
Stretching Demi-Bits and Nondeterministic-Secure
Pseudorandomness
Iddo Tzameret # Ñ

Department of Computing, Imperial College London, UK

Lu-Ming Zhang #

Department of Mathematics, London School of Economic and Political Science, UK

Abstract
We develop the theory of cryptographic nondeterministic-secure pseudorandomness beyond the point
reached by Rudich’s original work [25], and apply it to draw new consequences in average-case
complexity and proof complexity. Specifically, we show the following:

Demi-bit stretch: Super-bits and demi-bits are variants of cryptographic pseudorandom generators
which are secure against nondeterministic statistical tests [25]. They were introduced to rule out
certain approaches to proving strong complexity lower bounds beyond the limitations set out by
the Natural Proofs barrier of Razborov and Rudich [23]. Whether demi-bits are stretchable at
all had been an open problem since their introduction. We answer this question affirmatively
by showing that: every demi-bit b : {0, 1}n → {0, 1}n+1 can be stretched into sublinear many
demi-bits b′ : {0, 1}n → {0, 1}n+nc

, for every constant 0 < c < 1.
Average-case hardness: Using work by Santhanam [26], we apply our results to obtain new average-

case Kolmogorov complexity results: we show that Kpoly[n − O(1)] is zero-error average-case hard
against NP/poly machines iff Kpoly[n − o(n)] is, where for a function s(n) : N → N, Kpoly[s(n)]
denotes the languages of all strings x ∈ {0, 1}n for which there are (fixed) polytime Turing
machines of description-length at most s(n) that output x.

Characterising super-bits by nondeterministic unpredictability: In the deterministic setting, Yao
[31] proved that super-polynomial hardness of pseudorandom generators is equivalent to (“next-
bit”) unpredictability. Unpredictability roughly means that given any strict prefix of a random
string, it is infeasible to predict the next bit. We initiate the study of unpredictability beyond
the deterministic setting (in the cryptographic regime), and characterise the nondetermin-
istic hardness of generators from an unpredictability perspective. Specifically, we propose
four stronger notions of unpredictability: NP/poly-unpredictability, coNP/poly-unpredictability,
∩-unpredictability and ∪-unpredictability, and show that super-polynomial nondeterministic
hardness of generators lies between ∩-unpredictability and ∪-unpredictability.

Characterising super-bits by nondeterministic hard-core predicates: We introduce a nondetermin-
istic variant of hard-core predicates, called super-core predicates. We show that the existence
of a super-bit is equivalent to the existence of a super-core of some non-shrinking function.
This serves as an analogue of the equivalence between the existence of a strong pseudorandom
generator and the existence of a hard-core of some one-way function [8, 12], and provides a first
alternative characterisation of super-bits. We also prove that a certain class of functions, which
may have hard-cores, cannot possess any super-core.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Computational complexity and cryptography

Keywords and phrases Pseudorandomness, Cryptography, Natural Proofs, Nondeterminism, Lower
bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.95

Related Version Full Version: https://arxiv.org/abs/2304.14700

Funding Part of this project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 101002742).

© Iddo Tzameret and Lu-Ming Zhang;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 95; pp. 95:1–95:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:itzamere@ic.ac.uk
https://www.doc.ic.ac.uk/~itzamere/
https://orcid.org/0000-0002-5558-9911
mailto:l534zhang@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ITCS.2024.95
https://arxiv.org/abs/2304.14700
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


95:2 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

Iddo Tzameret: Part of this work was done at Simons Institute for the Theory of Computing, UC
Berkeley.
Lu-Ming Zhang: Part of this work was done while at Imperial College London.

Acknowledgements We are indebted to Jan Pich who suggested looking at demi-bits and provided
many clarifications regarding his work [21]. We are grateful to Rahul Santhanam for very useful
discussions and specifically mentioning the potential application appearing in Theorem 28. Finally,
we wish to thank Hanlin Ren for very useful comments on the manuscript as well as Oliver Korten
and Yufeng Li for further discussions.

1 Introduction

Pseudorandomness is a natural concept allowing to measure the extent to which a resource-
bounded computational machine can identify true random sources. It is an important notion
in algorithms, enabling to derandomize efficient probabilistic algorithms by simulating many
true random bits using fewer random bits. Another important aspect of pseudorandomness lies
in computational complexity and cryptography, and specifically computational lower bounds,
where it serves as the foundation of many results in cryptography, hardness vs. randomness
trade-offs, and several barriers to proving strong computational lower bounds. Here, we will
mostly be interested in the latter aspect of barrier results.

1.1 The theory of nondeterministic-secure pseudorandomness
Razborov and Rudich established a connection between pseudorandomness and the ability to
prove boolean circuit lower bounds in their Natural Proofs paper [23]. They showed that
most lower bounds arguments in circuit complexity contain (possibly implicitly) an efficient
algorithm for deciding hardness, in the following sense: given the truth table of a boolean
function, the algorithm determines if the function possesses some (combinatorial) properties
that imply it is hard for a certain given circuit class (they called this “constructivity” and
“usefulness” of a lower bound argument). They moreover showed that this algorithm identifies
correctly the hardness of a non-negligible fraction of functions (which is called “largeness” in
[23]). On the other hand, such an efficient algorithm for determining the hardness of boolean
functions (for general circuits) would contradict reasonable assumptions in pseudorandomness,
namely the existence of strong pseudorandom generators. This puts a barrier, so to speak,
against the ability to prove lower bounds using natural proofs.

The notion of natural proofs has had a great influence on computational complexity theory.
However, the fact that the plausible nonexistence of certain classes of natural proofs provides
an obstacle against very constructive lower bound arguments (namely, those arguments that
implicitly contain an efficient algorithm to determine when a function is hard) is somewhat
less desirable. One would hope to extend the obstacle to less constructive proofs, for instance,
proofs whose arguments contain implicitly only short witnesses for the hardness of functions.

Indeed, the notion of natural proofs comes to explain the difficulty in proving lower bounds,
not in efficiently deciding hardness of boolean functions. For these reasons, among others,
Rudich [25] set to extend the natural proofs barrier so that they encompass non-constructive
arguments, namely, arguments implicitly using efficient witnesses of the hardness of boolean
functions, in contrast to deterministic algorithms. This was done by extending the notion of
pseudorandom generators so that they are secure against nondeterministic adversaries.

While empirically most known lower bound proofs were shown, at least implicitly, to
fall within the scope of P/poly-constructive natural proofs, it is definitely conceivable and
natural to assume that some lower bound approaches will necessitate NP/poly-constructive



I. Tzameret and L.-M. Zhang 95:3

natural proofs. In fact, it is a very interesting open problem in itself to find such an NP/poly-
constructive lower bound proof method. Furthermore, in works in proof complexity the
role of nondeterministic-secure pseudorandomness is important (cf. recent work by Pich and
Santhanam [22], as well as Krajíček [16]). Also, note that when dealing with the notion of
barriers we refer to impossibility results and so it cannot always be expected to come up
with good examples of proof methods we wish to rule out.

Accordingly, to extend the natural proofs barrier, Rudich introduced two primitives:
super-bits, and its weaker variant demi-bits. Super-bits and demi-bits are (non-uniform)
nondeterministic variants of strong pseudorandom generators (PRGs). They are secure
against nondeterministic adversaries (i.e., adversaries in NP/poly). Demi-bits require their
nondeterministic adversaries to break them in a stronger sense than super-bits, and hence
their existence constitutes a better (i.e., weaker) assumption than the existence of super-bits
on which to base barrier results; and this is one reason why the concept of demi-bits is
important.

More specifically, super-bits and demi-bits both require a nondeterministic adversary
to meaningfully distinguish truly random strings from pseudorandom ones by certifying
truly random ones (i.e., an adversary outputs 1 if it thinks a given string is an output of
a truly random process and 0 if it is the output of a pseudorandom generator). Thus, a
nondeterministic distinguisher cannot break super-bits nor demi-bits by simply guessing a
seed of the generator. Precisely, this is guaranteed as follows: for demi-bits we insist that
strings in the image of the pseudorandom generator are always rejected, while for super-bits
we allow some such pseudorandom strings to be accepted but we insist that many more
strings outside the image of the pseudorandom generator are accepted (than strings in the
image of the pseudorandom generator).

Formally, we have the following (all the distributions we consider in this work are, by
default, uniform, unless otherwise stated, and Un denotes the uniform distribution over
{0, 1}n):

▶ Definition 1 (Nondeterministic hardness [25]). Let gn : {0, 1}n → {0, 1}l(n), with l(n) > n,
be a function in P/poly. We call such a function a generator. The nondeterministic
hardness Hnh(gn) (also called super-hardness) of gn is the minimal s for which there
exists a nondeterministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] − P
x∈{0,1}n

[D(gn(x)) = 1] ≥ 1
s

. (1)

In contrast to the standard definition of (deterministic) hardness (Definition 12), the order
of the two possibilities on the left-hand side is crucial. This order forces a nondeterministic
distinguisher to certify the randomness of a given input. Reversing the order, or adding an
absolute value to left-hand side, trivializes (as in standard PRGs) the task of breaking g: a
distinguisher D can simply guess a seed x and check if g(x) equals the given input. For such
a D, we have P [D(g(x)) = 1] = 1 and P [D(y) = 1] ≤ 1/2.

Super-bits are exponentially super-hard generators (note that we call a growth rate of
2nε , for a constant ε, exponential, and

⋂
0<ε<1 2nε sub-exponential, while in cryptography

the former is sometimes called a sub-exponential growth rate):

▶ Definition 2 (Super-bits [25]). A generator g : {0, 1}n → {0, 1}n+c (computable in P/poly),
for some c : N → N, is called c super-bit(s) (or a c-super-bit(s)) if Hnh(g) ≥ 2nε for some
constant ε > 0 and all sufficiently large n’s. In particular, if c = 1, we call g a super-bit.

Many candidates of strong PRGs (against deterministic machines) were constructed by
exploiting functions conjectured to be one-way and/or their hard-cores (see for example [2, 14,
13]). The work [2] presented PRGs based on the assumption that factoring is hard, while [14]

ITCS 2024



95:4 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

presented PRGs based on the conjectured hardness of the discrete-logarithm problem. [13]
presented PRGs based on the subset sum problem. Similarly, for nondeterministic-secure
PRGs (namely, super-bits), Rudich conjectured the existence of a super-bit generator based
on the hardness of the subset sum problem [13]. We are unaware of any additional conjectured
construction of super-bits.

As mentioned above, another hardness measure of generators was introduced by Rudich:

▶ Definition 3 (Demi-hardness [25]). Let gn : {0, 1}n → {0, 1}l(n) be a generator (computable
in P/poly). Then the demi-hardness Hdh(gn) of gn is the minimal s for which there exists
a nondeterministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] ≥ 1
s

and P
x∈{0,1}n

[D(gn(x)) = 1] = 0. (2)

We note that (2), which requires a distinguisher to make no mistake on generated strings, is
a stronger requirement than (1). Thus, Hnh(g) ≤ Hdh(g) for every generator g.

Demi-bits are exponentially demi-hard generators, where “demi” here stands for “half”:

▶ Definition 4 (Demi-bits [25]). A generator (computable in P/poly) g : {0, 1}n → {0, 1}n+c

for some c : N → N is called c demi-bit(s) (or a c-demi-bit(s)) if Hdh(g) ≥ 2nε for some
ε > 0 and all sufficiently large n’s. In particular, if c = 1, we call g a demi-bit.

It is worth mentioning that demi-bits g as in Definition 4 can be viewed as a hitting set
generator against NP/poly (see below Section 2.1.2 and Santhanam [26]).

The difference between super-bits and demi-bits is that demi-bits require their distin-
guishers to break them in a stronger sense: a demi-bit distinguisher must always be correct
on the pseudorandom strings (i.e., always output 0 for strings in the image of the generator).
Thus, if g is a super-bit(s) (the plural here denotes that g may have a stretching-length
greater than 1; if the stretching length is exactly 1, we say g is a super-bit), no algorithm in
NP/poly can break g in the weaker sense (1), and hence no algorithm in NP/poly can break
g in the stronger sense (2), which means g is also a demi-bit(s). In other words, the existence
of super-bits implies the existence of demi-bits (although it is open if any of these two exists).
▶ Remark (Cryptographic vs. complexity-theoretic regime). In this work, we are interested
only in the cryptographic regime of pseudorandomness. In this regime, the adversary whom
the generator tries to fool is allowed to be stronger than the generator and specifically has
sufficient computational resources to run the generator. In the complexity-theoretic regime,
in which the adversary cannot simulate the generator, the notion of nondeterministic secure
pseudorandomness was developed in works by, e.g., Klivans and van Melkebeek [15] as well as
Shaltiel and Umans [29] (see also the recent work by Sdroievski and van Melkebeek [28] and
references therein). These complexity-theoretic ideas have also found several applications in
cryptography (originating from the work of Barak, Ong and Vadhan [4]). It is also worth
mentioning that in the complexity-theoretic regime, one can use the original definition of the
hardness of PRGs (Definition 12) even against nondeterministic adversaries; while this is not
the case in the cryptographic regime, in which a PRG as in Definition 12 can never be safe
against a nondeterministic adversary who guesses the seed.

1.2 Relations to barrier results
Recall that natural proofs [23] for proving circuit lower bounds are proofs that use a natural
combinatorial property of boolean functions. A combinatorial property (or a property, for
short) C of boolean functions is a set of boolean functions. We say a function f has property



I. Tzameret and L.-M. Zhang 95:5

C if f is in C. Let Γ and Λ be complexity classes, and Fn be the set of all f : {0, 1}n → {0, 1}.
We say C is Γ-natural if a subset C ′ ⊆ C satisfies constructivity, that is, it is Γ-decidable
whether f is in C ′, and largeness, that is, C ′ constitutes a non-negligible portion of Fn. We
say C is useful against Λ if every function family f that has property C infinitely often is not
computable in Λ. The idea of natural proofs is that, if we want to prove some function family
f (e.g., the boolean satisfiability problem SAT) is not in P/poly (or in general, some other
complexity class Λ), we identify some natural combinatorial property C of f and show all
function families that have property C are not in P/poly (i.e., the property is useful against
P/poly). If f is NP-complete (e.g., SAT), then such a proof concludes P ̸= NP.

Razborov and Rudich argued that, based on the existence of strong PRGs, no P/poly-
natural proofs can be useful against P/poly. They showed that many known proofs of lower
bounds against (non-monotone) boolean circuits are natural or can be presented as natural
in some way.

In this context, the theory of nondeterministic-secure generators allows one to rule out a
larger (arguably more natural) class of lower bound arguments:

▶ Theorem 5 ([25]). If super-bits exist, then there are no NP̃/qpoly-natural properties
useful against P/poly, where NP̃/qpoly is the class of languages recognised by non-uniform,
quasi-polynomial-size circuit families.

This theorem is proved based on the ability to stretch super-bits, namely, taking a
generator that maps n bits to n + 1 bits, which we refer to as stretching length 1, to a
generator that maps n bits to n + N bits, with N > 1, which we call stretching length N . In
the standard theory of pseudorandomness, a hard-bit (i.e., a strong PRG with stretching
length 1) is shown to be stretchable to polynomially many hard-bits (i.e., a polynomial
stretching-length) [5, 31] and can be exploited to construct hard-to-break pseudorandom
function generators (loosely speaking, generators that generate pseudorandom functions
indistinguishable from truly random ones) [7]. As a hard-bit, a super-bit can also be
stretched, using similar stretching algorithms, to polynomially many super-bits and to
pseudorandom function generators secure against nondeterministic adversaries [25]. The
proofs of the correctness of such stretching algorithms are based on a technique called the
hybrid argument [10] reviewed below. In contrast, whether a demi-bit can be stretched even
to two demi-bits was unknown before the current work, since this cannot be concluded with
a direct application of a standard hybrid argument.

2 Contributions, significance and context

We develop the foundations of nondeterministic-secure pseudorandomness. This is the first
systematic investigation into nondeterministic pseudorandomness (in the cryptographic
regime) we are aware of, building on the primitives proposed by Rudich [25]. We provide
new understanding of the primitives of the theory, namely, super and demi-bits, as well as
introducing new notions and showing how they relate to established ones. We draw several
conclusions from these results in average-case and proof complexity. We also achieve some
modest progress on establishing sounder foundations for barrier results: by showing, for
instance, that demi-bits can be (moderately) stretched, we provide some hope to strengthen
the connection between demi-bits and unprovability results (as of now, it is only known that
the existence of a super-bit yields barrier results, while we hope to show that the weaker
assumption of the existence of demi-bits suffices for that matter).

ITCS 2024



95:6 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

2.1 Stretching demi-bits
In Demi-Bit Stretching Algorithm 24, we provide an algorithm that achieves a sublinear
stretch for any given demi-bit. This solves the open problem of whether a demi-bit can be
stretched to 2-bits [25, Open Problem 2] (see also Santhanam [26, Question 4]).

▶ Theorem (Informal; Theorem 25). Every demi-bit b : {0, 1}n → {0, 1}n+1 can be efficiently
converted (stretched) into demi-bits g : {0, 1}n → {0, 1}n+nc , for every constant 0 < c < 1.

2.1.1 Discussion and significance of stretching demi-bits to barrier
results

Stretching demi-bits can be viewed as a first step towards showing that the existence of a
demi-bit rules out NP̃/qpoly-natural properties useful against P/poly, as we explain below.
Providing such a barrier for NP̃/qpoly-natural properties based on the existence of a demi-bit
is important, since assuming the existence of a demi-bit is a weaker assumption than assuming
the existence of a super-bit.

Why is stretching demi-bits a step towards showing that the existence of a demi-bit would
rule out NP̃/qpoly-natural properties useful against P/poly? The reason is that stretching is
the first step in the argument to base barrier results on the existence of a super-bit, in the
following sense: the existence of a super-bit implies barrier results because one can stretch
super-bits to obtain pseudorandom function generators, from which one gets the barrier
result as noted in Theorem 5 above (and the text that follows it). More precisely, stretching
demi-bits is a first (and necessary) step towards Rudich’s Open Problem 3, and this problem
also implies Rudich’s Open Problem 4:

▶ Open problem (Rudich’s Open Problem 3 [25]). Given a demi-bit, is it possible to build a
pseudorandom function generator with exponential (2nε) demi-hardness?

▶ Open problem (Rudich’s Open Problem 4 [25]). Does the existence of demi-bits rule out
NP̃/qpoly-natural properties useful against P/poly?

Moreover, the study of the stretchability of demi-bit(s) provides a perspective towards
resolving Rudich’s Open Problem 1 (a positive answer of which would also resolve positively
Open Problem 4):

▶ Open problem (Rudich’s Open Problem 1 [25]). Does the existence of a demi-bit imply the
existence of a super-bit?

This is because the stretchability of super-bits is well understood, while previously we
did not know anything about the stretchability of demi-bits. We expect that understanding
better basic properties of demi-bits, such as stretchability, would shed light on the relation
between the existence of demi-bits and the existence of super-bits (Open problem 1).

2.1.2 Applications in average-case complexity
Here we describe an application of Theorem 25 to the average-case hardness of time-bounded
Kolmogorov complexity (cf. [11] for related recent progress).

As observed by Santhanam [26], a hitting set generator g : {0, 1}n → {0, 1}n+1 exists iff
there exists a demi-bit b : {0, 1}n → {0, 1}n+1. To recall, a hitting set generator against
a class of decision problems C ⊆ 2{0,1}N is a function g : {0, 1}n → {0, 1}N , for n < N ,
such that the image of g hits (namely, intersects) every dense enough set A in C (that is,
|A| ≥ 2N

NO(1) ). And we have:



I. Tzameret and L.-M. Zhang 95:7

▶ Proposition (Proposition 26; [26]). Let n < N . A hitting set generator g : {0, 1}n → {0, 1}N

computable in the class D against NP/poly exists iff there exists a demi-bit b : {0, 1}n →
{0, 1}N computable in D (against NP/poly).

Santhanam [26, Proposition 3] established an equivalence between (succinct) hitting set
generators and average-case hardness of MCSP, where MCSP stands for the minimal circuit
size problem. However, as mentioned to us by Santhanam [27], similar arguments can show
an equivalence between hitting set generators (not-necessarily succinct ones) and polytime
bounded Kolmogorov complexity zero-error average-case hardness against NP/poly machines,
as we show in this work.

We define the t-bounded Kolmogorov complexity of string x, denoted Kt(x), to
be the minimal length of a string D such that the universal Turing machine U(D) (we fix
some such universal machine) runs in time at most t and outputs x. See [3] for more details
about time-bounded Kolmogorov complexity and Definition 9 there for the definition of
time-bounded Kolmogorov complexity of strings (that definition actually produces the ith bit
of the string x given an index i and D as inputs to U , but this does not change our result).

▶ Definition 6 (The language Kt[s] and Kpoly[s(n)]). For a time function t(n) : N → N
and a size function s(n) : N → N, such that s(n) ≤ n, let Kt(n)[s(n)] be the language
{x ∈ {0, 1}∗ : |X| = n ∧ Kt(n)(x) ≤ s(n)}. We define Kpoly[s(n)] to be the language⋃

c∈N Knc [s(n)].

We also need to define the concept of zero-error average-case hardness against the class
NP/poly (see Definition 27). Informally, for a language L to be zero-error average-case easy
for NP/poly, there should be a nondeterministic polytime machine with advice such that
given an input x the machine guesses a witness for x ∈ L or a witness for x ̸∈ L, and when the
witness is found it answers accordingly; and moreover we assume that for a polynomial-small
fraction of inputs there are such witnesses (for membership or non-membership in L). If a
witness is not found the machine outputs “Don’t-Know”. (We also assume that there are
no pairs of contradicting witnesses for both x ∈ L and x ̸∈ L.) A language is said to be
zero-error average-case hard against the class NP/poly if it is not zero-error average-case easy
against the class NP/poly.

In Section 4.1 we show the following:

▶ Theorem (Equivalence for average-case time-bounded Kolmogorov Complexity; Theorem 28).
Kpoly[n − O(1)] is zero-error average-case hard against NP/poly machines iff Kpoly[n − o(n)]
is zero-error average-case hard against NP/poly machines.

2.1.3 Applications in proof complexity
In proof complexity, Krajíček [16, 17] and independently Alekhnovich, Ben-Sasson, Razborov
and Wigderson [1] introduced the notion of proof complexity generators. Given a P/poly

mapping g : {0, 1}n → {0, 1}ℓ, with n < ℓ, and a fixed vector r ∈ {0, 1}ℓ, we denote by τ(g)r

the poly(ℓ)-size propositional formula that encodes naturally the statement r ̸∈ Im(g), so
that if r is not in the image of g then τ(g)r is a propositional tautology. For r not in the
image of g, the tautology τ(g)r is called a proof complexity generator, and the hope is that
for strong propositional proof systems one can establish (at least conditionally) that there
are no poly(ℓ)-size proofs of τ(g)r, under the assumption that the mapping g is sufficiently
pseudorandom (see also [24]). Krajíček observed the connection between proof complexity
generators and demi-bits (see [16, Corollary 1.3] and the discussion that follows there).

An immediate corollary of Theorem 25 is the following.

ITCS 2024



95:8 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

▶ Corollary (Stretching proof complexity generators). Let b : {0, 1}n → {0, 1}n+1 be a demi-bit
computable in P/poly. Let 0 < c < 1 be a constant and ℓ = n + nc. Then, there is a
proof complexity generator g : {0, 1}n → {0, 1}ℓ in P/poly, such that for every propositional
proof system, with probability at least 1 − 1

ℓω(1) over the choice of r ∈ {0, 1}ℓ, there are no
poly(n)-size proofs of the tautology τ(g)r. 1

2.1.4 Technique overview
We prove the stretchability of demi-bits by a novel and more flexible use of the hybrid
argument combined with other ideas.

The hybrid argument (a.k.a. the hybrid method, the hybrid technique, etc.) is a common
proof technique originating from the work of Goldwasser and Micali [10]. It was named
by Leonid Levin. (See Section 3.1 for notations used below.) When we have a generator
g : {0, 1}n → {0, 1}m(n), a distinguisher D, and a function p (usually a polynomial) such
that

P [D(Um) = 1] − P [D(g(Un)) = 1] ≥ 1/p(n), (∗)

where Um stands for the truly random strings and g(Un) stands for the pseudorandom ones,
the standard hybrid argument defines a spectrum (i.e. an ordered set) of random variables
Hi’s, called hybrids, traversing from one extreme, Um, to another, g(Un). A concrete example
is Hi := g(Un)[1...i] · Um−i, 0 ≤ i ≤ m (where · here means concatenation, and for a binary
vector X we denote by X[1 . . . , i] the i leftmost bits of X). In this example, indeed H0 = Um

and Hm = g(Un). Then the inequality (∗) can be written as:

1/p(n) ≤ P [D(Um) = 1] − P [D(g(Un)) = 1]

=
∑

i

(P [D(Hi) = 1] − P [D(Hi+1) = 1]).

Thus, a usual next step is to claim there exists some i such that

P [D(Hi) = 1] − P [D(Hi+1) = 1] ≥ 1
k · p(n) ,

where k is the total number of hybrids (in the above example, k = m). In a nutshell, the
hybrid argument now shows that if we can distinguish Um from g(Un) by a 1/p(n) portion,
then we can distinguish some neighbouring pair of hybrids Hi from Hi+1 by a 1/(k · p(n))
portion. See [30] for a simple demonstration of the hybrid argument.

As mentioned above, a standard hybrid argument cannot be applied to prove that
stretching a single demi-bit b by some stretching algorithm still constitutes demi-bit(s). We
now intuitively explain the reason for this. A usual proof goes like this: we assume, for a
contradiction, g are not demi-bits. Then there are some distinguisher D of g and a function p

such that P [D(Um) = 1]−P [D(g(Un)) = 1] ≥ 1/p(n), and in particular P [D(g(Un)) = 1] = 0
as D breaks demi-bits, and we hope to construct a new appropriate distinguisher C of b

based on D. However, as we saw above, a standard hybrid argument only yields that
P [D(Hi) = 1] − P [D(Hi+1) = 1] ≥ 1/p′(n) for some function p′ and cannot deduce that
P [D(Hi+1) = 1] = 0. Hence, it is unclear how to continue this construction.

1 The points r are taken uniformly from {0, 1}ℓ, and with probability 1 − 1/2ℓ−n the formula τ(g)r is a
tautology, because for all r ∈ {0, 1}ℓ \ Im(g) the formula τ(g)r is a tautology. While in some works,
proof complexity generators are supposed to be hard for every r outside the image of the generator g,
in our formulation the hardness is only with high probability over the r’s.



I. Tzameret and L.-M. Zhang 95:9

Our argument for proving Theorem 25 proceeds by the contrapositive. We assume there
is a distinguisher D which breaks demi-bits g (stretched from a single demi-bit b by Demi-Bit
Stretching Algorithm 24) in the desired sense, and we want to construct a distinguisher C

which breaks b. Rather than applying the hybrid argument directly to D, we apply the
hybrid argument to a new distinguisher D′ defined based on D: the new distinguisher D′ can
use nondeterminism to change the pseudorandom part of the hybrids and thus “amplifies”
the probability of certificating randomness (intuitively, this can be viewed as changing
the average-case analysis in the standard hybrid argument to a worst-case or existence
analysis). By applying the hybrid argument to D′, we are able to identify a non-empty class,
denoted by S2 in the proof, of random strings yi+1 . . . ym, that are not random witnesses
(in the sense that, for each yi+1 . . . ym in this class, there are no seeds x1, . . . , xi such that
D(b(x1) . . . b(xi) yi+1 . . . ym) = 1). Thus, for yi+1 . . . ym in S2, yiyi+1 . . . ym can become a
random witness (i.e., there are seeds x1, . . . , xi−1 such that D(b(x1) . . . b(xi−1) yi . . . ym) = 1)
only if yi is truly random (i.e., not equal to b(x) for some seed x). The hybrid argument
also implies a “good” such yi+1 . . . ym in S2, which can identify a sufficient portion of truly
random yi. We can thereby build a new distinguisher C to distinguish truly random strings
from pseudorandom ones.

A key step that makes this proof work is that nondeterministically guessing seeds
x1, . . . , xi−1 in b(x1) . . . b(xi−1)zi preserves the “randomness-structure” of b(x1) . . . b(xi−1)zi,
in the sense that: when zi = b(·) is pseudorandom, the nondeterministic guess preserves the
form b(·) . . . b(·)b(·) (i.e., i equal-length pseudorandom chunks); and when zi = y is truly
random, it preserves the form b(·) . . . b(·)y (i.e., i − 1 equal-length pseudorandom chunks
followed by a truly random chunk y of the same length).

For common stretching algorithms that produce exponentially many new bits (e.g.,
recursively applying a one-bit generator), it is unclear how to use nondeterminism in a
way that respects the “randomness-structure” of a given string. Nevertheless, the new
proof technique should hopefully inspire researchers to further explore the stretchability of
demi-bits. On the other hand, the fact could also be that there is a specific demi-bit which
cannot be stretched to exponentially many demi-bits by the standard stretching algorithms
which are applied to super-bits and strong PRGs.

2.2 Fine-grained characterisation of nondeterministic security based on
unpredictability

Yao [31] defined PRGs as producing sequences that are computationally indistinguishable,
by deterministic adversaries, from uniform sequences and proved that this definition of
indistinguishability is equivalent to deterministic unpredictability, which was used in an earlier
definition of PRGs suggested by Blum and Micali [5]. Loosely speaking, unpredictability
means, given any strict prefix of a random string, it is infeasible to predict the next bit.

We provide a more fine-grained picture of nondeterministic hardness (Definition 1), by
introducing the concept of nondeterministic unpredictability. This allows us to establish
new lower and upper bounds to nondeterministic hardness, in the sense that we sandwich
nondeterministic hardness between two unpredictability properties.

Specifically, we propose four notions of unpredictability for probability ensembles:
1. NP/poly-unpredictability: the capacity of being unpredictable by NP/poly predictors.
2. coNP/poly-unpredictability: the capacity of being unpredictable by coNP/poly predictors.
3. ∪-unpredictability: the capacity of being unpredictable by predictors in the union of

NP/poly and coNP/poly.
4. ∩-unpredictability: the capacity of being unpredictable by nondeterministic function-

computing predictors.

ITCS 2024



95:10 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

The names NP/poly-unpredictability, coNP/poly-unpredictability, and ∪-unpredictability
(a shorthand for NP/poly ∪ coNP/poly-unpredictability) are self-explanatory, while the use
of “∩-unpredictability” is somewhat less intuitive. We show in [30, Sec. 5.2] (where we use
nondeterministic function-computing machines2), that a decision problem is in NP/poly ∩
coNP/poly if and only if it is decidable by a nondeterministic polynomial-size function-
computing algorithm.

We establish the following characterisation of the nondeterministic hardness of generators
from an unpredictability perspective:

▶ Theorem. Here, A ≤ B means that if a generator has property B, then it also has
property A:

≤
P/poly-

≤
-unpredictability ≤ ∩-unpredictability

super-polynomial
nondeterministic hardness

NP/poly-unpredictability ≤

≤
∪-unpredictability

coNP/poly-unpredictability
≤ ≤

9

Figure 1 Super-polynomial nondeterministic hardness here refers to Definition 1. Note that
∪-unpredictability is at least as strong as NP/poly-unpredictability, because it rules out predictors
in both NP/poly and coNP/poly. And similarly, ∪-unpredictability is at least as strong as coNP/poly-
unpredictability.

2.3 Super-cores: hard-core predicates in the nondeterministic setting
In the deterministic context, the existence of strong PRGs is known to be equivalent to the
existence of central cryptographic primitives such as one-way functions, secure private-key
encryption schemes, digital signatures, etc. Liu and Pass [18] recently showed that a meta-
complexity assumption about mild average-case hardness of the time-bounded Kolmogorov
Complexity is also equivalent to the existence of strong PRGs. On the other hand, in the
nondeterministic case we have no known such equivalent characterisations (of nondeterministic-
secure PRGs, namely, super-bits). We introduce a definition of super-cores serving as a
nondeterministic variant of hard-cores. We then use this concept to draw the first equivalent
characterisation of super-bits.

We start by reviewing the concepts of one-way functions and hard-core predicates. Loosely
speaking, a one-way function (family) f is a one that is easy to compute but hard to invert
on average (with the probability taken over the domain of f). More precisely, “easy to
compute” means f is in P or P/poly, and “hard to invert” means any efficient deterministic
algorithm can only invert a negligible portion of y = f(x) when x is unseen. By “efficient”,
in the uniform setting, we mean an algorithm in bounded-error probabilistic polynomial
time (BPP ), and in the nonuniform setting, an algorithm in P/poly, and by “invert”, we
mean finding an x′ for a given y in range(f) such that f(x′) = y. A negligible portion for
us means a portion that is less than 1/p(n) for any polynomial p and all large n’s. We
say b : {0, 1}n → {0, 1} in P or P/poly is a hard-core of a function f if it is impossible to
efficiently predict b(x) with probability at least 1/2 + 1/poly(n) given f(x).

2 We say a nondeterministic algorithm A is a function-computing algorithm, if for every input
x ∈ {0, 1}n, every computation branch yields one of {0, 1, ⊥}, in which ⊥ indicates a failure, and there
is always a computation branch yielding 0 or 1.



I. Tzameret and L.-M. Zhang 95:11

The existence of hard-core predicates is known (e.g., b(x) = x[−1], the last bit of a
string x, is a hard-core of the function f(x) = x[1], the first bit of x), but the existence of a
hard-core for a one-way function and the existence of any one-way function to begin with
are unknown. Goldreich and Levin [8] proved that inner product mod 2 is a hard-core for
any function of the form g(x, r) = (f(x), r), where f is any one-way function and |x| = |r|.
Subsequently, Håstad, Impagliazzo, Levin, and Luby [12] showed that strong PRGs exist if
and only if one-way functions exist. This theorem can be stated equivalently as: a strong
PRG exists if and only if a hard-core of some one-way function exists.

Since a strong PRG exists if and only if a hard-core of some one-way function exists, and
a super-bit is the nondeterministic analogue of strong PRGs, a meaningful question to ask is:

What are the nondeterministic analogues of one-way functions and hard-cores?

To come up with a reasonable definition of super one-way functions is not an easy task
because, for any function f , a nondeterministic algorithm can always invert a range-element y

by guessing some x and checking if f(x) = y. Similarly, a reasonable definition of super-core
predicates is non-trivial as well: for any function f and predicate b, a nondeterministic
algorithm can predict b(x) when given f(x) as input by guessing x and then applying b.

We propose a definition of super-cores of a function f , which are secure against both
NP/poly and coNP/poly predictors in the sense of [30, Def. 6.7], when f(x) is presented as
the input. With this definition, we can establish the following equivalence (we say a function
f : {0, 1}n → {0, 1}m(n) is non-shrinking if m(n) ≥ n for every n):

▶ Theorem (Informal). There is a super-core of some non-shrinking function if and only if
there is a super-bit.

This result is analogous to the known equivalence between the existence of a hard-core of
some one-way function and the existence of a strong PRG. We also show that a certain
class of functions, which may have hard-cores, cannot possess any super-core. This also
suggests that a one-way function could possibly possess no super-cores. (See the text before
[30, Thm. 6.16] for the definition of “predominantly one-to-one”.)

▶ Theorem (Informal). If a non-shrinking function f is “predominantly” one-to-one, then f

does not have a super-core.

We thus provide a step forward to better understand the nondeterministic hardness of
PRGs and develop a sensible definition of one-way functions in the nondeterministic setting.

➙Below we shall provide the full proofs involving demi-bit stretching and its
applications in average-case complexity. For all other results we refer the reader
to the fuller version [30].

3 Preliminaries and basic concepts

3.1 Notations and conventions
We follow the following conventions:

N denotes the set of positive integers (excluding 0). For n ∈ N, [n] denotes {1, ..., n}. [0]
is the empty set ∅.
The size of a Boolean circuit C, denoted as size(C) or |C|, is the total number of gates
(including the input gates). Circuit[s] denotes the Boolean circuits of size at most s. If
s : N → N is a function, Circuit[s] contains all the Boolean circuit families Cn such that
|Cn| ≤ s(n) for all large n’s.

ITCS 2024



95:12 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

All the distributions we consider in this work are, by default, uniform. Un denotes the
uniform distribution over {0, 1}n unless stated otherwise.
For functions f, g : {0, 1}n → {0, 1}, we say g γ-approximates f if Px[f(x) = g(x)] ≥ γ.
For a string x, where its bits are indexed from left to right by 1 to |x|, x[i] denotes its
i-th bit, and x[i...j] denotes the sub-string indexed from i to j of x (if i > j, x[i...j] = ε,
the empty string). x[−i] denotes its i-th last bit.
For strings x, y, we may use any of the following to denote the concatenation of x and y:
xy, (x, y), x · y.
We may not verbally distinguish a function with its string representation (this can be
a truth table, or a string encoding a circuit representation of this function, etc.) when
there is no ambiguity.

We may also follow other common conventions used in the complexity community or literature.

3.2 Computational models
▶ Definition 7 (Randomized circuits; equiv. probabilistic circuit). A circuit C is a randomized
circuit (equivalently, a probabilistic circuit) if, in addition to the standard input bits (similar
to the input bits of a non-randomized circuit), it contains zero or more random input bits
(i.e., bits taken from a random distribution). We call {Cn}∞

n=1 a randomized circuit
family if for every n, Cn is a randomized circuit with n standard input bits.

Note that if a randomized circuit family {Cn} is in Circuit[s(n)], it means that for every
sufficiently large n, the randomized circuit Cn has size at most s(n), which automatically
constrains the number of random input bits that Cn is allowed to have.

▶ Definition 8 (Nondeterministic and co-nondeterministic circuits). A circuit C(x, r) is a
(co-)nondeterministic circuit if, in addition to the standard input bits x, it contains
zero or more nondeterministic input bits r (namely, bits that are meant to control the
nondeterministic decisions made by the circuit). A nondeterministic circuit with a single
output bit is said to accept an input α ∈ {0, 1}n to x iff there exists an assignment
β ∈ {0, 1}|r| to r such that C(α, β) = 1 (and otherwise it is said to reject x). A co-
nondeterministic circuit with a single output bit is said to reject an input α ∈ {0, 1}n to x

iff there exists an assignment β ∈ {0, 1}|r| to r such that C(α, β) = 0 (and otherwise it is
said to accept x). We call {Cn} a (co-)nondeterministic circuit family if for every n, Cn is a
(co-)nondeterministic circuit with n standard input bits.

▶ Definition 9 (Oracle circuits). C is an oracle circuit if it is allowed to use oracle gates.
We write C as Cf1,...,fk if C has oracle gates computing Boolean functions f1, ..., fk.

We note that an oracle gate computing a Boolean function f : {0, 1}n → {0, 1} has fan-in
n, and in our model, an oracle gate is allowed to appear in any place in the circuit.

3.3 Natural proofs
Let Fn be the set of all functions f : {0, 1}n → {0, 1} and Γ and Λ be complexity classes.
We call C = (Cn)n∈N a combinatorial property of boolean functions if each Cn ⊆ Fn.

▶ Definition 10 (Natural properties [23]). We say a combinatorial property C = (Cn)n∈N is
Γ-natural if some C ′ = (C ′

n)n∈N with C ′
n ⊆ Cn for each n satisfies:

Constructivity. Whether f ∈ C ′
n is computable in Γ when f is encoded by its truth table

as input.



I. Tzameret and L.-M. Zhang 95:13

Largeness. |C ′
n| ≥ 2−O(n) · |Fn| for all large n’s.

We say C is useful against Λ if it satisfies:
Usefulness. For any function family f = (fn)n∈N, if fn ∈ Cn infinitely often, then
f /∈ Λ.

A circuit lower bound proof (that some function family is not in Λ) is called a Γ-natural
proof against Λ if it uses, explicitly or implicitly, some Γ-natural combinatorial property
useful against Λ. Especially, a P/poly-natural proof against P/poly is a proof that uses a
P/poly-natural combinatorial properties useful against P/poly.

We note that the notion of natural proofs, unlike natural combinatorial property, is not
defined in a mathematically rigorous sense. Nevertheless, the use of the terminology “natural
proof” in a statement more intuitively embodies our intention and also does not affect the
rigorousness of the statement: whenever we say Γ-natural proofs against Λ do or do not exist,
what we mean, in a mathematically rigorous sense, is Γ-natural combinatorial properties
against Λ do or do not exist.

3.4 Pseudorandom generators
We recall here the basic definition of pseudorandom generators. As mentioned in the
introduction, all the distributions we consider in this work are, by default, uniform, and Un

denotes the uniform distribution over {0, 1}n unless stated otherwise.

▶ Definition 11 (Generators). A function family gn : {0, 1}n → {0, 1}l(n) is a generator
if gn ∈ P/poly and l(n) > n for every n. We call such an l a stretching function and call
l(n) − n the stretching length of gn (sometimes l(n) is called the stretching length).

We note that all the generators in this work, with the exception of Section 4.1, will be
computable in P/poly, although in more general settings, it is not required that generators
are P/poly-computable (cf. [20]).

▶ Definition 12 (Standard hardness). Let gn : {0, 1}n → {0, 1}l(n) be a generator. Then the
hardness H(gn) of gn is the minimal s for which there exists a (deterministic) circuit D of
size at most s such that∣∣∣∣ P

y∈{0,1}l(n)
[D(y) = 1] − P

x∈{0,1}n
[D(gn(x)) = 1]

∣∣∣∣ ≥ 1/s(n).

The order of the two terms in the absolute value and the absolute value itself are immaterial
since in the deterministic setting, we can always flip the output bit of a distinguisher D.

▶ Definition 13 ((Strong) pseudorandom generators (PRG)). A generator g : {0, 1}n →
{0, 1}l(n) is called a (strong) PRG if for every D in P/poly, every polynomial p, and all
sufficiently large n’s,∣∣∣∣ P

y∈{0,1}l(n)
[D(y) = 1] − P

x∈{0,1}n
[D(g(x)) = 1]

∣∣∣∣ < 1/p(n).

In other words, a strong PRG is defined to be a generator safe against all polynomial-size
distinguishers. An alternative definition used in some texts is: a generator with hardness at
least 2nε for some ε > 0 and all large n’s, which defines a stronger PRG.

We shall say that a function f(n) : N → R+ is (at least) exponential if there exists
some ε > 0 such that f(n) ≥ 2nε for all sufficiently large n’s. A function is not (at least)
exponential if for every ε > 0, there exist infinitely many n’s such that f(n) < 2nε ; this latter
condition is equivalent to: there is an infinite monotone sequence (ni) ⊆ N such that f(ni) is
sub-exponential in ni (i.e., f(ni) = 2n

o(1)
i ).

ITCS 2024



95:14 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

The existence of a strong PRG is considered quite plausible because many intractable
problems (e.g., factoring) seem to provide a basis for constructing such generators (cf. [9]).

▶ Conjecture 14. Strong PRGs exist.

Razborov and Rudich showed that the existence of a strong PRG rules out the existence
of P/poly-natural proofs useful against P/poly [23].

Concrete examples of strong PRGs are unknown, as the existence of such a PRG implies
P ̸= NP in the uniform setting and P/poly ̸= NP/poly in the nonuniform setting. Nevertheless,
generators that can fool classes of weaker distinguishers were constructed (e.g., Nisan and
Wigderson [20]).3

3.5 Super-bits and demi-bits
Here we provide a brief review of the main results and open problems in [25] that are relevant
to our work. (Some of the text is repeated from the introduction.)

▶ Definition 15 (Nondeterministic hardness). Let gn : {0, 1}n → {0, 1}l(n) be a generator.
Then the nondeterministic hardness Hnh(gn) (also called super-hardness) of gn is the
minimal s for which there exists a nondeterministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] − P
x∈{0,1}n

[D(gn(x)) = 1] ≥ 1
s

. (1)

In contrast to the definition of deterministic hardness, the order of the two possibilities on
the left-hand side is crucial. This order forces a nondeterministic distinguisher to certify the
randomness of a given input. Reversing the order or keeping the absolute value trivialize the
task of breaking g: a distinguisher D can simply guess a seed x and check if g(x) equals the
given input. For such a D, we have P [D(g(x)) = 1] = 1 and P [D(y) = 1] ≤ 1/2.

We call exponentially super-hard generators super-bits:

▶ Definition 16 (Super-bits). A generator (in P/poly) gn : {0, 1}n → {0, 1}n+c for some
c : N → N is called c super-bit(s) (or a c-super-bit(s)) if Hnh(gn) ≥ 2nε for some ε > 0 and
all sufficiently large n’s. In particular, if c = 1, we call gn a super-bit.

The term super-bits thus stands for pseudorandom bits that can fool “super” powerful
adversaries. Rudich constructed a candidate super-bit based on the subset sum problem and
conjectured that:

▶ Conjecture 17 (Super-bit conjecture). There exists a super-bit.

The main theorem in [25] is the following one, which is proved based on the stretchability
of super-bits as discussed above.

▶ Theorem 18 ([25]). If super-bits exist, then there are no NP̃/qpoly-natural properties
useful against P/poly, where NP̃/qpoly is the class of languages recognised by non-uniform,
quasi-polynomial-size circuit families (where quasi-polynomial means nlogO(1)(n)).

3 For weak models, both complexity-theoretic generators and cryptographic generators are known.
Complexity-theoretic generators fooling AC0 were shown by Nisan (which is the Nisan-Wigderson
generator with PARITY as the hard function, and is earlier than [20]). Cryptographic generators are
constructed for example in [6]. For P/poly, both complexity-theoretic generators and cryptographic
generators are unknown. However, the assumptions needed for complexity-theoretic generators (e.g, E
requires exponential-size) are much weaker than those needed for cryptographic generators (e.g., that
one way functions exists).



I. Tzameret and L.-M. Zhang 95:15

We remark that, in this theorem, the “largeness” requirement of NP̃/qpoly-natural properties
can in fact be relaxed to |C ′

n| ≥ 2−nO(1) · |Fn| (cf. Definition 10).
Rudich also proposed another notion, called demi-hardness, which he considered to be

more intuitive than super-hardness:

▶ Definition 19 (Demi-hardness). Let gn : {0, 1}n → {0, 1}l(n) be a generator (in P/poly).
Then the demi-hardness Hdh(gn) of gn is the minimal s for which there exists a non-
deterministic circuit D of size at most s such that

P
y∈{0,1}l(n)

[D(y) = 1] ≥ 1
s

and P
x∈{0,1}n

[D(gn(x)) = 1] = 0. (2)

We note that (2), which requires a distinguisher to make no mistakes on any generated
strings, is a stronger requirement than (1). Thus, Hnh(g) ≤ Hdh(g) for every generator g.

We call exponentially demi-hard generators demi-bits, where “demi” is meant to stand
for “half” here:

▶ Definition 20 (Demi-bits). A generator (in P/poly) gn : {0, 1}n → {0, 1}n+c for some
c : N → N is called c demi-bit(s) (or a c-demi-bit(s)) if Hdh(gn) ≥ 2nε for some ε > 0 and
all sufficiently large n’s. In particular, if c = 1, we call gn a demi-bit.

As Hnh(g) ≤ Hdh(g), it is natural to conjecture:

▶ Conjecture 21 (Demi-bit conjecture [25]). There exists a demi-bit.

Accordingly, it is natural to ask:

▶ Open problem ([25]). Does the existence of a demi-bit imply the existence of a super-bit?

As discussed above, a super-bit can be stretched to polynomially many super-bits and to
pseudorandom function generators secure against nondeterministic adversaries. In contrast,
whether a demi-bit can be stretched to even two demi-bits was unknown prior to our work:

▶ Open problem ([25]; Resolved in Section 4). Given a demi-bit, is it possible to stretch it to
2-demi-bits?

The question that remains open is:

▶ Open problem ([25]). Given a demi-bit, is it possible to build a pseudorandom function
generator with exponential demi-hardness?

A positive answer to the last problem would answer the following:

▶ Open problem ([25]). Does the existence of a demi-bit rule out the existence of NP̃/qpoly-
natural properties against P/poly?

3.6 Infinitely often super-bits and demi-bits
Here, we formalize a weaker variant of super-bits and demi-bits, that only requires infinitely
many n’s to be “hard” (recall super-bits/demi-bits require hardness for all sufficiently large
n’s). This variant occasionally appears implicitly in the literature but may not have been
formally defined.

▶ Definition 22 (Infinitely often super-bits/demi-bits). A generator (in P/poly) gn : {0, 1}n →
{0, 1}n+c, for some c : N → N is called c infinitely often (i.o.) super-bit(s)/demi-bit(s),
if Hnh(gn) ≥ 2nε/Hdh(gn) ≥ 2nε for some ε > 0 and infinitely many n’s. In particular, if
c = 1, we call gn an i.o. super-bit/demi-bit.

ITCS 2024



95:16 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

In fact, it is an easy observation that we can construct from a reasonably frequent
i.o. super-bit/demi-bit, a super-bit/demi-bit, by properly choosing a prefix of a given input n

and applying the i.o. algorithm to the prefix. More details follow. However, we are unaware
if we can construct a super-bit/demi-bit from any i.o. super-bit/demi-bit.

▶ Lemma 23. Assume gn : {0, 1}n → {0, 1}n+c for some c ∈ N are c i.o. super-bits/demi-bits.
If there exist a polynomial p and an infinite monotone sequence (ni)i∈N ⊆ N such that: (1)
ni+1 ≤ p(ni), and (2) for some ε > 0 and every n ∈ (ni)i∈N, Hnh(gn) ≥ 2nε/Hdh(gn) ≥ 2nε ,
then there exists a c-super-bits/c-demi-bits constructed from gn.

Proof. We present the proof for constructing super-bits from i.o. super-bits, and the proof
for constructing demi-bits from i.o. demi-bits is almost identical.

Assume g, (ni), p are as given in the lemma statement. Denote m = n+c and mi = ni +c.
We construct a new generator G as follows:

Given xn ∈ {0, 1}n, there is an i such that ni ≤ n < ni+1. Define G(xn) = g(a) · b,
where a = xn[1...ni], b = xn[ni + 1...n]. We note |G(xn)| = |g(a)| + |b| = n + c.

We want to show that G is indeed super-bits. Suppose, for a contradiction, G is not.
Then there exist an infinite monotone sequence S ⊆ N, a sub-exponential function s, and a
distinguisher D of size s such that for every n ∈ S,

1/s(n) ≤ P [D(Um) = 1] − P [D(G(Un)) = 1]
= P [D(Umi

Um−mi
) = 1] − P [D(g(Uni

)Um−mi
) = 1]

Thus, for every n ∈ S, there exists a fixed string w = w(n) such that

1/s(n) ≤ P [D(Umi
w) = 1] − P [D(g(Uni

)w) = 1] .

We now construct a new distinguisher D′ for g as follows:

Given Y ∈ {0, 1}mi as input, if there exists an n ∈ S such that ni ≤ n < ni+1(≤ p(ni)),
D′ outputs D(Y w(n)), and otherwise D′ always outputs 0 (which means D′ fails to
do anything for such an ni).

Note that the (1) ni+1 ≤ p(ni) assumption guarantees the efficiency of D′. As S is infinite
and every n ∈ S is between some ni and ni+1, there are infinitely many ni’s such that:

P
[
D′(Umi ) = 1

]
− P

[
D′(g(Uni )) = 1

]
= P [D(Umi w) = 1] − P [D(g(Uni )w) = 1] ≥ 1/s(n)

This shows, for infinitely many ni’s, Hnh(g(ni)) ≤ 1/s′(n) for some sub-exponential s′, which
contradicts the assumption (2) in the lemma statement. ◀

▶ Remark. Lemma 23 is often used implicitly in the constructions of super-bits and demi-bits.

4 Stretching demi-bits

In this section, we answer affirmatively whether a demi-bit is stretchable, which had been an
open problem from the original work of Rudich [25].

We propose Demi-Bit Stretching Algorithm 24, which stretches a single demi-bit to
nc demi-bits for any c < 1, and verify the correctness of this stretching algorithm (i.e.,
verify the exponential demi-hardness of the new elongated generator). Intuitively, Demi-Bit
Stretching Algorithm 24 partitions a given seed into disjoint pieces and apply the 1-demi-bit



I. Tzameret and L.-M. Zhang 95:17

generator to each piece. The algorithm proposed here is very similar to other stretching or
amplification algorithms known in the literature (e.g., cf. [31, 19]). The real difficulty in
stretching demi-bits comes from to need to prove the correctness of the attempted stretch
(i.e., to proof the stretching algorithm applied to preserve exponential demi-hardness).

▶ Demi-Bit Stretching Algorithm 24. Suppose bn : {0, 1}n → {0, 1}n+1 is a demi-bit and
0 < c < 1 is a constant. We define a new generator g : {0, 1}N → {0, 1}N+m with input
length N and stretching length m = ⌈N c⌉ as follows: given input x (of length N), let n = ⌊ N

m ⌋
and x = x1x2 . . . xmr, where each xi has length n, and define g(x) = b(x1) . . . b(xm)r.

The correctness proof proceeds by contrapositive. That is, we assume there is a distin-
guisher D which breaks demi-bits g (stretched from a single demi-bit b by Demi-Bit Stretching
Algorithm 24) in the desired sense, and we want to construct a distinguisher C which breaks
b. Rather than applying the hybrid argument directly to D, we apply the hybrid argument to
a new distinguisher D′ defined based on D: the new distinguisher D′ can use nondeterminism
to change the pseudorandom part of the hybrids and thus “amplify” the probability of
certificating randomness (intuitively, this can be viewed as changing the average-case analysis
in the standard hybrid argument to a worst-case or “existence” analysis). By applying the
hybrid argument to D′, we are able to identify a non-empty class S2 of random strings
yi+1 . . . ym, which are not random witnesses (in the sense that, for each yi+1 . . . ym in this
class, there are no seeds x1, . . . , xi such that D(b(x1) . . . b(xi) yi+1 . . . ym) = 1). Thus, for
yi+1 . . . ym in S2, yiyi+1 . . . ym can become a random witness (i.e., there are seeds x1, . . . , xi−1
such that D(b(x1) . . . b(xi−1) yi . . . ym) = 1) only if yi is truly random (i.e., not equal to b(x)
for some seed x). The hybrid argument also implies a “good” such yi+1 . . . ym in S2, that can
identify a sufficient portion of truly random yi. We can thereby build a new distinguisher C

to distinguish truly random strings from pseudorandom ones.
In the proof, we reserve the bold face for random variables.

▶ Theorem 25 (Main theorem for stretching demi-bits). The generator g (with a sub-linear
stretching-length), as defined in Demi-Bit Stretching Algorithm 24, has at least exponential
demi-hardness.

Proof. Demi-bit b and constant c are as given in Demi-Bit Stretching Algorithm 24. Suppose,
towards contradiction that g does not have exponential demi-hardness. That is, there is a
sub-exponential (in the input length, denoted by N) size nondeterministic circuit D such
that, for infinitely many N ’s (recall m = ⌈N c⌉ and n = ⌊ N

m ⌋, and without loss of generality,
we may assume m|N), P [D(y1 . . . ym) = 1] ≥ 1/|D| and P [D(b(x1) . . . b(xm)) = 1] = 0,
where x1, . . . , xm are totally independent length-n random strings and y1, . . . , ym are totally
independent length-(n + 1) random strings. Our aim is to efficiently break b in the desired
sense.

We define a new nondeterministic circuit D′ that takes a pair of inputs: the first is the
same input as D’s, that is, an (N +m)-bit string y1 . . . ym, and the second is i ∈ {0, 1, . . . , m}
(with i properly encoded):

Given input (y1 . . . ym, i), D′ guesses n-bit strings x1, . . . , xi and does whatever D

does on b(x1) . . . b(xi) yi+1 . . . ym.

We observe that:
P [D′(y1 . . . ym, 0) = 1] = P [D(y1 . . . ym) = 1] ≥ 1/|D| (by the definition of D′);
P [D′(b(x1) . . . b(xm), m) = 1] = P [D(b(x1) . . . b(xm)) = 1] = 0
(by assumption on D; otherwise P [D′(b(x1) . . . b(xm), m) = 1] > 0 would mean there
exist x1, . . . , xm such that D(b(x1) . . . b(xm)) = 1);

ITCS 2024



95:18 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

D′ is also of sub-exponential size.

We can now apply the hybrid argument to D′:

1/|D| ≤ P
[
D′(y1 . . . ym, 0) = 1

]
− P

[
D′(b(x1) . . . b(xm), m) = 1

]
=

∑
i

(P
[
D′(b(x1) . . . b(xi−1) yi . . . ym, i − 1)

]
− P

[
D′(b(x1) . . . b(xi) yi+1 . . . ym, i)

]
)

yields there is an i = i(N) (for infinitely many N ’s) such that

Pi−1 − Pi ≥ 1/(m · |D|),

where Pi−1 := P [D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1] and
Pi := P [D′(b(x1) . . . b(xi−1)b(xi)yi+1 . . . ym, i) = 1]. As m is sublinear in n, m · |D| is still
sub-exponential in N .

We denote by S = {0, 1}(n+1)×(m−i) the set of (m − i)-tuples of (n + 1)-bit strings, and
let S1 = {(yi+1, . . . , ym) ∈ S : ∃(x1, . . . , xi) ∈ {0, 1}n×i D(b(x1) . . . b(xi)yi+1 . . . ym) = 1},

and S2 = S \ S1. We note that:
D′(b(x1) . . . b(xi−1) yiyi+1 . . . ym, i − 1) = 1 if and only if D′(O yiyi+1 . . . ym, i − 1) = 1,
where O = 0(n+1)·(i−1) (because, by construction, D′(. . . , i−1) ignores its first i−1 input
strings);
D′(b(x1) . . . b(xi−1)b(xi) yi+1 . . . ym, i) = 1 if and only if (yi+1, . . . , ym) ∈ S1, and thus
P [yi+1 . . . ym ∈ S1] = Pi.

Therefore,
Pi−1 = P

[
D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1

]
= P

[
D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S1

]
· P [yi+1 . . . ym ∈ S1] +

P
[
D′(b(x1) . . . b(xi−1)yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
· P [yi+1 . . . ym ∈ S2]

≤ 1 · P [yi+1 . . . ym ∈ S1] +

P
[
D′(O yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
· P [yi+1 . . . ym ∈ S2]

= Pi + P
[
D′(O yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2

]
· P [yi+1 . . . ym ∈ S2] ,

and thus

P [D′(O yiyi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2] · P [yi+1 . . . ym ∈ S2]
≥ Pi−1 − Pi ≥ 1/(m · |D|).

In particular, P [yi+1 . . . ym ∈ S2] > 0 and
P [D′(O yi yi+1 . . . ym, i − 1) = 1|yi+1 . . . ym ∈ S2] ≥ 1/(m · |D|), which imply there is a
fixed (yi+1 . . . ym) ∈ S2 such that

P [D′(O yi yi+1 . . . ym, i − 1) = 1] ≥ 1/(m · |D|).

We now define another nondeterministic circuit C by C(yi) := D′(O yiyi+1 . . . ym, i − 1)
with yi ∈ {0, 1}n+1 as the input variable. As D′ is of sub-exponential size in N and n is
polynomially related to N , C is of sub-exponential size in n.

We now argue that C breaks b in the desired sense. For infinitely many n’s,
(1) P [C(yi) = 1] = P [D′(O yi yi+1 . . . ym, i − 1) = 1] ≥ 1/(m · |D|), where m · |D| is sub-

exponential in n;
(2) P [C(b(xi)) = 1] = P [D′(O b(xi) yi+1 . . . ym, i − 1) = 1] = 0, because yi+1 . . . ym ∈ S2

implies there is no x1, . . . , xi such that D(b(x1) . . . b(xi)yi+1 . . . ym) = 1.
Since C breaks b in the above sense, we reach a contradiction with the assumption that b is
a demi-bit. ◀



I. Tzameret and L.-M. Zhang 95:19

The condition c < 1 in Demi-Bit Stretching Algorithm 24 guarantees n = N1−c is polynomially
related to N and an infinite monotone sequence of N yields an infinite monotone sequence
of n.

A key step that makes this proof work is that nondeterministically guessing seeds
x1, . . . , xi−1 in b(x1) . . . b(xi−1)zi preserves the “randomness-structure” of b(x1) . . . b(xi−1)zi,
in the sense that: when zi = b(·) is pseudorandom, the nondeterministic guess preserves the
form b(·) . . . b(·)b(·) (i.e., i equal-length pseudorandom chunks); and when zi = y is truly
random, it preserves the form b(·) . . . b(·)y (i.e., i − 1 equal-length pseudorandom chunks
followed by a truly random chunk y of the same length). For common stretching algorithms
that produce exponentially many new bits (e.g., recursively applying a one-bit generator),
it is unclear how to use nondeterminism in a way that respects the “randomness-structure”
of a given string. Nevertheless, the new proof technique may inspire researchers to further
explore the stretchability of demi-bits. On the other hand, the fact could also be that there
is a specific demi-bit which cannot be stretched to exponentially many demi-bits by the
standard stretching algorithms which are applied to super-bits and strong PRGs.

4.1 Applications in average-case complexity
In this section we show that Theorem 25 implies an equivalence between two different para-
metric regimes of zero-error average-case hardness of time-bounded Kolmogorov complexity
against NP/poly machines.

We need the following: a hitting set generator against a class of decision problems
C ⊆ 2{0,1}N is a function g : {0, 1}n → {0, 1}N , for n < N , such that the image of g hits
(namely, intersects) every dense enough set A in C (that is, |A| ≥ 2N

NO(1) ).
As observed by Santhanam [26]:

▶ Proposition 26 ([26]). Let n < N . A hitting set generator g : {0, 1}n → {0, 1}N computable
in the class D against NP/poly exists iff there exists a demi-bit b : {0, 1}n → {0, 1}N

computable in D (against NP/poly).

Proof. If g : {0, 1}n → {0, 1}N is a hitting set generator against the class C of decision
problems decidable by nondeterministic polynomial-size circuits, it is also a demi-bit in the
sense that no machine C ∈ C of polynomial-size |C| = NO(1) can break g, since otherwise
P[C(UN ) = 1] ≥ 1/NO(1) and P[C(g(Un)) = 1] = 0, contradicting the assumption that g is a
hitting set generator against C. Conversely, if b is a demi-bit, than it is also a hitting set
generator against C, because if a circuit C in C outputs 1 to a dense enough set of inputs it
must also output 1 on a string in the image of b, or else C would break the demi-bit. ◀

Note that Demi-Bit Stretching Algorithm 24 applies also to demi-bits computable in
uniform polynomial-time (the stretching algorithm is uniform, assuming the original demi-bit
is, since it simply applies the demi-bit on different parts of the input). This is important for
us, since to talk about Kolmogorov complexity we need machines to be of fixed size, even
when the input length changes. Notice, on the other hand, that the proof that the stretching
algorithm preserves its hardness necessitates that the adversary D is non-uniform (this is
the reason in Theorem 28 we work against NP/poly adversaries).

We define the t-bounded Kolmogorov complexity of string x, denoted Kt(x), to
be the minimal length of a string D such that the universal Turing machine U(D) (we fix
some such universal machine) runs in time at most t and outputs x. See [3] for more details
about time-bounded Kolmogorov complexity and Definition 9 there for the definition of
time-bounded Kolmogorov complexity of strings (that definition actually produces the ith bit
of the string x given an index i and D as inputs to U , but this does not change our result).

ITCS 2024



95:20 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

Recall Definition 6 of the languages Kt[s] and Kpoly[s(n)].
We also need to define precisely the concept of zero-error average-case hardness against

the class NP/poly (equivalently, nondeterministic circuits as in Definition 8).

▶ Definition 27 (Zero-error average-case hardness against NP/poly). We say that a language
L ∈ {0, 1}∗ is zero-error average-case easy for NP/poly if there is an NP/poly machine
for which all the following hold: (i) every computation-path terminates with either a Yes, No
or Don’t-Know state; (ii) for a given input x no two distinct computation-paths terminate
with both Yes and No; (iii) we say that the machine answers Yes (No) on input x if there
exists a computation-path terminating in Yes (resp. No) given x; (iv) otherwise (namely, all
computation-paths given input x terminate in Don’t-Know) we say that the machine does not
know the answer for x; (v) the machine never makes a mistake when answering Yes or No
(on the other hand, it can answer Don’t-Know on either members of L or non-members); and
(vi) the machine (correctly) answers Yes or No on at least a polynomial fraction of inputs in
L (i.e., at least 2n/nc of strings in L ∩ {0, 1}n, for every sufficiently large n and for some
fixed constant c independent of n). If L is not zero-error average-case easy for NP/poly we
say that L is zero-error average-case hard against NP/poly.

The main equivalence is the following:

▶ Theorem 28 (Equivalence for average-case time-bounded Kolmogorov complexity).
Kpoly[n − O(1)] is zero-error average-case hard against NP/poly machines iff Kpoly[n − o(n)]
is zero-error average-case hard against NP/poly machines.

Proof. By Theorem 25 and the equivalence of (uniform polytime computable) demi-bits
and hitting set generators (HSGs) against NP/poly (Proposition 26), it suffices to show
that for a size function s : N → N with s(n) < n − O(1), Kpoly[s(n)] is zero-error average-
case hard against NP/poly machines iff there is a HSG computable in uniform polytime
H : {0, 1}s(n) → {0, 1}n against NP/poly.

(⇐=). Assume that H : {0, 1}s(n) → {0, 1}n is a HSG, computable in uniform polytime,
against NP/poly. Then, for every constant k (independent of n) and sufficiently large n,
Im(H) ∩ {0, 1}n intersects all NP/poly-computable sets An ⊆ {0, 1}n for which |An| ≥ 2n/nk

for all n. We need to show that for every constant c, Knc [s(n)] ⊆ {0, 1}n is zero-error
average-case hard for NP/poly. We show that there is no NP/poly machine that answers
(correctly) one of Yes or No answers on at least 2n/nk input strings from {0, 1}n, and on the
rest input strings in {0, 1}n answers Don’t-Know, and moreover makes no mistakes. Assume
otherwise, then there is an NP/poly machine that answers (correctly) No for at least 2n/nO(k)

input strings from {0, 1}n; this is because most input strings do not have short time-bounded
Kolmogorov complexity, that is, a polynomial fraction of the inputs x ∈ {0, 1}n, for every n,
are not in Kpoly[s(n)], for s(n) between |x|ε and |x| (for a constant 0 < ε < 1; see [3, Section
2.6] and references therein). Hence, there is an NP/poly machine that accepts (correctly) at
least 2n/nO(k) “hard strings” from {0, 1}n (namely, strings not in Kpoly[n]), and rejects all
other strings in {0, 1}n: in particular, the NP/poly machine guesses a witness to the effect
that the input string is hard, and if the witness is correct it accepts, and otherwise it rejects.

We thus get a contradiction to H being a HSG against NP/poly: there is a dense NP/poly-
language containing at least 2n/nO(k) “hard strings” from {0, 1}n. But if D is such an
NP/poly machine for this language, then D breaks the HSG H: for every string in Im(H)
the machine D Rejects, since it has a small Kpoly complexity by the assumption that H is
computable in uniform polytime (in other words, every string x of length n in Im(H) is such



I. Tzameret and L.-M. Zhang 95:21

that x ∈ Knr [s(n) + O(1)], for some constant r independent of n, by assumption that H is
computable in uniform polytime). Hence, H does not hit the dense NP/poly-set defined by
D, a contradiction.

(=⇒). We assume that Kpoly[s(n)] is zero-error average-case hard against NP/poly. Let
H : {0, 1}s(n) → {0, 1}n be a mapping defined so that the input x ∈ {0, 1}s(n) is fed into
a universal Turing machine to be ran in time nk, for some constant k independent of n,
and the output of the universal machine is a string of length n (or the string 0 · · · 0 of n

zeros if the algorithm does not terminate after nk steps). We show that H is a HSG against
NP/poly (computable in uniform nO(1)-time, by assumption).

Assume by way of contradiction that H is not a HSG against NP/poly. Then, there is
an NP/poly machine D that accepts at least 2n/nO(1) strings in {0, 1}n, but rejects every
string in Im(H). Therefore, there is an NP/poly machine D that correctly accepts at least
2n/nO(1) strings x ∈ {0, 1}n with x ̸∈ Kpoly[s(|x|)], and rejects all other strings in {0, 1}n.
This contradicts our assumption, because we can construct an NP/poly machine D′ that
zero-error decides on average Kpoly[s(|x|)]: in D simply replace an Accept state with a Yes
state, and a Reject state with a Don’t-Know state. ◀

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudor-

andom generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004. (A
preliminary version appeared in Proceedings of the 41st Annual Symposium on Foundations
of Computer Science (Redondo Beach, CA, 2000)).

2 W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. Rsa and rabin functions: Certain
parts are as hard as the whole. SIAM Journal on Computing, 17(2):194–209, 1988. doi:
10.1137/0217013.

3 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

4 Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM J.
Comput., 37(2):380–400, 2007. doi:10.1137/050641958.

5 M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput., 13(4):850–864, November 1984. doi:10.1137/0213053.

6 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Fine-grained
cryptography. Cryptology ePrint Archive, Paper 2016/580, 2016. URL: https://eprint.
iacr.org/2016/580.

7 O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM,
33(4):792–807, August 1986. doi:10.1145/6490.6503.

8 O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st Annual
ACM Symposium on Theory of Computing, STOC ’89, pages 25–32, New York, NY, USA,
1989. Association for Computing Machinery. doi:10.1145/73007.73010.

9 Oded Goldreich. Foundations of cryptography I: Basic Tools. Cambridge: Cambridge University
Press, 2001.

10 S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9.

11 Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-complexity.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 50–60. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00014.

ITCS 2024

https://doi.org/10.1137/0217013
https://doi.org/10.1137/0217013
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050641958
https://doi.org/10.1137/0213053
https://eprint.iacr.org/2016/580
https://eprint.iacr.org/2016/580
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/73007.73010
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.1109/FOCS46700.2020.00014


95:22 Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

12 J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. doi:10.1137/
S0097539793244708.

13 R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset
sum. In 30th Annual Symposium on Foundations of Computer Science, pages 236–241, 1989.
doi:10.1109/SFCS.1989.63484.

14 B. S. Kaliski. Elliptic curves and cryptography : a pseudorandom bit generator and other
tools. Phd Thesis Mit, 2005.

15 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002. doi:10.1137/S0097539700389652.

16 Jan Krajíček. Dual weak pigeonhole principle, pseudo-surjective functions, and provability of
circuit lower bounds. The Journal of Symbolic Logic, 69(1):265–286, 2004.

17 Jan Krajíček. Forcing with random variables and proof complexity, volume 382 of London
Mathematical Society Lecture Notes Series. Cambridge Press, 2010.

18 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1243–1254. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00118.

19 M. Luby. Pseudorandomness and Cryptographic Applications, volume 1. Princeton University
Press, 1996. URL: http://www.jstor.org/stable/j.ctvs32rpn.

20 N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1.

21 J. Pich. Learning algorithms from circuit lower bounds. CoRR, abs/2012.14095, 2020.
arXiv:2012.14095.

22 Jan Pich and Rahul Santhanam. Why are proof complexity lower bounds hard? In 60th
Annual IEEE Symposium on Foundations of Computer Science FOCS 2019, November 9-12,
2019, Baltimore, Maryland USA, 2019.

23 A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences,
55(1):24–35, 1997. doi:10.1006/jcss.1997.1494.

24 Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Annals of Mathematics, 181:415–472, 2015.

25 S. Rudich. Super-bits, demi-bits, and NP/qpoly-natural proofs. Journal of Computer and
System Sciences, 55:204–213, 1997.

26 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 68:1–68:26.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.68.

27 Rahul Santhanam. Personal communication, 2022.
28 Nicollas Sdroievski and Dieter van Melkebeek. Instance-wise hardness versus randomness

tradeoffs for arthur-merlin protocols. The Electronic Colloquium on Computational Complexity
(ECCC), 2023. doi:ISSN1433-8092.

29 Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172–216, 2005. doi:10.1145/1059513.1059516.

30 Iddo Tzameret and Lu-Ming Zhang. Stretching demi-bits and nondeterministic-secure pseu-
dorandomness, 2023. See also Elec. Coll. Comput. Complexity https://eccc.weizmann.ac.
il/report/2023/057/. arXiv:2304.14700.

31 A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science, FOCS ’82, pages 80–91, 1982. doi:10.1109/SFCS.1982.45.

https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/SFCS.1989.63484
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
http://www.jstor.org/stable/j.ctvs32rpn
https://doi.org/10.1016/S0022-0000(05)80043-1
https://arxiv.org/abs/2012.14095
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/ISSN 1433-8092
https://doi.org/10.1145/1059513.1059516
https://eccc.weizmann.ac.il/report/2023/057/
https://eccc.weizmann.ac.il/report/2023/057/
https://arxiv.org/abs/2304.14700
https://doi.org/10.1109/SFCS.1982.45

	1 Introduction
	1.1 The theory of nondeterministic-secure pseudorandomness
	1.2 Relations to barrier results

	2 Contributions, significance and context
	2.1 Stretching demi-bits
	2.1.1 Discussion and significance of stretching demi-bits to barrier results
	2.1.2 Applications in average-case complexity
	2.1.3 Applications in proof complexity
	2.1.4 Technique overview

	2.2 Fine-grained characterisation of nondeterministic security based on unpredictability 
	2.3 Super-cores: hard-core predicates in the nondeterministic setting

	3 Preliminaries and basic concepts
	3.1 Notations and conventions
	3.2 Computational models
	3.3 Natural proofs
	3.4 Pseudorandom generators
	3.5 Super-bits and demi-bits
	3.6 Infinitely often super-bits and demi-bits

	4 Stretching demi-bits
	4.1 Applications in average-case complexity


