite the fact that observations only arrive in intervals. The results

suggests that regcobs can be used as an alternative notion to capture the learning rate

in problems involving observation costs, which we see as a possible direction for future

analysis.
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Figure 2.7: Left: regret over time for ρ0 ∼ Beta(3, 3) for different values of
cobs. Right: the growth of regcobs for fixed cobs = 0.1 and different
initial priors ρ0.

To demonstrate the effects of observation cost and prior estimates on the number of

observations, we consider an alternative reward function, given by

r(x, a) = r(x) =


2 x = 0

−1 x = ±2
0 otherwise

In the absence of observation cost and parameter uncertainty, the controller aims

to keep the process at the origin as often as possible, whilst avoiding the penalising

boundary at x± 2. Table 2.8 lists the performance of the optimal policies under each

combination of observation cost and prior estimate. As the true value of θ = 0.3,

a prior of ρ0 ∼ Beta(2, 5) acts a good estimate, and ρ0 ∼ Beta(5, 2) acts as a poor

estimate. In general, we see that the value of the observation cost cobs has a more

dominating effect on the resulting optimal policies and rewards obtained, as seen in

the big drop-off in the number of observations when cobs = 0.75 in row (a), at which

each observation comes at the cost of a significant proportion of the potential reward.

Its effect on the sub-optimality is compounded with a bad prior estimate, with a

negative reward and a 95% credible interval width of 0.5 in the extreme case in the

bottom-right entry of Table 2.8.

2.4.3 Extension of an HIV-treatment model

In this subsection, we implement our formulation of the OCM to an HIV-treatment

scheduling problem in [67]. There, the authors modelled the problem with a
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cobs = 0.1 cobs = 0.25 cobs = 0.5 cobs = 0.75

(a) 22.48 22.2 21.2 17.55
ρ0 ∼ Beta(2, 5) (b) 20.622 17.15 11.26 6.0375

(c) 0.2341 0.2360 0.2455 0.2844

(a) 21.4 20.97 18.36 11.27
ρ0 ∼ Beta(3, 3) (b) 17.99 14.6475 8.92 2.5775

(c) 0.2437 0.2459 0.2696 0.3624

(a) 19.22 17.3 11.21 3.34
ρ0 ∼ Beta(5, 2) (b) 10.628 7.55 1.825 -0.835

(c) 0.2488 0.2583 0.3302 0.5034

Table 2.8: Numerical results for the parameter uncertainty problem. Line (a):
average number of observations. Line (b): average profit (N = 50).
Line (c): average credible interval width (HDI 95%).

continuous-time MDP with observation costs, but does not include the time elapsed

variable in dynamic programming. This can be interpreted as an implicit assumption

that the observer is given the state of the underlying process at initialisation. We

shall implement a discretised version of their model under our formulation with the

time elapsed variable. As alluded to in the introduction, this allows in addition initial

conditions that are outdated or sub-optimal relative to the objective. We demonstrate

the qualitative difference in the optimal policies when varying the initial conditions,

whilst replicating the results in the original paper when the initial conditions coincide.

We also examine the numerical performance of the penalty method when applied to

the system of QVIs for this larger system, compared to that in Section 2.4.1.

We now proceed to describe the original problem in [67]. A continuous-time MDP

is used to model virus levels of HIV-positive patients over time. With two types of

treatment available, the action space is A = {0, 1, 2} (where 0 represents no treatment

given). Four virus strains are considered: WT denotes the wild type (susceptible to

both treatments), R1 and R2 denotes strains that are each resistant to Treatment

1 and Treatment 2 respectively, and HR denotes the strain that is highly resistant

to both. The level of each strain is represented by the states ‘none’ (0), ‘low’ (l),

‘medium’ (m), and ‘high’ (h). Therefore, the state space for the Markov chain is

X = {0, l,m, h}4 ∪ {∗}, where the asterisk represents patient death. Note in partic-

ular that ∗ is an absorbing state. The goal in the original model is to then minimise

a cost functional J : X × A→ R of the form:

J(x, α) = E

[
∞∑
j=0

(∫ τj+1

τj

e−γsc(Xs, ι(Xτj)) ds+ e−γτj+1cobs

)]
, (2.74)
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where {τj}∞j=0 are the observation times, and the cost function c : X × A → R is

a linear combination of the productivity loss resulting from each patient’s condition

and their received treatment.

To adapt the model above for our formulation, we first discretise the MDP, taking

each step to represent one day. We then take the model parameters from the original

article [67, Section 3], which provides the transition rate matrices {Qa}i∈A and the

cost function c(x, a). The transition matrices {Pa}a∈A are then given by Pa = eQa

(as the time unit in [67] is one day). For illustration purposes, a sparse plot of the

transition matrix P0 is shown in Figure 2.9. As we are considering maximisation

problems in this chapter, we take r = −c for the reward function. We can now

formulate our problem in terms of the following QVI:

min

{
vna,x − γvn+1

a,x +
(
enQaca

)
x
, vna,x −

(
enQaγv1 + c

)
x
+ cobs

}
= 0. (2.75)
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Figure 2.9: Sparsity pattern of the transition matrix P0 (the pattern is the
same across all control states). The state space is encoded as
{1, . . . , 256}, by considering the state vectors [WT, R1, R2, HR] as
a base-4 string in reverse order (for example, [h, 0, l, l] corresponds
to 83). The death state ∗ is represented by 256.

We now follow the same procedure in Section 2.4.1 to obtain a numerical solution.

Note that for this problem, the spatial domain is finite and we also have a natural

spatial boundary arising from the absorbing death state ∗, that is, for all n ≥ 0 and

49



a ∈ A,

vna,∗ =
∞∑
k=0

lγk =
l

1− γ
, (2.76)

where l is a constant representing the average GDP loss due to patient death [66,67].

A time boundary is once again enforced at some large time N > 0, which can be

interpreted as a mandatory observation at time N . Explicitly, this reads

vNa,x −
(
eNQaγv1 + c

)
x
+ cobs = 0, x ∈ X \ {∗}, a ∈ A. (2.77)

We now solve the associated penalised problem with semismooth Newton methods. As

in Section 2.4.1, we choose the initial guess to be the solution to the penalised problem

with ρ = 0, with uncoupled time boundary conditions. The iterations terminate once

a relative tolerance threshold of 10−8 is reached. The numerical experiments are

performed on MATLAB R2019b.

Table 2.11 shows the numerical solution for different values of the truncation time N

and cobs across different penalty parameters ρ. Row (a) shows that the number of

iterations remains constant with respect to ρ, much like the random walk experiment

in Section 2.4.1. For this problem, the number of Newton iterations required to reach

the 1e−8 threshold is higher at approximately 20 iterations. However, we find that

convergence to the optimal policy is typically achieved within the first 2 iterations.

This is depicted in Figure 2.10, which graphs the first two iterates as well as the

final solution for the value function. Row (b) in Table 2.11 shows the successive

increments ∥vρ− v2ρ∥∞ between doubling penalty values. Reassuringly, for this more

complicated system, we still see a clear first-order convergence of the penalisation error

with respect to the penalty parameter ρ. Even for small values of ρ, the successive

increments were within O(1) (in comparison to the magnitude of the solution which

is of O(106)). This shows that the penalty approximation is very effective for small

penalty parameters, and that it works well when extended to the class of QVIs that

we introduced in Section 2.3.

We now analyse the behaviour of the value function when plotted as a function

against time. The top-left graph of Figure 2.12 depicts an instance where the patient

is under a stable condition. Here the observation region is [15, N ]. There are limited

benefits of frequently paying a high observation cost when it is unlikely that the

patient’s condition will deteriorate over a short period of time. On the other hand,

the top-right graph has an observation region of [0, 53]. The mathematical intuition

behind this is that beyond the observation region, the MDP is expected to enter the
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Figure 2.10: Convergence of the Newton iterates towards the solution. The
lines show the graphs of n 7→ vn0,4 for the initial guess

v(0), first iterate v(1) and true solution v, where the state
[WT,R1, R2, HR] = [0, 0, l, 0] is encoded as 4 in base 4. The
cross indicates the boundary between the observation regions.

ρ 103 2× 103 4× 103 8× 103 16× 103 32× 103

N = 150, cobs = 200 (a) 18 18 18 18 18 18
(b) 1.6141 0.8071 0.4036 0.2018 0.1009 0.0504

N = 150, cobs = 400 (a) 21 21 21 21 21 21
(b) 1.5147 0.7577 0.3790 0.1895 0.0948 0.0474

N = 150, cobs = 800 (a) 20 20 20 20 20 20
(b) 1.4087 0.7047 0.3524 0.1762 0.0881 0.0441

N = 300, cobs = 200 (a) 20 20 20 20 20 20
(b) 1.6122 0.8061 0.4031 0.2015 0.1008 0.0504

N = 300, cobs = 400 (a) 19 19 19 19 19 19
(b) 1.5131 0.7569 0.3785 0.1893 0.0947 0.0473

N = 300, cobs = 800 (a) 20 20 20 20 20 20
(b) 1.4102 0.7055 0.3528 0.1764 0.0882 0.0441

N = 600, cobs = 200 (a) 19 19 19 19 19 19
(b) 1.6111 0.8056 0.4028 0.2014 0.1007 0.0504

N = 600, cobs = 400 (a) 17 17 17 17 17 17
(b) 1.5114 0.7561 0.3781 0.1891 0.0945 0.0473

N = 600, cobs = 800 (a) 18 18 18 18 18 18
(b) 1.4065 0.7036 0.3519 0.1760 0.0880 0.0440

Table 2.11: Numerical results for the HIV-treatment problem. Line (a): num-
ber of Newton iterations. Line (b): the increments ∥vρ − v2ρ∥.

absorbing state ∗ with high probability, and the negative reward associated with this

absorbing state outweighs any potential benefits of paying the observation cost cobs

for information. In the original model in [67], one determines the optimal policy based

on an immediate observation in hand. Putting this in the context of our formulation,
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Figure 2.12: The value function exhibits two qualitatively different decay modes
depending on the starting states x. Left: a stable condition with
the correct treatment. Right: a worse condition with no treatment.
The top row shows the mappings n 7→ vni,x. The bottom row plots
the corresponding central finite difference terms.

this amounts to fixing an initial condition in the form of y = (1, x, a) ∈ Y , and looking

forward ahead in time to find the first observation time. This overlooks situations

such as that occurring in the top-right graph of Figure 2.12: by initialising at the

time origin, one immediately ‘loops back’ for an immediate observation, and therefore

does not see the effect of the passage of time on the optimal observation policy.

To examine the behaviour around the decision boundaries, we plot the central finite

difference terms (vn+1
a,x −vn−1

a,x )/2∆n in the bottom row of Figure 2.12, underneath their

respective graphs of the value function. If we consider the plots as a discretisation

of a continuous value function, we see that there is much bigger variation within the

observation region. Critically, there is non-smoothness across the boundary in the

bottom-left graph. This suggests that the solution in continuous-time is C2 in time

within each decision region, but only C1 across the boundary. This is in line with

theoretical results on the regularity of viscosity solutions in optimal stopping and

switching problems [54, Chapter 5], which is a potential direction for future analysis.

52



Chapter 3

Mean-field games of speedy
information access with
observation costs

3.1 Introduction

In decision making, one often has the opportunity to improve the quality of one’s

observations by expending extra resources. For example, medical laboratories can

invest in infrastructure to reduce waiting times for testing results, to enable faster

diagnosis and treatment for patients. Balancing such trade-off between information

acquisition and the associated costs may be as important as selecting the course of

further actions which optimise one’s rewards.

We introduce a novel mean-field game (MFG) model in discrete-time, in which agents

actively control their speed of access to information. The MFG considered can be

viewed as a partial observation problem, in which the information stream is not

exogeneously given but rather dynamically controlled by the agents. In the game,

agents can adjust their speed of information access with suitable costly efforts, and

exploit their dynamic information stream to inform the choice of controls for the state

dynamics so as to maximise their rewards. We utilise the information structure to

construct a suitable augmentation of the state space, which includes the belief state

as well as past actions taken within the dynamic delay period, that serves as the finite

state space of an equivalent mean field game of standard form. Thereby, numerical

schemes for discrete MFGs can be employed to compute approximate mean-field

Nash equilibria (MFNE) for our MFG of speedy information access with controlled

observations.
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This chapter covers three themes: (1) actively controlled observation delay, (2) obser-

vation costs, and (3) the analysis of an associated MFG incorporating the combination

of those two features. Standard Markov decision process (MDP) frameworks assume

that state observations are received instantaneously, with corresponding actions in

response being also applied instantaneously. This limits the applicability of such

models in many real-life situations. It is often the case that observation delay arises

due to inherent features of a system, or practical limitations from data collection. For

example, the times to receive medical diagnosis test results depend on the processing

time required for laboratory analysis. In high-frequency trading, observation delay

occurs in the form of latency, aggregated over the multiple stages of communication

with the exchange [20].

There has been a large amount of literature involving the modelling of observation

delays, with applications in (but not limited to) network communications [2,3], quan-

titative finance [18,20,50] and reinforcement learning [21,48,63]. Most models involve

an MDP framework with either a constant or random observation delay, both of which

are exogenously given by the system. Both constant and random observation delay

MDPs can be modelled as a partially observable MDP (POMDP) via state augmen-

tation [4,11,41,48]. It has also been shown that action delays can be considered as a

form of observation delay, under a suitable transformation of the MDP problem [41].

The continuous-time counterpart with an associated HJB-type master equation has

been studied in [62].

In many formulations of optimisation problems in MDPs, the information source

is fixed a priori. However, it is often desirable to control the observations that one

receives, in addition to the dynamics of the underlying process. This frequently occurs

in resource-constrained environments where frequent measurements or sampling are

either too expensive or impractical. Applications include efficient medical treatment

allocation [67], environmental management [72–75], communications sampling [29,33],

optimal sensing [49, 64, 70], reinforcement learning [16, 17, 42], and much more. We

shall refer to these as observation cost models (OCMs). In OCM problems, the user

can opt to receive an observation of the current state of the process, at the price of

an observation cost which is included in the reward functional to be optimised.

The OCM can equivalently be characterised as a POMDP, by including the time

elapsed, together with the last observed states and actions applied to form an aug-

mented Markov system. In many cases, a reasonable simplification is to assume

constant actions between observations [37, 55]. This leads to a finite dimensional
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characterisation of the augmented state, and allows efficient computation of the re-

sulting system of quasi-variational inequalities via a penalty scheme [55]. Analysis

for the more general non-constant action case has generally been restricted to the

linear-quadratic Gaussian case [22,64,70].

In stochastic games, the computation of Nash equilibria is often intractable for large

number of players. Mean-field games (MFGs), first introduced in [45] and [19], provide

a way of seeking approximate Nash equilibria, by assuming symmetric interactions

between agents that can be modelled by a mean-field term, in the form of a measure

flow. MFGs can be treated as an asymptotic approximation of a game with large num-

ber of interacting players. Finding a mean-field Nash equilibrium (MFNE) amounts

to a search for an optimal policy for a representative player, and ensuring that the

state distribution of said player under such a policy is consistent with the postulated

law of the other players, given by the measure flow. In discrete time, the existence

of MFNE has been established in [59]. Analysis has also appeared for several model

variants such as risk-sensitive criteria [61], partially observable systems [60, 61] and

unknown reward/transition dynamics [31].

In general, finite MFGs suffer from non-uniqueness of MFNE and non-contractivity

of the naively iterated fixed point algorithm [23]. Several algorithms have emerged

to address the efficient computation of MFNEs. Entropy regularisation exploits

the duality between convexity and smoothness to achieve contractivity, by either

incorporating the entropy term directly into the reward functional, or imposing

softmax policies during the optimisation step [6, 23, 27]. Fictitious play schemes aim

to smooth the mean-field updates by averaging new iterates over the past mean-field

terms, effectively damping the update to aid numerical convergence [53]. Online

mirror descent further decreases computational complexity by replacing best response

updates with direct Q-function computations [52]. In contrast, [32] reformulates the

problem of searching an MFNE to an equivalent optimisation problem, allowing a

possible search for multiple MFNE with standard gradient descent algorithms. We

refer to the survey [46] for a comprehensive overview of the above algorithms.

Our work. We model agents’ strategic choices for speed of information access in

the game, by studying a novel MFG where the speed of access is in itself also a part

of the costly control. Throughout this chapter, we assume that both the state and

action spaces are finite. The agents participating in the game have control over two

aspects: the time period of their observation delay, and their actions that influence
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their rewards and transition dynamics. The agent can choose over a given finite set

of delay periods, with each value being associated to an observation cost. A higher

observation cost corresponds to a shorter delay period, and vice versa.

Our framework here differs from existing works, in that the delay period is not exo-

geneously given as in the constant case [4,11], nor is it a random variable with given

dynamics as in the stochastic case [20, 21, 48]. Instead, the length of the delay is

dynamically and actively decided by the agent, based on the trade-off between the

extra cost versus the accuracy of more speedy observations, the latter of which can be

exploited though better informed control of the dynamics and hence higher rewards.

The choice of the delay period becomes an extra part of the control in the optimisa-

tion problem in tandem with the agent’s actions. When considering this as a single

agent problem, which occurs during the optimisation step when the measure flow is

fixed, we refer to it as a Markov Controllable Delay model (MCDM). The MCDM

can be reformulated in terms of a POMDP, by augmenting the state with the most

recent observation and actions taken since, to form a Markovian system. This allows

the formulation of dynamic programming to obtain the Bellman equation.

When viewed as part of the overall MFG, the partial information structure of the

problem implies that the measure flow should be specified on the augmented space

for the fixed point characterisation of the mean field Nash equilibira (MFNE). How-

ever, the underlying transition dynamics and reward structure would depend on the

distribution of the states at the present time. In the models of [60, 61], the mapping

from measures on the augmented space to measures on the underlying state is given

by taking the barycenter of the measure. However, our model here differs in two as-

pects. Firstly, although the belief state is an element of the simplex on the underlying

state space, we find a finite parameter description (the state last observed and actions

taken thereafter) to establish the MFG on a finitely augmented space. Secondly, due

to the delayed structure, the observation kernel depends on the distribution of the

states throughout each moment in time across the delay period. Thus, taking an

average of a distribution over the augmented space of parameters, as a barycenter

map would do, is not applicable here. Instead, we explicitly map a measure flow on

the augmented space to a sequence of measures on the underlying states. Intuitively,

this corresponds to an agent estimating the distribution of the current states of the

population, given the observations he/she possesses (i.e., the distribution of the delay

period amongst agents, and the states and actions given such a delay). We detail
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the construction of the MCDM in Section 3.2 and the corresponding MFG formula-

tion, which we will also refer to as the MFG-MCDM, with its MFNE definition in

Section 3.3.

The second part of this chapter focuses on the computation of an MFNE for the

MFG of control of information speed. We employ the popular entropy regularisation

technique, which aids convergence of the classical iterative scheme: computing an

optimal policy for a fixed measure flow, followed by computing the law of the player

under said policy. In the standard MFG model, it is shown that the fixed point

operator for the regularised problem is contractive under mild conditions [6,23]. This

forms the basis of the prior descent algorithm, which is one of the current state-of-the-

art algorithms for the computation of approximate Nash equilibria for MFGs [23,30].

We prove that for our MFG model of control of information speed, the corresponding

fixed point operator also converges when it is sufficiently regularised by an entropy

term. This can be summarised in the following theorem, which is a condensed version

of Theorem 3.28.

Theorem 3.1. Let Φreg
η be the regularised best-response map, with regulariser param-

eter η, and let Ψaug be the measure-flow map. Then for η > cη, there exists a unique

fixed point for Ψaug ◦Φreg
η , i.e. there exists a unique regularised MFNE for the MFG-

MCDM problem. Here cη is a constant that only depends on the Lipschitz constants

and bounds of the transition kernels and rewards functions.

We defer the precise definitions of the operators Φreg
η and Ψaug, as well as the constant

cη to Section 3.4. We investigate the infinite horizon discounted cost problem with

time-dependent measure flows. This extends the result in [23] for finite horizon

problems, and the result in [6] for infinite horizon problems with stationary measure

flows. As the MFG-MCDM is a partially observable problem, the proof also requires

a crucial extra step to demonstrate that the aforementioned mapping of the measure

flow on the augmented space to that on the underlying space is Lipschitz, in other

to prove the required contraction.

The contributions of this chapter can be summarised as follows.

1. We show dynamical programming for a Markov Controllable Delay model

(MCDM), an MDP model where an individual agent can exercise dynamic

control over the latency of their observations, with less information delay be-

ing more costly. The problem is cast in terms of a partially observed MDP
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(POMDP) with controlled but costly partial observations, for which the belief

state can be described by a finite parametrization. Solving this POMDP is

shown to be equivalent to solving a finite MDP on an augmented finite state

space, whose extension also involves past actions taken during the (non-constant

but dynamically controlled) delay period.

2. We introduce a corresponding Mean Field Game (MFG) where speedy infor-

mation access is subject to the agents’ strategic control decisions. For a fixed

measure flow, which describes the statistical population evolution, the ensuing

single agent control problem becomes an MCDM. Although a mean-field Nash

equilibrium (MFNE) is defined in terms of the augmented space, the underly-

ing dynamics and rewards still depend on the underlying state distribution. We

show how a measure flow on the underlying space is determined and computed

from that of the augmented space. This construction exploits the finite param-

eterization of the belief state; whereas the barycenter approach for belief state

which are measure-valued as in [60] does not apply here.

3. By using a sufficiently strong entropy regularisation in the reward functional, we

prove that the regularised MFG-MCDM has a unique MFNE which is described

by a fixed point, and can serve as an approximate Nash equilibrium for a large

but finite population size. The characterisation of the MCDM as a finite MDP

enables to compute the Nash equilibrium of the corresponding MFG, by using

methods from [6, 23]. The results also extend to a MFG formulated on infinite

horizon with time-dependent measure flows.

4. We demonstrate our model by an epidemiology example, in which we compute

both qualitative effects of information delay and cost to the equilibrium, and also

the quantitative properties of convergence relating to the entropy regularisation.

For computation, we employ the Prior Descent algorithm [23], applying the new

mfglib Python package [30] to our partially observable model.

The remainder of the chapter is organized as follows. Section 3.2 develops the for-

mulation of the MCDM as a POMDP and establishes dynamic programming on the

augmented space. Section 3.3 explains the corresponding MFG setup, the fixed point

characterisation of the equilibrium, and shows some basic properties. Section 3.4 es-

tablishes the contraction property of the fixed point iteration map for the regularised

mean field game and its ability to yield an approximate equilibrium for the finite
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player game. Finally, Section 3.5 demonstrates a numerical example from epidemiol-

ogy for illustrtration.

3.1.1 Notation and preliminaries

For any finite set E, we identify the space of probability measures on E with the

simplex ∆E. We equip ∆E with the metric δTV induced by the total variation norm

on the space of signed measures. That is,

δTV (p, p̂) = ∥p− p̂∥TV =
1

2

∑
e∈E

|p(e)− p̂(e)|, p, p̂ ∈ ∆E.

We will generally be considering Markovian policies in this chapter. A Markovian

policy π = (πt)t is then a sequence of maps πt : E → ∆E′ , mapping a finite set E to

the simplex on another finite set E ′. Since a policy is bounded, we equip it with the

sup norm

δΠ(π, π̂) = sup
t≥0

max
e∈E

δTV (πt(· | e), π̂t(· | e)).

Let ∆T
E denote the space of measure flows on E, with T ∈ N∪{∞}. If T is finite, we

equip ∆T
E with the sup metric

δmax(µ, µ̂) = max
0≤t≤T

δTV (µt, µ̂t), µ, µ̂ ∈ ∆T
E.

If T =∞, we instead use the metric

δ∞(µ, µ̂) =
∞∑
t=1

ζ−tδTV (µt, µ̂t), µ, µ̂ ∈ ∆∞
E , (3.1)

where ζ > 1. Note that the choice of ζ is not canonical, and as long as ζ > 1, δ∞

induces the product topology on ∆∞
E , which is compact by Tychonoff’s theorem, since

each individual simplex ∆E is also compact. Hence (∆∞
E , δ∞) is a complete metric

space. This allows us to appeal to Banach’s fixed point theorem when considering

the contraction mapping arguments later.

We will often consider a sequence of actions taken, e.g. a1, . . . , an ∈ A. In these cases

we will use the shorthand notation (a)n1 = (a1, . . . , an). We will use both notations

interchangebly throughout the rest of this chapter.

We will frequently make use of the following proposition in our analysis.
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Proposition 3.2 ( [28, p.141]). For any real valued function F on a finite set E,

given ν, ν ′ ∈ ∆E we have the inequality (see also proof of [6, Proposition 1])∣∣∣∣∣∑
e∈E

F (e)ν(e)−
∑
e∈E

F (e)ν ′(e)

∣∣∣∣∣ ≤ λ(F ) δTV (ν, ν
′),

where λ(F ) := maxe∈E F (e)−mine∈E F (e).

3.2 MDPs with controllable information delay

We first state the definition of a Markov controllable delay model (MCDM) below,

which characterises the scenarios where agents can control their information delay.

Definition 3.3. A Markov controllable delay model (MCDM) is a tuple

⟨X , A,D, C, p, r⟩, where

– X is the finite state space;

– A is the finite action space;

– D = {d0, . . . , dK}, with 0 ≤ dK < . . . < d0, for some given value K, is the set

of delay values ;

– C = {c0, c1, . . . , cK}, with 0 = c0 < c1 . . . < cK , is the set of cost values ;

– p : X × A→ ∆X is the transition kernel ;

– r : X × A→ [0,∞) is the one-step reward function.

Let us also denote the n-step transition probabilities by p(n)( · | x, (a)n1 ), where we

use the notation (a)n1 := (a1, . . . , an) ∈ An. For a given set of delay values D, define
also

– D := [dK , d0] = {dK , dK + 1, . . . , d0}.

– The intervention variables (it)t, taking values in the intervention set

I := {0, 1, . . . , K}.

D represents the delay values that an agent can choose from, with (it)t representing

the decision on the choice of delay, and D represents the range of delay values of the

system at any given point in time. A value of in = k indicates that at time n the

agent wishes to pay a cost of ck to change their delay to dk units. To ensure that

the setup is well-defined, if in = k and the current delay d is shorter than dk, then

the delay at time n + 1 will simply be extended to d + 1 units (in reality, paying a
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Figure 3.1: Control of information speed

higher cost for a longer delay is clearly sub-optimal, so such a choice of in would not

practically occur).

Formally, the MCDM evolves sequentially as follows. Suppose at time t, the con-

troller observes the underlying state xt−d0 ∈ X , with knowledge of their actions

at−d0 , . . . , at−1 ∈ A applied since. Based on this information, the controller applies

an action at and receives a reward r(xt, at) (which we assume not to be observable

until xt becomes observable). The controller then decides on the choice of cost ci,

which determines their next delay period of di units, i.e. observing xt+1−di at time

t + 1. This process then repeats at the next time. If no cost is paid, then no new

observations occur, until the delay reaches d0 units again. Figure 3.1 depicts a typical

evolution of an MCDM.

The precise construction can be set up as follows. We assume that the problem

initiates at time t = 0, and denote prior observations with negative indices.

Definition 3.4. Define the history sets {Ht}t≥0 by

Ht := Ht−1 × A× I × X , t ≥ 1.

where H0 := D × (X × A)d0 ×X , denoting its elements in the form

h0 = (d, x−d0 , a−d0 , . . . , x−1, a−1, x0).

A policy π = (πt)t≥0 is a sequence of kernels πt : Ht → ∆A×I . The corresponding

canonical sample space is then

Ω := H∞ := H0 × (A× I × X )∞.

61



Given an initial distribution q0 ∈ ∆H0 and a policy π, the Ionescu-Tulcea theorem [34,

Appendix C] gives a unique probability measure Pπ
q0

such that for any

ω = (d, x−d0 , a−d0 , . . . , x0, a0, i0, x1, a1, i1, . . .),

Pπ
q0

satisfies

Pπ
q0
(ω) = q0(h0) p(x−d0+1 | x−d0 , a−d0) . . . p(x0 | x−1, a−1)

π0(a0, i0 | d, x−d0 , a−d0 , . . . , x0) p(x1 | x0, a0) . . .

The value d appearing in H0 represents the initial delay period. Given a history

sequence ht ∈ Ht, subsequent delay periods at time t > 0 can be deduced from the

values of d and (in)
t−1
n=0. Denote this value by d(t) ∈ D. This leads to the following

definition for the set of admissible policies.

Definition 3.5. A policy π is admissible for an MCDM if at each time t, there exists

a sequence of kernels ϕd
t : X × Ad → ∆A×I , d ∈ D, such that for each ht ∈ Ht,

πt(· | ht) = ϕ
d(t)
t (· | x−d0 , . . . , xt−dht

, a−d0 , . . . , at−1),

where d(t) ∈ D is the delay period at time t for a corresponding history sequence

ht ∈ Ht. The set of admissible policies for the MCDM is denoted by ΠDM .

Given the MCDM ⟨X , A,D, C, p, r⟩ and an admissible policy π ∈ ΠDM , the objective

function for the infinite horizon problem with discounted cost is

J(π) := Eπ
q0

[
∞∑
n=0

γn

(
r(xn, an)−

K∑
k=1

ck1{in=k}

)]
,

where Eπ
q0

is the expectation over the measure Pπ
q0
, and γ ∈ (0, 1) is the discount

factor.

The search for an optimal π ∈ ΠDM can be solved by considering an equivalent MDP

on an augmented state, which contains all the information that occurred between the

current time and the delayed time. As noted in [4] for the constant delay case, the

lifting is akin to the classical POMDP approach on constructing an equivalent MDP

on the belief state, but in this case the ‘observations’ do not come from an exogenous

information stream, but from a past occurred state instead.

For a full Markovian system, the augmented variable will include the delay of the

system at the current time, the underlying state that is observed with that delay, and

the actions applied from that moment until the present. This will be presented as

the following.
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Definition 3.6. Given the delay values D = {d0, . . . , dK}, define the augmented

space Y by

Y :=

d0⋃
d=dK

{d} × X × Ad.

Then an element y ∈ Y can be written in the form

(d, x, a−d, . . . , a−1), or (d, x, (a)−1
−d),

where negative indices are used to indicate that the actions had occurred in the past.

If specific indices are not required, we will also use the notation y = (d, x,a).

Although the length of the delay is implicit from the number of elements in a, we

explicitly include d in Y for simpler comprehension.

Remark 3.7. As the length of the delay is variable and dependent on the control, the

dimension of the augmented state is also variable. In practice, during computation, we

can keep the dimensions consistent by introducing dummy variables ∅. This follows

the treatment of stochastic delays in [48]. Specifically. for any set E we write E∅ =

E ∪ {∅}. Then an element y ∈ Y can be embedded into the space X × Ad0
∅ via the

mapping

(d, x, (a)−1
−d) 7→ (x, (a)−1

−d,∅, . . . ,∅︸ ︷︷ ︸
d0 − d units

).

We can now construct the MDP on the augmented space. For y = (d, x,a),

ŷ = (d̂, x̂, â) ∈ Y , a′ ∈ A, and i ∈ I, let py : Y × (A × I) → ∆Y be the augmented

kernel, where

py(ŷ | y, a′, i) =


p(d−di+1)

(
x̂ | x, (a)−di

−d

)
1{

d̂=di, â=
(
(a)−1

−di+1,a
′
)} , di ≤ d ≤ d0;

1{
x̂=x, d̂=d+1, â=

(
(a)−1

−d,a
′
)} , dK ≤ d < di.

(3.2)

Let Π′ denote the set of policies for this augmented MDP. That is, π′ = (π′
t) ∈ Π′ is

such that π′
t : H

′
t → ∆A×I , where H

′
0 := Y and H ′

t := H ′
t−1×A×I ×Y for t ≥ 1. By

the Ionescu-Tulcea theorem again, for an initial distribution qy0 ∈ ∆Y and a policy

π′ ∈ Π′, there exists a unique probability measure Pπ′
qy0

such that

Pπ′

qy0
(y0, a0, i0, y1, . . .) = qy0(y0) π

′
0(a0, i0 | y0) py(y1 | y0, a0, i0) . . . (3.3)
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It is then straightforward to see that there is a one-to-one correspondence between

policies in the original MCDM and policies in the augmented MDP. This follows

analogously from the case of a fixed information delay [4], and we summarise the

argument here: each ht ∈ Ht can be mapped to a corresponding h′
t ∈ H ′

t via

(d, x−d0 , a−d0 , . . . , x0, a0, i0, . . . , xt−1, at−1, it−1, xt) 7→ (y0, a0, i0, . . . , yt−1, at−1, it−1, yt),

where yt =
(
d(t), xt−d(t), (a)

t−1
t−d(t)

)
for t ≥ 0. Then, given a policy π ∈ ΠDM , one can

define a policy π′ ∈ Π′ via

π′
t(· | h′

t) = πt(· | ht), t ≥ 0.

Moreover, the policies π and π′ assign the same joint law to (yt, at, it)t≥0 (when viewed

as the canonical coordinate projection). One can then consider the objective function

in the augmented space Y , which is now a fully observable problem:

J ′(π′) := Eπ′

qy0

[
∞∑
n=0

γnry(yn, an, in)

]
, π′ ∈ Π′,

where ry : Y × (A× I)→ [0,∞) and

ry(y, a
′, i) =

∑
x′∈X

r(x′, a′)p(d)(x′ | x,a)−
K∑
k=1

ck1{i=k}, y = (x, d,a). (3.4)

The two problems are equivalent in that π∗ ∈ ΠDM is optimal for J if and only if

π′
∗ ∈ Π′ is optimal for J ′, and it holds that

sup
π∈ΠDM

J(π) = J(π∗) = J ′(π′
∗) = sup

π′∈Π′
J ′(π′)

Given the equivalence, we shall use ΠDM to represent the set of admissible policies

without loss of generality. This allows us to establish dynamic programming for the

MCDM as follows.

Proposition 3.8. Let v : Y → R be the value function

v(y) = sup
π∈ΠDM

Eπ

[
∞∑
n=0

γnry(yn, an, in)

∣∣∣∣∣y0 = y

]
,

Then v satisfies the dynamic programming equation

v(y) = max
(a′,i)∈A×I

{∑
x′∈X

r(x′, a′)p(d)(x′ | x,a)−
K∑
k=1

ck1{i=k} + γ
∑
y′∈Y

py(y
′ | y, a′, i)v(y′)

}
,

where py is the augmented kernel as in (3.2). Moreover, the optimal policy is given

in feedback form, so that π∗,n = ϕn(yn) for some feedback function ϕn.
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Proof. This is a standard application of dynamic programming for a fully observable

MDP, see e.g. [35, Theorem 4.2.3].

Remark 3.9. When considering the MFG in the next section, a deterministic mea-

sure flow representing the population distribution introduces an implicit time depen-

dence within the transition kernel and reward. The generic single agent problem in the

definition of the MFNE then becomes time-inhomogeneous. The time-homogeneous

setup in this section readily generalises directly to a setup with time-inhomogeneous

transition kernels, rewards and dynamic programming equations. However, for ease

of exposition we choose to present the MCDM under the time-homogeneous setting

here.

3.3 MFG formulation with control of information

speed

To ease notation, in the remainder of this chapter we write U := A×I and

u = (a, i) ∈ U .

3.3.1 Finite agent game with observation delay

Consider an N -player game with mean-field interaction, where each agent can control

their observation delay. We shall start with incorporating the measure dependence

into the MCDM in Definition 3.3.

Definition 3.10. An MCDM with measure dependence is a tuple ⟨X , A,D, C, p, r⟩,
where

– X is the finite state space;

– A is the finite action space;

– D = {d0, . . . , dK}, with 0 ≤ dK < . . . < d0, is the set of delay values ;

– C = {c1, . . . , cK}, with 0 = c0 < c1 < . . . < cK , is the set of cost values ;

– p : X × A×∆X → ∆X is the transition kernel ;

– r : X × A×∆X → [0,∞) is the one-step reward function.

Denote by xj
t ∈ X the state of the j-th player at time t, and ajt ∈ A the corresponding

action. Assume that the mean-field interaction occurs in the reward and the transi-

tion probabilities of the players, and is identically distributed for each player. The
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transition kernel is given by p : X × A × ∆X → ∆X so that the j-th player moves

from state xj
t to xj

t+1 with probability

p(xj
t+1 | xj

t , a
j
t , e

N
t ), eNt (·) =

1

N

N∑
k=1

δxk
t
(·).

Here eNt is the empirical distribution of the states of the agents. Similarly, the one-

step reward function is given by r : X ×A×∆X → [0,∞) so that player j receives a

reward of r(xj
t , a

j
t , e

N
t ) at time t.

Recall that for a fully Markovian system, we consider the lifted problem in the aug-

mented space

Y :=

d0⋃
d=dK

{d} × X × Ad.

For the N -player model, consider the history sets H0 := Y × ∆Y and

Ht := Ht−1 × U × Y ×∆Y for t ≥ 1. A policy π = (πt)t≥0 is a sequence of maps

πt : Ht → ∆U .

Definition 3.11. A policy π is admissible for the N -player MCDM if at each time

t, there exists a sequence of kernels ϕd
t : X ×Ad ×∆t

Y → ∆A×I , d ∈ D, such that for

each ht ∈ Ht,

πt(· | ht) = ϕ
d(t)
t (· | x−d0 , . . . , xt−dht

, a−d0 , . . . , at−1, ẽ
N
0 , . . . , ẽ

N
t ),

where d(t) ∈ D is the delay period at time t for a corresponding history sequence

ht ∈ Ht, and ẽNt is the empirical distribution of augmented state, i.e.

ẽNt =
1

N

N∑
k=1

δykt (·), ykt = (dk(t), xt−dk(t), at−dk(t), . . . , at−1).

The set of admissible policies for player j is denoted by Πj.

Let Π =
∏N

j=1Π
j. Player j’s objective function is given by

JN
j (π(N)) = Eπ(N)

[
∞∑
n=0

γnr(xj
n, a

j
n, e

N
n )

]

where π(N) = (π1, . . . , πN) ∈ Π. The notion of optimality in the N -player game

can be captured by the Nash equilibrium, which intuitively says at equilibrium, no

player can make gains by deviating from their current strategy, provided that all other

players remain at their strategy.
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Definition 3.12 (Nash equilibrium). π
(N)
∗ ∈ Π is a Nash equilibrium for the N -player

MCDM if for each j ∈ {1, . . . , N},

JN
j (π(N)

∗ ) = sup
π∈Πj

JN
j (π, π−j

∗ ),

where π−j
∗ = (π1

∗, . . . , π
j−1
∗ , πj+1

∗ , . . . , πN
∗ ).

Definition 3.13 (ε-Nash equilibrium). For ε > 0, a policy π(N) ∈ Π is an ε-Nash

equilibrium for the MCDM if for each j ∈ {1, . . . , N},

JN
j (π) ≥ sup

π∈Πj

JN
j (π, π−j)− ε.

In general, the Nash equilibrium is hard to characterise and computationally in-

tractable. It is also impractical to search over policies that depend on the distribution

of all players. Therefore it is more useful to consider a search over Markovian policies

for each player, and formulate the equilibrium condition with respect to such policies.

Indeed the common approach for modelling partially observable games is to consider

Markovian policies as above [60]. This is a reasonable assumption as in practice it

will be hard for each agent to keep track of the movement of all other players, when

the number of players grow increasingly large.

A policy is Markovian if π = (πt)t≥0 is such that πt : Y → ∆U . Let Π
j
mrkv denote the

set of Markov policies for the player j, with Πmrkv =
∏N

j=1 Π
j
mrkv.

Definition 3.14 (Markov–Nash equilibrium). π
(N)
∗ ∈ Πmrkv is a Markov–Nash equi-

librium for the N -player MCDM if for each j ∈ {1, . . . , N},

JN
j (π(N)

∗ ) = sup
π∈Πj

mrkv

JN
j (π, π−j

∗ ),

where π−j
∗ = (π1

∗, . . . , π
j−1
∗ , πj+1

∗ , . . . , πN
∗ ).

Definition 3.15 (ε-Markov–Nash equilibrium). For ε > 0, a policy π(N) ∈ Πmrkv is

an ε-Nash equilibrium for the MCDM if for each j ∈ {1, . . . , N},

JN
j (π) ≥ sup

π∈Πj
mrkv

JN
j (π, π−j)− ε.

3.3.2 MFNE for the MFG-MCDM

The computation and characterisation of Nash equilibria is typically intractable due

to the curse of dimensionality and the coupled dynamics across the different agents.
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Therefore, as an approximation, we consider the infinite population limit by sending

the number of players N →∞, and replacing the empirical distribution of the agents

by a measure flow µ = (µn)n ∈ ∆∞
X . In the mean-field setting, we consider the view-

point of one representative agent, and assume that its interactions with members of

the population, modelled by the measure flow µ, are symmetric. As in the N -player

game, we consider a tuple ⟨X , A,D, C, p, r⟩ (see Definition 3.10). For a given measure

flow µ ∈ ∆∞
X , at time n, a representative agent transitions from the state xn to a new

state xn+1 with probability

p(xn+1 | xn, an, µn),

and collects a reward of r(xn, an, µn). As each transition of the underlying state now

depends on the given measure, the d-step transition kernel p(d) : X × Ad ×∆d
X → ∆X

now depends on the measure flow across the d time steps, so that we have

xn+d ∼ p(d)(· | xn, (a)
n+d−1
n ; (µ)n+d−1

n ). (3.5)

We impose the follow Lipschitz assumptions on the transition kernels and reward

function.

Assumption 3.16.

(a) The one-step reward function r satisfies a Lipschitz bound: there exists a con-

stant Lr such that for all x, x̂ ∈ X , a, â ∈ A, µ, µ̂ ∈ ∆X ,

|r(x, a, µ)− r(x̂, â, µ̂)| ≤ Lr

(
1{x ̸=x̂} + 1{a̸=â} + δTV (µ, µ̂)

)
.

(b) For 1 ≤ n ≤ d0, the n-step transition kernels satisfy a uniform Lipschitz bound:

there exists a constant Lp such that for all x, x̂ ∈ X , a, â ∈ An, µ, µ̂ ∈ ∆n
X ,

δTV

(
p(n)(· | x,a,µ), p(n)(· | x̂, â, µ̂)

)
≤ Lp

(
1{x ̸=x̂} + 1{a̸=â} + δmax(µ, µ̂)

)
.

In particular, as both X and A are assumed to be finite, and the simplex ∆X is

compact, both the reward function r and transition kernel p are bounded by some

constants Mr and Mp respectively.

Once again, we shall consider the lifted problem on the augmented space

Y :=

d0⋃
d=dK

{d} × X × Ad.

Under this augmented space Y , now with the inclusion of the measure dependence, the

counterparts to py and ry in (3.2) and (3.4) are given as follows. Let y =
(
d, x, (a)n−1

n−d

)
,

ŷ = (d̂, x̂, â), u = (an, i), and µ = (µ)n−dK
n−d0

,
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– py : Y × U ×∆d0−dK+1
X → ∆Y is given by

py(ŷ | y, u,µ)

=

p(d−di+1)
(
x̂ | x, (a)n−di

n−d , (µ)
n−di
n−d

)
1{

d̂=di, â=(a)nn−di+1

} , di ≤ d ≤ d0;

1{x̂=x, d̂=d+1, â=(a)nn−d} , dK ≤ d < di.
(3.6)

– The reward function ry : Y × U ×∆d0+1
X → [0,∞) is

ry(y, u,µ) =
∑
x′∈X

r(x′, an, µn)p
(d)(x′ | x,a, (µ)n−1

n−d)−
K∑
k=1

ck1{i=k}, .

Given Assumption 3.16, we have the following bounds in py and ry.

Proposition 3.17. Under Assumption 3.16:

(a) For all y, ŷ ∈ Y, u, û ∈ U , µ, µ̂ ∈ ∆d0−dK+1
X , the augmented kernel py satisfies

the Lipschitz bound

δTV (py(· | y, u,µ), py(· | ŷ, û, µ̂)) ≤ LP

(
1{y ̸=ŷ} + 1{u̸=û} + δmax(µ, µ̂)

)
.

where LP = max{2Mp, Lp}.

(b) For all y, ŷ ∈ Y, u ∈ U , µ, µ̂ ∈ ∆d0+1
X , the augmented reward function ry is in

µ and satisfies the bound:

|ry(y, u,µ)− ry(ŷ, u, µ̂)|
≤ 2LrMp1{y ̸=ŷ} + (Lr + cK − c0)1{u̸=û} + LR δmax(µ, µ̂),

where LR = Lr + LrLp. Also ry is bounded by Mr + cK =: MR.

Proof. (a) We have from the triangle inequality

δTV (py(· | y, u,µ), py(· | ŷ, û, µ̂))
≤ δTV (py(· | y, u,µ), py(· | ŷ, u,µ)) + δTV (py(· | ŷ, u,µ), py(· | ŷ, û, µ̂))
≤ 2Mp1{y ̸=ŷ} + Lp

(
1{u̸=û} + δmax(µ, µ̂)

)
where the first term in the last inequality follows from the uniformly bounded

Mp for all d-step transition kernels p(d), and the the other terms follow from the

Lipschitz assumption of p(d).
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(b) For consistency sake in notation, we index µ and µ̂ from time n− d0 to n. Let

y = (d, x,a), ŷ = (d̂, x̂, â), u = (a, i) and u′ = (a′, i′), then

|ry(y, u,µ)− ry(ŷ, û, µ̂)|

≤
∣∣∣∣∣∑
x′∈X

r(x′, a, µn) p
(d)(x′ | x,a, (µ)n−1

n−d)−
∑
x′∈X

r(x′, â, µ̂n) p
(d̂)(x′ | x̂, â, (µ̂)n−1

n−d̂
)

∣∣∣∣∣
+ |ci − ci′|

≤
∣∣∣∣∣∑
x′∈X

r(x′, a, µn)
(
p(d)(x′ | x,a, (µ)n−1

n−d)− p(d̂)(x | x̂, â, (µ̂)n−1

n−d̂
)
)∣∣∣∣∣

+

∣∣∣∣∣∑
x′∈X

(r(x′, a, µn)− r(x′, â, µ̂n)) p
(d̂)(x′ | x̂, â, (µ̂)n−1

n−d̂
)

∣∣∣∣∣+ (cK − c0)1{i ̸=i′}

≤ (r(xmax, a, µn)− r(xmin, a, µn))

· δTV

(
p(d)
(
· | x,a, (µ)n−1

n−d

)
, p(d̂)

(
· | x̂, â, (µ̂)n−1

n−d̂

))
+max

x∈X
|r(x, a, µn)− r(x, â, µ̂n)|+ (cK − c0)1{i ̸=i′}

≤ Lr

(
2MP1{y ̸=ŷ} + Lp δmax(µ, µ̂) + 1{a̸=a′} + δmax(µ, µ̂)

)
+ (cK − c0)1{i ̸=i′}

≤ 2LrMP1{y ̸=ŷ} + (Lr + cK − c0)1{u̸=u′} + (Lr + LrLp) δmax(µ, µ̂),

where Proposition 3.2 is used for the third inequality. The second part is im-

mediate from the definition of ry.

We now proceed to establish the mean-field Nash equilibrium (MFNE) condition for

agents operating under the MCDM formulation. This is characterised by a fixed point

of the composition of the best response map and the measure flow map (e.g. [59]).

As the presence of observation delays leads to a non-Markovian problem, the fixed

point characterisation will be established in terms of the augmented space. However,

both py and ry in general depend on the various d-step transition kernels (3.5), which

in turn depend on measures on the underlying space X . Thus, given a distribution

νt ∈ ∆Y on the augmented space, one would like to construct a sequence of measures

(µt,d)
d0
d=0 ∈ ∆d0+1

X for the transition kernel py and augmented reward ry. This can be

seen as analogous to players in the N -player game estimating the distribution of the

underlying states of all players, given the belief state. In order to construct such a

sequence of measures described above, we shall have to further enlarge Y and
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consider the space

Ỹ :=

d0⋃
d=dK

{d} × X d0−d+1 × Ad. (3.7)

In this instance, an element ỹn ∈ Ỹ can now be understood as

ỹn = (d, xn−d0 , . . . , xn−d, an−d, . . . , an−1),

where once again, negative indices are used to indicate that the relevant states and

actions occurred in the past. Now, given νt ∈ ∆Ỹ , we successively compute a sequence

of distributions for the states (xn−d0 , . . . , x0), starting with xn−d0 . The inclusion of the

entire sequence of (xn−d0 , . . . , xn−d) for the space Ỹ is essential, as for each 0 < t ≤ d0,

we require a distribution of the state xn−t in order to compute a distribution for the

next state xn−t+1.

The construction of the map ∆Ỹ ∋ νt 7→ µν
t = (µt,d)

d0
d=0 ∈ ∆d0+1

X is then given by the

following. We use superscripts to denote the corresponding marginal and conditional

distributions on the coordinates. For example, νd
t as the marginal of νt on the delay

coordinate, and ν
x,a|d̄
t is the conditional distribution of νt on the x and a coordinates,

given a delay of d̄, so that we have

νt(d̄,x,a) = νd
t (d̄) ν

x,a|d̄
t (x,a).

Now, starting with d′ = d0, take

µt,d0 = ν
xt−d0
t ∈ ∆X ,

the marginal of νt on the xt−d0 coordinate. Next, define recursively for each 0 ≤ d′ <

d0,

µt,d′(x) =
∑
d̄∈D

νd
t (d̄)ξ

d̄
t,d′(x)

where

ξd̄t,d′(·) =
{
ν
xt−d′ |d̄
t (·), d̄ ≤ d′;∑
x,a p

(d̄−d′)(· | x,a, (µt,d)
d̄
d=d′+1) ν

x,a|d̄
t (x,a), d̄ > d′.

Intuitively, the measures µν
t = (µt,d)

d0
d=0 represent the distribution of the underlying

states of the agents from time t− d0 to time t based on νt, which can be interpreted

as the distribution of the information states of the population at time t. Since the
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information state varies with the delay period, the conditional distributions ν
x,a|d̄
t

have to be considered separately for each d̄ ∈ D. The following lemma shows that

this mapping is also Lipschitz, and will be useful later when establishing a contraction

in the regularised regime.

Lemma 3.18. The mapping νt 7→ µν
t is Lipschitz with constant LM =

∑d0
k=0(2Lp)

k.

Proof. Let νt, ν̂t ∈ ∆Ỹ , with respective images µν
t = (µt,d)

d0
d=0 and µν̂

t = (µ̂t,d)
d0
d=0.

First, by definition we have

δTV (µt,d0 , µ̂t,d0) = δTV (ν
xt−d0
t , ν̂

xt−d0
t ) ≤ δTV (νt, ν̂t).

Now fix 0 ≤ d′ ≤ d0. Then

δTV (µt,d′ , µ̂t,d′) =
∑
x′∈X

∣∣∣∣∣
d0∑
d̄=0

νd
t (d̄)ξ

d̄
t,d′(x

′)︸ ︷︷ ︸
I1

−
d0∑
d̄=0

ν̂d
t (d̄)ξ̂

d̄
t,d′(x

′)︸ ︷︷ ︸
I2

∣∣∣∣∣ (3.8)

We can write I1 as

I1 =
d′∑

d̄=0

νd
t (d̄)ν

xt−d′|d̄
t (x′) +

d0∑
d̄=d′+1

νd
t (d̄)

∑
x,a

p(d̄−d′)(x′ | x,a, (µt,d)
d̄
d=d′+1) ν

x,a|d̄
t (x,a)

=:
d′∑

d̄=0

ν
d,xt−d′
t (d̄, x′) + J1

Similarly, we can write I2 as

I2 =
d′∑

d̄=0

ν̂
d,xt−d′
t (d̄, x′) + J2,

with J2 defined analogously. Then∑
x′∈X

|J1 − J2|

≤
∑
x′∈X

d0∑
d̄=d′+1

∑
x,a

∣∣∣νd
t (d̄) p

(d̄−d′)(x′ | x,a, (µt,d)
d̄
d=d′+1) ν

x,a|d̄
t (x,a)

− ν̂d
t (d̄) p

(d̄−d′)(x′ | x,a, (µ̂t,d)
d̄
d=d′+1) ν̂

x,a|d̄
t (x,a)

∣∣∣
≤

d0∑
d̄=d′+1

(∑
x,a

∣∣∣νd
t (d̄)ν

x,a|d̄
t (x,a)− ν̂d

t (d̄)ν̂
x,a|d̄
t (x,a)

∣∣∣ ∑
x′∈X

p(d̄−d′)(x′ | x,a, (µ̂t,d)
d̄
d=d′+1)
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+
∑
x,a

∣∣∣νd
t (d̄)ν

x,a|d̄
t (x,a)

∣∣∣ ∑
x′∈X

∣∣∣p(d̄−d′)(x′ | x,a, (µt,d)
d̄
d=d′+1)

− p(d̄−d′)(x′ | x,a, (µ̂t,d)
d̄
d=d′+1)

∣∣∣)

≤
d0∑

d̄=d′+1

∑
x,a

∣∣∣νd,x,a
t (d̄, x,a)− ν̂d,x,a

t (d̄, x,a)
∣∣∣+ 2Lp δmax

(
(µt,d)

d̄
d=d′+1, (µ̂t,d)

d̄
d=d′+1

)
.

Returning to (3.8), we have

δTV (µt,d′ , µ̂t,d′) ≤
d′∑

d̄=0

∑
x′∈X

∣∣∣νd,xt−d′
t (d̄, x′)− ν̂

d,xt−d′
t (d̄, x′)

∣∣∣+ ∑
x′∈X

|J1 − J2|

≤ 2Lp δmax

(
(µt,d)

d̄
d=d′+1, (µ̂t,d)

d̄
d=d′+1

)
+ δTV (νt, ν̂t),

so that

δmax(µ
ν
t ,µ

ν̂
t ) = max

0≤d≤d0
δTV (µt,d, µ̂t,d) = LM δTV (νt, ν̂t),

as required.

Now let ν ∈ ∆∞
Ỹ . Given this fixed ν, optimising the objective function becomes the

single agent problem in Section 3.2. Hence, for a policy π ∈ ΠDM , define the objective

function

Jν(π) := Eπ

[
∞∑
n=0

γnry(yn, un,µ
ν
n)

]
,

where Eπ is the expectation induced by the transition kernel py and policy π. Then,

the MFNE for the MCDM is defined as the following.

Definition 3.19. Let ν = (νt)t ∈ ∆∞
Ỹ . Define:

(i) The best-response map Φaug : ∆∞
Ỹ → ΠDM , given by

Φaug(ν) =

{
π̂ ∈ ΠDM : Jν(π̂) = sup

π∈ΠDM

Jν(π)

}
,

(ii) The measure flow map Ψaug : ΠDM → ∆∞
Ỹ , defined recursively by Ψaug(π)0 = ν0

and

Ψaug(π)t+1(·) =
∑
y∈Ỹ

∑
u∈U

py

(
· | y, u,µΨaug(π)

t

)
πt(u | y)Ψaug(π)t(y).
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(iii) The mean-field Nash equilibrium (MFNE) for the MCDM problem

(π∗,ν∗) ∈ ΠDM ×∆∞
Ỹ is given by the fixed point ν∗ of Ψaug ◦ Φaug, for which

π∗ ∈ Φaug(ν∗) (best response map) and ν∗ = Ψaug(π∗) (measure flow induced

by policy) holds.

The existence of MFNE for discrete MFGs in the fully observable case is shown in [59],

by utilising the Kakutani fixed point theorem, and further extended to MFGs with

partial information in [60]. As we see above, Definition 3.19 is analogous to classical

MFNE characterisations in discrete MFG setups [6, 23, 46, 59], with the extra step

of incorporating the maps νt 7→ µν
t . This is different to the barycenter approach

in [60, p.9]: when the belief state is measure-valued, taking the barycenter of a

measure on the augmented state is effectively ‘taking the average’ to give a measure

on the underlying state. Here, the belief state is parameterised by a finite set given

by past observations, so the notion of taking the barycenter does not apply here.

Moreover, both py and ry depend on the distribution of the underlying state across

multiple time points in the past. Therefore an explicit construction of µν here is

required.

Remark 3.20. The extra enlargement of the space Y to Y ′ is necessary to formulate

the MFNE fixed point condition and to compute µν from ν. This enlargement is not

required for the best response update, as the extra states are irrelevant when solving

the MDP for a fixed measure flow. One can view an element of Y as an equivalence

class on Ỹ, defined by the relation that two elements are equivalent if and only if the

values of (d, xn−d, an−d, . . . , an−1) are identical.

3.4 Regularised MFG for the MCDM

It is known that for finite-state MFGs, the MFNE need not be unique, and the fixed

point operator given by Ψaug ◦ Φaug does not form a contraction in general [23]. In

order to compute for an approximate MFNE, we mirror the approaches of [6,23] and

consider a closely related game with a regulariser. This regulariser is an additive term

to the reward in the objective function, and is given by a strongly convex function

Ω : ∆U → R. Then, we consider the regularised objective function

J reg
η,ν(π) =

∞∑
n=0

γn
(
Eπ[r

(
yn, un,µ

ν
n

)
]− η Ω(πn)

)
,

where η is the regularisation parameter. The regularisation allows for a smoothed

maximum to be obtained for the value function, and is often applied in reinforcement
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learning problems to improve policy exploration [27]. Specifically, if Ω is strongly

convex, then its Legendre-Fenchel transform Ω∗ : RU → R, defined as

Ω∗(f) = max
π∈∆U

(⟨π, f⟩ − Ω(π)) ,

has the property that ∇Ω∗ is Lipschitz and satisfies

∇Ω∗(f) = argmax
π∈∆U

(⟨π, f⟩ − Ω(π)) .

In view of the above, one can interpret the Ω∗(f) term as the optimal value for f across

the set of admissible policies, with the optimal policy given by ∇Ω∗(f). Commonly,

Ω will be a KL divergence: Ω(πn) = DKL(πn∥q), for some reference measure q ∈ ∆U .

Then, the objective function reads

J reg
η,ν(π) = Eπ

[
∞∑
n=0

γnRη
(
yn, un,µ

ν
n

)]
,

where Rη(yn, un,µ
ν
n) = ry(yn, un,µ

ν
n) − η log π(un|yn)

q(un)
. To simplify the analysis, we

shall consider q as the uniform distribution, i.e. q(u) = 1/|U | for the rest of this

section. Our statements readily extend to the case of arbitrary reference measures q,

so long as q is bounded. We shall state the corresponding results for arbitrary q at

the end of this section.

Following the notation of [6], we also consider the following quantities:

– the regularised value function J reg,∗
η,ν : N× Ỹ → R, where

J reg,∗
η,ν (t, y) = sup

π∈ΠDM

Eπ

[
∞∑
n=t

γn−tRη
(
yn, un,µ

ν
n

)∣∣∣∣∣yt = y

]
.

– the optimal regularised Q-function Qreg,∗
η,ν : N× Ỹ × U → R, where

Qreg,∗
η,ν (t, y, u) = sup

π∈ΠDM

Eπ

[
∞∑
n=t

γn−tRη
(
yn, un,µ

ν
n

)∣∣∣∣∣yt = y, ut = u

]
.

Similarly to the metric δ∞ for measure flows, for the Q-functions we shall use the

metric

δQ(f, g) =
∞∑
t=0

ζ−t max
y∈Ỹ
u∈U

(
f(t, y, u), g(t, y, u)

)
.
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Intuitively, we are giving more weight to the values closer to the current time. The

optimal regularised Q-function satisfies the dynamic programming relation

Qreg,∗
η,ν (t, y, u) = Rη

(
y, u,µν

t

)
+ γ

∑
y′∈Ỹ

J reg,∗
η,ν (t+ 1, y′)py

(
y′ | y, u,µν

t

)
,

Note that although the transition kernel and reward are time-homogeneous, the in-

clusion of the time-dependent measure flow leads to a time-inhomogeneous dynamic

programming relation (see Remark 3.9). It is well known that, when the regulariser Ω

is given as relative entropy, the policy that maximises the regularised value function

J reg,∗
η,ν is the softmax policy πsoft, where

πsoft
t (u | y) = exp(Qreg,∗

η,ν (t, y, u)/η)∑
u′∈U exp(Qreg,∗

η,ν (t, y, u′)/η)
.

Then, the optimal regularised Q-function can be written in the form

Qreg,∗
η,ν (t, y, u) = ry

(
y, u,µν

t

)
+ γ

∑
y′∈Ỹ

py(y
′ | y, u,µν

t ) η log

(
1

|U |
∑
u′∈U

exp
Qreg,∗

η,ν (t+ 1, y′, u′)

η

)
.

We can thus define the regularised MCDM-MFNE by the analogous fixed point cri-

teria.

Definition 3.21. Let ν = (νt)t ∈ ∆∞
Ỹ and η > 0. Define:

(i) The best-response map Φreg
η : ∆∞

Ỹ → ΠDM , given by

Φreg
η (ν)t(u | y) =

exp(Qreg,∗
η,ν (t, y, u)/η)∑

u′∈U exp(Qreg,∗
η,ν (t, y, u′)/η)

.

(ii) Ψaug : ΠDM → ∆∞
Ỹ , the measure flow map as defined previously, where

Ψaug(π)0 = ν0 and for t ≥ 0,

Ψaug(π)t+1(·) =
∑
y∈Ỹ

∑
u∈U

py

(
· | y, u,µΨaug(π)

t

)
πt(u | y)Ψaug(π)t(y).

(iii) The regularised MFNE for the MCDM problem (π∗,ν∗) ∈ ΠDM×∆∞
Ỹ , given by

the fixed point ν∗ of Ψaug ◦ Φreg
η , for which π∗ = Φreg

η (ν∗) (best response map)

and ν∗ = Ψaug(π∗) (measure flow induced by policy) holds.
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The next step is to show that the fixed point operator Ψaug ◦ Φreg
η , under a suitable

choice of metric and regulariser parameter η, forms a contraction mapping, such

that the iteration of these maps will converge towards the fixed point, which is the

regularised MFNE. We combine the approaches of [6, 23], extending their proof to

the case of the infinite horizon problem with time-dependent measure flows, as well

as the inclusion of the map νt 7→ µν
t within the definitions of Φreg

η and Ψaug.

In order to demonstrate contraction of the regularised iterations, we defer the full

statement and first show the following series of propositions regarding the Lipschitz

continuity of the individual mappings. When treating the infinite horizon problem,

we can approximate the optimal regularised Q-functions by considering its truncation

at some finite time N , that is, first define

JN,∗
η,ν (t, y) = sup

π∈Π
Eπ

[
N∑
n=t

γn−tRη(yn, un,µ
ν
n)

∣∣∣∣∣yt = y

]
, t ≤ N, y ∈ Ỹ .

Then, extend JN,∗
η,ν to N×Ỹ by defining JN,∗

η,ν (t, y) = 0 for all t > N , y ∈ Ỹ . Similarly,

define the truncated versions of the optimal regularised Q-function: for t ≤ N , y ∈ Ỹ
and u ∈ U ,

QN,∗
η,ν (t, y, u) = sup

π∈ΠDM

Eπ

[
N∑
n=t

γn−tRη
(
yn, un,µ

ν
n

)∣∣∣∣∣yt = y, ut = u

]
,

and once again extend QN,∗
η,ν to N× Ỹ × U by defining QN,∗

η,ν (t, ·, ·) = 0 for all t > N .

Then, the truncated optimal regularised Q-functions satisfy the following: for t < N ,

QN,∗
η,ν (t, y, u) = ry

(
y, u,µν

t

)
+ γ

∑
y′∈Ỹ

py(y
′ | y, u,µν

t ) η log

(
1

|U |
∑
u′∈U

exp
QN,∗

η,ν (t+ 1, y′, u′)

η

)
, (3.9)

QN,∗
η,ν (t, y, u) = ry

(
y, u,µν

t

)
+ γ

∑
y′∈Ỹ

py(y
′ | y, u,µν

t ) η log

(
1

|U |
∑
u′∈U

exp
QN−1,∗

η,ν (t, y′, u′)

η

)
. (3.10)

It is a standard result via successive approximations that JN,∗
η,ν → J reg,∗

η,ν and

QN,∗
η,ν → Qreg,∗

η,ν pointwise [35, Section 4.2]. We will utilise this pointwise convergence

repeatedly in our analysis for the rest of this section.

Lemma 3.22. For any ν, ν̂ ∈ ∆∞
Ỹ and any pair (t, N) such that t ≤ N , the truncated

Q-functions QN,∗
η,ν are uniformly bounded by q∗ := MR/(1− γ).
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Proof. First note that

|QN,∗
η,ν (N, y, u)| = |ry

(
y, u,µν

N

)
| ≤MR =: qN,N .

Then, for each t < N ,

|QN,∗
η,ν (t, y, u)| ≤MR + γηmax

y′∈Ỹ

∣∣∣∣∣log
(∑

u′∈U

1

|U | exp
QN,∗

η,ν (t+ 1, y′, u′)

η

)∣∣∣∣∣
≤MR + γη

(
qN,t+1

η

)
= MR + γqN,t+1 =: qN,t (3.11)

where qN,t+1 is the bound for QN,∗
η,ν (t+1, y, u). As N →∞, qN,t converges to the fixed

point q∗ of the map x 7→ γx +MR, i.e. q∗ = MR/(1 − γ). Moreover, q∗ > MR and

is independent of t. Hence, for each t, we have qN,t ↑ q∗ as N → ∞. Together with

the fact that QN,∗
η,ν → Qreg,∗

η,ν pointwise, sending N →∞ in (3.11) gives as the uniform

bound

|Qreg,∗
η,ν (t, y, u)| ≤ q∗.

Now we shall prove by induction the following statement:

Lemma 3.23. Let ν, ν̂ ∈ ∆∞
Ỹ . Then for each N , the truncated Q-functions satisfies∣∣∣QN,∗

η,ν (t, y, u)−QN,∗
η,ν̂ (t, y, u)

∣∣∣ ≤ ln,t δTV (νt, ν̂t), 0 ≤ t ≤ N, y ∈ Ỹ , u ∈ U, η ≥ 0,

where (ln,t)0≤t≤n satisfy the recurrence relation

ln,n = LRLM , ln,t =

(
LRLM + γ exp

(
2q∗

η

)
ln−1,t + 2γq∗LpLM

)
.

Proof. For the base case N = 0, we have

|Q0,∗
η,ν(0, y, u)−Q0,∗

η,ν̂(0, y, u)| = |ry
(
y, u,µν

0

)
− ry

(
y, u,µν̂

0

)
| ≤ LRLMδTV (ν0, ν̂0)

Now assume the hypothesis holds up to some N = n. Let N = n + 1, the case

t = n+ 1 is as above. Otherwise for 0 ≤ t ≤ n,∣∣∣Qn+1,∗
η,ν (t, y, u)−Qn+1,∗

η,ν̂ (t, y, u)
∣∣∣

≤
∣∣ry(y, u,µν

t )− ry(y, u,µ
ν̂
t )
∣∣
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+ γ

∣∣∣∣∣∑
y′∈Ỹ

py(y
′ | y, u,µν

t ) η log

(∑
u′∈U

1

|U | exp
Qn,∗

η,ν(t, y
′, u′)

η

)

−
∑
y′∈Ỹ

py(y
′ | y, u,µν̂

t ) η log

(∑
u′∈U

1

|U | exp
Qn,∗

η,ν̂(t, y
′, u′)

η

)∣∣∣∣∣
≤ LR δmax(µ

ν
t ,µ

ν̂
t )

+ γηmax
y′∈Ỹ

∣∣∣∣∣log
(∑

u′∈U

1

|U | exp
Qn,∗

η,ν(t, y
′, u′)

η

)
− log

(∑
u′∈U

1

|U | exp
Qn,∗

η,ν̂(t, y
′, u′)

η

)∣∣∣∣∣
+ γη δTV

(
py(· | y, u,µν

t ), py(· | y, u,µν̂
t )
)(

log

(∑
u′∈U

1

|U | exp
Qn,∗

η,ν(t, ymax, u
′)

η

)
− log

(∑
u′∈U

1

|U | exp
Qn,∗

η,ν(t, ymin, u
′)

η

))
≤ LRLMδTV (νt, ν̂t) + I1 + I2

For I2, noting the bound on Qn,∗
η,ν , we have

I2 ≤ 2γq∗Lp δmax(µ
ν
t ,µ

ν̂
t ) ≤ 2γq∗LpLMδTV (νt, ν̂t).

For I1 we use the mean value theorem and the Lipschitz property from induction to

obtain

I1 ≤ γηmax
y′∈Ỹ

∑
u′∈U

∣∣∣∣∣
1
η
exp(

ζu′
η
)∑

u′′∈U exp(
ζu′′
η
)

∣∣∣∣∣ ∣∣∣Qn,∗
η,ν(t, y

′, u′)−Qn,∗
η,ν̂(t, y

′, u′)
∣∣∣

≤ γ exp

(
2q∗

η

)
ln,t δTV (νt, ν̂t).

Combining all the above, we have∣∣∣Qn+1,∗
η,ν (t, y, u)−Qn+1,∗

η,ν̂ (t, y, u)
∣∣∣

≤ ≤
(
LRLM + γ exp

(
2q∗

η

)
ln,t + 2γq∗LpLM

)
δTV (νt, ν̂t),

which completes the induction step as required.

Proposition 3.24. For η > 2MR

−(1−γ) log γ
, where MR is the uniform bound of ry, Q

reg,∗
η,ν

is Lipschitz continuous with respect to ν with Lipschitz constant

lη =
LM(LR + 2γq∗Lp)

1− γ exp
(

2q∗

η

) .
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Proof. By the pointwise convergence QN,∗
η,ν → Qreg,∗

η,ν , and the assumption that

η > 2MR

−(1−γ) log γ
, for each t, lN,t ↑ lη as N →∞, to the fixed point of the map

x 7→ LRLM + γ exp

(
2q∗

η

)
x+ 2γq∗LpLM ,

so that for each t, ∣∣∣Qreg,∗
η,ν (t, y, u)−Qreg,∗

η,ν̂ (t, y, u)
∣∣∣ ≤ lη δTV (νt, ν̂t).

Note that lη is independent of t. Therefore,

δQ(Q
reg,∗
η,ν , Qreg,∗

η,ν̂ ) =
∞∑
t=0

ζ−t max
y∈Ỹ
u∈U

∣∣∣Qreg,∗
η,ν (t, y, u)−Qreg,∗

η,ν̂ (t, y, u)
∣∣∣

≤
∞∑
t=0

ζ−tlη δTV (νt, ν̂t)

= lη δ∞(ν, ν̂).

as required.

In particular, let η∗ be a constant with η∗ > 2MR

−(1−γ) log γ
. Then for all η ≥ η∗, Qreg,∗

η,ν

has a uniform Lipschitz bound of lη∗ . The Lipschitz continuity of Qreg,∗
η,ν allows us to

obtain the Lipschitz continuity of Φreg
η . This relies on the following lemma from [23],

which we restate here.

Lemma 3.25 ( [23, Lemma B.7.5]). Let η > 0 and fu : ∆∞
Ỹ → R be Lipschitz

continuous with Lipschitz constant Kf for any u ∈ U . Then the function

ν 7→
exp

(
fu(ν)

η

)
∑

u′∈U exp
(

fu′ (ν)
η

)
is Lipschitz with Lipschitz constant K =

(|U |−1)Kf

2η
for any u ∈ U .

Corollary 3.26. For η ≥ η∗, the map Φreg
η is Lipschitz continuous with Lipschitz

constant Kη
soft =

|U |(|U |−1)lη∗

2η
.

Proof. Given any ν ∈ ∆∞
Ỹ , Φreg

η maps ν to the softmax policy

πsoft
ν,t (u | y) :=

exp(Qreg,∗
η,ν (t, y, u)/η)∑

u′∈U exp(Qreg,∗
η,ν (t, y, u′)/η)

.
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Then we simply note that for any ν, ν̂ ∈ ∆∞
Ỹ ,

δΠ(Φ
reg
η (ν),Φreg

η (ν̂)) = sup
t≥0

max
y∈Ỹ

δΠ
(
πsoft
ν,t (· | y), πsoft

ν̂,t (· | y)
)

= sup
t≥0

max
y∈Ỹ

∑
u∈U

|πsoft
ν,t (u | y)− πsoft

ν̂,t (u | y)|

Applying Lemma 3.25, together with the uniform Lipschitz constant lη∗ for Qreg,∗
η,ν ,

gives us the desired result.

We now show that the measure flow map Ψaug is Lipschitz, under a suitable choice of

the constant ζ in the metric δ∞. Intuitively, given two similar policies (in the sense

of the metric δΠ), the corresponding measure flows will gradually drift apart at a

constant rate. The choice of ζ amounts to the weighting one gives to the current time

over the distant future.

Proposition 3.27. For ζ ∈ N such that ζ > 2LPLM + 2 in the metric δ∞ (3.1), the

map Ψaug is Lipschitz with constant

LΨ =
2LP

2LPLM + 1

(
ζ

ζ − 2LPLM − 2
+

1

ζ − 1

)
.

Proof. We will show inductively that

δTV (Ψ
aug(π)t,Ψ

aug(π̂)t) ≤ St δΠ(π, π̂)

for constants where St+1 = 2LP + 2St(LPLM + 1), S0 = 0. Clearly at t = 0 we have

δTV (Ψ
aug(π)0,Ψ

aug(π̂)0) = δTV (ν0, ν0) = 0

Then for the induction step, for t ≥ 0,

δTV (Ψaug(π)t+1,Ψ
aug(π̂)t+1)

=
∑
y′∈Ỹ

∣∣∣∣∣∑
y∈Ỹ

∑
u∈U

(
py

(
y′ | y, u,µΨaug(π)

t

)
πt(u | y)Ψaug(π)t(y)

− py

(
y′ | y, u,µΨaug(π̂)

t

)
π̂t(u | y)Ψaug(π̂)t(y)

)∣∣∣∣∣
≤ J1 + J2,

where

J1 :=
∑
y′∈Ỹ

∣∣∣∣∣∑
y∈Ỹ

∑
u∈U

(
py

(
y′ | y, u,µΨaug(π)

t

)
πt(u | y)
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− py

(
y′ | y, u,µΨaug(π̂)

t

)
π̂t(u | y)

)
Ψaug(π)t(y)

∣∣∣∣∣
≤
∑
y∈Ỹ

∑
y′∈Ỹ

∑
u∈U

∣∣∣∣∣py(y′ | y, u,µΨaug(π)
t

)
πt(u | y)

− py

(
y′ | y, u,µΨaug(π̂)

t

)
π̂t(u | y)

∣∣∣∣∣Ψaug(π)t(y),

and

J2 :=
∑
y∈Ỹ

∑
y′∈Ỹ

∑
u∈U

py

(
y′ | y, u,µΨaug(π̂)

t

)
π̂t(u | y) |Ψaug(π)t(y)−Ψaug(π̂)t(y)|

≤ 2 δTV (Ψ
aug(π)t,Ψ

aug(π̂)t).

The summation over u ∈ U in J1 can be simplified to∑
u∈U

∣∣∣py(y′ | y, u,µΨaug(π)
t

)
πt(u | y)− py

(
y′ | y, u,µΨaug(π̂)

t

)
π̂t(u | y)

∣∣∣
≤
∑
u∈U

py

(
y′ | y, u,µΨaug(π)

t

)
|πt(u | y)− π̂t(u | y)|

+
∑
u∈U

∣∣∣py(y′ | y, u,µΨaug(π)
t

)
− py

(
y′ | y, u,µΨaug(π̂)

t

)∣∣∣ π̂t(u | y)

≤
(
py

(
y′ | y, umax,µ

Ψaug(π)
t

)
− py

(
y′ | y, umin,µ

Ψaug(π)
t

))
δTV (πt(· | y), π̂t(· | y))

+ max
u∈U

∣∣∣py(y′ | y, u,µΨaug(π)
t

)
− py

(
y′ | y, u,µΨaug(π̂)

t

)∣∣∣ ,
so that

J1 ≤ 2LP δΠ(π, π̂) + 2max
y∈Ỹ

max
u∈U

δTV

(
py

(
· | y, u,µΨaug(π)

t

)
− py

(
· | y, u,µΨaug(π̂)

t

))
≤ 2LP δΠ(π, π̂) + 2LPLM δTV (Ψ

aug(π)t,Ψ
aug(π̂)t).

Then, applying the inductive step,

δTV (Ψ
aug(π)t+1,Ψ

aug(π̂)t+1)

≤ 2LP δΠ(π, π̂) + (2LPLM + 2) δTV (Ψ
aug(π)t,Ψ

aug(π̂)t)

≤
(
2LP + 2St(LPLM + 1)

)
δΠ(π, π̂),

which proves the claim. Next, we see that St satisfies a first-order linear recurrence

relation, and more generally has the explicit formula

St =
2LP

2LPLM + 1
(2LPLM + 2)t − 2LP

2LPLM + 1
.
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Therefore, fix some ζ ∈ N such that ζ > 2LPLM + 2. We then have

δ∞(Ψaug(π),Ψaug(π̂)) =
∞∑
t=0

ζ−tδTV (Ψ
aug(π)t,Ψ

aug(π̂)t)

≤
∞∑
t=1

St

ζt
δΠ(π, π̂)

=
2LP

2LPLM + 1

(
ζ

ζ − 2LPLM − 2
+

1

ζ − 1

)
δΠ(π, π̂)

Our statement of contraction for the regularised fixed point operator of the MFG-

MCDM is then essentially a corollary of the previous propositions.

Theorem 3.28. Recall the Lipschitz constants Lp, LP , LR and LM for p, py, ry and

the map νt 7→ µν
t respectively. Let ζ and η∗ be constants such that ζ > 2LPLM + 2,

and η∗ > 2MR

−(1−γ) log γ
. Define

q∗ =
MR

1− γ
, lη∗ =

LM(LR + 2γq∗Lp)

1− γ exp
(

2q∗

η∗

) ,

LΨ =
2LP

2LPLM + 1

(
ζ

ζ − 2LPLM − 2
+

1

ζ − 1

)
.

Then for any η such that

η >
1

2
|U | (|U | − 1) lη∗LΨ,

the fixed point operator Ψaug ◦ Φreg
η is a contraction mapping on the space (∆∞

Ỹ , δ∞),

where the constant ζ in the metric δ∞ (3.1) is as chosen above. In particular by

Banach’s fixed point theorem, there exists a unique fixed point for Ψaug ◦ Φreg
η , which

is a regularised MFNE for the MFG-MCDM problem.

Proof. Let ν, ν̂ ∈ ∆∞
Ỹ , and let π = Φreg

η (ν) and π̂ = Φreg
η (ν̂). Then by Corollary 3.26

and Proposition 3.27,

δ∞(Ψaug(π),Ψaug(π̂)) ≤ LΨδΠ(Φ
reg
η (ν),Φreg

η (ν̂))

≤ LΨK
η
softδ∞(ν, ν̂),

where we recall from Corollary 3.26 that Kη
soft =

|U |(|U |−1)lη∗

2η
. Then for any η such that

η > 1
2
|U | (|U | − 1) lη∗LΨ, we have that LΨK

η
soft < 1, and hence the map Ψaug ◦ Φreg

η

is a contraction. As (∆∞
Ỹ , δ∞) is a complete metric space (see Section 3.1.1), by the

Banach fixed-point theorem, there exists a unique fixed point, which furthermore

serves as a MFNE for the regularised MFG-MCDM by definition.
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We now state the analogous result for Theorem 3.28, when the KL divergence with

respect to an arbitrary policy q = (qt)t is used.

Theorem 3.29. Let q ∈ ΠDM be an arbitrary admissible policy, such that q is bounded

above and below by q̄ <∞ and q > 0 respectively. Consider the regulariser as the KL

divergence with respect to q:

Ω(πt) =
∑
u∈U

πt(u) log
πt(u)

qt(u)
.

Define lη,q by

lη,q =
LM(LR + 2γq∗Lp)

1− γ q̄
q
exp

(
2q∗

η

) ,

where q∗ = MR/(1−γ) as before. Let ζ and η∗ be constants such that ζ > 2LPLM +2,

and η∗ > 2MR

(1−γ)(log q−log γq̄)
. Then for any η such that

η >
q̄2

2q2
|U | (|U | − 1)LΨlη∗,q,

the fixed point operator Ψaug ◦ Φreg
η is a contraction mapping on the space (∆∞

Ỹ , δ∞),

where the constant ζ in the metric δ∞ (3.1) is as chosen above. In particular by

Banach’s fixed point theorem, there exists a unique fixed point for Ψaug ◦ Φreg
η , which

is a regularised MFNE for the MFG-MCDM problem.

Proof. This is essentially a corollary of Theorem 3.28, by noting that the optimal

regularised Q-function satisfies the dynamic programming

Qreg,∗
η,ν (t, y, u)

= ry
(
y, u,µν

t

)
+ γ

∑
y′∈Ỹ

py(y
′ | y, u,µν

t ) η log

(∑
u′∈U

qt+1(u
′ | y′) exp Qreg,∗

η,ν (t+ 1, y′, u′)

η

)
,

and that the optimal policy πsoft now has the form

πsoft
ν,t (u | y) :=

qt(u | y) exp(Qreg,∗
η,ν (t, y, u)/η)∑

u′∈U qt(u′ | y) exp(Qreg,∗
η,ν (t, y, u′)/η)

.

Then the proof of Theorem 3.28 can be followed, inserting the bounds q̄ and q into

the relevant constants where appropriate. The precise proof in the classical fully

observable case is shown in [23, Theorem 3].
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3.4.1 Approximate Nash equilibria to the N-player game
with controllable information delay

Recall that in the finite player case, player j’s objective function is given by

JN
j (π(N)) = Eπ(N)

[
∞∑
n=0

γnr(xj
n, a

j
n, e

N
n )

]
.

This subsection shows that the MFNE obtained from the regularised MFG with

speed of information control forms an approximate Nash equilibria for sufficiently

small η. Note that the theorem only states that the regularised Nash equilibria,

defined via Definition 3.21, acts as an approximate Nash equilibria for the underlying

finite game for sufficiently small values of η. However, one cannot infer from this

the computability of the equilibria. Indeed for small η, there is no guarantee of a

contractive fixed point operator, and the MFNE need not be unique. For the rest of

this subsection, we only consider starting times of t = 0, so we shall consider the Q-

functions as functions over Ỹ×U , and write, for example, Qreg,∗
η,ν (y, u) for Qreg,∗

η,ν (0, y, u)

without loss of generality. Now for any policy π, define the associated Q-function by

Qπ
ν(y, u) = Eπ

[
∞∑
n=0

γnry
(
yn, un,µ

ν
n

)∣∣∣∣∣y0 = y, u0 = u

]
.

Define also the optimal (unregularised) Q-function Q∗
ν := supπ∈ΠDM

Qπ
ν . First, we

shall prove the following convergence statements for the MFG with control of infor-

mation speed.

Lemma 3.30. The function ν 7→ Q
Φreg

ηn (ν)
ν converges to ν 7→ Q∗

ν as n → ∞, and

converges uniformly over all y ∈ Ỹ and u ∈ U .

Proof. We shall prove in sequence the following statements:

1. For each y ∈ Ỹ and u ∈ U , ν 7→ Qreg,∗
ηn,ν (y, u) converges to ν 7→ Q∗

ν(y, u)

pointwise.

2. For each y ∈ Ỹ and u ∈ U , ν 7→ Qreg,∗
ηn,ν (y, u) uniformly converges to

ν 7→ Q∗
ν(y, u).

3. For each y ∈ Ỹ and u ∈ U , ν 7→ Q
Φreg

ηn (ν)
ν (y, u) converges to ν 7→ Q∗

ν(y, u)

pointwise.

4. ν 7→ Q
Φreg

ηn (ν∗
n)

ν (y, u) uniformly converges to ν 7→ Q∗
ν(y, u), uniformly over all

y ∈ Ỹ and u ∈ U .
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We note that the corresponding convergence statements have been shown in [23] for

the finite horizon case for fully observable MFGs. By Lemma 3.18, the map ν 7→ µν

is continuous, therefore we obtain the following statements for the finite horizon

problems for MFG-MCDM:

1a. For each y ∈ Ỹ and u ∈ U , ν 7→ QN,∗
ηn,ν(y, u) converges to ν 7→ QN,∗

ν (y, u)

pointwise.

2a. For each y ∈ Ỹ and u ∈ U , ν 7→ QN,∗
ηn,ν(y, u) converges uniformly to

ν 7→ QN,∗
ν (y, u).

3a. For each y ∈ Ỹ and u ∈ U , ν 7→ Q
N,Φreg

ηn (ν∗
n)

ν (y, u) converges to ν 7→ QN,∗
ν (y, u)

pointwise.

4a. ν 7→ Q
N,Φreg

ηn (ν∗
n)

ν (y, u) uniformly converges to ν 7→ QN,∗
ν (y, u), uniformly over all

y ∈ Ỹ and u ∈ U .

We now show (1), the pointwise convergence of ν 7→ Qreg,∗
ηn,ν (t, y, u) to ν 7→ QN,∗

ν (t, y, u).

Fix ν, y and u. For any n,N ∈ N, we have

|Qreg,∗
ηn,ν (y, u)−Q∗

ν(y, u)|
≤ |Qreg,∗

ηn,ν (y, u)−QN,∗
ηn,ν(y, u)|+ |QN,∗

ηn,ν(y, u)−QN,∗
ν (y, u)|+ |QN,∗

ν (y, u)−Q∗
ν(y, u)|

(3.12)

By the successive approximations property, the finite horizon Q-functions converge

pointwise to the infinite horizonQ-function counterparts. Hence, for any ε > 0, choose

N ′ ∈ N such that the third term of (3.12) is smaller than ε
3
and

∑∞
m=N γmMr < ε

6

for all N ≥ N ′. Now for the first term we have

|Qreg,∗
ηn,ν (y, u)−QN,∗

ηn,ν(y, u)| ≤
∣∣∣∣∣ sup
π∈ΠDM

Eπ

[
∞∑

m=N

γmRηn
(
ym, um,µ

ν
m

)]∣∣∣∣∣
=

∣∣∣∣∣Eπsoft

[
∞∑

m=N

γmRηn
(
ym, um,µ

ν
m

)]∣∣∣∣∣
≤

∞∑
m=N

γm
{
Mr + ηn

(
log |U |+ E[log πsoft(un | yn)]

)}
≤

∞∑
m=N

γm{Mr + ηn log |U |}

using the bound on the function y = x log x. Then, given an N ≥ N ′, by (1a)

we can choose n′ ∈ N such that the second term of (3.12) is smaller than ε
3
and
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∑∞
m=N γmηn log |U | < ε

6
. So that for all n ≥ n′ we have

|Qreg,∗
ηn,ν (t, y, u)−Q∗

ν(t, y, u)| < ε

as required.

Next, to show (2), note that QN,∗
η,ν is monotonically decreasing in η, that is for any

sequence (ηn)n such that ηn ↓ 0, we have for each n ∈ N ,

QN,∗
ηn,ν ≤ QN,∗

ηn+1,ν
.

Hence sending N →∞ we also have

Qreg,∗
ηn,ν ≤ Qreg,∗

ηn+1,ν
.

so that Qreg,∗
η,ν is also monotonically decreasing in η. Moreover by (1), ν 7→ Qreg,∗

ηn,ν (y, u)

converges to ν 7→ Q∗
ν(y, u), which is continuous in ν [6, Lemma 2]. Hence, by

using Dini’s theorem, we conclude the uniform convergence of ν 7→ Qreg,∗
ηn,ν (y, u) to

ν 7→ Q∗
ν(y, u) for each y ∈ Ỹ , u ∈ U .

To prove (3), the pointwise convergence of ν 7→ Q
Φreg

ηn (ν)
ν (y, u) to ν 7→ Q∗

ν(y, u) for

each y ∈ Ỹ and u ∈ U , we proceed analogously as the proof as (1), utilising the

successive approximations property and the finite horizon convergence (3a).

Finally, we show (4), the uniform convergence of ν 7→ Q
Φreg

ηn (ν)
ν (y, u) to ν 7→ Q∗

ν(y, u),

uniformly over all y ∈ Ỹ and u ∈ U . We demonstrate the equicontinuity of the family

of functions (
ν 7→ QΦreg

ηn (ν)
ν (y, u)

)
n∈N

.

As the reward function ry is bounded, given ε > 0, we can find for some large N such

that

|QΦreg
ηn (ν∗

n)
ν (y, u)−Q

Φreg
ηn (ν̂∗

n)
ν̂ (y, u)|

≤ |QN,Φreg
ηn (ν∗

n)
ν (y, u)−Q

N,Φreg
ηn (ν̂∗

n)
ν̂ (y, u)|+ ε

2
.

Then, by (4a) for sufficiently large n and δ∞(ν, ν̂) < δ,

|QN,Φreg
ηn (ν)

ν (y, u)−Q
N,Φreg

ηn (ν̂)
ν̂ (y, u)| < ε

2
.

Finally we conclude uniform convergence (4) by appealing to the Arzelà-Ascoli theo-

rem, noting that the space of measure flows is compact by Tychnoff’s theorem.
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Recall that the softmax policy reads

πsoft
η,ν (u | y) :=

exp(Qreg,∗
η,ν (y, u))∑

u′∈U exp(Qreg,∗
η,ν (y, u′))

.

The uniform convergence of the Q-functions implies that the softmax policy converges

to the argmax as the regulariser vanishes:

Lemma 3.31. The softmax policy πsoft converges to the argmax π∗, where

π∗(u | y) = argmax
u∈U

Q∗
ν(y, u).

Proof. This follows from the uniform convergence of theQ-functions from Lemma 3.30

and the fact that the softmax function fc : RK → [0, 1]K

fc(x)i =
exp(c · xi)∑K
i=1 exp(c · xi)

, x = (x1, . . . , xK), (3.13)

converges to the argmax f as c → ∞, where f(x)k = 1 if xk = argmaxi xi, and 0

otherwise.

This leads to the following result showing approximate Nash for a sequence of regu-

larised MFNE.

Theorem 3.32. Let (ηn)n be a sequence with ηn ↓ 0. For each n, let (π∗
n,ν

∗
n) ∈

ΠDM ×∆∞
Y be the associated regularised MFNE, defined via Definition 3.21, for the

MCDM-MFG. Then for any ε > 0, there exists n′,M ′ ∈ N such that for all n ≥ n′

and M ≥M ′,

JM
j (π∗

n, . . . , π
∗
n) ≥ sup

πj∈ΠDM

JM
j (π∗

n, . . . , π
j, . . . , π∗

n)− ε for all j ∈ {1, . . . ,M}.

Proof. We adapt of the proof of [23, Theorem 4], which shows the approximate Nash

property for fully observable regularised MFGs in finite horizon. By the uniform

convergence of the Q-functions in Lemma 3.30, we have that π∗
n converges to π∗

where

π∗(u | y) = argmax
u∈U

Q∗
ν(y, u)

by Lemma 3.31. By [23, Lemma B.8.11], the regularised policy is approximately

optimal for the MFG: for any ε > 0, there exists n′ ∈ N such that for all n ≥ n′,

Jν∗
n
(π∗

n) ≥ max
π∈ΠDM

Jν∗
n
(π)− ε.
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By [23, Lemma B.5.6], if π ∈ Π is an arbitrary policy and ν = Ψ(π) the induced

mean field, then for any sequence of policies {πN}N∈N we have

|JN
1 (πN , π, . . . , π)− Jν(π

N)| → 0.

Hence, we can choose a sequence of policies {πM}M∈N such that

πM ∈ argmax
π∈ΠDM

JM
1 (π, π∗

n, . . . , π
∗
n).

This allows us to conclude that for any ε > 0, there exists n′,M ′ ∈ N such that for

all n ≥ n′, M ≥M ′,

JM
1 (π∗

n, . . . , π
∗
n) ≥ max

π∈ΠDM

JM
1 (π, π∗

n, . . . , π
∗
n)− ε for all j ∈ {1, . . . ,M}

as desired.

3.5 Numerical experiment in epidemiology

We demonstrate the MFG with speed of information with an epidemiology exam-

ple, in the form of the SIS (susceptible-infected-susceptible) model. This is chosen

as representative for a wide class of epidemiological models, including also the SIR

(susceptible-infected-recovered) model and its many variants. The extension to many

other variants is mathematically and computationally straightforward.

We adapt in particular the discrete-time version of the SIS model used as test case

in [23]. In this model, a virus is assumed to be circulating amongst the population.

Each agent can take on two states: susceptible (S), or infected (I). At each moment,

the agent can decide to go out (U) or socially distance (D). Thus we have X = {S, I}
and A = {U,D}. The probability of an agent being infected whilst going out is

proportional to the fraction of infected people.1 Once infected, they have a constant

probability of recovering at each unit in time. We use the following parameters for

the transition kernel:

p(S | I, U) = p(S | I,D) = 0.2,

p(I | S, U) = 0.92 · µt(I),

p(I | S,D) = 0.

1We will discuss later the feasibility of a more realistic extension where the probability of infection
is proportional to the fraction of infected people who also go out.
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Figure 3.2: Relative exploitability scores. Top: relative exploitability for c1 =
0.5 when applied to a uniform policy as a reference measure, fixed
across all iterations. Bottom row: relative exploitability for the
prior descent algorithm for two different cost values c1.

Whilst healthy, there is a cost for socially distancing, and there are larger costs

for being infected. As the infection rate in the SIS model does not depend on the

proportion of people infected and going out, we adjust the reward to penalise this

situation to reflect a desired behaviour of socially distancing whilst infected. Thus,

the reward for our numerical example is given by

r(S, U) = 0, r(S,D) = −0.3,
r(I, U) = −1.25, r(I,D) = −1.0.

In addition to the standard model, we introduce the notion of test result times.

Assume that during a pandemic, the population undergoes daily testing in order to

determine whether they are infected or not. Here we assume the availability of two

testing options, the free option which requires a 3-day turnaround, and a paid option
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Algorithm 1: Prior descent for MFG with control of information speed

Input : Initial distribution ν0 ∈ ∆Ỹ , prior policy q ∈ ΠDM , tol
Input : Number of iterations per loop I, regularisation parameter η > 0,

truncation time T .
while RelExpl > tol do

for i = 0, 1, . . . , I do
for t = 0, 1, . . . , T − 1 do

Compute µν
t = (µt,d)

d0
d=0 ∈ ∆d0=1

X .
Compute the regularised Q-function Qreg,∗

η,ν (t, y, u) for fixed measures
µν

t .
Compute the softmax policy πsoft

η,ν,t = Φreg
η (ν)t.

Compute the induced mean-field νt+1 = Ψaug(πsoft
η,ν,t)t+1.

end

end
q ← πsoft

η,ν .

end

which offers a next-day result. Thus we have for our model

D = {d0 = 3, d1 = 1}, C = {c0 = 0, c1 > 0},

where we shall consider different values of c1 in our numerical experiments.

For the computation of MFNEs for our model, we utilise the mfglib Python pack-

age [30]. We incorporate our own script for the mapping ν 7→ µν so that the existing

library can be adapted for our MFG with control of information speed, and in par-

ticular to be computed on the augmented space. We first initialise with a uniform

policy as the reference measure q, and repeatedly apply the mapping Ψaug ◦ Φreg
η for

a range of values of the regularisation parameter η. As a benchmark to test for the

convergence towards a regularised MFNE, we utilise the exploitability score, which,

for a policy π, is defined by

Expl(π) := max
π̃

JΨaug(π̃)(π̃)− JΨaug(π)(π).

The exploitability score measures the suboptimality gap for a policy π when computed

with the measure flow induced by the map Ψaug. An exploitability score is 0 if and

only if π is an MFNE for the MFG, and a score of ε indicates that π is an ε-MFNE.

We refer to the literature such as [32,46,52] for a more detailed discussion.

As the exploitability score in general is dependent on the rewards and the initial policy,

we consider instead the relative exploitability, which scales the exploitability score by
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the initial value. We plot the convergence of the relative exploitability, with the

uniform policy as reference measure, fixed across all iterations, in the bottom graph

of Figure 3.2. We see that for lower values of η, the algorithm converges to a lower

relative exploitability value. This corresponds to the fact that the regularised MFG

with lower values of η approximates the unregularised MFG more closely. However,

lower values of η require a larger number of iterations for convergence. For values of

η smaller than 0.2, the algorithm does not even converge in our tests and explodes

numerically (not plotted in the graph). This demonstrates an inherent limitation of

the use of regularisation: one desires a sufficiently high value of η in order to guarantee

convergence, but high values leads to a convergence to a regularised MFNE that

approximates the original problem poorly. Moreover, searching for a suitable value

of η is computationally expensive.

To mitigate the above issues, we utilise the prior descent algorithm [23]. Here, the

reference measure is dynamically updated, by using the policy obtained from the

previous iteration as the reference measure for the next iteration. The reference

measure can also be updated after a number of iterations instead, creating a double

loop for the algorithm. We summarise the prior descent algorithm for the MFG

with control of information speed in Algorithm 1. The relative exploitability score is

plotted in the top row of Figure 3.2. The score vastly outperforms the case of the

fixed prior, and in general, we find that larger values of η require more iterations for

convergence, but converge to a lower exploitability score. In [23], the prior descent

algorithm is further improved by using the heuristic ηn+1 = ηn · c for some constant

c > 1, gradually increasing the regularisation to aid convergence. We also applied

this heuristic for our problem, but for our case we do not see significant differences

compared to initialising with large fixed values of η.

We now examine the MFNE for the SIS model with testing options for different

values of c1. Figure 3.3 corresponds to a low cost of c1 = 0.001, whilst Figure 3.4

corresponds to a high cost of c1 = 0.05. We compute the problem up to a terminal time

of T = 100, but the truncate the graphs at T = 75, as the plots near terminal time

are skewed by the artificially imposed terminal condition. The graphs on the right

column depicts the behaviour in the choice of testing at equilibrium. The top-right

shows the proportion of the population opting for the free test, whilst the bottom-

right shows the optimal choice for testing for a healthy individual, given their current

testing choice. We see a clear disparity across the two different costs. When the cost

of the premium test is low, it is optimal to opt for this regime with probability 0.6,
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Figure 3.3: Behaviour at MFNE for MCDM-MFG for cost c1 = 0.001.

and at equilibrium nearly 80% of the population chooses this option. In comparison,

when the cost is high, it is optimal to choose the premium option only about 25% of

the time, and less than half of the population use the premium option at equilibrium.

The left columns of Figure 3.3 and Figure 3.4 depict the population behaviour with

social distancing, and the proportion of infected at equilibrium. At the beginning,

there is a large number of infected people, so it is optimal to socially distance; once

the proportion of infected is sufficiently low, a portion of the population starts to go

out. This leads to a rebound in infection numbers, so that gradually the population

socially distances again, and the cycle repeats. This is depicted by the periodic

behaviours in the graph on the left.

For the case c1 = 0.001, the low cost for premium testing leads to a higher percentage

of the population with a more accurate estimation of their status. This leads to larger

proportion of people going out, so that the infection occurs at a quicker rate. This in

turn then leads to a quick rate of socially distancing, and so forth. This can be seen

in the higher frequency of cycles in the infected and distancing graphs of Figure 3.3.

Interestingly, as the proportion of infected stabilises as time passes to a similar value,

regardless of the cost for the premium testing. The difference lies in the initial periods

of peaks and troughs in infected numbers.
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Figure 3.4: Behaviour at MFNE for MCDM-MFG for cost c1 = 0.05.
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Chapter 4

Conclusion and Outlook

This thesis contributes to the literature in partial information control, in particu-

lar of actively controlled observations. In the preceding chapters, we studied MDP

frameworks with observation costs and dynamically controlled observation delays.

We exploit the information structure to reduce both partially observable problems

to a finite MDP, which enables straightforward numerical schemes to compute for

approximate solutions. For the observation cost model, we showed that dynamic pro-

gramming leads to a novel class of QVIs, which are structurally different to typical

Bellman-type equations. For this class of QVIs, we utilise a penalty method as an ap-

proximation scheme to efficiently solve for the system of equations. For dynamically

controlled observation delay, we extended the concept of actively controlled observa-

tions to a mean-field game setup, and formulated sufficient conditions to achieve a

contraction with entropy regularisation.

We see the models explored in this thesis as a stepping stone towards the relatively

unexplored literature in observation controls, particularly in continuous time. The

simplicity of the models in discrete time allows more feasible analysis and computation

without obfuscating intuition. There are several strands of further research directions

that form a natural continuation of the material in this thesis. We shall discuss these

aspects in the remainder of this chapter.

4.1 Continuous-time framework

For observation controls in continuous-time diffusions, we can proceed as follows. Let

(Ω,F , (Ft)t,P) be a filtered probability space. Assume the state space X = R and the
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action space A is finite. Let W = (Wt)t be an (Ft)- Brownian motion on R. Consider
the SDE

dXt = µ(Xt, αt) dt+ σ(Xt, αt) dWt, (4.1)

where the control process α = (αt)t is (Ft)t-adapted, µ : R × A → R and

σ : R× A→ R satisfying the standard Lipschitz and growth conditions: there ex-

ists constants K,M > 0 such that for all x, y ∈ R and for all a ∈ A,

|µ(x, a)− µ(y, a)|+ |σ(x, a)− σ(y, a)| ≤ K|x− y|,

and

|µ(x, a)|+ |σ(x, a)| ≤M(1 + |x|).

For the SDE (4.1), we denote the corresponding collection of transition kernels by

{Pt}t.

The equivalent notion to the inspection variables in discrete time is given by stopping

times with respect to a smaller filtration. This follows a similar definition to that

in [25].

Definition 4.1. Given the SDE (4.1), let τ̂ = {τk}∞k=0 be a sequence of strictly

increasing random times, with the convention that τ0 = 0. Define for all t ≥ 0,

F (X,τ̂)
t := σ

{
(τj, Xτj1{τj≤t}) : j ≥ 0

}
If for each τk ∈ τ̂ , τk is a predictable F (X,τ̂)-stopping time, then F (X,τ̂) is called an

X-observation filtration.

Then the admissible controls is given by the following.

Definition 4.2. A control α = (αt)t is admissible for the OCM if it is of the form

αt =
∞∑
n=0

an1[τn,τn+1)(t),

where τ̂ = {τn}∞n=0 are predictable F (X,τ̂)-stopping times and each an is an A-valued,

F (X,τ̂)
τn -measurable random variable. The set of admissible controls is denoted by A.

Then the goal is to seek a control α ∈ A to maximise

E

[∫ ∞

0

γtf(Xt, αt) dt−
∑
τn∈τ̂

e−γτn · cobs
]
,
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where f : R× A→ R is the reward, such that E[
∫∞
0

γtf(Xt, αt) dt] <∞.

Proving a dynamic programming principle for the value function, together with the

well-posedness and comparison principle of the associated equations, will likely require

analysis on the filtered process, taking values on the space of measures P(X ). A

possible approach is to consider the filtered problem as a non-standard impulse control

problem. At time t, the filter process Yt represents the conditional expectation of Xt

given the observation history. As no new observations occur between observation

times, Y = (Yt)t should formally satisfy

dYt = LYtdt, τj ≤ t < τj+1,

where L is the generator for the SDE (4.1). Then, at the observation time τj, Yτj

would receive an impulse, given by

Yτj = Γ(τj, Y
−
τj
),

where Γ(τj, Y
−
τj
) is a random variable with values on ∆X , with distribution propor-

tional to the transition kernel Pτj−τj−1
(Xτj−1

, Xτj). The random ‘impulse’ represents

the change in the filter process from the new observation Xτj . This is a non-standard

problem, as the impulse is random and the dynamics between observations is de-

terministic. To start, one can reference techniques from existing theory on impulse

control analysis can be utilised to formulate the dynamic programming principle

(DPP) [15, 71]. However, it is likely that conditions on either the dynamics of the

SDE or conditions on the state space will have to be imposed, as the finiteness of

the state space X in the discrete-time case was a crucial assumption for proving the

comparison principle.

Assuming the DPP, one should be able to establish its equivalence to a finite integro-

differential QVI, formally written in the form

min
{
− ∂svi(s, x) + γvi(s, x)− Ei [fi(X

x
s )] ,

vi(s, x)−
(
Ei[max

j∈A
vj(0, X

x
s )]− (gij + cobs)

)}
= 0, (4.2)

where s ≥ 0, x ∈ X , and i ∈ A are the time passed since the last observation, the

state and the action applied at the last observation respectively.

The discrete QVI (2.25) can then be seen as a discretisation of the QVI (4.2), by the

use of finite differences on the differential operators, as well as on the Kolomogorov
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Backwards equations for the integral terms: by writing esi (0, x) = Ei[fi(X
x
s )], we have

that esi satisfies

∂te
s
i (t, x) +

1

2
σ2(x, i)∂2

xe
s
i (t, x) + µ(x, i)∂xe

s
i (t, x) = 0,

esi (s, x) = fi(x), 0 < t < s, x ∈ R, i ∈ A.

Then, consider a truncated state space, restricted to some interval [xmin, xmax]. Let

x = (xl)0≤l≤L, t = (tn)0≤n≤N , and let xl+1 − xl = h and tn+1 − tn = k. Using an

implicit discretisation, we obtain a system of equations:

es,n+1
i,l − es,ni,l

k
+

1

2
σ2(xl, i)

es,ni,l+1 − 2es,ni,l + es,ni,l−1

h2
+ µ(xl, i)

es,ni,l+1 − es,ni,l−1

2h
= 0, (4.3)

with terminal condition

es,Ni,l = fi(xl) =: f
h
i,l.

where N = s
k
. Our desired quantity is then the vector es,0i =

(
es,0i,l

)
l
, which can be

computed by solving the system of equations(
Ai

h,k

)N
es,0i = fh

i ,

where the matrix

Ai
h,k =


b c 0

a
. . . . . .
. . . . . . c

0 a b


is tridiagonal with

a =
k(hµ(xl, i)− σ2(xl, i))

2h2
, b = 1 +

kσ2(xl, i)

h2
, c = −kh(µ(xl, i) + σ2(xl, i))

2h2
.

Omitting the indices for A for ease of notation, one obtains the discretisation of (4.2):

min

{
vni,l −

1

1 + kγ

(
vn+1
i,l + k

(
A−nfh

i

)
l

)
, vni,l −

((
A−nmax

j∈A
v0,hj

)
l

− cobs

)}
= 0.

A possible route to demonstrate the convergence of QVIs (2.25) to (4.2) can involve

an extension of a classical result by Barles and Souganidis [12], which provides the

necessary requirements for the convergence of numerical schemes to the viscosity

solutions of PDEs. For the QVIs in the observation cost model, this would involve

first defining the relevant notions of viscosity solutions to (4.2), then considering the

Barles–Souganidis framework for integro-differential equations of the form

F (s, x, u,Du, I[s, x, u]) = 0,
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where I is an integral operator. In order to apply the framework, monotonicity,

stability properties and the comparison principle for (4.2) will need to be proven.

An alternative method to show convergence is to approximate the SDE (4.1) with a

suitably scaled Markov chain. In classical stochastic control, the value function can be

approximated by a Markov chain under a suitable discretisation of space and time [12,

44]. The discretised value functions converge towards the value function as the step

size decreases towards zero. Suppose {ξhn}n is an MDP (under the observation cost

framework) with control {πh
n}n, parametrised by h. Let {thn}n be the interpolated time

points with the intervals ∆thn = ∆(ξhn, π
h
n). Let t0 = s > 0, then the approximated

reward functional becomes

Jh(s; (x, i); π) = E

[
∞∑
n=0

f(ξhn, π
h
n)e

−γ(thn−s)∆thn −
∑
τn≥s

e−γ(τn−s) · cobs
]
,

with value function

vh(s, x, i) = sup
Ah

Jh(s; (x, i);α(·)),

where Ah is the set of admissible controls for the discretisation parameter h. Under

the natural scaling obtained from discretising the Kolmogorov backwards equation

(4.3), we expect that vhi → vi as h→ 0 for each i ∈ A.

Further open questions:

– Regularity of the value function – Figure 2.12 suggests that the continuous-

time value function belongs to C1(X ), and moreover is C2 away from the free

boundary. We may able to take advantage of existing regularity results for

standard impulse control problems [51] to demonstrate this.

– Asymptotic behaviour as the observation cost cobs ↓ 0 – in impulse control

problems, the value function is continuous but not differentiable with respect

to the intervention cost at 0 [51]. It remains to be seen if the same holds for

the continuous time observation cost model.

4.2 Costly switching between different observation

streams

The observation control models in Chapters 2 and 3 have the benefit of a finite char-

acterisation of the belief state. This allows for a tractable computation of the value

functions. A more general framework would be an observation cost MDP where the
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agent can switch between two general streams of information for different observation

cost. Specifically, let X be the underlying space and Y be the observation space.

Suppose that the agent observes y0, . . . , yt−1 ∈ Y at time t, but by paying cobs, they

can choose to observe exactly xt instead. Similar to general POMDP models, the

relation between xt and yt can be given by

yt = h(xt) + εt,

for some h : X → Y and i.i.d. random variables {εt}t, representing the noise within

the observations. Thus, the belief MDP is given by

zt := Pπ(xt | y0, . . . , yt, xτ1 , . . . , xτk , u0, . . . , ut−1),

where {τn}kn=1 are the observation times between times 0 and t, and

ut = (at, it) ∈ A× I. Unfortunately, in this case the belief MDP cannot be reduced

to a finite MDP, unless more information is given about the function h.

In this case, suitable approximations will be required such that the approximating

problem is tractable. First, one can discretise the belief state and consider its con-

vergence to the original problem as the mesh size tends to 0 [39]. Another difficulty

arises from the computation of the belief state. The belief state depends on the entire

observation sequence, which grows linearly with time, and is therefore tractable only

for small time horizons. Introducing a finite memory property to the problem is a

possible approach from a practical standpoint. That is, assuming that agents are un-

able to remember and process arbitrarily long observation sequences to compute the

belief state, we impose a memory cap of N units. Thus we consider an approximation

z̃t := Pπ(xt | yt−N , . . . , yt, xτr , . . . , xτk , ut−N , . . . , ut−1),

where {τr, . . . , τk} are the observation times between times t−N and t. Finite memory

for classical POMDPs were studied in [65], and extended to the Q-learning problem

in [40], where a bound on the expected suboptimal gap is given. This can be a starting

point for the analysis of the observation switching model above to give bounds on its

suboptimal gaps.

Further open questions:

– Suppose that the observation process satisfies instead

yt = h(xt) + λεt,
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for some λ > 0. Sending λ → ∞ would correspond to the case that no infor-

mation about xt is inferred through observing yt. It will be beneficial to show

that the observation cost model studied in Chapter 2 can be considered as an

asymptotic limit of λ→∞ of this proposed general framework.

– Due to the Markov property, the dependence of the belief state on the observa-

tion sequence would start from the time of the most recent observation of the

underlying state. A lower value of cobs would likely lead to more frequent ob-

servations, which acts as an inherent bound on the length of memory required.

It might be of practical interest to investigate if the finite window N can be

foregone for sufficiently low values of cobs.
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[40] A. D. Kara and S. Yüksel. Convergence of finite memory Q learning for POMDPs

and near optimality of learned policies under filter stability. Mathematics of

Operations Research, 2022.

[41] K. Katsikopoulos and S. Engelbrecht. Markov decision processes with delays

and asynchronous cost collection. IEEE Trans. Automat. Control, 48(4):568–

574, 2003.

[42] D. Krueger, J. Leike, O. Evans, and J. Salvatier. Active reinforcement learning:

Observing rewards at a cost. arXiv:2011.06709, 2020.

[43] H. Kushner. On the optimum timing of observations for linear control systems

with unknown initial state. IEEE T. Automat. Contr., 9(2):144–150, 1964.

[44] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control

Problems in Continuous Time. Springer-Verlag, Berlin, Heidelberg, 1992.

[45] J.-M. Lasry and P.-L. Lions. Mean field games. Jpn. J. Math., 2(1):229–260,

2007.

[46] M. Laurière, S. Perrin, M. Geist, and O. Pietquin. Learning mean field games:

A survey. arXiv:2205.12944, 2022.

[47] L. Meier, J. Peschon, and R. Dressler. Optimal control of measurement subsys-

tems. IEEE T. Automat. Contr., 12(5):528–536, 1967.

[48] S. Nath, M. Baranwal, and H. Khadilkar. Revisiting State Augmentation Methods

for Reinforcement Learning with Stochastic Delays, page 1346–1355. Association

for Computing Machinery, New York, NY, USA, 2021.
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[60] N. Saldi, T. Başar, and M. Raginsky. Approximate Nash equilibria in par-

tially observed stochastic games with mean-field interactions. Math. Oper. Res.,

44(3):1006–1033, 2019.
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