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ABSTRACT

Canned water is one of the thriving markets in the food and beverage industry. Given the tight competition in
this market, realistic analysis in such production lines has become even more attractive for all participating
parties. In this paper, we apply a KPI-driven simulation-based approach to a smart production plant of a key
player in the European beverage market. The project covers realistic discrete-event modeling and analysis
of the system together with the suggested scenario-based optimization for performance improvement. Here,
the smart line management system is modeled and re-coded while considering machine characteristics,
failures, and their overall influence on the production process. Our proposed optimized scenario demonstrates
noticeably better results in all performance indicators when compared to the existing state of the system.
The total increment of the production speed reaches up to 45 percent, resource utilization is evenly optimal,
and the overall work-in-progress inventory is reduced significantly.

1 INTRODUCTION

The manufacturing sector is adopting various digital technologies related to smart factories to increase
the efficiency in product design stage, optimize production lines, and enhance the core competencies of
companies (Cortés et al. 2021). In this context, Industry 4.0 offers advanced solutions for improving
the competitiveness of production companies (Ratnasingam et al. 2019). The smart factory is a certain
deployment of Industry 4.0, which includes advanced equipment like sensors, robotic actuators, embedded
programmable logic controllers (PLCs), or other network-connected objects in order to collect and analyze
all the information required for putting forward better decisions (IBM 2022; de Paula Ferreira et al. 2020).
Furthermore, given the significant impact of digitization on production speed, it has become one of the main
drivers of change in modern production systems. This includes the digitization of services and products, as
well as the digitization and optimization of all production processes (Bambura et al. 2020). The beverage
sector is one of the industries that have adopted the latest smart factory concepts. Simulation tools are
providing us with an excellent opportunity to analyze the systems with their realistic specifications and
minimal simplifications. Such methods are the main building blocks of a digital twin that may make realistic
and highly applicable optimization scenarios attainable by business owners.

With its features, simulation allows for rapid testing of multiple parameter settings, analysis, and
prediction of decision outcomes while considering various performance uncertainties. Additionally, this
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safe analytical tool assists in testing and exploring these ’what-if’ scenarios without purchasing, installing,
changing, or reinvesting in any physical equipment. Compared to real experiments, virtual experiments
using simulation models are less time-consuming and less costly (Robinson et al. 2004). Unlike spreadsheets
or solver-based analysis, simulation models are able to help optimize production lines by observing and
studying system behavior in detail over time (Uriarte et al. 2018). Digital models of the manufacturing
plants not only can be used to describe production processes and to see the bottlenecks but also can act
as a decision-support to deal effectively with unexpected situations and failures (Mosalam et al. 2018;
Attar et al. 2017). Furthermore, trials have found that production managers implementing simulation
techniques earlier in the design cycle are able to investigate larger design spaces faster through digital
exploration, all before decisions are made and costs are determined (Cortés et al. 2021). Clearly, the idea
of saving manufacturers time and money through this approach is attractive, and the growing development
of simulation technology seems to make it likely to be more sought after.

This paper focuses on the simulation and scenario-based optimization of the production process for
one of the key players in the canned-beverage industry in Europe. Our objectives are to diagnose resource
wastes, identify bottlenecks, reduce wasted investments in inventory, and improve overall throughput. We
create and analyze the production line using the well-known discrete-event simulation (DES) technique.
To achieve the project goals, some key performance indicators (KPIs) are collected and analyzed from the
model. These indicators cover multiple dimensions of the system such as machine efficiency, throughput,
accumulation quantity, and operation speed of the stations. Smart lines in the food industry have similar
processes to the line under study that were not addressed adequately in other studies. We believe that the
method proposed in this research can be of general interest to decision-makers in this industry.

The rest of the paper is organized as follows: Section 2 presents a brief review of the related literature;
system modeling methodology is explained in Section 3; numerical results, improved scenarios, and
managerial recommendations are discussed in Section 4; finally, in the last section, the conclusion and
future research directions are provided.

2 LITERATURE REVIEW

Simulation is receiving a great deal of attention from manufacturers as it helps the modern industry to
meet unprecedented challenges from market behavior. This technology is able to simulate the performance
and behavior of real-life or production processes, systems, or facilities (Allen et al. 2015). It typically
models queuing systems, using limited resources, and describes the movement of modeled entities (e.g.
people, products, materials, etc.) through a network of queues and activities (Wainer 2017). There are
many examples of the application of simulation to complex manufacturing systems. Depending on the
needs and experimental objectives, experts and academics have used a variety of methods and simulation
software to study different assembly lines. In this section, we confirm the practical feasibility of simulation
for line optimization and the available software through a brief review of existing real-life case studies.

2.1 Production Line Simulation

Simulating production lines in real practice is very interesting and challenging. A number of studies
have demonstrated the capabilities of simulation-based methods for manufacturing line improvements.
Simulation is versatile; it allows scenarios to be created to foresee the impact of any change on realistic
conditions (Uriarte et al. 2018). Table 1 summarizes and compares some of the existing studies with real
applications of simulation in improving production lines in different industries. One of the early instances
of simulation-based improvement in production lines was done by Kumar and Phrommathed (2006) in
the pulp & paper industry where they suggested studying the process map, identifying the most critical
operation, and then strengthening it to achieve improvement. This strategy brought about a considerable
raise in the company’s profit amounting to US $450,000 per annum. More recent papers recommended
other methods like Buffer re-allocation, Cycle time analysis, Nabla, Productivity assessment, and Kanban.
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Table 1: A summary of the related literature with real case studies.

Reference
Simulation
Method § Software

Industry
Smart Line

Improvement Method

SD D
E

S

A
B

S

A
re

na
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ny

L
og

ic

SI
M

U
L

8

T
PS Yes No

Kumar and Phrommathed (2006) * * Pulp & Paper * Process map study

Heshmat et al. (2013) * * Cement * Buffer re-allocation

Zupan and Herakovic (2015) * * Metal * Cycle time analysis

Kuncova and Zajoncova (2018) * * Electronics * General line balancing

Cortés et al. (2021) * * Automotive * Nabla

Pekarcikova et al. (2021) * * Solar Panel &
Heat Exchanger

* Kanban

Jung et al. (2022) * * Garment * Productivity assessment

Current Study * * Beverage *
Re-coding flow
management & KPI analysis

§ SD: System Dynamics, DES: Discrete Event Simulation, ABS: Agent-Based Simulation

Cortés et al. (2021) and Jung et al. (2022) studied smart production lines in the automotive and
garment industries, respectively. Such production lines can adapt themselves dynamically based on live
data from the existing load and may be controlled by a computer program. Defining the management logic
for these lines is a critical challenge that can have a direct impact on the profitability of the company. To
our best knowledge, re-coding the smart speed management system was neglected in the literature. The
production lines in the food and beverage packing, on the other hand, have unique characteristics, and
this sector was overlooked by researchers. Hence, one of our contributions is to design a framework for
optimizing manufacturing systems that are equipped with computerized speed management. Furthermore,
to fill the gap in the food and beverage market, we specifically focus on a case study in this sector. Another
contribution of this study is to use multiple KPIs as guides to the optimized solution and to modify multiple
components of the line concurrently. Unlike the cycle time-based method (Zupan and Herakovic 2015),
in this new approach, modifications are suggested based on multiple indicators including the processing
speed, congestion, and capacity of the elements in the system.

2.2 Simulation Software for Production Lines

As shown in Table 1, DES has been widely employed in various engineering and manufacturing areas. A
large number of successful production line improvement projects were carried out using a multitude of
highly specialized DES-based software. The simulation software can animate the production process in
2D or 3D, which will make it easier to validate, understand, and discuss the concept and idea. Arena,
AnyLogic, Enterprise Dynamics (ED), MATLAB (Simulink), SIEMENS Tecnomatix Plant Simulation
(TPS), and SIMUL8 are among the 3D-enabled packages that are commonly used for modeling production
and inventory processes (Cortés et al. 2021; Zupan and Herakovic 2015; Attar et al. 2016; Kuncova and
Zajoncova 2018). As mentioned by de Paula Ferreira et al. (2020) (also seen in Table 1), TPS is a widely
utilized platform for practical real-life simulation. Thus, another aspect of our work is to use this convenient
platform for modeling the beverage packing industry. For more details on the theoretical application of
simulation in Industry 4.0, one may refer to the structured review by de Paula Ferreira et al. (2020).
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Figure 1: The flowchart of the canned beverage production process.

3 SYSTEM MODELING METHODOLOGY

In this section, we discuss the proposed DES-based methodology. The existing beverage packaging plant of
this company is divided into three main product streams: PET bottles, Glass bottles, and Aluminum cans.
However, for this study, only the aluminum canned beverage is considered. In this production line, we have
identified two types of entities, namely, Lid and Can. The production process in this line is schematically
illustrated in Figure 1.

The key production steps include (i) Depalletizing, (ii) Lid feeding, (iii) Filling, (iv) Pasteurizing, (v)
Packaging, and (vi) Stretch wrapping. Transportation between different stations is done by conveyors, and
the production line is equipped with CNC Technology that allows convenient regulation and control of the
entire production line. For instance, the empty can depalletizer is an automatic, PLC-controlled aluminum
can unloader which is loaded from the bottom via a conveyor belt while the unloading process takes place
from the top. The empty cans are transported from the buffer conveyor to the empty bottle/can inspection
(EBI) station in which poor-quality empty cans are eliminated. Cans with acceptable quality are subject
to a sequential filling operation at the filling station, and afterward, they are fitted with a lid. The filled
cans are then transported to a pasteurization station where they are sequentially sterilized before entering
the buffer conveyors of the packing steps.

In the packing site, disinfected aluminum cans are split evenly into two streams. The first portion
will be cluster-packed and then over-packed, while the other will skip the cluster-packer station and be
transported directly to the over-packer station. Later on, two intelligent robots in the palletizer station stack
the packed products in an orderly manner. This is followed by two steps of fully automatic stretch balling:
(i) the initial stretch wrapping for which two buffer conveyors will transfer the stacked cans to two small
pallet stretch wrapper stations; subsequently (ii) a secondary stretch wrapper for all processed products
from both streams. The last step in this production line is the quality inspection and spot check after which
the products are sent to the warehouse.

Based on the described production process, we build a simulation model in TPS software (Figure 2)
and use it for analyzing the process for one shift (i.e., 8 hours). The model consists of two sources, i.e.,
Input 1 & 2 (for the lid and can, respectively), and 12 station objects that represent the various processes
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Figure 2: A snapshot of the simulation model built using TPS software for the system in the current state.

Table 2: Production speed (can per hour, cph) data for each station in the production line.

Equipment Type Low Speed Nominal Speed High Speed MTTR
(cph) (cph) (cph) (m:s)

Lid feeder 60000 60000 62500 1:30
Empty can depalletizer 60288 60288 64998 1:00
EBI 60000 60000 62500 0:30
Filler/capper 60000 60000 62500 1:52
Post-pasteurizer 60000 60000 60000 0:30
Cluster-packer 40000 60000 66000 1:14
Over-packer 40000 60000 72000 1;20
Palletizer 60216 60216 75504 1:15
Pallet Stretch wrapper(s) 61152 61152 82992 1:20
Perforator 61152 61152 82992 1:15

in Figure 1. On the other hand, instead of conveyor belts, we used a buffer object to better visualize
the accumulated work in progress (WIP) in the line. Just like real conveyor belts, these buffer objects
have limited capacities. Each buffer is tagged with the Accumulative Quantity (AQ) showing the real-time
amount of WIP products in that part of the line. One major objective of this project is to increase the total
throughput by optimizing the speed of the canned beverage line. Thus, for each station, we display and
record the speed (as product/hour) and throughput data that we will use for performance analysis.

Table 2 contains the production speed ranges of different stations based on the current values in the op-
eration speed management (OSM) of the manufacturing plant. A similar table, namely TB_machine_speeds,
is created to replicate these speed ranges in the model. The mathematical correlation between the speed
data (Table 2) and the processing time of each machine (in seconds) is given by (1).

Process Time (s) =
3600

Machine Speed (cph)
(1)

The OSM system determines the speed of each station based on the amount of congestion in the
predecessor and successor conveyors (here, buffer objects) and may stop feeding the subsequent conveyor if
necessary. Figure 3 illustrates the logical flow control code in an example station. Note that, the programming
language used in this piece of code (or method object as called in TPS software) is SimTalk™ which
is introduced by SIEMENS™ specifically for this software. For further information about this language,
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Figure 3: Settings code (i.e., Method object in TPS) for speed control in the simulation mode.

one may refer to Bangsow (2010). In this code, AQ represents the real-time load quantity of the buffer,
while, for simplicity, we use x1,x2, and x3 to represent the operation speeds of the station according to the
requirements extracted from the speed management table, i.e., low, nominal, or high speeds, respectively.
As seen in Figure 2, each station has its method object with a code similar to that in Figure 3.

In the event of an idle or overloaded buffer belt, the previous station and subsequent workstations
can adjust the production status, i.e. close the output or input ports. For example, when the buffer is
carrying more than 95% of its maximum capacity in real-time, the previous station will close the output
port (using exitlock command) to relieve the blockage; when the buffer is below 5% of capacity, however,
the subsequent station will close the input port (i.e., entrancelock command), which helps save on running
costs and reduce energy waste. Nevertheless, when the accumulated quantity gets back into the normal
range (i.e., [T4,T3] or [T5,T6] ), the applied entrance or exit closures are automatically lifted by using the
waituntil command. Table 3 reports T1-T6 thresholds and the relevant buffer conveyor in the current speed
management system for each station.

Table 3: Decision threshold data T1-T6 for each station in the production line.

Station Name T1, T2 AQ′ T3, T4 AQ′′ T5, T6 AQ′′′

Filler - 90%, 80% AQ3 10%, 20% AQ2
Depalletizer 90%, 50% AQ1 95%, 95% AQ1 -
EBI 90%, 50% AQ2 95%, 95% AQ2 10%, 20% AQ1
Post-Pasteurizer - 90%, 80% AQ4 -
Cluster-Packer 25%, 30% AQ4 90%, 80% AQ5 10%, 10% AQ4
Over-Packer 25%, 30% AQ5 90%, 80% AQ6 10%, 10% AQ5
Palletizer 15%, 30% AQ6 90%, 80% AQ7’1&’2 10%, 10% AQ6
Stretch-Wrapper1 10%, 0% AQ7’1 - 5%, 5% AQ7’1
Stretch-Wrapper2 10%, 0% AQ7’2 - 5%, 5% AQ7’2
Stretch-Wrapper3 10%, 0% AQ7’3&’4 90%, 80% AQ8 -
Perforator 10%, 0% AQ8 - -

The availability of machines in the system under study is fairly good with their uptime being 98.5% on
average. In this plant, a dedicated team is responsible for the maintenance of the machines which brings
about the mentioned high availability and keeps the repair time in an acceptable range. Here, we use a
feature of TPS that allows us to input the availability as a percentage, and the mean time to failure (MTTF)
is calculated automatically. Table 2 contains the estimated mean time to repair (MTTR) for each of the
machines which also includes minor faults and any human interference in the operation. Given that the
current availability and MTTR values of the system are already very competitive, this study only focuses
on the smart production management system and will keep the maintenance specifications of the machines
untouched.
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(a) (b)

Figure 4: Performance charts of the current state: (a) Station performance, (b) Buffer conveyor occupancy.

4 RESULTS AND DISCUSSION

After building the simulation model in Section 3, in this section, we use the proposed model to analyze
the current state of the production line, propose the optimized scenario for achieving the project goals, and
eventually, measure the effectiveness of the new settings quantitatively using multiple KPIs.

4.1 Current Status of the Canned Beverage Line

In order to understand the weaknesses of the current settings of the production line, we run the simulation
model for one shift. As seen in Figure 2, in its current state, the system has a throughput of around 271k
(per shift). The work in progress in this state is 404 units which can be calculated by (2).

WIP = Total Input (Depalletizer)−Total Out put (Can Out put) (2)

Figure 4 illustrates the performance of the stations and the load on the buffers (conveyors) under the
existing settings. In Figures 2 and 4-b, we observe that the buffers before the cluster-packer and over-packer
stations (i.e., AQ1, AQ3, and AQ4) accumulate a large amount of WIP, while the ones after these two
stations carry too little loads. The value of AQ4 remains between 48 and 55 products, while the value of
AQ5 is mainly in the range [118,139]. This indicates that the filling and pasteurization stations have the
greatest potential for speed optimization. Furthermore, the machine efficiency of the original model is not
high (see Figure 4-a). Except for the Over-Packer, efficiency rates (working/total time) of all machines
are around 60%. This also indicates that considerable improvements may be achieved by applying proper
amendments to the system.

4.2 Scenario Definition and Optimization

In general, from both charts, we can conclude that the flow management system has a good potential to be
re-configured to achieve better performance. For this purpose, we propose a multi-step approach as follows:

Step 1: New Speed Control for Filler Machine As the first choice of improvement, we amend the
speed management mechanisms in the filler machine. It is the first important machine in the production
process and feeds the entire line. Thus, balancing the speed here will potentially help improve the total
throughput and may affect AQ, AQ2, and AQ3 buffers. The current scheme for managing the production
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Table 4: Speed management settings comparison: Original vs. Improved models for the Filler machine.

Object Original Proposed
Occupancy Action Occupancy Action

AQ2 < 10% Filler stop
> 20% Filler restart

AQ3 > 90% Filler stop > 99% Filler stop
< 80% Filler restart < 90% Filler nominal speed

< 50% Filler high speed

speed is based on the temporary inventory in AQ2 and AQ3. However, according to Tables 3 and 4, it
only manages the operational status of the entrance and exit of the Filler, and the machine will work at its
nominal speed all the time with no speed variations. To refine the speed control of the filler, we set more
conditions on its downstream (succeeding) buffer. In addition, the machine efficiency chart (Figure 4-a)
shows that there is some waiting time (gray color) at the filler site. So, an attempt is made to remove the
minimum threshold related to the upstream (preceding) buffer, i.e., AQ2. By reference to the precursor
site’s production rates, the speed of the filler is adjusted as summarized in Table 4 to align its speed range
with the rates of its upstream objects.

Step 2: New Speed Control for Depalletizer and Pasteurizer Machines The pasteurization machine
serves as a dividing station in the line, and we observe that the succeeding stations are kept waiting/idle for
a long time. This means that more product output is required from the upstream stations which feed the
Post-pasteurizer. In view of this observation, in this step, we increase the maximum threshold by which the
upstream buffer feeds this machine. Theoretically, this should increase the efficiency of some key stations
and alleviate blockages. As shown in Table 5, the highest thresholds for Depalletizer and Post-pasteurizer
stations were all raised to 99%. Note that, in the previous step, this threshold was already set to 99% in
the filler station, so we are sure that the maximum possible flow is provided to the stations downstream of
the pasteurization site.

Table 5: Speed management settings: Original vs. Improved models for the Depalletizer and Pasteurizer.

Object Original Proposed
Occupancy Action Occupancy Action

AQ1 > 95% Depalletaizer stop > 99% Depalletaizer stop

AQ4 > 90% Post-pasteurizer stop > 99% Post-pasteurizer stop
< 80% Post-pasteurizer restart ≤ 99% Post-pasteurizer restart

Step 3: New Speed Control for The Packers According to the assembly line sequence, the cluster-
packer and the over-packer are both downstream of the pasteurization station. Nevertheless, it is observed
that the pasteurized semi-finished products are unevenly distributed, which leads to significant blockages
upstream of the packers and high waiting times at their downstream objects. In this step, we deal with the
speed control of this portion of the line.

Step 3.a: Over-Packer Machine Speed Adjustment
The buffer (conveyor) subsequent to the pasteurization site (i.e., AQ4) consistently exhibited high levels

of WIP in the original model (Figure 4-b). It can be perceived that this observation may be related to the
coding/settings at the downstream sites. In reference to the current speed control system in Table 3, it
appears that the Over-packer is not regulated by the AQ4 buffer; rather, only adjusts its speed and running
state after approaching some limits in AQ5 and AQ6. Table 6 demonstrates our proposed amendments to
the speed control mechanisms of the Over-packer to address this issue and connect its speed to the status
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Table 6: Speed management settings: Original vs. Improved models for Over and Cluster Packers.

Step Object Original Proposed
Occup. Action Occup. Action

3.a AQ4 > 25% Over-packer nominal speed
> 30% Over-packer high speed

AQ5 < 10% Over-packer stop < 10% Over-packer stop
< 15% Over-packer low speed > 15% Over-packer nominal speed
> 25% Over-packer nominal speed > 30% Over-packer high speed
> 30% Over-packer high speed

AQ6 > 90% Over-packer stop > 90% Over-packer stop
> 80% Over-packer restart > 80% Over-packer restart

3.b AQ4 < 10% Cluster-packer stop > 15% Cluster-packer nominal speed
< 15% Cluster-packer low speed > 30% Cluster-packer high speed
> 25% Cluster-packer nominal speed
> 30% Cluster-packer high speed

AQ5 > 90% Cluster-packer stop > 90% Cluster-packer stop
> 80% Cluster-packer restart > 80% Cluster-packer restart

of its upstream conveyor. We also amended the threshold for applying the nominal speed, and it is now
done after the machine restarts. This attempt should help reduce the total WIP in AQ4 even further.

Step 3.b: Cluster-Packer Machine Speed Adjustment
In the final step of addressing the bottleneck of the packer sites and eliminating the idle time in this

section of the line, we adjust the speed management mechanism of the cluster-packer as given in Table 6.
The applied approach for this packer is similar to the one used for the Over-packer with minor differences.
This packer is already regulating its flow based on AQ4 inventory; hence, we do not need to define a new
category of rules. The stopping threshold (concerning AQ4) is also removed to smoother the production
process. Just like the other packer, the machine is set to start with its nominal speed to avoid congestion
in its upstream stations. This step finalizes our proposed improvement scheme for the system under study,
and thus the new model can be used for performance analysis and comparisons.

4.3 Results of The Optimized Model and Managerial Insights

In subsection 4.2, we defined the proposed changes in the speed management system of the production
line to improve the overall performance of the process. We put the proposed scenario into test in this
subsection and compare the achieved results with the ones presented in subsection 4.1 for the original state
of the system. Comparing Figure 5-a with the original chart in Figure 4 confirms that the performance of
all stations is improved significantly under the proposed optimization scenario. All stations (except for the
cluster-packer) are now in a working state for more than 80% of the time, whereas this KPI was around 55%
in the original model. Table 7 compares the existing status of the system with the proposed optimized state
using different KPIs. Here, for station status KPIs, we reported the worst case (i.e., Min./Max. whichever
applies) in addition to the average value. With reference to the achieved results, the proposed version offers
noticeable improvements in all aspects. The maximum blocked state among all stations was over 40%,
lowered to around 16% in the new model. Furthermore, the box plot in Figure 6 shows that the system is
now performing in a more balanced way and the distance between the 1st and 3rd quartiles of idle and
blocked states decreased significantly.

As defined in Section 1, one of our goals was to improve the total throughput of the system. Table 7
reveals that we expect the suggested amendments in the speed control system to bring about a 45% increase
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(a) (b)

Figure 5: The proposed optimized speed management: (a) station performance chart, (b) statistics snapshot.

Table 7: Key Performance Indicators of the Improved version vs. the Original state.

KPI Original Proposed Improvement

Total Accumulated WIP 404 240 40.59%
Total Throughput 271138 393765 45.23%
Working State (Avg. | Min.) 55.99% | 28.37% 77.80% | 41.02% 38.95% | 44.59%
Waiting State (Avg. | Max.) 23.21% | 70.59% 12.04% | 57.94% 48.13% | 17.92%
Blocked State (Avg. | Max.) 18.89% | 42.83% 8.16% | 16.76% 56.80% | 60.87%

for this KPI. The total investment required for the WIP inventory of this line was also lowered by 40%
which fulfills another goal of this project. One of the major sources of this considerable reduction is that
we were successful in eliminating the unnecessary inventory in AQ4 from 132 to the negligible value of 14
(see Figure 2 and 5-b). With all achievements of this new optimized model from the WIP perspective, we
still observe that AQ1 conveyor is carrying almost the same amount of inventory as it had in the original
model. In the meantime, the other source of the Filler station has nothing left in its buffer (i.e., AQ=0).
According to the last two observations, we may conclude that the existing Lid Feeder is slow for this line;
because we have used up all products in its succeeding buffer conveyor while the buffer downstream EBI

Figure 6: Three main KPIs for the stations before and after applying the proposed optimization.
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was still holding some WIP inventory. Given that the Lid Feeder is operating at its maximum allowed
speed, the managers may consider a redundant machine or a faster alternative for this station.

Moreover, Cluster-Packer is still encountering a considerable waiting time (Figure 5-a). With the status
of the buffers in mind, we can conclude that this issue may be resolved by two means: (1) adding a new
Over-Packer as a redundant to the existing one, (2) changing the product distribution method between the
over-packer and cluster-packer in AQ4 (i.e., setting it to some values other than the current 50%-50%
scheme). However, both of these changes (and the ones mentioned about the Lid Feeder) require decisions
to be made by the management/stakeholders which is out of our current scope.

5 CONCLUSION

This paper studies a production line in the food and beverage industry and proposes a new speed control
scheme based on some Key performance indicators (KPIs). The production line under study is smart and
automated and is equipped with advanced computer monitoring, robotic arms, PLC-controlled machines,
and fully computer-controlled conveyors. In this study, we aim to increase the throughput of the system
and reduce the overall inventory within the production line. So as to archive these goals, a multi-stage
method is applied that comprises: (i) conceptual modeling of the processes, (ii) replicating the conceptual
model in the simulation software, (iii) using the simulation model to calculate the current values of the
KPIs as well as to identify the existing bottlenecks and potential improvement opportunities, (iv) proposing
the optimized settings based on the identified weaknesses, and finally (v) applying the proposed settings
in the model and demonstrating the improved KPI values.

The KPIs are usually defined in line with the scope and goals of each project. The main KPIs used in this
study include the total throughput, the accumulated work-in-progress (WIP) in conveyors, the time portion
during which the stations are blocked, the waiting time, and the working state of stations. Furthermore,
in order to balance the line more effectively, we consider both the average and the worst case for the last
three KPIs. Our results showed reassuring conditions for the proposed optimized model in all aspects, and
some of the KPIs were improved by over 50%. Due to the smoothly balanced working state of all stations,
the new throughput is predicted to increase by 45% and the total WIP in the system is decreased by about
40% in each shift. Given these findings, the applied method in this research has successfully fulfilled the
defined goals and may be adopted for other similar production lines in the industry.

In this research, we focused on optimizing the speed management system of the production line. As a
future work, one may consider improving the system while considering possible investments in new facilities
and stations. On the other hand, the maintenance and failures considered in this research were assumed
to be fixed. Possible improvement in the maintenance plans is another future direction for extending this
work either in the food industry or in a completely new area.
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