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Abstract

Morphological generalization, or the task of mapping an unknown word (such as a novel noun

Raun) to an inflected form (such as the plural Rauns), has historically proven a contested

topic within computational linguistics and cognitive science, e.g. within the past tense debate

(Rumelhart and McClelland, 1986; Pinker and Prince, 1988; Seidenberg and Plaut, 2014).

Marcus et al. (1995) identified German plural inflection as a key challenge domain to evaluate

two competing accounts of morphological generalization: a rule generation view focused on

linguistic features of input words, and a type frequency view focused on the distribution of

output inflected forms, thought to reflect more domain-general cognitive processes. More

recent behavioral and computational research developments support a new view based on

predictability, which integrates both input and output distributions. My research uses these

methodological innovations to revisit a core dispute of the past tense debate: how do German

speakers generalize plural inflection, and can computational learners generalize similarly?

This dissertation evaluates the rule generation, type frequency, and predictability accounts

of morphological generalization in a series of behavioral and computational experiments with

the stimuli developed by Marcus et al.. I assess predictions for three aspects of German plural

generalization: distribution of infrequent plural classes, influence of grammatical gender, and

within-item variability. Overall, I find that speaker behavior is best characterized as frequency-

matching to a phonologically-conditioned lexical distribution. This result does not support

the rule generation view, and qualifies the predictability view: speakers use some, but not

all available information to reduce uncertainty in morphological generalization. Neural and

symbolic model predictions are typically overconfident relative to speakers; simple Bayesian

models show somewhat higher speaker-like variability and accuracy. All computational mod-

els are outperformed by a static phonologically-conditioned lexical baseline, suggesting these

models have not learned the selective feature preferences that inform speaker generalization.
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Lay Summary

This dissertation investigates how human speakers handle novelty in language. When a speaker

hears a new word, they sometimes need to guess which linguistic category it belongs to; for

example, if an English speaker wants to use the plural form of a new word “Raun,” they need

to decide whether its plural form is more likely to be “Rauns” (like “dogs”), or “Raun” (like

“sheep”). This guessing task is even more complicated in German, where the plural could be

“Rauns,” “Raun,” “Raunen,” “Raune,” or “Räuner.”

Linguists have developed several theories as to the key factors that influence how German

speakers create new plural words. Perhaps the main factor is the statistical frequency of a

plural ending, or how many different kinds of words it combines with, or some other important

property of the word such as whether it is masculine, feminine, or neuter. Researchers have

also conducted behavioral experiments directly asking speakers to pluralize words like “Raun,”

or used computational models trained to predict plurals. Still, findings have been inconclusive.

In this thesis, I test how German speakers produce the plural form of invented test words

like “Raun” in a range of experiments. I then compare their behavior to the predictions of

various computational models, including artificial neural network models trained with deep

learning, and statistical models which learn to apply symbolic rules such as “if the noun has

feminine gender, then predict the -en plural class.”

Overall, I find that German speakers are most influenced by the frequency of the plural

ending, and only somewhat influenced by the properties of individual words: they consistently

produce a similar range of plural forms for each test word. Most computational models,

however, tend to confidently predict a specific plural ending based on the individual properties

of a test word, such as whether it has masculine or feminine gender. This discrepancy suggests

that, if we want computational models to handle linguistic novelty in human-like ways, in some

cases we’ll want frequency-matched predictions which disregard apparently informative cues.
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Chapter 1

Introduction

Inflectional morphology has long been a testbed for cognitive theories of linguistic general-

ization. Most notably, the past tense debate (Rumelhart and McClelland, 1986; Pinker and

Prince, 1988) asked whether a statistical model trained on the lexicon could show human-like

generalization of morphological categories. In this line of work, many researchers used “wug

testing” (Berko, 1958) to assess how speakers inflect unknown words, and then evaluated

computational models on their fit to the speakers’ behavioral data (e.g. Hahn and Nakisa,

2000; Albright and Hayes, 2003). Despite critical bodies of evidence amassed on both sides,

the debate remained largely unresolved (Seidenberg and Plaut, 2014).

In recent years, however, three key research developments have opened up new perspectives

on inflection generalization. In linguistics, novel information-theoretic approaches analyze

morphological regularity in the lexicon in terms of predictability (e.g. Ackerman and Malouf,

2013; Blevins et al., 2017; Wu et al., 2019). In psycholinguistics, a growing literature on

regularization offers new insights into how speakers learn and generalize linguistic variation

(e.g. Hudson Kam and Newport, 2005, 2009; Ferdinand et al., 2019). Finally, computational

models of natural language have become much more powerful, leading some researchers to

claim that artificial neural networks constitute cognitive models of morphological inflection

(Kirov and Cotterell, 2018). These methodological innovations share a focus on the statistical

distributions which characterize inflectional variants. In doing so, they offer new tools to

analyze and model morphological generalization, potentially resolving long-standing research

questions.

This dissertation adopts the general modeling framework of the past tense debate. The
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computational task at hand is to learn a statistical model of the lexicon, in the sense of a

map from words (inputs) to their inflection classes (outputs), and evaluate how closely its

predictions mirror human speaker inflections for those same input words. I focus on German

plural inflection, a complex system which has attracted a great deal of attention (c.f. Clahsen,

1999a, and responses) due to its particular challenges for statistical models. I use behavioral

evidence and modeling to address the question at the heart of the past tense debate: How

do human speakers generalize inflectional categories, and can computational models learn to

generalize similarly?

1.1 Regularity and German plural inflection

Regularity is a historically important concept in linguistics, yet its meaning is contested and

unclear (Herce, 2019). We will consider more precise definitions in Chapter 2, but in the

context of the past tense debate, a “regular” inflection class is linguistically productive — it

can generalize to novel words, although this capacity may be constrained by lexical or other

factors. The past tense debate took its name from modeling research focused on English verb

inflection. Fortunately, the English past tense is relatively simple, with one inflection class

widely recognized as the regular form; in this domain, computational models show human-like

behavior mainly by generalizing the regular past tense suffix -ed to unknown verbs (Rumelhart

and McClelland, 1986; Pinker and Prince, 1988; Albright and Hayes, 2003; Kirov and Cotterell,

2018). As the scope of inquiry expanded to include other inflection systems, researchers

continued to place regularity at the core of the debate on morphological generalization.

Plural class generalization in German is not quite as straightforward. While the vast

majority of English verbs take the regular past tense form, there is no majority class in the

German plural system: there are at least five different plural suffixes, and no suffix combines

with a majority of nouns in the lexicon. The first generative linguistic analysis of German

plural inflection yielded a decision tree with 15 rules and 21 lists of exceptions (Mugdan,

1977). Identifying one or more German plural classes as regular should be difficult for statistical

models. Indeed, as we shall see, it has proven quite challenging for linguists.

Within the context of the past tense debate, linguists have proposed three main theoretical

accounts of regularity in the German plural system, using different criteria to identify which
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CHAPTER 1. INTRODUCTION 3

class or classes are regular. The minority default theory (Marcus et al., 1995; Clahsen, 1999a)

draws on a rule generation criterion: the output inflection class which appears in the greatest

diversity of linguistic environments must be produced by a default rule with minimal restrictions

on its input, meaning that this class can productively generalize to the broadest set of input

forms. Marcus et al. (1995) identified the rare suffix -s as the regular, default plural class, an

analysis which remains influential in theoretical linguistic treatments of German (e.g. Trommer,

2020; Schuhmann and Putnam, 2021). By contrast, schema theory (Köpcke, 1988; Bybee,

1995; Köpcke et al., 2021) posits that the determinant of productivity is the type frequency of

the output class; on this view, only plural classes with high type frequency can be considered

regular. This frequency criterion reflects a broader view of language as shaped by general

social and cognitive processes (Bybee, 2010). Finally, the gender-conditioned default theory

— arguably the oldest linguistic analysis of German plural inflection (Bloomfield, 1933; Augst,

1979; Bittner, 1994; Indefrey, 1999) — incorporates elements of both former analyses. One

can divide the lexicon by gender and identify a conditional majority plural class within each

division: -en for feminine nouns, and -e for nonfeminine. This theory combines a minimal

condition on the input — grammatical gender, a property common to all nouns — with

output type frequency to identify two plural classes as regular. These three theories represent

the main approaches to broadly characterizing regularity in the German noun lexicon.

1.2 Shifting toward distributions

In recent years, some linguists have construed morphological regularity as predictability, re-

flecting any lexical pattern or structure which reduces uncertainty in the prediction of unknown

word forms (e.g. Ackerman et al., 2009; Blevins et al., 2017). The Low Conditional Entropy

Conjecture (LCEC; Ackerman and Malouf, 2013) exemplifies this approach: “conditional en-

tropies [...] facilitate good guesses in the face of uncertainty” (2013, 436). With respect to

German plural inflection, the LCEC predicts that both type frequency and grammatical gender

should influence how speakers generalize plural classes, as both of these factors reduce uncer-

tainty. I argue in §3.2.2 that this predictability-based view of morphological regularity aligns

most closely with the traditional gender-conditioned default theory in terms of predicted out-

comes. It represents, however, a critical shift in perspective: regularity is no longer evaluated
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in terms of individual inflection classes, but instead characterizes morphological generalization

as fundamentally distributional.

A similar emphasis on distributions has led to methodological innovations in psycholin-

guistics. In particular, recent work on regularization in artificial language learning (e.g. Hud-

son Kam and Newport, 2005, 2009) has introduced tools for more fine-grained analysis of

how individual speakers generalize morphology. Under this framework, speakers’ behavioral

patterns are classified as either probability-matching to the lexical frequencies of a reference

distribution, or regularizing — i.e. increasing regularity or predictability relative to the ref-

erence. Ferdinand et al. (2019) demonstrate that regularization can also be formalized in

information-theoretic terms, connecting this behavior with the functionalist view of the LCEC:

speakers produce regularity in the lexicon by increasing the predictability of lexical distributions.

These distribution-focused innovations can reshape our understanding of how speakers

generalize German plural classes. In an influential behavioral experiment, Marcus et al. (1995)

tested the minority default hypothesis by having adult German speakers rate the acceptability

of plural forms for novel nouns. The nouns were either phonologically typical and similar to

existing words (e.g. “Bral,” “Spert”), or phonologically atypical due to containing acceptable

but rare character sequences (e.g. “Bnaupf,” “Fneik”). Speakers preferred the rare plural

suffix -s for the atypical forms relative to the typical forms. Marcus et al. interpreted this

finding in support of their minority default analysis of -s: if the regular, default class serves

as a ‘fallback’ for words which do not meet the more restricted membership criteria for other

inflection classes, then speakers are predicted to generalize the default class more frequently to

unusual words. We can reformulate this prediction in terms of regularization and conditional

probability-matching to support more fine-grained behavioral analysis.

Finally, distribution-focused morphological analysis has also been supported by advances in

computational modeling, especially in the area of sequence generation by artificial neural net-

works (ANNs). Statistical models of language featured prominently in the past tense debate.

Researchers disagreed on whether statistical learning could sufficiently model the linguistic

structure underlying how human speakers generalize. One key limitation at the time was that

statistical models could not produce open-ended symbolic sequences — they could only clas-

sify lexemes based on a pre-selected set of inflection categories (Pinker and Ullman, 2002).

This issue has been largely resolved with the advent of neural sequence-to-sequence models,
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which have also facilitated further analyses of predictability in morphological organization (e.g.

Cotterell, Kirov, Hulden and Eisner, 2018; Wu et al., 2019; Williams et al., 2020). Kirov and

Cotterell (2018) further propose that the sequence-to-sequence capacities of modern ANNs

have resolved the past tense debate. They show that a recurrent neural model, the morpho-

logical Encoder-Decoder (ED; Kann and Schütze, 2016) achieves speaker-like morphological

generalization of the English past tense, although the reliability of this finding has been called

into question (Corkery et al., 2019).

Although sequence-generating models resolve one crucial limitation informing the past

tense debate, another potential limitation remains: modern ANNs continue to struggle with

out-of-distribution generalization (Hupkes et al., 2022), particularly for categories which are

infrequent in their training data (Razeghi et al., 2022). This suggests that German plural

inflection may remain challenging for modern neural models, as it requires generalization of

infrequent classes such as -s. Marcus et al. (1995) claimed that ANNs would struggle to

capture their key behavioral finding that speakers prefer -s for phonologically atypical nouns.

1.3 Summary and research questions

To summarize, German plural inflection has historically been identified as a key challenge

area at the intersection of linguistic theory and computational cognitive science, leading to

extensive research and debate (c.f. Clahsen, 1999a, and responses). Linguists have advanced

three broad accounts of how speakers generalize German plural classes: the minority default

account, which relies upon a rule generation analysis to predict the generalization properties

of the infrequent class -s; the gender-conditioned default account, which I claim (§3.2.2)

aligns with the predictability view in emphasizing conditional relations in the lexicon; and

schema theory, which highlights the frequency of inflection classes within a broader usage-

based view of cognition. Despite these theoretical proposals, behavioral experiments have not

yet produced a conclusive account of how German speakers generalize plural classes, especially

to out-of-distribution or unusual forms; for instance, Marcus et al. (1995) and Zaretsky and

Lange (2016) report conflicting behavioral results using the same stimuli. The psycholinguistic

literature on regularization provides individual-level behavioral classifications which may address

these discrepancies. This leads to the first research question of this dissertation:
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• Q1. How do German speakers generalize plural classes to the novel nouns developed by

Marcus et al. (1995)? Do speakers show the behavioral patterns predicted by any of the

three proposed theories?

Recently, distribution-focused linguistic approaches such as the Low Conditional Entropy Con-

jecture formulate morphological regularity in terms of predictability. This functionalist view of

morphological generalization grounds it in speaker behavior rather than lexical structure, and

is particularly amenable to computational modeling. If predictability is the key factor influenc-

ing how speakers generalize inflection, then computational models should be able to capture

this behavior — especially powerful neural models, such as the MED proposed by Kirov and

Cotterell (2018). This leads to our second question:

• Q2. Do computational models, especially neural models, trained on the German noun

lexicon show speaker-like generalization of plural classes?

Answering these two research questions can help us better understand the nature of linguistic

generalization in a statistically complex environment: how speakers assign linguistic categories

to novel forms with unfamiliar features, and whether statistical learning alone is sufficient to

model this behavior. This research program bears on a range of disciplines, from theoretical

linguistics (which analysis of morphological regularity has behavioral and computational sup-

port?) to computational linguistics (which computational architecture best approximate how

speakers generalize?) and cognitive science more broadly. This dissertation does not propose

or adjudicate between theories of cognitive architecture, instead using theoretical accounts

and computational models primarily as a lens for empirical analysis; nonetheless, the goal is to

inform a broader scientific account of human generalization.

1.4 Present work

This dissertation investigates how human speakers and computational models generalize the

famously complex German plural inflection system. I consider the minority default, gender-

conditioned default, and schema theories of German plural inflection, and evaluate these theo-

ries’ predictions in production experiments with German speakers, using the novel noun stimuli

developed by Marcus et al.. I train a theoretically-motivated range of statistical learning mod-

els — a neural sequence-to-sequence model (the morphological Encoder-Decoder or ED, cf.
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Chs. 4, 5, and 7; Kann and Schütze, 2016; Kirov and Cotterell, 2018), a symbolic decision

tree (the Abduction of Tolerable Productivity or ATP, cf. Chs. 4 and 7; Yang, 2016; Belth

et al., 2021), and a Bayesian classifier (cf. Ch. 7; Bürkner, 2017, 2020) — on the German

noun lexicon, and compare their generalization behavior to speaker data. I assess theoretical

and computational predictions for three aspects of German plural generalization: distribution

of the infrequent plural class -s (Ch. 4), influence of grammatical gender (Chs. 5, 6, and 7),

and within-item variability (Chs. 4, 6, and 7). To support reproducible scientific analysis, all

of the speaker data from the behavioral experiments has been freely released. Some of this

data has already been used in subsequent research (Haley, 2020; Beser, 2021; Belth et al.,

2021; Dankers et al., 2021; Heitmeier et al., 2021; Rosen, 2022).

With respect to Q1, I find that speaker behavior is most consistent with probability-

matching a phonologically conditioned subset of the lexicon. Across four experiments,

speakers do not show behavior consistent with any default theory. They produce similar

plural class distributions for phonologically typical and atypical forms — apart from the -s

generalization pattern identified by Marcus et al., which my analysis attributes to confounded

stimuli. Speaker behavior thus appears at odds with the rule generation view, but also the

predictability view: their plural class generalizations are at most mildly sensitive to informative

cues such as grammatical gender and word-final phonemes, despite experimental manipulations

encouraging attention to informative cues. In general, for each novel lexical item, speakers

produce a distribution over plural classes which looks quite similar to the type frequencies of

monosyllabic rhyming words in the lexicon; they are relatively insensitive to other prevalent

statistical cues in the input, and do not appear to use all available information to reduce

generalization uncertainty. This pattern of results appears most consistent with the overall

perspective of schema theory, in that the type frequency of plural inflection classes appears to

be the main factor influencing speaker generalization.

With respect to Q2, I find that most statistical models heavily condition on grammatical

gender, a lexical cue to which speakers are relatively insensitive. The neural and symbolic learn-

ers both produce overconfident predictions relative to the speakers’ behavioral data. Bayesian

models can match the within-item variability of speaker productions, but do not outperform

simple lexical baselines. In summary, none of the computational models I investigated appear

immediately suitable as cognitive models of morphological generalization for this task; they may
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require additional structure or inductive biases to attend to the distributional properties which

inform how speakers generalize, and disregard properties to which speakers are insensitive.

1.5 Chapter Outline

Chapter 2 presents a novel conceptual analysis of morphological regularity, building on Herce

(2019). I identify three proposed criteria for morphological regularity: rule generation, fo-

cused on input constraints on the distribution of inflection classes; type frequency, focused on

the lexical frequency of inflection classes as realized on their output inflected forms; and pre-

dictability, which integrates information sources of all kinds. I use this framework to structure

my review of the relevant linguistic, psycholinguistic, and computational literature on morpho-

logical generalization. In theoretical linguistics, the rule, frequency, and predictability views

of morphological regularity have yielded diverse analyses of the lexicon and its structure. In

psycholinguistics, these criteria reflect different behavioral patterns observed in both natural

language and artificial language experiments; the latter field in particular has reframed regu-

larity in behavioral terms as regularization (Hudson Kam and Newport, 2005, 2009). Finally,

I review the computational modeling literature and consider how the three views of regularity

align with inductive biases of statistical learners.

Chapter 3 applies the conceptual structure developed in Chapter 2 to review the literature

on German plural inflection in particular. I consider the main theoretical proposals — minority

default theory, schema theory, and gender-conditioned default theory — and how they relate

to the rule generation, frequency, and predictability criteria for morphological regularity. I also

review the behavioral and computational literature on German plural generalization.

Chapter 4 investigates minority class generalization, which Marcus et al. (1995) propose as

a test case to compare the rule generation and frequency accounts of morphological regularity.

In Study 1 (S1), I test whether German speakers use the -s plural class to regularize, especially

with phonologically atypical nouns, and whether statistical models struggle to capture this

behavior, as claimed by Marcus et al. (1995). My speaker data reproduce the key behavioral

result from the original paper — the increased use of the -s plural class for phonologically

unusual nouns — but I show that this is likely driven by stimulus confounds. Due to these

confounds, all models also readily capture this effect.
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Chapter 5 investigates how grammatical gender affects plural class generalization under

controlled conditions, i.e. when provided by the experimenter. In Study 2 (S2), I find that

speakers are only mildly sensitive to grammatical gender; in a follow-up study (S3), I find that

they remain largely insensitive to gender even with additional financial incentives intended to

direct attention to cues to plural class. Neural models, on the other hand, are highly sensitive

to grammatical gender, as it is a reliable cue to plural class. This supports the notion that

they capture predictability, consistent with the LCEC; however, this measure does not appear

to align with speaker behavior.

Chapter 6 reports a fourth behavioral experiment (S4) in which speakers assign both gender

and plural class categories, thereby forcing their explicit attention to the joint distribution of

these two variables. Even under these conditions, I find that the gender effect is consistent

with previous experiments, and does not reach the strength observed in the lexicon as a

whole. Instead, it appears that speakers probability-match the distribution of plural classes,

the distribution of gender categories, and the mutual information between these two variables

to a phonologically restricted subset of the lexicon.

In Chapter 7, I analyze the behavioral data gathered in Studies 1–4, with a particular

focus on within-item variability. I evaluate neural, symbolic, Bayesian, and exemplar models

trained with and without grammatical gender with respect to how closely their predicted

distribution of plural classes for each item matches the distribution (measured in entropy and

relative entropy) produced by participants in each of the four experiments. I find that a static

phonologically-conditioned lexical baseline outperforms all models. In terms of the regularity

criteria, this outcome appears most compatible with the frequency account of morphological

generalization, partially compatible with the predictability account, and incompatible with the

more prominent rule generation accounts.

Chapter 8 concludes the dissertation and considers limitations and future work.
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Chapter 2

Background: Morphological
Generalization

In order to characterize and model how German speakers generalize plural inflection, this disser-

tation draws on research literature from theoretical linguistics, psycholinguistics, and compu-

tational modeling. This chapter introduces concepts relevant to morphological generalization

and explains their general significance. The following chapter will review how researchers have

applied these concepts to the problem of German plural inflection (Ch. 3).

Generalization broadly refers to a learner’s capacity to apply learned patterns in a novel

environment. Within the domain of inflectional morphology, a learner generalizes correctly by

producing the appropriate inflected form (output) of an unknown word (input); for example, an

English speaker presented with the novel noun “wug” would be expected to produce the plural

form “wugs” (Berko, 1958). Morphological generalization has historically been considered

an important research problem at the intersection of linguistic theory, cognitive science, and

computational modeling, most famously in the context of the past tense debate (Rumelhart

and McClelland, 1986; Pinker and Prince, 1988; Seidenberg and Plaut, 2014).

Researchers generally agree that speakers’ morphological generalization must be informed

by patterns or structure in the lexicon. They tend to disagree on a) how to characterize the rel-

evant lexical structure (traditionally the domain of linguistics), and b) the mechanistic relation

between these patterns and speaker behavior (traditionally the domain of psycholinguistics)

— although they often agree that these two domains are inextricably linked. In this section, I

will first review linguistic approaches to characterizing structure in the lexicon, broadly known

11



12 2.1. REGULARITY: GENERALIZATION AND THE LEXICON

as regularity (§2.1). Then I will consider the psycholinguistic literature, particularly recent

findings in the regularization framework, which describes how speaker behavior can give

rise to lexical structure (§2.2). Finally, I will review computational approaches to modeling

morphological generalization (§2.3).

2.1 Regularity: Generalization and the lexicon

2.1.1 Defining morphological regularity

In inflectional morphology, regularity is a property commonly ascribed to words (i.e. lexemes

— individual entries in the lexicon) and inflection classes alike. For example, in the case

of English past tense verb inflection, the suffix -ed is widely recognized as the regular class;

commensurately, verbs which combine with -ed to form the past tense, e.g. jump–jumped,

are considered regular verbs. Verbs which take some other past tense form, e.g. run–ran, are

considered irregular. The general intuition is that regular inflected forms follow recognizable

patterns, while irregular forms are idiosyncratic to a greater (e.g. go–went) or lesser (e.g.

sleep–slept) extent. This idiosyncrasy means that, in contradistinction to regular inflection

classes such as -ed, it is somewhat less common for linguists to identify irregular inflection

classes; however, it is certainly possible, as we will see in §2.1.3. The following discussion

will consider regularity as a property of inflection classes instead of words, unless otherwise

indicated.

Despite the widespread use of regularity as a concept in linguistic analysis, Herce (2019)

notes that researchers define the term in diverse and sometimes opposed ways. Herce reviews

the linguistics literature and identifies five different criteria used to define regularity. I will

discuss these criteria here, and conceptually organize them along two independent dimensions.

The first dimension distinguishes whether the criterion can be defined for inflection classes

considered in isolation, or if it requires knowledge of some joint distribution over multiple

categories. This distinction is primary because it reflects a significant conceptual fault line in

linguistic theory. The second dimension relies upon our conceptual understanding that the task

of morphological generalization involves mapping from a set of inputs — i.e. lexemes, such as

jump, run, go, and sleep in the preceding paragraph — to a set of outputs — i.e. inflected

forms such as jumped, ran, went, slept. A regularity criterion may be defined with respect to

12



CHAPTER 2. BACKGROUND: MORPHOLOGICAL GENERALIZATION 13

Input Input-Output Output
Isolation Rule generation Concatenativity
Distribution Predictability Type frequency
Dependent Variable Productivity

Table 2.1: Five criteria for regularity identified by Herce (2019), organized by two conceptual
dimensions: 1) whether regularity is defined with respect to properties of linguistic categories
considered in isolation as opposed to some lexical distribution over multiple categories, and
2) whether regularity is defined with respect to inputs, outputs, or their joint interaction.
Productivity is listed separately, as it is the dependent variable for our purposes.

features of the input, the output, or the interaction between them. Table 2.1 depicts this

conceptual organization, which I will clarify in the remainder of this section.

Productivity Put simply, productivity is morphological generalization: a productive lexical

pattern extends to novel items.1 Productivity is frequently identified with regularity. For our

current purposes, productivity is not an explanatory factor; rather, it is the dependent variable

which we seek to predict based on other proposed criteria. Likely for this reason, “productivity”

in the literature appears with many of the diverse senses associated with “regularity,” and is

similarly challenging to define (Bauer, 2001). In terms of our conceptual scheme, productivity

is not defined with respect to the first dimension — productivity can be considered a property

of inflection classes in isolation (e.g. one can describe the English past tense suffix -ed as

productive), or defined as the distribution over lexical patterns which are generalized in some

particular context (e.g. in an experimental setting). We can, however, assess the productivity

criterion with respect to the second dimension. Productivity is evaluated by observing which

inflected forms (outputs) are applied to a certain set of inputs (unknown or novel words), so

it is defined in terms of a particular interaction or mapping between these two sets.

Rule generation The word “regular” derives from rēgula, the Latin word meaning “rule.” This

etymology informs the colloquial understanding of regularity in inflectional morphology: regular

inflected forms can be interpreted as following or adhering to some rule, such as “add -ed to

a verb to form the past tense.” “Interpretable as a rule” is, of course, not the same criterion

as “generated by a rule.” Defining regularity as rule-based generation, rather than description,

requires two key steps. The first step is to connect rule application with productivity — if a
1As Herce points out, this criterion is straightforward to evaluate in psycholinguistic studies using wug tests

(Berko, 1958, §2.2.1). Productivity, however, can also be analyzed based on historical data as new words enter
the lexicon, so it is not exclusively a behavioral criterion.

13



14 2.1. REGULARITY: GENERALIZATION AND THE LEXICON

speaker uses the English past tense suffix -ed to inflect an unknown verb, we might reasonably

describe the resulting form as generated or produced through application of the “add -ed”

rule. The second requirement is a more formal approach to rule definition and application,

for example as developed in the generative linguistic research program (e.g. Chomsky and

Halle, 1968). A rule in this tradition comprises two parts: an input condition indicating the

linguistic context in which the rule is applied, and an associated structural transformation

resulting from rule application (c.f. Table 2.5, and discussion in §2.1.3). The rule generation

criterion relies upon theoretical linguistic analysis to identify certain inflection classes as regular

in any particular domain. In terms of our conceptual framework, this criterion considers

linguistic categories in isolation. Although rules may interact (e.g. through priority ordering

or, outside of the generative framework, through probabilistic application), the regularity of

a given inflection class with respect to a particular input context will be defined by one rule;

this means it can be evaluated independently of other classes, which are generated by other

rules. With respect to the second dimension, rule application in the generative tradition is fully

determined by the conditions specified in the input, with no influence of the transformation

or resulting output form.2 Note that this characterization applies largely to early work in

generative linguistics, as reviewed in §2.1.3, and not necessarily to later developments in the

field. For instance, Optimality Theory (Prince and Smolensky, 2004) separates output form

generation from constraint evaluation, meaning that regular and irregular forms are generated

by the same process; in this approach, generation by rule cannot be a distinctive criterion for

morphological regularity.

Concatenativity Many morphological processes considered “regular” involve concatenating

affixes to a lexeme, such that the resulting inflected form can be easily segmented. For example,

the English word jumped is readily decomposed into the root verb jump and the regular past

tense suffix -ed. Some researchers posit a gradient criterion for regularity based on how far

the inflection process deviates from concatenation. For example, in the domain of English

2Separately from rule application, it is true that the structural transformation to yield an output form must be
specified on the right-hand side when defining a rule; this enables us, for example, to identify the transformation
-ed as the regular English past tense. However, regularity in this approach is still determined primarily by input
conditions. For example, in the analysis in Table 2.5, the same suffix is generated by two separate rules — the
rule-based generation, or regularity, of this inflection class depends entirely upon the input conditions. See also
§2.1.3 on default classes; the “most regular” inflection class under this criterion is the one with the least restricted
input conditions.

14



CHAPTER 2. BACKGROUND: MORPHOLOGICAL GENERALIZATION 15

past tense inflection, Bybee states that “verbs which use this suffix [-ed] and a vowel change

(kept, slept, left, etc.) are somewhat irregular, verbs that use only a vowel change (bit, drove,

struck) are more irregular, and verbs that have both vowel and consonant changes are the most

irregular (thought, taught, went).” (1996, 251–252). With respect to the scheme in Table 2.1,

this quote illustrates that concatenativity is defined by the interaction between input lexemes

and output inflected forms. In terms of the first dimension, concatenativity is a property of

inflection classes considered in isolation, as it can be assessed for each class independently.

Type frequency The type frequency of an inflection class is defined by how many word

types in the lexicon, i.e. lexemes, belong to that class. It is distinct from token frequency,

or how often the inflection class appears on word tokens in a corpus. Like rule generation,

type frequency is intuitively connected to productivity: a productive lexical pattern generalizes

to novel items, so its type frequency will naturally increase as new words enter the lexicon.

For this reason, some researchers argue that regular inflection classes must have high type

frequency relative to other classes (e.g. Blevins et al., 2017). Clearly, this criterion can only be

defined with respect to the frequency distribution over all inflection classes in a lexicon. For

our second dimension, only output inflected forms are relevant to calculating type frequency.3

Predictability Herce (2019) notes that many researchers describe regular inflection as “pre-

dictable” in some informal sense; for instance, Pinker and Ullman state that the English regular

past tense suffix “applies predictably to thousands of verbs” (2002, 457). For the most part,

however, “predictability” has not been sufficiently formalized to support detailed theoretical or

empirical analysis. This issue has been addressed in recent work. In particular, Ackerman and

Malouf (2013) propose an information-theoretic characterization of complexity in inflectional

morphology, which Cotterell and colleagues have advanced as a criterion for morphological

regularity (Cotterell, Kirov, Hulden and Eisner, 2018; Wu et al., 2019). For the purposes of

this dissertation, I take Ackerman and Malouf’s Low Conditional Entropy Conjecture (LCEC;

§2.1.2) to represent a formal predictability criterion for regularity. This approach is also closely

tied to generalization and productivity: under a predictability account, the core function of

regularity in the lexicon is to enable prediction for unknown inflected forms. With respect to
3While the interaction between input lexemes and output forms is relevant in defining inflection classes, only

type frequency in the output used to determine regularity under this criterion.
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16 2.1. REGULARITY: GENERALIZATION AND THE LEXICON

our conceptual scheme (Table 2.1), an information theoretic criterion is by definition charac-

terized in distributional terms. Furthermore, Ackerman and Malouf clarify that predictability4

is facilitated by “[a]ny information that helps speakers predict the realization of the word”

(2013, 439). This includes features of the input (e.g. phonological form, grammatical gender)

as well as the output (e.g. type frequency), so this criterion is defined by the interaction of

these two sets of wordforms.

Summary Although the regularity criteria reviewed here can be considered logically separate,

as we have seen, they all share some degree of conceptual relation. For example, rule generation

implies productivity, and productivity implies type frequency. Herce (2019) observes that, in

practice, most linguistic analyses draw on multiple criteria in assessing morphological regularity.

In Chapter 3, I review how these criteria have informed different theoretical approaches to

characterizing regularity in the domain of German plural inflection.

The different criteria proposed for morphological regularity reflect conflicting theories of

how to properly characterize patterns or structure in the lexicon. Researchers often (though not

always) further assume that lexical structure directly influences how speakers generalize mor-

phological categories, and therefore that behavioral evidence from speakers can help distinguish

between competing accounts of lexical structure. To that end, we will review psycholinguistic

approaches to studying morphological generalization (§2.2). Different conceptions of lexical

structure have also informed various computational approaches to modeling morphological

generalization and the lexicon (§2.3).

Before that, however, we will consider how three key criteria have informed competing

linguistic approaches to characterizing lexical structure. First, we will formalize predictability in

terms of information theory, and consider how these concepts relate to morphological structure

under the assumptions of the Low Conditional Entropy Conjecture (§2.1.2). Then we will

consider the theoretical linguistic concept of a default, and how it has shaped the rule

generation view of morphological regularity (§2.1.3). Finally, we briefly review the literature

on type frequency and lexical structure, and discuss how this criterion interacts with both the

rule generation and predictability views (§2.1.4).

4“Predictability” here specifically means “entropy reduction;” see discussion in §2.1.2.
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CHAPTER 2. BACKGROUND: MORPHOLOGICAL GENERALIZATION 17

sg.indef sg.def pl.indef pl.def
C1 ’school’ skola skolan skolor skolorna

’bottle’ flaska flaskan flaskor flaskorna
C2 ’chair’ stol stolen stolar stolarna

’box’ ask asken askar askarna
C3 ’idol’ idol idolen idoler idolerna

’Basque’ bask basken basker baskerna

Table 2.2: Paradigms illustrating three inflectional classes (C1–C3) in Swedish nouns, repro-
duced from Round et al. (2022). Morphological exponents are indicated with boldface.

sg.indef sg.def pl.indef pl.def
C1 -a -an -or -orna
C2 ø -en -ar -arna
C3 ø -en -er -erna

Table 2.3: Arrangement of Swedish nominal exponents from Table 2.2, according to inflection
class (row) and grammatical feature (column).

2.1.2 Information theory and the Low Conditional Entropy Conjecture

The Low Conditional Entropy Conjecture (LCEC; Ackerman and Malouf, 2013) posits that

morphological generalization — the need for speakers to produce unknown inflected forms

— is the core functional pressure organizing the lexicon. The resulting lexical structure is

realized in the form of predictive relationships between members of morphological paradigms.

Ackerman and Malouf use ‘paradigm’ to mean the particular arrangement of morphological

exponents associated with some linguistic domain over all grammatical features and inflection

classes, for instance in Table 2.3. Here, I follow the terminology of researchers who work with

wordforms rather than exponents (e.g. Cotterell, Kirov, Hulden and Eisner, 2018; Round et al.,

2022) in using ‘paradigm’ to mean the set of wordforms associated with a particular lexeme

— i.e. each row in Table 2.2 constitutes a separate paradigm — and ‘inflection class’ to

mean a particular set of morphological exponents, and/or the set of lexemes which take those

exponents.

Morphological generalization is straightforward when only one inflection class exists, but

can be challenging when multiple inflection classes are present. Ackerman and Malouf propose

two different information-theoretic measures to quantify morphological complexity. The first

metric, E-complexity (where E stands for Enumerative), reflects the difficulty of guessing

the inflection class of an unknown lexeme, absent any other information. The second metric,

I-complexity (where I stands for Integrative), re-estimates the difficulty of inflection class
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18 2.1. REGULARITY: GENERALIZATION AND THE LEXICON

assignment in the presence of extra information — for instance, conditional on having observed

another wordform in the same paradigm.

Entropy and E-complexity Ackerman and Malouf use Shannon entropy (Shannon, 1948) to

quantify E-complexity. Given a category 𝐶 with possible values 𝑐 ∈ 𝐶, the entropy in bits

𝐻(𝐶) can be defined in terms of the probability distribution 𝑃(𝐶):

𝐻(𝐶) = −∑
𝑐∈𝐶

P(𝑐) log2 P(𝑐) (2.1)

Ackerman and Malouf consider three different approaches to quantifying E-complexity,

which I will illustrate here in relation to Table 2.3. The first, declension entropy 𝐻(𝐷),

assumes that each inflection class is equally probable. Given three inflection classes for Swedish

nouns, this would work out to roughly 1.58 bits:

𝐻(𝐷) = −
3

∑ 1
3 log2 (

1
3) ≈ 1.58 (2.2)

The second approach, 𝐻𝑇𝐹 (𝐷), weights the probability of each inflection class based on

its type frequency (TF), or how many lexemes belong to that class. This measure is strictly

equal to or lower than 𝐻(𝐷) by definition, as uniform probability over each class produces the

maximal entropy value for a given distribution.

The third approach, paradigm cell entropy 𝐻(𝑐), rescopes the task from predicting the

inflection class of an unknown lexeme to predicting its realization in a specific paradigm cell

(once more assuming uniform probability over inflection classes). This measure is motivated

by the insight that, during real world language use, speakers typically have to generalize only

one inflected form for a particular grammatical feature combination, which is an easier task

than producing the full paradigm for a given lexeme. For example, in the sg.def column in

Table 2.3, we see that both C2 and C3 are realized with the suffix -en, so an inflected form

with this exponent has probability 2
3 relative to 1

3 for -an:

𝐻(sg.def) = 2
3 log2 (

2
3) +

1
3 log2 (

1
3) ≈ 0.92 (2.3)

To obtain the paradigm cell entropy over an entire system, we calculate 𝐻(𝑐) for each cell

𝑐 and then take the average. This measure is always strictly lower than 𝐻(𝐷), as the number
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CHAPTER 2. BACKGROUND: MORPHOLOGICAL GENERALIZATION 19

of possible exponents for a given paradigm cell will always be less than or equal to the number

of inflection classes. The average paradigm cell entropy for Table 2.3 is 1.25 bits.

All three of these approaches estimate E-complexity, and more approaches are certainly

conceivable; for example, paradigm cell entropy could be weighted by type frequency as well.

Johnson et al. (2020) use average paradigm cell entropy as presented here to measure E-

complexity in an artificial language learning study. Cotterell, Kirov, Hulden and Eisner (2018)

propose a different method to estimate E-complexity using generative models of wordforms

rather than exponents, discussed further in §2.3.3. Note that, in terms of the conceptual

scheme shown in Table 2.1, all of the E-complexity measures considered here are defined

exclusively with respect to distributions over outputs (i.e. inflected forms).

Conditional entropy and I-complexity While E-complexity quantifies the challenge of mor-

phological generalization in terms of outputs, Ackerman and Malouf argue that this overstates

the problem: speakers actually face a much easier task due to implicative relationships be-

tween paradigm cells, which is measured by I-complexity. I-complexity relies upon conditional

entropy to quantify the predictability of a specific unseen inflected form, conditional on having

observed another form from the same lexeme, i.e. another wordform in the same paradigm.

Given a category 𝐶1 with possible values 𝑐1 ∈ 𝐶1, its conditional entropy with respect to

another category 𝐶2 can be defined (inter alia) in terms of the probability distribution 𝑃(𝐶2)

and the conditional probability distribution 𝑃(𝐶1 ∣ 𝐶2):

𝐻(𝐶1 ∣ 𝐶2) = − ∑
𝑐2∈𝐶2

P(𝑐2) ∑
𝑐1∈𝐶1

P(𝑐1 ∣ 𝑐2) log2 P(𝑐1 ∣ 𝑐2) (2.4)

As for E-complexity, many approaches can be used to estimate the relevant distribu-

tions. Ackerman and Malouf calculate I-complexity in terms of the average conditional

entropy between pairs of cells, again assuming uniform probability over inflection classes.

For example, in Table 2.3, 𝐻(sg.def ∣ sg.indef) = 0, because the sg.def form of a lex-

eme is perfectly predictable given knowledge of its sg.indef form. On the other hand,

𝐻(pl.indef ∣ sg.indef) = 2
3 , because 𝐻(pl.indef ∣ sg.indef = -a) = 0 (class C1, proba-

bility 1
3) and 𝐻(pl.indef ∣ sg.indef = ø) = 1 (classes C2 and C3, probability 2

3). To estimate

the I-complexity of the overall system, we repeat the calculation over all pairs of cells and

average the result. In this case, we obtain an I-complexity of 1
3 bits for the Swedish nominal
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20 2.1. REGULARITY: GENERALIZATION AND THE LEXICON

system shown in Table 2.3, substantially lower than the E-complexity measure of 1.25 bits.

Ackerman and Malouf (2013) argue that typologically diverse languages with a wide range

of values for E-complexity nonetheless share relatively low I-complexity. Their analysis sup-

ports the Low Conditional Entropy Conjecture that low I-complexity is the key factor enabling

speakers to generalize lexical structure to unknown words within complex inflectional systems.

This approach — namely, characterizing regularity as predictability in information-theoretic

terms — can flexibly integrate various sources of distributional information, from features of

input lexemes (e.g. observed from another paradigm cell) to frequencies of output forms. This

motivates the classification of this approach in Table 2.1.

Chapter 3 reviews various information-theoretic properties of the German plural system

(§3.1). To the best of my knowledge, the LCEC analysis described here has not been applied

to German plural inflection.5 Due to the high degree of mutual information (i.e. conditional

entropy reduction) between grammatical gender and plural class (Table 3.2), I argue that in

practice, the LCEC/predictability account most closely aligns with a more traditional generative

linguistic analysis that assigns default plural classes based on grammatical gender (§3.2.2). In

the following section, I review the theoretical literature on defaults and morphological regularity.

2.1.3 Defaults in linguistic theory

This section introduces the theoretical linguistic concept of a default category. I first discuss

the background and significance of defaults in linguistic theory more broadly, then introduce

the related concept of the Elsewhere Distribution. Finally, I consider how linguistic defaults

relate to morphological regularity, in particular the rule generation and predictability criteria.

Defining defaults The term default has a range of meanings and uses in linguistics, but

they largely express the same principle: for some given linguistic domain, the default is the

general case, which may be overridden by more specific cases — but if more specific conditions

do not apply, we should expect the default (e.g. Zwicky, 1986; Gisborne and Hippisley, 2017).

This principle has a long history in linguistic analysis, first appearing around 500 bc in the

Sanskrit analysis of pioneering grammarian Pāṇini (Deo, 2007). Kiparsky (1973) reintroduced

Pāṇini’s principle to address rule interaction in the context of modern generative linguistics.
5Cotterell, Kirov, Hulden and Eisner (2018), discussed in §2.3.3, estimate the E- and I-complexity of the German

nominal system as a whole, which goes beyond the nominal plural subsystem of interest here.
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singular plural
masculine neuter feminine

nominative -e -e -e -(e)n
accusative -(e)n -e -e -(e)n
dative -(e)n -(e)n -(e)n -(e)n
genitive -(e)n -(e)n -(e)n -(e)n

Table 2.4: Suffixes for German weak adjective inflection. German adjectives are inflected to
agree with nouns in case, grammatical gender, and number.

R1. [+acc;+masc;+sg] → -(e)n
R2. [+nom/acc;+sg] → -e
R3. [] → -(e)n

Table 2.5: Generative analysis of German weak adjective inflection (Zwicky, 1985). The input
condition for each rule is here listed on the left hand side, with semicolons indicating logical
conjunction and slashes logical disjunction. The right hand side lists the resulting suffix.

As discussed earlier, a rule in the generative linguistic tradition comprises an input condition

indicating the linguistic context in which the rule is applied, and an associated structural

transformation resulting from rule application. The input condition determines the rule’s

scope, and this scope in turn determines which rules are prioritized: “when two rules conflict,

the more specific takes precedence over the more general” (Anderson, 1982, 593). Note that

this exclusive focus on the input to a morphological process is consistent with the rule-based

characterization of morphological regularity presented in Table 2.1.

Zwicky’s (1985) analysis of German weak6 adjective inflection illustrates how the default

principle affects rule ordering in generative linguistics (also discussed by Brown, 2016; Gisborne

and Hippisley, 2017). Table 2.4 shows the distribution of suffixes taken by adjectives during

weak inflection, based on different combinations of the grammatical features case, gender,

and number. To account for the observed set of suffixes, Zwicky posits three rules, which we

present in a simplified format in 2.5. For instance, only adjectives agreeing with masculine,

accusative, singular nouns would match the input condition for R1, while adjectives agreeing

with nominative or accusative singular nouns would match R2. By listing the most conjunctive

features, R1 selects a proper subset of the linguistic forms selected by R2 and is thus more

specific. R3 does not specify any features in its input condition, making it the most general

rule of all. Brown describes Zwicky’s analysis as “an implicit layering of defaults [...] one very

specific rule, one more general, and one even more general” (2016, 277). As discussed below,

6“Weak” adjective inflection occurs in German when the noun phrase is preceded by a determiner. “Strong”
inflection occurs when the noun phrase has no determiner, and follows a different pattern.
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22 2.1. REGULARITY: GENERALIZATION AND THE LEXICON

only the rule with an unrestricted input condition — here, R3 — technically qualifies as the

default rule, but Brown’s observation shows how this concept reflects the broader linguistic

principle: more specific cases take precedence at each level of generality, where specificity is

evaluated with respect to the feature values posited in the input conditions.

The Elsewhere Distribution Kiparsky (1973) introduces the term Elsewhere Condition

to refer to negatively-defined linguistic contexts in phonology, later extending to morphology

(Kiparsky, 1982). A default rule must have the Elsewhere Condition as its input criterion (e.g.

Zwicky, 1986). For example, in Table 2.5, the left hand side of R3 represents the Elsewhere

Condition. It does not specify any constraining features — within the domain of weak adjective

inflection, R3 applies elsewhere, which is to say in any context where the more specific R1 or

R2 does not apply. This lack of environmental restrictions is the default rule’s defining feature:

“a default rule is seen as being context-free in the sense that it applies in the absence of any

other information” (Brown, 2016, 280).

The Elsewhere Condition is a definitional criterion for a default rule; as such, it must be

associated with a particular theoretical analysis, i.e. set of rules. How do linguists find evidence

to support such analyses? In general, default rule analyses depend upon the linking assumption

that the Elsewhere Condition is realized by its observational counterpart, the Elsewhere Dis-

tribution. The Elsewhere Distribution is identified by analyzing how outputs,7 i.e. inflected

forms, are distributed with respect to features of the input. A linguistic variant which appears

in a diverse range of heterogeneous contexts is said to be elsewhere distributed; its distribution

cannot be easily summarized with reference to specific properties of the input, so the linguist

infers that this variant follows the Elsewhere Condition, i.e. is assigned by a default rule. For

example, the data presented in Table 2.4 shows that the suffix -(e)n appears with the widest

variety of feature combinations, making it the inflectional class which most plausibly reflects

the Elsewhere Distribution. Even though another hypothetical analysis of the same data may

propose different rules from from Table 2.5, if the analysis were to include a default rule, that

rule would almost certainly assign -(e)n rather than -e.

7This may appear to contrast with the input focus that I claim characterizes rule-based approaches to morpho-
logical organization; however, as explained here, the main theoretical import of this distribution is to identify the
output class which is associated with the Elsewhere Condition in the input.
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Defaults and regularity As discussed in §2.1.1, proposed criteria for “regularity” are most

readily understood as attempts to account for productivity, i.e. morphological generalization.

The rule generation criterion posits that a regular inflection class is one that is generated by

rule, under the assumption that the rule will productively apply to any novel input lexemes

which match the features specified in its input condition. This approach, however, raises

questions for inflection systems which are analyzed in terms of multiple rules. For example,

consider the analysis in Table 2.5, which posits that all German weak adjective inflection classes

are rule-generated. Does this mean that both -e and -(e)n are “regular” classes in this system?

The notion of a “default” helps to resolve this problem: if regularity, and hence morpho-

logical generalization, is best characterized with respect to the input conditions of productive

rules, then the most productive rule should be the one with the least restrictive conditions,

as it can generalize to the largest set of potential input lexemes. This reasoning implies that

rule ordering according to Pāṇini’s principle also defines a hierarchy8 in terms of regularity,

with the default inflection class qualifying as “most regular” due to its potential to generalize

to any input. The Elsewhere Distribution of the default class, then, renders it indisputably

regular. Other inflection classes with more restricted scopes (such as R2 in Table 2.5) might

be produced by “irregular rules” (Yang, 2017) or “sub-regular rules” (Royle et al., 2012) —

phrases which are uninterpretable if “regular” simply means “rule-generated.” The default class,

however, can apply to any input, making it regular by definition.

Though this understanding of regularity is not formulated in information-theoretic terms,

we can sketch out some intuitive connections between the default rule generation criterion

and principles of statistical learning. The default class is the one which appears with the most

heterogeneous feature combinations in the input space. In other words, the default is the output

class associated with the highest entropy in the input space, i.e. the most variable distribution

of probability mass over linguistic environments. We can view the Elsewhere Condition as a

consideration of grammatical economy (Wilder et al., 1996) related to minimizing description

length: the variable distribution of input features associated with the default class is most

efficiently characterized in negative terms (Wilder and Gärtner, 1997). Indeed, Rasin et al.

8The importance of hierarchical rule ordering somewhat weakens my claim that regularity in the rule generation
approach can be defined in isolation (§2.1.1), as in practice, most analyses with default rules clearly rely upon
the presence of earlier pre-emptive rules to explain particular linguistic data. Nonetheless, I maintain that this
regularity criterion can be evaluated in isolation: any default rule specified by the Elsewhere Condition will identify
a default class, and that class qualifies as ‘regular’ without regard to any rules which may or may not precede it.
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(2021) show that the formal principle of Minimum Description Length (MDL; e.g. Rissanen,

1983) encapsulates various grammatical economy evaluation metrics proposed in the generative

linguistics literature. MDL, in turn, is closely related to the statistical learning objective of

maximizing entropy over a distribution subject to specified constraints (Feder, 1986; Grünwald,

2007) — exactly the aim of the Elsewhere Condition.

To recap, while the generative default rule analysis does not explicitly formulate regularity

as the minimization of entropy in prediction (contra Ackerman and Malouf, 2013, §2.1.2), it

at least partly aligns with other approaches to statistical learning (e.g. Minimum Description

Length) by maximizing entropy in the input space. In Chapter 3, we will consider how this

input variability criterion informs default theories of German plural inflection. The minority

default theory (§3.2.1) hinges entirely upon this criterion, whereas gender-based default the-

ory (§3.2.2) is less reliant given its alignment with the predictability criterion discussed above

(§2.1.2). Crucially, the default output category is defined and evaluated only with respect to

the distribution of features in the input space: there is no influence of the relative frequency

of different output inflected forms. In the following section, I briefly discuss the third regu-

larity criterion of type frequency, which stands in opposition to the input-focused default rule

generation criterion developed in this section.

2.1.4 Type frequency

The final criterion focuses on the type frequency of inflection classes observed upon output

inflected forms. This definition of morphological regularity is often invoked informally —

for example, Blevins et al. define “regular items” as “members of classes with a high type

frequency” (2017, 141) — but has not received the same amount of theoretical consideration or

formalization compared to the rule generation and predictability criteria discussed above. For

instance, Joan Bybee has contributed many comprehensive research treatments of frequency

effects across various levels of linguistic analysis (e.g. Bybee and Slobin, 1982; Bybee, 1995,

1996, 2006a,b, 2010); even in her work, however, the precise role of frequency remains vague.

Bybee notes that “frequency interacts with other factors, such as phonological and semantic

similarity, categorization, and semantic/pragmatic change. It is often difficult to discern which

factors are the most important in determining linguistic behavior” (2006a, 17). This illustrates

a barrier to the development of formal linguistic models relying on type frequency: in practice,
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the type frequency of output inflection classes shows complex patterns of interaction with other

linguistic factors. These multifaceted interactions in turn make it unclear when type frequency

has a causal role:

[T]he answer to the question of whether frequency is a cause or an effect is complex.

On the one hand, frequency is just a tally, a pattern observable in texts, which

is of course an effect. On the other hand, frequency or repetition of experiences

has an impact on cognitive representations and in this way becomes a cause [...]

(Bybee, 2006a, 18)

If type frequency can be qualified through interaction with other linguistic factors, then

this criterion may start to look more like predictability (§2.1.2) than an independent dimension

of regularity. Can we reliably differentiate these views? Haspelmath (2021) argues that, while

frequency asymmetries in linguistic variants may result from many diverse factors, they are

universally causal with respect to predictability. He illustrates this with reference to coding

asymmetries, in which more frequent linguistic variants (e.g. present-tense “go”) are expressed

with shorter forms compared to less frequent variants (e.g. future-tense “will go”):

If context is kept constant, higher-frequency meanings are more predictable than

lower-frequency meanings because of their frequency: It is less surprising if my

interlocutor uses a present-tense form than if she uses a future-tense form [...]

Thus, as was already noted in Section 1, the causal chain goes from high frequency

to predictability, and from predictability to short coding. (Haspelmath, 2021, 624)

Within morphology, then, the type frequency criterion posits that the frequency of an

inflection class over output inflected forms independently contributes to its regularity (i.e.

propensity to generalize; §2.1.1), although its generalization may also be influenced by other

factors (e.g. linguistic features of the input, relevant sentence context, and so on). To

editorialize somewhat, my impression is that advocates of the type frequency criterion show

an admirable willingness to acknowledge and explore this complexity, but this unfortunately

comes at the expense of generating clear and testable theoretical predictions. This trade-off

is evident in the debate on German plural inflection, where the type frequency criterion is

advanced within the framework of schema theory (Köpcke, 1988; Bybee, 1995). As discussed
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in §3.2.3, while the schema theory account of German plural inflection captures key empirical

findings, it does not appear sufficiently formalized to generate fine-grained predictions.

Summary In this section, I have reviewed different criteria which have been proposed to

characterize regularity, or patterned structure in the lexicon informing morphological gener-

alization (§2.1.1). I consider two approaches in detail: the information-theoretic account of

regularity as predictability, exemplified by Ackerman and Malouf’s Low Conditional Entropy

Conjecture (§2.1.2), and the generative rule generation account of regularity, under which the

most productive class in an inflection system is generated by a negatively-conditioned default

rule (§2.1.3). I also briefly review the type frequency criterion for regularity, which has not

received as much theoretical development (§2.1.4). The conceptual scheme depicted in Table

2.1 captures key differences between these approaches. The rule generation account focuses on

feature-valued input conditions for linguistic categories considered in isolation, while the type

frequency account highlights distributions over output inflected forms, and the predictability

account integrates distributional information from input lexemes and output forms. All three

criteria, however, share the same goal of explaining morphological generalization. Chapter

3 will discuss how these criteria have informed competing linguistic theories of the lexical

structure and generalization of German plural inflection.

2.2 Regularization: Generalization and speakers

While the previous section reviewed different approaches to characterizing linguistic structure

within the lexicon, this section focuses on the psycholinguistic question of how those lexical

patterns affect speaker behavior. These two topics are separable in principle, reflecting the

disciplinary divide between linguistic and psycholinguistic research; however, as we have seen,

linguistic theories of regularity often seek to account for morphological generalization, which in

practice must be realized by speaker behavior at some level of analysis. Given this connection,

many linguistic researchers consider behavioral evidence from psycholinguistic experiments es-

sential to meaningfully adjudicate between competing theories of lexical structure. In §2.2.1,

I review some general findings from psycholinguistic studies of morphological generalization

in relation to three different conceptions of linguistic regularity, namely rule generation, pre-

dictability, and type frequency (c.f. Table 2.1).
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In recent years, some researchers have inverted the question: instead of asking how regular-

ity in the lexicon influences speaker behavior, they use artificial language learning experiments

to investigate how speaker behavior can produce lexical regularity, a process known as regu-

larization (Hudson Kam and Newport, 2005, 2009). The regularization literature provides

fine-grained analytical tools to evaluate the relation between speaker behavior and lexical distri-

butions, for instance in information-theoretic terms (Ferdinand et al., 2019), which intuitively

connect to linguistic treatments of regularity as predictability (§2.1.2). In §2.2.2, I introduce

key concepts and behavioral findings from this literature, and consider how they relate to

morphological generalization in natural language.

2.2.1 Regularity and speaker generalization: Wug tests

The wug test is an experimental design in which speakers are asked to produce or evaluate

inflected forms of nonexistent words. For many years, this experimental approach has been

the dominant method to assess how speakers generalize inflectional morphology based on the

lexical patterns of their language. In addition to morphological generalization, wug tests are

often used to investigate how speakers generalize phonological patterns; in the original wug

test, Berko (1958) studied phonologically-conditioned alternations of the English plural suffix

-s, which is deterministically realized as /-s/, /-z/, or /-iz/ based on the final phoneme of the

input (as in the words “cats,” “dogs,” and “glasses” respectively). Wug tests are generally

used to characterize speakers’ linguistic knowledge of their lexicon, particularly the aspects

which influence generalization.

One methodological concern for experimenters conducting wug tests is whether produc-

tion or evaluation tasks are better suited to address their research questions. Morphological

generalization is often framed as a problem for speakers, who must produce inflected forms for

unknown words (Ackerman et al., 2009; Ackerman and Malouf, 2013; Blevins et al., 2017).

This suggests that production tasks may be a more natural approximation of the real-world

problem. On the other hand, evaluation tasks such as acceptability judgments enable gradient

responses, which may capture more nuanced influences, or processes relevant to linguistic com-

prehension. Schütze (2005) considers the wug test from the vantage point of the experimental

participants, and distinguishes two possible scenarios: participants may treat a novel stimulus

either as an obscure word that already exists in the language (e.g. a rare word one may find
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in the dictionary), or as a word newly entering the language (e.g. a neologism, or borrowing

from another language). Based on an analysis of data from Albright and Hayes (2003), he

conjectures that participants may prefer the former (dictionary) interpretation in the context of

rating tasks, but prefer the latter (neologism/borrowing) interpretation in production tasks; see

also Kawahara 2015 for an empirical comparison of forced-choice production and rating tasks.

Based on the consistent divergence in results from production and evaluation tasks, Clahsen

(2016) recommends using both methods when possible. This recommendation informs the

behavioral study in Chapter 4, which collects production and rating data for the same stimuli

from the same speakers.

Rule generation Numerous psycholinguistic studies of morphological generalization have been

informed by the assumption that linguistic regularity reflects rule application. Under this view,

the input constraints associated with individual inflection classes are the key factor influencing

how speakers assign those inflection class to novel words:

“The generalization properties of inflectional and other morphological processes

provide a crucial diagnostic for how they are mentally represented. Some mor-

phological processes may be freely applied to novel or unusual words, others only

under appropriate circumstances.” (Clahsen, 2016, 798-799)

A process which freely applies to all words, including unusual words, is understood as the

default inflection class (c.f. §2.1.3). Clahsen reviews the experimental literature from this

perspective, and cites several behavioral9 studies (e.g. Veríssimo and Clahsen, 2014) which

find support for “a variable-based mechanism that generalizes by default to all members of a

given grammatical category” (2016, 803).

Researchers have used a range of rule-based models to analyze behavioral data from wug

tests. Here, I will highlight three studies of particular relevance to this dissertation. Marcus

et al. (1995) conduct a rating experiment with German speakers and interpret their results in

terms of a dual-route model combining analogical generalization with a rule-generated default

class (see also Clahsen, 1999b; Pinker and Ullman, 2002, and extensive discussion in §3.2.1).
9Note that this assumption is not shared by all morphologists working within default frameworks. For instance,

Gisborne (2017) and Kihm (2017) argue that morphological default classes have cognitive relevance, but they
support their claims with diachronic evidence from generalization through historical change rather than synchronic
evidence from behavioral experiments.
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In this analysis, only one inflection class is rule-generated — therefore regular — and also

the default. Other approaches, however, posit that speaker generalization behavior may be

influenced by interacting systems of multiple productive rules. Albright and Hayes (2003) use

simultaneous probabilistic application of multiple rules at varying levels of generality to model

behavioral results from an experiment on English past tense inflection. Yang (2016) proposes

a model of morphological generalization based on serial rule application, which Belth et al.

(2021) apply to behavioral wug test data from German and English. Both of these rule-based

approaches have been implemented as computational models, and will be discussed in greater

detail in §2.3.1. These three studies posit different mechanisms connecting lexical structure —

characterized here as rules, as well as analogy in the dual-route case — to speaker behavior,

but all share the hypothesis core to the rule generation conception of regularity: that the

input conditions associated with individual inflection classes have significant causal effects on

how speakers generalize inflection. In later chapters (e.g. Chs. 4 and 7), I evaluate this

hypothesis using behavioral wug test data and computational models, including the symbolic

learner proposed by Belth et al. (2021).

Type frequency Other studies, however, have found that the frequency distribution over

inflection classes in the lexicon may have the strongest influence on how speakers generalize

inflection. This suggests that speakers may probability-match to the lexical frequencies

of inflected forms, i.e. outputs. Pierrehumbert (2022) reviews the behavioral evidence for

probability-matching, which has been found mainly in wug tests of phonological patterns, but

is also attested for inflectional morphology (e.g. Ernestus and Baayen, 2003; Hayes et al.,

2009). She notes that confusion around the topic makes it difficult to find evidence for or

against probability-matching in the existing behavioral literature:

Unfortunately, many of the earlier papers that are cited argue for the importance

of probabilities, but not for probability-matching per se. [...] To show that learning

is probability-matching, it is necessary to show that the statistical patterns in the

output of individual learners match those in the input, which are assumed to be the

same as those in the ambient language. [...] One issue is that many studies only

report data that has been pooled across participants [...] pooled data can give a

spurious appearance of probability-matching in cases where different participants
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learn categorically different systems. (Pierrehumbert, 2022, 647-648)

This gap in the literature regarding morphological generalization of natural language is partly

filled by artificial language learning research, where the concept of probability-matching has

been more extensively developed and contextualized in the broader cognitive literature (§2.2.2).

In Chapter 6, I draw on artificial language learning methodology (e.g. Ferdinand et al., 2019)

to evaluate probability-matching behavior on the level of individual speakers. Computational

models of probability-matching will be discussed in §2.3.2.

Predictability The predictability criterion for linguistic regularity posits that lexical structure

exists precisely in order to facilitate generalization by speakers; this approach is fundamentally

motivated by speaker behavior. The Low Conditional Entropy Conjecture (LCEC) has been

assessed in artificial language studies, which we will discuss in §2.2.2. Predicting morphological

generalization in natural language, however, depends upon accurately characterizing the lexical

distributions to which speakers are exposed. Blevins et al. (2017) draw attention to the Zipfian

nature of linguistic distributions, and argue that most speakers in fact never encounter the

majority of inflected forms in their language. This implies that speakers do not have access to

the full lexicon in practice, and must base their predictions for unobserved forms on partially

observed morphological paradigms. Blevins et al. claim that speakers overcome this challenge

to predict unseen forms via analogical generalization based on lexical neighborhoods, i.e.

existing words which are phonologically similar to the novel word, and cite Milin et al. (2011)

for supporting behavioral evidence from wug tests with Serbian speakers. See also Nieder et al.

(2020) for an analogical account of speaker plural generalization in Maltese.

One key challenge for prediction-based approaches to speaker behavior is accounting for

patterns in the lexicon which are statistically robust, yet do not inform how speakers generalize.

Becker et al. (2011) identify a phonological alternation in Turkish which reliably correlates with

three factors in the lexicon, but find that speakers only condition on two of those three factors

during wug tests. Dawdy-Hesterberg (2014) implements an analogical model of inflection

generalization for Arabic verbs. While the model predicts generalization conditional on vocalic

indicators of verb patterns, she finds that speakers do not use this information in wug tests,

and instead probability-match to a lexical distribution conditioned on a separate morphological

template. Gagliardi and colleagues have reported similar statistical insensitivity in first-language
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acquisition of Tsez noun classes (Gagliardi and Lidz, 2014; Gagliardi et al., 2017). These

findings suggest that speakers’ morphological generalization is not wholly determined by the

predictability of lexical structure; independent cognitive or linguistic biases may render speakers

sensitive to certain statistical properties of the lexicon, and insensitive to others. In this

dissertation, the question of which lexical statistics inform speaker generalization of German

plural inflection will be considered in depth in Chapters 5, 6, and 7.

Summary This section has discussed the wug test (Berko, 1958), a psycholinguistic experi-

mental technique to evaluate how speakers generalize inflectional morphology. Wug tests have

often been used to provide behavioral evidence for or against different theories of morphological

regularity, such as the rule generation, type frequency, and predictability accounts reviewed

here. Although the task of inflecting unknown words may appear simple, the complexity of

natural language makes result interpretation difficult. Any natural language lexicon contains

many different types of organization at different levels, any of which may or may not influ-

ence speaker behavior; speakers themselves are exposed to a wide range of partial samples of

the full lexicon; and the experimental literature typically has not reported results at the fine

granularity needed to evaluate certain mechanistic hypotheses (e.g. probability-matching) con-

necting speaker behavior to lexical structure. These issues have been at least partly addressed

by artificial language learning, an alternative experimental approach reviewed in the following

section which has informed the analysis of behavioral wug test data in this dissertation.

2.2.2 Regularization and speaker generalization in artificial languages

In artificial language learning (ALL) experiments, participants are taught a miniature language

over the course of one or more training sessions, and then evaluated using test items. Many

ALL experiments have focused on language acquisition (see Culbertson and Schuler, 2019,

for a review) and the maturational constraints which cause language learning to differ for

children and adults (e.g. Newport, 2016, 2020). This dissertation considers only adult behavior,

where ALL appears comparable to second language learning (Ettlinger et al., 2016). The key

advantage for ALL studies, however, is that the distribution of lexical and grammatical variants

in an artificial language — as well as participants’ exposure to those distributions — is under

full control of the researchers. This means that linguistic phenomena of interest can be isolated
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Singular Article + Noun Plural
le dug dugs
le gat gats
le brid brids
ze pik piks
ze cheep cheep
ze bish bish

Test Input A B C D
le gee gees gees gees gee
ze koo koos koos koo koo
ze teer teers teer teer teers

Table 2.6: Hypothetical artificial language. Left table shows training vocabulary, right shows
test outputs from four speakers. A regularizes the majority variant, B probability-matches, C
regularizes conditional variation, and D regularizes the minority variant.

and manipulated with precision, and the behavior of individual speakers can be analyzed and

classified in more detail (c.f. Chapter 6).

In a series of ALL experiments, Hudson Kam and Newport (2005) found that participants

had a range of responses to morphological variation during training. After exposure to train-

ing sentences where an article would unpredictably appear with nouns in 60% of cases, some

participants (mainly adults) probability-matched by reproducing this variation in novel test

sentences, while other participants (mainly children) would either consistently produce or omit

the article. Hudson Kam and Newport termed the latter behavior regularization: by im-

posing consistency on an inconsistent grammatical system, these participants were effectively

producing regularity, i.e. predictable lexical structure. Subsequent ALL research has devel-

oped more precise quantitative ways to define for regularization and probability matching, and

characterize the experimental settings in which these behaviors occur.

Regularization is defined as a behavioral process which produces linguistic regularity. As

such, it inherits some of the definitional vagueness discussed in §2.1.1, and the conceptual

axes shown in Table 2.1 can clarify different approaches to defining regularization. As found

by Hudson Kam and Newport (2005), speakers may regularize by producing (or omitting)

one linguistic category consistently. In this understanding, regularization is a process which

targets the distribution of one linguistic class considered in isolation. Others, however, define

regularization as lowering the entropy of the overall distribution over linguistic classes (e.g.

Smith and Wonnacott, 2010; Ferdinand et al., 2019). Table 2.6 presents the training and test

vocabulary for a hypothetical ALL experiment, which I will use to illustrate these concepts. In

Table 2.6, Speaker A regularizes in both the isolated and distributional senses; they observe the

-s plural class on 60% of the training vocabulary, and apply this class consistently to 100% of
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the test forms. Probability-matching, by contrast, is inherently characterized in distributional

terms. In Table 2.6, Speaker B probability-matches by variably producing the -s plural class for

60% of the test forms. Note that both regularization and probability-matching are defined in

terms of distributions over output inflected forms here. There is, however, a third possibility:

speakers may reduce unpredictable variation by conditioning on some other linguistic factor

— in keeping with views of regularity which focus on input conditions. In Table 2.6, Speaker

C illustrates this type of regularization: the singular article on the input noun (le or ze) is

100% predictive of their plural class assignments, although this relationship is less consistent

in the training corpus. Speaker D highlights a potential source of conflict between the two

definitions of regularization given here, to be clarified in later discussion: they are regularizing

with a minority variant in the isolated sense, but probability-matching in the distributional

sense. This section will review literature relevant to these behaviors, and consider how they

relate to regularity and morphological generalization in natural language.

Regularizing with a majority variant One way that speakers can regularize is by increasing

the frequency of one specific class in their productions. Typically, the linguistic class which

is most frequent in the training corpus is targeted for relative overproduction on test items.

Hudson Kam and Newport (2009) found that adult speakers overproduced the most frequent

class when presented with variation between several articles (as opposed to variable production

of one article, as in Hudson Kam and Newport, 2005); furthermore, the availability of more

options (e.g. three determiner categories rather than two) led speakers to regularize even

more. Note that this form of regularization is compatible with the distributional approach

characterizing regularization as entropy reduction: in most cases, increasing the frequency of

a majority variant corresponds to decreasing the entropy of the distribution. For example, in

the hypothetical ALL experiment shown in Table 2.6, Speaker A increases the frequency of

the majority class -s from 60% in the training distribution to 100% in the test distribution,

reducing the entropy from .97 bits in training to 0 bits in test.

Focusing on how speakers generalize one particular class is consistent with some views of

morphological regularity reviewed in §2.1, specifically the rule generation perspective, which

considers linguistic properties of categories in isolation.10 There is, however, a crucial difference
10The concatenativity view of regularity also considers categories in isolation; however, morphological variants

in ALL experiments are typically controlled to be equal on this dimension, so concatenativity is not as relevant to
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between these two literatures. In a rule-governed analysis of morphological regularity, for

instance as developed in the generative tradition (c.f. §2.1.3), a particular linguistic category

can generalize to novel forms only when licensed by the underlying linguistic system (i.e. if the

novel form meets certain input conditions). If a speaker generalizes that linguistic category,

this behavior reflects their implicit knowledge of their language’s lexical structure. In the case

of artificial language learning, however, speakers have no implicit knowledge of the specific

language in question. For this reason, regularization in ALL experiments can only be attributed

to general cognitive principles —- either domain-general biases, or biases specific to language

but independent of any specific language. For instance, Hudson Kam and Newport’s finding

— that speakers regularize more in the presence of more variants — echoes earlier findings in

non-linguistic domains (Gardner, 1957; Weir, 1964), suggesting that regularization may reflect

domain-general cognitive load pressures. Reali and Griffiths (2009) and Ferdinand et al. (2019)

find that increased cognitive load drives adult speakers to regularize more in both linguistic

and non-linguistic tasks; however, speakers also regularize more in linguistic tasks overall.

Culbertson and Kirby (2016) therefore propose that regularization reflects a domain-general

cognitive bias toward simplicity, but the strength of the bias is domain-specific, i.e. stronger

for language.

Regularizing with a minority variant In most cases, participants in ALL experiments regu-

larize by overproducing the majority variant; however, many studies have also reported cases

where one or more participants regularize by overproducing a minority variant instead (e.g.

Hudson Kam and Newport, 2009; Reali and Griffiths, 2009; Smith and Wonnacott, 2010; Per-

fors, 2012, 2016). This is somewhat unexpected given the preceding discussion. In the case

of natural language, one might expect speakers to generalize a minority linguistic class based

on their knowledge of the underlying lexical structure, but ALL participants’ knowledge of

linguistic structure is limited to the sequences observed during training; it is unclear what kind

of language-specific information would support this behavior. Ferdinand et al. (2019) identify

one possible cause in their experimental data. They find that participants are more likely to

regularize with a minority form when they observe it earlier during the training phase, suggest-

ing that perhaps another domain-general cognitive bias — in this case, a primacy learning bias

this literature.
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favoring early exposure — supports regularization with a minority variant.

Minority-variant regularization introduces an additional complication when regularization is

quantified as entropy reduction. We can see this in the case of Speaker D, in the hypothetical

experiment in Table 2.6. This speaker overproduces the minority class ø, assigning it to 60%

of forms in test relative to 40% in training. The result, however, is a test distribution with .97

bits of entropy — exactly the same as the training distribution. If we look at entropy alone,

Speaker D would be classified as probability-matching; however, the specific distribution of

their test productions is also consistent with minority-variant regularization. Nuanced cases

such as this illustrate the benefit of multiple perspectives on regularization, considering both

individual class overproduction and entropy reduction (c.f. Ferdinand et al., 2019).

Regularizing by conditioning multiple classes So far, we have considered regularization be-

havior which takes the form of overproduction of one linguistic category relative to the training

distribution, either the majority variant (exemplified by Speaker A in Table 2.6) or, less com-

monly, the minority variant (i.e. Speaker D). The third way to impose consistency on an

inconsistent linguistic distribution, i.e. regularize, is to condition the distribution of multiple

variants on particular linguistic contexts, as shown by Speaker C. We can quantify this type of

regularization in terms of conditional entropy (Eq. 2.4). In the training corpus shown in Table

2.6, the entropy of the distribution over plural classes (-s or ø) conditional on knowing the

noun’s singular article (le or ze) is .46 bits. In Speaker C’s test productions, however, that same

measure is reduced to 0 bits, as C treats each test noun’s singular article as fully predictive

of its plural class. Note that this form of regularization is especially compatible with views

of regularity as predictability. The Low Conditional Entropy Conjecture in particular (§2.1.2;

Ackerman and Malouf, 2013) strongly implies that paradigmatic morphological organization

arises due to speakers regularizing in this way (although this pattern may be driven by child

rather than adult speakers).11

So do adult speakers regularize conditional variation? The ALL literature presents a mixed

picture. Researchers have found that adults can successfully learn complex patterns of lexically-

conditioned variation, i.e. cases where syntactic or morphological variants are used only with

particular words (Wonnacott et al., 2008; Hudson Kam and Newport, 2009; Austin, 2010).
11Note, however, that most of the studies reported here also fail to find evidence for spontaneous conditional

regularization by children (e.g. Ferman and Karni, 2010; Hudson Kam, 2015; Brown et al., 2022).
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Smith and Wonnacott (2010) found that speakers introduced lexical conditioning of a variable

plural marker — however, this conditioning developed over several generations of an iterated

learning experiment, which will be discussed at greater length below. Adult ALL participants

can also learn to condition on more general factors, from linguistic contexts such as syntactic

role (Hudson Kam, 2015) or noun animacy (Ferman and Karni, 2010; Brown et al., 2022)

to social contexts such as speaker identity (Samara et al., 2017) to purely distributional cues

(Reeder et al., 2017). In a study of semantic conditioning, Brown et al. (2022) found that a few

participants conditionally regularized — despite the partial consistency of this cue in training,

they consistently applied semantic conditioning to novel nouns. This behavior, however, was

atypical, occurring only when semantic cues during training were sufficiently early and salient

to attract speakers’ conscious attention. Across most studies, speakers typically condition by

matching the conditional probabilities of the training data; they do not spontaneously exhibit

the additional conditioning shown by Speaker C above.

A couple ALL experiments have used complex paradigm structures to assess the LCEC more

directly. Seyfarth et al. (2014) trained participants on a small artificial language with three

morphological suffixes marking number (singular, dual, and plural), and two noun inflection

classes indicated by different number markers. They found that speakers’ generalizations to

novel words were influenced by both implicative relations between paradigm cells (I-complexity)

and the type frequency of particular suffixes (E-complexity). Specifically, speakers used im-

plicative paradigm relations to generalize suffixes with low type frequency, but did not appear

to use this conditional information for suffixes with high type frequency. In a follow-up study,

Johnson et al. (2020) tested paradigm learning rather than generalization, comparing the rela-

tive speed with which adult speakers and artificial neural networks (ANNs) learned paradigms

with independently varying measures for I- and E-complexity. They found that, while the

ANNs benefited from both lower I-complexity and lower E-complexity, speakers learned lower

E-complexity paradigms more quickly but did not experience a similar advantage from lower

I-complexity. Johnson et al. argue that implicative paradigm relations do not appear to be the

key determinant of morphological complexity for human learners. Together with the studies

discussed above, the overall evidence suggests that speakers are capable of learning and us-

ing conditional linguistic patterns under most circumstances, but rarely if ever spontaneously

regularize conditional variation.
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Probability-matching While speakers could impose consistency on a variable linguistic dis-

tribution using any of the three approaches to regularization discussed above, they can also

simply reproduce the variability by probability-matching (c.f. Speaker B in Table 2.6). A

substantial body of ALL research has found that, though some adult speakers regularize un-

der some conditions, probability-matching is by far the most common behavior (see review by

Newport, 2020). Like regularization, probability-matching is widely attested in non-linguistic

domains; unlike regularization, probability-matching is difficult to motivate with appeal to

broad cognitive principles. Probability-matching is fundamentally irrational behavior. It can

never be the optimal strategy by definition (Icard, 2021), and it appears to demand more cog-

nitive effort than regularization (Saldana et al., 2022). Nevertheless, while baboons, rats, and

human children tend to regularize, pigeons, cockroaches, and human adults probability-match

across a wide range of tasks and domains (Saldana et al., 2022).

Probability-matching is most closely associated with the type frequency view of morpho-

logical regularity, which predicts that speakers generalize inflection classes in proportion to

their lexical frequency. In ALL experiments, probability-matching is often operationalized at

the level of the individual speaker (e.g. Hudson Kam and Newport, 2009; Ferdinand et al.,

2019), providing an analytical framework which could be usefully applied to studies of morpho-

logical generalization in natural language (c.f. Pierrehumbert, 2022). The operationalization,

however, is not entirely clear in the case of conditional probabilities. As discussed above,

various ALL studies have found that speakers do not conditionally regularize; however, they

do learn and reproduce conditional probabilities. This raises questions for the application of

probability-matching in a natural language setting, where a lexicon may contain many differ-

ent potential conditioning factors. Does probability-matching in this case mean generalizing

inflection classes according to their overall type frequency, or instead matching their lexical fre-

quencies conditional on certain linguistic properties? I investigate this question in the context

of German plural inflection in Chapters 6 and 7.

Communicative pressure vs. learner bias So far, we have considered how individual speakers

might spontaneously regularize or probability-match relative to a fixed training corpus devel-

oped by experimenters. This type of evidence can inform our understanding of learner biases,

meaning the cognitive tendencies that shape how individual speakers respond to particular ex-

37



38 2.2. REGULARIZATION: GENERALIZATION AND SPEAKERS

perimental contexts. Natural language, however, reflects not only individual learner biases, but

population-level patterns of cultural transmission. For example, consider a new word entering

the lexicon: it must be encountered, learned, and used by a growing number of speakers in

order to qualify as part of the language’s vocabulary. Cultural transmission may exert its own

communicative pressures independently from the biases of individual learners.

A number of ALL experiments have found evidence for these kinds of communicative pres-

sures. One source of evidence comes from interaction. Dyadic interaction between participants

in ALL experiments has been found to facilitate regularization in syntax (Fehér et al., 2016)

and morphology (Rácz et al., 2020). Another source of evidence comes from iterated learning

(Kirby, 2001; Kirby et al., 2014). In an iterated learning experiment, outputs from previous

participants become the training corpus for new study participants, such that the training cor-

pus evolves through interaction with several “generations” of speakers. Smith and Wonnacott

(2010) found that, though participants probability-matched a variable plural marker in their

training, after about five rounds of iterated learning this variation had stabilized and become

lexically conditioned, such that participants produced each plural marker only with a specific

noun. This finding suggests that conditional regularization might arise due to communicative

pressures rather than biases at the level of individual learners.

Communicative pressures in transmission, then, provide an alternative hypothesis for the

behavioral mechanism driving conditional patterns of morphological organization, as postulated

by the Low Conditional Entropy Conjecture. The evidence for this mechanism, however, is far

from conclusive. In the iterated learning domain, Smith et al. (2017) find that individual

learner biases and communicative pressures can interact unpredictably. Cultural transmission

can amplify weak learner biases in some cases, but it can also mask strong learner biases;

moreover, the evolution of particular linguistic systems can be highly sensitive to non-linguistic

aspects of the social context in which transmission occurs. Similarly, interaction does not

reliably lead to conditional regularization. Fehér et al. (n.d.) predicted that dyadic interaction

would facilitate semantic conditioning (based on noun animacy) for a variable plural marker.

Instead, participants in their ALL experiment displayed either consistent lexical conditioning, or

probability-matching; there was no evidence of conditional regularization for the higher-order

semantic category. Communicative pressure remains a possible mechanistic hypothesis for

the Low Conditional Entropy Conjecture, but we do not currently have evidence that cultural
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transmission reliably facilitates conditional regularization.

Summary In §2.2.2, I have reviewed findings from the experimental literature on regulariza-

tion in artificial language learning (ALL). Speakers have various options for introducing regular-

ity into variable linguistic distributions. They can regularize with a majority or minority variant,

or regularize by conditioning multiple classes on particular linguistic contexts — although the

latter behavior does not seem characteristic of individuals’ spontaneous responses, but rather

emerges through cultural transmission in some circumstances. Speakers can also probability-

match, either to overall or conditional type frequencies. Researchers using the regularization

framework have developed methods for fine-grained analysis of speaker behavior, including

information-theoretic approaches to quantifying regularization and probability-matching at an

individual level. Although natural language settings introduce additional complexity, ALL re-

search methods can contribute useful insights to the study of morphological generalization.

In this dissertation, I apply the framework described above to analyze how German speak-

ers generalize plural inflection. §3.3.1 reviews how these behavioral outcomes relate to the

predictions of different linguistic theories, and Chapters 6 and 7 evaluate regularization and

probability-matching behavior at the individual and aggregate level respectively.

2.3 Computational models of morphological generalization

By now, we’ve reviewed linguistic theories of morphological regularity, i.e. lexical structure

(§2.1), and psycholinguistic studies connecting lexical structure to speaker behavior in natural

and artificial languages (§2.2). Johnson (2017) relates these two domains to Marr’s levels of

description for cognitive systems (1982):

The algorithmic level describes a cognitive system in terms of the representations

and data structures involved and the algorithms that manipulate these represen-

tations. The computational level is the most abstract: it describes the goal(s) of

the system, the information that it manipulates and the constraints it must satisfy.

Linguistic theories are computational-level theories of language, while psycholin-

guistic theories of comprehension or production are algorithmic-level descriptions

of how knowledge of language can be put to use. (Johnson, 2017, 172)
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Despite this formal separability in principle, we have seen that many researchers consider these

two domains to be fundamentally intertwined. This presumed connection has in turn informed

computational modeling approaches to language. Johnson goes on to note that some statistical

models of language rely upon the assumption that “the algorithmic level is derived from the

computational level by general principles” (2017, 173; see also Smolensky and Legendre 2006

on isomorphism across levels of representation). This implies that a computational model

which accurately represents linguistic structure should also at least partly capture language

use, that is, speaker behavior.

In this section, I review proposed computational models of morphological generalization.

These models all approach the task as conceived by Rumelhart and McClelland (1986): to learn

the appropriate mapping from an input lexeme to an output inflected form, given a lexicon

of natural language input-output pairs as training data. (Note that this task framing has

been criticized as unrealistic from the cognitive standpoint of acquisition; see Ramscar, 2021,

and discussion in §5.4. I nonetheless focus on this setup as the most direct computational

equivalent of the behavioral wug test.) As these are considered models of linguistic cognition,

the target model is one which shows human-like morphological generalization to unknown

words; therefore, I focus on studies which evaluate model predictions through comparison to

speaker behavior, rather than accuracy on a held-out test set. Though many models incorporate

a range of influences, here I broadly group them according to the three morphological regularity

criteria under consideration: rule generation, type frequency, and predictability (c.f. Table 2.1).

2.3.1 Symbolic models

Under the rule generation view of morphological regularity, regular morphological processes

are best characterized in terms of rule application, where a rule specifies the structural trans-

formation associated with a particular set of input conditions (c.f. Table 2.5). The class of

computational models most closely associated with this view are symbolic learners. Many com-

putational models include explicit symbolic structure of some kind; here, I mean specifically

models which, given a lexicon, infer and apply these types of symbolic rules, i.e. mappings

from input conditions to morphological transformations. We will consider two symbolic learn-

ers which have been applied to behavioral data on morphological generalization: the Minimal

Generalization Learner (MGL) and the Abduction of Tolerable Productivity (ATP).
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MGL The Minimal Generalization Learner (Albright and Hayes, 2003) is influenced by rule-

based linguistic analyses as discussed in §2.1.3, but it differs in certain critical respects. The

MGL infers rules of the requisite type; however, its application of those rules is probabilistic and

parallel, rather than deterministic and serial (i.e. strictly ordered). The MGL posits rules at

incrementally increasing levels of generality, starting with pairs of words and gradually building

more general rules based on shared phonological and morphological features. Each rule is

weighted by the frequency-adjusted scope of the input (i.e. how generally the rule applies,

measured in the number of lexical forms which match the specified input condition) and the

rule’s reliability, i.e. its accuracy when applied to the selected forms. This enables the model to

represent morphological processes with varying input scopes, including “irregular rules” which

produce “islands of reliability” covering only small sets of words. To generate predictions, the

MGL applies all rules simultaneously, with outcomes stochastically predicted according to the

normalized sum over weights of applicable rules. Albright and Hayes (2003) found that adult

speaker productions of English past tense forms in a wug test showed high correlations to MGL

predictions.

The MGL crucially deviates from the rule generation view of morphological regularity in

its treatment of input conditions. As discussed in §2.1.3, the generative view considers rule

scope purely in terms of the abstract feature space of the input. For example, in Table 2.5,

the input feature specification of rule R1 is a strict subset of the input feature specification of

rule R2. Rules are prioritized strictly on the basis of generality in the input feature space; the

number of observed instances which match R1 or R2 has no bearing (although presumably at

least one instance in each feature combination is needed, so that the linguist can posit the

rule in the first place). By contrast, the MGL counts the number of lexical instances which

match the input conditions specified for a given rule, thus incorporating type frequency into its

rule weighting. Veríssimo and Clahsen (2014) criticize the MGL on this basis, and propose an

alternative Default Generalization Learner (DGL). This model extends the MGL by modifying

its rule-weighting criterion, such that the rule with the least restrictions in the input feature

space — i.e. the default rule — is automatically assigned the highest weight.12 They analyze

12Veríssimo and Clahsen (2014) argue that this change renders the DGL a dual-mechanism model compared to
the single-mechanism MGL, because the DGL draws a principled distinction between context-free (default) rules
and context-sensitive (similarity-driven) rules, and does so independently of any statistical considerations. We will
consider this claim in the broader context of dual-mechanism analyses in §3.2.1.
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behavioral results from a verb inflection wug test with adult Portuguese speakers, and find a

closer fit for DGL compared to MGL predictions.

ATP The Abduction of Tolerable Productivity (Belth et al., 2021) is a computational model

based upon the Tolerance Principle (Yang, 2016, c.f. §3.2.1). The ATP recursively proposes

and selects rules to yield a decision tree; see more detailed description in §4.3.1. The ATP’s

treatment of rule input scopes takes a somewhat intermediate approach between the MGL

and generative analyses (e.g. §2.1.3). Rule application in the ATP is deterministic and serial,

in contrast to the MGL. However, both the Tolerance Principle and the ATP rely upon the

statistical criterion of accuracy during rule inference and ordering. In practice, an accuracy

criterion is easily influenced by type frequency: the ATP will prioritize a rule that applies to 91
100

words over a rule that applies to 9
10 words, even though both rules readily pass the Tolerance

Principle threshold. This statistical influence distinguishes the ATP approach from generative

analyses which order rules based on input feature space alone. Belth et al. (2021) report a

high correlation between the ATP predictions and adult wug test data from English (Albright

and Hayes, 2003) and German (McCurdy, Goldwater and Lopez, 2020), noting crucially that

their model can learn a default rule in the latter case. In Chapters 4 and 7, I further evaluate

the fit between ATP predictions and speaker behavior, and investigate in particular whether

default rule learning contributes to speaker-like German plural generalization.

The two symbolic learners considered here model morphological generalization as rule-

based inference informed by a given lexicon. In this sense, both models accord with the view

of morphological regularity as rule generation, including the emphasis on input conditions which

characterizes that perspective. However, both models also incorporate elements from other

perspectives on morphological regularity, especially predictability (in the form of accuracy),

and, to a lesser extent, type frequency.

2.3.2 Frequency-matching models

As we saw in the previous section, type frequency is relevant to many modeling approaches, in-

cluding symbolic rule learners; indeed, it’s difficult to imagine any statistical modeling approach

which could work without using lexical frequencies. Nevertheless, models vary substantially

in the degree to which type frequency directly influences morphological generalization. For
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instance, the ATP (Belth et al., 2021) incorporates frequency only indirectly via the accuracy

criterion. Artificial neural networks are another interesting case. While some linguists have

criticized neural models for overreliance on type frequency in generalization (e.g. Marcus et al.,

1995), Bybee criticizes them for insufficient reliance on the type frequency of output inflected

forms, noting that “connectionist models do not form product-oriented generalisations” (1995,

433). We will return to artificial neural networks in §2.3.3. This section reviews two com-

putational approaches which I consider more directly oriented to frequency-matching a given

distribution, namely Bayesian models and frequency-weighted MaxEnt grammars.

Bayesian models Pierrehumbert (2022) observes that Bayesian models are particularly suited

to modeling probability-matching behavior, as the posterior tends to converge on the data

distribution. One illustration of this point is Perfors et al. (2010)’s successful application of a

domain-general hierarchical Bayesian learner (Kemp et al., 2007) to model probability-matching

behavior by adult speakers in an artificial language learning study (Wonnacott et al., 2008).

Perfors et al. specified a model which could track statistical distributions at several hierarchical

levels of analysis, such that it could form “overhypotheses” about feature variability. Separate

instances of this model were trained on two different artificial languages: a lexicalist language

in which each word appeared consistently with one of two noun particles, indicating stable

membership in one inflection class, and a generalist language in which words appeared flexibly

with both particles. When generalizing to novel nouns, the model showed frequency-matching

behavior at multiple levels, similar to the human study participants. In particular, when exposed

to the lexicalist language, both model and participants showed generalization patterns which

were lexically conditioned at the level of individual words, but also frequency-matched at

the level of the overall distribution. This result suggests that Bayesian models are especially

well-suited to capturing probability-matching behavior.

The computational demands of fitting Bayesian models, however, makes it challenging to

directly train them on categorical sequences, such as the strings of characters comprising words

in a lexicon. This leads to difficulty applying Bayesian models to the problem of morphological

generalization as we have framed it here, namely learning to map input lexemes to output

inflected forms. One way to address this issue is to use simplified representations of the

relevant data. For instance, Perfors et al. (2010) train their model on count data representing
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the number of times a word is observed with a particular class in the artificial language. Another

approach is to include specific structure to handle symbolic sequences, typically rule-based

generative grammars. For instance, Johnson et al. (2007) propose Adaptor Grammars, a class

of nonparametric Bayesian language models which learn a distribution over the generation and

retrieval of tree-structured strings generated by probabilistic context-free grammars (PCFGs);

see also Fragment Grammars (O’Donnell et al., 2009), which extend the retrieval mechanism

to cover subtrees. This approach, though powerful, can add significantly to the complexity of

fitting a model, as the modeler must specify and explore the space of possible grammars. A

third approach to Bayesian sequence modeling is to apply variational inference methods with

neural networks (e.g. Graves, 2011; Chien, 2019), which removes the need for the modeler to

explore the space, but can substantially increase the computational complexity of training the

model. In the interest of expedience, I conduct preliminary Bayesian modeling experiments in

this dissertation using the first approach of simplified data representations in §7.1.1.

Constraint-based models Linguists have also modeled probability-matching using weighted

MaxEnt grammars. Maximum Entropy, or MaxEnt, grammars (Goldwater and Johnson, 2003)

use the general statistical framework of additive log-linear modeling to weight constraints in

Optimality Theory (Prince and Smolensky, 2004). Zymet (2019) uses a hierarchical regression

framework to extend a MaxEnt grammar of variation in a constructed toy dataset. In this

approach, lower-level random effects capture individual lexical idiosyncrasy while higher-level

fixed effects capture overarching frequency distributions, leading to a model of hierarchically

nested generalizations. O’Hara (2020) finds that an online MaxEnt learner with a lexical

sampling scheme tends toward frequency matching as the size of the lexicon grows. As with

some Bayesian models discussed above, this class of models requires the researcher to explicitly

specify the grammar in question, here in the form of constraints. Due to my limited familiarity

with the relevant constraint specifications, I do not use this class of models in the current

work, but note their contribution to the literature on computational frequency-matching.

Optimality Theory, and by extension MaxEnt and related Harmonic grammars, stand in

an interesting relation to the conceptual dimensions of morphological regularity described in

Table 2.1. On the isolation-distributional axis, inflection classes are not evaluated in isolation,

but only in connection with specific lexemes; the chosen output form is the one with the least
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constraint violation or most Harmony, which depends upon the distribution of generated forms.

In this sense, evaluating morphological regularity is an inherently distributional process. On

the input-output axis, Optimality Theory grammars explicitly represent this dimension as two

competing families of constraints: Faithfulness (to the input) and Well-formedness (of the

output). The task of the learner is to find a constraint ranking which maximizes the likelihood

of the observed data. The presence of both input– and output-focused constraints in MaxEnt

grammars might orient them more toward a view of regularity as predictability, rather than

type frequency. However, the findings reported above suggest that, like Bayesian models, this

class of models may tend to converge to the distribution of output forms observed in the data.

2.3.3 Exemplar-based and neural models

Finally, we consider computational approaches aligned with the predictability criterion of mor-

phological regularity. Of course, accurate prediction, i.e. speaker-like generalization, is a goal

for all of the models discussed so far. The distinguishing characteristic of models in this cat-

egory is that they are structure-agnostic: while models reviewed in previous sections include

explicit structure or mechanisms supporting a focus on input conditions (e.g. symbolic rule

learners) or output type frequencies (e.g. Bayesian learners), exemplar models and artificial

neural networks (ANNs) can freely and flexibly integrate any type of information supporting

prediction. Of course, modeling design choices can strongly affect how different information

sources inform generalization in neural or exemplar models; however, in contrast to models

with more explicit structure, the opaque inner workings of neural models in particular mean

that these design choices do not transparently correspond to categories of linguistic interest

(Baroni, 2021). Throughout this dissertation, unless otherwise specified, I will use “neural

model” to mean deep neural models with one or more hidden layers.

The opacity of ANNs raises many additional questions, including the nature of the relation-

ship between exemplar and neural models, both of which are said to use similarity or analogy

in generalization. Are these two model classes really doing the same thing? Or do they differ,

and if so, how? Hahn and Chater (1998) compare similarity– and rule-based generalization,

and conclude that, strictly speaking, neural models do neither: they do not explicitly represent

abstractions, as rule-based models do, but they also do not explicitly represent data instances,

which are required to compute similarity under exemplar models. Ashby and Rosedahl (2017)
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show mathematical equivalence between an exemplar model (the GCM, discussed below) and

one particular biologically-plausible neural model, with unclear implications for the very dif-

ferent ANN architectures used in practice. Ambridge (2020) argues that neural models fall

on a spectrum between abstract and exemplar-based computation, partly as a function of ca-

pacity; given a sufficiently large number of hidden units, a deep neural model can become a

‘de facto exemplar-based model’ by individually representing each instance. He claims that

many recent computational successes of highly parameterized neural models are attributable

to this exemplar-driven computation, although Mahowald et al. (2020) counter by highlighting

these models’ abstract representational capacities. Dasgupta et al. (2021) present a behavioral

method to distinguish rule– and exemplar-based generalization. They find that modern ANNs

largely interpolate between these two extremes, further supporting a spectrum of abstraction;

however, they also report an overall bias toward exemplar-based generalization, especially for

out-of-distribution stimuli. Neural models are clearly related, but not reducible, to exemplar

models. Here, we consider how these approaches have been used to model morphological

generalization, still focusing on studies which compare with speaker behavior.

Exemplar models Three prominent exemplar models which have been applied to inflectional

morphology are the Generalized Context Model (GCM; Nosofsky, 1988), the Analogical Model

(AM; Skousen, 1989), and the Tilburg Memory-Based Learner (TiMBL; Daelemans, 2002);

see Chandler (2017) and Ambridge (2020) for review and detailed comparison. In the domain

of English past tense inflection, Albright and Hayes (2003) find that the rule-based MGL (c.f.

§2.3.1) better predicted speaker behavior than the GCM, though Chandler (2010) reports an

even closer fit for AM predictions on the same data. Rácz et al. (2020) use the GCM and the

MGL to model speakers’ English past tense productions for novel words in an interactive task,

and find independent effects from both, though the GCM better captures behavioral changes in

speaker alignment over the course of the experiment. Keuleers et al. (2007) show that TiMBL

can model how Dutch speakers generalize plurals by integrating multiple sources of information,

i.e. both the phonological and orthographic form of the novel noun. This finding illustrates

how exemplar-based models can flexibly incorporate any information to support prediction, in

keeping with a predictability-based view of morphological regularity. In Ch. 7, I evaluate a

simple nearest-neighbor exemplar model following Blevins et al. (2017, c.f. §2.2.1).
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On the other hand, this flexibility can impede accurate cognitive modeling in cases where

speakers don’t use all of the available information. Dawdy-Hesterberg (2014) uses the GCM

to model wug test data on nominal and verbal inflection from Arabic speakers. She finds that

the GCM accurately predicts speaker behavior for nouns but not verbs. In the latter case,

the GCM relies on fine-grained segmental data to make confident predictions for verb masdar

patterns, but speakers appear to probability-match lexical statistics at the more coarse-grained

level of the prosodic template. Similarly, Nieder et al. (2020) find that lexical statistics predict

the plural generalizations of Maltese speakers, outperforming a discriminative learning model

(Nieder et al., 2022)13 — another model in the exemplar family, which we will now consider.

Discriminative learning models (e.g. Baayen, 2011; Ramscar et al., 2013; Baayen and Hen-

drix, 2017; Ramscar, 2021) are effectively shallow neural networks — that is, a neural model

with an input and output layer, but no intervening hidden layer. As such, this model class

represents an intermediary point between the purely memory-based systems considered above,

and the deep neural models to be discussed below. Discriminative learners do not store each in-

dividual instance encountered during training; instead, they update the weighted connections

betwen input and output layers using an error-driven learning rule. Nonetheless, Ambridge

(2020) argues the cue-weighting learned by these models is strictly equivalent to the feature-

weighting found in many exemplar models (though c.f. Skousen’s AM). Ambridge further

identifies the hidden layer of deep neural networks as necessary to represent abstract mappings

(i.e. rule-like generalization); because discriminative learners lack this capacity, they must

generalize through analogy to exemplars.

One crucial factor which distinguishes exemplar-based (including discriminative) models

from deep neural network models is the need for explicit feature extraction in the former case.

Exemplar models require relevant features to be directly available in order to compute similar-

ity. Feature selection and extraction can be part of the data preparation by researchers. For

instance, Keuleers et al. (2007) prepare prosodically segmented phonological and orthographic

representations of the Dutch noun lexicon for their model, and Ramscar et al. (2013) extend

a corpus of child-directed speech with semantic cue bundles (e.g. “mice” would be annotated

13Nieder et al. present their findings as supporting the cognitive modeling capabilities of the Naive Discriminative
Learner (NDL, Baayen, 2011), but they also report that simple lexical frequency counts show a correlation of .86
to speaker productions, which appears to substantially improve on all tested NDL versions (reported correlations
.65–.77) (2022, Table 3).
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with labels like “mousiness, multiple-items, mouse-items”) to support discriminative learning.

The feature extraction process can also be automated, as in the case of AM’s supracontexts,

which are generated by deleting sequence elements (e.g. the orthographic word “mice” would

yield supracontexts “mic_”, “mi_e”, “m_ce”, “_ice”, “mi__”, “m__e”, “__ce”, and so

on). In any case, the researcher generally specifies which features are available for similarity

computation in an exemplar-based model. In contrast, deep neural networks typically operate

directly on sequential linguistic data. This effectively automates the process of feature extrac-

tion, making the modeling process simultaneously more convenient and less interpretable.

Neural network models In 1986, Rumelhart and McClelland initiated decades of debate with

a simple research question: can a statistical model trained on a natural language lexicon learn

the inflectional categories present in that lexicon, and furthermore, learn to generalize those

categories as human speakers do? Theirs was one of the first works to apply deep Artificial

Neural Networks (ANNs) to the task of modeling linguistic generalization. Over the past

decade, researchers have achieved great progress in modeling natural language using ANNs,

with some models arguably approaching human-like competence in formal linguistic domains

such as syntax (Mahowald et al., 2023). In the domain of morphology, ANNs have decisively

outperformed other model classes in SIGMORPHON inflection-modeling challenge tasks, which

are evaluated by predicting held-out lexical forms (e.g. Cotterell et al., 2016, 2017; Cotterell,

Kirov, Sylak-Glassman, Walther, Vylomova, McCarthy, Kann, Mielke, Nicolai, Silfverberg,

Yarowsky, Eisner and Hulden, 2018). Kirov and Cotterell (2018) trained an encoder-decoder

recurrent neural network on English verb inflection, and found that its predictions on novel

verbs correlated closely to behavioral data collected by Albright and Hayes (2003). Based

on this finding, along with the broader successes of ANNs in modeling inflection, Kirov and

Cotterell propose that modern ANNs have resolved Rumelhart and McClelland’s question in the

affirmative, by demonstrating speaker-like morphological generalization. Both of these points,

however, have been challenged. Careful evaluation indicates that neural models have not yet

fully solved the task of generalizing inflectional morphology (Liu and Hulden, 2021; Goldman

et al., 2021). Furthermore, Corkery et al. (2019) use the same modeling approach with various

random seeds, and find that ANN predictions do not show reliably high correlations to Albright

and Hayes’s data. These developments have inspired more cognitively-focused challenge tasks
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with evaluation on behavioral data at recent SIGMORPHONS (e.g. Pimentel et al., 2021;

Kodner and Khalifa, 2022).

The power and flexibility of neural models make them a natural fit with the regularity-as-

predictability view of morphology. Consistent with the Low Conditional Entropy Conjecture

(LCEC), ANNs have been used to implement and study implicative relations within morpho-

logical paradigms (Malouf, 2017). Cotterell, Kirov, Hulden and Eisner (2018) use ANNs to

implement an extended version of the LCEC in which inflectional paradigms are generated as

tree-structured Bayesian networks. Their typological survey supports Ackerman and Malouf

(2013)’s postulated trade-off between E-complexity (enumerated number of unique morpho-

logical forms) and I-complexity (conditional probability). Wu et al. (2019) use ANNs to directly

assess the predictability, or regularity, of inflected forms from held-out lexemes for 28 different

languages, and find that low predictability (i.e. irregularity) correlates with token frequency

across languages. The findings of these studies, which use ANNs to model the predictability

of morphological inflection across typologically distinct languages, are consistent with long-

standing observations from the linguistics literature, and indicate that ANNs are capable of

capturing fine-grained conditional or implicative morphological relations. We cannot necessar-

ily assume, however, that these conditional relations will have the same degree of influence on

morphological generalization in speaker behavior. In a comparative artificial language learning

study, Johnson et al. (2020) find that ANNs benefit from implicative relations within morpho-

logical paradigms — lower I-complexity speeds up learning — but the same benefit does not

appear for human speakers.

In this dissertation, I use the recurrent encoder-decoder architecture (ED; Kann and

Schütze, 2016) proposed as a cognitive model by Kirov and Cotterell (2018) to model German

plural generalization. This represents only one point in the vast design space of neural network

architectures, which display a considerable range of inductive biases relevant to generalization

performance (e.g. Kharitonov and Chaabouni, 2020; McCoy et al., 2020). While it arguably

limits the scope of claims emerging from this dissertation, the decision has two motivations.

The first reflects what Baroni (2022) calls “low commitment to models:” model selection in

deep learning research is typically guided by application performance rather than theoretical

considerations, making it difficult to interpret the theoretical significance of variation in neural

architectures. This issue is further compounded by the vast design space of possible archi-
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tectures. To keep the scope of the research tractable, I consider only the ED, which Kirov

and Cotterell (2018) motivate with in-depth comparison to the original model proposed by

Rumelhart and McClelland (1986) for the English past tense. The second reason is a general

intuition that the phenomena of interest in this thesis reflect properties shared by statistical

learners broadly. For instance, the lexical relationship between for grammatical gender and

plural class is sufficiently strong to be detected by nearly any statistical learner, as reflected

in results from a wide variety of both neural (e.g. Goebel and Indefrey, 2000; Williams et al.,

2020; Dankers et al., 2021; Beser, 2021) and non-neural architectures; see §3.4 for further

discussion. For these reasons, I treat the ED as a stand-in for neural network models more

generally in comparative analysis with other classes of statistical learners.

Summary This section has reviewed computational models of morphological generalization. I

have focused on the inflection modeling task as framed by Rumelhart and McClelland (1986),

to learn a mapping between input lexemes and output inflected forms, given a lexicon as

training data. This restricted scope means I have excluded approaches which seek to model

communicative pressures or cultural transmission, such as iterated learning or agent-based

models (e.g. Kirby, 2001; Reali and Griffiths, 2009; Smith and Wonnacott, 2010; Kirby et al.,

2014; Smith et al., 2017; Ferdinand et al., 2019; Round et al., 2022). We have considered

computational approaches in terms of their affinity with linguistic perspectives on morphological

regularity (§2.1): symbolic learners (§2.3.1) align with the rule generation account, Bayesian

and constraint-based learners (§2.3.2) align with the type frequency account, and exemplar-

based and neural models (§2.3.3) align with the predictability account. In Chapter 7, I compare

models from each of these classes in terms of their fit to behavioral data.

2.4 Chapter summary

This chapter has reviewed linguistic (§2.1), psycholinguistic (§2.2), and computational (§2.3)

approaches to characterizing morphological regularity, conceived in terms of mapping from

input lexemes to output inflected forms. We have reviewed three broad perspectives on mor-

phological regularity — in terms of input-focused rule generation, output-focused type fre-

quency, and integrative predictability — which offer competing explanatory accounts of the

lexical structure driving morphological generalization. We have also reviewed the behavioral
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literature on how speakers generalize inflection in experimental conditions with novel words

(§2.2.1), and considered the potential contributions of the regularization framework developed

in recent literature on artificial language learning (§2.2.2). Finally, we’ve considered how differ-

ent computational approaches to modeling morphological generalization relate to perspectives

on regularity, connecting rule generation with symbolic learners (§2.3.1), type frequency with

Bayesian and MaxEnt learners (§2.3.2), and predictability with exemplar-based and neural

network learners (§2.3.3). Chapter 3 reviews how these linguistic criteria for morphological

regularity have informed theoretical, behavioral, and computational research on the German

plural inflection system.
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Chapter 3

Background: German Plural

As the preceding chapter has shown, a great deal of research on morphological generalization

has been conducted within the context of the past tense debate, with many studies focused

on English verbal inflection (e.g. Rumelhart and McClelland, 1986; Pinker and Prince, 1988;

Prasada and Pinker, 1993; Pinker and Ullman, 2002; Albright and Hayes, 2003; Chandler,

2010; Seidenberg and Plaut, 2014; Blything et al., 2018; Kirov and Cotterell, 2018; Corkery

et al., 2019; Rácz et al., 2020). Although there is certainly some complexity to this problem

(as attested by the existence of all these studies), the English past tense is a relatively sim-

ple inflection system globally speaking, with one statistically predominant regular inflection

class. This fact makes English verbal inflection particularly ill-suited to evaluate models of

morphological regularity (c.f. Table 2.1): different criteria — i.e. default rule generation, type

frequency, and predictability — all converge to predict the regular past tense suffix -ed. Models

of English past tense production must be compared on the relative ordering of a handful of

low-probability irregular forms, which yields unstable and inconclusive analyses (Corkery et al.,

2019). This suggests that morphological regularity might be better evaluated in a linguistic

environment with sufficient complexity to distinguish between competing theories.

Marcus et al. (1995) propose resolving this issue through evaluation on the famously com-

plex German plural system, which for decades has resisted straightforward linguistic description

(Bloomfield, 1933; Wurzel, 1970; Mugdan, 1977; Augst, 1979; Bartsch and Vennemann, 1983;

Dressler et al., 1987; Janda, 1990; Köpcke, 1993). Crucially, German has no majority plural

class. This means that the three criteria in question make divergent rather than convergent

predictions for morphological regularity — leading to cacophonous debate in the research lit-
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erature, as we shall see.

In this chapter, we begin with a basic overview of the German plural system and some

relevant lexical statistics (§3.1). We then consider how the linguistic (§3.2), psycholinguistic

(§3.3), and computational (§3.4) approaches to morphological regularity reviewed in Chapter

2 have been applied to German plural inflection, and finally, how this literature motivates the

research questions explored in this dissertation (§3.5).

3.1 The German noun lexicon

Each noun in the German lexicon has two static lexical attributes: grammatical gender and

plural class. Grammatical gender can be masculine, feminine, or neuter, and is expressed on

the definite article preceding a singular noun, e.g. der Hund “the (masc.) dog”, die Kuh “the

(fem.) cow”, das Kind “the (neut.) child”. This gender distinction on the article is collapsed

for plural inflection: all plural nouns take the definite article die, homologous with the singular

feminine article. The plural class of a noun is expressed by the form of the plural inflected

noun itself, and characterized by how it differs from the singular form of the noun.1

The German plural system comprises five main suffixes: -e, -er, ø, -en, and -s. The first

three can optionally combine with an umlaut over the root vowel. Umlaut is a process which

fronts a back vowel, so only roots with back vowels can take an umlaut (e.g. Dach → Dächer,

Fuss → Füsse). Umlaut varies semi-independently of plural suffix, and is not fully predictable.

While the phenomenon of plural umlaut has been addressed in the linguistic (Wiese, 1996;

Trommer, 2020) and modeling (Wulf, 2002) literature, for simplicity, this dissertation will

focus only on suffixes, taking them to define five separate plural classes. Table 3.1 gives

example forms for each plural suffix, along with its type frequency (counting each word type

only once, how many types in the lexicon take this plural?) and token frequency (how often

do words with this plural suffix appear in the corpus overall?) as recorded in the CELEX lexical

resource (Baayen et al., 1995; Sonnenstuhl and Huth, 2002), which is the source of all lexical

statistics reported here. Note that, while -en and -e are the most frequent suffixes, there is no

majority plural class over all nouns.

1We here follow the literature in focusing on the nominative-case form of each noun, considered the citation
form.
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Suffix Singular Plural Type Token
-en Strasse Strassen 48% 45%
-e Hund Hunde 27% 21%

Kuh Kühe
ø Daumen Daumen 17% 29%

Mutter Mütter
-er Kind Kinder 4% 3%

Wald Wälder
-s Auto Autos 4% 2%

Table 3.1: German plural system with examples, ordered by CELEX type frequency (Sonnen-
stuhl and Huth, 2002).

3.1.1 Lexical distributions

Various linguistic factors interact with the lexical distribution of German plural classes:

• Lexical: Grammatical gender. There is a strong association between grammatical

gender and plural class; in particular, almost all feminine nouns take -en.

• Phonology: Final syllable. Certain word endings are highly predictive of plural class:

most words ending in schwa take -en, most words ending in a reduced final syllable (-er,

-el, -en) take zero, and most words ending in a full vowel (-a, -o) take -s.

• Morphology: Derivation and Compounding. Particular derivational suffixes consis-

tently take a specific grammatical gender and plural inflection class. For instance, any

noun with the derivational suffix -ung always has feminine gender and takes the -en

plural class, e.g. die Reservierung — Reservierungen “reservation — reservations”, die

Sendung — Sendungen “transmission — transmissions.” Similarly, compound nouns take

the grammatical gender and plural class of the rightmost (“head”) noun: das Kind —

Kinder “the child — children”, das Kleinkind — Kleinkinder “the small child — small

children.” This morphological inheritance relation is highly systematic and nearly ex-

ceptionless in the lexicon. Note that this morphological relation further reinforces the

statistical associations with gender and phonology listed above, as derived forms always

share the same gender, final syllable, and plural class.

• Semantics. Proper names take -s (Marcus et al., 1995), and -e or -en if -s is phonolog-

ically blocked (Indefrey, 1999). There are also semantic animacy patterns which appear
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𝐻(𝐶) 𝑀𝐼(𝐶;𝐺)
All, 6 classes 1.98 0.67
Williams et al. 2020, 16 classes 2.88 0.71

Table 3.2: Entropy measurements over 6 plural classes 𝐻(𝐶) and mutual information between
plural class and gender 𝑀𝐼(𝐶;𝐺). Compare reported measurements from Williams et al.
(2020, Table 3) over a 16-class grouping of the same corpus.

|𝐹 ,𝐺| 𝐻(𝐹 ,𝐺) 𝐻(𝐹) 𝐻(𝐺)
-e 47 4.57 3.58 1.14
-en 50 3.00 2.56 0.57
-er 24 3.15 2.79 0.55
ø 48 2.48 1.75 0.93
-s 53 4.94 3.76 1.39
other 35 3.55 2.88 1.51
All 71 4.67 3.53 1.52

Table 3.3: Per-plural-class and overall entropy measurements for final character (𝐹 ) and gram-
matical gender 𝐺. |𝐹 ,𝐺|: number of observed feature combinations. Entropy calculations are
based on the observed frequency of feature values within the lexemes in a particular plural
class, e.g. in the top row 𝐻(𝐹,𝐺) = 𝐻(𝐹 ,𝐺 ∣ -e),𝐻(𝐹) = 𝐻(𝐹 ∣ -e), etc.

to interact with grammatical gender (Gaeta, 2008). Semantic factors are out of scope for

this dissertation, but recent behavioral evidence indicates they may only weakly influence

speaker plural generalization (Heitmeier and Frank, 2021).

Figs. 3.1 and 3.2 visualize the conditional distribution of plural classes in terms of the

first two listed factors, namely grammatical gender and the phonology of the final syllable

(represented in simplified form here as the final character of the orthographic singular form

of the noun). As these plots show, these two features are highly predictive of plural class

overall, although some feature combinations are more predictive than others. Another way to

consider this is through a simple majority-class baseline: if we were to simply assign each noun

in CELEX the majority plural class observed for that grammatical gender and final character

combination, this would predict the correct plural class for 81.5% of nouns in the lexicon.

As discussed in §2.1, different criteria for morphological regularity are associated with

different distributional properties; for instance, the default rule generation criterion connects

regularity with maximal variability in the input feature space (§2.1.3), while the predictability

criterion instead focuses on minimizing conditional entropy (§2.1.2). Here, I provide a brief
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size indicates number of nouns. Though the -s plural class is rare overall, it appears with
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Figure 3.2: Distribution shown in Fig. 3.1, factorized into the joint distribution of gender and
final character (𝑝(𝑥), above) and plural class conditional on those contexts (𝑝(𝑦|𝑥), below).
Higher observed counts for input feature combinations (upper plot) are represented as higher
opacity (lower plot). While some feature combinations are uniformly associated with a partic-
ular plural class (e.g. feminine nouns ending in -e), others show more variable distributions
(e.g. nouns ending in -t, or nonfeminine nouns ending in -n).
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information-theoretic description of the relevant lexical distributions so that these quantities

can inform the theoretical discussion of German plural inflection in §3.2. Table 3.2 shows

the information-theoretic relationship between grammatical gender and plural class over all

nouns in CELEX2, using calculations based on type frequency. The overall entropy for plural

class 𝐻(𝐶) and gender 𝐻(𝐺) is calculated with Eq. 2.1. The conditional entropy of plural

class given gender 𝐻(𝐶 ∣ 𝐺) is calculated with Eq. 2.4. For conceptual ease, I report this

relationship in terms of mutual information 𝑀𝐼(𝐶;𝐺):

𝑀𝐼(𝐶;𝐺) = 𝑀𝐼(𝐺;𝐶) = 𝐻(𝐶) − 𝐻(𝐶 ∣ 𝐺) (3.1)

As this equation shows, maximizing mutual information is definitionally equivalent to minimiz-

ing conditional entropy, so this quantity is relevant to the predictability account of regularity.

For comparison, Table 3.2 includes the same values calculated by Williams et al. (2020). Note

that their analysis is not directly comparable, as they use the 16 inflection class labels pro-

vided by CELEX, which mark out umlauts, loanwords, and various other distinctions; it is

unsurprising that they find a higher entropy value 𝐻(𝐶) compared to an analysis based on 6

simplified classes. Despite this, they report a similarly high degree of mutual information with

grammatical gender.

Entropy can also be used to compare the contextual variability of plural classes, or how

broadly they are distributed across different linguistic contexts; as mentioned above, variability

in the input feature space is relevant to the rule generation criterion for morphological regularity.

Table 3.3 presents the number of unique feature combinations (in terms of grammatical gender

𝐺, and the final character of the singular noun, 𝐹 ) in which each plural class appears, along

with the entropy measurements for each feature’s distribution with respect to that plural class.

We can see that -er appears in the lowest number of unique contexts |𝐹 ,𝐺|, but ø appears to

have the most restricted distribution as measured by the joint entropy over contexts 𝐻(𝐹,𝐺).

On both of these measures, -s shows the least restricted distribution of all plural suffixes.

3.2 Linguistic theories of German plural inflection

A range of linguistic theories have been proposed to account for the plural distributions reviewed

above. Here, I will review three accounts which featured prominently in past tense debate —
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minority default theory (§3.2.1), gender-conditioned default theory (§3.2.2), and schema theory

(§3.2.3) — and discuss how they relate to different morphological regularity criteria (Table

2.1) and the experimental work presented in later chapters.

3.2.1 Minority default

The complexity of the German plural system makes it possible to distinguish between competing

accounts of morphological regularity (Table 2.1). This is not the case for English verbal

inflection, where the past tense suffix -ed qualifies as regular both in terms of its output

distribution (i.e. having the highest type frequency) and its input distribution (i.e. appearing

in the most diverse set of linguistic contexts). In the German plural system, however, these two

criteria can be dissociated. Consider the respective type frequencies (Table 3.1) and contextual

variability measurements (Table 3.3) of the plural classes. -en has the highest type frequency,

appearing with nearly half of the nouns in CELEX. Unsurprisingly, -en also appears in a wide

range of input environments, with 50 unique gender and final character combinations. The

more surprising observation is that the plural class -s appears with an even wider range of 53

feature combinations, despite its low type frequency of 4%. Furthermore, -s is the only plural

class with a more variable distribution over linguistic contexts (measured by joint entropy:

𝐻(𝐹,𝐺) = 4.94) than seen in the lexicon as a whole (𝐻(𝐹,𝐺) = 4.67). The variability of

the -s plural extends beyond lexical contexts (Janda, 1990), as summarized by Clahsen:

The -s plural applies when the phonological environment does not permit any other

plural allomorph. It occurs on masculine, feminine, and neuter nouns, on words

that exhibit the canonical stress pattern and on those that do not, on monosyllables

and polysyllables, and on both vowel-final and consonant-final stems. The -s

plural also generalizes to rootless and head-less nouns, for example, to nominalized

conjunctions such as die Wenns und Abers, “the Ifs and Buts,” to eponyms and

product names (Fausts, Golfs, etc.), and to nominalized verb phrases (VPs) (die

Rührmichnichtans, “the Touch-me-nots”). (Clahsen, 1999b, 995)

Based upon these observations, Marcus et al. (1995) argue that the -s plural class is

elsewhere-distributed (c.f. §2.1.3) and therefore a minority default (in contrast to a default

with a statistical majority in type frequency, such as the English past tense -ed). Under this
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analysis, -s is productive — i.e. generalizable to novel nouns — due to being rule-generated,

specifically by an Elsewhere-Conditioned rule which permits any input noun to take -s. Marcus

et al. (1995) additionally invoke the concantenativity criterion for morphological regularity.

Of the five German plural classes, -s arguably imposes the least degree of phonological trans-

formation between input and output: it is not associated with any segmental changes to the

noun stem (unlike -e, -er and ø, which can combine with umlaut), and it does not change

the number of syllables of the noun (unlike -en, which adds a syllable for any noun which

does not end in a reduced final syllable such as -er, -el, or ə). From the convergence of these

two criteria — rule generation and concatenativity — Marcus et al. (1995) conclude that -s is

morphologically regular in the German plural system.

Note that both of the regularity criteria associated with -s are properties of one inflection

class considered in isolation (c.f. Table 2.1). Are other German plural classes also regular?

Logically, there must be mechanisms to generalize the other classes; if -s is the only productive

class, we would expect the German plural system to look much more like the English plural

system. Here, we consider two different theoretical accounts of German plural regularity which

both take -s as the minority default. The Dual Mechanism Model (DMM; Marcus et al., 1995;

Clahsen, 1999b) posits that -s is likely the only rule-generated plural class, and most or all

other classes are generalized based on similarity. By contrast, the Tolerance Principle analysis

(TP; Yang, 2016) posits that other plural classes are rule-generated as well. In any case,

regardless of the specific proposals, the minority default analysis of -s continues to influence

recent work in theoretical linguistics (e.g. Trommer, 2020; Schuhmann and Putnam, 2021).

Dual-Mechanism Model

The dual-mechanism, or dual-route, model draws a theoretical distinction between storage

and computation: irregular wordforms are stored in the lexicon, while regular forms are com-

puted by concatenative rule (Pinker and Prince, 1988). These two pathways are claimed to

reflect the independent cognitive processes of declarative memory and procedural computation

respectively (Pinker and Ullman, 2002). Of course, analogical comparison is also a form of

computation, but it is one that relies on stored memory; rule-based computation is by definition

memory-independent.
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Marcus et al. (1995) argue that the elsewhere distribution of the -s plural suffix in German

indicates that it is regular, i.e. generated by rule. In contrast, the other plural classes are

productive on the basis of memory alone — that is, they can only generalize to novel words

which are sufficiently similar to exemplars stored in the lexicon. This analogical generalization

is necessarily constrained by existing memory, while the rule generating -s is fully general and

memory-independent, with no input restrictions. Following the logic of the Pāṇini principle

(§2.1.3), the more specific process of analogical generalization takes precedence over the more

general Elsewhere-Conditioned default rule. Therefore, the memory-based generalization of

other plural classes can preempt the rule-based generalization of -s, letting it remain a minority

default. Marcus et al. (1995) allow that other plural classes may be morphologically regular,

i.e. rule-generated, in particular contexts; for example, -en applies predictably to nouns which

are feminine and end in a reduced final syllable (c.f. Fig. 3.2). These contexts, however, are

necessarily constrained, and thus also preempt -s default rule application.

A crucial implication of this analysis is that any model which does not explicitly include

rules, but generalizes based only on similarity to items stored in memory, should struggle to

learn the correct pattern of -s-generalization in German:

[P]attern associators neither easily generalize low-frequency suffixes, nor unite the

different default circumstances (phonological and derivational) as defaults. [...]

These models predict that -s should be eschewed across the board: driven only by

phonological similarity, the models should always prefer the more common -e, -en,

and -er plural forms [...] (Marcus et al., 1995, 233)

From this reasoning, Marcus et al. argue that artificial neural networks and other single-

mechanism similarity-based models, i.e. “pattern associators,” should fail to learn speaker-like

generalization behavior in the domain of German plural inflection. They provide behavioral

evidence to support their analysis (§3.3.2), but no computational evidence to support the

claim posed above. I review the existing computational literature on this question in §3.4, and

investigate Marcus et al.’s hypothesis directly with behavioral and computational experiments

in Chapter 4.
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Rule Number Input Condition Structural Change Ex: Singular Ex: Plural
1 [+fem] -en die Nation die Nationen
2 [+RFS] (-ər, -əl, -ən) ø das Fenster die Fenster
3 [+-ə] -(e)n das Auge die Augen

4
[+monosyllabic,

+neuter,
+back vowel] (/a,o,u/)

-er das Wort die Wörter

5 [-fem] / [+masc/+neut] -e der Tisch die Tische
6 [] -s das Auto die Autos

Table 3.4: Productive rules of the German plural according to Yang (2016). RFS indicates
Reduced Final Syllable, where the singular form ends in -ər, -əl, or -ən.

Tolerance Principle

Yang (2016, Chapter 4) analyzes German plural inflection using the methodology of the Tol-

erance Principle, described in §4.3.1, applied to an unreleased dataset of plural forms from

German child-directed speech. Recursive application of the Tolerance Principle derives rules

1–5 in the order shown in Table 3.4. Curiously, rule 6 — the default rule which generates -s

— is not derived through application of the Tolerance Principle (which requires a certain fre-

quency threshold, as discussed above), but rather through appeal to the Elsewhere Condition:

“unlike rules [1–5], which all refer to gender, the -s suffix places no restrictions on gender,

and thus is most general, making it the default rule” (Yang, 2016, 134). This is unexpected,

as earlier in the book, Yang claims that the minority default -s can be derived through the

Tolerance Principle criterion for productivity:

[T]he German plural system (section 4.4), can have a productive rule (“add -s”)

that applies to very few nouns because morphosyntactic and phonological features

help partition nouns into several classes, all of which contain productive rules

within, and thus do not constitute exceptions to the -s suffix. (Yang, 2016, 74)

Although Yang’s own analysis does not actually substantiate this claim, Belth et al. (2021)

demonstrate that it holds under some conditions. They extend the Tolerance Principle by

adding a search mechanism to yield the ATP (c.f. §2.3.1, §4.3.1). They use the ATP to model

an openly-released dataset of plural forms from German child-directed speech, and find that

the model learns an -s-default rule in about 20% of their simulations, where each simulation

samples a different subset of the data. This finding is reproducible, if limited in scope: the

largest dataset they consider has 400 nouns. Chapter 4 investigates whether the ATP model
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still achieves -s-default analyses for datasets at larger though still human-vocabulary-level

scale,2 and whether this contributes to speaker-like generalization.

On dual mechanism models broadly

We conclude the minority default discussion by considering dual mechanism models as a broader

category. While the DMM described above (e.g. Pinker and Ullman, 2002) is the most well-

known proposal in this vein, other models under consideration here also make interesting use

of dual mechanisms. For instance, Yang’s TP analysis characterizes morphological generaliza-

tion as realized exclusively through rule application, but in practice the ATP implementation

falls back on analogical generalization from stored exceptions if it fails to learn a productive

rule for a given context (Belth et al., 2021, 2871). In this sense, the ATP represents an

inversion of Marcus et al.’s DMM, which prioritizes analogical generalization and falls back

on rule application only when the former fails. On the other hand, Veríssimo and Clahsen

(2014) describe their Default Generalization Learner (DGL; c.f. §2.3.1) as a dual mechanism

model even though it explicitly represents all generalization as rule application. They argue

that highly context-sensitive rules are effectively equivalent to analogical generalization, so

treating context-free default rules in a qualitatively different manner — i.e. prioritizing them

— constitutes a dual mechanism approach. In this understanding, the level of abstraction

creates two separate mechanisms, rather than the actual mechanism (which in this case is

always rule application).

While these models differ on the exact mechanics of dual mechanism realization, all of

them share the focus on input conditions characteristic of the rule generation perspective on

morphological regularity (Table 2.1). Of course, the minority default analysis requires this

focus: an apparently unrestricted distribution over linguistic environments is the key argument

for analyzing -s as a regular German plural suffix.

3.2.2 Gender-conditioned defaults

An alternative linguistic analysis of German plural inflection posits that, in lieu of one elsewhere-

conditioned minority default, there are two gender-conditioned majority default classes: -en
2To be precise, the model is trained on roughly 10,000 nouns from the UniMorph corpus, which falls somewhere

between the average vocabulary of German third-graders (5,000 nouns) and eighth-graders (20,000 nouns; Segbers
and Schroeder, 2017).
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for feminine nouns, and -e for nonfeminine nouns. Given the obvious statistical associations

between grammatical gender and plural class (Figs. 3.1, 3.2), this idea has been proposed

by many linguists over the years. For instance, Bloomfield suggests that ”German plural

nouns are derived from singulars by the addition of bound forms which differ according to the

gender of the underlying singular: masculine nouns add [-e], with certain vowel-changes [...]

feminine nouns add [-en]” (1933, 211). Later research has built on this idea (e.g. Augst, 1979;

Wegener, 1994; Wiese, 1996; Indefrey, 1999), with the most formal theoretical articulation of

gender-conditioned default plural classes developed by Bittner (1994, 1999).

Gender conditioning somewhat complicates the concept of “default,” as a gender-restricted

input condition is not the Elsewhere Condition, strictly speaking. On the other hand, grammat-

ical gender is a universal property of German nouns; since every noun has a grammatical gender,

two rules restricted only by this feature can in principle cover all nouns. This is true especially

if nonfeminine nouns are grouped together in the negatively defined context [-feminine], as we

see in rule 5 of Table 3.4. In fact, Yang’s Tolerance Principle account paradoxically illustrates

both the gender-conditioned default and minority default analyses: “the default suffixes —

-(e)n for [+fem] and -e for [-fem] — may achieve productivity for significant subsets of the

nouns” (2016, 136). It is not clear how any noun would default to -s via rule 6 in this analysis

(Table 3.4), if the grammatical gender input condition has already assigned -en in rule 1 or -e

in rule 5.

Gender-conditioned defaults address multiple criteria for morphological regularity (c.f. Ta-

ble 2.1). In the generative tradition, they are typically formulated as rules (e.g. in Table

3.4), and thus defined with respect to their input conditions. Both of the proposed default

suffixes appear in a wide range of linguistic contexts, as seen in Table 3.3: -en appears in 50

unique feature combinations, second only to -s, while -e has a highly variable distribution over

contexts — 𝐻(𝐹,𝐺) = 4.57, again second only to -s. On the other hand, the reason that

-e and -en appear in so many disparate contexts is largely due to their high type frequency

(Table 3.1), so they are also consistent with an output-focused view of regularity. Overall,

the gender-conditioned default analysis integrates information from both the input and output

domains, making it most consistent with the perspective of regularity as predictability. The

high amount of mutual information between gender and plural class (Table 3.2) makes this

approach particularly compatible with the Low Conditional Entropy Conjecture (§2.1.2; Ack-
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erman and Malouf, 2013). If gender-conditioned default classes are the predominant mode of

plural generalization, conditional entropy and thus I-complexity should decrease as new words

enter the German lexicon. I evaluate how grammatical gender affects plural generalization in

Chapters 5 and 6.

3.2.3 Schema theory

Outside of rule-based default analyses, the main alternative linguistic account of German plural

inflection is Köpcke’s application of schema theory (Köpcke, 1988, 1993, 1998), developed

within the broader framework of usage-based linguistics (e.g. Bybee, 1995; Goldberg, 2006;

Bybee, 2010) and most directly aligned with the type frequency criterion of morphological

regularity (§2.1.4). In this approach, inflected wordforms are stored in the lexicon along with

the relevant grammatical features (e.g. Katze-singular, Hund-singular, Kühe-plural, Katzen-

plural, etc.). Frequency is a key driver of linguistic processing in schema theory: a lexical

pattern with high type frequency — for example, an -en suffix on plural words — may be

abstracted as a schema (e.g. -en-plural). The other key driver is reliability, or cue validity: if

a lexical pattern occurs more frequently with one grammatical feature (e.g. if, hypothetically,

90% of the words ending in -en are plural and the remaining 10% are singular), then that

pattern has higher cue validity for that feature.

This incrementally increasing abstraction and use of cue reliability is similar in spirit to

the approach of the Minimal Generalization Learner (MGL, §2.3.1; Albright and Hayes, 2003).

The key difference, however, is that schemas represent the association between an output

inflected form and its corresponding grammatical feature (e.g. -en-plural), rather than the

mapping from an input lexeme to an output inflected form; in schema theory terminology,

they are “product-oriented” representations, compared to “source-oriented” rules.3 Schema

theory relies crucially upon stored exemplars in memory (especially words with high token

frequency; Bittner and Köpcke, 2016), but schematic abstraction over word types makes this

approach closer to prototype-based than exemplar-based models, suggesting an alignment with

artificial neural networks and discriminative learning models (Chandler, 2017, c.f. §2.3.3).

In terms of morphological regularity criteria (Table 2.1), schema theory has the most clear
3At least, first-order schemas are product-oriented; researchers have also proposed second-order schemas (e.g.

Booĳ, 2016; Köpcke and Wecker, 2017), which represent rule-like input-output mappings between two first-order
schemas (e.g. -e-singular<>-en-plural).
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focus on type frequency of output inflected forms, but it is also informed by other criteria.

For instance, Bybee (1995) emphasizes that generalization is driven predominantly by type

frequency, but also concedes that the concatenativity or “openness” of the rare -s plural suffix

allows it to generalize more than type frequency alone would predict. As discussed in §2.1.4,

it is challenging to formally specify the causal role of type frequency, and how it interacts

with other factors relevant to morphological generalization. My impression is that the flexible

and data-driven nature of schema theory poses similar barriers to generating clear and testable

predictions in the case of German plural inflection, although this possibly reflects my limited

understanding rather than broader conceptual issues. Computational models may help by

clarifying predictions in specific instances. Bybee (1995) notes that artificial neural network

models share many key assumptions of the schema analysis, including the key role of type

frequency in generalization — although she maintains they are still too “source-oriented,” or

focused on the input. In Chapter 7, I evaluate neural network predictions along with other

models conceivably related to schema theory, including exemplar (§2.3.3) and Bayesian (§2.3.2)

models.

3.3 Behavioral evidence

The previous section reviewed three linguistic theories proposed to account for the observed

facts of German plural inflection: minority default theory, gender-conditioned default theory,

and schema theory. As discussed in §2.2, some — but not all — theoretical linguistic accounts

make behavioral predictions which can be evaluated with psycholinguistic studies. Of the

three theories considered here, two have been proposed to account for plural generalization

behavior by adult German speakers in wug test experiments. Köpcke (1988) uses schema

theory (§3.2.3) to analyze data from a production experiment, and Marcus et al. (1995) use

minority default theory in conjunction with the Dual Mechanism Model (§3.2.1) to analyze

data from a rating experiment. Although the gender-conditioned default theory (§3.2.2) is

prevalent in the linguistic literature, researchers have largely not used it to derive behavioral

predictions, though this would certainly be possible.

In this section, I first review the behavioral predictions associated with these three linguistic

theories using the analytical framework of regularization (§3.3.1). I then review the behavioral
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findings of Köpcke (1988) and Marcus et al. (1995) (§3.3.2), with in-depth discussion of the

latter as it is the experimental basis for further work in this dissertation. Finally, I provide

an overview of behavioral findings from other studies focused on German plural generalization

(§3.3.3).

3.3.1 Four ways to generalize

As reviewed in §2.2.2, the regularization literature offers a framework to quantify how lexical

patterns influence speaker behavior. Taking the German noun lexicon as a reference distribu-

tion, I use this framework to operationalize four possible outcomes for how German speakers

might generalize plural inflection, based on the three linguistic theories discussed above.

Minority regularization

According to the minority default hypothesis, when German speakers encounter novel forms

which are dissimilar to the existing lexicon, they should preferentially generalize the plural

class -s to a greater extent than predicted by its lexical frequency (Table 3.1). In other words,

they are expected to overproduce, i.e. regularize, using a minority variant. This behavior is

unexpected, but attested nonetheless, in artificial language learning contexts; however, in the

case of German plural inflection, overproduction of -s can be interpreted as reflecting speakers’

knowledge of lexical structure, i.e. the underlying minority default.

Conditional regularization

The gender-conditioned default hypothesis predicts that German speakers should rely on gram-

matical gender when generalizing plural classes, based on the strong statistical association

between these two lexical patterns. The default part in particular suggests that gender con-

ditioning should be even stronger in the case of atypical novel words, as these are more likely

to be assigned the default class. Increasing the statistical interdependence (i.e. mutual infor-

mation; Table 3.2) between grammatical gender and plural class would decrease I-complexity,

consistent with the Low Conditional Entropy Conjecture (Ackerman and Malouf, 2013). This

hypothesis could also be realized asymmetrically for different gender categories, as there is

stronger statistical evidence for one conditional pattern (i.e. feminine gender predicting -en),

reflected by a wider consensus for this default relation in the linguistic literature (e.g. Marcus
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et al., 1995; Wiese, 1996; Yang, 2016; Bittner and Köpcke, 2016). Note, however, that in

artificial language learning studies, conditional regularization is typically observed over multi-

ple population-level iterations rather than in spontaneous individual behavior (e.g. Smith and

Wonnacott, 2010). Accordingly, the gender-conditioned default hypothesis of German plural

inflection has largely developed at the level of linguistic analysis, and has not often informed

psycholinguistic behavioral predictions.

General probability-matching

Instead of regularizing, German speakers could also probability-match to the overall plural

class frequencies observed in the lexicon (Table 3.1). This behavior would align with the

predictions of schema theory, which posits that the type frequency of a lexical pattern is the

strongest factor influencing how it is generalized (Bybee, 1995). It would also align with many

artificial language learning studies which find that adult speakers probability-match (Newport,

2016), and some natural language studies that report frequency-matching in morphological

generalization (e.g. Hayes et al., 2009).

Conditional probability-matching

The final behavioral possibility is the most open-ended, and compatible to some extent with

each considered theory: German speakers may generalize plural inflection in such a way as to

conditionally probability-match particular lexical distributions. As discussed in §2.2.2, while

the artificial language learning literature finds little evidence for spontaneous conditional reg-

ularization, adult speakers are capable of learning and reproducing conditional probabilities

(e.g. Hudson Kam, 2015). Artificial language studies can isolate and manipulate conditioning

factors in a controlled manner; a natural language lexicon, however, contains many potential

conditioning factors, resulting in countless possible distributions to match. So which distribu-

tions are relevant to predicting speaker behavior?

Linguistic theory seeks to characterize the structural properties which organize the lexicon;

if we expect lexical structure to influence speaker generalization, then the linguistic accounts

of German plural inflection reviewed above could point us to the right conditional factors.

In principle, schema theory is the most compatible with any form of probability-matching

behavior, but this does not helpfully constrain the hypothesis space. Absent a fully specified
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model of German plural inflection, schema theory is equally compatible with overall type

frequency matching, and, say, gender-conditioned type frequency matching — two strategies

which can result in very different patterns of morphological generalization behavior. Gender-

conditioned default theory identifies grammatical gender as the key factor structuring plural

class organization in the German lexicon, so this account is also in principle compatible with

gender-conditioned type frequency matching behavior. Marcus et al.’s dual mechanism (DMM)

minority default analysis effectively posits a nested system of probability-matching conditioned

on lexical similarity: novel words above a certain threshold of similarity to the existing lexicon

undergo analogical generalization, i.e. probability-matching conditioned on lexical similarity,

while words below that similarity threshold are instead assigned the minority -s class by default.

Here again, it is unclear whether grammatical gender is included or excluded when computing

lexical similarity.

Summary

Each theory discussed here is compatible with a range of plural generalization behaviors, all

of which include some form of conditional probability-matching. The minority default DMM

account predicts probability-matching conditional on lexical similarity for words above an un-

specified similarity threshold, and minority variant regularization below that threshold. Gender-

conditioned default theory predicts conditioning on grammatical gender, which can take the

form of either conditional probability-matching or conditional regularization. Schema theory

predicts probability-matching either to the overall type frequencies of plural classes or their fre-

quencies conditioned on another factor, such as lexical similarity or grammatical gender. Each

linguistic theory of German plural generalization is associated with a wide range of possible

behaviors, which complicates evaluation. Computational implementations can be particularly

helpful in generating more concrete predictions. We will first review the findings of previous be-

havioral studies (§3.3.2, §3.3.3), then consider how this phenomenon has been computationally

modeled (§3.4).

3.3.2 Köpcke (1988) and Marcus et al. (1995)

In this section, I review behavioral evidence from the wug tests conducted by Köpcke (1988) and

Marcus et al. (1995). Köpcke found that speakers generalized near-categorically in response to
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certain novel noun stimuli, but for other stimuli, they showed gradient patterns consistent with

schema theory. Marcus et al.’s experiment used stimuli from the latter category to assess the

Dual Mechanism Model (DMM); they report behavioral patterns consistent with the minority

default analysis.

0.
00

0.
25

0.
50

0.
75

1.
00

1d
1c
1b
1a

2b

2a

3a

4e
4d
4c
4b
4a

5c
5b
5a

pl_end
e

en

er

zero

other

s

(a) Plural productions in each subcategory.

Subc. Gender Suffix 𝐻(𝐶) % Maj
1a M -ling 0.08 99
1b F -ung/-schaft 0.27 96
1c N -chen 0.47 90
1d N -lein 1.88 51
2a M/N -e 1.02 77
2b F -e 0.38 94
3a M/N/F -a/o/u/i 1.33 69
4a M/N -el 1.31 68
4b M/N -er 1.06 77
4c M -en 0.59 91
4d F -el 1.41 58
4e F -er 1.62 59
5a M - 1.59 58
5b F - 1.28 65
5c N - 1.91 40

(b) Gender, suffix, entropy over plural class productions
𝐻(𝐶), and percent productions of majority class ‘%
Maj‘ for each subcategory.

Table 3.5: Plural production data, Köpcke (1988, Table 3). Entropy and percent majority
calculations conducted by the author.

Köpcke (1988)

Köpcke (1988) conducted an oral wug test in which 40 German students were asked to pro-

duce the plural inflected form of 50 novel nouns. The novel noun stimuli fell into five broad

categories: 1) ending in a derivational suffix (i.e. -ling, -schaft, -chen); 2) ending in a schwa

(i.e. -e, c.f. Yang’s rule 3, Table 3.4); 3) ending in a full vowel (i.e. -a/o/u/i); 4) ending

in a pseudosuffix (i.e. -el, -er, -en, c.f. Yang’s rule 2, Table 3.4); and 5) monosyllabic. The

data is visualized in Table 3.5, along with entropy measures for the distribution of plural class

productions within each subcategory. For the first category with derivational suffixes, speakers
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typically show near-categorical plural generalization, i.e. 90% or higher convergence on one

plural class; for the last category, they show much more variability; and intermediate variability

for the categories in between. Köpcke uses schema theory to analyze several of the observed

patterns, and concludes that, aside from the input-determined first category, the other four

categories show evidence of speakers matching to output plural schemata. Köpcke further

considers which suffixes are over– or undergeneralized by participants (1988, Table 7), relative

to 1) their observed frequency in the relevant lexical environments, and 2) the predictions of

a generative rule-based plural analysis (Mugdan, 1977). He finds that participants somewhat

overgeneralize -en (e.g. Category 3), and strongly overgeneralize -s (e.g. Categories 1 and 4).

The monosyllabic stimuli in Category 5 are of particular interest for two reasons. Firstly,

they received the smallest proportion of zero plural class generalizations from study partic-

ipants. Köpcke interprets this result to mean that these stimuli have cues associated with

singular rather than plural schemata; he identifies the “ideal singular” noun form as one that

is a) nonfeminine (masculine or neuter), b) monosyllabic, and c) ending in a consonant stop.

Secondly, they received the most consistently variable plural class assignments from partici-

pants across all grammatical gender categories, as shown by the entropy and majority class

percentage values in Table 3.5. Existing monosyllabic words in the German lexicon show a

similar range of observed plural classes. The Duden, the authoritative reference on German

grammar, discusses these as Kernwörter or “seed words”:

Für Substantive ohne charakterischen Wortausgang (sogenannte Kernwörter) kön-

nen demgegenüber nur Tendenzen angegeben werden, die es lediglich gestatten,

die Pluralendung eines Kernwortes mit hoher Wahrscheinlichkeit vorauszusagen.

Letzte Sicherheit ist aber nicht gegeben, sodass in diesem Bereich (ca. 2000 meis-

tens einsilbige Kernwörter) auf die Pluralangaben des Wörterbuchs nicht verzichtet

werden kann. (Gelhaus, 1998, 229)

For nouns without a characteristic word ending (so-called seed words), only ten-

dencies can be identified, which merely permit the prediction of a seed word’s

plural class with high probability. One cannot be sure, however, so in this area

(about 2,000 mostly monosyllabic seed words) a dictionary is needed to identify
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Rhyme Score Non-Rhyme Score
Bral -7.24 Bnaupf -12.95
Kach -6.27 Bneik -11.97
Klot -5.68 Bnöhk -15.08
Mur -6.13 Fnahf -13.93
Nuhl -8.62 Fneik -11.49
Pind -7.34 Fnöhk -15.16
Pisch -6.59 Pläk -12.09
Pund -7.48 Plaupf -10.07
Raun -4.70 Pleik -9.06
Spand -7.51 Pnähf -14.55
Vag -5.43 Pröng -13.71
Spert -5.22 Snauk -11.19
Mean -6.52 Mean -12.61

Table 3.6: Rhyme and Non-Rhyme stimuli used in experiments, originally developed by Marcus
et al. (1995). Scores report negative log likelihoods assigned to the stimuli by a character n-
gram model (Heafield, 2011) trained on the CELEX noun lexicon.

the plural form.4

Marcus et al. (1995)

The behavioral experiment conducted by Marcus et al. (1995) builds upon two of Köpcke’s

key findings: the overgeneralization of -s, and the variability of plural class assignments for

monosyllabic nouns. The goal of their experiment was to evaluate the minority default analysis

of the -s plural class. Based on this analysis, they hypothesized that speakers would prefer-

entially generalize -s — that is, overgeneralize -s relative to its expected lexical frequency

(following Köpcke’s analysis), or regularize in artificial language learning terminology (§2.2.2)

— in linguistic contexts corresponding to the Elsewhere Distribution (§2.1.3).

Marcus et al. develop stimuli representing three different elsewhere-distributed contexts.

The most critical context is phonological. Out of the 24 novel noun stimuli used in this experi-

ment, 12 are Rhymes, meaning they are phonologically typical and rhyme with existing German

nouns — while the other 12 Non-Rhymes contain phonotactically valid but rare character se-

quences. All stimuli are shown in Table 3.6, along with log likelihood scores computed by a

5-gram character model with backoff (Heafield, 2011) trained on the CELEX noun lexicon.

As expected, all of the Rhyme stimuli have higher likelihood under the character language

model than all of the Non-Rhyme stimuli. Note as well that all of the stimuli are monosyllabic,
4This and subsequent translations are by the dissertation author, unless otherwise indicated.
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Condition Examples (English translation)
Root I took a green 𝑋 for my cold.

But the white 𝑋.𝑝𝑙 are often cheaper and work better.
Borrowing The French 𝑋 looks best in black.

But 𝑋.𝑝𝑙 actually look good in every color.
Name My friend Hans 𝑋 and his wife Helga 𝑋 are a bit strange.

The 𝑋.𝑝𝑙 always try to put on their shoes before their socks.

Table 3.7: Marcus et al. (1995) study design.

and therefore drawn from the part of the German noun lexicon with the highest variability in

plural class assignment, as discussed above. Following the logic of the Dual Mechanism Model

(DMM, §3.2.1), Marcus et al. reason that Rhymes would be sufficiently similar to existing

German nouns to undergo analogical generalization, resulting in the assignment of a non--s

plural class; the dissimilarity of Non-Rhymes, however, would prevent analogical generalization

to some extent, leading speakers to fall back on the minority default -s. Therefore, despite

the high variability in plural class generalization observed for nouns of this type, Marcus et al.

predict that speakers will generalize -s significantly more to Non-Rhymes than to Rhymes.

The other two elsewhere contexts are semantic, and conveyed by the content of the sentence

surrounding the novel word. Marcus et al. present the 24 novel nouns (Table 3.6) in three

different sentence conditions: as standard German root words, as loanwords borrowed from

another language, and as proper names. Translated examples of each condition are presented in

Table 3.7. They consider both the loanword and proper name contexts as elsewhere conditions,

so predict greater -s generalization in both conditions. Proper names obligatorily take -s in

German (except when phonologically blocked, such as names that already end in -s), and

borrowings often take -s, so -s generalization in both contexts is expected based on the existing

German lexicon. This is not the case for phonological typicality, so the Non-Rhymes constitute

the key test for the minority default hypothesis.

48 adult German speakers were presented the 24 words as a paper-and-pencil rating task.

Each word was shown first in its singular form in the context of a sentence, and then speakers

were asked to rate each of its eight possible plural forms if umlaut was available (i.e. if the

noun had a back vowel), or five forms if umlaut was unavailable; Table 3.8 presents an example

rating task. Each word appeared an equal number of times with masculine and feminine gender,

and in the three sentence contexts, counterbalanced across participants.
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Die Französische KACH sieht schwarz am besten aus.
Aber eigentlich sehen KACH in jeder Farbe gut aus.
Aber eigentlich sehen KÄCH in jeder Farbe gut aus.
Aber eigentlich sehen KACHE in jeder Farbe gut aus.
Aber eigentlich sehen KÄCHE in jeder Farbe gut aus.
Aber eigentlich sehen KACHER in jeder Farbe gut aus.
Aber eigentlich sehen KÄCHER in jeder Farbe gut aus.
Aber eigentlich sehen KACHEN in jeder Farbe gut aus.
Aber eigentlich sehen KACHS in jeder Farbe gut aus.

Table 3.8: Marcus et al. (1995) example rating task for Kach in the Borrowing condition.
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Figure 3.3: Average item-level ratings reported by Marcus et al. (1995).
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Marcus et al. (1995) report findings consistent with their minority default hypothesis:

participants rated -s plural forms higher for Non-Rhyme words than for Rhymes in both the

Root and Borrowing conditions. In the Root condition, -s was the top-rated plural form for 2

out of 12 Rhyme words, and 7 out of 12 Non-Rhyme words. As expected, participants assigned

the highest rating to -s forms of all nouns in the Name condition, as -s is the obligatory plural

class form for German proper names. No significant effect or interaction with gender was

reported. Marcus et al. (1995) report averaged ratings for each item and plural variant, which

are visualized in Figure 3.3. Clahsen summarizes the results: ”We found that the -s plural is

rated significantly better for nonrhymes than for rhymes, whereas all other plurals produced

the reverse pattern. [...] This shows that adults do indeed generalize -s plurals to nonrhyming

real words and to foreign words in German” (1999a, 1049).

Zaretsky and Lange (2016) used the same novel noun stimuli (Table 3.6) in a large-

scale replication study with 585 participants and a modified task — written production of

the plural noun form given its singular form with a indefinite article5 (e.g. “ein Kach”),

rather than Marcus et al.’s rating task with differing sentence contexts. While they found the

same asymmetry in -s production favoring Non-Rhymes over Rhymes, two other findings cast

doubt on the minority default account. First, the plural class -en showed a similar pattern of

favoring Non-Rhymes over Rhymes. Second and most importantly, while Marcus et al. found

that -s was the preferred class for Non-Rhymes in all three different rating categories (c.f.

Figure 3.3), Zaretsky and Lange found that participants produced -e and -en plural classes

much more frequently than -s for both Non-Rhymes and Rhymes. They conclude that -s has

no special status: -e, -en, and -s are all productive in modern German, and the apparent -s

preference found by Marcus et al. is an artifact reflecting the rating rather than production task.

However, in a separate large scale (219 participants) written production study using different

novel stimuli, Molloy (2018) finds a strong preference for -s generalization and concludes in

support of the minority default hypothesis.

5While the German definite articles mark three distinct grammatical genders (der masculine, die feminine, das
neuter), the indefinite article distinguishes only nonfeminine ein from feminine eine.
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Summary

In summary, the studies reviewed here present a mixed picture of -s generalization. Köpcke

(1988) finds that German speakers overgeneralize -s relative to its expected frequency in

particular lexical environments, and Marcus et al. (1995) find that speakers consistently rate the

-s plural forms of phonologically atypical nouns (Non-Rhymes) highly relative to phonologically

typical nouns (Rhymes). Zaretsky and Lange (2016) find that speakers also produce -s plural

forms more often for Non-Rhymes relative to Rhymes, but they produce the frequent plural

classes -e and -en more often than -s in all categories; however, the findings of Molloy (2018)

appear to contradict this. None of the reviewed studies provide data at the level of individual

speakers, which would be necessary to categorize the different behavioral possibilities outlined

in §3.3.1. I conduct independent replication studies using Marcus et al.’s stimuli in Chapters

4, 5, and 6. Chapter 4 directly investigates the question of -s-generalization, and Chapter 6

analyzes the behavior of individual speakers.

3.3.3 Other behavioral studies

In addition to the studies reviewed above focusing on -s, several other behavioral experiments

on plural generalization have been conducted with adult German speakers. These studies

generally have also not released or described their data in sufficient granularity to support

analysis at the level of individual speakers (§3.3.1), so we will review them only briefly here.

Several researchers have found evidence for systematic behavior in certain lexical contexts,

consistent with the results reported by Köpcke (1988). Gawlitzek-Maiwald (1994) reports

similarly systematic generalization of the plural classes associated with derivational suffixes.

Independently of elsewhere contexts, -s is consistently preferred for nouns ending in a full

vowel (Mugdan, 1977; Gawlitzek-Maiwald, 1994; Molloy, 2018). German speakers also reliably

generalize -(e)n to nouns ending in schwa (Mugdan, 1977; Spreng, 2004, c.f. Molloy, 2018).

Outside of these systematic tendencies, however, most participant responses evince a high

degree of variability in plural form generalization. This is apparent on close inspection of

the data from these studies, although the variability is often obscured by researchers’ focus

on aggregate statistics and predictable patterns — reporting practices that make it difficult

to identify and measure probability-matching behavior (c.f. Pierrehumbert, 2022, quoted in
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§2.2.1). A notable exception to this trend is found in the work of Mugdan (1977), who

developed an extensive generative rule-based analysis of German plural inflection, and then

concluded that his model was effectively disproved (for psycholinguistic purposes at least) by

the variable behavior of participants in his wug test study:

Die Versuchsauswertung läßt nicht den Schluß zu, das das Verhalten der getesteten

Personen bei der Bildung des Plurals unbekannter Substantive in einfacher Weise

durch Regeln beschreibbar ist. (Darauf deuten die unterschiedlichen Reaktionon

auf ähnliche Testwörter.) Einige Vpn suchten nach analogen Beispielen, andere

gestanden, bei den Antworten wild geraten zu haben. [...] Dabei kam es auch zu

Bildungen, die es nach den Regeln des Deutschen überhaupt nicht gibt. (Mugdan,

1977, 172)

The experimental results do not support the conclusion that participants’ plural

inflection behavior is easily described by rules. (This is evident in the differing

responses to similar test items.) Some participants looked for analogical examples,

while others appeared to make wild guesses. [...] This even led to plural forms

which don’t exist under the rules of German.

Chapters 6 and 7 quantify the variability observed in behavioral experiments, using the regu-

larization framework developed in the artificial language learning literature (§2.2.2, §3.3.1).

Despite its long pedigree in theoretical linguistic accounts, grammatical gender has received

relatively little attention in behavioral wug tests, and existing reports remain inconclusive.

Some researchers comment upon observed effects of gender, but do not quantify the effects

with statistical analysis (Köpcke, 1988; Gawlitzek-Maiwald, 1994; Spreng, 2004; Molloy, 2018).

Marcus et al. (1995) report no significant effect or interaction of grammatical gender, but

Zaretsky and Lange (2016) find significant and reliable effects of gender on the same stimuli.

Finally, Mugdan remarks upon the bewildering absence of grammatical gender effects in his

study, which was apparently even brought to his attention by participants:

Es scheint, daß es vor allem der Wortklang war, der die Vpn bei der Auswahl

eines Pluralallomorphs leitete, während insbesondere das Genus offenbar weitge-

hend unbeachtet blieb. (Das wurde auch von manchen Vpn nach Abschluß des

Tests erwähnt.) (1977, 172)
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Figure 3.4: The Plural-Computer, which assigns German nouns a regular plural form based on
their gender (Genus) and final character/s (Endbuchstabe/n) (Mugdan, 1977, 53).

It seems that the participants’ selection of plural allomorphs was guided above

all by the sound of the word, while gender remained largely ignored. (Several

participants even mentioned this at the end of the test.)

Chapters 5 and 6 investigate the behavioral effects of grammatical gender.

3.4 Computational evidence

The previous sections have reviewed three linguistic theories of German plural inflection —

minority default (§3.2.1), gender-conditioned defaults (§3.2.2), and schema theory (§3.2.3)

— which are respectively associated with the rule generation, predictability, and type frequency

views of morphological regularity (§2.1.1). As discussed in §2.3, various computational imple-

mentations have been used to model morphological generalization, reflecting these different

perspectives. In this section, I review computational approaches to modeling German plural

inflection, using the task as framed by Rumelhart and McClelland (1986): to learn a mapping
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from singular to plural inflected forms given the German noun lexicon (c.f. Figure 3.4), and

use this mapping to predict speaker generalization behavior.

In contrast to the extensive theoretical literature in this area, computational modeling re-

search on German plural inflection has proven roughly as inconclusive as the behavioral research

reviewed above. The modeling debate has historically been dominated by the influential Dual

Mechanism Model (DMM; Marcus et al., 1995; Clahsen, 1999b) and the associated challenge

of modeling a minority default (§3.2.1), with the result that modeling research in this area

has often been framed as ‘single- vs. dual-route’ instead of broadly focused on morphological

regularity criteria and model capacities as described in §2.3. Moreover, a lack of fine-grained

behavioral data on German plural generalization (c.f. §3.3) has led many modeling papers to

evaluate generalization via a held-out test set of plural forms from the existing lexicon, rather

than direct comparison to novel inflected forms produced by speakers. This gap is especially

apparent for models which treat inflection as a classification rather than sequence generation

task, which is true of nearly all models reviewed here. Pinker and Ullman characterize ana-

logical classifiers as dependent on rules for sequence generation, and hence inherently dual

mechanism:

To convert the choice into an actual form, some other mechanism would have to

copy the stem and apply the pattern corresponding to the selected unit. Such a

mechanism is simply a rule. (2002, 458)

Regardless of the rule debate, classification models are clearly not capable of treating inflection

as an open-ended sequence generation task, which necessarily limits their capacity to represent

speaker behavior; no classifier could generate the “plural forms which don’t exist under the

rules of German” (1977, 172) which Mugdan observed from his participants.

Despite these issues, computational modeling studies have provided key insights into the

nature and complexity of German plural inflection. I structure this review of computational

models in relation to the three theories considered above, and the morphological phenomena

they seek to account for: minority default generalization of -s (§3.2.1), gender-conditioned

generalization of the majority plural classes -en and -e (§3.2.2), and the integrated influences

of type frequency and lexical cues in plural generalization broadly (§3.2.3). Some models

considered here represent the relevant phenomena by design, while others use general learning
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principles to arrive at the target generalization behavior.

Minority default learners

A core argument of the DMM is that dual-route models are necessary to account for the

observed generalization behavior of the -s plural class in German (Marcus et al., 1995). This

claim has been tested by Nakisa and Hahn (1996); Hahn and Nakisa (2000), who compare

DMM implementations with single-route models using analogical generalization. Nakisa and

Hahn (1996) train an exemplar model (the GCM; Nosofsky, 1988) and a three-layer feed-

forward neural network classifier on the German noun lexicon, using phonological representation

only (i.e. no grammatical gender). They additionally implement dual-route versions of both

models by excluding nouns which take the -s plural from training, and instead assigning -s by

default to any inputs below a learned similarity threshold. Nakisa and Hahn (1996) evaluate

the models on generalization to a held-out test set, and find that the dual route models

never outperform their single-route counterparts, with the neural network model achieving the

highest overall generalization accuracy. Hahn and Nakisa (2000) build on these results with

comparison to speaker production data on the stimuli developed by Marcus et al. (1995). The

behavioral data is not analyzed in detail, but they report that the predictions of the exemplar-

based GCM show a closer overall fit to speaker productions than the dual-route version of the

GCM. Overall, these modeling results indicate no clear advantage for DMMs in German plural

generalization.

Subsequent work has shown that the minority default -s can be learned by very different

single-route model architectures. Feldman (2005) trains ten three-layer neural classifiers on a

dataset of Austrian German child-directed speech, and tests their default activation on input

vectors with zero-valued features. She finds evidence for default activation of -en and -s when

no grammatical gender information was provided, and for -en as the default for feminine nouns;

however, she also finds unexpected evidence for default -s generalization for masculine nouns,

which raises the possibility of divergent results based on a non-standard variety of German.

Belth et al. (2021) train the symbolic ATP (§2.3.1) on samples of standard German child-

directed speech ranging from 100 to 400 nouns, and report that the ATP learns a minority

default -s rule in roughly 20% of the training simulations. These findings from disparate model

classes show that the dedicated hybrid architecture of DMMs is not necessary to learn minority
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default -s generalization; however, they do not conclusively establish whether doing so supports

speaker-like behavior (c.f. Chapter 4).

Gender-conditioned default learners

Gender-conditioned plural generalization is less challenging for statistical learners compared to

minority default generalization, in light of the robust statistical association between grammati-

cal gender and plural class in the German noun lexicon. Symbolic statistical models can readily

learn gender-conditioned defaults, as shown by the example of Yang’s Tolerance Principle anal-

ysis (§3.2.2, Table 3.4). As discussed in §2.3.3, neural network models are generally capable of

learning complex conditional relations, and Goebel and Indefrey (2000) find that this capacity

holds for the gender-plural association. They train five recurrent neural network models with

short-term memory on a frequency-weighted sample of nouns produced by six-year-old Ger-

man children, and test their models on the stimuli developed by Marcus et al. (1995). Their

most robust finding is gender-conditioned application of the -e and -en plural classes to both

Rhymes and Non-Rhymes, which they interpret as morphologically regular generalization (see

also Indefrey, 1999):

We must, therefore, conclude that the German -e and -n plural are not irregular.

The German plural system consists of two frequent regular allomorphs (-e and

-n), two infrequent irregular morphs and umlaut) and one infrequent regular allo-

morph (-s). All regular allomorphs phonologically are unrestricted and can serve

as defaults. (Goebel and Indefrey, 2000, 193)

While Goebel and Indefrey’s neural model learned to condition on grammatical gender,

Williams et al. (2020) explicitly condition on gender in a recent analysis of German noun

inflection. They use recurrent neural networks to estimate the mutual information between

the inflection class (including plural number and also case marking) and the phonological

form and semantic meaning of German nouns. Due to the high mutual information between

gender and inflection class across the lexicon, the authors condition all other estimated values

on grammatical gender. They find that form and meaning contribute independently to the

predictability of inflection classes. Their computational implementation reflects theoretical

linguistic analyses which posit grammatical gender as the primary factor organizing the German
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noun lexicon (§3.2.2). More recent work by Dankers et al. (2021) establishes that neural models

continue to learn gender-based plural generalization. I consider the influence of grammatical

gender on predictions from neural models in Chapters 4 and 5, and from a broad spectrum of

computational models in Chapter 7.

Associative and predictive learners

While the preceding sections focus on computational modeling of behaviors targeting specific

plural inflection classes — namely, minority -s generalization, and gender-conditioned general-

ization of -e and -en — several researchers have explored applications of analogical modeling

(i.e. exemplar-based and neural network models; §2.3.3) to German plural generalization more

broadly. As discussed above, many of these approaches rely on held-out test sets for evaluation.

Wulf (2002) applies Analogical Modeling (Skousen, 1989) to a subset of the CELEX German

noun lexicon (700 nouns) and achieves 72% test set accuracy. Daelemans (2002) trains on a

larger subset of the lexicon (20,000 nouns) and finds 86.6% test accuracy from AM, but this

is bested by a Memory-Based Learner (i.e. TiMBL, closer to a nearest-neighbor model) which

achieves 89.7% accuracy. As discussed above, Hahn and Nakisa (2000) find that a three-layer

neural network model outperforms another exemplar model (the GCM), achieving 82.7% ac-

curacy when trained on 7,000 nouns. These analyses indicate that exemplar-based and neural

models can achieve some degree of successful generalization within the existing German noun

lexicon; however, they do not directly relate to schema theory accounts of speaker generaliza-

tion behavior, such as Köpcke’s (1988) proposed set of cues distinguishing singular and plural

schemas. The reader is referred to Heitmeier et al. (2021) for a comprehensive and up-to-date

discussion of semantic and phonological cues in discriminative modeling of German plural in-

flection, including evaluation on behavioral data (McCurdy, Goldwater and Lopez, 2020, c.f.

Ch. 4). Chapter 7 evaluates neural and exemplar models, inter alia, in terms of their fit to

speaker behavior.

3.5 Conclusion: Research Questions

This chapter has reviewed how these perspectives have been applied to the specific domain

of German plural inflection. We have considered three linguistic theories of German plural

83



84 3.5. CONCLUSION: RESEARCH QUESTIONS

inflection — minority default (§3.2.1), gender-conditioned default (§3.2.2), and schema the-

ory (§3.2.3) — and their respective relation to the rule generation, predictability, and type

frequency perspectives of morphological regularity. We have also considered the behavior pre-

dicted by each of these accounts, and the evidence from existing behavioral studies of German

plural generalization (§3.3). Finally, we have reviewed computational modeling studies of Ger-

man plural inflection, and considered how they align with, or diverge from, theoretical and

behavioral findings (§3.4).

The literature reviewed here has informed the two key research questions of this dissertation:

how do German speakers generalize plural inflection, and can computational models learn to

generalize similarly? Subsequent chapters address these questions in light of the theories

and issues raised above. Chapter 4 reports a behavioral experiment to test the minority

default hypothesis proposed by Marcus et al. (1995), and uses the resulting data to evaluate

neural and symbolic models of morphological generalization. Chapter 5 investigates the role

of grammatical gender in two behavioral experiments, and Chapter 6 builds on this work with

an additional experiment and comparative analysis to lexical distributions. Chapter 7 gathers

all the data from the four behavioral experiments reported in previous chapters, and uses it to

evaluate a range of computational models — neural, symbolic, exemplar, and Bayesian — as

well as baselines reflecting a range of lexical distributions.
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Chapter 4

Speakers default to variation

4.1 Introduction

This chapter presents the first of four behavioral experiments in this dissertation, and several

related computational modeling experiments. McCurdy, Goldwater and Lopez (2020, §4.2)

report behavioral Study 1 and a modeling experiment with the neural Encoder-Decoder (ED;

Kann and Schütze, 2016) proposed as a cognitive model of morphological generalization by

Kirov and Cotterell (2018). §4.3 presents additional modeling experiments and analysis which

ultimately contradict the conclusions drawn in §4.2. I include here the contents of McCurdy,

Goldwater and Lopez (2020), lightly edited, because the publication has already been cited

and built upon by other researchers (e.g. Beser, 2021; Belth et al., 2021; Dankers et al., 2021;

Heitmeier et al., 2021). In lieu of presenting an entirely revised analysis, I clarify the updated

results and discuss their implications at some length (§4.4).

The goal of this chapter is to test two influential claims about morphological generalization

advanced by Marcus et al. (1995). The first claim is behavioral. In a rating-based wug test

(§3.3.2), Marcus et al. find that German speakers prefer -s plural forms for phonologically

atypical Non-Rhyme nouns (e.g. Bneik) compared to nouns which sound like existing Ger-

man words (e.g. Bral). They interpret this result in support of the rule generation criterion

for morphological regularity (§2.1.1): because the rare suffix -s has an unrestricted elsewhere

distribution over input features (§2.1.3), it is a regular inflection class, and therefore prefer-

entially generalized to atypical inputs (§3.2.1). In Study 1 (§4.2), compared to the original

Marcus et al. results, I find much lower use of -s in both production and rating tasks, but

85



86 4.1. INTRODUCTION

reproduce speakers’ statistically significant Non-Rhyme -s preference. Subsequently (§4.3.2),

however, my analysis leads me to interpret this effect as a positively-conditioned response to

confounded Non-Rhyme stimuli ending in -k, rather than a negatively-conditioned response to

default circumstances, i.e. phonological atypicality. I conclude that the behavioral evidence

does not support a rule generation analysis of -s.

The second claim is computational. Marcus et al. argue that speakers’ Non-Rhyme -s

preference is readily modeled as a symbolic default rule (§2.1.3), and therefore learnable for

statistical models with a symbolic component, either rule-based learners (§2.3.1) or hybrid

Dual Mechanism Models (DMMs; §3.2.1, §3.4). Statistical learners without rules, however —

such as neural network models — lack an explicit representational mechanism for a negatively

conditioned input criterion (i.e. default rule), relying instead upon the type frequency criterion

for regularity (§2.1.1). Given an atypical input, these models should preferentially generalize

frequent classes such as -e or -en over the infrequent -s. Though other researchers have

demonstrated that single-mechanism models, including neural models, can learn to treat -s as

a default (§3.4), none have directly compared model and speaker productions.

I evaluate the computational claim by training multiple instances of a neural Encoder-

Decoder model (ED; Kann and Schütze, 2016) and a rule-based symbolic model (ATP; Belth

et al., 2021) on the same German lexical resource (UniMorph; Sylak-Glassman et al., 2015).

As reported by McCurdy, Goldwater and Lopez (2020), I find that the ED model fails to

reproduce the Non-Rhyme -s preference when trained to predict plural forms using the singular

noun’s orthographic wordform and grammatical gender (e.g. das Bral). In subsequent analysis

(§4.3.1), however, I find that both the ED and ATP reproduce the Non-Rhyme -s preference

when trained on wordform alone, without grammatical gender (e.g. Bral). Moreover, both

models generalize -s more often to Non-Rhymes not due to learning a default rule, but due to a

stimulus confound: half of the Non-Rhyme stimuli end in -k, which has a higher rate of lexical

co-occurrence with the -s plural compared to other word-final segments. This finding leads

me to reanalyze the speaker data and attribute the behavioral effect to the same confound.

Finally, though both computational models capture the Non-Rhyme -s preference, I find

that they differ from speaker behavior in another critical respect. Speakers consistently gener-

alize a variable distribution of plural classes to each individual stimulus item — a distribution

which, incidentally, looks quite close to those classes’ lexical type frequencies — but both the
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neural and symbolic model are overconfident in comparison, strongly preferring one plural class

for a given item. Marcus et al.’s criticism is correct in a sense: statistical learners over-rely on

the typically frequent class with the highest conditional likelihood, while speakers appear to

default to variation for both typical and atypical .

4.2 Study 1

The material in this section has been published as McCurdy, Goldwater and Lopez (2020).

4.2.1 Introduction

Morphology has historically been the site of vigorous debate on the capacity of neural models to

capture human speaker behavior, and hence ground claims about speaker cognition. In 1986,

Rumelhart and McClelland described a neural network model which learned to map English

present tense verbs to their past tense forms. Importantly, the network handled both regular

verbs, whose past tense is formed systematically by adding the suffix /-(e)d/ (e.g. jumped),

and irregular verbs where the present and past tenses bear no systematic relationship (e.g. ran).

The authors suggested their model provided “an alternative [...] to the implicit knowledge of

rules” (1986, 218), a claim which sparked considerable controversy. Pinker and Prince (1988)

highlighted many empirical inadequacies of the Rumelhart and McClelland model, and argued

that these failures stemmed from “central features of connectionist ideology” and would persist

in any neural network model lacking a symbolic processing component.

Recently, however, Kirov and Cotterell (2018, henceforth K&C) revisited the English past

tense debate and showed that modern recurrent neural networks with encoder-decoder (ED)

architectures overcome many of the empirical limitations of earlier neural models. Their ED

model successfully learns to generalize the regular past tense suffix /-(e)d/, achieving near-

ceiling accuracy on held-out test data. Moreover, its errors result from overapplication of the

regular past tense (e.g. throw–throwed)—a type of error observed in human language learners

as well—as opposed to the unattested forms produced by Rumelhart and McClelland’s model.

K&C conclude that modern neural networks can learn human-like behavior for English past

tense without recourse to explicit symbolic structure, and invite researchers to move beyond

the ‘rules’ debate, asking instead whether the learner correctly generalizes to a range of novel
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inputs, and whether its errors (and other behavior) are human-like.

This challenge was first taken up by Corkery et al. (2019), who showed that, on novel

English-like words designed to elicit some irregular generalizations from humans, the ED

model’s predictions do not closely match the human data. While these results suggest possible

problems with the ED model, English may not be the best test case to fully understand these,

since the sole regular inflectional class is also by far the most frequent. In contrast, many

languages have multiple inflectional classes which can act ‘regular’ under various conditions

(Seidenberg and Plaut, 2014; Clahsen, 2016).

In this paper, we examine German number inflection, which has been identified as a crucial

test case for connectionist modeling (Köpcke, 1988; Bybee, 1995; Marcus et al., 1995; Clahsen,

1999b). The German plural system features eight plural markers (c.f. Table 3.1), none of which

hold a numerical majority in type or token frequency. Different linguistic environments favor

different plural markers (e.g. Köpcke, 1988; Wiese, 1996; Yang, 2016), and even the famously

rare suffix -s is nonetheless productive, in the sense that speakers readily extend it to new

words.1 In their analysis of the German plural system, Marcus et al. (1995, henceforth M95)

argue that neural networks generalize the most frequent patterns to unfamiliar inputs, and

thus struggle to represent productive but rare classes such as -s. We investigate that claim

using the novel German-like nouns M95 developed.

Because the design and results of previous human studies have been somewhat inconsistent,

and because we want to compare to fine-grained results from individuals (not just published

averages), we first collect a new dataset of plural productions and ratings from German speak-

ers. Our speaker data show high variability: no class holds a majority overall, and two less

frequent suffixes show a relative preference for phonologically atypical inputs (“Non-Rhymes”).

We then compare our human data with the predictions of the encoder-decoder (ED) model

proposed by K&C. While our human data paint a more complex picture of the German plural

system than M95 claimed, nevertheless M95’s central idea is borne out: when given Non-

Rhymes, the ED model prefers the most frequent plural class, but speakers behave differently.

This finding reveals that while modern neural models are far more powerful than earlier ones,

they still have limitations as models of cognition in contexts like German number inflection,

1For example, the Institut für Deutsche Sprache (https://www.owid.de/service/stichwortlisten/neo_
neuste) officially added multiple -s-inflecting nouns to the German language in 2019, including Verhütungsapp,
Morphsuit and Onesie.
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where no class holds a majority. The model may correctly identify the most frequent class,

but fails to learn the conditions under which minority classes are productive for speakers.

4.2.2 Study 1a: Speaker plural inflection

To evaluate whether neural models generalize correctly, we need to compare their behavior

with that of humans on the same task. Unfortunately, no existing datasets were suitable, so

our first study asks how German speakers inflect novel nouns.

Background The task of inflecting novel (nonce) words is known as the wug test (Berko,

1958), and is the standard method to assess morphological generalization in psycholinguistic

research (§2.2.1). In this study, we use the wug test to investigate how German speakers

generalize plural classes. See §3.1 for a general overview of the German plural system.

As discussed in §3.1 (e.g. Figure 3.1, Table 3.3), the infrequent class -s occurs across a wide

and diverse range of linguistic environments. For this reason, M95 argue that -s is the minority

default plural, and can apply to any noun regardless of its form (see discussion in §3.2.1 and

§3.3.2). M95 claim that generalizing -s should be particularly difficult for connectionist, i.e.

neural, models to learn: -s cannot be generalized based on its frequency, as it is rare, and it

cannot be generalized based on similar inputs, as it applies to heterogeneous, unfamiliar inputs.

To assess whether German speakers treat -s as a productive default for novel words, M95

developed a list of 24 monosyllabic nonce nouns for wug testing (Table 3.6). The stimuli

represented two phonological classes: ‘familiar’ or Rhyme words, which rhymed with one or

more existing words in German (e.g. Bral, rhyming with Fall; Spert, rhyming with Wert), and

‘unfamiliar’ or Non-Rhyme words (e.g. Plaupf, Fnöhk), which were constructed using rare but

phonotactically valid phone sequences. They hypothesized that Non-Rhymes, as phonologically

atypical words, should be more likely to take the -s plural. See §3.3.2 for further details of the

study design. M95 found that -s was the top-rated plural form for 2 out of 12 rhyme words,

and 7 out of 12 non-rhyme words; while -e was rated highest overall, -s was the only marker

favored more for non-rhymes. Clahsen (1999a) cites this asymmetry as crucial evidence for -s

as the only default plural form, at least with respect to these stimuli.

These results, however, have been called into question. Zaretsky and Lange (2016, hence-

forth Z&L) conducted a large-scale follow-up study with 585 participants, using the same
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nonce words but a different task: instead of rating the plural forms within a sentence context,

subjects were presented with the noun in isolation (e.g. Der Bral) and asked to produce its

plural form.2 They found a much lower preference for -s than expected based on M95’s results,

and a significant effect for feminine (die) versus non-feminine (der, das) grammatical gender,

where M95 did not report an effect of gender. The authors conclude from their data that -en,

-e, and -s are all productive in German, and also speculate that task differences (production

versus rating) could account for the discrepancy between the two studies.

Data collection

Motivation Although M95 published average rating data for each word in the appendix to

their paper, we felt it necessary to collect our own data. Z&L’s findings suggest that the M95

-s effect might reflect task artefacts: speaker behavior could differ for production and rating

tasks, and with and without sentential context for the nonce words. We seek to evaluate K&C’s

performance claims for ED models, which were based on speaker production probabilities rather

than ratings. To do so, we need speaker data which closely parallels the model task: given

a noun in isolation, produce its plural inflected form. We collect production data, and also

ratings, to see whether speaker behavior is consistent across tasks.

Another issue raised by Z&L’s findings is the role of grammatical gender. Although Z&L

reported significant gender effects, M95 did not: their reported rating averages combine all

gender presentations (e.g. Der Bral, Die Bral, Das Bral). Previous experiments have found

neural models of German plurals to be sensitive to grammatical gender (Goebel and Indefrey,

2000); therefore, the stimuli presented to speakers should be consistent with model inputs

to enable valid comparison. For simplicity, we opted to select one grammatical gender for

presentation: neuter, or Das. Based on similar experimentation by ?, speakers do not have a

strong majority class preference for neuter monosyllablic nouns, hence this environment may

be the most challenging for a neural model to learn. For this reason, we present all stimuli as

neuter to study participants.

Method The current study uses the same Rhyme and Non-Rhyme stimuli from M95’s original

experiment. We collected both production and rating data on plural inflection for the 24 M95
2Z&L’s data is unfortunately not freely available.
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nonce nouns through an online survey with 150 native German-speaking participants. Survey

respondents were first prompted to produce a plural-inflected form for each noun (i.e. filling

in the blank: “Das Bral, Die ____”).3 After producing plural forms for all nouns, they were

prompted to rate the acceptability of each potential plural form for each noun on a 1-5 Likert

scale, where 5 means most acceptable. For example, a participant would see Das Bral, and

then give an acceptability rating for each of the following plural forms: Bral, Bräl, Brale, Bräle,

Bralen, Braler, Bräler, Brals.

Survey procedure We designed an online survey comprising three sections, in order of pre-

sentation: 1) an introductory production task with existing German words, 2) a nonce-word

production task, and 3) a nonce-word rating task. For the introductory production task, eight

existing German nouns were used, one from each of the eight plural classes under consid-

eration. The goal of this section was to familiarize participants with the task of producing

the plural, and avoid biasing them toward any particular plural marker by showing all eight

options. We also hoped that inflecting nouns in Modern High German would encourage par-

ticipants to approach the following tasks with the standard variety primed, thus reducing the

possible effects of dialectal variation. For the second and third sections, the production and

rating tasks, the twenty-four M95 nonce words were presented. All stimuli were presented with

neuter grammatical gender in the nominative case. In all tasks, each noun was preceded by

the article Das, indicating neuter gender and singular number, and each prompt for participant

responses was preceded by Die..., to indicate plural number. The eight existing nouns in the

introductory production task were also neuter gender, so followed this pattern as well.

We recruited 192 participants through the online survey platform Prolific4, using the site’s

demographic filters to target native German speakers. Participants were additionally asked

about their age and exposure to languages other than German within the survey. Participants

were shown the three tasks, introduction, production, and rating, in order, meaning that

participants had to produce a plural form for all 24 nonce words before performing the rating

task. For the production task, participants saw the noun on its own, preceded by Das, e.g. Das

Bral. Above the response box, the text Die... appeared, to indicate that a plural form of the
3The article das indicates singular number, neuter gender; as all nouns were presented in neuter gender (see

preceding discussion), all nouns were preceded by das. Die here indicates plural number, so the following noun will
be pluralized.

4http://www.prolific.com

91

http://www.prolific.com


92 4.2. STUDY 1

Plural Prod % N Rating (SE)

/-e/ R 45.3 815 3.53 (.021)
NR 44.7 805 3.51 (.024)

/-(e)n/ R 25.0 450 3.73 (.026)
NR 34.7 624 3.84 (.025)

/-er/ R 17.4 314 3.08 (.022)
NR 6.7 120 3.06 (.024)

/-s/ R 4.2 75 2.39 (.027)
NR 6.4 116 2.52 (.028)

ø R 2.7 48 2.24 (.020)
NR 2.7 48 2.38 (.024)

other R 5.4 98
NR 4.8 87

overall R 1800 2.99 (.011)
NR 1800 3.04 (.012)

Table 4.1: Survey results. Production reported as percentages out of all Rhymes (R) and
Non-Rhymes (NR); ratings are averages over a 1 (worst) – 5 (best) scale, with standard errors
in parentheses. Highest numbers in each category are bolded.

noun should be typed into the response box below the text. For the rating task, participants

were prompted to rate each potential plural on a Likert scale of Sehr gut (‘very good’; 5) to

Sehr schlecht (‘very bad’; 1). After filtering out, data from 150 participants was available for

analysis. The cleaned, anonymized survey data will be published online along with this paper.

Results

Our study results are shown in Table 4.1. The production data collected in our survey ap-

pears broadly consistent with the distribution observed by Z&L and Köpcke: -e is favored

in production, followed by -en. The rhyme vs non-rhyme comparison is also consistent with

Z&L’s results. -s is produced more for Non-Rhymes than for Rhymes, as emphasized by Clah-

sen (1999a); however, -en also shows the same directional preference, and at a much higher

frequency.

Our rating results diverge from production results in some ways — for example, -en is

favored instead of -e — and are consistent in others: both -s and -en are rated higher for

Non-Rhymes compared to Rhymes. The low ratings for -s conflict with M95’s findings, and

suggest that presentation in sentence context is an important methodological difference from

presentation in isolation. For example, family surnames obligatorily take -s in German, so
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Plural % All Neut M95 R 1 Syll
/-(e)n/ 37.3 3.2 13.9 14.0
/-e/ 34.4 51.9 72.6 66.5
ø 19.2 21.5 0.5 1.4
/-er/ 2.9 10.6 7.3 4.7
/-s/ 4.0 7.7 3.1 12.5
other 2.1 5.1 2.6 .9
N 11,243 2,606 642 570

Table 4.2: Distribution (percentages) of plural class for 1) nouns overall, 2) only neuter nouns, 3)
nouns rhyming with M95 stimuli, 4) one-syllable nouns from Unimorph German dataset (Kirov et al.,
2016).

it’s possible that exposure to surnames in the “name” context primed subjects in the M95

rating study to find -s more acceptable generally, across conditions.5 In any case, our results

demonstrate task effects: although -e is the most produced plural form, -en obtains the highest

ratings from the same speakers.6 We compare these results with the modeling study in Section

4.2.4, focusing on production data.

4.2.3 Study 1b: Encoder-Decoder inflection

The second component of our study trains an encoder-decoder (ED) model on the task of

German plural inflection, following the method of Kirov and Cotterell (K&C). We then compare

its predictions on the M95 stimuli to the behavior of participants in Study 1a.

Background Wug tests have also been used to evaluate how computational models generalize;

see §2.3 for general review, and §3.4 for an overview of efforts to model the German plural

system. Our study follows Corkery et al. (2019) in aggregating production probabilities over

several model initializations to compare these results to speaker production data.

Method

Overview We model German number inflection using the sequence-to-sequence Encoder-

Decoder architecture (Sutskever et al., 2014). This comprises a recurrent neural network

(RNN) which reads in an input sequence and encodes it into a fixed-length vector repre-
5Hahn (1999) reanalyze the M95 ratings and find that -s is rated much higher for family surnames than other

kinds of names within the “name” condition (e.g. first names), reflecting the strong link between this category
and the -s plural class.

6Further analysis indicates that individual survey participants rated a plural form they did not produce as better
than the form they did produce in fully one-third of cases.
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sentation, and another RNN which incrementally decodes that representation into an output

sequence. Following Kann and Schütze (2016), our decoder uses neural attention.

For our task of morphological transduction, the ED model takes character-level represen-

tations of German nouns in their singular form as inputs (e.g. ⟨𝑚⟩ h u n d ⟨𝑒𝑜𝑠⟩), and learns

to produce the noun’s inflected plural form (e.g. h u n d e ⟨𝑒𝑜𝑠⟩). Each character sequence

starts with ⟨𝑚⟩, ⟨𝑓⟩, or ⟨𝑛⟩, to indicate grammatical gender. Unlike English, the phonological-

orthographic mapping is straightforward in German, so we can use a written corpus for model

training. We keep a held-out dev set for hyperparameter selection, and a held-out test set to

asses the model’s accuracy in generalizing to unseen German nouns. In addition, the 24 M95

nouns were used for comparison with speaker behavior. They were presented to the model as

neuter gender, consistent with Study 1a.

Corpus We trained all models on the UniMorph v1 German data set7 (Kirov et al., 2016;

Sylak-Glassman et al., 2015), which provides the singular and plural forms of 11,243 nouns.

Only nominative case forms were used. Grammatical gender was obtained by merging the

Unimorph dataset with a more recent Wiktionary scrape containing this feature.8 Table 4.2

gives the distribution of plural suffixes for the UniMorph corpus overall, and for three relevant

subsets: nouns with neuter gender, monosyllabic nouns (like the M95 stimuli), and nouns

which were phonologically similar to the M95 stimuli, i.e. shared a rhyme. The number of

items in the train, dev, and test splits is shown (in parentheses) in Table 4.3.

Implementation Following K&C and Corkery et al. (2019), our model is implemented using

OpenNMT with their reported hyperparameters (after Kann and Schütze, 2016): 2 LSTM

encoder layers and 2 LSTM decoder layers, 300-dimensional character embeddings in the en-

coder, and 100-dimensional hidden layers in both encoder and decoder; Adadelta optimization

for training with a batch size of 20 and inter-layer dropout rate of 0.3; and a beam size of 12

for decoding during evaluation.

Since Corkery et al. (2019) found the ED model to be highly sensitive to initialization,

we trained multiple simulations with the same architecture, varying only the random seed.
7https://github.com/unimorph/deu
8https://github.com/gambolputty/german-nouns/ To ensure our results were not limited by the small

size of the UniMorph dataset, we also trained the model on this larger dataset, including about 65,000 nouns. As
the outcome was consistent with our findings here, we report results from the smaller model.
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Train Dev Test
99.9% (8694) 92.1% (1229) 88.8% (1320)

Table 4.3: Model accuracy (N) by UniMorph corpus split, averaged over 25 random initializations.

Test M95
Prec. Rec. F1 %R %NR 𝜌

/-(e)n/ .95 .95 .95 6.3 3.3 .28
/-e/ .86 .89 .87 68.3 91.7 .13
ø .96 .91 .92 0 0
/-er/ .83 .85 .84 21.7 2.7 .05
/-s/ .64 .56 .60 3.7 2.3 .33
other .37 .48 .42 0 0

Table 4.4: Model results by plural suffix for: (left) test set performance (averaged over plural seed);
(right) production percentages for rhyme (R) and non-rhyme (NR) M95 stimuli, and correlation (Spear-
man’s 𝜌) to speaker productions.

Reported results combine predictions from 25 separate random initializations. The one hyper-

parameter we tuned was early stopping. Best performance on the validation set was achieved

at 10 epochs, which was sufficient to memorize the training data.

Results The model achieves 88.8% accuracy on the held-out test set (Table 4.3). It performs

best on -en, the most frequent class (Table 4.4). Unsurprisingly, the worst performance appears

on the ‘other’ category, which comprises the long tail of idiosyncratic forms which must be

memorized (e.g. Latinate plurals Abstraktum → Abstrakta or other borrowings Zaddik →

Zaddikim). In keeping with the findings of Hahn and Nakisa (2000), -s is the plural suffix with

the worst generalization performance; this cannot be attributed to low frequency alone (c.f.

Table 4.2), as the model does much better on the similarly rare suffix -er .

We use the M95 stimuli to compare model predictions to speaker data from Study 1a.

The model shows an overwhelming preference for -e on these words (Table 4.4); roughly 80%

of its productions are -e, relative to 45% of speaker productions (Figure 4.1). In contrast,

the model rarely predicts -en, which speakers use 30% of the time. The model’s treatment

of Rhymes and Non-Rhymes is even farther off the mark: where speakers use -en and -s

more for Non-Rhymes relative to Rhymes, the ED model uses them less, producing -e for over

90% of Non-Rhymes. Following K&C and Corkery et al. (2019), we calculate the Spearman

rank correlation coefficient (Spearman’s 𝜌) between model and speaker production probabilities
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Study 1 (speakers) Study 2 (ED)
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Figure 4.1: Plural class productions by item.

within inflectional categories rather than across categories.9 This means that, for each potential

plural suffix, we compare speaker and model productions for that suffix on each individual M95

word. Table 4.4 reports the correlation for each suffix. None show a statistically significant

difference from the null hypothesis of no correlation.
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Figure 4.2: Distribution of plural classes by rank in ED model output.

Figure 4.2 shows the distribution of plural classes in the top 5 most likely forms predicted by

the model for each M95 word. While all of the model’s top-ranked predictions are well-formed
9For the English analyses in the prior works, this means calculating separate correlations for regular and irregular

forms.
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outputs in the sense that they conform to one of the main German plural classes, the lower-

ranked predictions are rapidly dominated by “other” forms which do not cohere to standard

plural production. An example from one model instance: the Rhyme input Spert had as its top

five predictions Sperte, Spelte, Spente, Sperten, and Fspern; the Non-Rhyme input Bneik had

Bneiken, Bneiks, Bneikke, Bneikz, and Bneikme. Corkery et al. (2019) observed instability in

the ranking of irregular forms in ED models trained on the English past tense; however, English

irregular forms are very diverse, which makes it difficult to draw broad conclusions about the

plausibility of lower-ranked forms in the model’s output. In contrast, the five main plural

suffixes for German cover 98% of the nouns in the UniMorph dataset, and 95% of speaker

productions on M95 stimuli in Study 1. The predominance of ill-formed plurals in lower-

ranked predictions10 suggests ED model scores may not be cognitively plausible analogues

to speaker behavior; if they were, we would expect forms with standard plural inflections to

receive consistently high rankings.

4.2.4 Discussion

The current study asks whether modern Encoder-Decoder neural models learn the full set of

correct generalizations — that is, human-like behavior — with respect to German number

inflection, which requires the learner to generalize non-majority inflectional classes. The short

answer is no: our model learns part of that set. In particular, it correctly identifies -e as the

‘best’ plural class for this context. -e is the most frequent class in the training data for similar

inputs (neuter gender, monosyllabic, phonologically close to M95; c.f. Table 4.2), and it is

also the plural suffix most frequently produced by speakers (Table 4.1). Like all plural classes,

-e does not characterize a majority of German nouns overall (Table 3.1), so the model has

technically learned to generalize a minority class in its appropriate context. Nonetheless, it

does not reproduce the behavior of survey participants in response to the same stimuli, which

shows a more variable distribution over plural classes and different generalization patterns for

Non-Rhymes relative to Rhymes.

This outcome is not surprising when one considers that the model is trained to produce one

correct form rather than a distribution over plausible forms; however, this is exactly the task

10Interestingly, while less frequent classes such as -s and ø appear more often in the model’s lower-ranked outputs,
the class -en is almost never predicted — despite being the second most frequent class in speaker data productions.
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faced by human language learners as well. All the models of morphology discussed here assume

that exposure to correct forms alone should suffice for learning speaker-like behavior. Corkery

et al. (2019, 3872, fn. 4) note that training on single target forms produces highly skewed

ED model scores, with a great deal of probability mass on the top-ranked form and instability

in lower rankings, but that training on a distribution would not be a cognitively plausible

alternative. However, it could be the case that German speakers do regularly encounter variable

realizations of plural forms. Köpcke observes that German plural inflection shows regional

variation, for example northern speakers using -s (die Mädels ‘girls’) where southern dialects

prefer -en (die Mädeln). Incorporating dialect-informed variability into training might be one

way to encourage neural models toward speaker-like generalization.11

Parallel issues arise for model evaluation: how should we evaluate models of production

when the target output is a distribution? On simplified versions of the task, such as clas-

sification (Hahn and Nakisa, 2000), the output distribution is constrained within a space of

plausible forms, but sequence-to-sequence models deal with the open-ended domain of all

possible strings. For encoder-decoders, the likelihood scores produced during beam-search

decoding offer an intuitive option, and K&C use these scores to evaluate their model with re-

spect to Albright and Hayes’ wug data; however, Corkery et al. (2019) demonstrate that these

model scores are not a suitable metric for that comparison. Our results provide further evi-

dence that lower-ranked ED predictions do not reflect cognitively plausible distributions: they

contain many ill-formed outputs, and omit inflectional classes such as -en, which is prevalent

in speaker productions. An alternative to model scores is to treat each randomly initialized

instance of a model as an individual, and compare aggregate productions with speaker data

(Goebel and Indefrey, 2000; Corkery et al., 2019). For our experiments, this did not produce

the distribution observed in the speaker data. The discrepancy between speaker production

and rating preferences poses another challenge, as it’s not clear how the ED model might

represent these different task modalities.

Beside variability, the other key discrepancy between speaker and ED behavior is the treat-

ment of Non-Rhyme words. If German has a default plural class, it should be realized more

11Like previous studies on these stimuli, our Study 1 did not collect data on speakers’ dialect background; we
are addressing this issue in follow-up research. We note that Study 1 began with an onboarding task prompting
speakers to inflect existing nouns in Modern High German, which hopefully primed use of the standard variety for
the following tasks.
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often on these phonologically atypical stimuli than the more familiar Rhyme words. Speakers

in Study 1 use -s and -en more for Non-Rhymes than for Rhymes. These results are consistent

with earlier studies: M95 found that -s was the only plural form to receive higher average

ratings for Non-Rhymes compared to Rhymes, and Z&L found that speakers produced both

-en and -s more often for Non-Rhymes. In contrast, the ED model appears to treat -e as a

default, producing -e inflections for under 70% of Rhymes but over 90% of Non-Rhyme inputs.

This asymmetry suggests that the model has not induced the full set of correct generalizations

for German plural inflection — it has not recognized which plural classes are more productive

for phonologically atypical nouns. In fact, the model’s preference for -e, the most frequent (if

non-majority) suffix, is the behavior anticipated by M95: “frequency in the input to a pattern

associator causes a greater tendency to generalize” (1995, 215). It seems that the produc-

tivity of less frequent inflectional classes continues to challenge neural models and limit their

cognitive application.

4.2.5 Conclusions

German number inflection has been claimed to have distributional properties which make it

difficult for neural networks to model. Our experimental speaker data does not necessarily

support all of these claims; in particular, -s does not appear to be the only plural suffix

which speakers treat as a ‘default’ for phonologically unfamiliar words, as the more frequent

marker -en shows similar trends. Nonetheless, the German plural system continues to challenge

ED architectures. Our neural model struggles to accurately predict the distribution of -s

for existing German nouns. On novel nouns, it generalizes the contextually most frequent

plural marker -e; its predictions are less variable than speaker productions, and show different

patterns of response to words which are phonologically typical (Rhymes) as opposed to atypical

(Non-Rhymes). Regardless of the minority-default question, it seems that ED models do not

necessarily function as good cognitive approximations for inflectional systems like German

number, in which no class holds the majority.
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4.3 Additional Results

The following section presents additional modeling results from later experiments, and com-

pares them to the findings reported by McCurdy, Goldwater and Lopez (2020). The modeling

results (§4.3.1) motivate further analysis of the speaker data, also reported here (§4.3.2). This

process aligns with the perspective advanced by Baroni (2022): computational models can be

viewed as algorithmic linguistic theories which generate testable behavioral predictions.

The main finding presented here is that the recurrent neural encoder-decoder model under

consideration (ED; Kann and Schütze, 2016; Kirov and Cotterell, 2018) can learn to generalize

-s more to the phonologically atypical Non-Rhyme stimuli developed by Marcus et al. (1995),

provided it is trained on wordforms alone — that is, without exposure to grammatical gender

in the input. Furthermore, the model’s generalization patterns are unexpectedly informative

with respect to speaker behavior. The ED does not use -s for all of the phonologically atypical

noun inputs, but only for a subset — specifically, nouns which end in -k. Modeling experi-

ments with the symbolic ATP model proposed by Belth et al. (2021) show the same pattern.

Further analysis of the speaker data reveals that nouns ending in -k likely drive the effect in

-s production on these stimuli for speakers as well.

In other words, the findings presented here directly contradict the claim which concludes the

introduction of McCurdy, Goldwater and Lopez (2020): “The model may correctly identify the

most frequent class, but fails to learn the conditions under which minority classes are productive

for speakers.” It turns out that the ED can both correctly identify the most frequent class, and

— under a certain training regime — correctly identify the conditions under which speakers

generalize the minority class -s. We discuss the implications of this finding in §4.4.

4.3.1 Modeling Experiments and Results

Motivation

It is not immediately obvious why one would remove grammatical gender from the nouns

provided as input to the ED. German speakers are undoubtedly exposed to the articles which

mark noun gender, so removing indicators of gender creates an apparent asymmetry between

the training environment of the neural model and that of human speakers.

The idea to train an ED model without grammatical gender was suggested by an anonymous
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reviewer for a gender-focused submission to AMLaP (McCurdy, Lopez and Goldwater, 2020b).

That experiment is reported in Chapter 5. In the course of that analysis, we discovered that

the ED trained on wordform alone showed a higher correlation to speaker productions than

the ED trained on wordform and grammatical gender. This finding motivated us to analyze -s

production for wordform-only EDs, leading to the results reported here.

We additionally train and evaluate the symbolic ATP model for two reasons. Firstly, Belth

et al. (2021) analyze the speaker data released by McCurdy, Goldwater and Lopez (2020), and

report that the ATP shows a higher correlation to speaker productions than the ED discussed

in our original paper. This suggests that, like the ED trained without gender, the ATP shows

a better statistical approximation to speaker behavior. Their model, however, was trained on

a smaller amount of data drawn from a different source (namely, a noun lexicon extracted

from child-directed adult speech in CHILDES; MacWhinney and Snow, 1985) — we can’t be

sure that this advantage holds when using the same training data as the ED. Secondly, the

ATP proved capable of learning an -s default rule for German plural inflection, at least when

trained on the acquisition data extracted by Belth et al. Under the theory advanced by Marcus

et al. (1995), this capacity should substantially contribute to speaker-like generalization. By

training ATP models on the same data as our EDs, we can see whether it also learns an -s

default rule in this setting — and if so, whether application of the -s default rule leads to more

speaker-like predictions compared to the ED.

ATP Model

The “Abduction of Tolerable Productivity” (ATP) model proposed by Belth et al. (2021) is a

rule-based symbolic learner. In keeping with the classical linguistic tradition of ordered rules

(e.g. Chomsky and Halle, 1968), each rule comprises an input condition (expressed on the

Left-Hand Side: LHS) and associated structural change (on the Right Hand Side: RHS). As

a running example, we will consider a rule which assigns the -(e)n plural to feminine German

nouns. This rule might look as follows: [+F] → -(e)n.

Given an input lexicon of wordforms and features, where each word has a paired structural

transformation (e.g. a plural inflection class as shown in our example), the ATP generates

candidate rules based on the combinations of features and transformations observed in the

data, and selects a winner based on the Tolerance Principle criterion described below. The
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words which match the input condition (the LHS) of the winning rule are then removed from

consideration, and the process is repeated on the remaining data. For example, if the [+F]

→ -(e)n rule happened to be selected, the ATP would then remove all feminine nouns from

consideration (including exceptions, i.e. feminine nouns which do not take -(e)n) and generate

a new set of candidate rules based on the remaining data. This process recursively partitions

the input lexicon, resulting in a decision tree of productive rules and stored exceptions.

The Tolerance Principle (Yang, 2016) provides a simple data-driven criterion for rule ap-

plication. The rule threshold is 𝑁
ln(𝑁) , where 𝑁 is the number of items (in our case, word

types) which match the LHS input condition of a candidate rule. According to the Tolerance

Principle, if the number of exceptions to a rule is less than 𝑁
ln(𝑁) , then the rule is productive.

Consider our running example [+F] → -(e)n. Within a particular dataset or dataset partition,

this rule is productive if the number of feminine nouns which take -(e)n (i.e. the nouns for

which the rule is true) is greater than the Tolerance Principle criterion (i.e. 𝑁 − 𝑁
ln(𝑁) , where

𝑁 is the total number of feminine nouns). Yang (2016, §4.4) applies the Tolerance Principle

to German plural inflection, using a noun lexicon drawn from child-directed speech. In his

analysis, [+F] → -(e)n is the first rule to reach productivity under this criterion.

The ATP combines the Tolerance Principle criterion with a system to generate and select

candidate rules in the form described above. The LHS of candidate rules are generated by

exhaustive search through two possible types of input conditions: 1) orthographic sequences

of 1-6 characters at the ending of the input wordform, or 2) morphological features provided

as labels with the data. For example, the set of features under consideration for the noun

Reservierung would comprise the set of stem endings {g, ng, ung, rung, erung, ierung} and

the feminine gender feature +F if included in the input. The RHS of candidate rules comprise

all transformations observed with those features in the data; in the case of Reservierung, this

means each LHS feature generates a candidate rule mapping to the -en plural. Candidate rules

can be disjunctively combined when the all input conditions are orthographic features which

independently meet the Tolerance Principle criterion, e.g. [ung‖heit‖keit] → -en. If multiple

candidate rules pass the Tolerance Principle criterion, the ATP selects the rule which has the

fewest exceptions. If no candidate rules are productive by this criterion and 𝑁 is small, the

ATP falls back on majority rule. If 𝑁 is big on the LHS, or there is no majority output class

on the RHS, all the words which match the input condition are stored as exceptions under a
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“failed” node. By design, the ATP is effectively deterministic for a given dataset: it will always

learn the same decision tree over a particular set of input words.

An ATP model which has learned a particular decision tree can classify words not observed

in its vocabulary. The inference procedure starts at the first rule in the decision tree. If the new

word matches the input condition of the first rule, and does not appear on the list of memorized

exceptions to that rule, then the ATP predicts the output transformation associated with that

rule. If the word does not meet the input condition, then it is evaluated at the next node in

the tree. If the word reaches a “failed” node where no productive rule has been identified, the

ATP assigns the output classification of the most similar word stored at that node, based on

string edit distance.12

Method

To train the wordform-only neural model, we use the same method as McCurdy, Goldwater

and Lopez (2020), with one key difference: grammatical gender is not included in the input to

the model during training or evaluation. The ED model takes character sequences of German

nouns in their singular form as inputs (e.g. H U N D), and learns to produce the noun’s inflected

plural form (e.g. H U N D E). We use the same corpus (UniMorph) with the same training,

validation, and test splits. As before, we train 25 unique model instances with separate random

seeds.

The ATP requires a different training regime, as it is effectively deterministic for a given

dataset and requires no hyperparameter tuning. Since the validation set is not needed for

hyperparameters, we combine it with the training set, yielding a lexicon of 9923 nouns. We

then draw 25 independent samples of 8694 nouns, the same size as the training set used for

the ED. 25 separate instances of the ATP are trained on these samples. For comparison with

the RNN, we train the ATP under two different regimes: one with grammatical gender and

wordform, and one on wordform alone. In this chapter, we consider the predictions of the

wordform-only model, but both versions of the ATP are evaluated in Chapter 7.

Following McCurdy, Goldwater and Lopez (2020), both models are evaluated on the novel

noun stimuli developed by Marcus et al. (1995).

12This procedure means that the ATP might qualify as a dual-mechanism model, as discussed in §3.2.1.
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Figure 4.3: Distribution of predicted plural class for Marcus et al. stimuli. Both the neural
RNN Encoder-Decoder (ED) model and the symbolic ATP model predict -s more frequently
for phonologically atypical nouns (“Non-Rhymes”) compared to typical stimuli (“Rhymes”).

Results

We find that, when trained on wordforms only, both the ED and the ATP model produce -s more

often for phonologically atypical stimuli (Fig. 4.3). To assess whether this pattern is statistically

reliable, we fit a separate binomial generalized linear mixed effect model to the ED and ATP

predictions using the lme4 package (Bates et al., 2015) in R (R Core Team, 2023), with random

intercepts for model instance (seed) and item (input wordform), and phonological typicality

(rhyme vs. non-rhyme) as the fixed effect. We find that the ED produces -s significantly more

for phonologically atypical nouns (𝛽 = 3.53, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 1.35; 𝑧 = 2.6, 𝑃𝑟(> |𝑧|) = 0.0091 ∗ ∗),

but the effect is not significant for the ATP (𝛽 = 2.68, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 1.98; 𝑧 = 1.35, 𝑃𝑟(> |𝑧|) =

0.18).

The -k confound Fig. 4.4 plots the distribution of plural class predictions for each item in

the evaluation stimuli. If we focus on -s predictions, a clear pattern emerges: both the ED

and ATP predict -s almost exclusively for input words ending in -k (e.g. Snauk, Pläk, Bneik),

even though no single item receives a majority of -s predictions from either model. All of the

stimuli which end in -k happen to fall in the category of phonologically atypical nouns, which

strongly suggests that this confound drives the typicality effect described above.

Statistical analysis further supports the appearance of a -k effect, rather than a phonological
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Figure 4.4: Distribution of predicted plural class for Marcus et al. stimuli by item. Both the
neural RNN Encoder-Decoder (ED) model and the symbolic ATP model predict -s almost
exclusively for nouns ending in -k, which all happen to be phonologically atypical nouns.

typicality effect. We fit another binomial mixed effect model to the prediction data with the

same structure described above, but this time we use a binary variable for noun ending (-k vs.

other) as the fixed effect rather than phonological typicality. This analysis finds significantly

higher -s production for -k-ending nouns for both the ED (𝛽 = 4.13, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 0.87; 𝑧 =

4.8, 𝑃𝑟(> |𝑧|) = 0.000 ∗ ∗∗) and the ATP (𝛽 = 4.2, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 1.5; 𝑧 = 2.8, 𝑃𝑟(> |𝑧|) =

0.005 ∗ ∗). Unsurprisingly, an ANOVA comparison finds that -k-ending is a better statistical

predictor than phonological typicality in both cases. The Bayesian Information Criterion (BIC)

for models with phonological typicality is 237 for the ED predictions and 143.7 for the ATP;

using -k-ending as the fixed effect instead yields lower BICs of 222.3 and 138.6 respectively,

indicating a better model fit. Adding phonological typicality does not significantly improve the

fit of either generalized linear model. These findings show that lemmas ending in -k are the

clear statistical driver of -s assignment for both the neural ED and symbolic ATP.

The origin of the -k effect is apparent if we inspect the UniMorph German noun lexicon

used to train both models. In UniMorph, approximately 15% of nouns ending in -k take the

-s plural suffix. This is by far the highest proportion relative to all the other singular noun

endings represented in our novel noun stimuli (Table 4.5).

105



106 4.3. ADDITIONAL RESULTS

k t n f l d g r h
15.1 4.4 3.0 2.7 2.4 1.4 1.3 1.3 0.7

Table 4.5: Percentage of singular nouns with a given ending which take an -s plural, calculated
from UniMorph v1 Sylak-Glassman et al. (2015).

Does the ATP learn a minority default representation? One of the motivations for training

and evaluating the ATP is its capacity to learn a default -s rule, as reported by Belth et al.

(2021). Following their interpretation, we consider an ATP model to have a default rule if and

only if it assigns a particular class when no input condition is met (the elsewhere condition;

§2.1.3). We manually inspect the learned decision tree for each of the 25 trained ATP instances

and find that none of them learn a default rule for any plural class, -s or otherwise. In fact,

when trained on wordform alone,13 no ATP instance learns a productive rule to generalize the

-s plural, which implies that the -s-k association found in these results is driven by the ATP’s

analogical fallback mechanism.

4.3.2 Speaker Data Analysis

Motivation

The analysis in the preceding section demonstrates that a neural model of German plural in-

flection, when trained on the orthographic form of words alone, can capture the key speaker

behavior found by both Marcus et al. (1995) and McCurdy, Goldwater and Lopez (2020): a

statistically reliable increase in -s assignment for the phonologically atypical nouns in their stim-

uli. Furthermore, both neural and symbolic computational models predict that -s assignment

should largely appear on those atypical stimuli which end in -k. The latter finding motivates

our current investigation: is the -s typicality effect we observe in speaker behavior actually a

-k-ending effect instead?

Given that speaker behavior is much more variable than both models’ predictions, we might

not expect to see such a clean divide. The difference between speaker and model behavior

is obvious when one visually compares Fig. 4.4 to Fig. 1 of McCurdy, Goldwater and Lopez

(2020). For every item in our stimuli, one or more speakers produce an -s plural form; compare

this to the RNN and ATP, which never predict -s for most items. However, despite the increased
13When trained on wordform and grammatical gender, the ATP sometimes learns productive rules to generalize

-s; however, they are never default rules. For example, one ATP instance formalizes the -s-k association as part of
a rule generalizing -s to words ending in -a, -i, -k, -o, -p, -u, -y, -on, -pot.
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Figure 4.5: Speaker productions from McCurdy, Goldwater and Lopez (2020), with phonologi-
cally atypical nouns further subdivided by ending with -k. Speakers produce -s more frequently
for the 7 atypical nouns ending in -k; for the other 5 atypical nouns, speakers produce -s at
rates equivalent to the 12 typical nouns.

variability in speaker data, they do appear to produce -s more often for nouns ending in -k, as

shown in Fig. 4.5.

Reanalysis of McCurdy, Goldwater and Lopez (2020)

We follow the same statistical procedure as above to evaluate whether phonological typi-

cality or -k-ending provides a stronger account of speaker -s production. Using a bino-

mial generalized linear mixed effects model with random intercepts for item and participant,

we find the same phonological typicality effect reported by McCurdy, Goldwater and Lopez

(2020): speakers produce -s significantly more for phonologically atypical words (i.e. Non-

Rhymes; 𝛽 = 0.6, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 0.3; 𝑧 = 1.98, 𝑃𝑟(> |𝑧|) = 0.048∗;𝐵𝐼𝐶 = 1158.1). However,

similar to the model results discussed in §4.3.1, we find a larger effect and better statis-

tical fit if we use ending in -k as the fixed effect predictor instead (𝛽 = 1.09, 𝑠𝑡𝑑.𝑒𝑟𝑟 =

0.28; 𝑧 = 3.94, 𝑃𝑟(> |𝑧|) = 0.0001 ∗ ∗∗;𝐵𝐼𝐶 = 1149.2). If we include both -k-ending and

phonological typicality as main effects in our model, it finds a significant effect for the for-

mer (𝛽 = 1.2, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 0.37; 𝑧 = 3.19, 𝑃𝑟(> |𝑧|) = 0.001 ∗ ∗), but not the latter(𝛽 =

−0.15, 𝑠𝑡𝑑.𝑒𝑟𝑟 = 0.35; 𝑧 = −0.42, 𝑃𝑟(> |𝑧|) = 0.67). Furthermore, an ANOVA compari-

son finds that the model with both typicality and -k-ending as predictors does not provide a

significant improvement over the model with only -k-ending (𝜒2 = 0.18; 𝑃𝑟(> 𝜒2) = 0.67).

These results indicate that speakers, like the models discussed above, tend to increase -s
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Figure 4.6: Distribution of average item ratings by phonological typicality and presentation
category (data from Marcus et al., 1995, Appx. 3). For -s plural forms (top row) in the Root
and Borrowing categories (upper left / upper middle), average ratings for atypical nouns ending
in -k are significantly higher than both typical nouns and atypical nouns with other endings.
This -k-ending asymmetry does not appear for other plural endings (lower row). There is
also no asymmetry for -s plural forms in the Name category (upper right), where ratings are
generally high because -s is the required plural class for German proper names.

production for lemmas ending in -k. Because -k-ending is confounded with phonological atyp-

icality in the Marcus et al. stimuli, it appears that speakers produce -s more for phonologically

atypical Non-Rhymes. However, phonological typicality has no predictive power independent

from ending in -k; when this confound is directly included in the model, we find no statistical

support for the hypothesis that speakers produce -s more for atypical Non-Rhymes.

Reanalysis of Marcus et al. (1995)

The item-level rating data published by Marcus et al. (1995, Appx. 3) lends further support

to the hypothesis that -s preference is driven by -k-ending words rather than phonological

typicality. As shown in Figure 4.6, participants gave higher average ratings to -s plural forms

for nouns ending in -k in the Root and Borrowing categories, while all nouns that did not

end in -k received similar -s plural ratings regardless of phonological typicality. This -k-ending
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asymmetry in -s plural rating is not apparent in the Name category, but its absence likely

reflects a ceiling effect: -s is the grammatically required plural class for proper names in

German, so nearly all -s plural forms received high ratings in this category.

To further evaluate the -k-ending hypothesis, we perform a statistical reanalysis of the

rating data. Following the interpretation of Zaretsky and Lange (2016), we assume that the

experimental presentation of McCurdy, Goldwater and Lopez (2020) is likely closest to Marcus

et al.’s Root category: participants presented with bare nouns might consider them as German

root words, but would not likely consider them borrowed nouns or proper names without

contextual evidence. For this reason, we focus on rating data from the Root category. In

their original ANOVA analysis of nouns presented as Roots, Marcus et al. found that -s plural

ratings were higher for atypical Non-Rhymes compared to typical Rhymes: “the difference was

significant by subjects, 𝐹(1, 47) = 7.69, 𝑝 < .01, though not by items, 𝐹(1, 22) = 5.47, 𝑝 =

.16” (1995, p. 237). Without access to fine-grained data, we cannot perform the mixed-effects

analysis as in the previous section. We can, however, use the average ratings to perform item-

level ANOVA analysis and compare the results.

Our statistical reanalysis supports the -k-ending hypothesis. We first run an ANOVA by

items to reproduce the result reported above. For -s plural forms in the Root category, we do not

find significant effect of phonological typicality on average rating (𝐹(1, 22) = 2.20, 𝑝 = .15).

This is broadly the same result reported by Marcus et al., despite a minor discrepancy between

the two calculated F values. If, however, we instead consider the effect of ending in -k, the

ANOVA reveals a significant effect on -s plural ratings (𝐹 = 11.82, 𝑝 = .002). We find

further evidence for the importance of -k-ending items through model comparison. The first

ANOVA model, with only phonological typicality as a predictor, sees a significant improvement

in model fit by adding -k-ending as an independent predictive factor (𝐹 = 8.83, 𝑝 = 0.007).

The converse, however, is not true: if we start with -k-ending as the only predictor, we

see no significant gain in model fit by adding phonological typicality (𝐹 = 0.34, 𝑝 = .57).

We find a consistent pattern in both the rating data collected Marcus et al. (1995) and the

production data collected by McCurdy, Goldwater and Lopez (2020): while there is some

statistical evidence that German speakers prefer -s plurals for phonologically atypical Non-

Rhyme stimuli, we have stronger evidence that speakers prefer -s for nouns ending in -k, and

this confound most likely drives the typicality effect in both studies.
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4.4 Discussion

The additional results presented in §4.3 lead us to critically revise the conclusions of McCurdy,

Goldwater and Lopez (2020) with respect to both speaker and model behavior.

In terms of speaker behavior, we find no support for the hypothesis that speakers prefer

to generalize -s to nouns which are phonologically atypical. Instead, our statistical analysis

indicates that speakers have a slightly higher tendency to generalize -s to nouns which end

in the letter -k, which is confounded with phonological atypicality in the stimuli developed by

Marcus et al. (1995). The -k confound means that these stimuli are not suitable to evaluate

the effects of phonological typicality. In principle, it is still possible that German speakers may

show some systematic behavior in generalizing plural inflection to phonologically atypical novel

nouns, in a way that differs from generalization to phonologically typical nouns; however, the

behavioral evidence presented by Marcus et al. (1995) and McCurdy, Goldwater and Lopez

(2020) does not provide any statistical support for this hypothesis. In fact, having accounted

for the lexical confound driving the apparent phonological typicality effect, we are left with a

highly variable distribution of inflection class assignments — this variation appears to be the

most stable and noteworthy aspect of how German speakers generalize plural classes to these

stimuli. We discuss this and its implications for the minority default hypothesis below.

On the computational modeling side, we find both neural and symbolic models trained on

orthographic wordform alone can achieve speaker-like generalization of the -s plural class: like

German speakers, they prefer to assign the -s plural class slightly more frequently to novel

nouns ending in -k. Both models still differ from speakers by showing less variation in plural

class generalization broadly, but they capture the key conditions informing -s generalization.

This raises an obvious question: why did McCurdy, Goldwater and Lopez (2020) find such

different results when evaluating an ED trained on wordform and grammatical gender? We

consider this question below, and further explore the effects of grammatical gender on ED

generalization in Chapter 5.

4.4.1 No evidence for minority default in speaker plural generalization.

Our statistical analysis of speaker behavior in §4.3.2 indicates that ending in -k, rather than

phonological atypicality, drives the -s effect found by Marcus et al. (1995) and McCurdy,
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Goldwater and Lopez (2020). What are the implications for the minority default hypothesis?

Marcus et al. (1995) present two different types of evidence for the minority default analysis

of -s in German: linguistic analysis of the distribution of -s in the German noun lexicon

(§3.2.1), and results from their behavioral experiments (§3.3.2). Of these two, the status of

the former evidence is not under dispute. It is a fact about the German language that, compared

other plural classes, the -s plural suffix appears in a more diverse and heterogeneous set of

phonological and grammatical environments; this is apparent in the descriptive lexical statistics

reported in §3.1, for instance Table 3.3 and Figures 3.1 and 3.2. The behavioral experiment

is designed to yoke these two broad categories of evidence together by demonstrating that

speakers generalize the -s form to novel words in ways that reflect this heterogeneous lexical

distribution.

Marcus et al.’s experiment targets three different aspects of the “elsewhere distribution”

of -s — its application to proper names, to lexical borrowings from other languages, and to

phonologically atypical nouns which are dissimilar to the existing noun lexicon (see examples in

Table 3.7). Of these three categories, the latter effect of phonological typicality has generally

been taken to provide the strongest evidence in favor of the minority default hypothesis. Proper

names generally take the -s plural class in German, but it is not obvious that this reflects “de-

fault” circumstances as opposed to special treatment of proper names, which occurs in many

languages (e.g. Indefrey, 1999; Stemberger, 2006). Borrowings are a somewhat more compli-

cated category. It is difficult to conceptually distinguish borrowed and phonologically atypical

words: words from other languages often have phonological properties which are not found in

the language “receiving” the new term, and this phonological atypicality is often invoked to

explain special treatment of borrowed words. On the other hand, Marcus et al. found that

their participants assigned higher ratings to -s plural forms of the same words when they were

presented as borrowings rather than roots, and this difference was statistically significant. This

result suggests an effect of lexical borrowing which is independent of phonology. Nonetheless,

phonological atypicality arguably accounts for a large portion of the borrowing effect. Consis-

tent with this premise, we observe that participants in the Marcus et al. study gave higher

ratings on average to all plural forms of atypical nouns in the “Borrowing” category, and this

effect nearly reaches statistical significance (𝐹(1, 154) = 3.84, 𝑝 = 0.052). It seems that

phonologically atypical words may be more plausibly considered as borrowings regardless of
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their plural inflection class. Given the disputed status of proper names and strong interaction

between phonology and borrowing, the phonological typicality effect becomes Marcus et al.’s

core experimental evidence showing that speakers generalize -s under default conditions.

The Brain and Behavioral Sciences review by Clahsen (1999b) further confirms that phono-

logical atypicality is central to the minority default analysis of -s generalization.14 In §4.2.1,

he points to the phonological typicality effect found by Marcus et al. to support the claim

that “-s plurals are applied elsewhere, even to nouns that are not similar to any existing

German word” (1999b, 997). In §5.1.2, he cites a rating experiment using the same stimuli

with German-speaking children, which found they also preferred -s plurals for phonologically

atypical Non-Rhymes as well as proper names (Bartke et al., 1995). In his author response,

Clahsen again highlights the phonological typicality effect found by Marcus et al. as evidence

that “adults do indeed generalize -s plurals to nonrhyming real words and to foreign words

in German” (1999a, 1049). And in §4.6, he critiques the neural models developed by Hahn

and Nakisa (2000) and Goebel and Indefrey (2000) for their failure to generalize -s under

default circumstances. In particular, Goebel and Indefrey’s recurrent model learned to apply

-s to nouns ending in -o, which are phonologically similar to existing -s plural words; how-

ever, it “failed to generalize -s under no-similarity conditions,” i.e. to phonologically atypical

Non-Rhymes, and thus “does not capture the generalization properties of -s plurals” (1999b,

1005).15 The message is clear: -s generalization based on phonological similarity, i.e. posi-

tive association with existing words, is not consistent with the minority default hypothesis —

speaker-like -s generalization must reflect only dissimilarity, i.e. phonological atypicality or

negative association with existing words, to constitute default elsewhere application.

Our reanalysis of speaker data in §4.3.2 indicates that, due to confounded stimuli, neither

Marcus et al. (1995) nor McCurdy, Goldwater and Lopez (2020) provide behavioral evidence

for the minority default hypothesis of -s generalization expressed by Clahsen (1999b). Instead,

speaker data from both studies points toward a numerically small but robust positive association

between -s generalization and nouns ending in -k, an association which reflects lexical statistics

14Note that Clahsen (1999b) discusses additional experimental evidence for the exceptional status of the German
-s plural based on existing words, including behavioral evidence from lexical decision tasks in different modalities,
and neuro-imaging experiments in which speakers read sentences with incorrectly inflected noun forms. Our
discussion centers on the role of -s in speaker generalization to novel words, so we restrict our consideration to
experiments which share this focus.

15As discussed in §3.4, Goebel and Indefrey’s model primarily learned a gender-conditioned default generalization
strategy.
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(c.f. Table 4.5) and can be learned by both neural and symbolic models of German plural

inflection (c.f. §4.3.1). These findings are broadly consistent with the Zaretsky and Lange’s

large-scale production study using the same stimuli. We could not evaluate the alternative -k-

ending hypothesis on their study as they did not release sufficiently fine-grained data; however,

their item-level analysis shows that the word-final phoneme of the singular noun has a significant

effect on speaker production of -s plural forms, an effect consistent with our interpretation

(2016, 167, Table 3). We are left with no robust behavioral evidence in favor of the minority

default hypothesis that speakers generalize -s based on phonological atypicality.

Limitations and future directions The analysis discussed above shows that -k-ending, rather

than phonological typicality, accounts for the difference in -s generalization on Marcus et al.’s

stimuli; once -k-ending is controlled for, we see no systematic distinction in how speakers treat

Rhyme and Non-Rhyme items. This evidence is compatible with the null hypothesis, i.e. no

effect of phonological typicality, but it cannot prove this hypothesis. Demonstrating this null

hypothesis would require testing with a broader range of stimuli carefully controlled against such

confounds to isolate the effect of phonological typicality, for instance systematically varying

phonological typicality for a range of stimuli ending in -k. Nonetheless, §4.3.2 refutes the

key piece of behavioral evidence for Marcus et al.’s minority default theory of the German

plural system. It shows that a statistical frequency association in the lexicon (between -k

and -s) better explains -s generalization than than the atypical elsewhere distribution, thus

supporting the predictability and type frequency criteria over the rule generation criterion for

morphological regularity (§2.1.1). As the burden of proof lies with proponents of the minority

default hypothesis, I consider this finding adequate for the purposes of this dissertation.

4.4.2 Models are overconfident relative to speakers.

Marcus et al. (1995) predicted that neural network models of morphological inflection would

fail to achieve speaker-like generalization of the German -s plural because, under the elsewhere

condition (§2.1.3), these models prefer to generalize frequent classes instead.

The type frequency hypothesis exploits a correlation: the inflectional form that

serves as the default in generalization is also the majority form in English. The

hypothesis assumes a causal relation: frequency in the input to a pattern associator
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causes a greater tendency to generalize. (Marcus et al., 1995, 215)

The predictions of the theory that all inflection is computed in a single pattern

associator are different, because pattern associators neither easily generalize low-

frequency suffixes, nor unite the different default circumstances (phonological and

derivational) as defaults. [...]

These models predict that -s should be eschewed across the board: driven only

by phonological similarity, the models should always prefer the more common -e,

-(e)n, and -er plural forms to -s, even for Non-Rhymes, since there is no reason

that very rare -s would scoop up the words that have lower similarities to existing

irregulars and no similarity to existing regulars. [...]

Given the rarity of -s plurals both typewise and tokenwise, though, it is unclear

whether it would learn that -s is also more applicable to unusual roots. (Marcus

et al., 1995, 233)

We can separate this prediction into two key claims. The first claim is that pattern asso-

ciators — i.e. neural network models — should not learn to assign the -s plural to Marcus

et al.’s phonologically atypical Non-Rhyme stimuli. This claim about -s is empirically false:

as shown by the results reported in §4.3.1, a neural ED trained without grammatical gender

can exploit the -k stimulus confound to produce more -s plurals for Non-Rhymes. It does

not appear to treat -s as the minority default class; however, this is unproblematic given the

analysis in §4.3.2, which indicates that German speakers also appear to generalize the -s plural

based on the -k confound, rather than treating it as a minority default. Nonetheless, it is true

that the ED does not reliably show speaker-like -s generalization: McCurdy, Goldwater and

Lopez (2020) found that an ED trained with grammatical gender did not increase -s plurals

for Non-Rhyme -k-ending stimuli.

The second claim is broader, and independent of the first: neural network models should

tend to generalize higher-frequency classes based on phonological similarity. Based on the

results reported in McCurdy, Goldwater and Lopez (2020) and §4.3.1, this perspective appears

generally correct, and accounts for some key properties of the ED’s plural generalization which

differentiates its behavior from the speakers in our experiment. In particular, model predictions

appear overconfident relative to speaker generalization behavior.
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Grammatical gender affects neural models’ -s generalization.

Why does a neural ED trained on wordform alone learn to generalize -s to nouns ending in -k

(§4.3.1), while an ED trained with wordform and grammatical gender does not (§4.2; McCurdy,

Goldwater and Lopez, 2020)? While it is difficult to say precisely, we know that grammatical

gender has a strong statistical association with inflection class in the German lexicon (Williams

et al., 2020), and we have evidence that neural network models are particularly sensitive to

this association (e.g. Goebel and Indefrey, 2000; McCurdy and Serbetçi, 2017; Dankers et al.,

2021). From this, we can speculate that the ED may attend to grammatical gender at the

expense of more subtle phonological cues, such as the relatively slight association between

nouns ending in -k and the -s plural class. This might be true even though all the evaluation

stimuli were presented to the model with the same grammatical gender, i.e. neuter (Das);

the mere presence of gender in the training data may suppress the model’s sensitivity to other

cues.

Does grammatical gender affect speaker generalization behavior in a similar way? McCurdy,

Goldwater and Lopez (2020) did not vary grammatical gender in presenting stimuli to speakers,

so that data cannot address this question. Marcus et al. (1995) did not evaluate gender effects

in their experiment, reporting only that grammatical gender did not show any interactions with

other factors of interest. Zaretsky and Lange (2016) used the same stimuli in their production

experiment, and found that grammatical gender yielded the most robust statistical influence

on plural class assignments; however, this did not appear to suppress speakers’ tendency

to generalize -s to phonologically atypical Non-Rhymes. Chapters 5 and 6 present further

behavioral experiments to investigate the effect of gender on speaker plural production.

Models, but not speakers, use phonological similarity to regularize.

Although it seems that computational models can capture the conditions under which speakers

generalize the -s class, if we visually compare their item-level productions in Fig. 4.4 to the

speaker data in Fig. 1 of McCurdy, Goldwater and Lopez (2020), we see that an interesting

divergence remains. At the population level, German speakers in our behavioral experiment

tend to produce a diverse and relatively consistent distribution of plural forms for each item in

the set of stimuli. By contrast, both the neural and symbolic model produce far more variability
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Figure 4.7: Percentage of productions per item for most frequent class for that item. ”-”
indicates a model trained on wordform alone, while ”+ gender” indicates a model trained on
wordform and grammatical gender. For any stimulus item, roughly 80-90% of the neural RNN
ED and symbolic ATP model instances agree on the plural class for that item, while on average
45-50% of speakers assign the same class to one item.

between items, and far less variability within items. -s productions are a good example of this.

Both the ED and the ATP predict -s plural forms almost exclusively for items ending in -k.

The ED has an -s prediction rate of 19% for -k-words compared to .5% for all other words,

and the respective ATP -s prediction rates are 10% and .2%. While speakers do produce -s

at significantly higher rates for words ending in -k, the difference in rates is much smaller: an

average of 8% -s plurals for -k-words, and 4% for all others. It appears that high variability

in speaker behavior is the most relevant and consistent difference to how models handle plural

generalization. We develop this point further in Chs. 6 and 7.

Marcus et al. observe that “frequency in the input to a pattern associator causes a greater

tendency to generalize” 1995, 215; because of this, they argue, neural models should always

prefer generalizing frequent plural classes instead the rare -s. If we consider the set of predic-

tions for each individual stimulus item shown in Fig. 4.4, we can see that both the neural ED

and the symbolic ATP do tend to generalize frequent classes. A majority of instances from

each model assign the -e plural to the majority of stimulus items, while a mere handful of

items receive a majority vote for the -(e)n or -er plural. This result, however, aligns well with

speaker behavior: the majority of speakers assign the -e plural to 19 stimulus items, and -(e)n

or -er to the remaining 5. It appears that speakers also tend to generalize frequent plural

classes in the majority of cases.

We so see, however, a divergence between models and speakers — not necessarily in which

plural classes receive majority assignments, but in how strongly the most frequent class is
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generalized. Fig. 4.7 shows the typical share of plural assignments to the most frequent class

per stimulus item, from each model and from speakers. We can see that models typically agree

on plural class assignments for a given stimulus item: across model instances, 80% or more

on average will often assign the same plural class to a particular item. By contrast, speakers

show much lower agreement — for any stimulus item, the most frequent plural class will be

assigned by 45-50% of speakers on average. The divergence, then, is not that computational

models generalize more frequent classes; it is that they generalize the most frequent class more

frequently, yielding an item-level uniformity that we do not observe from speakers.

Figure 4.7 also highlights an interesting distinction between the models trained with and

without gender. Both the ATP and the ED trained on wordform alone tend to agree more on

plural class assignments for phonologically typical Rhyme stimuli, and show greater uncertainty

for the phonologically atypical Non-Rhymes — including a higher proportion of rare -s plural

assignments. For the ED trained with gender, however, we observe the inverse trend: more

certainty for the phonologically atypical Non-Rhymes, and more diversity in predictions for

the Rhymes. In particular, the other minority class -er appears most often on neuter nouns

in the training corpus, so neuter gender presentation of the stimuli encourages the ED to

generalize -er to stimuli with phonological neighbors in UniMorph. Although this interaction

is not statistically significant under an ANOVA analysis of item-level entropy, the trend lends

support to the interpretation presented in the preceding section: grammatical gender appears

to substantially affect the phonological factors informing ED generalization, in this case shifting

the category of stimuli for which the model is uncertain.

In any event, Fig. 4.7 illustrates that speaker plural generalizations are highly variable

not only for phonologically atypical Non-Rhymes, but also for phonologically typical Rhymes.

We might expect more plural class agreement on these stimuli: Rhymes have phonological

neighbors in the existing German noun lexicon, and these neighbors would presumably influence

plural class assignments in a more unified direction. Indeed, the ED and ATP trained on

wordform alone show more agreement on phonologically typical Rhymes, likely for this reason.

For computational models, phonological similarity to existing words facilitates confident plural

class assignments. For speakers, we do not observe this: their plural generalizations are variable

not only for phonologically atypical nouns, where uncertainty would be understandable, but

also for nouns which are similar to familiar wordforms.
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4.5 Conclusion

This chapter has reviewed behavioral and computational evidence relevant to Marcus et al.’s

analysis of the German plural system. Their minority default theory posits that the plural suf-

fix -s is a rule-generated (§2.1.1) default class, shown by its negatively-conditioned elsewhere

distribution (§2.1.3). According to this analysis, German speakers generalize -s in heteroge-

neous default circumstances — such as to phonologically atypical nouns like Bneik — more

often than its low type frequency would predict. In Study 1 (§4.2; McCurdy, Goldwater and

Lopez, 2020), I reproduce this effect, finding that speakers reliably generalize -s more often

to Marcus et al.’s phonologically atypical Non-Rhyme stimuli. In §4.3, however, I find that

speakers use -s more often for the seven Non-Rhyme nouns like Bneik which end in -k; the

other five phonologically atypical nouns like Plaupf and Pröng are not assigned -s more often

than phonologically typical Rhyme nouns. Reanalysis of the original data (§4.3.2) indicates

that this stimulus confound likely accounts for Marcus et al.’s initial finding. Although a neural

ED trained with grammatical gender cannot reproduce this pattern (§4.2), neural and symbolic

models trained on wordform alone successfully show speaker-like increased -s generalization to

Non-Rhymes, also due to the -k-ending confound (§4.3.1). Considered as algorithmic linguistic

theories (Baroni, 2022), these models provide a superior account of speaker -s-generalization

behavior compared to the minority default hypothesis. Their predictions, however, are over-

confident — i.e. show much lower within-item variability — compared to speakers (§4.4),

and highly susceptible to grammatical gender. In Chs. 5 and 6, I assess whether grammatical

gender shows a similarly strong influence on how speakers generalize the plural .

I conclude that we have no behavioral evidence that speakers systematically differentiate

between phonologically typical and atypical nouns, or treat -s as a default class. Instead,

they reliably default to variation, generalizing a balanced distribution of plural classes to both

familiar and unfamiliar nouns. This distribution appears to track the lexical type frequencies

of plural classes. In Chs. 6 and 7, I formally evaluate the extent to which speakers probability-

match to lexical distributions.
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Chapter 5

Speakers don’t really use grammatical
gender

5.1 Introduction

This chapter investigates how grammatical gender affects plural class generalization in Ger-

man. In the previous chapter, I found that gender has a strong effect on how neural network

models perform on this task: a recurrent neural Encoder-Decoder (ED) model trained without

grammatical gender shows a speaker-like tendency to generalize the -s plural suffix to nouns

ending in -k, while the same model architecture trained with grammatical gender does not

capture this effect. In keeping with studies of other neural models (Goebel and Indefrey, 2000;

Dankers et al., 2021; Beser, 2021), the ED appears highly sensitive to grammatical gender,

preferring the conditional majority plural class within each gender — particularly the -en suf-

fix for feminine nouns. This sensitivity is consistent with certain theoretical analyses of the

German plural system. It clearly aligns with the rule-based gender default theory (§3.2.2);

moreover, given the high mutual information between gender and plural class (Table 3.3), it

also aligns with the predictability-based Low Conditional Entropy Conjecture (§2.1.2). The

behavioral literature, however, provides conflicting evidence on whether speakers are similarly

sensitive (§3.3.3).

Does grammatical gender show an equally strong influence on speakers’ plural generaliza-

tion? In this chapter, I answer this question with two behavioral studies using the same stimuli

developed by Marcus et al.. Study 2 (§5.2; McCurdy, Lopez and Goldwater, 2020a) counter-
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balances grammatical gender presentation for all stimuli; Study 3 (§5.3; McCurdy, Lopez and

Goldwater, 2020b) uses the same experimental design and offers participants additional finan-

cial incentives to converge on majority class productions. I find that, while speaker productions

show weak gender effects, they are consistently far less sensitive to grammatical gender than

predicted by the theoretical and computational models discussed above. Across both behav-

ioral experiments, speaker productions are more closely correlated to the predictions of an ED

trained on wordform alone, than to an ED trained with grammatical gender. Furthermore, the

financial incentive manipulation in Study 3 has almost no impact on speakers’ use of gender.

I conclude that German speakers are at most mildly sensitive to grammatical gender in plural

class generalization, and this outcome is incompatible with the strong gender effects predicted

by certain theoretical and computational models.

5.2 Study 2

The material in this section has been published as McCurdy, Lopez and Goldwater (2020a).

5.2.1 Introduction

In recent years, neural models of natural language have proven to be powerful statistical

learners, capable of representing linguistic patterns and the conditions under which they gen-

eralize to new forms (e.g. Kirov and Cotterell, 2018). Artificial language learning experiments

show that humans are also statistical learners: when patterns appear consistently with cer-

tain cues in the input, speakers consistently rely on those cues to generalize patterns to new

forms (Newport, 2016). Our research examines how two different statistical learners — neu-

ral encoder-decoder (ED) models and adult German speakers — use the cue of grammatical

gender in plural inflection of novel words. Gender has a high statistical association with plural

suffix: the feminine noun Wahl (“vote”) is Wahlen in the plural, but the rhyming neuter noun

Mal (“time”) has the plural form Male. We expect that both speakers and the ED model

will produce distributions over plural forms which are heavily conditioned on the gender of the

input word. We find that the neural model is highly sensitive to grammatical gender; however,

speaker productions appear more consistent with a distribution over plural suffixes which is

not conditioned on gender. This result suggests that, though gender is highly informative to
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Figure 5.1: Distribution of plural suffix overall (upper) and by gender (lower) in the UniMorph
corpus.

plural class, speakers may attend to different cues.

5.2.2 Background

Each German noun has two lexical attributes relevant to our analysis: its grammatical gender

and plural inflection class. A noun can have masculine, neuter, or feminine gender, typically

indicated by the preceding article. The other key lexical attribute, plural inflection class, is

indicated by the plural form of the noun. See §3.1 for more extensive background.

Of the two most frequent plural suffixes, -en is highly associated with feminine nouns,

and -e with nonfeminine (masculine and neuter). This statistical tendency is very strong (e.g.

Table 3.2), leading some researchers to analyze these suffixes as gender-conditioned default

classes (cf. §3.2.2, and §2.1.3 for discussion of linguistic defaults more broadly). While the

psycholinguistic evidence in this area is mixed (§3.3.3), recurrent neural network models have

shown robust sensitivity to grammatical gender in previous studies of plural generalization

(§3.4).

We hypothesize that neural models and adult speakers are equally capable of using the

information available from grammatical gender to predict number inflection. We expect both to

demonstrate similar probability-matching conditional on gender (cf. §3.3.1) to the distribution

shown in Figure 5.1 (lower), resulting in a majority use of -en for feminine nouns, and -e for
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masculine and neuter nouns.

5.2.3 Method

To compare how grammatical gender influences plural inflection for German speakers and neural

models, we use a parallel production task on nonce words (a wug test) for both speakers and

model. Our study largely follows the data collection and modeling procedures outlined in S1

(§4.2; McCurdy, Goldwater and Lopez, 2020).

Stimuli We use the 24 made-up nouns developed by Marcus et al. (1995) (Table 3.6). By

design, these nouns lack strong phonological cues to plural class (c.f. §3.3.2). In their original

study, Marcus et al. did not find a significant effect of grammatical gender; however, Zaretsky

and Lange (2016) used the same stimuli and reported gender effects in the expected direction —

participants used -en more on feminine nouns, and -e more for nonfeminine nouns. Zaretsky

and Lange speculate that these discrepant findings stem from differences in the two study

designs: scale (the earlier study had 48 participants, the later one 585) and task (acceptability

ratings vs. elicited productions). A third differentiating factor is the presence of semantic

cues in the Marcus et al. study, which provided sentence contexts around the nonce words; for

example, a sentence like Die grünen BRALS sind billiger (“The green brals are cheaper”) would

imply that the nonce word Bral referred to an object, whereas Die BRALS sind ein bißchen

komisch (“The Brals are a bit weird”) would imply that Bral was a family name. As adult

learners can attend to formal and semantic cues under different conditions (Culbertson et al.,

2017), it’s possible that this manipulation directed participant focus toward semantic cues

rather than grammatical gender. Zaretsky and Lange provided no semantic context in their

experiment, only presenting the indefinite article and word form to participants (e.g. Ein Bral,

“a [masculine/neuter] bral”). Our experimental design for both speakers and the neural model

is closer to that of Zaretsky and Lange (2016): we elicit plural form productions and provide

no semantic cues. This suggests we might also expect to find a robust effect of grammatical

gender for these stimuli.
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Human data collection We collected production data from 92 native German speakers1

through an online survey. Participants saw each noun in the singular with a definite article

indicating grammatical gender (e.g. Der Bral for masculine, Das Bral neuter, Die Bral femi-

nine), and typed a plural-inflected form. Participants were randomly assigned to one of three

lists. Grammatical gender was counterbalanced within lists (each participant saw 8 feminine,

8 masculine, and 8 neuter nouns) and across lists (each noun appeared with a different gender

in each list).

Encoder-decoder model We follow other recent work in using the architecture of Kann and

Schütze (2016), which has been proposed for cognitive modeling (Kirov and Cotterell, 2018,

cf. §2.3.3). For the task of German number inflection, the ED takes as input a character

sequence representing the singular nominative form of a noun, preceded by a special character

for grammatical gender (e.g. ⟨𝑓⟩ w a h l; ⟨𝑓⟩ indicates feminine, ⟨𝑚⟩ masculine, and ⟨𝑛⟩

neuter). The model is trained to produce the noun’s corresponding nominative plural form as

output (e.g. w a h l e n). We used the 11,243 German nouns in UniMorph (Kirov et al.,

2016) as our corpus, and added noun gender by merging the dataset with another Wiktionary

scrape.2 Please see §4.2 for implementation details.

Following Corkery et al. (2019), we trained 25 separate random initializations of the same

model architecture. This allows separate model instances to be treated as simulated “speakers”,

letting us aggregate productions and compare more directly to human speaker data. For

evaluation, we combined each of the 24 noun stimuli with each of the three grammatical

genders, and provided the resulting 72 items as input to each model instance.

5.2.4 Results

Our results (Figure 5.2) show that both speakers and the ED model are sensitive to gram-

matical gender, but the model relies on this cue considerably more than speakers. Statistical

analysis confirms that a) both speakers and the model show reliable effects of grammatical

gender on their plural form productions, and b) gender effects are substantially greater for

model productions. We fit two separate mixed-effect binomial logistic models using the lme4
1Participants were recruited through the platform Prolific. Of 100 tested, 8 were excluded for failing attention

checks.
2https://github.com/gambolputty/german-nouns/
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Figure 5.2: Plural suffix productions by gender, speakers (lower) vs. ED model (upper)

package (Bates et al., 2015) in R (R Core Team, 2019). Item (i.e. stimulus word) and subject

(participant for human study, random seed for ED model) were included as random effects.

Both models were fit using a stepwise procedure. We started with a baseline model of inter-

cept plus random effects and incrementally added the following fixed effects (with sum-coded

contrasts): grammatical gender (masculine coded as 1, neuter as 2, feminine not contrasted),

data source (ED model coded as 1, speakers not contrasted), gender by source interaction.

Each additional fixed effect produced a significantly improved fit as measured by a chi-squared

test.

The final model for both -e and -en production includes all fixed and random effects

described above. For both plural suffixes, model results indicate a significant main effect of

gender from both speakers and the ED model, and a significant interaction with data source,

corresponding to a stronger effect of gender from ED model productions. For -e productions,

there is also a main effect of data source: the ED model reliably produces -e more than speakers

do overall. The -en model shows no significant main effect for source. When model predictions

are transformed to responses and fit to the original data, the binomial model of -e production

achieves an overall predictive accuracy of 75% (precision 0.77, recall 0.79, F1 0.78), while the

-en model has 82% predictive accuracy (precision 0.71, recall 0.59, F1 0.65).
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Figure 5.3: Individual speaker variation in plural suffix production by gender. Each speaker
saw 8 words from each gender, shown on the y-axis. For each gender and plural suffix, the
boxes indicate the median and interquartile range of individual speaker productions for that
combination. For all gender categories, the median number of -e productions is 4, while the
median number of -en productions is 3.

Sanity checks As human speakers show high inter-participant variability on this task (Fig.

5.3), we performed additional separate analysis on the speaker data.3 We fit the same model

as previously described, with the exception that the data source factor was omitted, as all data

came from speakers. We also fit models using Masculine and Neuter as the reference gender in

the sum contrast coding scheme, to see whether they yielded different results from the original

model’s Feminine reference level.

The speaker-only model shows a reduced but consistent effect of gender (Tab. 5.1).

Speakers reliably produce -en more for feminine nouns, and less for neuter nouns, relative to

the grand mean. Speakers also reliably produce -e more for masculine nouns. These difference

are statistically significant even though, for all three genders, speakers produce -e more than

-en (Fig. 5.3).

Intriguingly, the speaker productions are not only less sensitive to grammatical gender, they

also appear very consistent with the overall type frequency distribution of the plural suffixes,

unconditioned on gender. To quantify this intuition, we looked at how the distribution of plural
3We thank an anonymous reviewer for highlighting this issue and suggesting these validity checks.
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Suffix Effect Fem. Neut.
-en gdr.fem . .31 (.08) ***

gdr.neut -.19 (.08) * .
gdr.masc -.12 (.08) -.12 (.08)

-e gdr.fem . -.07 (.07)
gdr.neut -.1 (.07) .
gdr.masc .17 (.07) * .17 (.07) *

Table 5.1: Speaker data only: statistical effect of different gender reference levels in con-
trast coding. Header shows reference level, cells show estimated coefficient (standard error in
parentheses). Estimates for Masculine reference level are identical to rows already shown (e.g.
suffix -en: −.19 for gdr.neut, .31 for gdr.fem). Stars indicate significance level: * ≤ 0.05, **
≤ 0.01, *** ≤ 0.001.

Overall-TF Gender-TF ED
Speakers .67 .49 .49

(.60, .72) (.40, .56) (.35, .61)
ED .41 .62

(.27, .54) (.50, .71)

Table 5.2: Correlations (Pearson’s r, 95% confidence intervals in parentheses below) between
item-level production percentages for speakers and ED model with 1) overall type frequency
(Overall-TF), 2) gender-conditioned type frequency (Gender-TF), 3) each other.

suffixes produced over each of the 72 noun-gender item combinations correlated to various

other metrics. We asked three questions: 1) How well do item-level speaker and ED model

productions correlate with each other? 2) How well do both sets of item-level productions

correlate with the gender-conditioned distribution of plural suffix types observed in the German

lexicon? 3) How well do both sets correlate with the unconditioned overall distribution of

types? Table 5.2 shows the results: while item-level ED outputs are most correlated with the

gender-conditioned distribution, item-level speaker data is most correlated4 with the overall

(unconditioned) type frequency.5 Even though the speaker and ED data are matched by item,

their productions have a lower correlation with each other than with the general type-frequency

distributions.

4Table 5.2 shows results from Pearson’s linear correlation; analysis with Spearman’s rank correlation coefficient
showed the same trend.

5To avoid potential confounds from both training and measuring on the UniMorph corpus, our estimates of
gender-conditioned and overall type frequency are derived from Zaretsky et al. (2013)’s analysis of the thousand
most frequent nouns from the DeReWo corpus.
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Overall-TF Gender-TF
Speakers .78 (.73, .82) .70 (.64, .75)
ED .47 (.33, .59) .71 (.61, .78)

Table 5.3: Correlations (Pearson’s r, 95% CI in parens) between item-level production per-
centages for speakers and ED model with 1) overall type frequency (Overall-TF), 2) gender-
conditioned type frequency (Gender-TF), only considering consonant-final monosyllabic nouns
in UniMorph (shown in Figure 5.4).

5.2.5 Discussion

We hypothesized that adult speakers and neural encoder-decoder models would make similar

use of grammatical gender when inflecting novel words in the plural, as gender is a salient and

consistent cue to plural inflection class, especially in an experimental setup where semantic

cues are absent. Contrary to expectations, our results indicate that both learners attend to

grammatical gender, but to different degrees — the neural model is much more sensitive to

grammatical gender than adult speakers, whose productions are closer to the overall type

frequency of plural suffixes in German.

The neural model’s use of grammatical gender is not surprising, as it aligns with earlier

findings (c.f. Goebel and Indefrey, 2000); however, the speakers’ lack of attention to gender

is unexpected. In their large-scale production study with the same noun stimuli, Zaretsky

and Lange (2016) found reliable effects of grammatical gender: their participants used -en

for 33% of feminine nouns, versus 19% of non-feminine nouns (compare to our study: 33%

vs. 26%). -e also appeared more with nonfeminine nouns (49% vs. 41%), although the

effect was not statistically significant. Nonetheless, they note that -e was most frequently

produced for feminine nouns as well as nonfeminine nouns, consistent with our results, and

their data shows a similarly broad distribution over types. Despite other differences between

our study design and theirs (e.g. online vs. in-person data collection, typed vs. written

modality, German speakers from various backgrounds vs. one region), we consider our results

fundamentally aligned: speakers show a slight but statistically reliable effect of gender on -en

and -e production, in both cases much less than the effect shown by the ED model.

One possibility is that the phonological forms of our noun stimuli provide their own sta-

tistical conditioning, to a stronger degree than anticipated. This is illustrated in Figure 5.4,

which plots the distribution of nouns in UniMorph sharing two key properties with our stimuli:

they are monosyllabic and end in a consonant. On the one hand, nouns with this type of
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Figure 5.4: Distribution of plural suffix by gender for consonant-final monosyllabic words in
UniMorph

form clearly also show gender conditioning, with -en much more prevalent among feminine

nouns. On the other hand, nouns with this general form are predominantly masculine gender,

and the numerical prevalence of nonfeminine forms may diminish speakers’ sensitivity to a rare

feminine gender cue, such as they encounter in our experiment. Under this account, adult

speakers condition their plural productions upon phonological form to a greater extent than

grammatical gender. The results in Table 5.3 further support this interpretation. Looking only

at the consonant-final monosyllabic words plotted in Figure 5.4, ED model productions show a

higher correlation to the gender-conditioned distribution over plural suffixes, while the highest

correlation generally (.78) appears between speakers productions and the overall distribution of

plural classes for these phonologically similar words. The potential shortcoming of the ED as

a cognitive model, then, is that it assigns too much weight to the cue of grammatical gender,

even though it is statistically reasonable to do so.

In conclusion, our comparison of neural encoder-decoder models and adult German speakers

found a significant difference in their use of grammatical gender as a cue to plural inflection.

Although this cue is highly informative, speakers — unlike neural models — appear relatively

insensitive to gender in our task. This finding suggests that speakers may attend more readily

to other cues such as phonology, and therefore match productions to a different distribution

which shows less gender conditioning.
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In dieser Studie werden Sie statt echten Wörtern (wie z.B. ”Messer”) fiktive Wörter sehen,
die andere Teilnehmer auch schon gesehen haben. Für jedes Wort, vermuten Sie bitte, welche
Pluralform am häufigsten von anderen Teilnehmern angegeben wurde. Bei jeder richtiger
Vermutung verdienen Sie noch 2 Cent zusätzlich als Bonus.

In this study, rather than real words such as ”knife,” you will see made-up words which have
already been seen by other participants. For each word, please guess which plural form was
given most frequently by other participants. You will receive 2 cents additionally as a bonus
for each correct guess.

Table 5.4: German-language instructions for Study 3 and their English translation.

5.3 Study 3

The main finding of Study 2 is the unexpectedly weak effect of grammatical gender on speaker

productions, which stands in contrast to the strong effect of gender on the neural Encoder-

Decoder (ED) model predictions. One possible explanation is a design flaw in the behavioral

experiment: perhaps speakers simply had no compelling reason to attend to grammatical

gender while completing the study. This possibility motivated a follow-up experiment to address

this limitation.

In an interactive artificial language learning study, Perfors (2016) found that financial

incentives could systematically affect adult speakers’ regularization behavior. Participants

operated in pairs, and learned to map words to specific objects. In one condition, both

participants in a given pair were compensated based on the accuracy of the mappings they

learned, evaluated by an objective standard; participants in this condition tended to probability-

match. Other participants, however, were compensated instead based on how closely they

matched each others’ learned mappings. In this condition, participants showed significantly

more regularization. Perfors notes that this result aligns with earlier findings of financial

incentives leading participants to reduce probability-matching behavior (Vulkan, 2000; Shanks

et al., 2002). Based on this finding, I extend the design of Study 2 to include financial incentives

for participants to match others’ responses. These results have been presented at the 26th

Architectures and Mechanisms for Language Processing (AMLaP) conference (McCurdy, Lopez

and Goldwater, 2020b).
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Study 𝐻(𝐶) 𝐻(𝐶 ∣ 𝐺) 𝑀𝐼(𝐶;𝐺)
S2 1.928 1.920 0.008
S3 1.930 1.918 0.013

Table 5.5: Mutual information (MI) between gender and plural class for Study 2 and Study 3.
The additional manipulation in S3 produces only a small MI increase.

5.3.1 Behavioral experiment

Study 3 uses the same design and materials as Study 2, with one additional manipulation:

participants were offered financial incentives for producing the same plural form as the majority

of other participants. Table 5.4 shows the updated instructions. While two cents may not

appear a significant financial incentive, a participant who produced the majority plural form

each time would earn an additional 48 cents — which, given the short amount of time spent on

the study (median time to completion was roughly 7 minutes), would represent a 35% increase

in their earnings for the study.

Note that this design is not directly parallel to the experiments considered above, where

participants typically receive direct feedback on their responses; for instance, the participants

in Perfors’ match condition could observe how well their productions aligned with those of

their partner. In contrast, speakers receive no feedback about the behavior of others in the

course of completing this experiment; the only reward signal comes in the form of the bonus,

which is calculated and distributed after the experiment. Nonetheless, the reasoning behind

this design choice is that speakers may be motivated to use additional information available to

them to increase their reward. Given the strong statistical relationship between grammatical

gender and plural class, they might reason that other speakers condition their responses on

the information available to them — i.e. grammatical gender — and therefore attend more

reliably to this cue.

100 German speaking participants were recruited on Prolific for this study. Participants

who had taken part in either Study 1 or Study 2 were excluded.

5.3.2 Results

The addition of financial incentives in S3 led to only a very slight increase in use of grammatical

gender. This is visible in Table 5.5, which shows a small increase in mutual information
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Figure 5.5: Distribution of mutual information (MI) between plural class and grammatical
gender per participant per study. Note that the slight increase in MI for S3 appears largely
driven by three individual participants.

ED-gender ED-no-gender
Speakers .56 (.42, .67) .73 (.65, .80)

Table 5.6: Correlations (Pearson’s r, 95% CI in parens) between item-level production percent-
ages for speakers and ED model with and without explicit grammatical gender indicated.
Correlation was evaluated across three bins per item and gender: percent -e produced, percent
-en produced, and percent all other productions. Item-level speaker data is more correlated to
the productions of the model without gender than the model with gender.

between plural class and grammatical gender for S3 relative to S2. Figure 5.5 shows the

distribution of this quantity over individual participants in each experiment, revealing that

only 2 or 3 individual participants in S3 show any evidence of using gender more reliably than

the participants in S2.

Study 2 compared participant productions to two lexical baselines — overall type frequency,

and gender-conditioned type frequency — and one model: the Recurrent Neural Network

Encoder-Decoder (ED) trained with grammatical gender. In that study, I found that speaker

productions showed a higher correlation to the lexical type frequency baseline which was not

conditioned on gender, than to either the ED predictions or the gender-conditioned lexical

baseline.

Given the high level of consistency between speaker behavior in S2 and S3, I combine the

two experiments to compare how closely they match the productions of the ED model trained

without grammatical gender, discussed in §4.3.1. The results of the correlation analysis are

presented in Table 5.6. Speaker productions overall show a higher correlation to the predictions

of the ED trained on wordform alone.
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5.4 Discussion

The key result of the two behavioral studies reviewed here is speakers’ robust lack of sensitivity

to the grammatical gender of these novel noun stimuli in plural generalization. To be clear,

gender does show a statistically significant impact on speakers’ plural productions, as reported

in Table 3 of §5.2.6 The effect, however, is much weaker than expected based on either neural

ED model predictions (c.f. Table 3 in §5.2) or the German noun lexicon as a whole (compare

the reported mutual information in Table 5.5 to Table 3.2).

The largely ineffective experimental manipulation in S3 illustrates that this lack of sensitiv-

ity to grammatical gender is a relatively robust effect. Of course, it could also indicate further

issues in experimental design. Speakers may not have responded to the financial incentives

because the amounts were too small, or perhaps the lack of feedback during the experiment

prevented speakers from evaluating and updating their behavior. In Chapter 6, Study 4 ad-

dresses these issues with an alternative task design: speakers must assign both grammatical

gender and plural inflected form to the novel noun stimuli, so the task necessitates at least a

minimal level of attention to grammatical gender.

This lack of sensitivity to grammatical gender is compatible with some previous behavioral

evidence (§3.3.3), but incongruous with some theoretical analyses (§3.2). These results are

clearly not readily compatible with the gender-based default analysis of the German plural

system (§3.2.2). Advocates of this theory, however, have typically applied it to the task

of linguistic description rather than behavioral prediction, so this may not be an appropriate

evaluation; the statistical relationship between gender and plural class does not appear to drive

speakers’ initial generalization behavior, but it may emerge in the lexicon over time, possibly

subjected to interactive pressures during cultural transmission as described in §2.2.2. These

findings are perhaps more directly incompatible with the broader predictability account of

morphological generalization (§2.1.2), which takes a more functional view explicitly connected

to speaker behavior, and has informed some behavioral studies (§2.2.2). The Low Conditional

Entropy Conjecture (Ackerman and Malouf, 2013) predicts that speakers will draw upon all

sources of information which can reduce uncertainty in morphological generalization, including

grammatical gender. The results of S2 and S3 do not accord with this interpretation.
6The same significance relation holds when S3 data is included as well, reported in McCurdy, Lopez and

Goldwater (2020b).
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In contrast to speakers, the neural Encoder-Decoder model treats grammatical gender as

a predictable cue to the plural class of unknown German nouns. This computational result

is consistent with other modeling studies. Goebel and Indefrey (2000) find that their simple

Recurrent Neural Network (RNN) model is highly sensitive to grammatical gender, leading

them to propose a gender-based default analysis of the German plural system (see also In-

defrey, 1999). Dankers et al. (2021) conduct a detailed causal and representational analysis

of an RNN model with an additional memory cell (a Long Short-Term Memory network, or

LSTM; Hochreiter and Schmidhuber, 1997) trained on the same task. They find a similar

reliance on grammatical gender: analysis of the memory cells and hidden states shows that

the model learns to predict the -en feminine class immediately upon encountering the feminine

article die. Although it is far from a proper evaluation, this strong sensitivity to grammatical

gender supports the conjectural explanation for the asymmetric results discussed in in Chapter

4. Recall that the neural model trained without gender showed speaker-like increases in -s

production for nouns ending in -k, but the model trained with gender failed to show this effect.

The findings reviewed here suggest that neural models find grammatical gender such a strong

predictive signal that it may overpower more subtle associations, like the statistical connection

between a rare noun ending -k and a rare plural class -s. This asymmetry is noteworthy in

the context of modern deep learning research overall, where human-like linguistic behavior is

generally achieved through more data, not less; there do not seem to be many other cases

in the literature where censoring data, or parts of the data signal, improves performance. It

is also noteworthy that this behavioral failure arises for a cue which is so robust, that both

theoretical linguists and statistical models agree on its significance. To consider the ED as

an algorithmic linguistic theory following Baroni (2022), it appears to be more successful at

predicting behavior when it diverges from formal linguistic theory — as for the -s-k connection

discussed in Chapter 4 — than when it converges, as in the case of grammatical gender.

So why do speakers disregard grammatical gender, a cue that neural network models rely

on to generalize plural class? One possibility comes from the Functional Theory of Gender

Paradigms proposed by Dye et al. (2017). They argue that grammatical gender in fact plays a

crucial role in predictability, but that role can only be understood in the wider context of the

sentence. They support this interpretation with an information-theoretic analysis of German

nouns in a large corpus, and find that gender marking has the aggregate effect of modulating
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nominal entropy at the sentence level: low-frequency nouns which would be difficult to predict

in a particular sentence context become more predictable when preceded by a gendered article,

facilitating increased lexical diversity through the use of less frequent nouns. This finding sug-

gests that grammatical gender does crucially contribute to predictability, but that contribution

occurs in the sentence-level context of ordinary language use, rather than in the mapping from

one morphological paradigm cell (i.e. singular) to another (plural). Ramscar (2021) further

develops this argument, stating that psycholinguistic and language acquisition research should

properly focus on how inflectional morphology is learned and represented in this more realistic

context, instead of the relatively artificial scenario of mapping within morphological paradigms

as I have pursued here. In my opinion, this critique points toward useful future research direc-

tions and modeling work focused on broader linguistic contexts; however, given that speakers

show fairly robust and consistent behavior (i.e. variable, aligned with overall type frequencies,

insensitive to grammatical gender) on the relatively artificial task of mapping novel nouns to

plural forms, I believe that characterizing and modeling this generalization behavior remains a

valid line of scientific inquiry.

5.5 Conclusion

This chapter has presented findings from two studies, S2 and S3, which use the same stimuli

as in S1 (Ch. 4) except with counterbalanced grammatical gender presentation. S3 includes

additional financial incentives aimed to motivate participants to incorporate all available in-

formation when generalizing plural forms, with the reasoning that this would encourage them

to rely more upon grammatical gender as a highly predictive cue; however, this intervention

yielded only a slight increase in the target behavior. I conclude that speakers are consistently

insensitive to grammatical gender in plural class generalization. This raises issues for the pre-

dictability view of morphological regularity, especially when speaker behavior is compared to

neural network models which reliably use grammatical gender to predict plural class: compu-

tational models may use all available information to reduce uncertainty in generalization, but

speakers apparently do not.
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Chapter 6

Speakers probability-match and
condition gender on phonology

6.1 Introduction

In the previous chapter, I found that German speakers are only mildly sensitive to grammatical

gender in plural generalization (Study 2, §5.2), even when offered financial incentives to gener-

alize more predictably (Study 3, §5.3). This chapter reports Study 4 (McCurdy et al., 2022), a

follow-up experiment in which speakers are asked to produce both the grammatical gender and

the inflected plural form of the same novel stimuli. This task design requires participants to

explicitly attend to grammatical gender, and its joint distribution with plural forms. If speakers

are at all aware of the statistical relationship between these two variables, the task design in

S4 should support this with behavioral evidence.

The results of S4 further support the lack of sensitivity to grammatical gender observed

in Chapter 5. I find that speaker productions do not reflect the relatively high amount of

mutual information between gender and plural class in the lexicon as a whole, but rather the

lower level of mutual information found in a specific subset of the lexicon — namely, nouns

which share the monosyllabic structure of the experimental stimuli. I conclude that speakers

probability-match to a lexical distribution conditioned on phonology, specifically syllabicity.
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6.2 Study 4

The contents of this section have been published as McCurdy et al. (2022).

6.2.1 Motivation

Research in artificial language learning, reviewed in §2.2.2, shows that adult speakers have

a range of responses to unpredictable inconsistencies in their linguistic input. Under some

circumstances, they probability-match and reproduce the variation in their input distribution,

while in other circumstances they prefer to regularize1 and produce more consistent patterns

(Hudson Kam, 2019). Often, speakers regularize by increasing production of the most frequent

variant in their input (Hudson Kam and Newport, 2005, 2009). The learning biases influencing

speaker behavior in these experiments are not fully understood, and show complex interactions

with communicative pressures in cultural transmission (Smith et al., 2017). As a result, it is

challenging to anticipate which artificial language findings will apply in more complex natural

language environments, such as the German plural inflection task we explore in this study.

Research on natural language variation shows that it is typically conditioned upon multiple

factors, both linguistic (e.g. phonological environment) and non-linguistic (e.g. speaker iden-

tity) (Chambers and Schilling, 2018). Conditional variation provides another mechanism for

regularization: unpredictable variation can become predictable when conditioned on particular

linguistic contexts. Table 2.6 gives illustrative examples of regularization, probability-matching,

and conditional regularization.

Note that our example artificial language experiment frames variation with respect to static

attributes within a lexicon: each individual noun has two fixed classes (expressed by the article

and the plural form), and we consider how speakers might use membership in one class (e.g.

article) as a cue to signal membership in another class (plural form). Artificial language

learning studies have shown that adult speakers can learn to condition noun class assignment

on such markers when they are statistically reliable (Frigo and McDonald, 1998). Culbertson

et al. (2017) found that learners may prefer different cues to noun class (e.g. phonological

vs. semantic cues) based on salience or early availability in training. While they found reliable

statistical main effects from their experimental cue manipulation, their data show a broad range
1N.B. we use the term regularize in the linguistics sense (reduce variation), not the machine learning sense

(reduce overfitting).
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of variation within individuals as well, suggesting the type of variation in speaker strategies

illustrated by the hypothetical case in Table 2.6.

The studies discussed above explore speaker generalization using toy lexicons, where the

amount and type of variation can be manipulated experimentally. However, in principle it

should be possible to apply some of the same analysis methods to the more complex case

of generalization from natural language. In particular, German number inflection provides a

complex natural-language test case for the type of lexical variation seen in our hypothetical

experiment. Some aspects of the German plural system are well-described by rules (e.g. derived

nouns; Augst, 1979), but other parts of the lexicon show more complex probabilistic relations,

and psycholinguistic experiments reveal considerable variation between speakers when they are

asked to produce the plural forms of novel words (Mugdan, 1977; Köpcke, 1988; Zaretsky and

Lange, 2016; McCurdy, Goldwater and Lopez, 2020).

In this work, we adopt the framework of probability-matching versus regularization to

shed light on this variability. We ask whether variation in German number inflection of novel

words can be explained in terms of a) lexical statistics and b) variation in individual speaker

strategies. Do speakers predominantly probability-match to the distribution observed in the

lexicon, leading to the variation observed in behavioral experiments? Or do they predominantly

regularize, but with different speakers pursuing different strategies (e.g. reducing conditional

vs. overall variation) which lead to a general appearance of inconsistent behavior?

We use the information-theoretic definition of regularization presented by Ferdinand et al.

(2019) to evaluate individual behavior in terms of entropy. We take the joint distribution of

grammatical gender (G) and plural inflection class (C) observed in the lexicon as a reference

distribution to assess German speaker behavior on a dual task: for each of 24 novel nouns, iden-

tify its grammatical gender, and produce its plural inflected form. We find that, consistent with

some artificial language experiments, adult speakers largely probability-match the conditional

variation observed in the input, and disregard an alternative strategy of gender-conditioned

regularization. Our work shows that lexical statistics across items can predict speaker behavior

within novel items, connecting artificial language findings with natural language behavior.
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Figure 6.1: Reference distributions calculated from German CELEX2 (Baayen et al., 1995).
Top, all nouns (excluding ambiguous gender nouns). Bottom, monosyllabic consonant-final
nouns.

6.2.2 Background

German number inflection Each German noun has two lexical attributes relevant to our

analysis: its grammatical gender (G) and plural inflection class (C). A noun can have mascu-

line (M), neuter (N), or feminine (F) gender, and this lexical property has a complex relation

to the noun’s phonology and semantics (e.g. Köpcke and Zubin, 1984). The other key lex-

ical attribute, plural inflection class, is indicated by the plural form of the noun. For more

background on the German plural system, see §3.1.

As regularization often involves increasing frequent variants, we focus on the two most

frequent plural suffixes and their relationship to grammatical gender. Fig. 6.1a shows the

joint distribution of 3 simplified plural class (-e, -en, and “other”) by gender over all nouns

in CELEX2. Fig. 6.1b focuses on the subset of nouns in CELEX2 with a similar phonological

shape to our experimental stimuli, i.e. monosyllabic and consonant-final (monoCF).2

2N.B. In this dissertation section, I refer to the reference distribution as ’monoCF’ to align with the analysis and
graphics presented in (McCurdy et al., 2022). In practice, however, as the vast majority of German monosyllabic
nouns are also consonant-final, I use the more clear term ’monosyllabic’ for this reference baseline elsewhere in the
dissertation.
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𝐻(𝐺) 𝐻(𝐶) 𝑀𝐼(𝐶;𝐺) 𝑈(𝐶 ∣ 𝐺)
All nouns 1.52 1.54 0.61 40%
All (6 cl.) 1.52 1.98 0.67 34%
monoCF 1.19 1.21 0.18 14%
mCF (6 cl.) 1.19 1.55 0.23 15%

Table 6.1: CELEX2 entropy measurements for gender 𝐻(𝐺), plural class 𝐻(𝐶), mutual infor-
mation between plural class and gender 𝑀𝐼(𝐶;𝐺), and percentage plural variation explained
by gender 𝑈(𝐶|𝐺). We see similar values whether using our simplified 3-class analysis or a
more traditional 6-class analysis for 𝐶.

Gender and plural class Our key research question is whether German speakers will regularize

overall variation, probability match the observed lexical distribution, or regularize conditional

variation. In the latter case, grammatical gender is the most viable option on which to condition

plural class, for several reasons. 1) There is a clear strong statistical relationship between

gender and plural class, evident in Fig. 6.1. Williams et al. (2020) analyze a subset of German

nouns in CELEX2, and estimate that 25% of the variation in inflection class (including all

plurals and cases) can be explained by grammatical gender. For our simplified set of inflection

classes, we estimate 40% (Table 6.1; see also Tables 3.2 and 3.3, and discussion in §3.1).

2) Many linguists have analyzed grammatical gender as the primary determinant of plural

class, with -e as the default class for non-feminine nouns, and -en for feminine nouns (e.g.

Augst, 1979; Wiese, 1999; Bittner, 1999, and further discussion in §3.2.2). 3) Neural models of

German inflection reliably learn to condition plural class on gender (Goebel and Indefrey, 2000;

McCurdy, Lopez and Goldwater, 2020a; Dankers et al., 2021, and discussion in §3.4). Despite

this, many psycholinguistic studies report little (e.g. Köpcke, 1988; Zaretsky and Lange, 2016;

McCurdy, Lopez and Goldwater, 2020a) or no (e.g. Mugdan, 1977; Spreng, 2004) effect of

gender on speaker productions; see discussion in §3.3.

Regularization and German plurals Investigating regularization leads us to focus on the

two most frequent inflection classes. This contrasts with some of the literature on German

plural inflection; for instance, the influential Dual Mechanism Model (e.g. Marcus et al., 1995;

Clahsen, 1999b, and discussion in §3.2.1) emphasizes the regularity the minority class -s. Other

linguistic analyses of the German plural system have focused on productivity and type frequency

(e.g. Köpcke, 1988; Bybee, 1995; Yang, 2016; Heitmeier et al., 2021). For an extensive review
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of the relevant linguistic literature, please refer to §3.2.

Herce (2019, c.f. §2.1.1) notes that the term “regularity” is associated with many dis-

tinct concepts in the linguistics literature, and recommends that researchers use more precise

language, e.g. “productivity” or “predictability.” Our approach emphasizes the “predictability”

dimension, in line with other recent attempts to formalize an information-theoretic concept

of morphological regularity (e.g. Ackerman and Malouf, 2013; Cotterell, Kirov, Hulden and

Eisner, 2018; Wu et al., 2019, and discussion in §2.1.2). Note, however, that these analyses

use the lexicon to estimate the regularity of a lexical item, for example to predict that the

English past tense form “jumped” is more regular (i.e. predictable) than “ran.” In contrast,

we use the lexicon to assess regularization behavior by speakers: do they maintain the level

of variation present in the lexicon, or introduce more predictability to novel lexical items? See

§2.2 for further review and analysis of the relationship between regularity and regularization.

6.2.3 Methods

Quantifying regularization

Ferdinand et al. (2019) present a novel quantitative analysis of regularization in terms of

entropy. Under their definition, speaker regularizing behavior is formalized as the degree

of entropy reduction relative to a reference distribution. All measures here originate with

Shannon (1948). See §2.1.2 for a more general discussion of information-theoretic approaches

to morphological analysis.

The first key measure is Shannon entropy, which quantifies in bits the complexity, or

variation, over the distribution of a single categorical variant (c.f. Eq. 2.1). In our case, we’re

interested in entropy over plural class 𝐶:

𝐻(𝐶) = −∑
𝑐∈𝐶

P(𝑐) log2 P(𝑐) (6.1)

Similarly, 𝐻(𝐺) gives the entropy of the distribution over grammatical gender.

The second key measure is conditional entropy (c.f. Eq. 2.4), which calculates the entropy

of our variant of interest 𝐶 conditioned on grammatical gender 𝐺:
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Figure 6.2: Task presentation for one item. To the left of the novel noun is gender selection,
to the right, written plural.

𝐻(𝐶 ∣ 𝐺) = −∑
𝑔∈𝐺

P(𝑔)∑
𝑐∈𝐶

P(𝑐 ∣ 𝑔) log2 P(𝑐 ∣ 𝑔) (6.2)

Subtracting conditional entropy from Shannon entropy gives the mutual information be-

tween the two variables:

𝑀𝐼(𝐶;𝐺) = 𝑀𝐼(𝐺;𝐶) = 𝐻(𝐶) − 𝐻(𝐶 ∣ 𝐺) (6.3)

The mutual information can be normalized by the Shannon entropy to estimate of the per-

centage of variation explained by the conditioning variable, known as the uncertainty coefficient

(Williams et al., 2020)3:

𝑈(𝐶 ∣ 𝐺) = 𝑀𝐼(𝐶;𝐺)
𝐻(𝐶) = 𝐻(𝐶) − 𝐻(𝐶 ∣ 𝐺)

𝐻(𝐶) (6.4)

Under Ferdinand et al.’s framework, any reduction in entropy relative to the reference

distribution qualifies as regularization. They note that this can be accomplished in three ways:

reducing variation in either the distribution of the variant 𝐻(𝐶), or of the context 𝐻(𝐺), or

the conditional distribution 𝐻(𝐶|𝐺) (equivalent to increasing 𝑀𝐼(𝐶;𝐺)).

Behavioral experiment

Stimuli The stimuli used in this experiment can be seen in Table 3.6. They comprise 24

monosyllabic nouns ending in a consonant (i.e. monoCF nouns), originally developed by Marcus

et al. (1995). As seen in Fig. 6.1 and Tab. 6.1, this class of nouns is ambiguous in terms of

plural class and grammatical gender. This makes them good candidates to assess regularizing
3We thank an anonymous reviewer for noting that mutual information is typically normalized with respect to

the smaller entropy, in this case 𝐻(𝐺). We use 𝐻(𝐶) in the denominator as we are specifically interested in
𝑈(𝐶 ∣ 𝐺), the fraction of plural class entropy explained by gender, rather than the inverse relation 𝑈(𝐺 ∣ 𝐶).
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behavior — other phonological classes of German nouns already have fully predictable inflection

class assignments, e.g. nouns ending in schwa near-universally take the -en plural. These stimuli

have also been used in multiple previous experiments (e.g. Marcus et al., 1995; Zaretsky and

Lange, 2016, and S1–S3, Chs. 4–5), so our results can be straightforwardly compared with

previous findings.

Task The task is a version of the well-known wug test (Berko, 1958, discussed in §2.2.1):

participants were given a novel noun, such as wug (or in our case the more Germanic Vag), and

asked to produce its plural inflected form. Our experiment includes an additional dimension.

Along with the plural form, participants were asked to indicate the presumed grammatical

gender of the noun by selecting the corresponding article for its singular form (Fig. 6.2).

We had two motivations for adding the gender task. Firstly, as earlier wug test studies

have found weak to absent effects of gender on German plural inflection (§3.3), we sought

an experimental design which would compel participants to attend to the gender of the noun.

Secondly, we wanted participants to generate the full joint distribution over grammatical gender

(G) and inflection class (C), so that we could evaluate their regularization behavior with respect

to all three strategies identified by Ferdinand et al.

Procedure After providing consent, participants completed an onboarding task, in which

they had to provide the gender and plural form for 12 real German nouns. Participants had

to answer these questions correctly to proceed to the experiment. After the onboarding,

participants were randomly assigned to one of three lists counterbalanced for presentation

order of gender (e.g. “Der/Die/Das Vag” v.s. “Das/Der/Die Vag”). Within each list, the 24

test items were presented in randomized order. We publicly release the data.4

Participants We recruited 120 speakers with German as a first language to complete an

online survey using the platform Prolific.5 Speakers were compensated at the rate-adjusted

equivalent of 11.50 USD per hour. Participants in S1–S3 were ineligible for this study.

Analysis Following Ferdinand et al. (2019), we quantify the entropy in the distribution pro-

duced per participant, and use it to classify participant behavior. Ferdinand et al. assume
4https://github.com/kmccurdy/german-wug-data/
5https://www.prolific.co
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Figure 6.3: Gender and plural productions from participants. Compare to reference distribu-
tions in Fig. 6.1.

that participants with entropy measures within the 95% confidence interval (CI) bounds show

behavior consistent with probability-matching the relevant distribution. To define probability-

matching behavior, we simulate experimental draws over 24 items by sampling from the relevant

joint categorical distributions. For each reference distribution, we first sample 105 grammatical

gender assignments for the items, then plural class assignments conditional on the sampled

gender. We calculate a more conservative 90% CI by taking the 5th and 95th percentiles of the

resulting simulations. Participants with entropy measures below the 5% CI bound are classified

as regularizers, and above the 95% are variabilizers, with respect to the same distribution. We

build on Ferdinand et al.’s approach by also considering the type of regularization observed:

overall reduction in variation (i.e. reducing 𝐻(𝐶)) versus conditional reduction in variation

(reducing 𝐻(𝐶 ∣ 𝐺), i.e. increasing 𝑀𝐼(𝐶;𝐺) or its normalized equivalent 𝑈(𝐶 ∣ 𝐺)).

6.2.4 Results and Discussion

Fig. 6.3 presents the overall distribution of gender and plural productions from all participants

(compare to the reference distributions in Fig. 6.1). We see considerable variation in gender

and plural class assignment, which does not appear to be driven by strong item-level biases

(c.f. Fig. 6.4).

Do speakers regularize overall variation? Fig. 6.5 shows the 90% CIs for the two refer-

ence distributions, and the observed range of speaker values, for our entropy-based measures.

Overall variation is shown in the top row. For gender 𝐻(𝐺), most speakers’ productions are

consistent with probability-matching either reference distribution, falling within both CIs. For

143



144 6.2. STUDY 4

Fem. Masc. Neut.

0 25 50 75 0 25 50 75 0 25 50 75

Klot
Pund
Spert

Bnaupf
Kach
Pind

Bnöhk
Snauk

Bral
Plaupf
Fneik
Pnähf
Bneik
Pröng
Pleik

Pisch
Raun

Spand
Fnöhk

Pläk
Fnahf

Vag
Nuhl
Mur

Count

Le
m

m
a

Plural class

e

en

other

Distribution of productions by item

Figure 6.4: Gender and plural productions by item.
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for speakers. Speakers may regularize overall variation in 𝐻(𝐶), but do not appear to regularize
𝑀𝐼(𝐶;𝐺).
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Figure 6.6: H(C) and MI(C;G) by participant. Color boxes and lines show 90% CI for all
(red) and monoCF (green) nouns; color dots show reference values. The blue dot shows the
speaker grand mean, and the blue line shows a Loess regression fit of speaker MI(C;G) on H(C).
Most participants are in the green box, consistent with probability-matching the monoCF noun
distribution.

plural class 𝐻(𝐶), we see some evidence for regularization: 75% of speakers reduce variation

below the all-nouns 5% CI bound (c.f. Tab. 6.2). The bulk of those speakers show vari-

ation consistent with probability-matching the monoCF distribution, although 27% also fall

below the 5% CI bound. In sum, we have two possible interpretations: either speakers are

insensitive to the phonological properties of the stimuli and a large majority regularize plural

class (i.e., relative to the lexicon as a whole); or speakers condition on phonology and are

mainly probability-matching to a phonologically similar subset of the lexicon. However, the

further analysis below suggests that speakers are sensitive to phonology, which makes the

latter interpretation more plausible.
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Do speakers regularize conditional variation? The lower row of Fig. 6.5 shows 90% CIs and

the observed distribution for the conditional variation measures 𝑀𝐼(𝐶;𝐺) and 𝑈(𝐶 ∣ 𝐺),

where higher values indicate greater predictability given the conditioning factor. Here we have

clear evidence that speakers do not regularize by conditioning on grammatical gender; in fact,

they seem to be probability-matching to the level of gender-conditioned predictability found in

the monoCF nouns, which is substantially lower than that of the full lexicon. Speakers could,

in principle, use the stronger relationship between gender and inflection class found in the full

lexicon to make predictions about the stimuli, but they do not. This result is surprising given the

importance of gender in both linguistic analyses (e.g. Augst, 1979; Wiese, 1996; Bittner, 1999)

and recent models (e.g., recent neural network models make predictions that are consistent with

the level of gender conditioning in the full lexicon; Goebel and Indefrey, 2000; McCurdy, Lopez

and Goldwater, 2020a; Dankers et al., 2021). Our information-theoretic analysis suggests that

speakers in fact condition on phonological form at the expense of predictability due to gender.

Interestingly, this reduced level of gender conditioning 𝑀𝐼(𝐶;𝐺) appears consistent rela-

tive to plural variation 𝐻(𝐶), although it need not be: speakers who vary plural class more

could in principle introduce more gender conditioning. Fig. 6.6 shows, for each individual

participant, how much variation they produced over plural class 𝐻(𝐶) — farther right on

the x-axis indicates a more varied set of plural classes — and how much that variation was

influenced by grammatical gender 𝑀𝐼(𝐶;𝐺) — higher on the y-axis indicates more gender-

conditioning, i.e. a tighter statistical coupling between gender and plural class. The dotted

black line shows 𝑀𝐼(𝐶;𝐺) = 𝐻(𝐶), the theoretical maximum statistical coupling: a point

on that line would represent a speaker whose plural class assignments were fully explained by

grammatical gender, for example always assigning masculine nouns to the -e plural class and

feminine nouns to the -en class. We see that even speakers who produce as much plural class

variation as observed in the lexicon (𝐻(𝐶) > 1.3) are mostly below the red box, meaning their

gender-conditioning 𝑀𝐼(𝐶;𝐺) is more typical of the monoCF distribution.

6.2.5 General Discussion

Our findings demonstrate that the regularization/probability-matching framework developed

in the artificial language learning literature can also describe behavior in natural language

tasks. Our work is not the first to show this; Hendricks et al. (2018) used this framework to
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All nouns Var. 𝐻(𝐶) Prob.-match Regl.
Variabilize 𝑈(𝐶|𝐺) 1% (1) 21% (25) 60% (72)
Probability-match 3% (4) 10% (12)
Regularize
N/A (𝐻(𝐶) = 0) 5% (6)
monoCF nouns Var. 𝐻(𝐶) Prob.-match Regl.
Variabilize 𝑈(𝐶|𝐺) 2% (2) 8% (10) 3% (4)
Probability-match 6% (7) 58% (69) 18% (21)
Regularize 1% (1)
N/A (𝐻(𝐶) = 0) 5% (6)

Table 6.2: Speaker strategy classification. Relative to all nouns, most speakers regularize
overall plural class variation while increasing variability with respect to gender (upper table).
Relative to monoCF nouns, most speakers probability-match overall and gender-conditioned
plural class variation (lower).

study variable gender assignment in a Germanic dialect, finding that some children regularized

while others probability-matched the variation in the adult distribution. To the best of our

knowledge, however, we are the first to use lexical statistics as a reference distribution to

evaluate regularization behavior in a natural language psycholinguistic experiment.

We suspect that probability-matching lexical statistics provides a stronger account for our

results than most formal models. The substantial variation within items (c.f. Fig. 6.4) suggests

a fundamental incompatibility with any models that make strong item-level predictions, which

would encompass most rule-based models (e.g. Mugdan, 1977; Yang, 2016). Exemplar-based

models (e.g. Hahn and Nakisa, 2000) may better handle such variability, but doing so appears

to require extensive fine-tuning (c.f. Rosen, 2022). As noted earlier, parts of the German

plural system are readily described by rules — our findings apply to the subset of the lexicon

which shows less predictability. That said, many linguistic accounts of German inflection have

proposed high-level rules based on grammatical gender (e.g. Augst, 1979; Wiese, 1996; Bittner,

1999), and neural models of German inflection learn behavior consistent with such rules (Goebel

and Indefrey, 2000; McCurdy, Lopez and Goldwater, 2020a; Dankers et al., 2021). Our findings

challenge such accounts: speakers could regularize by conditioning on gender to the extent

observed in the German lexicon as a whole (i.e. 40% of plural class variation, c.f. Tab. 6.1),

but instead they match the lower level of gender conditioning typical of the phonological class

(15-16%). This accords with other linguistic accounts which consider gender subordinate to

phonology (e.g. Mugdan, 1977; Spreng, 2004). Furthermore, our study’s experimental design
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explicitly foregrounds gender by forcing participants to select both the article and plural class

for each noun. This means that our results likely represent a ceiling for gender conditioning

on these stimuli. Previous studies with the same stimuli have presented the article instead,

and found weaker or absent effects of gender (Marcus et al., 1995; Zaretsky and Lange, 2016;

McCurdy, Lopez and Goldwater, 2020a).

Conditional variation seems to play a paradoxical role in these results. On the one hand,

there is strong evidence for phonological conditioning: speaker behavior is consistent with the

lexical statistics of a phonologically similar subset of the lexicon, rather than the lexicon as a

whole. On the other hand, we have two mysteries. Firstly, this phonological conditioning only

appears at the level of word class; phonology does not seem to drive strong biases for individual

items. Secondly, this phonological conditioning comes at the expense of gender conditioning:

participants make grammatical gender less informative than it is in the lexicon as a whole.

It is unclear how these trends relate to artificial language learning studies, which have found

that adult learners tend to condition on lexical identity (i.e. reducing variation across nouns by

assigning each noun to one lexical class; Smith and Wonnacott, 2010; Samara et al., 2017).

Johnson et al. (2020) find that high mutual information (i.e. low i-complexity; Ackerman and

Malouf, 2013) benefits learning for neural networks, but not for speakers, while low overall

entropy (i.e. low e-complexity) benefits both. Our results echo their findings, as speakers

appear to reduce overall entropy (𝐻(𝐶)), but unlike neural models, do not increase mutual

information (𝑀𝐼(𝐶;𝐺)).

6.2.6 Conclusion

In this work, we take an information-theoretic measure of regularization developed for artificial

language learning research, and use it to analyze experimental results in the natural-language

domain of German plural inflection. We consider two possible points of reference — the lexi-

con of German nouns as a whole, and a restricted subset with a particular phonological shape

— and find that speaker behavior is best described as probability-matching the lexical statis-

tics of the latter phonologically-conditioned distribution. Although speakers could plausibly

regularize by conditioning on grammatical gender (as predicted by the statistics of the over-

all lexicon), instead they appear to probability-match the lower level of gender conditioning

seen on phonologically similar nouns. We demonstrate that lexical statistics can predict how
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Study 𝐻(𝐶) 𝐻(𝐶 ∣ 𝐺) 𝑀𝐼(𝐶;𝐺)
S2 1.928 1.920 0.008
S3 1.930 1.918 0.013
S4 1.556 1.521 0.035

Table 6.3: Table 5.5 updated to include S4. Overall mutual information between gender and
plural class increases in S4, but remains numerically small.
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Figure 6.7: Distribution of mutual information (MI) between plural class and grammatical
gender per participant per study. Observed values are similar across studies, with participants
in S4 tending toward slightly lower gender conditioning on average.

speakers generalize lexical attributes to novel items, connecting artificial language findings with

natural language behavior.

6.3 Discussion

The analysis presented above indicates that most speakers appear to probability-match to the

distribution over plural classes for monosyllabic nouns in the German lexicon, indicating syllable

structure as a key factor influencing generalization — more important than the statistically

robust cue of grammatical gender. Why might this be the case? It’s difficult to say precisely,

given that syllabicity is confounded with many other important lexical properties. The biggest

one is likely word length: monosyllabic nouns are typically shorter than nouns with multiple

syllables. Famously, following Zipf’s law, shorter words are also more frequent (e.g. Bentz

and Ferrer Cancho, 2016); moreover, shorter and more frequent words typically have many

other cognitively-relevant properties, such as higher concreteness or imageability (e.g. Reilly

and Kean, 2007) and earlier age of acquisition (e.g. Brown, 1973). Although these properties
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are crucially dependent upon context missing from the experiments considered in this disser-

tation — the novel stimuli have no token frequency by design, are presumably encountered by

participants for the first time in the experimental context, and have no concrete or abstract

semantic referent — it’s possible that their strong association in the extant lexicon has some

effect on generalization in these studies. Nonetheless, I focus on monosyllabicity as a property

which inheres in the word form alone, and therefore must be accessible to study participants.

While word length is also apparent from the written string, the stimuli here also vary in their

length; monosyllabicity alone is the property which unites them. Nevertheless, it is possible

that monosyllabicity is not the crucial property informing generalization, but it is confounded

with some other property of interest. In Chapter 7, I consider a further phonologically-informed

reference distribution; otherwise, I leave the question open for future work.

Here, I briefly compare these results to the findings in Chapter 5. Did the joint production

task in S4 yield a stronger statistical relationship between grammatical gender and plural class?

Paradoxically, the answer appears to be yes (very slightly) overall, but no at the speaker

level. Table 6.3 shows relevant measurements for the aggregated results from studies S2,

S3, and S4. Of the three studies, S4 shows the highest mutual information (MI) between

grammatical gender and plural class, though this value remains far below the observed lexical

values reported in Table 2 of §6.2. So does this mean that speakers show more gender

conditioning on average in S4? Figure 6.7 indicates that the answer is no — individual speakers

have roughly equivalent, if not slightly lower, rates of gender conditioning in S4 compared to

S2 and S3. This paradox reflects the skewed distribution of gender classes in S4 (see §6.2, Fig.

3), where S2 and S3 had equally balanced gender presentation by design. The key signature

of gender conditioning is greater use of -en plurals for feminine nouns. Participants in S4

do show this pattern to a greater extent than in S2 and S3, but they also only rarely assign

feminine gender to these stimuli. This results in slightly higher mutual information between

gender and plural class overall, but each individual participant is less likely to encounter (i.e.

assign) a feminine noun, and thus show slightly lower levels of gender conditioning on average.

In any case, as depicted in Figure 6.7, individual participants show very similar levels of gender

conditioning across all three studies, and these levels are compatible with probability-matching

to the joint distribution of grammatical gender and plural class observed for monosyllabic nouns

in the German lexicon.
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6.4 Conclusion

This chapter presents findings from S4, the fourth behavioral experiment in this dissertation

using the novel noun stimuli developed by Marcus et al. (1995). In this study, German speak-

ing participants were tasked with producing the joint distribution over grammatical gender and

plural inflected forms for the stimuli. Participants showed similar levels of gender condition-

ing as seen in the previous experiments S2 and S3. This is incompatible with the statistical

relationship observed in the overall lexicon, but compatible with the interpretation that partic-

ipants generalize by probability-matching to a phonologically-conditioned lexical distribution

— represented by monosyllabic nouns in the analysis in §6.2. This result suggests first– and

second-order levels of conditioning: speakers probability-match to a distribution primarily con-

ditioned on phonology (i.e. syllabic shape), and secondarily on grammatical gender. In Chapter

7, I evaluate whether this hypothesis — that speakers probability-match to a phonologically

conditioned lexical distribution — adequately describes the behavioral data from all studies.
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Chapter 7

Overview and Synthesis of Results

This dissertation investigates the question of German plural generalization, using recent distribution-

focused methodological developments in behavioral and computational research to revisit this

longstanding problem in linguistics and cognitive science. In the literature review of Chap-

ter 2, I build on the framework of Herce (2019) to present a novel analysis of three distinct

theoretical linguistic views of morphological regularity — rule generation, type frequency, and

predictability — and how these perspectives broadly relate to morphological generalization in

two domains: the observed behavior of speakers in psycholinguistic experiments, and modeling

assumptions in computational experiments. Chapter 3 reviews the literature on German plural

generalization through the lens of this tripartite conceptual organization. Chapters 4, 5, and

6 present a series of behavioral and modeling experiments on plural generalization using the

novel German noun stimuli developed by Marcus et al. (1995).

This overview chapter synthesizes the behavioral and modeling results presented in previous

chapters. I combine the production data from all wug tests to evaluate all of the models con-

sidered in this dissertation. The analysis in previous chapters points toward additional relevant

comparisons, both in terms of models and of relevant baselines. For this reason, I introduce

new models and baselines (§7.1), and evaluate their predictions along with previously described

models in an overall comparison (§7.2). Based on the results (§7.3), I conclude that German

speakers generalize plural inflection by probability-matching to a phonologically-conditioned

lexical distribution, and discuss the implications for theories of morphological regularity (§7.4).
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7.1 Additional Models of the German Noun Lexicon

The results for these models are presented within the overall comparison in the next section.

Note that the neural and symbolic models described in previous chapters were evaluated by

sampling the single most likely classification for each item, and therefore required sampling

over variable training regimes — over different random seeds in the case of the neural model,1

and over different dataset samples in the case of the symbolic model. In contrast, the three

models considered here predict a probability distribution for each evaluation item. This means

that, rather than sampling from these models, we can compare their predicted distributions

directly to the observed distributions produced by speakers.

7.1.1 Bayesian Classifier and Naive Bayes

As discussed in §2.3.2, Bayesian models are particularly well-suited to capture probability-

matching behavior due to their tendency to converge on the posterior distribution. This

suggests that, within the lexical modeling regime used in this dissertation — namely, learning

a mapping from a input lexeme to an output inflected form — Bayesian modeling may best

express the type frequency view of regularity, and its associated probability-matching behav-

ior. The analysis in Chapter 6 indicates that speaker behavior is likely best understood as

probability-matching to a lexical distribution conditioned primarily on prosody (i.e. monosyl-

labicity), and perhaps secondarily on grammatical gender. The neural and symbolic modeling

predictions presented in Chapters 4 and 5 do not adequately capture this variability in speaker

productions; neural models in particular condition heavily on statistical cues such as grammat-

ical gender, leading to overconfident predictions. Perhaps the distributional focus of Bayesian

learners lets them better model the speaker variability we observe in this domain.

Method As in the rest of the dissertation, the modeling task is to learn a mapping from an

input noun in the singular form, to an output plural inflected form. The model is trained on

the German noun lexicon and evaluated by comparison to speaker behavior. The Bayesian

model, however, differs from the other models in several key respects.

The most critical difference is in the problem formulation and representation. Due to
1See also the discussion of lower-ranked degenerate sequences within beam search for the neural model, Mc-

Curdy, Goldwater and Lopez (2020), Chapter 4.
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the complexity of sequence modeling in a Bayesian framework (c.f. §2.3.2), I significantly

simplify the modeling task in the interest of an expedient preliminary investigation. Instead of

generating a sequence of characters for the output form, I use a Bayesian logistic regression

model which classifies an input noun as belonging to one of six plural classes. I also remove

sequence modeling from the input representation. Instead of a character sequence, each input

noun is represented by three features: grammatical gender and final character (which account

for a substantial amount of plural class variation in the lexicon; §3.1), and number of syllables

(to capture prosodic conditioning). Even this simplified feature representation proves difficult

to fit, due to the categorical variable of final character, which can take one of 26 unique

values. Preliminary experiments showed that this categorical variable can be easily replaced

with a three-dimensional continuous representation. For each character, I retrieve the first

two dimensions of its pretrained German FastText embedding (Bojanowski et al., 2017), and

use these two values and their interaction to represent the character in the Bayesian model.

This modification substantially stabilized and sped up training, with little to no impact on

the model’s predictive accuracy. Although these simplifications drastically alter the modeling

task, they let us answer the key exploratory question driving this analysis, namely whether a

Bayesian model of the lexicon can capture the probability-matching behavior of speakers.

In keeping with the exploratory nature of this analysis, the Bayesian model also differs from

the earlier models in terms of its training data and regime. I train the model on the CELEX

lexicon (Baayen et al., 1995) rather than UniMorph. An additional difference is that the model

is trained on the entire lexicon; I do not hold out a validation set (no hyperparameter selection),

or a test set (primary comparison is not accuracy, but speaker generalization to novel words).

Bayesian Classifier I specify a categorical regression model with the multivariate logit link

function (i.e. softmax) and predictor variables 𝑥𝑆 (syllable count), 𝑥𝐹1 and 𝑥𝐹2 (2D represen-

tation of final character), and 𝑥𝐺 (grammatical gender), with a weakly informative Student’s

T-distribution prior for each coefficient. The probability 𝑝𝑘 for a specific plural class 𝑘 is given

as follows:

𝑙𝑜𝑔( 𝑝𝑘
1 − 𝑝𝑘

) = 𝛽0 + 𝛽1𝑥𝑆 + 𝛽2𝑥𝐹1 + 𝛽3𝑥𝐹2 + 𝛽4𝑥𝐹1𝑥𝐹2 + 𝛽5𝑥𝐺 (7.1)

𝛽 ∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇 (0, 2.5, 3) (7.2)
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I train two variants of the model, one as above, and one without grammatical gender as

a predictor. Both models are fit in STAN (Carpenter et al., 2017) using the brms library

(Bürkner, 2017, 2020) in R (R Core Team, 2023). Both models successfully converged.

Naive Bayes In addition to the Bayesian classifier, I also implement a Naive Bayes classifier

using the same feature representations and predictors. Categorical probabilities for grammatical

gender, number of syllables, and prior probability of each plural class are computed directly

from observed values in the lexicon. For the continuously-valued final character feature, I fit a

two-dimensional multivariate Gaussian using the mvtnorm library in R (Genz and Bretz, 2009).

As in the case of other models, I assess two variants of the Naive Bayes classifier, one with

grammatical gender as a predictor, and one without.

7.1.2 Nearest Neighbors

As discussed in §2.3.3 and §3.4, some researchers have argued that exemplar models are best

suited to capture how speakers generalize morphology; for instance, Ambridge (2020) reviews

an extensive body of literature and claims that exemplar models mirror how speakers generalize

language over a range of domains. Milin et al. (2011) find that analogical generalization from

lexical nearest-neighbors predicts how Serbian speakers inflect novel nouns in a wug task,

and Blevins et al. (2017) build on this technique to model relationships between German

noun paradigm cells. I include their exemplar model of nearest-neighbor classification here for

comparison.

Method Again using CELEX, I follow the procedure described by Milin et al. (2011) and

Blevins et al. (2017) to generate nearest-neighbor predictions for the novel noun stimuli de-

veloped by Marcus et al. (1995). For each stimulus item, I identify their lexical neighbors

as all nouns with a normalized Levenshtein distance of less than .5, and take the resulting

distribution over neighbors’ plural classes as the prediction.2 As for other models, I generate

predictions both with and without grammatical gender.

2Note that this simple method lacks any smoothing mechanism, which makes it brittle; it does not generate
any prediction in cases where no words meet the similarity threshold, i.e. no neighbors are found.
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e en s er zero other
Uniform - 0.20 0.20 0.20 0.20 0.20 0.00
Type freq. UM 0.35 0.37 0.04 0.03 0.19 0.02

CLX 0.27 0.48 0.04 0.04 0.17 0.00
Token freq. CLX 0.21 0.45 0.02 0.03 0.29 0.00
Monosyllables UM 0.66 0.14 0.13 0.05 0.01 0.01

CLX 0.63 0.12 0.14 0.06 0.05 0.01
M95 Rhymes UM 0.72 0.14 0.03 0.07 0.01 0.03

CLX 0.67 0.15 0.04 0.12 0.00 0.03

Table 7.1: Calculated values for lexical baselines.

7.1.3 Additional Lexical Baselines

I include several relevant baselines in this comparison, based on the findings in previous chap-

ters. All baselines are static: the same probability distribution is compared to each stimulus

item. No baseline reported here incorporates grammatical gender. Table 7.1 gives the calcu-

lated values for each baseline.

Uniform I consider a baseline of uniform probability distribution over five plural classes, with

zero probability assigned to the “other” category.

Type and Token Frequency I calculate general type frequency baselines from Unimorph and

CELEX. As CELEX includes token frequencies, I include a token frequency baseline from this

resource (Sonnenstuhl and Huth, 2002).

Phonologically Conditioned In light of the analysis in Chapter 6, I include two baselines

covering only a restricted set of the lexicon, namely nouns which are phonologically similar

to the stimuli developed by Marcus et al. (1995, M95). One baseline represents the plural

class distribution over monosyllabic nouns, while the other includes only nouns which rhyme

with the M95 stimuli. In both cases, nouns matching this criterion are selected, and the

static distribution of plural classes is calculated from this lexical subset. I calculate each of

these measures for both the UniMorph (UM) and CELEX (CLX) lexicon, resulting in four

phonologically-conditioned baselines.
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Study N Participants Chapter Gender Gender Counterbalanced? N Samples
S1 150 4 N - 24
S2 92 5 N/M/F yes 72
S3 100 5 N/M/F yes 72
S4 120 6 N/M/F no 72

Total 240

Table 7.2: Summary of evaluation data from behavioral experiments.

7.2 Overall Model Comparison

This section evaluates all of the models used in this dissertation on all of the behavioral data

collected. The goal of this analysis is to identify, for each stimulus item, the distribution

of plural classes produced by speakers — and to evaluate, for each model, how closely their

predictions on that item match the distribution produced by speakers. I use two information-

theoretic measures — entropy and Kullback-Leibler (KL) divergence — to assess which model

most closely approximates observed speaker behavior.

Behavioral Experiments Each model’s predictions are evaluated on the distribution of speaker

plural productions for the four behavioral experiments described in preceding chapters. The

first study, S1, is described in Chapter 4. In this case, speakers were only exposed to one

grammatical gender (neuter) with each item, so this study yields 24 observations (one per

item). Studies S2 and S3 are described in Chapter 5. These two studies largely share the

same experimental protocol; in both of these experiments, grammatical gender presentation

was evenly counterbalanced for each stimulus item. The only difference is that participants in

S3 were offered additional remuneration for each item where they produced the same plural

form as the majority of other participants. As discussed in Chapter 5, this intervention had

almost no effect on participant generalization behavior. Study S4 is described in Chapter 6. In

this experiment, participants selected both the grammatical gender of the singular noun item

and its plural inflected form, resulting in a highly skewed distribution of grammatical gender

across items. In any case, I consider each grammatical gender and stimulus item combination

separately, which results in 72 observations (24 items times 3 gender categories) from each of

S2, S3, and S4. In total, then, I have 10 distributional samples (3 masculine, 3 feminine, and

4 neuter) of speakers’ plural class productions for each of the 24 stimulus items, yielding 240

items as summarized in Table 7.2.
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Family Model Description Data Gender? N Samples
Symbolic ATP §2.3.1 UM Gender 25

- 25
Neural RNN Encoder-Decoder §4.2 UM Gender 25

§4.3.1 - 25
Exemplar Nearest Neighbors §7.1.2 CLX Gender Dist.

-
Bayesian Classifier §7.1.1 CLX Gender Dist.

-
Naive Bayes §7.1.1 CLX Gender Dist.

-
Baseline Uniform §7.1.3 - Dist.

Type Frequency UM
CLX -

Token Frequency CLX -
Phon - Monosyllables UM -

CLX -
Phon - M95 Rhymes UM -

CLX -

Table 7.3: Summary of models and baselines compared. Baselines are static, while model
predictions typically vary for each stimulus item. Each model is trained on either the UniMorph
(UM) or Celex (CLX) lexical resource. See text for further description.

Models Table 7.3 summarizes the models and baselines compared in this analysis. For models

which produce point estimates (i.e. single most likely classifications) rather than distributions,

the number of samples is reported; for models and baselines which predict a probability dis-

tribution over plural classes, the predicted distribution is directly compared to the observed

distribution of participant responses over each item. Each model is trained with and without

grammatical gender.

Measures I use two information-theoretic measures to assess the fit between model pre-

dictions and speaker productions. The first, Jensen-Shannon (JS) divergence (Lin, 1991),

calculates the degree to which a model’s predicted distribution 𝑄 diverges from the reference

distribution 𝑃 produced by speakers. This measure takes into account the contents of the

predicted distribution. For example, if a model assigns a probability of 70% to the plural class

-en for some specific stimulus item, but 70% of speakers produced -e for that item, the JS

divergence between these two distributions would be high.

Jensen-Shannon divergence is a smoothed, symmetric version of Kullback-Leibler (KL)

divergence, or relative entropy. For a discrete reference distribution 𝑃 and predicted distribution
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𝑄, KL divergence is defined by the following equation:

𝐷KL(𝑃 ‖𝑄) = ∑
𝑖

𝑃(𝑖) log(𝑃(𝑖)
𝑄(𝑖)) (7.3)

Importantly, KL divergence is asymmetric: 𝐷KL(𝑃 ‖𝑄) ≠ 𝐷KL(𝑄‖𝑃), and the two measures

(known as forward and reverse KL divergence) penalize different types of mismatch between

the two distributions. These differences can be useful for certain applications; however, for the

present analysis, we’re interested in any kind of divergence between the speaker and model

distributions, regardless of direction. For this reason, I use the Jensen-Shannon divergence,

which equally weights forward and reverse KL divergence from the mixture of 𝑃 and 𝑄:

𝑀 = 1
2(𝑃 + 𝑄) (7.4)

𝐽𝑆𝐷(𝑃 ,𝑄) = 1
2𝐷KL(𝑃 ‖𝑀) + 1

2𝐷KL(𝑄‖𝑀) (7.5)

= 1
2 ∑

𝑖
𝑃(𝑖) log( 𝑃(𝑖)

𝑀(𝑖)) + 1
2 ∑

𝑖
𝑄(𝑖) log( 𝑄(𝑖)

𝑀(𝑖)) (7.6)

JS divergence can be interpreted as the mutual information (Eq. 3.1) between the mixture

distribution 𝑀 and an equiprobable indicator variable 𝑍 which separates 𝑃 and 𝑄, i.e. sets

𝑖 to 𝑃(𝑖) when 𝑍 = 0 and 𝑄(𝑖) when 𝑍 = 1. This has two relevant implications: 1) JSD is

bounded between 0 and 1, as 𝐻(𝑍) = 1; and 2) JSD can be expressed in bits.

The second measure is simply the entropy (Eq. 2.1, §2.1.2) of the observed distribution.

As discussed in §2.2, entropy has been used to measure probability-matching behavior in

the experimental literature on regularization: participants who produce a distribution with

roughly the same entropy as their training inputs can be classified as probability-matching,

while participants who produce lower-entropy distributions are said to regularize (c.f. Ferdinand

et al., 2019). In Chapter 4, we saw that both neural and symbolic models tended to produce

more concentrated predictive distributions relative to speakers, and in Chapter 6, we saw that

speakers tend to probability-match to certain lexical distributions of plural classes. In this

chapter, I compare the observed entropy for speaker productions for each stimulus item to

the entropy of model predictions. Unlike KL divergence, this measure is not sensitive to the

specific contents of the predicted distribution; I use it to assess whether model predictions are

more or less variable compared to speaker productions.
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Figure 7.1: Overview: Jensen-Shannon divergence between speaker productions and model
predictions for each stimulus item in each behavioral experiment. See model descriptions
in Table 7.3. Boxplots summarize median values and interquartile range from items in all
experiments, while the colored dots give separate mean values and standard error bars for
each of the four behavioral experiments (Table 7.2). For ease of visualization, divergences
greater than 0.3 bits are not plotted. A phonologically conditioned baseline (M95 Rhymes
CLX; Table 7.1) shows the lowest median JSD, followed by the Naive Bayes classifier trained
without gender.
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JSD Entropy
Gender? Mean (SD) Median Mean (SD) Mean Diff.

Baseline Token freq. - 0.169 (0.06) 0.159 1.774 (0) 0.297
Type freq. CLX - 0.121 (0.06) 0.107 1.824 0.318
Type freq. UM - 0.104 (0.05) 0.095 1.966 0.414
Uniform - 0.181 (0.05) 0.171 2.322 0.743
M95 Rhymes CLX - 0.073 (0.05) 0.064 1.5 0.276
M95 Rhymes UM - 0.075 (0.05) 0.066 1.377 0.324
Monosyllables CLX - 0.094 (0.05) 0.088 1.7 0.274
Monosyllables UM - 0.084 (0.05) 0.079 1.524 0.270

Bayesian Classifier Gender 0.151 (0.09) 0.129 1.388 (0.74) 0.597
Classifier - 0.086 (0.05) 0.074 1.831 (0.27) 0.404
Naive Bayes Gender 0.145 (0.08) 0.132 1.045 (0.44) 0.569
Naive Bayes - 0.083 (0.07) 0.066 1.493 (0.27) 0.317

Neural Encoder-Decoder Gender 0.17 (0.09) 0.162 0.491 (0.41) 1.092
Encoder-Decoder - 0.151 (0.08) 0.138 0.72 (0.45) 0.882

Exemplar Nearest Neighbors Gender 0.238 (0.15) 0.216 0.909 (0.63) 0.740
Nearest Neighbors - 0.13 (0.09) 0.104 1.423 (0.57) 0.554

Symbolic ATP Gender 0.181 (0.09) 0.171 0.512 (0.61) 1.084
ATP - 0.202 (0.1) 0.205 0.363 (0.54) 1.222

Speakers S1 1.801 (0.22) 0.124
S2 1.669 (0.33) 0.188
S3 1.669 (0.26) 0.164
S4 1.326 (0.29) 0.266

Table 7.4: Overview of results. For each baseline and model, the mean (standard deviation) and
median Jensen-Shannon divergence (JSD) from speaker productions, mean item-level entropy,
and mean difference to speaker production entropy for the same item. Speaker entropy values
are included for comparison, with item-level differences calculated from the average across all
studies.

7.3 Summary of Findings

Table 7.4 presents the full set of results. Figure 7.1 visualizes the Jensen-Shannon divergence

(JSD) values, and Figure 7.2 visualizes the entropy measurements. Here, I highlight several

key findings.

Phonologically conditioned lexical baselines are more speaker-like than nearly all models.

Across all experiments, the M95 Rhymes CLX baseline has the lowest average (mean) JSD

from the item-level plural class distributions produced by speakers. This static baseline diverges

by only 0.073 bits on average from every item distribution produced by speakers, narrowly

edging out the same baseline calculated on the UniMorph corpus (0.075 bits). Rounding
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out the top 5 on this measure are the Naive Bayes classifier trained without gender (0.083

bits average divergence), the Monosyllables UM baseline (0.084), and the Bayesian Classifier

trained without gender (0.086). The two rhyme baselines also take best fits when measuring

median JSD, with M95 Rhymes CLX coming in first (0.064 bits), and M95 Rhymes UM tied

with gender-free Naive Bayes for second place (0.066); fourth place goes to the gender-free

Bayesian classifier (0.74), and fifth to the Monosyllables UM baseline (0.079). Finally, in

terms of variability, all phonological baselines show more speaker-like levels of entropy than

all computational models (again with the exception of Naive Bayes). Note that the relative

success of models trained without gender is unsurprising in light of the findings in Chapters 5

and 6; nonetheless, it may be surprising that such a diverse range of statistical learning models

are consistently outperformed by static baselines in terms of matching to speaker behavior.

Bayesian models show the most speaker-like variability. Figure 7.2 plots item-level entropy

measurements for the plural class distributions produced by speakers and predicted by models.

Among the models trained without grammatical gender, the Bayesian Classifier, Naive Bayes,

and Nearest Neighbor models generate predictions with similar entropy values to those pro-

duced by speakers; however, including grammatical gender tends to concentrate predictions

and therefore lower entropy for nearly all model classes. This is especially notable for feminine

gender nouns — given the strong statistical association between feminine gender and plural

class in the German noun lexicon (§3.1), all models predict distributions with substantially

lower entropy than the variable productions we observe from speakers in behavioral exper-

iments. For nonfeminine nouns, however, the Bayesian Classifier predicts robustly variable

distributions, well within the range of speaker productions, while the Naive Bayes and Nearest

Neighbor models fall in a lower but intermediate range. As discussed in Chapter 4, we see that

both the neural Encoder-Decoder and symbolic ATP models produce much more concentrated

predictive distributions. To use the terminology of the regularization literature, we might say

that the Encoder-Decoder and ATP are regularizing relative to speakers, while the Bayesian

and Nearest-Neighbor models are more inclined to probability-match (cf. Ch. 6). Gender-free

Bayesian Classifier and Naive Bayes appear to match both the variability (measured in entropy)

and contents (JSD) of speaker productions better than other models — but in both respects,

they still fall behind phonologically-conditioned lexical baselines (Table 7.4).
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Figure 7.2: Entropy per stimulus item and grammatical gender. Measurements for model
predictions are plotted in points and smoothed lines, for models trained without gender (top
panel) and with gender; measurements for speaker productions are shown in grey crossbars
(max, median, min), including all gender combinations in top panel. Stimuli are ordered from
highest (Raun) to lowest (Fnöhk) likelihood (c.f. Table 3.6). Trend lines are generated by
loess (local nonparametric) regression. Note that only Bayesian model predictions (blue lines)
are consistently within the entropy range of speaker productions (grey boxes).
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Figure 7.2 also highlights interesting differences in how model predictions interact with the

plausibility of a given stimulus item, as measured by likelihood under a character n-gram model

(c.f. Table 3.6). The Bayesian models, like the speakers across all experiments, maintain a

consistent level of variability (measured by entropy) from the most likely novel noun (Raun,

a Rhyme stimulus) to the least (Fnöhk, a Non-Rhyme stimulus). The symbolic ATP shows

an intuitively sensible pattern: it is most confident for likely nouns like Raun, and produces

increasingly uncertain (i.e. variable) predictive distributions for highly unlikely nouns like Fnöhk.

The exemplar Nearest Neighbor model shows the opposite trend — more variable predictions

for plausible nouns like Raun, which have many neighbors, and less variability for nouns like

Pläk with few neighbors; it doesn’t even generate predictions for nouns like Fnöhk, where

no existing nouns meet the similarity threshold.3 The neural Encoder-Decoder model doesn’t

show any particularly robust trend in this respect, although it appears to have a slight tendency

toward confident predictions for both high and low probability stimuli (both Raun and Fnöhk),

and more variable predictions for stimuli in the middle of the likelihood range.

7.4 Discussion

In this section, I consider how the results reported here relate to the analysis of regularity

and morphological generalization developed in Chapter 2. To review, linguistic theories have

posited three different criteria4 of morphological regularity which may influence how inflection

classes generalize to novel words: rule generation, type frequency, and predictability. The rule

generation account has developed largely within the generative linguistic tradition. Under this

analysis, morphological generalization is primarily determined by constraints on the input to

individual transformation rules, which in turn assign a single inflection class to output forms

(c.f. Table 2.5); thus, this framework focuses on input properties of inflection classes considered

in isolation. The type frequency account instead characterizes morphological generalization

in terms of the distribution of inflection classes among output inflected forms. Finally, the

predictability account also focuses on distributions, but flexibly integrates information from

both inputs and outputs. While I have separated these conceptual dimensions for clarity (c.f.

3This limitation could be addressed by relaxing similarity thresholds as needed to achieve a minimum number
of lexical neighbors, but such work is beyond the scope of this dissertation

4A fourth criterion, concatenativity, is discussed in §2.1 but not investigated in this dissertation.
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Table 2.1), linguistic and computational researchers have found diverse ways to combine and

apply these three approaches in practice.

The German plural system has attracted the attention of linguists and cognitive scientists

because the statistical properties of the German noun lexicon make these three criteria sepa-

rable. In contrast to the English past tense suffix -ed, for instance, which is regular in all three

aspects — unrestricted in the input, highly frequent, and highly predictable — German plural

classes show a wider range of properties associated with morphological regularity, making it

possible to separately analyze how these dimensions influence inflection generalization. The

rare class -s shows the least evidence of input restrictions, indicated by its appearance in a

broad range of linguistic environments (𝐻(𝐹,𝐺) in Table 3.3); the two suffixes -e and -en have

the highest type frequency, although neither commands a statistical majority in the lexicon

(Table 3.1); and -en in particular is highly predictable conditional on feminine grammatical

gender (𝐻(𝐺) in Table 3.3). If we think that linguistic structure causally affects how speakers

generalize (as many researchers do; §2.2), then these distinctions predict different generaliza-

tion behaviors respectively: regularization with the minority variant -s, probability-matching

overall type frequency, and conditional probability-matching (or even regularization) based on

predictive cues such as gender (see also discussion in §2.2.2 and §3.3.1).

The goal of this chapter, and this dissertation more broadly, is twofold. Firstly, I aim

to determine which of these predictions most accurately characterizes the plural generaliza-

tion behavior of German speakers. The second goal is computational: as different classes of

computational models have inductive biases favoring different types of generalization (§2.3), I

aim to determine which class of computational model most closely approximates speaker be-

havior after training on the German noun lexicon. Indeed, the comparative empirical analysis

of the second research question crucially supports the first — careful computational evalua-

tion can help us interpret the behavioral evidence, which historically has been fragmented and

contradictory in this domain (§3.3.3).

Based on the analysis in this chapter, I conclude that German speakers generalize plural

inflection by probability-matching to a phonologically-conditioned lexical distribution. This

outcome reflects aspects of both the type frequency and predictability accounts: speakers

generalize a distribution of output inflected forms which is partly constrained by the input, but

do not appear to integrate all cues in the input which could minimize uncertainty — notably,
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they are largely insensitive to the highly predictive cue of grammatical gender. Computational

analysis supports this interpretation: speaker data is best fit on average by a simple lexical

baseline phonologically matched to the stimuli (Table 7.4), with Bayesian models coming

in second as the only computational model class which consistently matches speaker-level

variability on the level of individual items (Fig. 7.2). Including grammatical gender as a

predictor, however, worsens the fit of the Bayesian models; they have the correct bias toward

frequency-matching, but do not appear to share the inductive biases that lead speakers to

condition on certain factors (e.g. phonological similarity) and largely disregard others (e.g.

grammatical gender).

With respect to the dimensions of regularity discussed in §2.1.1, these results support an

account of morphological generalization primarily driven by distributions over output inflected

forms and only partially constrained by certain input conditions. It is not immediately clear

how to identify and represent the relevant input features. Considering Table 7.4, the relative

success of the monosyllabic baseline suggests a role for coarse-grained phonological features

such as syllable structure. The even greater success of the rhyme baseline — along with the

consistent increase in -s plurals for nouns ending in -k, discussed in Chapter 4 — speaks to

an influence of fine-grained phonological features; however, if a static baseline can outperform

item-level model predictions, this suggests speakers cannot be particularly sensitive to the

fine-grained features of specific stimuli. The effect of grammatical gender is similarly vague.

Gender shows a statistically significant influence on plural productions in Studies S2, S3, and

S4 (c.f. Table 7.2); however, as discussed in Chapter 6, the size of this effect is drastically

reduced relative to what we observe in the lexicon (Table 3.3).

The scientific challenge, then, is to properly characterize the lexical distribution which

informs how speakers generalize morphological inflection. Given the competitive performance

of the rhyme baseline, it is not clear that any of the models considered here truly succeed in this

task. We can, however, rule out certain theoretical perspectives based on these findings. The

rule generation view of regularity may be descriptively adequate for some analytical purposes,

but does not appear to predict linguistic generalization behavior by speakers; the behavioral

results reported here are simply not explicable in terms of input conditions for rule application,

as developed within the generative tradition and advocated computationally e.g. by Veríssimo

and Clahsen (2014) and Yang (2016). Similarly, the predictability view of regularity, exemplified
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in this dissertation by the Low Conditional Entropy Conjecture (Ackerman and Malouf, 2013,

§2.1.2), posits that speakers may use all possible sources of information to reduce uncertainty

in morphological generalization. The results in this chapter indicate that this assumption is too

strong: speakers are insensitive to the highly informative cue of grammatical gender, a finding

which echoes some other studies (e.g. Dawdy-Hesterberg, 2014, discussed in §2.2.1). Of the

three main theoretical approaches to German plural inflection (§3.2), both the minority and

gender-conditioned default analyses appear decisively ruled out. While it is unclear whether

schema theory (§3.2.3; Köpcke, 1988; Bybee, 1995) expressly predicts the behavioral outcomes

reported here, it is certainly the most compatible theoretical proposal, given its central focus

on output distributions. Computationally, Bayesian learners are inclined to probability-match,

and therefore appear most suited to model speaker-like generalization; however, none of the

models considered here have fully captured the correct distribution. I consider other modeling

possibilities in the concluding chapter.

7.5 Conclusion

In this chapter, I evaluate a range of computational models and baselines using behavioral

speaker data from the four studies described in previous chapters, and consider the implications

for linguistic theories of morphological generalization. I find that a phonologically-conditioned

lexical distribution shows the lowest average divergence from speaker productions across all

experiments, and conclude that German speakers generalize plural inflection by probability-

matching to such a distribution, at least for the small set of noun stimuli evaluated here.

These results support an account of morphological regularity in which generalization is primarily

driven by distributions over output inflected forms, and only partially constrained by certain

input conditions. This account integrates elements of the predictability and type frequency

criteria of regularity, but appears wholly incompatible with the rule generation criterion of

morphological generalization.
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Chapter 8

Conclusion

Abraham ist in folgender Täuschung begriffen: Die Einförmigkeit dieser Welt kann

er nicht ertragen. Nun ist aber die Welt bekanntlich ungemein mannigfaltig, was

jederzeit nachzuprüfen ist, indem man eine Handvoll Welt nimmt und näher an-

sieht.

Abraham falls victim to the following illusion: he cannot stand the uniformity of

this world. Now the world is known, however, to be uncommonly various, which

can be verified at any time by taking a handful of the world and looking at it

closely.

— Franz Kafka, “Abraham”, transl. Clement Greenberg

In this dissertation, I have investigated how adult speakers and statistical models generalize

the famously complex German plural system, with the goal of distinguishing between three pro-

posed criteria for morphological regularity: rule generation, type frequency, and predictability.

I conclude that speaker generalization behavior is best characterized as probability-matching

to a phonologically-conditioned lexical distribution. This outcome is partly compatible with

both the type frequency and predictability accounts of morphological regularity, though not

wholly compatible with either; speakers are sensitive to output type frequency and other cues,

but largely do not use the predictive cue of grammatical gender, which in principle could

substantially reduce uncertainty in plural generalization. This outcome does, however, appear

wholly incompatible with any rule generation account which privileges input constraints over

output distributions.
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In terms of computational modeling, a static phonologically-conditioned lexical baseline

most closely approximates speaker productions on average. Beyond this, Bayesian models

trained without grammatical gender appear to best capture speakers’ probability-matching

behavior. Most statistical models rely too heavily on grammatical gender, which only mildly

influences speaker generalization.

These findings have broader implications for cognitive models of natural language. The

divergence between speaker and model behavior in grammatical gender represents a seemingly

rare case in computational linguistics, one where additional data (here, noun gender) impedes

rather than facilitates human-like performance. The neural Encoder-Decoder model, along

with other learners reviewed in this dissertation, relies upon the strong statistical connection

between grammatical gender and plural class — a connection which has informed decades

of formal linguistic analysis. In so doing, these models arguably demonstrate “superhuman”

plural generalization performance by using a variable to which speakers are insensitive. Many

recent capacity breakthroughs have been driven by dramatically increasing the scale of neural

network models of natural language; given this trend, I anticipate that future research will

reveal many more such divergences, in more complex linguistic domains. Scientists aiming for

cognitive models of language use and processing will need to either develop alternative models,

or acknowledge and manage the limitations of these statistical learners.

8.1 Contributions

To summarize, the main contributions of this thesis are:

1. A novel conceptual framework of morphological regularity building on Herce (2019),

which characterizes key theoretical contrasts between the rule generation, type frequency,

and predictability accounts of inflection generalization (§2.1.1).

2. A comprehensive review of theoretical, behavioral, and computational approaches to mor-

phological generalization (Ch. 2), particularly in the domain of German plural inflection

(Ch. 3).

3. A series of behavioral experiments using stimuli developed by Marcus et al. (1995) (Chs.

4, 5, 6). The resulting data is published to support reproducibility, and has already been
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used by other researchers (Haley, 2020; Beser, 2021; Belth et al., 2021; Dankers et al.,

2021; Heitmeier et al., 2021; Rosen, 2022).

4. A critical reanalysis of the data presented by Marcus et al., concluding that their key

finding is driven by a stimulus confound, and therefore readily captured by statistical

learners (Ch. 4).

5. A series of modeling experiments with different types of statistical learners (Chs. 4, 5,

7) to evaluate whether computational models trained on the German noun lexicon can

learn speaker-like plural generalization.

6. A detailed analysis of the cumulative behavioral and computational evidence (Ch. 7),

leading to two empirical conclusions:

(a) Speakers probability-match to a lexical distribution which is primarily conditioned

on phonology, and only weakly on grammatical gender.

(b) Computational models typically do not match the variability of speaker productions,

and are outperformed on average by a static phonologically-conditioned lexical

baseline.

7. A theoretical conclusion that morphological generalization in this domain is characterized

by output distributions and selected input constraints, integrating elements of the type

frequency and predictability accounts of morphological regularity.

8.2 Limitations and Future Directions

8.2.1 Behavioral

Stimuli

The four behavioral experiments in this dissertation all used the same small set of 24 stimulus

items developed by Marcus et al. (1995). This decision had several advantages. It permitted

direct comparison to other experiments which used the same stimuli, both behavioral (Marcus

et al., 1995; Zaretsky and Lange, 2016) and computational (Goebel and Indefrey, 2000; Hahn

and Nakisa, 2000). It also enabled direct comparison of experimental manipulations within this

dissertation, especially the effect of grammatical gender on speakers’ plural class productions
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across different study designs. Limiting the number of stimuli kept experiments short —

typically under 10 minutes — preventing dropout and other attention or engagement issues

among participants. Finally, having repeated measures for each stimulus item allowed me to

quantify the variability in speaker productions across experiments, and conclude with some

confidence that speakers consistently generalize particular distributions to these items. These

repeated measures lend credibility to the final analysis presented in Chapter 7.

Relying exclusively on these stimuli, however, also significantly limits the conclusions which

can be drawn from this thesis. These 24 novel words represent a very small subset of possible

German nouns, and deliberately avoid certain phonological and morphological cues with highly

predictable plural class associations in the lexicon (c.f. §3.1); it is quite possible that a

broader range of stimuli would reveal a broader range of speaker generalization behavior (c.f.

Köpcke, 1988; Spreng, 2004). Moreover, while these stimuli are intended to range from

phonologically typical (Rhymes) to atypical (Non-Rhymes), there are issues in their design.

The most critical issue from a scientific perspective is the -s-k confound discussed in Chapter

4, which undermines a central claim made by Marcus et al. (1995); however, other authors

have also highlighted phonological and orthographic irregularities (e.g. in responses to Clahsen,

1999b), and there are likely further confounds to be discovered. Modern computational tools,

such as Wuggy (Keuleers and Brysbaert, 2010) and successors, support the development of

a wider range of stimuli with more fine-grained control over confounding factors. Future

work in this area could use a broader set of carefully controlled stimuli to better characterize

speaker generalization, including the effects of phonological typicality and other phonological

and morphological predictive cues.

Cultural transmission

Another limitation of the behavioral experiments reported here is that they focus on how

individual speakers generalize plural classes on initial exposure to a novel noun. The findings

presented in Chapters 5 and 6 show that grammatical gender has a most a weak effect on

speakers’ initial generalizations. If this is the case, how has gender come to have such a strong

statistical association with plural class in the lexicon (§3.1)?

One hypothesis is that gender conditioning could be facilitated by cultural transmission

across speakers. As discussed in §2.2.2, during interaction or iterated learning across speakers,
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cultural transmission can exert specific communicative pressures which are absent from sponta-

neous generalization in isolation; moreover, some experimental evidence suggests that cultural

transmission may facilitate conditional regularization in particular, although the findings in this

area are inconclusive. Future behavioral work in this area could test whether cultural trans-

mission increases gender conditioning in German plural generalization through experimental

designs using either iterated learning across participants (e.g. Smith and Wonnacott, 2010;

Smith et al., 2017) or dyadic interaction between participants (e.g. Rácz et al., 2020; Fehér

et al., n.d.).

8.2.2 Computational: Toward modeling speaker-like generalization

An open question remains: what kind of computational model could learn speaker-like plural

generalization from the German noun lexicon? Such a model would presumably require the

right set of inductive biases to condition primarily on phonological shape, and only secondarily

on grammatical gender. This is challenging for any statistical model, as grammatical gender

is a highly predictive cue to plural class.

Locality biases One might imagine that a locality or recency bias could address this issue:

the final syllable of a noun is directly adjacent to its plural suffix, while grammatical gender is

expressed at the very beginning of a word. This is not so far away for monosyllabic words like

the stimuli considered here, but the notorious compounding tendencies of German nouns can

make the grammatical gender to plural class connection a relatively long-range dependency

for much of the lexicon. Information locality has been shown to affect various levels of lin-

guistic structure; for example, Hahn et al. (2022) demonstrate that a locality bias can explain

morphological affix ordering across a typologically diverse set of languages. It is out of scope

for this dissertation to establish whether locality effects account for the relatively stronger

influence of word-final phonology (compared to grammatical gender) on plural class general-

ization; however, we can consider whether explicitly implementing a recency bias could better

model this effect. Recurrent Neural Network (RNN) models are structurally biased toward

information which has more recently entered their hidden state, so one might imagine that

they could capture this preference; the gender focus shown by the Encoder-Decoder models in

Chapters 4 and 5 might be attributable to the architectural choice of bi-directional encoders.
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Other studies, however, indicate that unidirectional RNNs remain susceptible to the predictive

power of grammatical gender. As discussed in §3.4, Goebel and Indefrey (2000) found that

simple RNNs with short-term memory effectively learned a gender-conditioned default system

for German plural inflection. More recently, Dankers et al. (2021) report a similarly strong

bias favoring grammatical gender in the behavior of a unidirectional LSTM (long short-term

memory network, i.e. an RNN with a memory cell; Hochreiter and Schmidhuber, 1997).

Modeling variability The issue of neural models’ overconfident predictions, highlighted in

Chapters 4 and 7, could be addressed by a range of modeling approaches — for instance,

conformal prediction intervals (e.g. Angelopoulos and Bates, 2021; Hechtlinger et al., 2019),

variational inference and other Bayesian approaches to neural sequence modeling (e.g. Graves,

2011; Chien, 2019), or exploration of various parameter regularization techniques such as

dropout. These techniques may better capture the variability in speaker responses, although

it is less clear whether they would address the other cognitive modeling challenge, i.e. learning

the correct relative factor weightings for grammatical gender and phonological form.

Inflection in context Yet another possibility is that the task formulation used in this disser-

tation is fundamentally flawed; instead of modeling a mapping from singular to plural forms,

we should situate the task of morphological inflection within more realistic contexts — for

example, as part of a sentence-level language modeling objective, or within multimodal con-

texts. This argument has been advanced by Ramscar (2021) and discussed in §5.4. Some

recent work has focused on modeling morphological inflection within sentence contexts (e.g.

McCarthy et al., 2019; Goldman and Tsarfaty, 2022), and this could be a promising direction

for future research. The challenge for such models would be defining an adequate experimental

comparison to the behavioral wug test as structured here, in which inflection is presented as a

context-free mapping task.

And what about Transformers?

In the course of writing this dissertation, the neural Transformer architecture (Vaswani et al.,

2017) has emerged as the top-performing model across most domains of natural language pro-

cessing (NLP). Despite known limitations in certain tasks (e.g. compositional generalization;
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Kim and Linzen, 2020; Soulos et al., 2023), Transformers have driven substantial progress on

many NLP benchmarks, including morphological generalization (e.g. Pimentel et al., 2021). In

particular, Large Language Models (LLMs) — Transformers trained on vast amounts of linguis-

tic data with a language modeling objective, and typically fine-tuned with additional objectives

such as instruction-following — have been claimed to show near human-level performance in

a range of domains (Bubeck et al., 2023). While there is no particular reason to believe that

Transformer models would have the correct inductive biases to overcome the general statistical

challenges raised above, their striking success merits at least brief discussion.

Initial investigations by other researchers suggest that Transformer models are, in fact,

susceptible to the same biases seen in RNNs in the domain of German plural inflection. Beser

(2021) conducts the most comparable investigation in this regard, training multiple Transformer

and RNN model instances on the CELEX German noun lexicon. He finds that the Transformer

is equally sensitive to grammatical gender, and does not appear to better approximate the

human production data collected by McCurdy, Goldwater and Lopez (2020, Ch. 4). Haley

(2020) uses the same novel nouns to probe number agreement in German and multilingual

versions of BERT (Devlin et al., 2018), a Transformer Encoder-Decoder architecture pretrained

using a Masked Language Modeling objective — a precursor to modern LLMs. He finds that

the models perform perfectly for real nouns but drop below 80% accuracy for novel nouns,

suggesting difficulty in processing novel plural forms.

One particular issue that arises in modern LLM evaluation is the difficulty of assessing out-

of-distribution generalization; with models trained on internet-scale data, it is nearly impossible

to confirm that the model hasn’t been exposed to a particular test item during training (Hupkes

et al., 2022). We can safely assume that the vast majority of human speakers have not

encountered the novel stimuli developed by Marcus et al. (1995), but we cannot make that

same assumption for LLMs, which are often exposed to scientific literature and related writing

in their training data. To illustrate this point, I offer several selected responses from the Bing

chatbot, a commercial application powered by the GPT-4 LLM which has shown impressive

abilities (Bubeck et al., 2023). German-language prompting reveals that the Marcus et al.

stimuli are readily available on the internet and therefore likely appear in LLM training corpora.

Ich kann Ihnen leider nicht sagen, wie viele Plaupfe es auf der Welt gibt, denn

Plaupf ist kein echtes deutsches Wort. Es ist ein erfundenes Wort, das von einigen
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Forschern verwendet wurde, um zu testen, wie deutsche Sprecher neue Wörter

beugen. Es scheint auch kein Wort in einer anderen Sprache zu sein, denn meine

Suche nach Plaupf hat nur Ergebnisse über Sport und die Bundesliga ergeben.

Vielleicht haben Sie sich das Wort ausgedacht oder es irgendwo gelesen?

Source: Conversation with Bing, 01/05/2023

Unfortunately, I cannot tell you how many Plaupfe there are in the world, because

that is not a real German word. It was made up by some researchers to test how

German speakers inflect new words. It also seems not to be a word in any other

language, as my search for Plaupf has only found results about sports and the

Bundesliga. Maybe you thought up this word, or read it somewhere?

Es gibt verschiedene Forscher, die solche erfundenen Wörter studieren, um zu

verstehen, wie Menschen neue Wörter lernen und verwenden. Zum Beispiel haben

Kate McCurdy, Sharon Goldwater und Adam Lopez eine Studie durchgeführt, in

der sie deutsche Sprecher gebeten haben, die Pluralformen von erfundenen Wörtern

wie Plaupf zu produzieren. Sie haben auch ein neuronales Netzwerk trainiert, um

das gleiche zu tun, und die Ergebnisse verglichen. Sie haben herausgefunden, dass

das neuronale Netzwerk sich anders verhält als die Sprecher und nicht die seltenen

Muster anwendet, die die Sprecher verwenden. Das heißt, dass das neuronale

Netzwerk nicht vollständig das menschliche Sprachverhalten nachahmt.

Source: Conversation with Bing, 01/05/2023

There are various researchers who study such invented words to understand how

people learn and use new words. For example, Kate McCurdy, Sharon Goldwater

and Adam Lopez conducted a study in which they asked German speakers to

produce the plural forms of invented words like Plaupf. They also trained a neural

network to do the same, and compared the results. They discovered that the neural

network behaved differently, and didn’t use the rare patterns applied by speakers.

This means the neural network did not fully imitate human speaker behavior.

Based on some further prompting with other novel nouns, the Bing chatbot remains inclined

to assign plural classes on the basis of grammatical gender and final character of the singular

noun, even citing specific (though invented) analogous examples. It does, however, generate
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word sequences which appear to acknowledge the fundamentally variable nature of German

plural generalization.

Das ist auch eine mögliche Pluralform. Fnahfe klingt wie ein Muster, das für

einige feminine Wörter gilt, die auf -f enden, wie zum Beispiel Scharf - Scharfe

oder Scherf - Scherfe. Vielleicht empfinden Sie Fnahf als feminin und nicht als

neutral. Oder vielleicht haben Sie eine andere Assoziation zu dem Wort. Wie ich

schon gesagt habe, gibt es keine feste Regel für erfundene Wörter, sondern nur

Tendenzen und Präferenzen. Das macht die deutsche Sprache so spannend und

vielfältig.

Source: Conversation with Bing, 01/05/2023

That is also a possible plural form. Fnahfe sounds like a pattern that applies for

several feminine words that end in -f, for example Scharf - Scharfe [N.B. this is

incorrect: the adjective scharf inflects as scharfe to agree with feminine nouns, but

is not a feminine noun itself -K] or Scherf - Scherfe [N.B. Scherf is not a word in

German -K] . Perhaps you feel that Fnahf is feminine and not neuter, or perhaps

you have some other associations with this word. As I said before, there are no

definite rules for made-up words, only tendencies and preferences. This makes the

German language so diverse and exciting.

Diverse and exciting indeed.

8.3 Finis

The past five years have seen significant developments in natural language processing technol-

ogy. The historical record shows both social upheaval and adaptation in response to previous

disruptive cultural technologies, such as the internet, the printing press, and the written word.

It now appears that we may being entering a comparable yet wholly new era: only in recent

years have we faced the prospect of human-like natural language interaction with non-human

technological entities, such as the chatbot quoted above. Along with all the other questions

this raises, there is an opportunity to revisit core scientific questions. What, in fact, specifically

characterizes human natural language use?
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In this dissertation, I have chosen to focus on a highly restricted problem domain from

a three-decade-old debate, in hopes of shedding a small bit of light onto this question. The

findings reported here point toward a minor, relatively inconsequential divergence between cer-

tain artificially constrained measures of human linguistic behavior, and comparably constrained

measures of computational linguistic behavior. Nonetheless, my hunch is that powerful sta-

tistical models of language will point us toward many such divergences in the future, and

these findings will help us clarify the nature of human language processing. We will learn to

conceptually decouple linguistic and cognitive phenomena that until now only came bundled

together, in human form.
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