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Abstract 

 

There have been a number of digital twin (DT) frameworks proposed for mul- 

tiple disciplines in recent years. However, there is a need to develop systematic 

methodologies to improve our ability to produce DT solutions for the nuclear 

fuel industry considering specific requirements and conditions exclusive to the 

nuclear fuel manufacturing cycle. A methodology tailored for nuclear fuel pro- 

duction is presented in this paper. Due to the nature of the chemical processes 

involved in fuel manufacturing, we highlight the importance of using a combina- 

tion of physics-based and data-driven modelling. We introduce key technologies 

for DT construction and the technical challenges for DT are discussed. Further- 

more, we depict typical application scenarios, such as key stages of the nuclear 

manufacturing cycle. Finally, a number of technology issues and research ques- 

tions related to DT and nuclear fuel manufacturing are identified. 
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1. Introduction 

 

Modern industry requires the use of advanced manufacturing techniques and 

operations utilising smart technologies that allow for interoperability among or- 

ganisations, assets and the people involved in the process. The advent of modern 

technologies is leading industry to focus on the inter-connectivity of automation, 

machine learning, real-time data monitoring and control. The challenge is to 

create manufacturing processes that need to be observed or controlled remotely 

from an environment that may not be accessible easily by human operators, 

while having the capability to test and improve the quality of the product, 

service or process without incurring in high prototyping costs. 

The idea of digital twinning originated as a virtual representation of an 

engineering system, to better understand what was designed versus what was 

produced, with the purpose of closing the gap between design and execution 

[Grieves (2014)]. This formal definition, as shown in Fig. 3, encompasses three 

primary elements: (a) a physical object in a physical space; (2) a virtual object 

in a virtual space; and (3) the data link between the two spaces. 

 

 

 

 

 

 

 

Data Information / 
Processes 

 
 
 
 
 
 
 

 
Figure 1: Twinning between the physical and virtual spaces. Adapted from Jones et al. (2020). 

 

The concept of virtualisation spread quickly when NASA started to develop 

systems and mechanisms that needed to be monitored and manipulated in space, 
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an environment where operating conditions are difficult to reproduce or unavail- 

able during the design phase. They started to develop virtual prototypes that 

could be tested before being sent to space or even before physical manufacturing. 

After a number of iterations testing the virtual prototype, and only after mak- 

ing sure the prototype could reach the required specification, the manufacture 

of a device was started [Glaessgen and Stargel (2012)]. 

DT technology has been discussed widely as a key game changer in advancing 

Smart Manufacturing and Industry 4.0 initiatives. A significant advantage of 

DT technology is the availability of data gathered from different domains in the 

manufacturing value chain to derive time-sensitive decisions [Lim et al. (2020); 

Fukawa and Rindfleisch (2023)]. However, it is argued that most DT industrial 

approaches are ad-hoc solutions where DTs are expected to be used once or 

a few times within a limited time-frame associated with a particular project. 

Major industrial corporations such as Siemens, General Electric, Bosch and 

Ansys. offer DTs solutions and infrastructure based on their own experience 

in manufacturing of products and services. However, there is a need for a 

systematic and unified DT methodology, in which DTs could be used/reused 

over time in multiple coordinated applications [Qamsane et al. (2021); Johansen 

et al. (2023)]. 

Given that the primary objective of a DT is to create a virtual representation 

or model of a physical process, this technology has proven useful in numerous 

major industries. The present work explores the advantages of employing this 

technology in nuclear fuel manufacturing, an industry facing several challenges 

that DTs are highly likely to help overcome. The adoption of a DT, in general 

terms, to aid nuclear fuel manufacture offers the potential for a wide variety of 

benefits. 

Nuclear power projects are capital-intensive, making them economically chal- 

lenging compared to other forms of energy generation [Rothwell (G.); Hansen 

(2019)]. Reducing costs is a continual focus in the industry [Rabl (2013)]. Sim- 

ilarly, the enrichment process, aimed at increasing the concentration of 235U, 

can be both energy-intensive and expensive [Lahoda (2004)]. Ongoing research 
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is focused on developing more efficient and cost-effective enrichment methods 

[Nishizawa et al. (1998); Seko et al. (1990)], where DTs can be employed to test 

these new approaches inexpensively. 

Managing and disposing of spent nuclear fuel is a significant challenge. Long- 

lived radioactive isotopes present in spent fuel require secure storage solutions 

to prevent environmental contamination [Bruno and Ewing (2006); Gauld et al. 

(2017)]. Processes operated in parallel to those depicted in a digital representa- 

tion might provide an additional way in which fissile material quantities are as- 

sessed and accounted for, particularly in the context of safeguards [Woo (2012)], 

and could reduce uncertainties on quantities such as material unaccounted for. 

Implementing a closed nuclear fuel cycle, where spent fuel is reprocessed 

and recycled, faces technical, economic, and socio-political challenges. Nuclear 

power can face public opposition due to concerns about safety, radioactive waste, 

and the perceived potential for nuclear accidents [Havl´ıcek (2019)]. Overcoming 

these concerns is crucial for the expansion of nuclear energy [Havl´ıcek (2019); 

Ganda et al. (2016)]. Digital parallels of nuclear processes might also allow 

for greater optimisation concerning the quantities of reagents used, thereby 

improving efficiency, whilst reducing cost and waste [Atz and Fratoni (2023)]. 

Obtaining regulatory approval for new fuel cycle technologies and reactor de- 

signs can be a lengthy and challenging process [Sauter (2009); Heffron (2013); 

Hogselius (2009)], potentially hindering innovation and development. Over time, 

where learning concerning the specific features of a process by means of DTs, 

concerning such factors as hold-up and wear [Strobel et al. (2023)] might take 

years to acquire, comparison of the DT operation with the real system could 

highlight departures from accepted performance much earlier. This could aid 

maintenance, allow for improvements to the process design and prevent signifi- 

cant periods of reduced operation [Zhong et al. (2023); van Dinter et al. (2022)]. 

In the future, DTs of existing process architectures could be adapted and scru- 

tinised before an advanced plant is built, on the basis of these developments, 

complementing the development and use of test rigs and prototype process in- 

frastructure [Song et al. (2022); Edwards et al. (2023)].  Understanding the 
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roles and distinctions between digital plans and DTs is crucial, especially in 

fields such as manufacturing where they play significant roles in project man- 

agement and optimisation. Digital plans are primarily used for design, visualisa- 

tion, and communication during the pre-construction or pre-production phases. 

DTs, nevertheless, serve operational purposes, offering insights into real-time 

performance, monitoring, and optimisation throughout the asset’s lifecycle. 

Significant effort in DT research has been focusing on the connection between 

the real and virtual spaces. Grieves (2014) state that global manufacturers to- 

day either work with the physical product or with the virtual product, missing 

a deep meaningful understanding of the interaction between the two products. 

Lin et al. (2021) claim that DTs provide reasonably useful behaviour adjust- 

ments based on feedback from the physical part. However, such adjustments 

are deterministic, and thus lack flexibility and adaptability. To address such 

problems, an extended concept, evolutionary digital twin (EDT) was proposed. 

With an EDT, a more precise approximated model of the physical world could 

be established through supervised learning [Lin et al. (2021)]. 

The present article highlights the importance of combining both physics- 

based and data-driven modelling approaches for nuclear applications (Section 

2). We introduce key technologies and typical application scenarios, such as the 

stages of the nuclear manufacturing cycle (Appendix A). We introduce a DT 

methodology tailored for nuclear fuel production, and use it to discuss relevant 

technical challenges (Section 3). Finally, a number of technological issues and 

research questions related to DT in the context of nuclear fuel manufacturing 

are identified (Section 4). 

 

2. Background 

 

In recent years, special attention has been given to the creation of DTs and 

their applications, encompassing an important number of domains, such as man- 

ufacturing, aerospace, healthcare, satellite networks, intelligent transportation 

and smart cities [Jones et al. (2020); Wanasinghe et al. (2020)]. Despite the pos- 
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itive advantages provided by DTs, there are no survey reports focusing on this 

technology applied to the nuclear fuel manufacturing industry. Some reports ex- 

plore the promising utilisation of DTs in the design and construction of nuclear 

reactors [Kochunas and Huan (2021); Lin et al. (2021); Bowman et al. (2022)]. 

However, the manufacturing processes involved in the creation of nuclear fuel 

are entirely different from the reactor designs. In other words, DTs deployed 

for nuclear energy generation are significantly different from DTs proposed for 

manufacturing of the fuel required by the reactors. 

Due to their high applicability in any industrial sector, DTs are a signifi- 

cant technology trend, where the incorporation of machine learning / artificial 

intelligence techniques enrich DT significance and research potential [Rathore 

et al. (2021)]. Wu et al. (2021) have explored the connection between DTs and 

their physical counterparts, where physical objects and virtual twins can com- 

municate, collaborate, share information, complete tasks with each other, and 

form an information sharing network by connecting multiple DT nodes. This 

concept is called Digital Twin Network (DTN). Autiosalo et al. (2021) propose 

an open-source server solution called Digital Twin Web, software that follows a 

similar structure to the World Wide Web and which allows digital distribution 

of twin documents as effortlessly as possible using a web browser. Users with 

no experience in programming or server administration can create a public and 

free-of-charge instance of the software intended to be deployed as a server for 

DT implementations. 

A new concept, Digital Twin Data (DTD) was introduced by Zhang et al. 

(2022). Since data are a core driver for DTs, a DTD approach simply defines 

physical entity-related data, virtual model-related data, service-related data, 

domain knowledge, fusion data, and connection data [Tekinerdogan (2023)]. 

This approach demands specific data requirements in terms of data gathering, 

interaction, universality, mining, fusion, iterative optimisation, and on-demand 

usage. Another DT framework is based on the System Development Life Cycle 

(SDLC) process that establishes (1) the specific requirements of a DT, (2) an 

understanding of the manufacturing process within the operation of the DT, 
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and (3) the object-oriented aspects of the DT to achieve scalability, re-usability, 

interoperability, interchangeability and extensibility [Qamsane et al. (2021)]. 

This framework serves as a procedure for good practice in DT development as 

it provides guidelines across the DT life-cycle. Other recent work has focused on 

the deployment of autonomous control systems into new nuclear reactor designs 

with DT technology. An analysis for DTs for nearly autonomous management 

and control systems (NAMAC) was reported by Lin et al. (2021). For this 

approach, DTs are used to extract information from the NAMAC’s knowledge 

base to support decision-making in reactor control and management during 

all modes of plant operations. This data-driven approach identifies nonlinear 

relationships within the complex reactor system and the supporting real-time 

operations for the evaluation of uncertainty quantification. 

Kochunas and Huan (2021) propose that, for nuclear power applications, 

DT development should rely on mechanistic model-based methods to leverage 

the considerable experience and understanding of these systems. Model-free 

techniques can be adopted subsequently to selectively, and correctively, aug- 

ment limitations in the model-based approaches. Both forward and reverse 

uncertainty quantification and their optimisation are also analysed to facilitate 

decision making in support of the physical asset operating in an uncertain en- 

vironment. This work in particular focuses on DTs that can be deployed in 

the design of nuclear reactors. Rasheed et al. (2020), B ár k ányi  et al. (2021) 

and Kochunas and Huan (2021) state that surrogate models in DTs are suit- 

able for linking together physics-based modelling, data-driven modelling, and 

hybrid solutions. Fig. 2 shows a simple approach to hybrid modelling. This 

work shows that the use of surrogate models has advantages. Even though they 

are black-box type models, they clearly reflect some of the physics involved in 

the system. Once the models have been trained, they become stable for mak- 

ing prediction inferences, uncertainties can be bounded and estimated and they 

are less susceptible to bias. This study shows how the surrogate model types 

that have been applied for different DT applications are implemented based 

on:  neural networks, support vector machines, radial basis functions, linear 
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regression, polynomial functions, Gaussian process regression, power series ex- 

pansions, fuzzy models, state space models, Monte Carlo and Kalman filters 

[Papacharalampopoulos (2020); Lin et al. (2021); B ár k ányi  et al. (2021)]. 

 

 

 

Figure 2: Hybrid analysis and modelling [Rasheed et al. (2020); B´ark´anyi et al. (2021)]. 

 

The main reasoning behind applying surrogates in DTs is that their compu- 

tational requirements are significantly smaller than other simulation process 

such as Finite Element Analysis (FEA) or Computational Fluid Dynamics 

(CFD). Two issues with the application of surrogate models have been iden- 

tified: (1) the significant amount of data needed for model building and (2) the 

need of continuous maintenance over the whole life cycle of the model. An al- 

ternative approach to improving computational efficiency for surrogate models 

is the application of models based on sets of physics-based equations or sets of 

differential equations that describe a well-known process or system. Successful 

implementations of DTs will require trust in the models, trust in the data, and 

trust in the algorithms used to update the model based on the data. When all 
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the aforementioned elements are present, a system defined in the physical space 

can be replicated successfully in a virtual space [Wright and Davidson (2020)]. 

In the context of manufacturing, Bao et al. (2019) define three types of DTs: 

product DT, process DT and service DT. The inter-operation mode among 

these DTs are presented and combined to execute operations between product, 

process and resource using the Automated Markup Language (AutomationML). 

This standard aims to converge the physical space and the virtual space in the 

workshop or factory for predicting manufacturing outcomes. 

 

3. Defining Digital Twins for Nuclear Fuel Manufacturing 

 

3.1. Reaction kinetics 

Based on our current understanding of the primary processes involved in 

nuclear fuel production (see Appendix A), it is evident that many of the stages 

in nuclear fuel manufacturing can be modelled as a series of chemical processes. 

By modelling the chemical interactions of the elements involved in each reaction, 

it is feasible to use the kinetics of the reaction as a basis for the creation of a 

DT. Reactor kinetics is the study of processes that control the time-dependent 

behaviour of a chemical reactor. The chemistry involved in the nuclear fuel 

manufacturing cycle plays a crucial role in the generation of nuclear energy 

[Nash and Braley (2011)]. A chemical process is represented mathematically as 

the change in the concentration of its reactants or products with time [Smith 

and Konings (2020)]. A two-component chemical reaction is described by the 

balance equation 

 

aA + bB → cP, (1) 

 

where A and B represent the reactants and C represents a product of the 

reaction. The coefficients a, b and c in reaction 1 represent the stoichiometric 

ratios of each component in the reaction. The rate of appearance or disappear- 

ance of these chemicals are related to each other by the rate equation 
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σ 

rL = – 
ρ 

rR, (2) 

where L and σ represents a chemical and its stoichiometric coefficient on the 

left hand side of reaction 1; R and ρ represent a product and its stoichiometric 

coefficient on the right hand side of reaction 1. The negative sign indicates that 

the rate of appearance of a chemical on the right is proportional to the rate of 

disappearance of a chemical on the left. The reaction rate expressions describe 

the rate of a reaction to concentrations of the reactants and products, with each 

concentration expressed with an order. For the general reaction 1, the reaction 

rates can be expressed as 

r  = 
dCA 

= –k1Cα C
β 

, (3) 
A 

dt A  B 

 

r  = 
dCB 

= –k2Cα C
β

 (4) 

 

and 

B 
dt A  B 

 

r  = 
dCP 

= k3C
φ 

, (5) 
P 

dt P 

where CA, CB and CP represent the concentration of reactant A and B and 

product C respectively. Here, k1, k2 and k3 are rate constants which are not 

a function of concentration. It can be seen from expressions 3, 4 and 5 that 

reaction 1 becomes a nonlinear differential system that can be solved for any 

concentration C which has reacted by time t [Scholz and Scholz (2014)]. The 

solution will depend on the experimentally-determined reaction rates k and 

exponents α, β and φ. In many elementary reactions the exponents are of order 

zero, one or two. However, in more complex processes, fractional orders also 

occur [Rodin and Egan (1989)]. 

As identified previously in the literature, the creation of a DT can be facil- 

itated through the utilisation of a physics-based model. This approach aligns 

with the methodology proposed and detailed in the next section. 
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3.2. Methodology 

The creation of DT solutions for nuclear fuel manufacturing processes will 

involve considering the following steps. This approach is grounded in a general 

methodology that holds applicability across diverse manufacturing industries 

[Qamsane et al. (2021)]. Fig. 3 illustrates this methodology in a graphical rep- 

resentation, demonstrating the process in a non-linear or non-sequential manner, 

allowing for more complexity and flexibility in presenting relationships and con- 

nections between various phases of the DT implementation. Each stage in the 

methodology is explained in the list below. 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Figure 3: A Methodology to implement DT solutions for manufacturing systems. Adapted 

from [Qamsane et al. (2021)]. 
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3.3. Off-line development phase 

1. Define system: Definition of the physical system or manufacturing pro- 

cess to be represented as a DT. This initial phase involves planning to 

assess whether there is a need to enhance a specific aspect of the manu- 

facturing process. It aims to determine whether a DT solution can address 

the identified need. During this phase, problems within the manufacturing 

facility are pinpointed, and potential solutions are proposed. In situations 

where implementing a solution directly in the physical space is impracti- 

cal, for reasons such as financial constraints preventing production halts, a 

parallel representation of the physical environment can be employed. This 

allows for improvements or optimisations to be explored without disrupt- 

ing the ongoing process, especially during the development phase [Bao 

et al. (2019); B á rk ány i  et al. (2021); Bowman et al. (2022); Fukawa and 

Rindfleisch (2023); Grieves (2014); Jones et al. (2020); Lim et al. (2020); 

Lin et al. (2021); Wright and Davidson (2020)]. 

2. Determine task: Determination of the DT task or purpose (e.g., moni- 

toring and optimisation, predictive maintenance, real-time decision-making, 

automated control, and responsiveness). This phase involves identifying 

the specific goals of the DT application. Typically, the overarching ob- 

jectives include enhancing the economic efficiency of the entire process, 

improving manufacturing efficiency, optimising the proportion of produc- 

tion time dedicated to value-added activities, or ensuring consistency in 

the quality of the final product [Wanasinghe et al. (2020); Garc´ıa et al. 

(1989); Grieves (2014); Qin and Badgwell (2003); Wu et al. (2021); Zhang 

et al. (2022)]. Quantitative assessment and evaluation of historical data 

are essential in gaining insights into the relevant issues that the DT aims to 

address. To achieve a comprehensive understanding of the data, consider- 

able expertise and knowledge of the manufacturing problem are necessary. 

Input and insights from domain experts are invaluable during this phase, 

aiding in the collection of additional perspectives on data collection. For 
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example, this step facilitates the identification of useful versus non-useful 

data, establishes criteria for data trustworthiness, determines which data 

to utilise, specifies features to extract, and addresses considerations such 

as data handling or data manipulation [Qamsane et al. (2021)]. 

3. Select modelling approach: The selection of a suitable modelling ap- 

proach (whether physics-based, data-driven, or hybrid) is contingent upon 

the knowledge available about the system or process. Given that most 

processes involved in nuclear fuel manufacturing are highly automated, a 

substantial amount of data were collected routinely using advanced tech- 

nologies such as Supervisory Control and Data Acquisition (SCADA) and 

Failure Mode and Effects Analysis (FMEA). These processes often entail 

the transformation of chemical elements (e.g., converting uranium hexaflu- 

oride into uranium dioxide) or the physical enhancement of elements (e.g., 

uranium enrichment). In light of these considerations, a hybrid modelling 

approach proves advantageous. This is particularly beneficial, given that 

all chemical interactions within the fuel cycle have been studied, charac- 

terised, and documented extensively in the past [Atz and Fratoni (2023); 

Ganda et al. (2016); Havl´ıcek (2019); Kang et al. (2008); Nash and Braley 

(2011)]. As discussed in Section 3.1, the equations derived from reaction 

kinetics can serve potentially as a foundational element for a hybrid model. 

This approach integrates real-time sensor data from the physical system, 

provided it is available in real-time, offering a comprehensive and dynamic 

representation of the manufacturing processes. 

4. Collect data: After defining the DT models, the next step involves the 

collection of data from the physical system. It is imperative to gather an 

appropriate quantity and quality of data, tailored to the chosen modelling 

approach. As mentioned earlier, these manufacturing activities leverage 

professional tools for data collection, integrated seamlessly with digital 

manufacturing and DTs. Technologies such as Big Data and Cloud Com- 

puting are already inherent components of these processes [Qi and Tao 

(2018); Kkarchenko (2018); Wanasinghe et al. (2020)]. As illustrated in 
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Fig. 3, the data collection step is positioned as an offline element in this 

proposed methodology. This strategic placement stems from the acknowl- 

edgment that, in scenarios where no historical data is available for assess- 

ing the prerequisites of a DT, establishing a setup for physically acquiring 

data takes precedence before the implementation phase. 

5. Rebuild: The necessity to rebuild a DT solution may arise if the current 

design fails to produce the expected results, as defined in step 2. However, 

as depicted in Fig. 3, the evaluation of the current solution occurs at the 

end of the on-line phase, following the deployment of the proposed off-line 

solution. Consequently, establishing an iterative nature for the proposed 

methodology, this rebuilding step is positioned in the offline phase. This 

is because this step requires a revision of the DT modelling approach, 

where even a redefinition of the DT task or purpose may be necessary if 

the current design yields unsatisfactory results [Wanasinghe et al. (2020); 

Garc´ıa et al. (1989); Grieves (2014); Zhang et al. (2022)]. 

 

3.4. On-line deployment phase 

6. Define parameters and model variations: This preparatory step is 

crucial and must be completed before moving on to the implementation 

of the model(s) and the determination of the model parameters, along 

with the establishment of a robust model validation strategy. The rea- 

son behind this activity is to ensure a solid foundation for the subsequent 

deployment phase of the methodology. Considering the aforementioned 

versatility of hybrid approaches in deploying DT solutions for nuclear fuel 

fabrication, a range of possibilities exists. These approaches, as discussed 

in Section 2, draw inspiration from practices applicable to various indus- 

tries [Wanasinghe et al. (2020); Garc´ıa et al. (1989); Grieves (2014); Qin 

and Badgwell (2003); Wu et al. (2021); Zhang et al. (2022)]. By leverag- 

ing hybrid models, which combine physics-based and data-driven elements, 

the methodology gains flexibility and adaptability. A pivotal aspect of this 

step involves the seamless integration of the DT solution into the opera- 
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tional framework. This integration is designed to harness run-time data, 

enabling the DT to assess dynamically the system and provide valuable 

recommendations. The utilisation of real-time data not only enhances the 

accuracy and relevance of the DT but also empowers it to respond effec- 

tively to dynamic changes in the manufacturing environment. As a result, 

this integration serves as a proactive measure, aligning the DT with the 

real-time intricacies of the fabrication process and ensuring its efficacy in 

offering timely insights and recommendations [Bao et al. (2019); B á rk ány i  

et al. (2021); Fukawa and Rindfleisch (2023); ?); Qin and Badgwell (2003); 

Wu et al. (2021); Zhang et al. (2022)]. 

7. Deploy: The deployment of a DT is a complex process demanding a com- 

prehensive, multidisciplinary approach that incorporates domain exper- 

tise, seamless technology integration, and effective communication among 

diverse stakeholders. Each deployment is inherently distinct, tailored to 

the specific characteristics and requirements of the physical system or 

process represented by the DT. Leveraging insights gained from past ex- 

periences in nuclear sites, establishing a dedicated DT for nuclear fuel 

fabrication necessitates careful consideration of critical elements. This 

includes securing adequate computational resources, seamless integration 

with existing IT systems, the development of an intuitive user interface 

and visualisation tools, robust security measures, adherence to regulatory 

compliance standards, and more [Fukawa and Rindfleisch (2023); Glaess- 

gen and Stargel (2012); Johansen et al. (2023)]. Each of these aspects 

contributes to the successful implementation and operation of the DT in 

the context of nuclear fuel fabrication. As depicted in Fig. 3, evaluating 

the deployment of a DT solution is straightforward. In instances where 

the intended benefits are not realised, the deployment task may need to be 

repeated, having addressed or resolved issues previously, until the desired 

outcomes are achieved. 

8. Supervision and maintenance: Supervise and maintain the deploy- 

ment of the previously proposed offline solution. Continuous oversight 
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of the DT within the application environment and ongoing assessment 

of model quality are indispensable aspects of the maintenance stage. To 

ensure optimal performance, a systematic approach is established for the 

con- tinuous monitoring of the DT operations [Jones et al. (2020); 

Kochunas and Huan (2021)]. Regular updates and maintenance 

activities for both the DT models and data sources are crucial to uphold 

accuracy and rel- evance over time. At this stage, potential modifications 

to the model parameters or structure may be necessary [Lin et al. 

(2021)]. Similar to the preceding step, an evaluation of the DT’s 

performance may reveal the need to rebuild and improve the solution or 

simply fine-tune the existing one. 

9. Tune: Tuning the proposed DT involves adjusting its parameters or con- 

figurations to optimise performance and enhance accuracy in representing 

the physical system. The first step is to evaluate how effectively the DT 

captures and predicts the behaviour of the physical system. This assess- 

ment includes considering feedback from end-users or stakeholders who 

may highlight any discrepancies between the DT’s predictions and the 

actual system behaviour [Wanasinghe et al. (2020); Wu et al. (2021)]. 

Next, it is important to examine critically the parameters and configura- 

tions of the DT model to identify areas for improvement. This evaluation 

aims to determine whether adjustments to these parameters could lead 

to enhanced accuracy and better alignment with the real-world system. 

Once potential adjustments are identified, the tuned DT needs validation. 

This involves assessing its performance using historical data or separate 

datasets not used during the initial model development. Tuning is often 

an iterative process; therefore, after making adjustments, it is crucial to 

repeat the evaluation, validation, and testing steps to assess thoroughly 

the impact of changes. Documentation and communication play a key role 

in the tuning process. Finally, for long-term effectiveness, the performance 

of the tuned DT must be monitored over time. This ongoing assessment 

helps ensure that the model remains accurate and aligned with changes in 
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the physical system, providing a reliable representation over the course of 

its deployment [Wanasinghe et al. (2020); Wu et al. (2021); Rathore et al. 

(2021)]. 

 

4. Opportunities 

 

The adaptability of DTs to specific industries, processes, or systems enables 

organisations to adopt them as tailored solutions, emphasising specific possi- 

bilities for the nuclear fuel industry. To demonstrate the potential of DTs in 

fostering innovation, efficiency, and strategic decision-making, positioning the 

nuclear fuel industry for success in a technology-driven landscape, various op- 

portunities and challenges have been identified. 

 

4.1. Standardisation 

Data collection is a crucial aspect of DTs. However, field-collected data often 

lacks a standardised format. Various commercially-available data integration 

platforms from different vendors adhere to distinct standards and methods for 

presenting data. Furthermore, existing datasets are decentralised frequently, 

stored in separate locations, and not linked to a common database [Qamsane 

et al. (2021); Johansen et al. (2023)]. These challenges pose a significant obstacle 

when integrating previously collected data and real-time data into a unified data 

analytics process. Consequently, the need arises for an intermediate custom tool 

capable of converting data from both proprietary and open access sources into 

a standardised format that the DT can comprehend. 

Therefore, no standard DT approach has seen broad adoption because they 

are largely tool-based or framework-based [Qamsane et al. (2021)]. The absence 

of a standard in data representations for DT, coupled with the multitude of 

available frameworks for DT development, introduces challenges to deploying 

DTs in real manufacturing settings. Additionally, there is a lack of system- 

atic techniques that leverage well-known research approaches to achieve scal- 

able, reusable, and interoperable DT solutions in the real manufacturing world. 
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While industries are gradually embracing solutions from recognised digital ser- 

vice providers (refer to Section 1), the approach to DT solutions varies signifi- 

cantly across different industries. Nonetheless, it is plausible that a solution for 

the nuclear fuel cycle will adopt a framework similar to the one illustrated in 

Fig. 3. Once a modelling framework is selected and developed, the final solution 

will manifest in a software-defined manner, operating on a dedicated computing 

system either locally or in the cloud (refer to Fig. 4). 

 

 

 

Figure 4: Software-based DT solution. Adapted from Wu et al. (2021). 

 

A recently published report, outlined in [Kung et al. (2022)], offers a com- 

prehensive overview of ongoing global standardisation efforts in DTs, along with 

the involved organisations. The report, compiled by a dedicated group, maps 

international standards and classifies related documents extensively, identifying 

originating bodies and industrial domains. It emphasises the existence of numer- 

ous documents supporting DT technologies, covering aspects such as modelling, 

security, protocols, and data formats. Additionally, the report provides guide- 

lines that aid developers and users of DTs, potentially serving as a foundational 

basis for standardising DT technology across industries. 

It is a priority that a standard for DT development be adopted to facil- 

itate interaction with commercial tools and software tools developed within 

the nuclear fuel sector. Furthermore, a standard can support integration with 

physically-sensed data and their extended reality counterpart [Kochunas and 

Huan (2021); Touran et al. (2017)]. In fact, the reason for success of deployed 

technologies in the nuclear industry is arguably a reliance on standardisation. 
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Whilst the industry generally demands standardised solutions, currently there 

is no standard exclusively focusing on digital twinning. The ISO/DIS 23247- 

1 standard [ISO/DIS (2022)] provides limited information on DT frameworks. 

Moreover, it provides no specific guidance for implementing DT solutions nor is 

this standard specifically tailored for any industry, including nuclear. 

 

4.2. On-line uranium enrichment assessment 

In nearly every industrial process, including product design, product per- 

formance, process planning, assembly line, task-scheduling, and resource allo- 

cation, optimisation is required. As an emerging technology, digital twinning 

provides a direct pathway to optimisation with considerably less effort than 

with no digital virtualisation. However, careful consideration of the chosen DT 

methods and the underlying feature set will be essential for better optimisation 

of the results. 

In terms of uranium enrichment, a number of off-line methods exist to deter- 

mine enrichment of uranium throughout the manufacturing process of nuclear 

fuel [Park et al. (2012)]. The main goal of DT technology here is to render fuel 

manufacturing compliance responsive to detected changes in product composi- 

tion and quality by potentially implementing a DT of the process with on-line 

enrichment assessment capability. Currently, product compliance in nuclear fuel 

manufacturing relies on off-line, lab-based analysis and manual inspection. In 

nuclear fuel DT research, we should test the hypothesis that a control network 

can be conceived using input data from online DT methods to render the process 

responsive. Any variance in product quality (UO2 quality, enrichment or pellet 

shape) can be tested and hopefully reduced by adjusting feedstocks, process 

operations, or by identifying and amending machine faults. 

 

4.3. Big data and cloud computing 

The infrastructure for handling and storing high-volume data has been pro- 

gressing considerably in recent years. Numerous platforms are now readily ac- 

cessible, providing comprehensive capabilities for processing big data projects 
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encompassing storage, centralised management, analysis, visualisation, accessi- 

bility, and security. Several survey articles delve into various facets of big data, 

covering not only state-of-the-art technology and platforms but also methods 

that inherently address the critical requirements of DT applications [Qi and Tao 

(2018); Kkarchenko (2018)]. 

In virtually any industrial setup, sensors attached to a manufacturing pro- 

cess generate a substantial volume of data. Recognising that such data can often 

be tainted with systematic or unsystematic noise, it is essential to pre-process 

it before applying any machine learning-based algorithms [Wanasinghe et al. 

(2020)]. The potential of edge and cloud computing platforms to manage DT- 

related data is on the horizon. Edge computing, for example, enables distributed 

processing at the DT network’s edge, with aggregate processing accomplished 

in the cloud. However, aggregating data in the cloud may lead to increased re- 

sponse times, impacting the performance of fast-paced dynamic systems. How- 

ever, for nuclear fuel operations, this might be less of an issue, as most of the 

chemical processes discussed earlier can operate potentially within the latencies 

provided by a modern DT network. Due to diverse requirements, different DT 

scenarios necessitate varying computing speeds and latencies. Cloud servers, 

with their capacity to process large amounts of data in seconds, offer robust 

DT services. Additionally, a cloud architecture can facilitate the organisation 

the management of numerous connected physical objects and parallel virtual 

models, along with the amalgamation and integration of real-time and histor- 

ical data. This proves particularly beneficial for the nuclear industry, where 

the practice of retaining months or even years of historical data for security 

purposes is commonplace [Westinghouse 2 (2024)]. 

 

5. Challenges 

 

5.1. Security and privacy issues 

The aforementioned data storage systems require protection against cyber- 

attacks and must be well organised to ensure fast data access [Lee and Huh 
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(2019); Kkarchenko (2018); Yao et al. (2020)]. Implementation of user identi- 

fication protocols is crucial to prevent unauthorised data access and modifica- 

tions. Consequently, the handling of data in DT systems for the nuclear fuel 

industry is deemed critical, necessitating strict security and privacy protocols. 

The inclusion of Internet of Things (IoT) devices in DT introduces heightened 

security concerns for the underlying communication protocols. Although phys- 

ical processes may not be threatened easily during these situations, attackers 

could potentially manipulate the virtual model or tamper with the data fed back 

by it. Moreover, the extensive collection of asset-related data must be stored 

securely to prevent data breaches from both internal and external threats [Tao 

(2019)]. 

In the realm of data analytics, several challenges need addressing: (1) the 

choice between using cloud or local software and data warehouses for analytics 

and data storage; (2) determining the strategy for executing machine learning 

models; and (3) deciding when to perform batch, semi-batch, or real-time data 

analysis [Wanasinghe et al. (2020)]. To comply with Nuclear Power Plant (NPP) 

safety design, evaluation, operator training, and emergency management, the 

chosen framework must offer insights into the current process state and predic- 

tions of future state transients [Alamaniotis (2023)]. In fuel production security, 

utilising a DT to manage security-critical substances such as 235U offers inherent 

benefits. By ensuring the security of the DT itself, the parameters governing the 

operation of manufacturing machines can also be safeguarded. This relation- 

ship is akin to holding a key; without it, the replication of the process becomes 

unfeasible. Moreover, employing a DT could reduce the necessity for numerous 

individuals to possess precise knowledge of the system’s configuration. Instead, 

the DT serves as a virtual, non-invasive entity, devoid of the vulnerabilities 

associated with human involvement. 

 

5.2. Condition responsiveness and control 

Digital twinning offers an attractive outcome when implemented properly. 

Prognosis, or proper forecast of the remaining operational life, future condition, 
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or probability of reliable operation of equipment based on the acquired condition 

monitoring data, is needed. This feature has not been fully taken advantage of 

in real manufacturing settings in the context of DT [Grieves (2014)]. Prognosis 

can, for instance, improve the predictability of machinery failure rate and avoid 

unexpected corrective maintenance, hence becoming an intelligent predictive 

maintenance system. However, the automated data-collection, analysis and 

prediction of system state using DT is still not a mainstream practice in nuclear 

manufacturing. Nevertheless, DTs are becoming a valuable tool during the 

design process of complex nuclear reactors [Kochunas and Huan (2021); Bowman 

et al. (2022); Lin et al. (2021)]. 

With a suitable methodology (see Fig. 3), a DT for any of the nuclear fuel 

processes discussed earlier will include the processing of the sensors being used 

to measure the state of the machinery (flow rate, temperature, pressure and 

vibration), and these measures will be stored and analysed using physical-based 

(mathematical models) and data-driven (machine learning and/or neural net- 

works on historical and current states) prognostics models. Within the context 

of the characteristics of the DTs, the techniques can apply metrology methods, 

physical-to-virtual data connections, when providing the state of the physical 

entity [Heng et al. (2009); Fernandez et al. (2017); Gong et al. (2022)]. The 

use of Model Predictive Control (MPC) along with DTs is a priority for the 

nuclear industry. Specifically, MPC research has thrived for control applica- 

tions in chemical processes in the oil and gas industry. Therefore, it is viable 

to apply MPC in the nuclear fuel industry as well [Garc´ıa et al. (1989)], hence 

MPC and DTs can provide the means of controlling a process based on the 

proposed DT model. Physical processes are monitored and compared to their 

DT counterparts which are able to predict future states of the process, and 

optimise/adapt/control the process appropriately [Jones et al. (2020); Rasvan 

(2018); Dong et al. (2018); Zhu et al. (2022); Benitez-Read et al. (1992)]. 

Industrial applications requiring a robust automated means of control have 

been using MPC solutions for a long time. MPC is now used widely across 

engineering disciplines [Qin and Badgwell (2003)]. Every aspect of the MPC 
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implementation aims to achieve an ideal interaction with sensor-based DTs while 

delivering closed-loop control through the process and controller connections. 

Jones et al. (2020) compare the similarities between the DT and the Model- 

Based Predictive Control principles. MPC concepts such as sensor-to-controller 

and controller-to-actuator are analogous to the physical-to-virtual and virtual- 

to-physical interactions that are inherently necessary for DT implementations. 

Hence, a suitable integration of MPC and DT methods will help accomplish a 

closed loop approach for nuclear fuel manufacturing that achieves the benefits 

stated when the DT concept was first conceived [Grieves (2014)]. 

 

6. Conclusions 

 

This article has presented a survey on recent research and technological 

development in the area of DT, focusing on how DT can be applied to the 

nuclear fuel manufacturing industry. 

We have envisioned the deployment of DTs in the entire fuel manufactur- 

ing cycle. In particular, we provided key features and definitions of DTs and 

reviewed the key technologies for DT implementations. The proposed method- 

ology is based on the following nine stages: (1) define the physical system of 

the manufacturing process; (2) determine the DT task or purpose (optimisa- 

tion and/or control); (3) select a suitable modelling approach (physics-based, 

data-driven or, most likely, hybrid), particularly using chemical kinetics mod- 

elling due to the nature of the fuel manufacturing cycle; (4) collect appropriate 

quantity and quality of data; (5) rebuild the DT solution if the current design 

fails to produce the expected results; (6) establish the model parameters; (7) 

deploy the chosen model; (8) supervise the DT implementation within the ap- 

plication environment and (9) tune the parameters or configurations to optimise 

performance of the model. 

We elaborated on the technical challenges in DT implementation and investi- 

gated potential approaches to address such issues. Finally, we showed promising 

application criteria, technology trends, and open research issues related to DT 
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for real nuclear fuel manufacturing industrial implementations. The challenges 

unique to the nuclear field will include the development of additional standards, 

determining how to best utilise the existing modelling and infrastructure, and 

the way to integrate technologies considering cloud security and privacy issues, 

while maintaining the desired condition responsiveness and control capabilities 

that are yet to become mainstream in the nuclear industry. 

 

Declaration of competing interest 

 

The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported 

in this paper. 

 

Acknowledgements 

 

The work reported in this paper has been undertaken as part of the project: 

Autonomous Inspection for Responsive and Sustainable Nuclear Fuel Manu- 

facture (AIRS-NFM). This work was funded by the Engineering and Physical 

Sciences Research Council (EPSRC), Grant reference EP/V051059/1. 



25  

Appendix  A. The Nuclear Fuel Cycle 

Uranium is a naturally occurring heavy metallic element discovered in 1789. 

One of the uranium isotopes found in nature, 235U is fissile, and has become 

the main fuel for nuclear reactors often in a relatively low-enriched form of 

uranium dioxide (UO2). The atomic weight of uranium is 238.07 [Joyce (2018)], 

its atomic number is 92 and it is slightly radioactive [Kushner (1974)]. It is 

estimated that the concentration of uranium in the earth’s crust is 2.8 parts per 

million. This means that uranium is as plentiful as lead and more plentiful than 

silver or mercury. Approximately 85% of the known uranium global reserves 

are located in 6 countries: Australia, Kazakhstan, Canada, Namibia, Niger and 

Russia [Piro and Lipkina (2020)]. 

 

A.1. Uranium ore concentrate production 

Oxides, silicates, phosphates and vanadates are some uranium-bearing min- 

erals that can be mined commercially for fissile material useful in nuclear power 

generation. Most of these ores contain 0.1% to 0.3% U3O8. Traditionally, there 

have been two techniques to mine uranium, open-pit and underground mines 

(deep mining). However, alternative techniques such as in-situ leach (ISL) min- 

ing have become more extensively used. The ISL technique uses a number of 

chemical solutions that are injected into underground deposits to dissolve the 

uranium [Piro and Lipkina (2020)]. 

The recovery of uranium is planned carefully to extract the fissile material 

from mined ore. The ore is transported to a recovery facility where it is milled 

and leached. During milling, the uranium bearing ore is crushed and then 

ground into a slurry. The purpose is to increase effectively the surface area to 

volume ratio of the material, which eases chemical leaching. Next, the slurry is 

leached in solution, in some cases, sulphuric acid is used as the leaching agent, 

but alkaline leaching can also be applied. Fig. A.5 shows this process. The 

leaching agent is required to remove the uranium and other constituents from 

the ore. 
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A subsequent stage in the process requires separation of liquids and solids. 

After solids have been separated from a solution, the resulting liquid solution 

must be purified. This is accomplished typically using ion exchange or solvent 

extraction yielding an enhanced concentration of uranium in solution. Next, 

the uranium nearing compounds are precipitated out of the concentration by 

the introduction of a neutralising agent such as ammonia, magnesia or caustic 

soda depending on the composition of the solution. The final product produced 

from this process is a triuranium octoxide (U3O8) which, after drying, produces 

a compound still containing some impurities. This compound is referred to as 

uranium ore concentrate (UOC) or “yellow cake”. This product is shipped in 

drums to a conversion facility for further processing [IAEA (2009)]. 

 

A.2. UOC to UO3 

Concentrated HNO3 at 95-100% is used to dissolve UOC. Oxidising dissolu- 

tion occurs to ensure that all the uranium is dissolved. This process produces 

a slurry that contains approximately 40% uranium [IAEA (2009); Murchie and 

Reid (2020)]. A subsequent filtration stage removes impurities from the UOC 

such as nitrogen oxide gases. Depending on the concentration of the HNO3, 

one of the following chemical reactions occur where the resulting uranyl nitride 

(UO2(NO3)2) is the product of interest 

 

U3O8 + 8NHO3 → 3UO2(NO3)2 + 2NO2 + 4H2O (A.1) 

or 

 

 

3U3O8 + 20HNO3 → 9UO2(NO3)2 + 2NO + 10H2O (A.2) 

The uranyl nitride slurry is filtered through rotary filters. The resulting 

filtered liquor contains 35% w/v uranium. Subsequently, the uranyl nitrate 

solution is treated by using tributyl phosphate (TBP) extraction techniques. 

 
UO

+ 
+ 2NO– + 2(TBP) ←→ UO2(NO3)2 • 2(TBP) (A.3) 

2 3 
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The extracted compound is discharged onto a water flow at 60oC where 

it is then precipitated to form a concentrate 110 w/v uranium. Finally, the 

precipitate must be calcined to produce UO3 with a denitration process at 

about 300oC to 350oC which can be described as 

 

2UO2(NO3) → 2UO3 + 4NO2 + O2 (A.4) 

or 

 

 

UO2(NO3) + xH2O → IO3 + NO2 + NO + O2 + xH2O (A.5) 

The entire process is illustrated in Fig. A.6. 

 

A.3. UO3 to UF4 

The conversion process consists of the hydration of UO3 by adding dilute 

nitric acid and a wetting agent. This highly exothermic reaction forms a slurry 

that is dried in a kiln. This part of the process creates uranium trioxide hydrate 

as a free flowing powder. The hydrate is dehydrated by an endothermic dehy- 

dration process to remove as much H2O as possible. The dehydrated UO3 is 

reduced subsequently by hydrogen as a reducing agent [IAEA (2009); Murchie 

and Reid (2020)], hence 

 

UO3 + H2 → UO2 + H2O. (A.6) 

Finally, the UO2 compound goes to a hydrofluorination stage in order to ob- 

tain metalling uranium. The UO2 is reacted with hydrogen fluoride to produce 

UF4 at 450oC, hence 

 

UO2 + 4HF → UF4 + 2H2O. (A.7) 

Fig. A.7 illustrates the UF4 production process. 
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A.4. UF6 Production 

It is known that the cost of UF6 production depends deeply on the cost 

to manufacture and handle fluorine and its precursor, hydrogen fluoride. Both 

substances are extremely difficult and dangerous substances to work within a 

manufacturing facility [Murchie and Reid (2020)]. Hydrogen fluoride (HF) is 

produced by the reaction of fluorspar (calcium difluoride) with sulphuric acid 

[DOE (1999)], hence 

 

CaF2 + H2SO4 → 2HF + CaSO4. (A.8) 

This reaction is endothermic and reactors are run typically at temperatures 

higher than 200oC. HF is a transparent substance that dissolves in water to 

become hydrofluoric acid in aqueous form. This acid is highly corrosive and 

hazardous. Fluorine can be isolated by electrolysing molten salt KF • 2HF, 

hence 

 

KF • 2HF = K+ + HF–. (A.9) 

Fluorine is the most reactive element in the periodic table as it reacts with 

all other elements except helium and neon. Reactions of fluorine are generally 

highly exothermic due to its reactivity. Therefore, the construction of a man- 

ufacturing plant to handle fluorine in a safe manner is usually expensive. The 

production of uranium hexaflouride (UF6), requires uranium tetraflouride or 

green salt (UF4) to be passed into a Monel reactor with elemental fluorine in 

a fluid bed using nitrogen for direct fluorination. This is a highly exothermic 

reaction at 450oC. The resulting UF6 is filtered and condensed into a liquid. 

The process is illustrated in Fig. A.8 and described in the following chemical 

reaction: 

 

 

UF4 + F2 → UF6 (A.10) 
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A.5. Uranium enrichment 

Uranium enrichment methods have been demonstrated since the 1940s. These 

methods are based on a physical separation, hence they are not chemical reac- 

tions. Gaseous diffusion enrichment was the first commercially-available process. 

The system uses a diffuser or converter that has a number of diffusion barriers 

(i.e. membranes with perforated sub-micron holes). Gaseous UF6 is pumped 

into the diffuser at a high pressure where molecules comprising 235U tend to 

pass through the membrane to a lower pressure section of the converter. This 

diffused gaseous UF6 in the low pressure stage contains a higher concentration 

of 235U. This is processed in a subsequent stage where the process is repeated 

to achieve the required enrichment concentration [Murchie and Reid (2020)]. 

Gas centrifuge enrichment technology allows for the separation of gaseous 

UF6 with a higher concentration of 235U by employing long narrow rotary cylin- 

ders. The cylinders rotate at around 50 000rpm. The resulting centrifugal forces 

operate at thousands of times that of gravity, creating a density gradient in the 

gas mixture. 238U molecules gather at the centre of the cylinder while the 

heavier 235U move toward the outer wall. Both depleted and enriched uranium 

streams are withdrawn from the rotary cylinder via a fixed outlet at each end 

[USNRC (2012a)]. A general uranium enrichment process is shown in Fig. A.9. 

 

A.6. UO2 Production 

A commercial process for producing UO2 called Integrated Dry Route (IDR) 

was developed in the United Kingdom in 1969 [IAEA (2009)]. The IDR process 

has the benefit of avoiding the use of liquids. In this process, UF6 in solid 

form is evaporated to a gas by adding heat to the shipping container inside a 

vaporisation chamber. The heat is added by circulation of steam or electric heat 

through the chamber. The evaporated UF6 is sent to a hydrolysis reactor where 

it is mixed with superheated steam [USNRC (2012b)]. The UF6 reacts with the 

steam instantaneously and forms uranyl fluoride (UO2F2) powder and HF gas 

[Richards et al. (2020), Wang and Pitzer (2001)]. This is a highly exothermic 

reaction described as 
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UF6 + 2H2O → UO2F2 + 4HF. (A.11) 

When the UF6 reacts with the superheated steam, the reaction takes place 

at approximately 260 oC. The uranyl fluoride (UO2F2) falls to the bottom of 

the chamber and is moved to a slightly slanted rotating cylindrical kiln. The 

uranyl fluoride is converted subsequently into nuclear-grade UO2 powder by 

means of a counterflow of superheated stream and hydrogen. The mechanism of 

the reaction at approximately 600 oC proceeds through separate pyrohydrolysis 

and reduction steps. Therefore 

 

 

 

and 

UO2F2 + H2O → UO3 + 2HF, (A.12) 

 

 

UO3 + H2 → UO2 + H2O. (A.13) 

The overall process is endothermic. There is a temperature profile along the 

rotating kiln [Murchie and Reid (2020); IAEA (2009)] that is controlled to meet 

the required powder characteristics such as particle size, specific surface area, 

O/U ratio and bulk density. The IDR is not the only process available to produce 

UO2 powder. Nevertheless, it is the most inexpensive and commonly applied. 

Another common method is the precipitation of ammonium uranyl carbonate 

(AUC) where the resulting produced UO2 powder has a good flow-ability so 

that it can be compacted without a subsequent granulation step [Murchie and 

Reid (2020)]. The UO2 dry conversion process is shown in Fig. A.10. 

A.7. Fuel Assembly 

When UO2 powder has been produced using the IDR method, it is first 

blended at a low pressure and then granulated with a number of additives for 

lubrication and pore forming. This process provides green pellets with high sta- 

bility [USNRC (2012b)]. The aforementioned additives also provide a preferen- 

tial path for diffusion and help to improve sintering, as they introduce vacancies 

in the UO2 crystal structure. 
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The UO2 is sent to a pelleting press where it is pressurised into cylindrical 

pellets. The shape of the pellets are determined during this process, usually 

including chamfers on the edges or dishes at the top. These shapes are used to 

improve the mechanical stability of the pellet during operation. After pressing, 

the pellets are sintered in a reduced atmosphere at 1700 oC [Ohai (2002)] in 

order to form a coherent bonded mass without melting. Grinding is necessary 

for correction of slight uneven thermal deformations during the sintering process 

[USNRC (2012b)]. After an inspection process, the pellets are inserted into 

fuel clad tubes to constitute fuel pins that are later pressurised and sealed by 

Tungsten Inert Gas (TIG) welding. The pins are sent to an annealing furnace to 

eliminate any unresolved stresses associated to the welding process. A gamma 

scanner is used to corroborate if the pellets are distributed evenly within the 

pins. After cleaning the pins, the next step is the mechanical loading of UO2 

pins into rods or assemblies [Kang et al. (2008)]. Fig. A.11 shows the overall 

fuel assembly process. 
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Figure A.5: A generic schematic of the leaching process. Adapted from Piro and Lipkina 

(2020). 
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Figure A.6: UOC to UO3 conversion process. Adapted from Alfaro et al. (2015). 
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Figure A.7: UF4 production from UO3 by hydrofluorination. Adapted from Alfaro et al. 

(2015). 
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Figure A.8: UF6 production from UF4 by fluidisation method based on Springfields Fuels Ltd 

[Westinghouse 1 (2024)] 
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Figure A.9: Block flow diagram for an enrichment process. Adapted from Murchie and Reid 

(2020). 
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Figure A.10: Conversion of UF6 to UO2 using the IDR process. Adapted from Murchie and 

Reid (2020). 
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Figure A.11: Fuel assembly fabrication based on a process at Springfields Fuels Ltd [Westing- 

house 2 (2024)]. 
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