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Abstract

In this thesis I numerically study an optical pulse travelling in a dielectric medium as an analogue event

horizon. A novel numerical method is developed to study the scattering properties of this optical system.

Numerical solutions of scattering problems often exhibit instabilities. The staircase approximation, in addi-

tion, can cause slow convergence. We present a differential equation for the scattering matrix which solves

both of these problems. The new algorithm inherits the numerical stability of the S matrix algorithm and

converges faster for a smoothly varying potential than the S matrix algorithm with the staircase approxima-

tion. We apply our equation to solve a 1D stationary scattering of plane waves from a non-periodic smoothly

varying pulse/scatterer travelling with a constant velocity in a lossless medium. The properties of stability

and the convergence of the Riccati matrix equation are demonstrated. Furthermore, we include a relative

velocity between the scatterer and the wave medium to generalise the algorithm further where the number

of right and left going modes are not equal. The algorithm is applicable for stationary scattering process

from arbitrarily shaped smooth scatterers, periodic or non-periodic, even when the scatterer is varying at

the scale of wavelengths. This method is used to present numerical results for a sub-femtoseconds optical

pulse travelling in bulk silica. We calculate the analogue hawking radiation from the analogue system. The

temperature of the hawking radiation is studied systematically with many different profiles of pulses. We

find out steepness, intensity and duration of the pulse are most important in producing analogue hawking

radiation in these systems. A better numerical and theoretical understanding will make the experiments

better suited to detect hawking radiation.
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Chapter 1

Introduction

Black holes have captured people’s attention for nearly a century. They are one of the most mysterious

objects in the universe, interesting to study from the point of scientific curiosity. The three major branches

of physics - general relativity, thermodynamics and quantum mechanics - all become important in the study

of black holes. Lack of understanding of black holes also shows the gaps in our knowledge in physics. A

complete theory of quantum gravity is still eluding scientists and theorists. Though people are still studying

more accessible and testable features of black-holes. Another approach is to study analogous systems to

black holes to learn more about the real system in question. This thesis will focus on an optical analogue

system that mimics the kinematics of an event horizon of a black hole.

Thesis Layout

The aim of the thesis is to show the reader an in-depth theoretical and numerical study of optical analogue

systems in a dielectric medium. These systems are analogous to the event horizon of a black hole and the aim

is to learn as much as possible about the analogous systems to draw parallels to the real one. At the same

time, the purpose is to have good numerical simulations of the analogue system so that experiments can be

done more efficiently and the results can be analysed and compared. We would also like to shed light on a

new algorithm to efficiently calculate scattering matrices. Using the algorithm, we have calculated Hawking

radiation from various optical pulse setups, which has not been done in such an intensive way before.

The layout for the thesis is as follows: We first introduce in a formal way the concept of a black hole in

general relativity. Then we focus on the phenomenon of Hawking radiation. We introduce all the tools we

would require to derive Hawking radiation. We follow this with an intensive literature review of the field of

analogue systems to study Hawking radiation.
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In the second chapter, the theory of our specific system is studied in detail. We study the propagation

of electromagnetic fields in bulk silica by using the Hopfield model. We also introduce the concept of a

scattering matrix. In the third chapter we study various algorithms to numerically calculate the scattering

matrix and the numerical precision problem each algorithm presents. Here we introduce our novel algorithm

to bypass these problems to calculate the scattering matrix efficiently. In the fourth chapter we discuss the

results and explain several features of the Hawking spectrum in our analogue optical system. This is followed

by a brief conclusion summarising all the key findings of the thesis.

Black Holes

The term ‘black holes’ was coined by John Wheeler, but the idea was first proposed in 1783 by John Mitchell.

He wanted to propose a way to find the mass of a star by measuring the ‘shift’ in emitted light caused by

the gravitational pull. He thought of the existence of ‘invisible stars’, entities so massive that the escape

velocity is higher than the speed of light. Mitchell’s insight was soon supported using Newton’s theory of

gravitation by Laplace in 1796 in his book, Exposition du Système du Monde. Though the idea of gravi-

tational force affecting light was new and unexplored, the dynamics of this force on light was not known.

Einstein in 1915 invented the general theory of relativity [1] and it opened a whole new regime of physics

by linking gravity to the curvature of space-time. In Einstein’s picture space and time were not dormant

in the background, like in Newtonian mechanics, but played an active role where matter and energy could

bend and curve space and time. General relativity does not require force dynamics, as in Newton theory of

gravity, but predicts the path of an object by finding the geodesic, extremum paths, on space-time. Soon

after in 1916, Karl Schwarzschild, found a particular solution of general relativity [2]. This solution was

the key to realising that general relativity allows a region of space to exist from which nothing can es-

cape, not even light. In 1939, Oppenheimer published the first detailed treatment of gravitational collapse

with general relativity [3] and it set the platform to work further on the possibility of formation of black holes.

The Schwarzschild solution to Einstein’s general relativity is written as [4]

(ds)2 = −(1− Rs
r

)c2dt2s +
dr2

(1− Rs
r )

+ r2dΩ2. (1.1)

ts is the time of a stationary observer at infinity, a bookkeeper’s time. dΩ2 = dΘ2 + sin(Θ)
2
dΦ2 is the

angular line element in spherical coordinates. ds is the space-time interval, ds = 0 describes the light cone,

(ds)2 < 0 describes space-like separated events and (ds)2 > 0 time-like events. For an object falling radially,

we can put dΩ2 = 0 and make the metric simple. Rs is the Schwarzschild radius defined as Rs = 2GM
c2 . In
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Newtonian theory, the Schwarzschild radius is where the escape velocity becomes the speed of light, c. This

means that nothing can exit the sphere interior to the Schwarzschild radius. The surface of sphere of radius

Rs is called the event horizon. Let us point out the few crucial features of this flat space-time metric. First

of all; we see that if r → ∞ the ratio Rs
r → 0 and the metric approaches flat space metric, as expected,

ds2 = −c2dt2s + dr2. Second thing to note here is that the metric (1.1) contains two singularities, one when

r = 0 and another when r = Rs. The former is a physical singularity where space-time collapses to a singular

point. The relevant physics of quantum gravity applicable here is unknown and beyond the scope of this

article. The singularity at r = Rs is of interest to us. To understand this singularity better, let an infinitely

distant observer, bookkeeper, observe a light ray falling radially on the event horizon. Thus set ds = 0 and

dΩ = 0 for a radial light trajectory and we can arrange (1.1) to get

dr

dts
= ±c

(
1− Rs

r

)
. (1.2)

Here we see that as r → Rs the velocity, as perceived by the bookkeeper, goes to zero. As the light approaches

the event horizon from flat space it slows to a standstill! Though it looks like a singularity, it is indeed not

a physical one. If we transform the coordinates, then we can avoid the singularity at r = Rs. This is what

was done by Painleve [5] and Gullstrand [6], independently. The transformation required could be viewed

as introducing a new time, τ , such that the temporal slices τ = constant defines a flat space. τ is defined as

τ = ts + a(r), (1.3)

where a(r) is defined such that the coefficient of dr2 is one. For that to be true a(r) has to fulfill

da(r)

dr
=

1

1− Rs
r

√
Rs
r
. (1.4)

One could say it differently and name τ as proper time. Both the statements are equivalent. After the

transformation, the metric looks like

ds2 = −c2dτ2 + (dr + c

√
Rs
r
dτ)2 + r2dΩ2. (1.5)

This metric provides an insightful and different picture while preserving the physics. It looks like flat space in

which space itself is flowing radially towards the event horizon [7]. The speed of space flowing is c
√

Rs
r . We

see that as we move away from the horizon, space is stationary, as expected, but as r → Rs the speed→ c.

To find the velocity of light on a radial trajectory in this frame we set, like previously, ds = 0 and dΩ2 = 0.
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This leads to

dr

dτ
= ±(c∓ c

√
Rs
r

), (1.6)

unlike the velocity in (1.2), where it was hard to grasp light coming to stand still, the above equation provides

a more ‘natural’ picture. As this describes a flat metric light travelling away from or towards the horizon

will move with velocity c but as space itself is flowing, the effective velocity will be ±c ∓ the flow speed

of space itself. Light cannot escape the horizon as the two velocities totally cancel each other. Light just

outside the horizon directed away from the black hole may escape. First slowly and then gathering speed as

it gets away from the horizon.

Now we can explain the name, black holes. The collapsed star is dense enough that the escape velocity

exceeds the speed of light. Light cannot get away from it. Hence, the word ‘black’. Anything that fal;s

through the horizon cannot escape it. It is because of this lack of information that no one can study the

inside of the black hole. Hence, the word ‘hole’.

1.1 Hawking Radiation

In 1974, Stephen Hawking predicted that black holes radiate and evaporate away [8]. The source of this

radiation is the quantum vacuum scattering off the event horizon. This was a non-intuitive result as black

holes are defined such that nothing can escape them. The original derivation of Hawking radiation stands

on unphysical assumptions. One of them is that the waves have smaller wavelengths than the Planck scale

near the horizon. If you trace an escaping mode back to the horizon, the blue shift accumulated by the wave

becomes huge! So big that that the wavelength of the waves becomes smaller than Planck’s length. This is

called the trans-Planckian problem and the derivation relies on such huge blue shifts. We shall see that one

can derive the essentials of Hawking radiation without this premise [9, 10].

The conditions generating Hawking radiation were thought to be a result of extreme gravity and entropy

of the black hole but in recent times it has been shown that Hawking-like radiation is possible even without

an actual horizon or/and an existence of a black hole. We shall talk about the conditions for generating

Hawking-like radiation in more detail later.

In order to understand the origin of Hawking radiation better we have to approach the topic from a

quantum field theory perspective. In quantum theory Hawking radiation results from the scattering of

quantum vacuum mode in curved space-time.

9



1.1.1 Quantum field theory

Quantum field theory (QFT) is one of the most successful theories in physics and yet it is the most non-

intuitive one. In quantum mechanics we quantize non-relativistic particles to understand their behaviour

in the quantum regime. Describing relativistic particles seems to be a bit more tricky, for several reasons.

First, when we try to write down the Schrodinger equation in a relativistic invariant form, i.e Klein-Gordon

equation or the Dirac equation, we encounter negative-energy states. The number of particles is not conserved

in relativistic quantum mechanics. One can understand this by invoking the uncertainty principle ∆E∆t = ~,

according to this relation particles for a very short time can ‘pop’ into existence and disappear, temporarily

violating the law of conservation of energy. We need a multi-particle theory in relativistic quantum mechanics

to preserve causality. If we study the amplitude propagation of a free particle we find that for a single particle

the amplitude is small but finite outside the light cone. This seems to violate causality but quantum field

theory solves this problem in a unique way, propagation of a particle in space-like interval is countered by

the propagation of it’s antiparticle in the opposite direction. When the two amplitudes are added we see that

they cancel each other exactly outside the light cone preserving causality. These are some of the reasons as

to why quantizing fields gives a more coherent picture rather than quantizing particles as in non-relativistic

quantum mechanics.

1.1.2 From Classical to Quantum

In classical mechanics we have two ways to reach the equation of motion for a particle. The first method

is the Newtonian method, forces acting on the particles are taken into account to calculate the path taken

by the particle. The second method is called the action principle, here a mathematical object called the

action, S, takes into consideration all the paths possible by the particle and the particle takes the path which

extremises the action. The path of extreme action is the same path as calculated by Newtonian mechanics.

The principle of least action framework is so powerful that it is valid in the quantum mechanical regime as

well. In quantum mechanics there is a probability amplitude associated to every path, so there is a finite

probability amplitude for the particle to take a path that is not the extremum path. Action is calculated as

follows

S =

∫
Ldt. (1.7)

Here L is the Lagrangian of the system. It is a measure of how quickly the state of a system changes at

a given time. It depends both on the fields and on how they change with respect to the coordinates. The
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Lagrangian in turn is written as a spatial integral of the Lagrangian density.

L =

∫
L(φ, ∂uφ)d3x. (1.8)

To minimise the action, the Lagrangian density needs to fulfil the Euler-Lagrange equation

∂u
( ∂L
∂(∂uφ)

)
− ∂L
∂φ

= 0. (1.9)

Here u is the time coordinate of the systems. In classical mechanics solving the Euler-Lagrange equation

results in Newton’s equation of motion. It will be easier to see this with an example. We take consider

the motion of a non-relativistic particle of mass m in three dimensional space. The Lagrangian density is

determined by the position and speed of the particle, L=Kinetic Energy - Potential Energy

L =
1

2
m(ẋ)2 − V (x). (1.10)

ẋ is the derivative of the particle’s position with respect to time, i.e velocity, and V (x) is the potential in

which the particle is moving. If we have a series of particles attached to each other with a spring then solving

the Euler-Lagrange equation for the ith particle gives us

m
d2xi

dt2
= −∂V (x)

∂xi
, (1.11)

or in more familiar terms as F = ma. This example lets us study the simple harmonic motion of a particle

of mass m attached to a spring of force constant k. The energy of that system is the sum of kinetic energy

of the particle, 1
2m(ẋ2), and the potential energy of the spring, 1

2kx
2. Here x is the position of the particle

and ẋ is differentiation with respect to time. Now if we have N particles each coupled to its neighbour by a

spring, we can write the total energy of the system as

H =

N∑
i=1

1

2
m(ẋi)

2 +
1

2
k(xi − xi+1)2. (1.12)

Here H is the Hamiltonian of the system. xi− xi+1 is the distance between the two adjacent masses. In the

continuum limit, where this distance goes to zero, the mass, m, is replaced by linear mass density, µ, the

spring constant is replaced by Young’s modulus, Y, and the Lagrangian of the system is

L =

∫
dx

1

2

[
µ(φ̇(x))2 − Y

(
∂φ(x)

∂x

)2
]
. (1.13)
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Here we have replaced the position with a field φ(x, t) giving the displacement of the string from its equilib-

rium position x at time t. Solving the Euler-Lagrange equation gives us the wave equation,

∂2φ

∂x2
− 1

v2

∂2φ

∂t2
= 0. (1.14)

v is velocity of the wave expressed as v =
√

Y
µ . Here we have gone from an equation of motion for a

particle to equation of motion for a field. We can generalise this further by first invoking special relativity,

i.e imposing the mass-shell condition , which gives the energy as

E = ±
√
p2c2 +m2c4. (1.15)

Here p is the momentum of the particle, m can be considered as a parameter of the field. Here we see that

energy can be negative as well. We start by deriving an equation of motion for relativistic fields. For a free

relativistic scalar field we write the Lagrangian density as

L =
1

2
~2
(∂φ
∂t

)2 − 1

2
~2c2

(∂φ
∂x

)2 − 1

2
m2φ2. (1.16)

Solving the Euler-Lagrange equation gives us equation (1.17). We can derive the equation another way, in

non-relativistic quantum mechanics we make the position and momentum of the particle operators. Accord-

ing to the Schrodinger equation we have p̂ → −i~ ∂
∂x and energy operator as , Ê → i~ ∂

∂t . Replacing it in

equation (1.15) we get

0 =

[
1

c2
∂2

∂t2
− ∂2

∂x2
+
m2c2

~2

]
φ(x, t) (1.17)

We can think of m as a parameter of the field. This equation is the well-known Klein-Gordon equation.

We can think of this as relativistic form for the Schrodinger equation. The solutions are harmonic waves

uk ∼ e[i(kx−ωt)]. Substituting this into (1.17) gives the dispersion relation

ω = c

√
k2 − m2c2

~2
. (1.18)

Here we see that in the limit of m → 0 we get the dispersion relation of light in vacuum, ω = ±ck. In our

attempt to understand the negative frequency and negative energy, we now quantize the fields. We interpret

the classical fields as the expectation value of the operator of quantum field φ̂(x, t). We introduce canonical

momentum as

Π(x, t) =
∂L

∂φ̇(x, t)
. (1.19)
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Canonical momentum, Π, is a measure of how quickly the Lagrangian density changes with respect to the

gradient of the field. The transition from classical fields to quantum filed theory occurs when we impose the

commutation relations between the field and its conjugate momenta:

[φ(x, t),Π(y, t)] = i~δ(x− y). (1.20)

We define a scalar product that quantifies the overlap between solutions in the solution space,

(φ1(x), φ2(x)) = −i
∫
φ1(x)

←→
∂ tφ2(x)dx. (1.21)

The limit of the above integral is through the space-like surface of simultaneity at t. The symbol
←→
∂t is

defined as

φ1
←→
∂ tφ2 = φ1∂φ2 − (∂φ1)φ2. (1.22)

Now we have all the tools to construct the solution space. We start by Fourier transforming fields and

conjugate momenta in k space.

φ(x) =

∫
dk√
2π

1√
2ωk

[
â(k) exp(−ikx) + â†(k) exp(ikx)

]
, (1.23)

Π(x) =

∫
dk√
2π

(−i)
√
ωk
2

[
â(k) exp(−ikx)− â†(k) exp(ikx)

]
. (1.24)

â(k) and â†(k) are operator-valued Fourier coefficients. The frequency, ωk, fulfills the dispersion relation

(1.18). The commutation relation between the field and the conjugate momentum (1.20) leads to the

commutation relation of â(k) and â†(k) operators

[â(k), â†(k′)] = δ(k − k′). (1.25)

We write the Hamiltonian with respect to â(k) operators

H =

∫
Hdx. (1.26)

Here H is the Hamiltonian density and is expressed as

H =
1

2
(φ̇Π)− L. (1.27)
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Using the Fourier coefficients to express the Hamiltonian density we get

H = ωk

(
â†(k)â(k) +

1

2

)
. (1.28)

We find the eigenstates of the Hamiltonian, i.e states which have a defined energy. The vacuum state or the

lowest energy, is when the Hamiltonian is the minimum for that given state. Lowest energy state is defined

as

â(k) |0〉 = 0. (1.29)

â(k) and â†(k) are known as annihilation and creation operators. It is because the way they act on the

energy eigenstates. Creation operator when acted upon a vacuum state results in a one-particle fock space

â†(k) |0〉 = |1k〉 (1.30)

It also allows us to write multi-particle states such as

â†(k1)a†(k2)...â†(kn) |0〉 = |1k1 , 1k2 , ..., 1kn〉 . (1.31)

The norm of a solution is the scalar product with itself. The norm of these multi-particle states is positive.

It is expressed in ‘bra-ket’ notation as

〈k|k′〉 = +δ(k − k′). (1.32)

The norm is positive because we have the appropriate sign in the commutation relation (1.25). If the sign

of the commutation had been reversed then we would have negative norm states and negative probabilities

that would violate unitarity. To preserve unitarity the negative norm states are required to be balanced by

the positive norm states such that the total norm of the system is either positive or zero. This balance is

also known as conservation of norm and we shall visit this later.

We have successfully discretized the fields and have defined energy eigenstates, creation and annihilation

operators. We have carried out our theoretical formulation in flat space-time. In flat space-time the choice

of bases to decompose our fields is unique and in turn the definition of creation and annihilation operators

are unique as well. This means that there is a unique vacuum state. In curved space-time the story changes

a bit. In flat space-time the operator, ∂
∂t , eigenfunctions are defined to have positive frequency with respect

to time, t. In curved space-time there is no killing vector to define a positive frequency with respect to time,

t. There is no unique coordinate to decompose the fields into. There are many different complete bases in
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which we can decompose our fields. For ease of physical understanding we decide to decompose the fields

into two asymptotic regions, i.e the in basis and the out basis:

φ(x) =

∫
dk

(
ain(k) exp(−ikx) + a†in(k) exp(ikx)

)
, (1.33)

φ(x) =

∫
dk′
(
aout(k

′) exp(−ik′x) + a†out(k
′) exp(ik′x)

)
. (1.34)

For now treat the in and out bases as just two different complete orthogonal bases in which we can decompose

our fields. We shall talk about the in and out bases in detail later. The two bases construct their own Fock

spaces and have their own vacuum states

ain(k) |0in〉 = 0 = aout(k
′) |0out〉 (1.35)

These two bases are related to each other by a linear transformation, namely Bogolubov transformation.

ain = αaout + β∗a†out (1.36)

a†in = βaout + α∗a†out (1.37)

Here α and β are Bogolubov coefficients and they full fill the following relations

|α|2 − |β|2 = 1 (1.38)

The condition (1.38) makes sure that the transformation between the bases (1.36) is unitary. Rewriting

ain |0in〉 in out bases we write αaout |0in〉+ β∗a†out |0in〉 = 0. This means that the vacuum state for in basis

is not the same as the vacuum state for the out basis, i.e

aout |0in〉 6= 0 (1.39)

In other words a vacuum state in one basis, i.e a state with no particles, can be teeming with particles in

another basis. A more physical way to view this is as a scattering process where the vacuum state scatters

off the curved space-time into particles. In the case when the vacuum is scattering off an event horizon these

scattered fields are called the Hawking radiation.
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1.1.3 Hawking Temperature

We have finally laid the theoretical foundation to understand Hawking radiation. The particle creation at

the event horizon is a quantum phenomena. The vacuum state is in a constant flux where particles and

anti-particles are being created and annihilating. As discussed in the previous section the event horizon

causes asymmetry in space-time. Outside the event horizon fields can travel either towards or away from the

event horizon but inside the event horizon fields can travel only away from the event horizon, i.e towards the

singularity. The kinematics of the system is such that that positive norm modes outside the event horizon

can escape away from the horizon and the negative norm mode falls in the black hole. The escaped positive

norm modes are the particles escaping the event horizon and negative norm mode falling in the black hole

have negative energy which reduces the energy of the black hole and eventually causes the black hole to

evaporate away. Hawking radiation is also viewed as a black body radiation and the temperature of this

radiation is given as

kBT =
}c3

8πGM
. (1.40)

kB is the Boltzmann constant, ~ is the Planck’s constantG is the Gravitational constant. This is a spectacular

result, incorporating three fields of physics, thermodynamics, gravity and quantum mechanics. An interesting

thing to note is that the only defining feature for a Schwarzschild black hole is its mass. The temperature

depends only on mass. Larger the mass, the smaller the temperature of the radiation. For a black hole

having the mass of our Sun the temperature of it will be mere 9.04 × 10−8K. An astronomical black hole

is millions of times more massive than the Sun and its temperature is orders of magnitude lower than the

background temperature. This restricts an ability to measure Hawking radiation directly from a black hole.

1.1.4 Analogue event horizons

In this section I will give a brief history of experiments and strides made in the analogue event horizon field.

It will include the early theory, Bose Einstein Condensates (BEC) based analog experiments, water/fluid

based classical experiments and optical analogue experiments.

In 1981 Unruh published the paper that laid the foundation of the field of analogue gravity [11]. In

this paper he shows that sonic waves travelling in a flowing fluid and waves travelling in curved space

are kinematically and mathematically similar. He predicts that these sonic horizons in supersonic flowing

fluids will also emit thermal radiation, i.e analogue Hawking radiation. Unruh followed this by another

paper published in 1995 [12] to show that Hawking radiation is a low-frequency and low-energy phenomenon

and thus changing the high-frequency dispersion relation does not change the evaporation process. This
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result gave more confidence that analogue Hawking radiation could be observed in the lab. Understanding

Hawking radiation as a kinematic process allowed us to decouple it from the black-hole dynamics [13] and

gave us a glimpse of how to produce it in other physical systems. Jacobson and Volovik in 1998 [13, 14]

made one of the first suggestions, to create analogue event horizons in superfluid Helium, though there were

many technical challenges in creating an analogue event horizon in condensed matter. More ingenious and

practical suggestions were proposed, like the one in [15, 16] where they proposed a system in a ring trap to

make an analogue black hole and studied other stable systems in Bose-Einstein condensates. Theoretical and

numerical study showed that the Hawking radiation from a sonic analogue event horizon will nevertheless

be weak, around 70nK, but measurable [17]. As progress in technology was made more suggestions on the

detection of such weak radiation were proposed [18]. As Hawking radiation is produced in pairs, these pairs

of particles are quantum- correlated with each other. As both the inside and outside regions of the analogue

event horizon are experimentally accessible, one can measure the correlation of the particles and use it as

a signature to isolate the Hawking radiation from other sources of radiation and noise [19]. More in-depth

numerical studies were published for the Hawking radiation from a flowing condensate [20,21]. They used a

microscopic description of the system to numerically calculate the radiation flux and the correlation of the

radiation and used the gravitational analogy to understand the results. This made clear that the numerical

calculation did not rely on trans-Planckian assumptions. Jeff Steinhauer in 2014 claimed that he has finally

observed self-amplifying Hawking radiation in his BEC [22]. However, there were discussions in the field

where the experimental results could be reproduced numerically without invoking quantum fluctuations of

the matter field [23]. This made the claim a bit controversial though it was still a great stride towards

realising an event-horizon experimentally in BEC. Steinhauer followed this paper by his famous paper in

2016 [24] which measures the correlation of high-energy pairs produced instantaneously across the analogue

event horizon. Though impressive the paper also attracted criticism [25] on its claim and kept the debate

alive whether Hawking radiation has been measured or not. The criticism was based on the statistical

treatment of the experimental results and also that the entangled phonons were produced with a frequency

higher than the cutoff frequency.

Apart from Bose-Einstein condensates, water-wave experiments were proposed as well [26]. Water waves

are easily manipulated by changing water depth and have the advantage that it does not require expensive

instruments or materials. Even though water is not a quantum fluid it gives us an opportunity to have insight

in the classical instabilities caused by the event horizon. The first water tank experiment was achieved in

2008 [27]. Here the group observed the scattering of incoming waves onto an analogue horizon to negative

waves. The experiment consisted of a water tank where a pump was used to make the water flow in a
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specific direction, wave generator was used to produce water waves propagating against the flow of the

water (medium) and a ramp was placed inside the tank to change the water flow speed, thus creating an

analogue event horizon. The experiment observed the scattering of incoming positive waves to their negative

counterparts from the ramp. However, the scattering was best observed when the flow was not actually in the

horizon regime. This was because in the horizon regime the flow was too high and it caused turbulence and

other disturbances making it difficult to observe the scattered waves. This paper was followed by another

in-depth systematic analysis of water waves being scattered from an analogue white hole horizon [28]. Here

the authors measured the amplitude of the scattered negative frequency waves and studied its behaviour

while they varied the incoming frequency and amplitude. The amplitude variation showed that the negative

frequency waves scaled linearly thus ruling out other nonlinear process. The frequency variation showed that

the norm of negative frequency varied in a way that supported the thermal spectrum hypothesis as expected

from an horizon. Furthering the experimental study Rousseaux studied the correlation of noise across an

analogue event horizon [29]. All these experiments really opened a new door and gave us insights as to how,

even without quantum behaviour, there are many classical features about the event horizon that one can

understand in classical analogue experiments.

Making systems in optics to act as a analogue event horizon was more lucrative as photons are easier

to manipulate and their quantum properties are easily exploited compared to condensed matter. Leonhardt

made the first steps towards this realisation by drawing parallels between light propagating in gravitational

fields and light propagating in moving dielectric media [30,31]. He showed that kinematically light experiences

the same kind of metric when it is travelling in a gravitation field or in a moving dielectric. The first suggestion

of such an optical system was extremely low group velocity of light in a moving medium [32–34]. The idea

was that a moving medium drags light with it [35, 36]. So if the medium moved like a vortex it would drag

light with it and if light approaches close enough to the vortex core it will fall inside the vortex and would not

be able to escape. Fulfilling this idea in a lab encountered many technological difficulties. Any media moving

close to the speed of light would be hard to achieve. Leonhardt came up with another theoretical suggestion,

here instead of a moving medium, the idea involved an Electromagnetically-Induced Transparency(EIT). A

control beam will shine on the medium to make it transparent for a probe beam and then the intensity of

the the control beam will be spatially varied. This will in theory create a region in the medium where the

probe beam will slow down considerably creating a light catastrophe. Leonhardt predicted that this quantum

catastrophe will make the quantum vacuum state to emit photons in either direction just like that in the

case of an event horizon. Though other people argued that a quantum catastrophe of light will not produce

a thermal spectrum like that of a Hawking radiation. So though an ingenious idea, it was never realised
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in a lab. Nevertheless the idea of manipulating the medium’s local properties with a strong beam of light

was in the right direction. More people started studying and proposing optical systems which can produce

an analogue event horizon [37, 38]. However, the proposals involved a physically moving dielectric medium

and this was a problem experimentally, i.e how to move a medium at speeds comparable to the speed of

light? In 2008 a new idea was proposed which solved this problem and was the first experimental success in

demonstrating an analogue event horizon [39]. Here the idea was that an ultrashort intense pulse through

the Kerr effect will locally change the refractive index of a highly nonlinear optical fiber as it propagates

through it. As a probe light tries to catch up to the pulse, the probe light will experience the enhanced

refractive index and will thus slow down and effectively be scattered by the back of the pulse and never able

to overtake the pulse. This is an analogue white hole horizon. Similarly, the front of the pulse acts as an

analogue black hole horizon. The paper also observed the classical scattering of light from the back of the

pulse and measured the blue shift the probe light acquired from the event horizon.

This paper led to an upsurge in the field of optical analogue systems. It was followed by a couple of theoretical

papers studying the flux and the regime of Hawking radiation in dispersive media [40] and from a travelling

refractive index front [41]. Another experiment soon followed that used ultrashort laser pulse filaments in a

bulk dispersive medium [42]. The intense laser pulse has a Kerr effect that changes the refractive index of

the medium locally. They sent a pulse into a 3 cm slab of bulk silica. They focused the beam and varied the

energy of the pulse so that they achieved the filamentation near the end of the medium. They observed that

the spectrum of the input beam was split into two extra peaks, one blue-shifted and the other red-shifted.

The paper claimed that this was due to the scattering from the front and then end of the intense pulse. They

said that this was similar to effect observed in the 2008 paper [39]. Another experiment soon extended this

work to claim to observe Hawking radiation from the above setup [43]. Though criticism and disputes over

the interpretation of the results soon followed [44,45]. The horizon in the experiments was a phase horizon,

i.e. , the phase velocity of light outside the pulse is slightly greater than that of the light inside the pulse

and the point at which the two phase velocities are equal is called a ‘phase’ horizon. There was no group

velocity horizon, i.e the pulse group velocity was always greater than the probe. This difference showed that

the metric of the said experiment did not resemble that of an analogue event horizon. Another puzzling

observation was that the ‘Hawking’ photons were produced perpendicular to the direction of travel of the

pulse because in theoretical models all the modes of emission were suppressed which were not longitudinal

to the direction of the pulse. The observed radiation did not depend on the polarisation of light which

was again contradictory to the theoretical model and the metric of the system. In summary, the claim was

refuted that the source of the radiation was due to an analogue event horizon.
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The discussions and debates gave people in the field a more concrete definition of analogue event horizons

and allowed people to design more robust experiments. It also showed that more work was needed in order

to understand the physics behind optical analogue event horizons. This gave the motivation to theoretically

study optical systems in detail. A series of theoretical papers was published to theoretically derive the

Hawking radiation in optical analogue experiments. The effort was to understand the effect dispersion plays

in spontaneous emissions, which modes are responsible in the production of Hawking radiation, how the

mixing of these modes happen and what roles do negative norm modes play in this arrangement. We shall

discuss all this in the following chapter. We shall talk about different ways to approach the problem, for

example whether to study the Hawking effect from the pulse propagation equation or to solve the Lagrangian

for the medium where the pulse is seen as a disturbance in space in a co-moving frame.

Meanwhile, experiments were improving. In 2012, better control over the parameters of the pulse in

an optical fibre translated into the observation of efficient frequency red-shifting and blue-shifting from a

pulse [46]. The results of the experiment gave a more detailed understanding of the scattering phenomena

observed in [39]. Simultaneously, the observation of negative frequency modes was made [47]. They did

the experiment both in bulk silica and in an optical fibre and found similar results. In bulk silica a 60 fs

pulse centered at 800 nm carrier wavelength was propagated where they varied the power of the input pulse.

They observed a peak at 341 nm alongside a peak at 620 nm wavelength. The latter peak is the well known

resonant frequency [48]. The former peak was called the negative resonant radiation. Resonant radiation

happens when a soliton sheds light to a different mode with a different wavelength through a phase matched

process in the presence of higher-order dispersion. However, it can also phase match with the negative

branch of the dispersion relation and emit light by coupling to a negative frequency mode. The former peak

at 341 nm was the experimental observation of this coupling with the negative mode. This work was further

extended by studying this effect more in detail with regards to pulse compression [49]. Here the authors

systematically studied the effect of chirp of the pulse and the generation of the negative resonant radiation

(NRR) for a given length of the fiber. They noticed that the NRR spectrum is the strongest when the

compression is happening near the end of the fiber and they found that significant NRR production happens

during the compression of the pulse. These were important experimental results which laid down the path

to future experiments to observe Hawking radiation from such systems.

Recently, in early 2019, another experimental milestone was achieved in optical analogue systems. Here

the authors claimed to observe the stimulated Hawking radiation [50]. The experiment consisted of a pump

pulse of 8 fs, centered at 800 nm wavelength coupled to a 7 mm optical fibre. The probe, i.e stimulation, was

another pulse of much lower energy , ≈ 1% of the pump pulse, and length of 50 fs with varied wavelength.
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The authors first observed the NRR for just the pump pulse. Here they got a clear peak in the UV region.

Then they observed the spectrum with both the probe and the pulse. Here they saw a much broader

spectrum and after subtracting the pump NRR spectrum they numerically found a residual shifted peak.

This shifted smaller peak was interpreted as the stimulated Hawking radiation. To further support their

hypothesis, they showed that when the wavelength of the probe was varied the stimulated Hawking radiation

also shifted as expected and the power of the stimulated Hawking radiation also varied linearly with the

probe power. This was a promising result. It further demonstrated the promise of optical analogues and

also opened doors to better more systematic study of simulated Hawking radiation. It also did leave many

questions unanswered. How much impact did the non-linearity of the system have on the results? Would

pulses with different lengths give better results? Does the dynamics and evolution of short pulses in optical

fibers have a dramatic impact on the spectrum? What is the best setup to optimise the Hawking radiation

production? How sensitive do our instruments need to be to observe non simulated Hawking radiation?

In the following chapters I attempt to answer some of the questions raised in the introductory chapter.

At the same time I attempt to go deeply into the theoretical and numerical calculations for such optical

systems discussed above.
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Chapter 2

Electromagnetic waves in dielectric

medium

Electromagnetic waves are governed by the Maxwell equations. The Maxwell equations are simplified into

a wave equation which dictates the behaviour of electromagnetic waves. The Maxwell equations are written

below in differential form .

∇ ·E =
ρ

ε0
, (2.1)

∇ ·B = 0, (2.2)

∇×E = −∂B
∂t
, (2.3)

∇×B = µ0J + c−2 ∂E

∂t
. (2.4)

Here E and B are electric and magnetic field respectively. ρ is the charge density, Coulombs/m3. J is the

current density, Amperes/m2. µ0 and ε0 are magnetic permeability and electric permittivity of vacuum,

respectively. c is the speed of light and can also be expressed as c = 1√
µ0ε0

. These four equations govern the

electric and magnetic fields in empty space with some charge or current present. To simplify our analysis

lets set ρ = 0 and J = 0. We attempt to decouple electric and magnetic fields. First we take the curl of

equation (2.3) and using vector identity write

∇×∇×E = ∇(∇ ·E)−∇2E = −∇× ∂B

∂t
. (2.5)
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Applying equation (2.1) to equation (2.5) we find

∇2E =∇× ∂B

∂t
(2.6)

We take the time derivative of equation (2.4) to find

∇× ∂B

∂t
= c−2 ∂

2E

∂t2
(2.7)

We combine equations (2.6) and (2.7) to find

∇2E− 1

c2
∂2E

∂t2
= 0 (2.8)

Similarly for magnetic field we find

∇2B− 1

c2
∂2B

∂t2
= 0 (2.9)

These two equations are familiar. They are the wave equation for waves travelling at a speed of c = 1√
µ0ε0

.

This means that even with no current or charges present there are solutions for electric and magnetic field

which are non zero. We can further simplify our equation by treating electric and magnetic fields as scalar

fields and making the problem one dimensional in space. Doing so, we can rewrite the electric field equation

as

∂2E

∂x2
− 1

c2
∂2E

∂t2
= 0. (2.10)

One of the common solutions to (2.10) is E(x) = E0 exp(i(kx− ωt)) where E0 is the amplitude of the wave,

k is the wave number and ω is the angular frequency. Inserting the solution into the equation (2.10) we find

the following relation which the wave number and angular frequency need to satisfy

ω2 = c2k2. (2.11)

Equation (2.11) is called the dispersion relation for vacuum. How do electric fields behave in a dielectric

medium?

2.1 Electric fields in dielectric medium

Dielectric means an insulator, i.e flow of current is restricted. The material does not conduct electricity

and the molecules do not have free electrons. Although it is electrically inert, the molecule itself can be
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polarised in the presence of external electric field. With no external electric field, an atom can be seen as

a hollow sphere whose surface is uniformly negatively charged and an equal but positive charge that lies in

the centre of the sphere. In the presence of an external electric field the neutral molecules acquire a dipole

moment. The medium is said to be polarised. The polarisation field will be directly proportional to the

applied electric field.

If the external electric field is a sinusoidal wave then the electrons in the atom/molecule oscillates with the

electric field. The electric field acts as a driving force for the harmonic oscillations for the electrons. These

vibrating electrons have their own electric fields called the polarization fields. The incident electromagnetic

field and polarization field are coupled together in a dielectric medium and cannot be viewed or studied

independently. We shall use the Hopfield model [51] description to study the coupling between the two

fields.

2.1.1 Hopfield model

The frequency of the incident electromagnetic wave dictates the amplitude and the frequency of the harmonic

motion of the electron in the medium. The molecule properties in the medium and the way they are structured

to make a crystal lattice also determines the resonant frequencies and elasticity of the electron’s harmonic

motion. We shall assume that the dielectric medium is homogeneous, isotropic, source-free, non-conducting,

lossless and linear. Homogeneous means that there is a translation symmetry. Isotropic means that there

is a rotational symmetry. Source-free and non-conducting mean that there are no free charges and no free

flowing current in the material. Lossless and linear mean that the dielectric constant, permittivity and

permeability are constant and real with no imaginary component.

We consider a scalar electromagnetic field travelling in a one dimensional medium. Here we take into

consideration three resonances of the material. We do this to obtain just enough theoretical detail to

construct the dispersion diagram for fused silica. The Lagrangian density of the system is written as

L =
(∂TA)2

8πc2
− (∂XA)2

8π
+

3∑
i=1

(
(∂TPi)

2

2βiΩ2
i

− P 2
i

2βi
+

1

c
A∂TPi

)
. (2.12)

A is the electric potential field, and is related to the electric field as E = − ∂A
∂X . T and X are time and space

in the lab frame, i.e. the frame where the medium is at rest. β−1
i are the elastic constants and Ωi are the

resonant frequencies of the medium. (βiΩ
2
i )
−1 is the inertia of the medium. Pi are the polarisation fields in

the medium generated by the harmonic motion of the electrons. Solving the Euler-Lagrange equation gives

the Maxwell’s equation alongside the constitutive equation. This assumes that equation (2.12) is the correct
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Lagrangian density for the system.

2.1.2 Lorentz Transformation

Our aim is to study the scattering of waves from an arbitrarily shaped moving scatterer in a lossless medium.

The scatterer is moving with a constant velocity, v, and we neglect the back action onto the scatterer, e.g.

it is not changing in shape, speed or amplitude as it travels in the medium. The scattering is best described

in a frame that moves with the scatterer. To do so we apply a Lorentz boost to the lab frame coordinates

as follows

t = γ(T − v

c2
X), x = γ(X − vT ), (2.13)

where γ = 1√
1− v2

c2

. t and x are coordinates of the co-moving frame and, T and X are coordinates of the lab

frame.

2.1.3 Lagrangian to Hamiltonian

The Lagrangian density in the new coordinates is

L =
Ȧ2

8πc2
− A′2

8π
+

3∑
i=1

[
γ2

2βiΩ2
i

(Ṗi − vP ′i )2 − P 2
i

2βi
+
γ

c
A(Ṗi − vP ′i )

]
. (2.14)

Here dot and prime denote the derivatives with respect to t and x respectively. As discussed in the previous

chapter, we introduce canonical momenta as follows

ΠA =
∂L
∂∂tA

=
∂L
∂Ȧ

, ΠPi =
∂L
∂∂tPi

=
∂L
∂Ṗi

. (2.15)

Using equation (2.14) we derive the canonical momenta as

ΠA =
Ȧ

4πc2
, ΠPi =

γ2

βiΩ2
i

(Ṗi − vP ′i ) +
γ

c
A. (2.16)

We use the fields and the canonical momenta to express the Hamiltonian density as

H =
1

2

[
ȦΠA + ΠAȦ+

3∑
i=1

(ṖiΠPi + ΠPi Ṗi)

]
− L. (2.17)
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By substituting the term for, L and canonical momenta in equation (2.17) we get

H = 2πc2Π2
A +

A′2

8π
+

3∑
i=1

[
βiΩ

2
i

2γ2
(ΠPi −

γ

c
A)2 +

P 2
i

2βi
+ vΠPiP

′
i

]
. (2.18)

2.1.4 Hamiltonian to motion of Equation

To find the equations of motion for the fields we solve the Hamiltonian equations

Ȧ/Ṗ =
∂H

∂ΠA/P
, Π̇A/P = − ∂H

∂A/P
+

∂H
∂∂tA/P

. (2.19)

Substituting the Hamiltonian density and conjugate momenta in the equations (2.19) we find the set of

coupled equations.

Ȧ = 4πc2ΠA, (2.20)

Ṗi =
βiΩ

2
i

γ2
(ΠPi −

γ

c
A) + vP ′i , (2.21)

Π̇A = −A
′′

4π
+

3∑
i=1

βiΩ
2
i

γc
(ΠPi −

γ

c
A), (2.22)

Π̇Pi = −Pi
βi

+ vΠ′Pi . (2.23)

With three polarization fields we have 8 coupled equations and we can express them as an eigen-equation.



Ȧ

Ṗ1

Ṗ2

Ṗ3

Π̇A

˙ΠP1

˙ΠP2

˙ΠP3



=M



A

P1

P2

P3

ΠA

ΠP1

ΠP2

ΠP3



. (2.24)
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Here M is expressed as

M =



0 0 0 0 4πc2 0 0 0

−β1Ω2
1

γc ikv 0 0 0
β1Ω2

1

γ2 0 0

−β2Ω2
2

γc 0 ikv 0 0 0
β2Ω2

2

γ2 0

−β3Ω2
3

γc 0 0 ikv 0 0 0
β3Ω2

3

γ2

k2

4π −
∑3
i=1

βiΩ
2
i

c2 0 0 0 0
β1Ω2

1

γc
β2Ω2

2

γc
β3Ω2

3

γc

0 −1
β1

0 0 0 ikv 0 0

0 0 −1
β2

0 0 0 ikv 0

0 0 0 −1
β3

0 0 0 ikv



(2.25)

Here we have all the equations governing the polarization and potential fields in the dielectric medium. In

case of three polarisation fields we have 4 coupled second order partial differential equations or 8 first order

partial differential equations. Solving these equations with the appropriate boundary conditions will give us

the scattering matrix for the system. The solution is an 8 dimensional vector that fulfills the matrix equation

(2.24).

V αω = V̄ αω exp(ikαx− iωt) (2.26)

Here V is the solution , V̄ is an 8-component vector amplitude of the solution, k is the wavenumber, α is

the mode. For a single frequency ω we can have several modes. Equation (2.24) has non-vanishing solutions

only when

det[M+ iωI8] = 0. (2.27)

is fulfilled. Solving this gives us the dispersion relation as

c2k2
α = ω2 +

3∑
i=1

[
4πβiγ

2(ω + vkα)2

1− γ2(ω+vkα)2

Ω2
i

]
. (2.28)

Here we see that in our case for three polarisation fields we have 8 modes of k for every ω. Note that ω and

k are frequency and wavenumber in the moving frame. As time and space is Lorentz boosted, wavenumber

and frequency are boosted as well according to

Ω = γ(ω + vk), K = γ
(
k +

vω

c2
)
. (2.29)

Here Ω and K are frequency and wavenumber in the lab frame. We rewrite the dispersion relation in the
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Lab frame as

c2K2 = Ω2 (2.30)

This is the well known Sellmeir’s dispersion relation. The eigen-solutions for the equation (2.24) are written

as

V̄ αω = Cαω



c

iβ1Ω

1−Ω2

Ω2
1

iβ2Ω

1−Ω2

Ω2
2

iβ3Ω

1−Ω2

Ω2
3

−iω
4πc

γ

1−Ω2

Ω2
1

γ

1−Ω2

Ω2
2

γ

1−Ω2

Ω2
3



. (2.31)

Putting this vector back in equation (2.24) we can check that this fulfills the equation. Here Cαω is a

normalization constant. The way to calculate the normalization constant is described in the next section

when we quantize the fields.

2.1.5 Quantizing the Fields

Until now everything has been classical. We have solved the Hamiltonian equations to find the equations of

motion for the fields. To quantize the fields we need to impose the commutation relation and define a scalar

product between the fields. The scalar product for the solutions are defined as

〈V1|V2〉 =
i

~

∫
dxV †1 (x, t)ηV2(x, t). (2.32)

V † is a complex conjugate of V . η is an 8× 8 matrix defined as

η =

 0 I4

−I4 0

 . (2.33)
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The commutation relations between the fields and their canonical momenta are

[A(x),ΠA(x′)] = i~δ(x− x′), (2.34)

[Pi(x),Πj(x
′)] = i~δijδ(x− x′). (2.35)

The electromagnetic field and the polarisation fields commute, as do the canonical momenta but each field

with its canonical momentum partner do not commute. This is similar to the commutation relation described

in equation (1.20). The scalar product itself is preserved with respect to time [52].

∂t 〈V1|V2〉 =
i

~

∫
dx[∂t(V

†
1 )ηV2 + V †1 η∂t(V2)] (2.36)

=
i

~

∫
dx[V †1M†ηV2 + V †1 ηMV2] (2.37)

=
i

~

∫
dxV †1 [M†η + ηM]V2. (2.38)

The equation (2.37) uses the equation (2.24) to write ∂tV =MV . We calculate ηM as

ηM =



k2

4π −
∑3
i=1

βiΩ
2
i

c2 0 0 0 0
β1Ω2

1

γc
β2Ω2

2

γc
β3Ω2

3

γc

0 −1
β1

0 0 0 ikv 0 0

0 0 −1
β2

0 0 0 ikv 0

0 0 0 −1
β3

0 0 0 ikv

0 0 0 0 −4πc2 0 0 0

β1Ω2
1

γc −ikv 0 0 0 −β1Ω2
1

γ2 0 0

β2Ω2
2

γc 0 −ikv 0 0 0 −β2Ω2
2

γ2 0

β3Ω2
3

γc 0 0 −ikv 0 0 0 −β3Ω2
3

γ2



. (2.39)

Calculating M†η we see that ηM = −M†η. Hence, equation (2.38) vanishes and the scalar product and is

thus conserved with respect to time.

2.1.6 Normalising the Fields

The normalisation and orthogonality condition for the solutions is

∣∣〈V α1
ω1

∣∣V α2
ω2

〉∣∣ = δ(ω2 − ω1)δα2α1 . (2.40)

We shall calculate the L.H.S of equation and impose it to the R.H.S to find the normalisation condition.
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We write the scalar product explicitly

〈
V α1
ω1

∣∣V α2
ω2

〉
=
i

~

∫
dx exp(−i(ω2 − ω1)t+ i(kα2 − kα1)x) V̄ α1†

ω1
ηV̄ α2

ω2
(2.41)

=
i

~
[
2πδ(kα2

− kα1
) exp(−i(ω2 − ω1)t)V̄ α1†

ω1
ηV̄ α2

ω2

]
. (2.42)

The integral in equation (2.41) is from −∞ to∞ and we use the integral solution
∫
dx exp(ikx) = 2πδ(k) to

write equation (2.42). This means that solutions with different wave-numbers, k, are orthogonal. Solutions

with different frequencies and yet the same wavenumber are also orthogonal as these are eigen-solutions to

an Hermitian matrix M. This simplifies equation (2.42) to

〈
V α1
ω1

∣∣V α2
ω2

〉
=
i

~
[
2πδ(kα2 − kα1)δ(ω1ω2)V̄ α1†

ω1
ηV̄ α2

ω2

]
. (2.43)

Evaluating the term V̄ α1†
ω1

ηV̄ α2
ω2

gives

iV̄ α1†
ω1

ηV̄ α2
ω2

=
|Cαω |2

2π

[
ω +

3∑
i=1

4πβiγΩ

(1− Ω2

Ω2
i
)2

]
. (2.44)

Differentiating the equation (2.30) we obtain (2.45), and in (2.46) the group velocity in the lab frame Vg = dΩ
dK

and then (2.47) writes (2.44) in terms of group velocity.

2c2K = 2Ω
dΩ

dK

[
1 +

3∑
i=1

4πβi(
1− Ω2

Ω2
i

)2 ], (2.45)

Vg =
dΩ

dK
=
c2K

Ω

[
1 +

3∑
i=1

4πβi

(1− Ω2

Ω2
i
)2

],
(2.46)

3∑
i=1

[
4πβi

(1− Ω2

Ω2
i
)2

]
=
c2K

ΩVg
− . (2.47)

We use equation (2.47) to substitute in (2.44) to get

iV̄ α1†
ω1

ηV̄ α2
ω2

=
|Cαω |2

2π

[
γ(Ω− vK) +

γc2K

Vg
− γΩ

]
(2.48)

=
|Cαω |2γc2K

2πVg

[
1− vVg

c2

]
. (2.49)

Inserting equation (2.49) into equation (2.43) and noting

δ(kα2
− kα3

)δω1ω2
=

∣∣∣∣dωdk
∣∣∣∣
k=kα2

δ(ω2 − ω1)δα2α1
. (2.50)
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We rewrite equation (2.43) as

〈
V α1
ω1

∣∣V α2
ω2

〉
= δ(ω2 − ω1)δα1α2

|Cαω |
2
γc2K

~
|vg|
Vg

[
1− vVg

c2

]
. (2.51)

We simply the expression further before imposing the normalisation condition (2.1.6) by eliminating the

group velocity in the moving frame, vg, by using the relativistic composition of velocities

vg =
Vg − v
1− vVg

c2

. (2.52)

This simplifies the expression to

〈
V α1
ω1

∣∣V α2
ω2

〉
= δ(ω2 − ω1)δα1α2

|Cαω |
2
γc2K

~

[
1− v

Vg

]
. (2.53)

Imposing the normalisation condition give the equation (2.1.6) the normalisation factor

|Cαω |
2

=

∣∣∣∣γc2K~
(

1− v

Vg

)∣∣∣∣−1

. (2.54)

Substituting equation (2.46) back into equation (2.54) we eliminate group velocity to get an expression in

terms of Lab frame wavenumber and frequency

|Cαω |
2

=~

∣∣∣∣∣∣c2γ(K − v

c2
Ω)− v

3∑
i=1

4πβiγΩ(
1− Ω2

Ω2
i

)2
∣∣∣∣∣∣
−1

(2.55)

=~

∣∣∣∣∣∣c2kα − v
3∑
i=1

4πβiγΩ(
1− Ω2

Ω2
i

)2
∣∣∣∣∣∣
−1

. (2.56)

We have successfully calculated the normalisation constant for the solutions. Before we move on to the find

solutions and solve scattering problems we will note a few things.

2.1.7 Alternative solution space

One of the first things to note is that we defined the canonical momentum for the fields with the traditional

convention, i.e. , in equation (2.15) we differentiate the fields with respect to time. This means that when

we write the solution vector V kαω these are eigen-solutions for a given wavenumber. Hence when we calculate

the scalar product we get the Dirac delta function for wave-numbers and Korenecker delta function for

frequencies. Though our normalisation condition is discretizing in wavenumber and not in frequency, i.e
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the frequency is continuous and wave-numbers are discretized. This is why we have to use the relation in

equation (2.50) express our scalar product in the desired format. This discrepancy arises because in literature

fields are decomposed on basis of wave-number basis. In our system, as moving frequency is conserved, we

want to decompose the fields in a frequency basis. With this motivation one can take a more conventional

route to define the canonical momentum and define a new solution space.

We can define new canonical momenta as follows

ΠA =
∂L
∂∂xA

=
∂L
∂A′

, ΠPi =
∂L

∂∂xPi
=

∂L
∂P ′i

. (2.57)

Here we have replaced time with space. These canonical momenta are expressed as

ΠA = −A
′

4π
, ΠPi = − vγ2

βiΩ2
i

(Ṗi − vP ′i )−
vγ

c
A. (2.58)

in contrast to (2.16). Following the same recipe to write down the Hamiltonian density, and solving the

Hamilton equations to discover the equation of motion, we find

A′ = −4πΠA, (2.59)

P ′i =
βiΩ

2
i

v2γ2
(ΠPi +

γv

c
A) +

Ṗi
v
, (2.60)

Π′A = − Ä

4πc2
−

3∑
i=1

βiΩ
2
i

vcγ
(ΠPi +

γv

c
A), (2.61)

Π′Pi = −Pi
βi

+
1

v
∂tΠPi . (2.62)

We can write a matrix equation similar to equation (2.24)



A

P1

P2

P3

ΠA

ΠP1

ΠP2

ΠP3



′

=Mω



A

P1

P2

P3

ΠA

ΠP1

ΠP2

ΠP3
.



(2.63)
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Here Mω is expressed as

Mω =



0 0 0 0 −4π 0 0 0

β1Ω2
1

γvc
−iω
v 0 0 0

β1Ω2
1

v2γ2 0 0

β2Ω2
2

γvc 0 −iω
v 0 0 0

β2Ω2
2

v2γ2 0

β3Ω2
3

γvc 0 0 −iω
v 0 0 0

β3Ω2
3

v2γ2

ω2

4πc2 −
∑3
i=1

βiΩ
2
i

c2 0 0 0 0 −β1Ω2
1

vcγ −β2Ω2
2

vcγ −β3Ω2
3

vcγ

0 − 1
β1

0 0 0 −iω
v 0 0

0 0 − 1
β2

0 0 0 −iω
v 0

0 0 0 − 1
β3

0 0 0 −iω
v



. (2.64)

The eigen-solutions are, V αω = V̄ αω exp(ikαx− iωt), where V̄ αω is expressed as

V̄ αω = Cαω



c

iβ1Ω

1−Ω2

Ω2
1

iβ2Ω

1−Ω2

Ω2
2

iβ3Ω

1−Ω2

Ω2
3

−ikαc
4π

−vγ
1−ω2

Ω2
1

−vγ
1−ω2

Ω2
2

−vγ
1−ω2

Ω3
1



. (2.65)

The scalar product and the commutation relation with the new definition of canonical momentum also

changes as follows

[A(t),ΠA(t′)] = i~δ(t− t′), (2.66)

〈V1|V2〉 =
i

~

∫
dtV †1 (x, t)ηV2(x, t). (2.67)
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Here space and time are interchanged compared to equation (2.32). The scalar product is conserved with

respect to space, i.e.

d 〈V1|V2〉
dx

=
i

~

∫
dt

(
dV †1
dx

ηV2 + V †1 η
dV2

dx

)
(2.68)

=
i

~

∫
dt V †1

(
M†ωη + ηMω

)
V2. (2.69)

We calculate and see thatMω
†η = −ηMω. This shows that the scalar product is conserved with respect to

space, i.e. the conservation of norm. Any scattering process involving the eigen-solutions conserves the norm.

By definition the norm is conserved with respect to time because it integrates over time. The normalisation

coefficient calculation is more straightforward. We calculate the scalar product as in equation (2.41),(2.42)

we get 〈
V α1
ω1

∣∣V α2
ω2

〉
=
i

~
[2πδ(ω1 − ω2) exp(i(kα2

− kα1
)x) V̄ α1†

ω1
ηV̄ α2

ω2
]. (2.70)

With the alternative definition of the V we calculate V †ηV as

2πiV α†ω ηV αω =
|Cαω |
~

[
c2kα −

3∑
i=1

4πγvβiΩ

(1− Ω2

Ω2
i
)2

]
. (2.71)

Imposing the normalisation condition (2.1.6) we get the normalisation coefficient as (2.56). This is a much

simpler and more natural derivation.

2.1.8 Positive and negative norm modes

Another thing to note is that the scalar product is not positive definite. If you look at equation (2.51) we

can see that sign of the norm depends on K
Vg

(
1 − vVg

c2 ). Both velocity, v, of the moving frame and group

velocity,Vg, are less than the speed of light. Hence 1− vVg
c2 is always positive. Even for the case when v = 0

the norm will depend on K
Vg

. The sign is positive if K and Vg are both positive, which means lab frequency,

Ω, is also positive, or if K and Vg are both negative keeping Ω positive. Hence the sign of the norm equals

the sign of lab frequency, Ω. So modes with positive lab frequency have positive norm and modes with

negative lab frequency have negative norm.
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2.1.9 Annihilation and Creation Operators

Following the discussion we write the the solutions decomposed in frequency space as

V̂ =

∫
dω
∑
α

(
V αω â

α
ω + V α∗ω âα†ω

)
(2.72)

V is the sum of all solutions of all frequencies and all corresponding wavenumber modes. For a given

frequency, ω, we have

V̂ω =
∑
α

(
V αω â

α
ω + V α∗ω âα†ω

)
(2.73)

We sum over all the modes for a given frequency. In our case solving the dispersion relation (2.30) will give

us 8 modes for every frequency. Here â is defined as

âαω = 〈V αω |V 〉 . (2.74)

These are annihilation and creation operators for the fields. The commutation relation which govern these

operators are

[âβω, â
β′†
ω′ ] = δ(ω − ω′)δββ′ (2.75)

The properties of these operators are already discussed in the previous chapter. These operators define a

vacuum state and populate possible states as shown. We shall revisit these operators in the future when we

will study the scattering in our system.

2.2 Dispersion Diagram

The dispersion equation (2.30) has eight branches as shown in figure 2.1. As we have seen, positive lab-frame

frequency are positive norm mode solutions and solutions with negative lab frame frequency have negative

norm. We have a symmetric dispersion diagram with respect to both frequency, Ω, and wavenumber,K. On

the same diagram we see the Lorentz boosted moving frame frequency, ω and moving-frame wavenumber,

k. To find solutions for a given lab frequency, Ω, draw a horizontal line at that frequency and wherever the

horizontal line intersects the dispersion curve is a possible solution.

In a simple setup, for example where there is a perfect mirror at rest, an electromagnetic wave is scattered

where the lab frequency is conserved and the sign of the wavenumber changes, i.e. we can draw a line parallel

to the x axis for a constant frequency and the two places at which the constant frequency line crosses the

dispersion branches corresponds to the solutions allowed.
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Figure 2.1: Dispersion diagram in the lab frame. Here we have drawn all eight branches. Horizontal axis is
the lab frame wavenumber and the vertical axis is the lab frame frequency. The four branches in the top half
of the quadrant have positive lab frame frequency and the four branches in the bottom half have negative
frequency.

Now imagine the mirror moves, so that the light reflected from the mirror is Doppler shifted. The direction

of the shift, blue or red will depend on the direction of the movement of the mirror. The lab frequency is

not conserved in this scattering, but the moving-frame frequency is conserved. The moving-frame frequency

is found by the Lorentz boost by equation (2.29). The moving frame frequency is now a slanted line in the

dispersion diagram with a slope of −vγ. With any finite slope this constant frequency line intersects at most

8 times or 6 or 4. So for a given velocity, a constant frequency in the moving frame has 8 solutions, either all

real or a combination of real and complex solutions. Complex solutions always come in pairs. This ensures

solutions in the negative frequency branches. However, these solutions might be very far in the resonance

having very small group velocity and will be absorbed as soon as they are generated. As the absorption

coefficients are high in the resonance frequencies. If the mirror is moving with speeds comparable to speed

of light, we excite solutions which are both negative and far from the resonances to not suffer significant

absorption. This allows to observe the scattering of an incoming positive lab frequency to a negative lab

frequency.
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2.3 A step as a scatterer

It is hard to make an actual mirror travelling at speeds comparable to speed off light. However, we know

that light can scatter off dielectric media. A monochromatic light wave is scattered by a strong pulse. Here

the role of the mirror is played by a pulse. However, it is not a perfect mirror and some components of the

scattered light will transmit across the pulse and some will be reflected back. To make the analysis simpler,

we initially model the scatterer in 1D as a step pulse. Figure 2.2 shows a schematic.

Figure 2.2: A step of some height δn is propagating towards the positive x direction. The two regions, left
of the step is marked as blue and the right of the step is marked as red. This is because the two regions
have slightly different dispersion relations.

The vertical axis in Figure 2.2 is the increase in refractive index due to the intensity of light. The

dependence of refractive index of the medium on the intensity of light is called the Kerr effect. For all

purposes in the moving frame the step is treated like a different medium with slightly different resonant

frequency and elasticity. The resonant frequency and elasticity depends on the intensity according to

βi,R = (1 + ε)βi,L (2.76)

Ωi,R = (1 + ε)−
1
2 Ωi,L. (2.77)

Here ε is a unit-less measure of the intensity and is related to the rise in non-linearity by

δn = nR − nB ≈
n2
B − 1

2nB
ε. (2.78)

Note βΩ2
i is the inertia of the media and is a constant that does not depend on intensity. In the blue region

ε = 0 in the dispersion relation. The dispersion changes at the boundary in the red region as a result of

the change in resonant frequency and elasticity. Figure 2.3 shows an exaggerated difference between the

dispersion curves of the two regions, blue and red. This change in dispersion curves makes the constant
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Figure 2.3: Two dispersion curves for the red and blue region as labelled in Figure 2.2. The curves are not
to scale and are over-exaggerated for visual representation.
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frequency line cross the dispersion curves at different places, displacing the modes. This means that an

incident mode moving towards the step will be reflected and transmitted with different wave-numbers and

frequencies. In order to encapsulate all the information about scattering we will employ a scattering matrix.

2.4 Scattering Matrix

Scattering matrices have been used in many fields of physics, from solid state to optics to quantum mechanics.

Scattering matrices are useful in describing scattering problems and encapsulate all the information about

the incoming and outgoing modes. Depending on the problem, different things play the role of the scatterer.

For example, in a solid state problem a crystal lattice, in an optical problem a refractive index profile or in

quantum mechanics the scattering potential. We study a toy setup in which we allow two modes to exist in

the red and blue region in Figure 2.2. Using this toy setup we shall establish the generalised definition of

the scattering matrix.

2.4.1 Mode Formalism

We label the two modes A and B. The red and blue regions have their own A and B modes, AR, AB , BR

and BB , respectively. All the A modes have a group velocity towards the right in the moving frame and all

the B modes are moving towards the left. This is shown in Figure 2.4.

Here we see that the blue modes, AB and BB exist only in the blue region and similarly in the red modes

exist only in the red region. These modes are local and do not extend over all space. We define the AB

mode as

AB(x, t) =


ĀB ei(k

A
Bx−ωt) if x ∈ (−∞, 0],

0 otherwise.

(2.79)

Here ĀB is a scalar normalisation constant. kAB is the wavenumber of A mode in the blue region. As the

moving frequency is conserved, we will drop the eiωt term. We construct a matrix of local modes in the blue

region by combining the modes and their spatial derivatives.

MB =

 AB BB

ikABAB ikABBB

 , (2.80)

The spatial derivatives are included as it is helpful in expressing the matching conditions at the interface of

the step. Here the matrix MB has all the information we need for the modes in the blue region. Similarly

we construct MR to put all the information of the red modes in layer red in a matrix.
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Figure 2.4: The step is at x = 0. The two regions of space are red region, inside the step, and blue region,
outside the step. Both regions have their two modes, A and B, as shown in the diagram. The y axis is the
jump in the refractive index.

2.4.2 Global Modes

Physically speaking we can have two scenarios for scattering. We can have an incoming AB mode which

then gets reflected to BB and transmitted to AR mode. The global solution of this scenario is written as

AinB = AB +RABBB + TAAAR. (2.81)

RAB is the reflection coefficient for the mode being reflected from A mode to B mode. TAA is the transmission

coefficient between the A modes. Here we have written a global solution for AB . It is called a global solution

because it is defined for all space. The mode AB as shown in Figure 2.4 is travelling towards the step. So this

global mode is called an incoming mode for AB mode. Hence, the superscript of ‘in’ in the above notation.

Similarly we define a second incoming global mode. This will be the BinR mode and is expressed as

BinR = BR +RBAAR + TBBBB , (2.82)
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AinB and BinR are the incoming global modes. We can represent them in matrix form as

ζin = MBσ
in
B +MRσ

in
R . (2.83)

Here the σ’s are matrices that contain the coefficients of the modes in the layer. Here they are defined as

follows :

σinB =

 1 0

RAB TBB

 , (2.84)

σinR =

TAA RBA

0 1

 . (2.85)

2.4.3 Matching Conditions

The global solutions have to be continuous and differentiable everywhere and also at the interface of the

step, x = 0.

ζ(x)|x=0− = ζ(x)|x=0+
. (2.86)

We rewrite the matching condition (3.5) in terms of mode matrices MB and MR as follows:

MB(x)|x=0− σB = MR(x)|x=0+
σR. (2.87)

This is the reason we defined M with the harmonic fields and their spatial derivatives so that we can write

the matching conditions more succinctly. We can rearrange this equation to express σR as

σR = IRB σB (2.88)

where IRB = M−1
R MB . IRB is the propagation matrix, it relates the coefficient matrix of one layer to the

next layer. In this set up as there are only two layers, propagation matrix is also called the transfer matrix

as it relates the coefficient matrix of two asymptotic layers.

2.4.4 Defining Scattering Matrix

Scattering matrices were first used by John Wheeler in 1937 [53] and have been used since then in describing

many scattering problems in various fields, including optics [54, 55]. The scattering matrix relates the
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incoming fields to the outgoing fields. An incoming mode as discussed before is a mode propagating towards

the scatterer, the step. An outgoing mode is a mode propagating away from the step.

Physically, an incoming (outgoing) mode does not scatter into any other incoming (outgoing) mode, but

only into outgoing (incoming) modes. All the incoming (outgoing) modes are linearly independent. We now

introduce projector matrices to express the scattering matrix in a compact form. We use two projectors

to project onto the modes of MR/B that move to the right (left) and to set all other modes to zero. The

projectors PRight and PLeft have the following properties: projector matrices are idempotent (P 2 = P ),

and orthogonal (PLeftPRight = PRightPLeft = 0). The sum of the projector matrices is the identity matrix

(PLeft + PRight = 1). Using the projectors we express the scattering matrix as

S.(PRight σB + PLeft σR) = PLeft σB + PRight σR. (2.89)

The projectors, PRight and PLeft, in the above equation project onto the right going and left going mode

coefficients of σB and σR, respectively. It is expressed as

PRight =

1 0

0 0

 , (2.90)

PLeft =

0 0

0 1

 . (2.91)

PRight σB thus has non-zero entries only in the first row which contain the coefficients of the right going

modes, or right movers, in region blue. PLeft σR holds the left mover coefficients in region red. These two

are all of the incoming mode coefficients for the system. Similarly, PLeftσB + PRightσR are all the outgoing

mode coefficients of the system. The above equation (2.89) transforms the incoming wave coefficients into

the outgoing wave coefficients.

In our above model solving equation (2.89) gives us

S =

TAA RBA

RAB TBB

 . (2.92)

The scattering matrix encapsulates all the information about the scattering process. All the transmission

coefficients are in the diagonal position and the off-diagonal coefficients are the reflection coefficients. Here

in our toy model setup the properties of the scattering matrix are quite straightforward and physical. The
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scattering matrix is a unitary matrix, i.e. it transforms the incoming waves into outgoing waves while

preserving the norm of the modes. As a consequence of being unitary, the transmission and reflection

coefficients in every column follows the condition

|T |2 + |R|2 = 1. (2.93)

This condition also makes physical sense as energy is conserved in the scattering process, the intensity of

incident light is preserved, the same as that in outgoing light.

In the next chapter we discuss some numerical and analytical ways to calculate the scattering matrix in

more complicated systems, with more than two modes in a region and in a multi-layer scattering problem.

We will answer questions like, How the properties of scattering matrix changes when we include negative

norm modes in our analysis? How does the event horizon kinematics manifest itself in the scattering theory

picture? What is the most efficient way to calculate scattering matrices for stationary systems? How these

scattering scenarios result in creating the kinematics of event horizon?
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Chapter 3

Scattering Matrix

In the previous chapter we laid the foundations and the theoretical framework for our system. Here we will

study in detail the scattering matrix and the algorithms used to calculate it. As discussed, the importance

of the scattering matrix is that it encapsulates all the information about the system. We will build upon the

toy model. Instead of having just an abrupt step we will study the scattering from a pulse with a smooth

profile of change of reflective index. We will also define the mode configuration for a system with 8 modes

in every layer. The number of right and left going modes will then not be same.

Staircase Approximation

There are various ways to solve the problem of scattering from a smooth profile. Although exact analytical

solutions exist, typical calculations of scattering problems resort to approximations. For example, to de-

scribe a smooth scatterer analytically, the WKB or Born series approximation is frequently employed. The

approximation may fail, however, if the scattering potential varies on the scale of the wavelength [56]. Thus,

numerical methods are more widely applicable. Here the scattering potential is approximated by thin layers

of constant potential and treated it as a multilayer scatterer. This is called the staircase approximation.

In our case it will be divided into layers of constant refractive index. The setup is shown in Figure 3.1.

The scattering problem is solved by calculating the scattering matrix. Figure 3.1 illustrates this for a sech2-

shaped scattering potential. The scatterer is divided into N + 1 layers of constant potential. In each layer,

the finite set of harmonic waves is the set of ‘modes’.We assume that the modes are solutions of a dth ordered

linear differential equation. The outer, ‘asymptotic’ layers contain the asymptotic modes, i.e. incoming and

outgoing modes. The scattering is a stationary process and the scattering potential does not depend on the

time in the moving frame. Therefore, the moving frame frequency, ω, is conserved, i.e. the monochromatic
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components of input states scatter into the respective monochromatic components of the output states. In

each layer, we find the modes for frequency ω by solving the dispersion relation. Then we connect (match)

these modes at the layer interfaces and thereby obtain global solutions for the whole system. The scattering

matrix is the transformation of incoming global modes to outgoing global modes.

Figure 3.1: Scattering potential discretization into N + 1 layers and propagation of waves in a multilayer
structure. V 1,2..p

n and V p+1,..,p+b
n are the right and left propagating modes, respectively, in layer n.

Mode Formalism

The modes inside a layer n that share the frequency ω differ in wavenumber k and are characterized as

follows: The wave solution is expressed as the harmonic fields

V αn (x, t) =


V̄ αn ei(k

α
nx−ωt) if x ∈ [xn−1, xn[

0 otherwise,

(3.1)

where x−1 = −∞ and xN = ∞. The upper index α (α = 1...(p + b)) denotes the mode associated with

wavenumber kαn . p is the number of right going modes and b is the number of left going modes with respect

to the scatterer. As frequency is conserved, we will drop the eiωt-term. The number of k modes depends on
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the dispersion diagram. The V̄ is a vector of dimension p+ b, 8 in our case, and is defined as

V̄ αn = Cαω



Ā

P̄1

P̄2

P̄3

Ā′

P̄ ′1

P̄ ′2

P̄ ′3



= Cαω



c

iβ1Ω

1−Ω2

Ω2
1

iβ2Ω

1−Ω2

Ω2
2

iβ3Ω

1−Ω2

Ω2
3

ikαnc

−k
α
nβ1Ω

1−Ω2

Ω2
1

−k
α
nβ2Ω

1−Ω2

Ω2
2

−k
α
nβ3Ω

1−Ω2

Ω2
3



. (3.2)

The first four components are the normalised amplitudes of the electromagnetic and the polarisation fields.

The last four components are the spatial derivative of the first four. The amplitudes of the fields are the same

as calculated and shown in equation (2.65) and the spatial derivative amplitude is calculated by multiplying

the ikαn - term. We construct an 8× 8 matrix with all the 8 modes of region n and define Mn as

Mn(x) =

(
V 1
n (x) V 2

n (x) ... V 8
n (x)

)
(3.3)

For the single-step case n can be blue or red. Every column of Mn is an 8-dimensional vector as described

in Equation (3.2). We would order the modes with respect to their group velocity in descending order. The

wavenumber k may have an imaginary part. Complex modes have an envelope that can either exponentially

grow or decay in x and have no defined group velocity. In order to categorize these exponentially growing

and decaying modes either as a left or right going mode, we make a convention to treat exponentially growing

modes as left going and vice versa.

The mode matrix Mn is layer-dependent, as the subscript n denotes. We construct a global matrix as a linear

combination of local modes, Mn. We combine all the modes in all layers to construct an orthonormal [57]

global solution for all x as

ζ(x) =

N∑
n=0

Mn(x)σn. (3.4)

The σn’s contain the coefficients of the layer modes in the expansion of ζ(x). ζ, Mn and σn are p + b-

dimensional square matrices. In our case p+ b = 8.
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Mode Propagation

The global solution of equation (3.4) is valid for all x. Because the scattering potential is finite, so is the

field and its derivative across the interfaces of the staircase approximation. Therefore we write

ζ(x)|xn+
= ζ(x)|xn− . (3.5)

We rewrite the matching condition (3.5) in terms of mode matrices Mn as follows:

Mn+1(xn)σn+1 = Mn(x)|xn−σn. (3.6)

The waves traveling within the layer pick up the phase kαn ln, where ln = xn − xn−1 is the length of layer n.

We introduce a diagonal 8× 8 matrix κn, whose diagonal elements are the wavenumber of each mode:

κn =



k1
n 0 0 0 0 0 0 0

0 k2
n 0 0 0 0 0 0

0 0 k3
n 0 0 0 0 0

0 0 0 k4
n 0 0 0 0

0 0 0 0 k5
n 0 0 0

0 0 0 0 0 k6
n 0 0

0 0 0 0 0 0 k7
n 0

0 0 0 0 0 0 0 k8
n



. (3.7)

Hence, we define a matrix Φn of propagation phases as:

Φn = eiκnln (3.8)

and thus:

Mn(x)|Xn− = Mn(xn−1)Φn. (3.9)

Including the phase information in (3.6) we write

Mn+1(xn)σn+1 = Mn(xn−1) Φn σn. (3.10)
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Equation (3.10) tells us how the modes are propagated through the layers. The mode amplitudes of one

layer are related to the amplitudes of the adjacent layer as

σn+1 = In+1σn, (3.11)

where

In+1 = M−1
n+1(xn)Mn(xn−1)Φn. (3.12)

The matrix In+1 is called the propagation matrix and it relates the mode coefficients, or σ matrices, of layers

n and n+ 1.

3.0.1 In/Out Global Modes

As in the previous chapter, we can define global in and global out modes. In a scattering problem we have

incoming and outgoing fields. Local incoming modes are modes that propagate towards the scattering surface

and local outgoing modes those that travel away from the scattering surface. For example, if we look at

layer 0 in Figure 3.1, we see that all the right propagating modes in the asymptotic left region,V 1..p
0 in layer

0, and all the left propagating modes in layer N , V p+1..p+b
N , will be incoming local modes. Similarly, all the

left going modes in asymptotic left region, V p+1..p+b
0 , and all the right going modes in layer N , V 1..p

N , are

outgoing local modes.

We define incoming and outgoing global modes. An incoming global mode is a linear combination of one

defining incoming local mode and all outgoing modes. So for example, an incoming global mode, V 1
IN , will

include local modes in every layer inside the pulse alongside with the modes in the asymptotic left and right

regions, layer 0 and layer N . The defining feature of V 1
IN is that the coefficient of the local incoming mode,

V 1
0 is set to 1 and the coefficients of all the other incoming modes is set to 0. The coefficients of outgoing

modes unknown. There are eight distinct incoming global modes which make up a complete basis to describe

the system. Similarly, an outgoing global mode is defined by one of the local outgoing modes having the

coefficient 1 and all the other outgoing local modes having coefficients 0. The outgoing global modes also

make up a complete basis. For the regime where we have 1 right going mode and 7 left going modes, only

V 1
0 will be the local incoming mode in asymptotic layer 0 and V 2..8

N will be local incoming modes in layer

48



N . In this case, we write the σ matrices for global in mode as



LM ↓ GM → V 1
in V 2

in V 3
in V 4

in V 1
in B2

in B3
in B4

in

V 1
0 1 0 0 0 0 0 0 0

V 2
0 R12 T22 T32 T42 T52 T62 T72 T82

V 3
0 R13 T23 T33 T43 T53 T63 T73 T83

V 4
0 R14 T24 T34 T44 T54 T64 T74 T84

V 5
0 R15 T25 T35 T45 T55 T65 T75 T85

V 6
0 R16 T26 T36 T46 T56 T66 T76 T86

V 7
0 R17 T27 T37 T47 T57 T67 T77 T87

V 8
0 R18 T28 T38 T48 T58 T68 T78 T88



= σin0 (3.13)



LM ↓ GM → V 1
in V 2

in V 3
in V 4

in V 5
in V 6

in V 7
in V 8

in

V 1
N T11 R21 R31 R41 R51 R61 R71 R81

V 2
N 0 1 0 0 0 0 0 0

V 3
N 0 0 1 0 0 0 0 0

V 4
N 0 0 0 1 0 0 0 0

V 5
N 0 0 0 0 1 0 0 0

V 6
N 0 0 0 0 0 1 0 0

V 7
N 0 0 0 0 0 0 1 0

V 8
N 0 0 0 0 0 0 0 1



= σinN (3.14)

All the reflection and transmission coefficients are unknown. Every column of the sigma matrix is for a

specific in global mode in Equations (3.13) (3.14). For example if we take the global ’in’ mode V 1
in ignoring

all the modes within the pulse we express it as

V 1
in = V 1

0 +R12V
2
0 +R13V

3
0 +R14V

4
0 +R15V

5
0 +R16V

6
0 +R17V

7
0 +R18V

8
0 + T11V

1
N (3.15)
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The coefficient matrices σout0 and σoutN for out global modes are expressed as



LM ↓ GM → V 1
out V 2

out V 3
out V 4

out V 5
out V 6

out V 7
out V 8

out

V 1
0 X11 X12 X13 X14 X15 X16 X17 X18

V 2
0 0 1 0 0 0 0 0 0

V 3
0 0 0 1 0 0 0 0 0

V 4
0 0 0 0 1 0 0 0 0

V 5
0 0 0 0 0 1 0 0 0

V 6
0 0 0 0 0 0 1 0 0

V 7
0 0 0 0 0 0 0 1 0

V 8
0 0 0 0 0 0 0 0 1



= σout0 (3.16)



LM ↓ GM → V 1
out V 2

out V 3
out V 4

out V 5
out V 6

out V 7
out V 8

out

V 1
N 1 0 0 0 0 0 0 0

V 2
N X21 X22 X23 X24 X25 X26 X27 X28

V 3
N X31 X32 X33 X34 X35 X36 X37 X38

V 4
N X41 X42 X43 X44 X45 X46 X47 X48

V 5
N X51 X52 X53 X54 X55 X56 X57 X58

V 6
N X61 X62 X63 X64 X65 X66 X67 X68

V 7
N X71 X72 X73 X74 X75 X76 X77 X78

V 8
N X81 X82 X83 X84 X85 X86 X87 X88



= σoutN (3.17)

All the X coefficients are unknown. Here these X are not reflection or transmission coefficients but a

combination of them and their inverses. As an example we can write the global out mode V 1
out ignoring the

modes within the pulse.

V 1
out = V 1

N +X11V
1
0 +X21V

2
N +X31V

3
N +X41V

4
N +X51V

5
N +X61V

6
N +X71V

7
N +X81V

8
N (3.18)

In the case of 1 mode travelling towards the right and 7 to the left we define PRight = PR and PLeft = PL
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as

PR =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(3.19)

PL =



0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(3.20)

3.0.2 Scattering Matrix

Even though now we have many more layers compared to the step in the toy model, the definition of the

scattering matrix remains the same, i.e. it relates incoming asymptotic modes to outgoing modes. Hence

the definition of the scattering matrix equation (2.89) still stands. Using σin matrices and following the

equation for scattering matrix we find

S =



T11 R21 R31 R41 R51 R61 R71 R81

R12 T22 T32 T42 T52 T62 T72 T82

R13 T23 T33 T43 T53 T63 T73 T83

R14 T24 T34 T44 T54 T64 T74 T84

R15 T25 T35 T45 T55 T65 T75 T85

R16 T26 T36 T46 T56 T66 T76 T86

R17 T27 T37 T47 T57 T67 T77 T87

R18 T28 T38 T48 T58 T68 T78 T88



(3.21)
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As before, the scattering matrix is a matrix of all reflection and transmission coefficients. Though here we

do not have an equal number of reflection and transmission coefficients as we had in our toy model. This is

because we have broken the symmetry of left and right going modes. We have an unequal number of right

and left going modes. Consequentially, using σout matrices, we have

S =



X11 X12 X13 X14 X15 X16 X17 X18

X21 X22 X23 X24 X25 X26 X27 X28

X31 X32 X33 X34 X35 X36 X37 X38

X41 X42 X43 X44 X45 X46 X47 X48

X51 X52 X53 X54 X55 X56 X57 X58

X61 X62 X63 X64 X65 X66 X67 X68

X71 X72 X73 X74 X75 X76 X77 X78

X81 X82 X83 X84 X85 X86 X87 X88



−1

(3.22)

Another way to define the scattering matrix is as a transformation matrix from ’out’ global modes to ’in’

global modes and can be written as

ζin = ζoutS. (3.23)

Here we substitute the global modes from equation (3.4) and multiply the local modes out as they are the

same for a given layer. We get

σinn = σoutn S. (3.24)

as this has to be true for all layers. If we include only the asymptotic layers then we can write

S = (σout0/N )−1(σin0/N )−1. (3.25)

These two expressions for the scattering matrix, (2.89) and (3.25), are similar. To come to a general equation

for the scattering matrix in terms of only in/out sigma matrices we rewrite equation (3.25) as

(σout0/N )−1 = S(σin0/N )−1 (3.26)

We write (σin
−1

N )−1 = (PRσ
in
N +PLσ

in
N )−1 = (PRσ

in
N +PL)−1. The inverse of a matrix of the form (PRσ

in
N +

PL)−1 will be also in the form (PRB + PL) , where B is some matrix. So (σinN )−1 = (PRB + PL) then it

has to be the case that B = (σinN )−1. Hence we can write, (σinN )−1 = (PRσ
in−1

N + PL). From the matching
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condition we can write

(

N∏
n=1

In)−1 = T−1
N = σin0 (σinN )−1. (3.27)

We can rewrite (3.27) as

(

N∏
n=1

In)−1 = T−1
N = (P1 + P2σin0 )(P1(σinN + P2))−1. (3.28)

We multiply PR from the left side in (3.28) and we get

PRT
−1
N = PRσ

in−1

N . (3.29)

Adding PL on both sides of (3.29) we get

PRT
−1
N + PL = (σinN )−1. (3.30)

Similarly we find the inverse of σoutN to be

PLT
−1
N + PR = (σoutN )−1. (3.31)

Finally, putting all that together, the scattering matrix will then look like

S(PLσ
in
R + PRσ

in
L ) = (PLσ

in
L + PRσ

in
R ). (3.32)

3.1 Quantum vacuum emission

As in equation (2.72) ’in’ and ’out’ global modes supply two different complete bases in which to decompose

our fields,

V =

∫ ∞
0

dω

(∑
α∈P

V αinâ
α
in +

∑
α̃∈N

V α̃inâ
†α̃
in

)
+H.c. (3.33)

=

∫ ∞
0

dω

(∑
α∈P

V αoutâ
α
out +

∑
α̃∈N

V α̃outâ
†α̃
out

)
+H.c. (3.34)

Here we have not taken the limit to be from −∞ to ∞ but from 0 to ∞ for the moving-frame frequency, ω.

For a given frequency, ω, we sum over all the modes. The first term is the sum over all positive norm modes,

that is what α ∈ P means, i.e. all the modes which have positive norm. Similarly the second term is the
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sum over all the negative norm modes. The scattering matrix is a transformation matrix between these two

complete bases. For example, we can write V 1
in in terms of out global modes by using the scattering matrix

coefficients as

V 1
in = T11V

1
out +R12V

2
out +R13V

3
out +R14V

4
out +R15V

5
out +R16V

6
out +R17V

7
out +R18V

8
out. (3.35)

The coefficients of the out modes are the same as the coefficient of their defining local mode in equation

(3.15). Following the example of equations (3.33), (3.34), we write

V =

∫
dω(VinÂin +H.c) =

∫
dω(VoutÂout +H.c), (3.36)

where Vin/out is a row vector

ζin = Vin/out =

(
V 1
in/out V 2

in/out V 3
in/out V 4

in/out V 5
in/out V 6

in/out V 6
in/out V 7

in/out V 8
in/out

)
(3.37)

and Âin/out contains all the annihilation and creation operators. For example if we have 5 positive and 3

negative norm modes ordered such that all the positive norm modes come first followed by negative norm

modes we get

Âin/out =



â1
in/out

â2
in/out

â3
in/out

â4
in/out

â5
in/out

â†6in/out

â†7in/out

â†8in/out



. (3.38)

From the definition of the scattering matrix and equation (3.36) we arrive at

VinÂin = VoutÂout, (3.39)

VoutSÂin = VoutÂout, (3.40)

SÂin = Âout. (3.41)
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Equation (3.41) shows that the scattering matrix is a Bogoliubov transformation [58]. It transforms the

creation and annihilation of ‘in’ modes to ‘out’ modes. We can answer now how global in vacuum mode,

|0in〉, scatters into out modes. The global in vacuum mode is defined as

âαin |0in〉 = 0. (3.42)

To calculate the emission from this vacuum in the mode V 1
out we calculate the expectation value of the

number operator, N̂1
out = â†1outâ

1
out. The expectation value is

〈0in| N̂1
out |0in〉 = 〈0in| â†1outâ1

out |0in〉 . (3.43)

We express â1
out in terms of in operators as

â1
out = S11â

1
in + S12â

2
in + S13â

3
in + S14â

4
in + S15â

5
in + S16â

†6
in + S17â

†7
in + S18â

†8
in (3.44)

Here Sij is the component at ith row and jth column of the scattering matrix. Here we have assumed that

the modes are ordered such that the first five modes are positive and the last three are negative norm modes.

All the annihilation operators acting on the vacuum state result in zero. As the modes are orthogonal, it

follows 〈
1αin
∣∣1α̃in〉 = δαα̃. (3.45)

So the only terms survives to contribute are the coefficients of negative norm modes giving

〈0in| N̂1
out |0in〉 = |S16|2 + |S17|2 + |S18|2. (3.46)

We generalise this and say that the emission flux for every positive out mode is the sum of absolute squares

of its respective negative norm modes. For a positive mode, α, we have

〈0in| N̂α
out |0in〉 =

∑
β∈N

|Sαβ |2. (3.47)

Similarly to other optical systems, Bogoliubov transformation dictates generation of quantum vacuum emis-

sion. Similar to a Bogoliubov transformation matrix, the scattering matrix has certain properties. The

scattering matrix properties are discussed in the future sections.
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3.2 Possible Mode Configurations

As we have discussed the dispersion relation in the last chapter, here we study possible solutions. We model

bulk fused silica with three resonances [59, 60]. We set the central wavelength of the pulse to 800nm. The

group velocity of the pulse is calculated from Equation (2.46). The group velocity of the pulse of a central

wavelength, λp = 800nm is vp = 0.66712× c. The moving frame dispersion diagram is shown in Figure 3.2.

Here we show only the positive optical branch of the dispersion diagram. The red curve is the dispersion

Figure 3.2: Moving frame dispersion diagram is plotted here, ~ω is the y axis and wavenumber, k, is the
x axis. The curves are not to scale and are exaggerated for descriptive purpose. Only the positive optical
branch is shown in the diagram. Solid blue curve is the dispersion diagram for the medium outside and the
solid red curve is for inside the pulse. The energy range is divided into 5 regions as shown in the figure. Blue
dotted and red dotted lines show the turning points for the curves respectively.

diagram inside the pulse. Here we have chosen the height and the velocity of the pulse so that we can

show all the possible scenarios. The blue and red dashed lines shows the turning points of the blue and red

branches respectively. The ωmin and ωmax are frequencies depicted as the lower and upper blue dashed lines.

It signifies the turning point frequencies. There are 5 possible scenarios depending on the frequency chosen

to solve the dispersion relation. If we choose the frequency so that it lies in either region 1, ω > ωmax, or

5, ω < ωmin , we have 1 optical mode both inside and 1 optical mode outside the pulse. In total we would
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have 6 real modes everywhere and 2 complex modes. In this case there would be 6 in and out global modes

and 2 in-physical modes. The in-physical modes would not scatter into any real modes and vice versa, this

means that the scattering matrix will be a block matrix.

In region 2 we have the configuration shown in Figure 3.3. The pulse is modelled as top-hat pulse. In total

we have three layers. Layers 0 and 3 are the asymptotic layers. At the back of the pulse, in layer 0, in Figure

Figure 3.3: The mode configuration in region 2 is shown in the figure. The pulse is travelling towards the
right. The modes are numbered as they intersect with a horizontal line in region 2 from left to right. Outside
the pulse we have three real optical modes. Inside the pulse we have only one real and two complex optical
modes.

3.3 modes cannot escape. Modes can travel either way outside of the pulse but only one way inside the pulse.

This makes the leading edge of the pulse, between layer 1 and 2, an analogous black hole event horizon as

modes can enter the pulse but can never escape from inside it. Similarly the back end of the pulse, between

layer 0 and 1, is an analogous white hole as modes can only escape from the horizon but can never enter it.

For Region 3 the mode configuration is shown in figure 3.4, here we have all real modes everywhere and no

horizon physics play a role in this configuration.

For Region 4 the configuration is shown in Figure 3.5. Here all the modes are real inside the pulse and 2

complex modes outside the pulse. This configuration results in a block matrix because the there are two in-

physical global modes as in case 1 and 5. The back end of the pulse is analogous to a black hole event horizon

where the inside of the event horizon is the asymptotic layer 0. The front end of the pulse is analogous to

white hole event horizon. The escaping modes from both the event horizons are trapped inside the cavity.
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Figure 3.4: The mode configuration in Region 3 is shown in the figure. The pulse is travelling towards the
right. The modes are numbered as they intersect with a horizontal line in region 3 from left to right. Outside
the pulse we have three real optical modes. Inside the pulse we have three real optical modes.

This configuration is a black hole laser. The pulse acts like a cavity and could amplify the modes in theory

if the modes resonate inside the cavity.

In further calculations we will select the frequency such that we will be in one of these 5 mode configurations.

For a top-hat pulse or a step, we can select the pulse height and the speed of the pulse so that region 3 or 4

might not even exist since by increasing the pulse height we can lower the red dispersion curve.

3.3 Algorithms to calculate scattering matrix

As we have seen, the scattering matrix describes the scattering system completely. We need to calculate it.

Calculating it analytically is not possible for our system because of its complexity. Solving the wave equation

(2.24) numerically is also not possible as it is an ill-conditioned problem. We shall talk about this in detail in

the proceeding section. We will solve the dispersion relation for a given frequency for every layer to get the

possible modes. Enforcing the matching conditions, we will arrive at the scattering matrix through different

algorithms.

3.3.1 T-Matrix algorithm

T-matrix algorithm is a straightforward, non-recursive method that allows us to find the transmission and

reflection coefficients of waves from a scattering structure. In the T-matrix algorithm, the set of modes is
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Figure 3.5: The mode configuration in region 4 is shown in the figure. The pulse is travelling towards the
right. The modes are numbered as they intersect with a horizontal line in region 3 from left to right. Outside
the pulse we have one real optical mode. Inside the pulse we have three real optical modes.

propagated through the ‘layers’ of the staircase approximation and then connected to the next layer using

the matching conditions at the interface. Eventually this relates the asymptotic modes, thus determining the

scattering coefficients for the entire system. However, in the presence of evanescent modes in the intermediate

layers, the T-matrix algorithm can cause numerical instability [61]. The propagation matrices In defined in

equation (3.12) transform the mode coefficients of layer 0, σ0, into the mode coefficients of layer N , σN :

σN =

k=N−1∏
k=0

IN−kσ0 = TNσ0. (3.48)

The transfer matrix TN is the product of the propagation matrices. Substituting (3.48) into equation (2.89)

we arrive at:

S(PRσ0 + PLTNσ0) = (PLσ0 + PRTNσ0), (3.49)

S = (PL + PRTN )(PR + PLTN )−1. (3.50)

σ0 and PR + PLTN are square and invertible matrices. This allows us to simplify equation (3.49) to (3.50).

This formula gives a straightforward way to calculate the scattering matrix.

Since its introduction in 1965 [62], the T-matrix algorithm has been studied and modified extensively [63].
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In the presence of evanescent modes, however, it becomes numerically unstable. As the evanescent waves

propagate through the layers, the corresponding mode coefficients grow or decay exponentially. This causes

the propagation matrices In in (3.48) to have a high condition number. Numerical operations, such as

matrix inversion and products of these matrices will lead to numerical precision loss, i.e. the problem is

ill-conditioned and becomes numerically unstable.

To demonstrate this, we employ the T-matrix algorithm and calculate the transfer matrix 1. The algo-

rithm is shown in Figure 3.6. The first two stages of the algorithm, yellow and green boxes, are common to

all algorithm that we discuss in order to calculate the scattering matrix.

1We use the technical computing software Mathematica 11.2 from Wolfram Research.

60



Choose the 
moving frame 

frequency 

For every layer height we 
solve the dispersion 

diagram to get a set of 
solutions for every layer 
for the given frequency 

With the solutions 
we construct the 
local matrix M for 

every layer 

Choose Pulse 
shape (Sech, 

exponential, step, 
etc)

Choose Pulse 
height 

choose pulse 
length if 

applicable, for a 
step there is no 

pulse length 

Specify the discritization 
mode, equal lengths of step 
or equal height difference 
between adjacent layers

Choose the 
number of layers 

to divide the pulse 
in

Start
Set up all the 

constants (speed 
of light etc)

Pulse discretization

We get a set of list of 
lenghts and height of every 

layer in the pulse.

Finding the 
eigenvectors

Set up the 
dielectric 
medium's 
constants 

(elasticity and 
inertia)

Find the inverse of 
matrix M of every 

layer

T-Matrix Algorithm

Calculate the 
propagation 

matrices for every 
layer.

Multiply the 
propogation 

matrices to find 
the transfer matrix 

Calculate 
scattering matrix 
from the transfer 

matrix.

We get a list of matrices.

Figure 3.6: This shows the three stages in finding the scattering matrix. First stage, yellow, is about pulse discretization.
The inputs are the pulse properties, like shape, height and length, and discretisation properties, number of layers and mode.
The output is a set of lists of discretised layer lengths and layer heights .The second stage, green, is about finding the
eigen-solutions. The input is a list of layer heights, moving frame frequency, ω and the dispersion relation for the medium.
The output is a list of matrices of local modes for every layer, Mn. The third stage, blue, is where the T-matrix algorithm
is employed. We calculate the propagation matrix, In, for every layer to multiply them out to calculate the transfer matrix.
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Precision Problem

Precision in numerics is the number of decimal digits of a number which are significant for computations.

Modern computers operate on either 32-bit or 64-bit. We operate on a 64-bit microchip. In numerical

computation 1 bit is used for the sign of the number, 11 for the exponent and 52 for significant digits. The

base is 2 so 2−52 is around 10−16. This gives around 16 significant digits and is called the Machine precision.

Most programming languages work in Machine Precision. Though Mathematica can carry out arbitrary-

precision calculations as well. The user can specify the precision of the input number. So for example

if we set the precision of an input number 0.6 to 20 we get 0.59999999999999997780. This is because

computers work in base-2 not in base-10. So round-off errors happen in almost all numerical computations.

Exact calculations happen when only integers are involved and no floating-point numbers are present. Some

numerical calculations can cause the result to loose more precision than just the rounding errors. These

numerical processes are unstable processes.

The computation of the scattering matrix from the transfer matrix done in machine precision of 16 digits

fails with an error of insufficient precision. This forces our hand to use high precision numbers to calculate

the scattering matrix by the T-matrix algorithm. In Mathematica one can perform arbitrary precision

calculation. So we can specify an arbitrary precision for a number and the calculation will be carried out

with that precision. We discretise the pulse into equal layer lengths and calculate transfer matrices from

layer 0 to layer k ≤ N . Figure 3.7 shows the precision of the resultant transfer matrices as k changes from

1 to N for a starting precision of 920 digits. The blue and green curves compare the loss of precision in 5-fs

and 10-fs sech2 pulses. Both pulses have been divided into 4000 layers over their length. The precision falls

by as much as one digit every two layers, resulting quickly in a complete loss of precision and no result is

obtained. The shorter pulse consists of shorter layers, resulting in a slower loss of precision per step. Blue

and red curves are both for 5-fs pulses discretized into 4000 and 8000 layers, respectively. Doubling the

number of layers (of half the length) again reduces the precision loss per layer. We see that the blue curve

reaches zero around the 3000th layer, at 75% of total pulse length. For the red curve the precision falls to

zero at the 5500th layer, at only 69% of the pulse length. Thus fewer longer layers seem slightly less affected

by the instability, although a fine layering is required for convergence. Every time a numerical calculation is

done, like finding an inverse of a matrix or multiplying out the matrix, precision drops. This is more evident

especially when dealing with arbitrarily high-precision numbers. Mathematica overestimates the precision

loss while doing arbitrarily precision calculations. While working out the potential effect of unknown digits in

arbitrarily-precision numbers, it assumes by default that these digits are completely independent in different

numbers [64]. The precision loss seen in Figure 3.7 is due to this overestimation of error. This overstates
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the numerical instability of the T-matrix algorithm but shows why one needs to have high precision to begin

with to get an accurate result for the transfer matrix.

Figure 3.7: Precision loss in the T-matrix algorithm as a function of the number of layers traversed. The
scatterer is a sech2 pulse of 10-fs duration (green curve) and 5-fs (blue and red curve). For the blue and
green curve the pulse is discretized into 4000 layers and the red curve is for a 5-fs pulse discretized into 8000
layers. Starting precision is 920 digits. The black line marks the machine precision at 16.

For a staircase approximation, a large number of layers is required, in particular with a large pulse

duration. Hence, a high starting precision is required resulting in a long computation time. The disadvantage

of using an arbitrary precision input is the huge amount of time it takes for computation. The advantage is

that the answer you get is guaranteed to be precise. Setting the precision of numbers makes Mathematica keep

track of the precision throughout the computation. This is not possible with Machine Precision numbers.

So even a number with three digits of precision is considered more precise than a machine-precision number

since Mathematica is able to track its precision using significance arithmetic [65]. When using Machine

Precision one has to employ some other analytical, numerical checks to find out the precision and accuracy

of the results.
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Condition Number of a matrix

The condition number of a matrix is defined with respect to its norm, ‖�‖. It is a measure of perturbations

of the eigenvalues. Given a linear equation

Ax = b, (3.51)

the condition matrix of A will dictate the ratio of change in x with respect to change in b. With det A 6= 0

and a perturbation of b by k, A by F and (x+ y) satisfies

(A+ F )(x+ y) = (b+ k), A(I +A−1F )y = k − Fx. (3.52)

I is an Identity matrix. The magnitude of perturbation in solution is expressed as h(y)
h(x) where h is any vector

norm compatible with the matrix norm ‖A‖. We can simplify this to write y as

y = (I +A−1F )−1A−1k − (I +A−1F )−1A−1Fx, (3.53)

As F is a small perturbation we assume δ =
∥∥A−1

∥∥‖F‖ < 1 and ‖I‖ = 1. We use the Schwarz’s inequality

and write
∥∥A−1F

∥∥ ≤ ∥∥A−1
∥∥‖F‖. We approximate equation (3.53) into [66]

h(y) ≤
∥∥A−1

∥∥
1− δ

h(k) +
δ

1− δ
h(x), (3.54)

To get to our desired ratio h(y)
h(x) we note from equation (3.51) that h(b) ≤ ‖A‖h(x). So we get

h(y)

h(x)
≤
‖A‖

∥∥A−1
∥∥

1− δ
h(k)

h(b)
+

δ

1− δ
. (3.55)

Here we can see that the ratio of the error is directly proportional to ‖A‖
∥∥A−1

∥∥. This is called the condition

number of matrix A and is defined as κ(A) = ‖A‖
∥∥A−1

∥∥. For a square matrix and an euclidean norm defined

as ‖A‖ =
√∑

ij |aij |
2

we express the condition number as

κ(A) =
wmax(A)

wmin(A)
. (3.56)

wmax(A) and wmin(A) are maximal and minimal singular values of the matrix A. The condition number of a

resultant matrix C = AB follows κ(C) ≤ κ(A)κ(B). This means that the condition number of the resultant

matrix can be lower than that of the input matrices. If the condition number is close to 1, the linear

equation is a well-conditioned problem. If the condition number is high then the problem is ill-conditioned.
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Ill-conditioned matrices result in huge numerical imprecision when calculating inverses or solving linear

equations [67]. These can make an algorithm numerically unstable. The reason the T-matrix algorithm fails

to compute at machine precision is because the transfer matrix has a high condition number in some cases.

For the case when the scattering profile is a step, the T-matrix algorithm is stable. It works well with

negligible precision loss of 1 or 2 digits. This loss is due to the round off errors. As we include more layers,

the phase matrix, φ, comes into the calculation. We can see from Equation (3.7) that the phase matrix is a

diagonal matrix. For the case where all the modes are real in all the layers, i.e. all the wave-numbers are

real numbers, the T-matrix algorithm works well. Complex solutions come in pairs, so when the modes turn

complex inside the layers we get at least two complex modes which are complex conjugate of each other.

The diagonal term exp(ikl) grows exponentially for one of the complex k modes and it exponentially decays

for the other. This makes the condition number of the phase matrix high. In turn the condition number

of the propagation matrix becomes high. Multiplying the propagation matrices together further increases

the condition number of the resultant transfer matrix. In Figure 3.8 we can see the rise in the condition

number of the transfer matrix as soon as there are evanescent modes inside the layers as marked for the

blue curve by the red dashed line. As soon as the modes turn real the condition number remains mostly

the same. The magnitude of the rise of condition number depends on the pulse height and in turn on the

magnitude of the imaginary part of the complex modes. When the imaginary part of the complex modes

are bigger, the modes grow and decay faster. This makes the condition number of the transfer matrix high.

We see that the condition number rises to a very big number. This is a clear indication that most numerical

computations with such matrices will be highly unstable. We calculated the condition number by setting an

arbitrarily high precision to the matrices to get an accurate result. We attempt to track the imprecision and

inaccuracy in inverting these matrices. We invert the transfer matrices as we include more layers and note

the inaccuracy by calculating the mean error. Error is expressed as δn and is calculated as δn = I8−T−1
n Tn.

δ̄n =
‖δn‖1

64
. (3.57)

We divide it by 64 because δn is 8 × 8 matrix and has 64 elements. The mean error is plotted in Figure

3.9. We can see from Figure 3.9 that as we include the layers where evanescent modes exist the error in the

inverse matrix increases rapidly. The rise in error is an indication that the number of significant figures in

the inverse matrix of Tn is decreasing and Mathematica just fills numbers to keep it at Machine Precision.

The error is also loosely related to the condition number of the matrix. The condition number gives a

bound on how inaccurate the results can be, as in (3.55). Though the actual error depends on the specific

algorithm used to find the inverse matrix. This shows that the T-matrix algorithm is numerically unstable
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Figure 3.8: Condition number of transfer matrix is plotted on a log scale as we calculate it through the
layers. All three curves are for a 10− fs Sech2 pulse. The height of the the pulses are ε = 0.1, blue curve,
ε = 0.05, green curve and ε = 0.01 for the yellow curve. The red dotted line is a mark for the blue curve
calculation. It marks the layer in between which evanescent modes exist.

in the presence of evanescent modes.

3.3.2 S-Matrix Algorithm

The S-matrix algorithm was invented to circumvent the numerical instability problem [68,69]. Subsequently,

other algorithms and variants were proposed [70–72]; L. Li presents a comparison of the work in [73]. Here,

we discuss a variant of the S-matrix algorithm which is fast and unconditionally stable, i.e. algorithm 2a

in [73]. Though we generalise the algorithm to include negative norm modes and inequal number of right

and left going modes. As we have seen, that T- Matrix algorithm requires calculation of the inverse of

high condition number matrix, and we introduce the S-matrix algorithm to circumvent this. The S-matrix

algorithm is such an alternative algorithm. It avoids to calculate the transfer matrix TN and instead uses

intermediate scattering matrices Sn describing the scattering from layer 0 to layer n, treating layer n as

the asymptotic layer. Sn+1 is recursively calculated using the propagation matrix In+1 until SN is reached.
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Figure 3.9: Mean error is plotted against number of layers in a log scale. The colour of the curves correspond
to the same properties of the pulse as before. The calculation is done in Machine Precision.

From Equation (2.89) we write the equation for Sn+1:

Sn+1(PRσ0 + PLσn+1) = PLσ0 + PRσn+1. (3.58)

Using (2.89) we express the mode coefficient matrices σ0 and σn as

PR σ0 = PR (PR σ0 + PL σn), (3.59)

PL σ0 = PL Sn (PR σ0 + PL σn), (3.60)

PR σn = PR Sn (PR σ0 + PL σn), (3.61)

PL σn = PL (PR σ0 + PL σn). (3.62)

We first insert σn+1 from (3.11) into (3.58). Then we insert the projections (3.59),(3.60),(3.61) and (3.62)

in (3.58) to obtain the recursion for Sn+1:

67



Sn+1 =
(
PL Sn + PR In+1(PR Sn + PL)

)
(
PR + PL In+1(PR Sn + PL)

)−1
.

(3.63)

The recursion starts with S0 = 1. We apply the recursion until we reach the scattering matrix SN relating

the asymptotic layers. The numerical instability is avoided here by separating right and left going modes

by PR and PL, and in turn exponentially growing and decaying complex modes, into different blocks of

matrices. This keeps low the condition number of the matrices that are to be inverted, which stabilizes the

process, and allows us to work in machine precision. As a result, the duration of the computation of the

scattering matrix is drastically reduced.

3.3.3 Riccati matrix equation for the scattering matrix

Although the S-matrix algorithm solves the numerical instability, it still relies on the staircase approximation

of the scatterer. We look for an algorithm that is both numerically stable and converges faster than the

staircase approximation for an arbitrarily shaped pulse.

We modify the S-matrix method and restate it as a differential equation for the scattering matrix. The

scattering matrix S is expressed as a continuous function of x, S(x), with Sn = S(xn). Accordingly, we

write Sn+1 = S(xn + ln). We Taylor-expand the scattering matrix, S(x):

S(x+ ∆) ≈ S(x) + ∆
dS(x)

dx
(3.64)

Similarly, we re-interpret the propagation matrix I, the mode matrix M and the phase matrices κ and Φ as

continuous functions. By the definition of the propagation matrix, (3.12), we expand

I(x+ ∆) = M−1(x)M(x−∆)Φ(x) (3.65)

≈
(
1−∆M−1M ′(x)

)(
1 + ∆ iκ(x)

)
(3.66)

≈ 1 + ∆(iκ(x)−M−1M ′(x), (3.67)

Here, the prime denotes the derivative with respect to x. In the limit of ∆ → 0, the propagation matrix

I(x) → 1. This reflects the continuity of the fields. We substitute (3.67) and (3.64) into the continuous
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version of (3.63) to get a generalized differential equation for the scattering matrix

S ′(x) =

(
PR − S(x)PL

)(
iκ(x)−M−1(x)M ′(x)

)
(
PR S(x) + PL

)
.

(3.68)

This Riccati equation is an explicit first order coupled differential equation of dimension 8 and with non-

constant coefficient matrix τ(x) = iκ(x) − M−1(x)M ′(x). It describes the stationary scattering from a

scattering potential reaching from −∞ to x and its evolution with x. Note that the only key assumption

is that the scattering is stationary. Equation (3.68) can be solved analytically for a few cases including a

sech2-pulse in quadratic dispersion [74].

For most scattering potentials and dispersion relations, the equation has to be solved numerically. The

local functions κ(x) and M(x) are found from the potential and the dispersion relation, determining the

modes present at x. The differential equation can be solved using the simple Euler method. However,

numerical methods such as the Runge-Kutta method offer a higher convergence order. This method is

therefore stable and converges fast.

For a physical understanding and mathematical simplicity we can break up equation (3.68) into four

coupled equations. First we write S as a block matrix:

S =

S11 S12

S21 S22

 . (3.69)

Here S11 and S22 block matrices contain all the transmission coefficients and S12 and S21 contain all the

reflection coefficients. Here Sij is the part of S that remains after projection to the i, j -subspace, where

1↔ R and 2↔ L. For example, S11 is a p-dimensional square matrix describing the scattering amongst all

right moving modes. It is explicitly written as

S11 = PRSPR = P1SP1, (3.70)

S12 = PRSPL = P1SP2. (3.71)

Next, we find the differential equations of the four blocks Sij(x):

S ′12(x) = τ12(x)− S12(x)τ21(x)S12(x)

−S12(x)τ22(x) + τ11(x)S12(x)

(3.72)
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Figure 3.10: The steps involved in calculating the scattering matrix in the Riccati matrix algorithm. The
input is a list of matrices, Mn, alongside the layer lengths for all layers in the pulse from the yellow and
green steps in Figure 3.6. The coefficient matrix function,τ(x), is calculated in the intermediary step and
then a numerical method, like Runge-Kutta method, is used to solve the differential equation.

S ′11(x) = τ11(x)S11(x)− S12(x)τ21(x)S11(x) (3.73)

S ′22(x) = −S22(x)τ21(x)S12(x)− S22(x)τ22(x) (3.74)

S ′21(x) = −S22(x)τ21(x)S11(x) (3.75)

One can solve equation (3.72) for S12 first as it decouples. The solution is inserted in (3.73) and (3.74)

to calculate S11 and S22, which in turn is used in equation (3.75) to calculate S21. Note that this decoupling

is independent of the coefficient matrix τ(x).

Cases where one can derive τ(x) analytically from the wave equation are an ideal place for the use of this

algorithm. In our case, we have no analytical form for τ(x), we numerically calculate it. Figure 3.10 shows

the algorithm as it is applied in our flow.

Properties of scattering matrix

The scattering matrix consists of reflection and transmission coefficients. As we have used orthonormal

modes, in many cases the scattering matrix will be unitary. The unitarity of the scattering matrix signifies
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the conservation of the energy at a scatterer. It can be expressed as

SgS† = g. (3.76)

Here g is the ‘metric’ of the basis set of modes and can be chosen as g = 1, i.e. the scattering is passive. g is

the dot product of pairs of basis vectors. In the last chapter, in the simple setup toy model, the scattering

matrix was a unitary transformation. In some scattering problems, however, the scatterer amplifies or de-

amplifies the wave field. For example, this may be caused by a movement of the scatterer and excitation

of negative norm modes. The metric in this case is no longer all positive, but g is a diagonal matrix of

±1. Fields that are amplified correspond to +1 and the conjugate fields to −1. The scattering matrices

are then ‘quasi-unitary’ matrices and they represent the Bogoliubov transformations in quantum mechanics.

Inserting (3.49) in (3.76), we get

(PL + PRT )(PR + PLT )−1g(PR + PLT )−1†(PL + PRT )† = g. (3.77)

We can invert and rearrange the equation to get

(PR + PLT )†g(PR + PLT ) = (PL + PRT )†g(PL + PRT ). (3.78)

Noting that (PR + PLT )† = T †PL + PR we write

PRg + T †PLgPLT = PRg + T †PLgPLT. (3.79)

We rearrange the equation to obtain a condition for the transfer matrix TN = T (x)

T †(x)(PR − PL) g T (x) = (PR − PL) g. (3.80)

The scattering matrix relates the asymptotic incoming modes to the asymptotic outgoing modes, whereas

the transfer matrix relates the right asymptotic fields to the left asymptotic fields. This difference is what

changes the metric in (3.80) from g to (PR − PL) g. The new metric balances the energy flow, if a field is

going right then it is either balanced by a conjugate field going right or a field going left and vice versa.

The conservation of energy is represented as the quasi unitarity of the transfer matrix. In most problems

the transfer matrix is first calculated before the scattering matrix, so Equation (3.80) allows us to check the

correctness of the transfer matrix early on in the calculation. One can understand this as the conservation
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of norm in space, i.e., the norm is conserved throughout the scattering process. If a positive norm mode is

going right then it has to be balanced by a positive norm mode going left or a negative norm mode going

right. This balance of norm flow is captured in the Equation (3.80).

The quasi-unitarity of the scattering matrix may be affected by numerical errors. Thus it may indicate

numerical errors independently of the actual numerical result.

3.3.4 Differential equation for the scattering matrix

In this section we assess the numerical convergence and stability of the Riccati matrix equation by calculating

the global mean error. The numerical calculation is carried out with double precision. We use an explicit

single-step method to solve equations (3.72)-(3.75), the explicit fourth order Runge-Kutta method1 [75] and

the sixth order Runge-Kutta method [76]. Other methods of lower order include the Euler, modified Euler

and the Haun method [67]. We define the global error δ as the difference between the exact solution and

the numerical solution of the differential equation. If the analytic exact solution is not available, the error δ

can be approximated by [67]

δ(x, h) = S̃(x;
h

2
)− S(x) ≈

S̃(x;h)− S̃(x; h2 )

2q − 1
. (3.81)

S̃(x;h) is the numerical solution obtained by the single step method using step size h and q is the order of the

numerical method. For the Runge-Kutta method the order is q = 4 or q = 6 dpending on which numerical

process we use. The numerical solution for the Riccati equation has 82 = 64 scattering coefficients. We

define a mean error δ̄ as follows:

δ̄ =
‖δ(x, h)‖1

64
, (3.82)

where ‖ · ‖1 is the 1−norm of δ(x, h). In our case we have 8 modes in each layer and hence 64 scattering

coefficients. We choose 1-fs, 10-fs and 20-fs sech2-shaped pulses. We use a constant step size and vary the

number of steps across the pulse length while calculating the scattering matrix. In Figure 3.11 the global

error is shown as a function of the number of steps used. The figure shows that the mean error decreases

as hp, where p is the order of the method. As the error approaches 10−12 − 10−13, we see that it deviates

from the h−p curve, because the error reaches machine precision. This effect is most clearly seen for the

brown curve, i.e the 1 fs pulse solution solved by the sixth order Runge-Kutta method. Here, as the error

falls below 10−13, increasing the number of steps does not reduce the global error. Thus the number of steps

may be chosen for the required accuracy level for the solution. The correctness of the solution is tested

by verifying the quasi-unitarity (3.76) of the scattering matrix, i.e. calculating S†g S and comparing to g.

72



Figure 3.11: Mean global error δ̄ in solving the Riccati differential equation numerically as we increase the
number of steps the explicit Runge-Kutta (RK) method uses. The blue and the green curve is the error for
a classical fourth order RK method for 10fs and 1 fs pulses, respectively. The blue and green dashed lines
shows the scaling of N−4. Pink, red and brown curves show the error for 20, 10 and 1 fs pulses, respectively,
solved by a 6th order RK method. The dashed curve shows the scaling of N−6. The black curve shows the
correctness of the solution for a 10fs pulse calculated by a sixth order RK method.

Similar to (3.81) and (3.82), we can define a mean deviation. The black curve in Figure 3.11 shows how the

mean deviation varies as we increase the number of steps. It stays around a mean deviation on the order

of 10−11 − 10−12. The mean error here is limited by the error in inverting the scattering matrix in machine

precision. The reasons for this is as discussed in the precision loss section. Any numerical computation will

have round off errors and as the condition number of the scattering matrix is more than 1 the errors will be

more than just round off errors. The small size of the deviation confirms that quasi-unitarity is fulfilled in

the scattering matrix solution of the differential equation. This also gives us a limit on the accuracy of our

solutions to follow when done in machine precision.

Remarks

We have shown a new concise formula connecting T-matrix to S-matrix and have generalised both the T and

S-matrix algorithms to describe scattering from a moving scatterer. The numerical stability of the S-matrix

algorithm is demonstrated and we have successfully calculated a scattering matrix through the new Riccati
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matrix equation. We have demonstrated the fast convergence of the solutions through the Runge-Kutta

method. We demonstrated the numerical stability of the S-matrix algorithm compared to the T-matrix

algorithm, which we formulated in a compact way (Equation (3.49)). We presented a novel differential

equation for the scattering matrix.

Here we have all three possible ways to calculate the scattering matrix. Depending on the scattering

problem we can choose the appropriate algorithm. For a step, the T-matrix algorithm is best suited as it

is quite stable. For a top-hat pulse or for a pulse which is not smooth and has layers, can be solved by

the S-matrix algorithm. For a smooth pulse we can solve it either by the S-matrix algorithm or by the

Riccati matrix equation. We have also shown that the staircase approximation does lead to convergence as

we increase the number of steps.
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Chapter 4

Numerical Results

4.1 Numerical results in Literature

Many scattering simulations have been solved and presented in optics but only a handful in optical analogue

horizon scattering. Scattering among positive norm modes, i.e. the blue and red shift and resonant radiation

from an optical pulse, has been studied in detail, both experimentally and numerically [39,46]. However, the

scattering to negative modes with a focus on Hawking modes has not been produced numerically in detail.

The first numerical study was done in 1996 by Jacobson et all [77]. Here they wanted to investigate the

effect that nonlinear dispersion plays in the spectrum of the Hawking mode in an analogue fluid system.

They modeled the horizon as a tanh velocity profile. The dispersion relation was modeled as one of vacuum

for lower frequencies and then a deviation of second order for higher frequencies. This model was studied in

detail in 2009 by Parentani et all [78]. Here they concluded that the Hawking flux depends on the curvature

of the velocity profile at the point where the horizon is formed, the asymptotic regions of the scattering and

the curvature of the transition from the ramp to the asymptotic layers. Though this numerical study was

done for fluids and for a much simpler dispersion relation we shall show the same features in our results.

In optics we have the flux produced from a step [52, 79] and for a few optical soliton pulses [80]. The

results for the optical pulses were produced by using integral methods in the Fourier space developed by

Robertson [81,82]. However, these methods were not numerically optimised and resulted in quite an increase

of computation time when complex modes were present, as stated in the papers, and no methods were

available for efficiently producing numerical results for various scattering profiles. This is why we see that

results were either produced via WKB or some other approximations for smooth curves or if a robust method

was used it was computationally heavy and restricted us to very simple scattering profiles like a step. Even
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in the 2016 paper [80] with the numerical results for the optical pulse we see the flux for only one pulse of 2

fs and the dispersion diagram does not include all the branches.

In this chapter we use the methods discussed in the previous chapter to produce fluxes for various steps,

ramps and pulses for a full Sellmeier dispersion relation which includes all eight branches.

4.2 Results

Here we will show and discuss the scattering from various scattering surfaces. The flux of photons per time

is evaluated by summing over the absolute square of the partner scattering coefficients as discussed in the

previous chapter. We have 5 positive and 3 negative modes and they are arranged in an ascending order

according to the real part of their frequency. The photon flux for a positive mode is the sum of the absolute

square of the scattering elements of all the negative modes for that positive mode, and similarly for the flux

of a negative mode i,e

Iωα∈P/N =
∑

α′∈N/P

|Sωαα′ |2. (4.1)

This is dimensionless measure of the photon flux. We calculate the flux for different moving frequencies,

ω. We vary the frequency from 0.5ωmin to 1.1ωmax. Here ωmin/max are as described in Section 3.2. This

captures all the possible dynamics, i.e. all 5 cases. There are two parameters that describe the top hat

pulse, i.e. the pulse length, Tp, and the height of the pulse, intensity of the pulse, denoted by ε. This is a

quantitative way to show how much the dispersion relation is affected by the pulse. The relation between ε

and the change in refractive index is shown in Equation (2.78).

We start by showing the flux of all eighth modes for a step of height, ε = 4 × 10(−3). This corresponds

to a refractive index increase of, δn ≈ 1.5 × 10(−3). The step is travelling towards the right with a speed

of v = 0.68158 × c. The setup is shown in Figure 4.1. We assume without loss of generality that the step

interface is at x = 0.

We choose this step height so that we can see all 5 scenarios. We also name our modes so that we can

refer to them easily. From the Figure 2.1 we see that there are 8 branches in total from the top to bottom

we call these branches, upper upper (UU), upper (U), optical (O), lower (L), negative lower (NL), negative

optical (NO), negative upper (NU) and negative upper upper(NUU) branch. The pulse velocity and the

frequency we choose gives no solutions in the upper upper(UU) or negative upper upper(NUU) branches.

In descending order according to the lab frequency, the possible modes are upper (U), upper optical (UO),

middle optical (MO), optical (O), lower (L), negative lower (NL), negative optical (NO) and negative upper

(NU) mode. Here we find 3 modes in the positive optical (O) branch, though as we have seen in section 3.2
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that two of these modes can turn complex. MO mode is the only one that travels towards the right in the

moving frame. Every other mode travels towards the left. Figure 4.2 shows the flux for all eight modes. The

dashed curves are flux for negative norm modes and blue, pink and black curves are the optical modes.

• Before the first vertical red dotted line is scenario 5 where both regions, inside the step and outside

the step, have 6 real modes and 2 complex modes. We see 6 curves before the first red dotted line, as

MO and O modes do not exist in that scenario.

• In between the first red and first blue dotted line we have scenario 4 where we have 8 real modes inside

the step, x < 0, and 6 real modes outside the step, x > 0. Here the step is an analogue white hole

horizon. The inside of the step, x < 0, is the outside of the white hole event horizon, as there are

modes that can travel both ways. The outside of the step, x > 0, is the inside of the event horizon as

modes can only travel towards the step. We can see that in this case the flux increases for the escaping

mode. The negative mode partner is the NO mode and is correlated closely with the optical(O) mode

.

• In between the first blue dashed vertical line and the second red dashed vertical line we have Scenario

3 where we have all real solutions in both the regions. Here the flux generated is not due to horizon

physics. It is generated just because of dispersion and the mixing of negative and positive norm modes.

• In between the second red dashed line and second blue line we have Scenario 2. Here the step is an

analogue black hole event horizon. x < 0 is the inside of the event horizon as modes can travel only

one way, i.e. away from the step, x > 0 is the outside of the event horizon as modes can travel both

way and the only escaping mode is the MO mode, the black curve. Outside the step, x > 0, there are

8 real modes, 1 escaping the step and the other 7 incoming towards the step. Inside the step we have

6 real modes and all of them are travelling away from the step. Here, as in scenario 4, we can see the

escape mode peaking and the negative optical norm mode, black dotted curve, being closely correlated

with the escaping mode.

• After the last blue dotted line we are in Scenario 1 with 2 complex modes in both regions. The MO

mode does not exist and we only get the O mode. The flux decreases as we go away from the horizon

cases.

This is a left step as the step rises to the left. The flux of a right step is just calculated by the inverse of

the scattering matrix for the left step, as the in modes become out and vice versa when we reverse the side

of the step. The flux for the right step is shown in Figure 4.4 .
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Figure 4.1: Shows the step used as a scatterer. ε is the step height and v is the speed of the step.

Figure 4.2: The flux for all eight modes for a left step of height of ε = 4× 10−3. The step is travelling at a
speed of v = 0.681588 × c, group velocity for a pulse with central wavelength of 800 nm. The vertical blue
dotted lines are the ~ωmin and ~ωmax, i.e are the turning points of the optical branch of the medium. The
red dotted lines are ~ω′min and ~ω′max are the turning points of the optical branch in the step.
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Figure 4.3: Shows the step used as a scatterer. ε is the step height and v is the speed of the step.

Figure 4.4: The flux for all eight modes for a right step of height of ε = 4× 10−3. The step is travelling at a
speed of v = 0.681588 × c, group velocity for a pulse with central wavelength of 800 nm. The vertical blue
dotted lines are the ~ωmin and ~ωmax, i.e are the turning points of the optical branch of the medium. The
red dotted lines are ~ω′min and ~ω′max are the turning points of the optical branch in the step.
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• Scenario 5 (before the first red dotted vertical line) In this region we approximately similar flux to that

from a left step.

• Scenario 4 (in between the first red dotted and first blue vertical line). Here we have 8 real modes

inside the step and 2 complex modes outside of the step. The MO mode exists inside the step and

the UO mode is one of the outgoing modes outside the step. The step is analogous to a black hole

event horizon where the outside of the horizon is x > 0, inside the step, and the inside of the horizon

is x < 0, outside of the step. The escaping mode here is the MO mode. Here you can see that the

shape of the black curve in Figure 4.4 is the inverse of the shape of the black curve in 4.2. Similarly

the shape of the UO mode, blue curve in Figure 4.4, is inversion of the shape of O mode, pink curve

in Figure 4.2.

• Scenario 3 is the situation where there is no horizon physics and we get 8 real solutions.

• Scenario 2 - Here we have 8 real solutions outside the step, x < 0, and 2 complex solutions inside the

pulse, x > 0. The step is a white hole horizon where the outside of the horizon is outside the step,

x < 0 and the inside of the horizon is inside the step, x > 0. The UO mode is one of outgoing modes

from the white hole horizon in x < 0 and its flux is maximised in this scenario.

• Scenario 1 - It is similar to 4.2.

We see that the left step is better suited as it depicts the black hole event horizon case for a longer window

in the frequency regime. The way flux depends on the step height is depicted in Figure 4.5 .

• Here we have plotted the flux of the escaping mode, MO, and negative optical mode, NO, at ~ω = 0.018

eV. It shows that as refractive index increases so does the flux of the escaping mode. The kink occurs

when the refractive index is high enough to make complex modes come into existence inside the step.

The horizon forms.

• As we increase the step height we see that the MO mode’s flux rises less steeply than that of the O

mode and the NO mode gets more correlated with the O mode.

• As the height increases the mode’s wavelength and frequency change. The NO and O mode’s lab

wavenumber and frequency decrease and and their fluxes become more similar to each other and hence

is phase-matched more easily. The MO mode is at the right of the step and its wavenumber and

frequency do not change with the step height.

• This kink in the MO flux will become more amplified in the next section when we study ramps.
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Figure 4.5: This Log-Log plot of the flux of the MO (black curve), NO (black dotted curve) and O (green
curve) verses the increase in refractive index for the left step. The frequency is ~ω = 0.018 eV.

Here we have shown the result of scattering from a step and how the flux changes with height of the step.

Results of the step scattering have been discussed in detail in [83].

4.2.1 Ramp as a scatterer

One of the things which have not been studied in the literature is how the flux is affected if we have a smooth

step as a scatterer. With our new algorithms we can study the scattering from smooth surfaces. We model

the smooth step, ramp, as an exponential function. This is shown in Figure 4.6.

81



Figure 4.6: Smooth step profiles. They all have same step height , ε = 4× 10−3, for x > 0 the pulse profile
is described by εmax exp[−px] , where p is different for all three curves, green curve has p = 106m−1, blue
has p = 2× 106m−1 and red has p = 3× 106m−1

We model a smooth step as an exponential function , ε(x) = εmax exp[−px], where p is a quantitative

measure of how quickly the step rises to its height. The transition from the ramp to the asymptotic region

is a sharp one at the top of the ramp and a smooth exponential one at the bottom of the ramp. To solve

the scattering problem we employ the staircase approximation. As the exponential function is infinitely long

we start to discretize the ramp when the height is sufficient for the off diagonals of the scattering matrix to

become larger than ≈ 10−15. We plot the mode flux of the green ramp in Figure 4.6. The ramp with the

least gradient in Figure 4.6. The flux is shown in Figure 4.7. Here the fluxes of all 8 modes are plotted.

The first big difference between the step and the ramp is the magnitude of the flux. The peak of the flux

drops from around 10−2 to 10−5. The second big difference is that the kinks disappear in our ramp’s flux

curves as compared to the step’s flux. The shape of the MO mode, the escaping mode in the black hole event

horizon analogue case, maintains its shape. The shapes of the UO curve and O curves are also somewhat

preserved though it is changed much more than the MO curve. Every mode’s flux is radically decreased

except for that of the L mode. This is because the scattering in the L mode is not affected in this frequency

window. In a ramp, scattering is ’softened’ because the modes do not change as drastically as in the case of a
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discontinuous step. Modes change slowly throughout the ramp and this slow change in matching conditions

across the layers makes the scattering coefficients small.

Figure 4.7: Flux of 8 modes plotted in a Log curve for the green ramp of height ε = 4×10−3 and p = 106 m−1

traveling at a speed of v = 0.681588c. The vertical blue dotted lines are the ~ωmin and ~ωmax, i.e are the
turning points of the optical branch of the medium. The red dotted lines are ~ω′min and ~ω′max are the
turning points of the optical branch in the step.

As we increase the gradient of the ramp, make it steeper, we expect the flux to increase to that of a step.

We show this by focusing on the flux of the MO mode in the black hole event horizon regime. We plot the

flux of the MO mode for ~ω = 0.018 eV for different gradients. The flux is shown in Figure 4.8. We see that

as we increase the gradient of the ramp, p, the flux increases. The flux saturates to that of a step as the

ramp becomes more steep. This is a good result as it confirms what we expect and it gives us more trust in

our calculations apart from the correctness check we do by calculating SgS† = g.

For the next plot we keep the gradient constant and change the height of the ramp and plot the modes’

fluxes. We plot it for a temporal width of T0 = 5 fs. The gradient is calculated as p = 1
T0×Vg . Figure 4.9

shows the flux.

• There is a sudden jump in the flux right after the horizon is formed. This jump in the flux is in the

escaping mode, MO, which is correlated with NO mode and a bit with NL and NU mode. This jump

is due to the horizon physics.

• As we increase the height of the ramp further flux of the MO mode drops and flux of the O mode
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Figure 4.8: Flux of the MO mode at frequency, ~ω = 0.018 eV for a ramp of height ε = 4×10(−3), is plotted
against the gradient of the ramp, p. The green dotted line is the flux for a step of the same height.

Figure 4.9: Flux of all 8 modes against the ramp height for an exponential ramp of temporal width of 5 fs,
p = 9.8 × 105. The black is for MO mode, red is for U, pink is for O, green is for L. The dashed lines are
for negative norm modes, red is for NU, green is for NL and black is for NO. The gray dashed line on the x
axis is the height at which the horizon is formed.
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Figure 4.10: Flux of the MO mode against the height of the ramp for two gradients, red curve is for 5 fs
ramp and blue is for 1.5 fs ramp. The dashed grey line is at the step height where the horizon is formed.

rises along with that of the L mode. The NO mode is correlated more with the O and L mode. This

is similar to what we see for the step in Figure 4.5. The drop in the MO mode is significant and it

becomes numerically zero to machine precision for higher ramp heights.

• The MO mode is the only right going mode and as we increase the step height its lab frequency and

wavenumber mismatches with the modes on the other side of the ramp. Similarly, the complex mode’s

imaginary part grows and thus diminishes rapidly, less of the MO mode is tunnelled through the ramp

and scatters less into other modes.

This decrease in the MO mode can be studied further. It is an effect due to the dispersion relation and is

not due to the horizon physics. We plot the flux of the escaping mode, MO, for a steeper ramp in Figure

4.10.

• Both the curves have similar shapes. The flux for the steeper ramp has higher flux for the same height

of the ramp. The blue curve shows the horizon effect for a longer window. The complex waves have to

travel less of a distance and hence are damped much less, which results in more scattering of the MO

mode.
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• Due to the steep fall in the MO flux as we increase the step height, we encounter scenarios with higher

flux for a ramp with a lower gradient and lower height. For example a ramp of height 0.004 with

gradient of p = 9.8 × 105 has a higher flux compared to a ramp of height of 0.1 with gradient of

p = 3.2× 106.

Temperature of the Radiation

From the flux we can calculate the brightness temperature of this radiation. We assume that the flux is part

of a thermal radiation where the flux density is related to the temperature as

IOut
ω =

1

e
~ω

kBTω − 1
. (4.2)

Here kB is the Boltzmann constant and Tω is the temperature for that frequency. We can rearrange Equation

(4.2) to make temperature the subject of the equation and write

kBTω =
~ω

ln ( 1
IOut
ω

+ 1)
. (4.3)

We plot how the temperature changes for different ramp heights as we change the gradient. We plot it for

6 different step heights. The temperature is plotted in Figure 4.11.

• All the curves reach the temperature of the step, of the same height as the ramp, as the steepness of

the the ramp is increased.

• Ramps with lower heights can have higher temperature for a certain gradient. A prominent example

is the green curve higher than all the curves at p = 106. This is true for all the curves. This is why

we see the crossing of the curves in the figure. The horizon is at a point where the real modes turn

complex inside the ramp, this happens at ε = 0.0036 for frequency ~ω = 0.018 eV.

• This result gives us an insight on how the flux can be maximised for a pulse. We can maximise the

temperature of the flux with less intense pulses if the length of the pulse can be manipulated.
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Figure 4.11: Log plot of temperature of the MO mode against the gradient of the ramp for 6 different ramp
heights. The frequency is ~ω = 0.018 eV. Green curve is for ramp height, ε = 0.004, blue curve is for
ε = 0.03, red curve is for ε = 0.05, black curve is for ε = 0.1, brown curve is for ε = 0.2 and pink curve is for
ε = 0.5. The dotted lines are the corresponding temperature for the step heights.

2 ramp

Here we investigate the role of the curvature of the scatterer in the emission process along with the effect of

the dispersion relation. We model the ramp now with as half a 2 pulse. The equation of the ramp is

ε(x) =


εmax, for x ≤ 0

εmax
2
(

x
T0Vg

)
, for 0 < x

(4.4)

The gradient of the ramp, p, is p = 1
T0Vg

. As before, we can see how the temperature depends on the

gradient of the ramp. Figure 4.13 shows the temperature as we vary the temporal width of the ramp for

various heights of the ramp for the frequency, ~ω = 0.018 eV. The temperature is for the escaping mode,

MO.

• The temperature drops as we increase the temporal width. For a 5 fs ramp the temperature drops to

very low value. This shows the temperature of a ramp is very sensitive to temporal width.

• The way the temperature falls with respect to temporal width depends on the height of the pulse and

the curvature at the turning point. We see that we might get lower temperature for 5 fs ramp for a
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Figure 4.12: 2 ramps depicted. The yellow curve is for T0 = 2 fs and blue curve is for T0 = 1 fs. Group
velocity, Vg = 0.68158c, speed of a pulse centred at λ = 800 nm. The height of the ramp, εmax = 0.004.

higher ramp than a lower ramp.

• This behaviour is similar to Figure 4.9. The Flux of the MO mode as we increase height of the ramp

drops down and this is what we see here as well.

Sigmoid Ramp

We model the ramp as a sigmoid curve. It is defined as

ε(x) = εmax
1

1 + epx
. (4.5)

Here p is a measure of the gradient of the curve. The curves are plotted in Figure 4.14.

Similar to Figure 4.11, we plot the temperature of the MO mode versus the gradient of the ramp. Figure

4.15 shows the temperature of the MO mode versus ε. The lowest gradient for which the temperature is

plotted is p = 5×106. We could not go to lower gradient as that presented a computational challenge. As we

decrease the gradient, p, the length of the ramp increases and we require larger number of steps to compute

the scattering matrix, increasing the computational time. Hence, the crossing of the curves are not recorded

here as we saw them in Figures 4.11 and 4.13.
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Figure 4.13: The temperature of the MO mode is plotted for various ramps of different heights as we vary
the temporal width of the ramp in a log-log graph. The red curve is for εmax = 0.004, green is for 0.01,
black is for 0.03, blue is for 0.05 and magenta is for 0.1. The dotted lines are temperature of the respective
step height.

We compare the fluxes of all three types of ramps by plotting the escaping mode, MO mode, flux for a

ramp of height, εmax = 0.004. Figure 4.16 shows the flux as we vary the gradient of the ramp. The frequency

is, ~ω = 0.018 eV at which the flux is calculated.

• The difference between the there ramps is how they transform to the asymptotic regions. The ex-

ponential ramp transforms most abruptly at the top of the ramp, 2 ramp transforms smoothly and

quickly and the sigmoid ramp transforms very slowly and smoothly to the asymptotic region.

• Ramps that slowly transform to the asymptotic region have a lower flux and ramps that make a sudden

change to the asymptotic layer give a higher flux.

Studying the ramps we have found that the curvature at the turning point plays the most important role

along with the ramp height.

Until now we have studied only infinitely long steps or ramps where we have only one horizon case. When

the scatterer is a pulse we have two edges, unlike a step. We will study how a pulse affects the spectrum.
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Figure 4.14: Plot of two sigmoid ramps. The blue curve has the gradient of p = 5 × 106 and yellow curve
has p = 107. Both the curves have the height of εmax = 0.004.

4.2.2 Top Hat Pulse

The simplest pulse we can study is the top hat pulse. In a top hat pulse we will have only three layers. The

top hat pulse has an extra parameter, the pulse length, T0. No numerical study has been previously done

on scattering from a top hat pulse. The spatial width, L0, of a pulse is calculated as

L0 = VgT0. (4.6)

Vg is the group velocity of the pulse and T0 is the temporal width of the pulse. We plot the flux of a top-hat

pulse of the same height as the step we analysed, ε = 4× 10−3, and temporal width of T0 = 2 fs. The group

velocity is the same as before of the step and the ramp, v = 0.681588× c. Figure 4.17 shows the flux for the

top hat pulse.

• The asymptotic regions are identical in the case of a top hat pulse. The flux curves do not have a kink

at the transition from scenario 3 to scenario 2.

• The escaping mode MO,black curve, and the optical UO mode, blue curve are more or less constant
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Figure 4.15: Five temperature curves for MO mode are plotted for different ramp heights. The red curve is
for εmax = 0.004, green is for εmax = 0.03, black is for εmax = 0.05, blue is for εmax = 0.1 and pink is for
εmax = 0.5.

throughout horizon window (scenario 2) .

• The modes that cease to exist in scenario 1, MO and UO mode, do dip as in the case of a step and the

ramp.

The flux fluctuates with the top hat pulse length. We can see that in a plot of the flux with respect to

pulse length’s. Figure 4.18 shows the fluctuation in flux for the optical modes as we change the temporal

pulse width from 0.2 fs to 10 fs for the frequency, ~ω = 0.018 eV. At this frequency we are in scenario 2, as

shown in Figure 3.3. We have 8 real solutions outside the pulse and 6 real inside the top hat pulse. MO and

UO are complex modes inside the top hat pulse at this frequency.

• The mode fluxes fluctuate with their own unique frequency as a function of the temporal width.

• We see that the fluctuations of the MO and UO modes decay away for increase in T0 but the fluctuations

of O mode does not. MO and UO mode are complex inside the top hat pulse and as we increase the

pulse length the tunneling effect of the complex modes decay away. The optical mode, O , exists in the

top hat pulse and the phase it acquires as it travels inside the top hat layer causes the fluctuations.
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Figure 4.16: Flux of the escaping mode, MO for three different kinds of ramp of same height, ε = 0.004.
Blue is for the Sigmoid ramp, Red is for the Sech ramp and black is for the exponential ramp.
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Figure 4.17: Flux spectrum for a top hat pulse of height ε = 4 × 10−3 and pulse length of T0 = 2fs. The
vertical red dotted lines are the ~ωmin and ~ωmax, i.e are the turning points of the optical branch of the
medium. The blue dotted lines are ~ω′min and ~ω′max are the turning points of the optical branch in the
top hat pulse. All the curves are labelled as, Red for Upper mode, Blue for Upper optical mode, Black for
middle optical mode, Magenta for Lower optical mode, Green for lower mode, Green dashed line for negative
mode, Black dashed line is for negative optical mode and red dashed line is for negative upper mode.
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Figure 4.18: Flux for optical modes against the temporal width of the top hat pulse. Blue is for UO mode,
Black is for MO mode, pink is for O mode and black dotted curve is for the NO mode. The dashed lines are
the flux for a step of the same height as the top hat pulse. Calculated for a fixed frequency, ~ω = 0.018eV
and pulse height ε = 0.004.
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• The fluctuations in the NO mode are correlated with all the three optical modes.

• The flux periodically fluctuates around the step’s flux. The top hat pulse creates more flux than a step

at certain temporal widths. This is where the fluxes for a certain frequency constructively interfere

inside the pulse.

The flux’s response to the change in temporal width is not easy to predict. We can trace the dependence

of pulse width back to the transfer matrix

TtopHat =M−1
3 M2φ2M

−1
2 M1 (4.7)

=TstepLφ2T
−1
stepL (4.8)

Here TstepL is the transfer matrix of the left step as shown in figure 4.1. The phase matrix, φ2 is defined as

in equation (3.8). Every element of the transfer matrix is a linear combination of all the exponential in φ

matrix,

Tij =

h=8∑
h=0

(T−1
stepL)ih(TstepL)hk exp(iKhl) . (4.9)

Following the T-matrix algorithm (3.49) we can see that inverting the transfer matrix will result in a

complicated dependence on the exponential terms. In a simple model we can see that the scattering matrix

elements will have a geometric series of the exponential terms as shown in Appendix . We can see that

every scattering matrix coefficient is very complex combination of exponential components and there does

not seem to be a straightforward analytical way to know the effect of changing the pulse widths will have

on the scattering coefficients.

We can plot a similar figure as 4.5 for the height of the top hat for the same frequency. The escaping

mode’s flux is plotted as we increase the height of the step in figure 4.19.

• The flux for optical modes fluctuate this is because the wavenumber inside the pulse changes changing

the phase pick up and hence changing the scattering coefficients.

• The effect of the turning point, gray dashed line, is not very evident as the dispersion relation of the

asymptotic layers do not change.

• MO mode is the only mode which do not fluctuate periodically or its fluctuation is quite dampened as

we increase the pulse height.
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Figure 4.19: Log plot of the flux of the optical modes for top hat pulse, T0 = 3fs. The black curve is for
MO mode, blue curve is for UO mode, Green is for O mode and black dashed curve is for NO mode. The
height of the pulse is on the x axis. The gray vertical line is height of the pule where we get complex modes
inside the pulse. After the vertical line we have the horizon case.

4.2.3 Sech2 Pulse

Sech2 pulses are important to study as optical solitons have the same shape. In literature [39] it is believed

that Sech2 pulses with shortest and highest intensity will produce the most flux though no numerical study

has been done in detail. We will plot the flux of various pulse sizes and intensity to find out what optimises

the flux.

We plot the temperature of the escaping mode as we change the temporal width of a pulse for different

height of the pulse. Figure 4.20 shows the plot.

• The shapes of all the curves are similar. They have a distinct feature of rising to a maximum temper-

ature and then dropping to numerical zero.

• The temperature rises in the start because for a zero length pulse we will get zero flux so for the very

short window at small pulse lengths the temperature rises initially.

• After reaching the peak the gradient of the pulse play a more important role and as we increase the

temporal width the flux exponentially decreases as the gradient of the pulse decreases.
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Figure 4.20: Log-log plot of temperature vs the temporal widths of the Sech2 pulse. The red curve is for
εmax = 0.004, green is for εmax = 0.01, black is for εmax = 0.03, blue is for εmax = 0.05 and pink is for
εmax = 0.1.
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Figure 4.21: Flux spectrum(Iω) vs ~ω for a sech2 pulse of height ε = 4× 10−3 and pulse length of Tp = 2fs.
Blue dashed lines ω′min and ω′max. Red Dashed lines are ωmin and ωmax. All the curves are labelled as, Red
for Upper mode, Blue for Upper optical mode, Black for middle optical mode, Magenta for Lower optical
mode, Green for lower mode, Green dashed line for negative mode, Black dashed line is for negative optical
mode and red dashed line is for negative upper mode.

• The peak of the temperature changes for different heights of the pulse. Higher the pulse the more

shifted is the peak towards lower pulse lengths,

• Most of the curves’ peak exceed the temperature of the step of the same height. This is similar to the

top hat pulse. The modes must constructively interfere inside the pulse to give a higher flux.

We plot the flux spectrum against frequency for Sech2 pulses of two different temporal widths. Figure

4.21 shows the flux for 2fs pulse and figure 4.22 shows the flux for 4fs pulse. We see that the flux is very

low and close to the numerical zero. The red curve in the figures just shows the numerical noise as the flux is

so low for upper (U) and NU curve. The MO curve is also very low and hardly changes across the frequency.

These results show that it is very unlikely to get a measurable flux from a pulse with a temporal width

greater than 2fs. A soliton of a fixed temporal width of more than 2fs will produce very little flux. A

higher-order soliton where the pulse goes through a pulse compression means that the pulse can become

shorter than 2fs and higher order effects can make the pulse asymmetric [84]. The ultra short pulses and

the steepness of the asymmetric pulse will increase the flux as seen in the above results.
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Figure 4.22: Flux spectrum(Iω) vs ~ω for a sech2 pulse of height ε = 4× 10−3 and pulse length of Tp = 4fs.
Blue dashed lines ω′min and ω′max. Red Dashed lines are ωmin and ωmax. All the curves are labelled as, Red
for Upper mode, Blue for Upper optical mode, Black for middle optical mode, Magenta for Lower optical
mode, Green for lower mode, Green dashed line for negative mode, Black dashed line is for negative optical
mode and red dashed line is for negative upper mode.
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Conclusion

In this thesis we have shown a new concise formula connecting T-matrix to S-matrix and have generalised

both the T and S-matrix algorithms to describe scattering from a moving scatterer. The numerical stability

of S-matrix algorithm is demonstrated and we have successfully calculated a scattering matrix through the

new Riccati matrix equation. We have demonstrated the fast convergence of the solutions through the

Runge-Kutta method. We demonstrated the numerical stability of the S-matrix algorithm compared to the

T-matrix algorithm, which we formulated in a compact way. We presented a novel differential equation for

the scattering matrix. We analyzed its convergence and the stability of the solutions and show that they are

well behaved. Increasing the number of steps, we can increase the desired precision level. An advantage of

using the differential equation rather than directly the staircase approximation is that established efficient

numerical methods with a high order of convergence can be used. We also presented the recursive S-Matrix

formula in a compact formalism by using projector matrices. We also generalised the T-matrix and the

S-matrix formulations to allow uneven number of right and left going modes.

We used these numerical methods to study the scattering from various profiles, steps, ramps and pulses.

We have shown how the fluxes for all the modes vary as frequency changes. The effect of steepness and

shape of the the profile on the flux is also studied. This in-depth study of profiles has not been done in this

optical system where all eight branches of dispersion are included in the calculation. We study the effect

of both analogue black hole and white hole horizon working together. The top hat pulse shows this effect

alongside with the effect of the length of the pulse. The study of ramps isolates the effects of steepness and

the shape of the ramp. We plot the brightness temperature of the flux of the escaping mode as we change

the steepness for three different ramp shapes. We also see the full spectrum flux for a Sech2 pulse and see

that it falls off as we increase the temporal width of the pulse.

For future work, more numerical results can be generated for other mediums. We have calculated for

bulk silica, one can model a silica fiber with a Sellmeier model and attain resonant frequencies and elasticity.

This might give results more closely matched with the experiments as the experiments are done with a silica

fiber [39]. Another thing one can do is to generate a look-up table with solutions for various frequencies

so that the quadratic equations do not need to be solved to find the solutions and the calculation can be

done much faster. The whole algorithm can be made even faster by using the star product for scattering

matrix [85]. However, the star product is not generalised yet for dealing with scattering matrices with uneven

number of right and left going modes. If we have a generalised formula for the star product then we can

calculate the scattering matrix of a symmetric pulse by just calculating the scattering matrix of a ramp.

The insights from the results are good but there are still many interesting aspects which would require
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more observations. Even for a top hat pulse we have seen some resonances peaks which are not explained

completely. The brightness temperature plots versus the height of the ramps need to be explained further

as to why the temperature drops as we keep on increasing the ramp height. Other asymmetric pulses can

be modelled as well.

This thesis opens up doors on to numerically solving scattering problems in optics or acoustics and

the application in analogue Hawking radiation shows the power of the methods developed. The results

themselves are novel and have not been published elsewhere. This gives us the insight and places us in a

better position to understand experimental results. It also helps in designing better experiments.
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