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Abstract

This thesis studies, broadly, the role of symmetry in elucidating structure. In
particular, I investigate the role that automorphisms of algebraic curves play in
three specific contexts; determining the orbits of theta characteristics, influencing
the geometry of the highly-symmetric Bring’s curve, and in constructing magnetic
monopole solutions. On theta characteristics, I show how to turn questions on the
existence of invariant characteristics into questions of group cohomology, compute
comprehensive tables of orbit decompositions for curves of genus 9 or less, and
prove results on the existence of infinite families of curves with invariant char-
acteristics. On Bring’s curve, I identify key points with geometric significance
on the curve, completely determine the structure of the quotients by subgroups
of automorphisms, finding new elliptic curves in the process, and identify the
unique invariant theta characteristic on the curve. With respect to monopoles, I
elucidate the role that the Hitchin conditions play in determining monopole spec-
tral curves, the relation between these conditions and the automorphism group
of the curve, and I develop the theory of computing Nahm data of symmetric
monopoles. As such I classify all 3-monopoles whose Nahm data may be solved
for in terms of elliptic functions.
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Lay Summary

In this thesis I work with the concept of symmetry, a feature of our universe
which humans learn to recognise at a very early age. Anyone who has doodled
with pen and paper will know that amongst all the shapes that one can draw,
those with symmetry are singled out, and the more symmetry we require the
more restricted the drawing one can have. The same principle, that requiring
symmetry enforces constraints and structure, applies to much of mathematics,
and for mathematicians it is often extremely profitable to study configurations
with lots of symmetry. The reason for this is twofold: (i) typically the more
symmetry one requires, the easier it is to compute answers explicitly; (ii) it is often
the most symmetric examples that are the most ‘beautiful’ in the abstract sense,
with far reaching interconnections to other areas of mathematics. Motivated by
these truths, in this thesis I investigate two realms where symmetry will be helpful
on both frontiers.

The first realm is that of Riemann surfaces, objects which look like spheres
or doughnuts with one or more holes. One can label points on these surfaces
and ask how they are rearranged by the symmetries of the surface, for example
as the Earth rotates about its axis points move along lines of constant latitude.
As these points travel around they form orbits, and part of this thesis calculates
these orbits both manually and numerically, identifying patterns in the numbers
that emerge. I also consider one particular surface, called Bring’s curve, special
because of its manifold symmetries. Using a variety of perspectives I will give
visualisations of this symmetry, studying its implications, including on the orbits
previously mentioned.

The second realm is of magnetic monopoles, which can be thought of as mag-
netic analogues of electrons, but now with internal structure. Monopoles source
a magnetic field, and they are distinguished from the bar magnets (or ‘dipole’
magnets) we see in everyday existence because the pole is isolated, not part of a
North-South pair, hence the name monopole or one-pole. A remarkable develop-
ment in the 1970s and 1980s showed that to the physical picture of a monopole
one can associate the geometric data of a Riemann surface, and through this
correspondence I study the ways of giving symmetry to the monopoles. I use
computer calculations to simplify the process of translating between the two per-
spectives, and as such I am able to classify all the monopoles of a particular kind.
In special cases the algebra simplifies significantly to the point where I am able
to write down the answers explicitly, and in these situations I use computers to
generate 3-dimensional pictures of the monopoles.
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Chapter 1

Introduction

For the past several months, since the middle of
April, he has dreamed many dreams about time.
His dreams have taken hold of his research. His
dreams have worn him out, exhausted him so that
he sometimes cannot tell whether he is awake or
asleep. But the dreaming is finished. Out of many
possible natures of time, imagined in as many
nights, one seems compelling. Not that the others
are impossible. The others might exist in other
worlds.

– Alan Lightman
Einstein’s Dreams

This thesis, as the title may suggest, is structured around a simple concept:
symmetry. In particular, I will demonstrate how imposing symmetry leads to geo-
metric structure, and we will investigate the various forms in which this structure
manifests itself.

First, in Chapter 2, we will look at Riemann surfaces. In the 18th and 19th
century research into solutions of the quintic equation led to the parallel de-
velopment of the ‘theory of equations’ and the ‘theory of functions’, a process
intimately tied to the concept of symmetry through the work of Galois, and
Riemann surfaces arose out of these fields jointly.

Combining both an algebraic and a geometric picture allowed for a dual per-
spective on the role the group of symmetries of the surface played, and we will
explore these facets in a variety of ways. In §2.1 I will lay out much of the
introductory material that will permeate the calculations herein. I will define
Riemann surfaces and their related constructions, giving examples relevant to
later sections, providing ample citations for the inquisitive reader. Most notably,
I shall take a perspective especially tuned to pre-empt the rigours of later sec-
tions: I will spend time emphasising a triality of viewpoints on divisors, provide a
strong foundation for visualising the geometry of TP1, and ensure that a variety of
computational and theoretical tools available for scrutinising the automorphism
group have been provided.

In §2.2 we will immediately put all of these techniques to good use. I will

1



2 Alec Linden Disney-Hogg

present different approaches to computing theta characteristics and their orbits
under the action of the automorphism group, each method attuned to the varying
levels of geometrical and computational data that may be available. I shall largely
spurn the analytical aspects of theta functions, taking instead an algebraic path,
but the theta aficionado may profit from retaining this point of view. Next, using
the relation of theta characteristics to spin structures and thus to binary vectors, I
will make two focused investigations: I will use group cohomology to rephrase the
task of quantifying how many characteristics invariant under the automorphism
group exist, and I will compute comprehensive tables of orbit decompositions for
curves of genus 9 and less. While I will prove some important results, notably
Proposition 2.2.26 and Theorem 2.2.35, I will leave many problems still left to be
tackled in subsequent work, and to this end I finish the section with suggestions
for directions of future study and conjectures to measure progress against.

In contrast to §2.2, in §2.3 I will take a much more narrow scope, choosing
instead to study one particular exceptional Riemann surface: Bring’s curve. In
this section I will highlight the geometric aspects that make the curve worthy of
such high esteem, including its large automorphism group, its intricate quotient
structure, its geometric realisations, and the interplay between the three. By
providing a complete realisation of the automorphism group of the Hulek-Craig
model and the P4-model I will identify previously unknown quotients of the curve
with interesting number-theoretic properties. This process will be aided by the
unification of existing visualisations of the symmetric structure of Bring’s curve.
Moreover, I will prove analytical and numerical results about the theta charac-
teristics on Bring’s curve, determining their orbit decomposition. In particular,
I will prove the existence of a unique invariant characteristic on the curve, write
down the characteristic explicitly, and relate it to the Szegő kernel divisor. The
work in this section has been submitted for publication and released as a preprint
[BDH22]; my coauthor Harry Braden gave his consent for the work to be included
in this thesis.

Secondly, in Chapter 3, we will look at magnetic monopoles. Monopoles
have a rich history in mathematical physics, first seriously introduced by Dirac in
1931 as a possible explanation for the quantisation of electric charge, utilising the
duality between electricity and magnetism in the source-free Maxwell’s equations.
The solutions Dirac found had singularities, and so were considered unphysical;
their study remained somewhat of a novelty until the 1970s, when it was shown
by ’t Hooft and Polyakov that, when formulated as a symmetry breaking of a
gauge theory with a higher gauge group, monopoles were inevitable in certain
grand unified theories. As such their study exploded, peaking (by one metric) in
1984, including experiments attempting to observe monopoles such as the famous
‘valentine’s-day monopole’. This thesis will not focus on this experimental or
theoretical aspect of monopoles, but instead on their mathematics.

In §3.1 I will introduce their formulation in terms of gauge theory, providing
necessary background for later sections, including introducing the moduli space
of monopoles, and writing down the hedgehog solution which will recur as an
example throughout when describing the different guises of monopole data. I will
also make passing comments on the choice of gauge group and the normalisation
conventions on su(2), the latter of which I will elaborate on in Appendix A.1.

2



Symmetries of Riemann Surfaces and Magnetic Monopoles 3

In §3.2 I will introduce the link between Chapter 2 and Chapter 3, the
monopole spectral curve, from two perspectives. From the view of Hitchin we
will see the curve arise as a subset of Euclidean minitwistor space, and in fact as
a Riemann surface. I will discuss in some detail the transcendental constraints
imposed upon the curve, employing the machinery of divisors developed previ-
ously. In addition, we will see how the spectral curve arises from Nahm data,
in particular as the characteristic polynomial of the associated Lax pair. Impos-
ing the transcendental constraints on the spectral curve may be simpler from the
Nahm viewpoint, and certainly the reconstruction of the monopole from this data
is, and we will utilise these facts in later sections constructing explicit monopole
spectral curves and visualising the corresponding field configurations.

In §3.3 I will consider the action of both extrinsic and intrinsic symmetries
on the spectral curve. Extrinsically there is an action of the Euclidean group
on minitwistor space, and I will write down the corresponding action on the
coordinates of the spectral curve as well as on the associated Nahm data. By
understanding the correspondence between the two, I will build upon work of
Hitchin, Manton, and Murray showing how to construct Nahm matrices invari-
ant under a rotational symmetry group, giving explicit examples. Intrinsically
the full automorphism group of the Riemann surface acts on the spectral curve
giving ramification data associated with the quotient, and I will prove how that
ramification data constrains the dimension of the associated moduli space. More-
over, I will give conjectures of stricter bounds on this dimension related to the
transcendental constraints on the spectral curve.

Finally, in §3.4 I will complete a partial classification of charge-3 monopoles
based upon the symmetry conditions and constructions introduced in previous
chapters. In particular, I will classify the spectral curves of charge-3 monopoles
which quotient to an elliptic curve. Some of these curves are previously known,
but we will find new curves and explicitly construct their Nahm data in two cases.
Moreover, for a remaining spectral curve identified with an elliptic quotient, I
will prove that one cannot solve for Nahm data in terms of elliptic functions
generically. Part of the work in this section has been published as [BDH23], and
my coauthor Harry Braden gave his consent for the work to be included in this
thesis.

A key aspect of the work contributing to this thesis has been the use of
computational tools. Throughout the course of this research I have used GAP,
Macaulay2, Maple, Python, and Sage to compute examples, test conjectures,
draw figures, and complete proofs. At the relevant sections I will provide ref-
erences to code which one may use to reproduce the results and figures. Those
relevant to §2.3 have previously been made available at https://github.com/

DisneyHogg/Brings_Curve; new code is at https://github.com/DisneyHogg/
Riemann_Surfaces_and_Monopoles.

As is natural, there are aspects of the story of symmetries, Riemann surfaces,
magnetic monopoles, and my own work that have not been included. In addition
to the two papers [BDH22, BDH23] previously mentioned in this introduction
I have also released [DHBD22, BDHG22] as preprints during the course of my
study. In [DHBD22], in collaboration with Andrew Beckett and Isabella Deutsch,
I translated from German to English an important and oft-cited work of Wiman

3
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4 Alec Linden Disney-Hogg

classifying genus-4 Riemann surfaces; in [BDHG22], in collaboration with Nils
Bruin and Effie Gao, I developed a method for rigorously computing algebraic
integrals, performing complexity analysis of this algorithm and implementing it
in Sage. While both papers are related to the story of this thesis, indeed they
will both be cited within, I have omitted them for the sake of brevity and focus.

Mathematically, there are two core perspectives I have neglected in this work,
both related to the construction of monopoles. Though it is mentioned occasion-
ally, I shall largely avoid working with the full ADHM construction of instan-
tons using twistor theory, and so avoid working with solutions of the self-dual
Yang-Mills equations, opting instead to focus on the minitwistor construction
of monopoles. In addition, when constructing monopoles from the data of the
spectral curve one can take the perspective of integrable systems, the inverse
scattering method, and Baker-Akhiezer functions. As with the inclusion of my
preprints, I have omitted the additional topics in the name of focus, but the loss
is certainly sorely felt because of the beauty of the results to be found.

4



Chapter 2

Riemann Surfaces

“Should you just be an algebraist or a geometer?”
is like saying “Would you rather be deaf or blind?”

– Michael Atiyah
Mathematics in the 20th Century

The purpose of this chapter is to introduce Riemann surfaces, a beautiful
area of algebraic geometry dating back to 1851, when Bernhard Riemann in his
inaugural dissertation began to think of the theory of complex functions in terms
of surfaces [Neu81]. Their study will not only be integral for our later discussion
of minitwistor space and the spectral curve, but will also provide gems within
their own right. There are many excellent sources to learn from with varying
levels of sophistication, but [FK92, For91, GH78, Har77, Mir95, Vak10] have all
been particularly influential during the course of this thesis.

In §2.1 I will lay down some of the notational and technical background re-
quired for this thesis. The style of presentation has been chosen to emphasise
those results and concepts that I shall use in later sections. §2.2 will introduce
theta characteristics from an algebraic perspective, develop the theory describing
the orbit structure of theta characteristics under the automorphism group of a
curve, and compile tables of orbits decompositions for many curves of genus 9
and less. Finally, in §2.3 I complete a comprehensive study of one particularly
distinguished and highly symmetric curve of genus 4, Bring’s curve. I will de-
scribe its quotient structure, unify visualisations of the automorphism group, and
describe the orbit structure of the theta characteristics.

5



6 Alec Linden Disney-Hogg

2.1 Background Material

I care not to perform this part of my task
methodically; but shall be content to produce the
desired impression by separate citations of items,
practically or reliably known to me as a whaleman;
and from these citations, I take it - the conclusion
aimed at will naturally follow of itself

– Herman Melville
Moby Dick

This section will be a review of many classical properties, able to be found in
standard textbooks on Riemann surfaces. In any thesis one must expect and allow
for a certain amount of prerequisite knowledge, and here I shall take that to be a
familiarity with the concepts of manifolds, basic concepts in category theory, and
most significantly a competence with sheaves and their cohomology. I have chosen
to omit the details of these as they shall not be crucial to any arguments made
later in the thesis, opting instead to make sure that the concepts and notation
required from Riemann surfaces have been appropriately covered. Because the
material in this chapter is the content of many excellent expositions, and is not
the core theme of this thesis, I will omit proofs here opting instead to provide
appropriate references.

2.1.1 The Category of Riemann Surfaces

Objects and Examples

Let us start with a simple definition of a Riemann surface in the language of
manifolds.

Definition 2.1.1 ([GH78], p. 15). A Riemann surface is a 1-dimensional
complex manifold. Given a chart ϕ : U → V on a Riemann surface C with U ⊂ C
open, V ⊂ C open, and P ∈ U such that ϕ(P ) = 0, for Q ∈ U we call z = ϕ(Q)
a local coordinate at P .

Throughout, unless otherwise stated, I will assume that our Riemann surfaces
are connected and compact. These assumptions will be used implicitly through
much of the ensuing work, for example by forcing that the only global holomorphic
functions on the Riemann surface are given by constant functions. Such compact
Riemann surfaces are equivalently compact oriented real surfaces with a conformal
structure [FK92, §IV], and so topologically a Riemann surface is classified by a
single integer g(C), the genus. Geometrically this can be thought of as the
number of ‘handles’ of the surface. In situations where it is clear which Riemann
surface is being referred to, I will drop the argument of g.

In general in algebraic geometry there are two concepts of genus, the geo-
metric genus of a nonsingular1 algebraic variety pg(C) = dimCH

0(C, KC) where

1At this first instance of a case of ambiguity in the ‘correct’ hyphenation (nonsingular or

6



Symmetries of Riemann Surfaces and Magnetic Monopoles 7

KC is the canonical sheaf (see Example 2.1.33) [Har77, p. 181], and the arith-
metic genus of an r-dimensional projective variety pa(C) = (−1)r [PC(0)− 1]
where PC is the Hilbert polynomial of C [Har77, p. 54, Exercise I.7.2]. These two
definitions agree for nonsingular projective varieties, and moreover agree with
the topologically defined genus on a Riemann surface [Vak10, Exercise 21.7.I],
so the difference shall not often be material in this thesis, hence I will not dwell
on the details of these definitions. We shall however want to have a definition
for compact connected projective curves when dealing with monopole spectral
curves in §3.2, and there it will be sufficient to use that the arithmetic genus is in
this situation given by pa(C) = dimCH

1(C,OC) [Har77, p. 230, Exercise III.5.3],
where OC is the sheaf of holomorphic functions on C (see §2.1.2).

Remark 2.1.2. In this thesis, I shall work with sheaf cohomology, but in all
situations I will seek to enforce conditions whereby we have a Leray cover
[For91, GH78], and so compute with Čech cohomology. For example, this is valid
on any compact Riemann surface C computing cohomology of the sheaf OC(D) for
some divisor D when the cover is given by open sets isomorphic to a disk [For91,
Exercise 16.3].

Example 2.1.3. The 1-dimensional complex projective space P1, otherwise known
as the Riemann sphere, is a Riemann surface. As this space is topologically a
sphere, g = 0. Taking a point [ζ0 : ζ1] ∈ P1, we will often use the affine coordi-
nate ζ := ζ0/ζ1 on the open patch U0 = {ζ1 ̸= 0}, thus denoting the point [1 : 0]
as ∞. On U1 = {ζ0 ̸= 0} I will use the affine coordinate ζ̃ = 1/ζ.

Example 2.1.4. Riemann surfaces of genus 1 are called elliptic curves, and
are their own rich area of study. I will give a few of these details in §2.1.5, as
they will be necessary for later results.

Definition 2.1.5 ([Mir95], p. 14). An algebraic variety is the vanishing locus
in Pn of a set of homogeneous polynomials {Fi(X0, . . . , Xn)}. We call a variety of
dimension r a complete intersection if the ideal ⟨Fi⟩ can be generated by n−r
elements. If there are (n−1)-many Fi we call the corresponding algebraic variety
an algebraic curve if it is a complete intersection, and if moreover the matrix
of partial derivatives ∂Fi

∂Xj
has full rank at every point contained in the vanishing

locus we say it is smooth. Smooth algebraic curves are examples of Riemann
surfaces. It is a consequence of Bezout’s theorem [Har77, Theorem I.7.7] that
each Fi is necessarily irreducible for a smooth algebraic curve.

In the case of a singular (not smooth) algebraic curve coming from reducible
Fi, we call an irreducible component simple/multiple if its multiplicity is one
or greater than one respectively [Ful08, p. 53].

One important class of algebraic curves are plane curves given by the van-
ishing of a single homogeneous polynomial F (X, Y, Z). For these, we often work

non-singular) I shall provide two quotes which may be seen as guiding principles for usage
throughout the rest of this thesis, “The hyphen is not an ornament; it should never be placed
between two words that do not require uniting & can do their work equally well separate”
[Fow26], and “If you take hyphens seriously, you will surely go mad” [Boo05].
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in affine coordinates x = X/Z, y = Y/Z, so we can consider the dehomogenised2

polynomial f(x, y) := F (x, y, 1) = 0. A singular point of the curve (in the open
set Z ̸= 0 without loss of generality) is called a node if the Hessian of f is
nonsingular.

In addition, given a Riemann surface defined as a projective algebraic variety
over C, one may also consider the corresponding variety over different number
fields. Such considerations are relevant for number theory and enumerative ge-
ometry, but aside from a few points I will almost always work over C in this
thesis.

Example 2.1.6. Chow’s theorem [Har77, Theorem B.2.2] states that any closed
analytic subspace of complex projective space is algebraic, i.e. it is an algebraic
subvariety of projective space.

Example 2.1.7. The group SL2(Z) acts on the upper-half plane H by Möbius
transformation, and this extends to an action on H∗ := H ∪ Q ∪ {i∞} [Dol97,
p. 101]. Given Γ ≤ SL2(Z) a subgroup of finite index, X(Γ) := H∗/Γ is a
compact Riemann surface called the modular curve associated with Γ. A
common choice for Γ is the group3

Γ0(N) :=

{(
a b
c d

) ∣∣∣ c ≡ 0 mod N

}
for N ∈ Z>0, in which case one denotes X(Γ) = X0(N), the modular curve of
level N [Shi95]. Such Riemann surfaces will be seen in §2.3.

Definition 2.1.5 is archetypal in a particular sense. It is shown in [GH78,
p. 215] that, as a special case of the Kodaira embedding theorem, every compact
Riemann surface can be thought as a smooth complex algebraic curve. More-
over, one can in fact show that P3 is always sufficient as an ambient space. In
general, it is not possible to smoothly embed the curve in P2, but it can be done
introducing node singularities. These can be removed by a process called blow-
ing up the singularities to get a Riemann surface [Har77, p. 28] (also called the
normalisation of the singular curve), the geometric genus of which is related to
the arithmetic genus of the singular curve in a well defined way [Har77, Corollary
V.3.7]. I will not give the details of this process here, but in practice this will
mean we often think of Riemann surfaces as plane curves F (X, Y, Z) = 0.

Morphisms

As complex manifolds, Riemann surfaces inherit the concept of a morphism be-
tween Riemann surfaces as a map that is holomorphic at the level of charts, and
so isomorphisms as bijective holomorphic maps. As a smooth projective curve
the compatible notion is that of (dominant) rational maps for morphisms, with

2On the use of ‘-ise’ and ‘-ize’ in verbs, Fowler writes on making ‘-ise’ universal that “the
sacrifice of significance to ease does not seem justified” [Fow26]. Nevertheless, in this thesis I
shall make that sacrifice.

3Here, and throughout this thesis, I shall use ≡ to denote equivalence under corresponding
equivalence relation, which should be clear from context.
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birational maps being isomorphisms. There is actually an equivalence of cate-
gories of compact Riemann surfaces, the category of compact complex projective
curves, and the category of field extensions of C of transcendence degree 1 [Har77,
Theorem I.6.12, Theorem B.2.2]. The field of transcendence degree 1 associated
with C is the field of (meromorphic) functions Hom(C,P1).

Taking the perspective of a manifold map for now, around a point P ∈ C,
taking local coordinates about P and its image under f : C → C ′ we can write
the map as as Taylor series, so its local behaviour is z 7→ zm for some positive
integer m. We call m the multiplicity of f at P , and denote it with multP (f).
If multP (f) ≥ 2 we call P a ramification point, in which case f(P ) is called a
branch point [Mir95, Definition II.4.2, Definition II.4.5]. The set of all branch
points is called the branch locus.

Example 2.1.8 ([Mir95], Lemma II.4.6). Given a smooth projective plane curve
C defined by F (X, Y, Z) = 0, the ramification points of the map C → P1 given by
[X : Y : Z] 7→ [X : Z] are the points where F = 0 = ∂F/∂Y .

As F and ∂F/∂Y are both bivariate polynomials when written in affine coordi-
nates, taking their resultant with respect to y gives a single univariate polynomial
in the coordinate of the P1 determining the branch locus. This is the computa-
tional approach to finding the branch locus taken in the Sage Riemann surfaces
module [Sag21b, Sag21a].

Example 2.1.9 ([Mir95], Lemma II.4.7). The multiplicities corresponding to a
meromorphic function on a Riemann surface are

multP (f) =


ordP (f), P a zero,
− ordP (f), P a pole,

ordP (f − f(P )), otherwise,

where ordP (f) is the order of a pole/zero as defined in complex analysis.

It is clear in Examples 2.1.8 and 2.1.9 that the set of ramified points is dis-
crete, hence finite in a compact Riemann surface, and this is in fact true for all
morphisms of Riemann surfaces. As such we can define

dQ(f) =
∑

P∈f−1(Q)

multP (f),

and this function turns out to be constant in Q ∈ C ′ [Mir95, Proposition II.4.8],
so associated with f there is a positive integer deg f = dQ(f) for any Q. This we
call the degree.

Example 2.1.10 ([Mir95], Proposition II.4.12). The constancy of the degree can
be used to deduce that, for example, given a meromorphic function f ̸= 0 on C,∑

P∈C

ordP (f) = 0.

Example 2.1.11. A curve C is called hyperelliptic if g(C) ≥ 2 and there exists
f : C → P1 a map such that deg(f) = 2. Such curves can be written in affine

9
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coordinates as y2 = p2g+2(x) for some degree-(2g + 2) polynomial. In fact, all
genus-2 curves are hyperelliptic [Har77, Exercise IV.1.7].

The degree of f is related to the genera of C, C ′ by the following powerful
theorem.

Theorem 2.1.12 (Riemann-Hurwitz Formula, [Mir95], Theorem II.4.16). Given
f : C → C ′ a nonconstant morphism of Riemann surfaces, we have

2 [g(C)− 1] = 2 deg(f) [g(C ′)− 1] +
∑
P∈C

[multP (f)− 1] .

This is called the Riemann-Hurwitz (RH) formula.

Example 2.1.13 (Degree-genus formula, also known as Plücker’s formula, [Mir95],
Proposition V.2.15). Given a smooth projective plane curve C defined by F (X, Y, Z) =
0, where F is a degree-d homogeneous polynomial, one can use the Riemann-
Hurwitz formula to say g(C) = 1

2
(d − 1)(d − 2). As such, every smooth plane

quartic has genus 3.

2.1.2 Divisors, Line Bundles, and Riemann-Roch

Divisors

A fundamental tool in algebraic geometry and a concept that will be essential for
work throughout this thesis is the concept of a divisor.

Definition 2.1.14 ([Mir95], p, 129). A (Weil) divisor on C is a formal finite
sum of points, i.e. D =

∑
i niPi for ni ∈ Z, Pi ∈ C. The group of divisors under

addition is denoted Div(C). The additive identity of this group, denoted by 0, is
the divisor where all ni are zero. The degree of D is degD =

∑
i ni. We say

that D is effective if all ni are nonnegative.

Remark 2.1.15. This is a special case of the generic definition of divisor for
schemes, which are formal finite sums of codimension-1 subschemes, see [GH78,
p. 130] and [Har77, p. 130].

Definition 2.1.16 ([Mir95], Definition V.1.16). Given f : C → C ′, we can define
the pullback of divisors f ∗ : Div(C ′)→ Div(C) by

f ∗

(∑
i

niQi

)
=
∑
i

ni

 ∑
P∈f−1(Qi)

multP (f)P

 .

Proposition 2.1.17 ([Mir95], Lemma V.1.17). The degree of the pullback of a
divisor is given by deg(f ∗D) = deg(f) deg(D).

Definition 2.1.18 ([Mir95], Definition V.1.3, Definition V.1.10). Given a mero-
morphic function f : C → P1 we define (f) ∈ Div(C) by

(f) =
∑
P∈C

ordP (f) · P.

10
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For D ∈ Div(C), if there exists f such that D = (f) we say D is a principal
divisor. Likewise given a meromorphic differential ω define

(ω) =
∑
P∈C

ordP (ω) · P,

where ordP (ω) is defined by writing ω in terms of a local coordinate z at P as
f(z)dz, and then ordP (ω) = ordP (f). For D ∈ Div(C), if there exists ω such that
D = (ω) we say D is a canonical divisor.

Example 2.1.19. On P1, (ζ) = 0−∞ and (dζ) = −2∞. We can then identify
(f) = f ∗(0−∞).

Example 2.1.20. The ramification divisor of a map f : C → C ′ is Rf :=∑
P∈C [multP (f)− 1]P [Mir95, Definition V.1.18]. Given ω a meromorphic dif-

ferential on C ′, (f ∗ω) = f ∗(ω) +Rf [Mir95, Lemma V.1.19].

The map f 7→ (f) in fact gives a group homomorphism from the units in the
field of meromorphic functions into Div(C), the image of which is the subgroup
of principal divisors denoted by PDiv(C).

Definition 2.1.21 ([Mir95], Definition V.2.1, Definition V.3.6). The divisor
class group of C is the group quotient Cl(C) = Div(C)/PDiv(C). We say two
divisors D, D′, which differ by a principal divisor are linearly equivalent and
write D ∼ D′. The restriction to effective divisors of the equivalence class of D
under the quotient is the complete linear system associated with D, denoted
|D|.

Any two nonzero meromorphic differentials are linearly equivalent, so we are
able to talk about the canonical divisor, for which we use the notation KC. Note
linearly equivalent divisors have the same degree, so we can ask what the degree
of the canonical divisor is.

Lemma 2.1.22 ([Mir95], p. 132). The degree of the canonical divisor is deg(KC) =
2g(C)− 2.

Proposition 2.1.23 ([Mir95], p. 147). On a compact Riemann surface, if deg(D) <
0 then |D| = ∅.

Example 2.1.24. On P1, |dζ| = ∅.

Finally, one concept we will require later is a partial ordering on divisors.

Definition 2.1.25 ([Mir95], p. 136). Given two divisors D,D′ ∈ Div(C), we say
D ≥ D′ if D −D′ is effective.

There is another formulation of divisors in terms of sheaf data. Denote by
OC the sheaf of holomorphic function on C, and by O×

C those that are invertible
under multiplication; likewiseMC,M×

C for meromorphic functions.

11
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Definition 2.1.26 ([GH78], p. 131). A (Cartier) divisor is a global section
of the quotient sheaf M×

C /O
×
C , that is an open cover {Uα} of C with associated

nonzero meromorphic functions fα such that on Uα ∩ Uβ, fα = fβ up to a factor
of a function in O×

C (Uα ∩ Uβ).

Remark 2.1.27. The quotientM×
C /O

×
C is not actually a sheaf but a presheaf; it

can be made into a sheaf using the étale space [McM14, p. 78].

We can get a Weil divisor from a Cartier divisor by the map

{(Uα, fα)} 7→
∑
P∈C

ordP (fα) · P, taking α so P ∈ Uα.

On a smooth projective variety this procedure gives all Weil divisors, and so the
definitions are equivalent [Har77, Proposition II.6.11].

The Picard Group and the Jacobian

In this thesis I will frequently work with holomorphic line bundles, which are rank-
1 complex vector bundles over a complex manifold whose local trivialisations are
holomorphic maps [GH78, p. 66-69].

Definition 2.1.28 ([Har77], p. 143). The Picard group of a Riemann surface
C is Pic(C), the group of isomorphism classes of holomorphic line bundles over
C, with the group operation being tensor product.

Recall that line bundles are determined by the data of invertible transition
functions subject to a cocycle condition, with the transition functions of a tensor
product of line bundles being the product of the transition functions. A holo-
morphic line bundle thus has transition functions which are nonzero holomorphic
functions, and as such we have the following result describing the Picard group.

Proposition 2.1.29 ([Har77], Exercise III.4.5). Pic(C) ∼= H1(C,O×
C ).

Divisors fit into a triality of perspectives, with the other two sides being line
bundles and invertible sheaves, all united by the cohomology group H1(C,O×

C ).
Miranda visualises the triality of perspectives on divisors/line bundles/invertible
sheaves with a “commuting tetrahedron” [Mir95, p. 356].

To any Cartier divisor D given by {(Uα, fα)}, we can associate a holomorphic
line bundle [D] whose transition functions on Uα ∩ Uβ are gαβ = fα/fβ. It can

be shown that this gives a group isomorphism Cl(C)
∼=→ Pic(C) [Har77, Corollary

II.6.16].

Remark 2.1.30. The convention taken above for transition functions is such that
{(Uα, fα)} defines a section of the line bundle as, on Uα∩Uβ, fα = gαβfβ. I shall
on occasion call gαβ the transition from Uβ to Uα. This shall be the convention I
will take throughout this thesis, and I shall reiterate this at various points.

Letting OC([D]) be the sheaf of holomorphic sections of [D], we have that
for all sections s ∈ H0(C,OC([D])) that are not identically zero, (s) ∼ D, and

12
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moreover there exists a meromorphic section s0 such that (s0) = D. The section
s0 is unique up to a constant scale factor, and so there is an isomorphism |D| ∼=
PH0(C,OC([D])). Moreover, up to tensoring with s0 we can identify OC([D]) with
the sheaf OC(D) defined by [GH78, p. 136]

OC(D)(U) = {f ∈MC(U) | (f) +D ≥ 0} .

From now on in I shall be lax on the distinction between a line bundle L → C
and the sheaf of sections OC(L) when writing cohomology groups.

Note giving |D| the structure of a projective space, we can now define a
concept of subspace and dimension.

Definition 2.1.31 ([Har77], p. 157-159). A linear system is a projective sub-
space of a complete linear system when identified with PH0(C,OC([D])), that is
PV for some vector subspace V ≤ H0(C,OC([D])). We define the dimension
of a linear system to be the (complex) dimension of the corresponding projective
subspace, that is dimV − 1, and the degree to be the degree of the corresponding
divisor. The notation grd denotes any linear system of dimension r and degree d.

Definition 2.1.32 ([BL04], p. 385). The gonality of an algebraic curve is the
minimum d such that the curve has a g1d.

Example 2.1.33. The line bundle KC := [KC] is called the canonical bundle,
and it is the line bundle whose fibre at P ∈ C is spanned by dz, where z is a local
coordinate at P [GH78, p. 146]. The corresponding linear system (sometimes
called the canonical linear system) has dimension g(C)− 1, and degree 2g(C)− 2.

On a smooth curve the sheaf of sections of KC is sometimes referred to as
the dualising sheaf because of the isomorphism of Serre duality H1(C, L) ∼=
H0(C, KC ⊗ L∗)∗ for any line bundle L [Mir95, Theorem VI.3.3].

Now from the Long Exact Sequence (LES) of cohomology associated with the
exponential Short Exact Sequence (SES) of sheaves [GH78, p. 37]

0→ Z→ OC
exp→ O×

C → 0,

one gets

0→ H1(C,OC)⧸H1(C,Z)→ H1(C,O×
C )

δ→ H2(C,Z)→ 0,

where δ is a connecting map. For a given L ∈ Pic(C), we call δ(L) := c1(L)
the first Chern class of L. Making the identification H2(C,Z) ∼= Z using the
fundamental class one finds that c1([D]) = deg(D), and we use this to define
the degree of a line bundle [GH78, p. 144]. With this concept we make two
important definitions.

Definition 2.1.34 ([Har77], p. 157). We call H
1(C,OC)⧸H1(C,Z) = Pic0(C) the

Picard variety of C. It is the group of isomorphism classes of degree-0 line
bundles on C.

13
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Remark 2.1.35. For a line bundle L ∈ Pic(C) I will use the notation that for
n ∈ N,

Ln := L⊗ · · · ⊗ L︸ ︷︷ ︸
×n

.

If L is in the image of the exponential map, one can define Ls for s ∈ C by
multiplying the corresponding element of H1(C,OC) by s.

In general the set Picd(C) of isomorphism classes of degree-d line bundles over
C is a torsor4 over Pic0(C), and we immediately see that the tangent space to
Pic(C) at any L is TL Pic(C) ∼= H1(C,OC).

Definition 2.1.36 ([Mir95], Definition VIII.1.2). We define the Jacobian va-
riety of C to be

Jac(C) ∼= H0(C, KC)
∗
⧸H1(C,Z),

where the embedding H1(C,Z) ↪→ H0(C, KC)
∗ is [c] 7→

∮
c
ω.

Using Serre duality and Poincaré duality one gets the isomorphism Pic0(C) ∼=
Jac(C) [Har77, p. 447]. It will be helpful for later to describe slightly more
precisely the isomorphism H1(C,OC) ∼= H0(C, KC)

∗, which is induced by the
pairing

H1(C,OC)×H0(C, KC)→ C,

({rP} , ω) 7→
∑
P

ResP (rPω),
(2.1)

viewing an element of H1(C,OC) as a collection of (equivalence classes of) Lau-
rent tails, that is a Laurent tail divisor [Mir95, §VI.2-3]. Specifically here I am
using the identification that for any effective divisor D of sufficiently large de-
gree there is an isomorphism between H1(C,OC) and the cokernel of the map
H0(C,OC(D))→ H0(C,OD(D)) coming from the SES [For91, §16.7]

0→ OC → OC(D)→ OD(D)→ 0.

The connecting map is such that given Laurent tails rP , rP ′ at P ∈ U , P ′ ∈ U ′,
with U,U ′ ⊂ C open sets, these determine meromorphic functions f , f ′, on the
respective open sets, and then on U ∩ U ′ the value of the corresponding element
of H1(C,OC) is f−f ′. Taking a limit as the support of D increases completes the
picture relating Laurent tail divisors to elements of H1(C,OC). One helpful way
to compute this residue we will see in §3.2.1 comes when there exists a differential
of the second kind γ0, that is a meromorphic differential with no poles of order
exactly one, and higher order poles only at the P in the support of the Laurent
tails such that the function g(P ) :=

∫ P

P0
γ0 satisfies∑

P

ResP (rPω) =
∑
P∈C

ResP (gω).

4For any group G, a torsor over G is a set T with a group actions a : G× T → T such that
the map G× T → T × T , (g, t) 7→ (a(g, t), t) is a bijection.

14
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The latter sum can be calculated using the reciprocity law for differentials of the
second kind [GH78, p. 241]

∑
P∈C

ResP (gω) =
1

2πi

g∑
j=1

∣∣∣∣∣
∫
aj
ω
∫
aj
γ0∫

bj
ω
∫
bj
γ0

∣∣∣∣∣ .
Remark 2.1.37 ([GH78], p. 42, [Mir95], p. 304). In making the identification
Pic0(C) ∼= Jac(C) I have used that H1(C,Z), the singular homology group with
values in Z, and H1(C,Z), the sheaf cohomology group valued in the constant
sheaf Z, are equivalent. I shall herein be lax with notation and write H1(C,Z) for
the sheaf cohomology group.

Example 2.1.38. Jac(P1) is trivial, and so line bundles over P1 are classified
by their degree. We denote the line bundle of degree d over P1 as O(d). We can
identify KP1

∼= O(−2), TP1 ∼= O(2).
The degree of the line bundle corresponds to the degree of the transition func-

tion, which will be a homogeneous polynomial. For example, on P1 take the affine
coordinate ζ = ζ0/ζ1 where ζ1 ̸= 0, and ζ̃ = 1/ζ where ζ0 ̸= 0. One can work out
d

dζ̃
= −ζ2 d

dζ
. This means that if we introduce the coordinate η on the fibre of TP1

with η̃ d

dζ̃
= η d

dζ
, η̃ = −η/ζ2, and as such the transition function is up to a sign

g01(ζ) = ζ2.
Sections of O(d) are given by homogeneous degree-d polynomials in ζ0,1, and

so we immediately get dimH0(P1,O(d)) = d+ 1.

Picking a particular cohomology and homology basis {ωi}, {γj} of H0(C, KC),

H1(C,Z) respectively, we see the Jacobian is a complex torus Cg
⧸Λ where the

lattice Λ is generated by the vectors

Ωj =

(∫
γj

ω1, . . . ,

∫
γj

ωg

)
, 1 ≤ j ≤ 2g. (2.2)

In fact, Jac(C) has a canonical principal polarisation coming from the intersection
pairing of cycles ◦ on C, corresponding to choosing a canonical homology basis
{γj} = {aj, bj} with ai ◦ bj = δij, and so Jac(C) is a Principally Polarised
Abelian Variety (PPAV) [BL04, p. 70, p. 317]. Torelli’s theorem makes precise
one way in which this definition is important.

Theorem 2.1.39 (Torelli’s Theorem, [BL04], Theorem 11.1.7, [GH78], p. 359).
Jac(C) ∼= Jac(C ′) as principally polarised abelian varieties if and only if C ∼= C ′
(as algebraic curves).

Being a PPAV gives us additional information about the Jacobian, for example
we know that abelian subvarieties are in 1-1 correspondence with the idempotent
elements of the Q-endomorphism algebra, and moreover that up to isogeny the
Jacobian decomposes into a product of irreducible abelian subvarieties [BL04,
Theorem 5.3.2, Theorem 5.3.7]. Recall isogenies of abelian varieties are surjective
homomorphisms with finite kernels. This lets one use algebra to constrain the
structure of the Jacobian of the curve, as I will do explicitly in §3.4.3.
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Definition 2.1.40. The g × 2g matrix whose columns are the vectors Ωj of
Equation 2.2 is called the period matrix and is denoted Ω ∈Mg,2g(C). Choosing
a canonical homology basis {γj} = {aj, bj} such that Ω = (A,B) where Aij =∫
aj
ωi (and likewise for B) we define the Riemann matrix to be τ = A−1B.

Remark 2.1.41. Some authors would call the period matrix defined in Definition
2.1.40 the matrix of periods, reserving the name period matrix for what we call the
Riemann matrix, see for example [BN10]. Moreover, sometimes the period matrix
is defined to be a 2g×g matrix instead. The convention taken in Definition 2.1.40
agrees with that used in the Riemann surfaces module of SageMath [Sag21b] where
the period matrix and associated endomorphism ring can be computed numerically,
as computations involving the code in this module have been invaluable during this
thesis. In [BDHG22] Bruin, Gao, and I developed a method for computing the
numerical integrals that occur when calculating the period matrix with rigorous
error bounds.

Remark 2.1.42. The matrices A,B used in the definition of the Riemann matrix
are always invertible [Mir95, Lemma VIII.4.4], and so the Riemann matrix is well
defined for a given choice of cohomology and canonical homology basis. A change
of cohomology basis gives a GLg(C) left action T : Ω 7→ TΩ, T : τ 7→ τ . A change
of homology basis preserving the intersection pairing gives a Sp2g(Z) right action
R : Ω 7→ ΩR,

(
δ β
γ α

)
: τ 7→ (δ + τγ)−1(β + τα).

The elements of the period matrix are typically transcendental numbers [BW08,
Corollary 6.9], as also evidenced by the principle of Kontsevich and Zagier [KZ01]:

“Whenever you meet a new number, and have decided (or convinced
yourself) that it is transcendental, try to figure out whether it is a
period”.

This can be made very precise in the case of elliptic curves by the following result.

Proposition 2.1.43 (Schneider-Lang Theorem, [BW08], p. 30). Letting j be
the elliptic j-invariant (see Equation 2.5), if j(τ) is rational then τ is either
transcendental or an element of a quadratic imaginary field with class number 1.

The j-invariants of elements of quadratic imaginary fields with class number
1 are known to be integers, and are enumerated in [Sil94, §A.3]. These results on
transcendentality shall be relevant in §2.3 and §3.2 where they shall be used to
make remarks about the transcendentality of specific curves or their periods.

The isomorphism between the Jacobian and Pic0 can be made explicit.

Definition 2.1.44. The Abel-Jacobi (AJ) map based at Q ∈ C is

AQ : C → Jac(C),

P 7→
(∫ P

Q

ω1, . . . ,

∫ P

Q

ωg

)
mod Λ.
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The map AQ is independent of the path of integration as we have quotiented by
Λ. We can extend AQ to a map of divisors by

AQ : Div(C)→ Jac(C),∑
i

niPi 7→
∑
i

niAQ(Pi).

Remark 2.1.45. As with the period matrix, computing the Abel-Jacobi map in-
volves only computing integrals of algebraic integrands, and as such using methods
of [BDHG22, Neu18] I implemented computation of the AJ map in Sage [Sag21b].

There is no canonical choice of basepoint for the AJ map, and one can always
calculate

AQ′(D) = AQ(D)− deg(D) · AQ(Q
′).

The properties of this map are described by the following theorem. Here we
denote the image under the Abel-Jacobi map of the set of degree-d effective
divisors as Wd.

Theorem 2.1.46 (Abel-Jacobi, [FK92], §III.6). Given effective divisors D,D′ ∈
Div(C), A∗(D) = A∗(D

′)⇔ D ∼ D′. Moreover, Wg = Jac(C).

Corollary 2.1.47. For any basepoint on an elliptic curve Q ∈ E, AQ : E →
Jac(E) is an isomorphism with AQ(Q) = 0.

This means that we have now understood the moduli space of degree-0 line
bundles on C in terms of analytic divisor data.

Remark 2.1.48. Abel (1802-1829) proved his theorem in his “Mémoire sur une
propriété générale d’une classe très-étendue de fonctions transcendentes” (1826)
in the language of complex analysis before the concept of Riemann surfaces or
cohomology. It was “pronounced by Jacobi the greatest discovery of [the 19th]
century on the integral calculus” [Caj94, p. 413].

Given f : C → C ′, by pulling back line bundles and using Proposition 2.1.17
one gets a map Pic0(C ′) → Pic0(C), and hence dually (in a way made precise
in [BL04, §11.4]) Jac(C) → Jac(C ′). We can understand this map at the level
of the complex torus as we have associated pullback and pushforward maps f ∗ :
H0(C ′, KC′) → H0(C, KC) and f∗ : H1(C,Z) → H1(C ′,Z). These are dual in the
sense that for γ ∈ H1(C,Z), ω′ ∈ H0(C ′, KC′),∫

γ

f ∗ω′ =

∫
f∗γ

ω′.

Picking bases gives matrices T ∈ Mg(C), R ∈ M2g′(Z), for f ∗, f∗ respectively,
which we call the analytic representation ρa(f) and the rational represen-
tation ρr(f) (considered over the fields C and Q respectively, acting via left
multiplication on vectors) [BL04, p. 10]. The duality condition thus says that
TΩ = Ω′R, and moreover given either of T , R, one can recover the other by the
following result.
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Proposition 2.1.49 ([BL04], Proposition 1.1.2).

(
Ω
Ω

)
∈ M2g(C) is invertible,

and hence ρa ⊕ ρa is equivalent as a complex representation to ρr with the conju-

gating matrix

(
Ω
Ω

)
.

Riemann-Roch and Weierstrass Points

We start by stating the Riemann-Roch theorem in a slightly unusual way.

Theorem 2.1.50 (Riemann-Roch, [Har77], Theorem IV.1.3). Given L → C a
holomorphic vector bundle,

dimH0(C, L)− dimH1(C, L) = deg(L) + (1− g).

Equivalently, in terms of the associated divisors and letting l(D) := dimH0(C,OC(D)),

l(D)− l(KC −D) = deg(D) + (1− g).

Definition 2.1.51 ([Har77], Example IV.1.3.4). The term i(D) := l(KC −D) in
Riemann-Roch is often called the index of speciality. An effective divisor for
which i(D) > 0 is called special.

As a corollary of Riemann-Roch, one also gets the following helpful result.

Proposition 2.1.52 (Clifford’s Theorem, [Har77], Theorem IV.5.4). Let D be
an effective special divisor, then l(D) ≤ 1

2
deg(D) + 1, with equality if and only if

D = 0, D = KC, or D is a multiple of the g12 when C is hyperelliptic.

Using Riemann-Roch, we have that for P ∈ C the sequence {l(kP )}∞k=0 be-
haves as

1, ?, . . . , ?︸ ︷︷ ︸
1≤k≤2g−2

, g, g + 1, . . . .

Moreover, the sequence can increase by a maximum of one from term to term,
which leads to the following result.

Theorem 2.1.53 (Weierstrass Gap Theorem, [FK92], §III.5.3). Let C be a com-
pact genus-g Riemann surface, then ∀P ∈ C, there exist unique integers {ni}gi=1

such that

1 = n1 < n2 < · · · < ng < 2g,

and there does not exist f a global meromorphic function with (f) = −niP .

Definition 2.1.54. The weight of P ∈ C is

wP =

g∑
i=1

(ni − i).

18
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A point P is called a Weierstrass point if wP ̸= 0 (note that wP is always
nonnegative, so at a Weierstrass point it is positive). We will sometimes denote
the set of Weierstrass points as W = W (C).

Remark 2.1.55. In §2.3.2, I will present two methods for calculating the Weier-
strass points on Bring’s curve. In general Weierstrass points can be computed
algorithmically in Magma over exact fields5 in any characteristic [Hes02a].

We have results about the abundance of Weierstrass points.

Proposition 2.1.56 ([FK92], §III.5). The set of Weierstrass points is discrete,
with

∑
P∈C wP = g3− g. Moreover if g ≥ 2 the number of Weierstrass points |W |

satisfies

2g + 2 ≤ |W | ≤ g3 − g,

attaining the lower bound if and only if C is hyperelliptic, where the Weierstrass
points are the branch points corresponding to the hyperelliptic involution. Gener-
ically a Riemann surface will have |W | = g3 − g.

The Canonical Embedding

As part of §2.1.2, it was shown how for any divisor D on C the complete linear
system |D| is parametrised by the projective space of sections PH0(C,OC(D)).
In order to progress with this idea we make the following definition.

Definition 2.1.57 ([McM14], p. 96). The base locus of a linear system |D| on
a curve C is the maximal divisor B ≥ 0 such that ∀E ∈ |D|, E ≥ B. A linear
system is basepoint-free if B = 0.

Parametrising6 the linear system by sections, the base locus B =
∑
niPi

says that every section vanishes at Pi with order at least ni, and hence a linear
system is basepoint-free if ∀P ∈ C, ∃s ∈ H0(C,OC(D)) such that s(P ) ̸= 0.
Given such a basepoint-free linear system |D|, and picking a basis of sections
s0, . . . , sN ∈ H0(C,OC(D)), one gets a well defined map [GH78, p. 176]

ιD : C → PN ,

P 7→ [s0(P ) : · · · : sN(P )].

Imposing conditions on D one can ensure that this map is an embedding; such
a divisor is called very ample [GH78, p. 180, p. 192]. The intersection of any
hyperplane with the image in PN , counted with multiplicity, gives an effective
divisor H ∼ D, that is H ∈ |D| [GH78, p. 176].

5A field is exact if computations in this field may be done exactly on a computer, e.g. Q,
finite fields, in contrast to fields where answers are only approximate on a computer, e.g. R
where floating point numbers are used.

6In choosing the spelling “parametrising” over “parameterising” I am following the precedent
of key textbooks [Har77, AH88, MS04].
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Remark 2.1.58. A corollary of the previous comment is that the degree of
ιD(C) ⊂ PN as a projective curve is exactly equal to the degree of D, and that a
linear system g1d determines a degree-d morphism C → P1. The gonality of C can
thus be reinterpreted as the smallest degree of a morphism C → P1

One can prove that, for a compact Riemann surface C with g ≥ 2, KC is very
ample if and only if C is not hyperelliptic [Har77, Proposition IV.3.1]. This leads
to the following natural definition.

Definition 2.1.59 ([Har77], p. 341). Given a non-hyperelliptic curve C of genus
g ≥ 3, we call the embedding ιKC : C ↪→ Pg−1 given by the canonical divisor the
canonical embedding, and denote its image Ccan. Given a singular plane curve
we can define its canonical model to be the canonical embedding of its normalisa-
tion [KM09].

Example 2.1.60. The canonical embedding of a non-hyperelliptic genus-3 curve
is a plane quartic. Moreover, all smooth plane quartics are genus-3 by Example
2.1.13 and non-hyperelliptic as they are complete intersections [Har77, Exercise
IV.5.1].

Example 2.1.61 ([Har77], Example IV.5.2.2). The canonical embedding of a
genus-4 curve is a degree-6 curve in P3. Every such curve can be written as
the complete intersection of a unique irreducible quadric surface and a smooth
irreducible cubic surface. Moreover, every such intersection is the canonical em-
bedding of a genus-4 curve.

The importance of the canonical embedding comes from the fact that the
extrinsic geometry of the Riemann surface in the canonical embedding is reflected
in the intrinsic structure of the Riemann surface itself. For example we get
different ways to characterise Weierstrass points, namely by the following result.

Proposition 2.1.62 ([McM14], Proposition 12.6, Theorem 12.7). Given a Weier-
strass point P ∈ C with g(C) = g, the following equivalent conditions are satisfied:

1. there exists a hyperplane H ⊂ Pg−1 such that H ∩ Ccan has multiplicity at
least g at P ,

2. there exists a holomorphic differential on C vanishing at P with order at
least g,

3. there exists a meromorphic function on C with poles just at P of order at
most g, and

4. the Wronskian determinant given by Wr(P ) = det
(

diωj

dzi

)
i,j=0,...,g−1

, where

{ωj} is a basis of holomorphic differentials and z is a local coordinate around
P , vanishes.

2.1.3 Surfaces in P3

As we will require some properties of quadric and cubic surfaces in P3 over the
course of this thesis, thinking of Example 2.1.61 as the motivating example we
shall now give a few properties.
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Quadrics and TP1

One understands the possible quadric hypersurfaces of P3 very well. They are
known to be either a double plane, the union of two planes, a singular cone given
in some coordinates as X0X1 − X2

2 = 0, or a smooth quadric given in some
coordinates as X0X3 − X1X2 = 0 [Vak10, Exercise 19.8.B]. Only the latter two
are irreducible. Example 2.1.61 has a partial generalisation by the following.

Proposition 2.1.63 ([Har77], Exercise IV.5.1, Exercise V.2.9). The nonsingular
complete intersection of a quadric cone and a degree-k hypersurface in P3 is a
non-hyperelliptic curve of genus (k − 1)2 and degree 2k for k ≥ 1. Moreover, all
such curves are given by such a complete intersection.

The smooth quadric is isomorphic to P1 × P1, with the map P1 × P1 ↪→ P3,

P1 × P1 → P3,

([ζ0 : ζ1], [η0 : η1]) 7→ [ζ0η0 : ζ0η1 : ζ1η0 : ζ1η1],

a special case of the Segre embedding.
Over a field of characteristic not equal to 2, one can express the singular

irreducible quadric as Z2
0 + Z2

1 − X2
2 by letting X0 = Z0 + iZ1, X1 = Z0 − iZ1,

showing clearly why it is called ‘the’ cone. The cone point [0 : 0 : 0 : 1] is the
unique singularity of the surface [Har77, Exercise I.5.2]. The cone is birational
to the weighted projective space P(1 : 1 : 2) via a variation of the Veronese
embedding,

P(1 : 1 : 2)→ P3,

[ζ0 : ζ1 : η] 7→ [ζ20 : ζ0ζ1 : ζ
2
1 : η],

where the preimage of the singular point is [0 : 0 : 1] [Vak10, §8.2.11]. The
automorphism group of this weighted projective space is given by the following
result.

Proposition 2.1.64 ([DI10], Proposition 7). The automorphism group of P(1 :
1 : 2) is Aut(P(1 : 1 : 2)) = C3 ⋊ [GL2(C)/ ⟨± Id⟩]. The C3 factor acts as
translations [ζ0 : ζ1 : η] 7→ [ζ0 : ζ1 : η+P (ζ0, ζ1)] where P is a homogeneous degree-
2 polynomial, and the GL2(C)/ ⟨± Id⟩ factor acts via its linear representation on
ζ0,1.

An immediate consequence of Propositions 2.1.64 and 2.1.63 is that the auto-
morphism group of any curve given by the intersection of the cone and a cubic is
a subgroup of C3 ⋊ [GL2(C)/ ⟨± Id⟩]. The fact that the automorphism group of
a genus g ≥ 2 curve is finite (see Theorem 2.1.85) forces the group to actually be
a finite subgroup of GL2(C)/ ⟨± Id⟩ (any nonzero translation would generate an
infinite subgroup), which can equivalently be seen as fixing the embedding into
P3 because the quadric on which the curve lies is unique.

Identifying TP1 with O(2) as in Example 2.1.38 gives the interpretation of
the fibre coordinate as weight-2 with respect to the base P1 coordinate, and so
the total space naturally embeds into P(1 : 1 : 2), missing the singular point.
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Fig. 2.1 Limiting sequence of ruled hyperboloids

This gives a singular compactification of TP1; one can remove this singularity if
required by blowing up the surface there, which yields the Hirzebruch surface7

F2 := P(O⊕O(2)) [Dol82, §1.2.3]. We can view this as the limit of the ‘narrowing’
process shown in Figure 2.1, where we demand continuity along the lines drawn.

In §3.2.1 we will require a robust knowledge of TP1 because of its interpreta-
tion as the (Euclidean) minitwistor space MT, that is the space of oriented
geodesics in Euclidean R3 with an appropriate complex structure [Hit82], and
so I will take the opportunity to give a few more definitions here. I will fix the
notation ζ, η for the base and fibre coordinate and π for the projection TP1 → P1

from here on in. Moreover, I will take Ũ0,1 to be the preimages under π of the

open sets U0,1 covering P1 defined in Example 2.1.3. It is known that
{
Ũ0,1

}
is a

Leray cover of TP1 with respect to the sheaf OTP1 , that is the Čech cohomology

of the open cover
{
Ũ0,1

}
is isomorphic to the sheaf cohomology of TP1 [AHH90].

Definition 2.1.65. The antiholomorphic involution on TP1 is τ(ζ, η) =
(−1/ζ̄,−η̄/ζ̄2).

It will be relevant for later work to note that this involution corresponds to
the involution on MT coming from reversing the orientations of each geodesic.
The involution τ induces an action on the space of holomorphic vector bundles
over TP1 by σ : E → τ ∗E, where E is the conjugate bundle, that is the bundle
whose transition functions are the complex conjugate of the transition functions
of E. As this action will be recur frequently in §3.2 I shall introduce a simplified
notation for it now.

Definition 2.1.66. I will adopt the notation that for any complex function f =
f(ζ, η), f τ := τ ∗f = f ◦ τ .

A bundle is called real/quaternionic if the isomorphism σ2 : E → τ ∗τ ∗E ∼= E
acts fibrewise as 1 or −1 respectively [AW77, Har78, BH11]. Note that, given
bundles Ei, i = 1, 2, with lifts σi of τ such that σ2

i = (−1)ni , ni ∈ Z, E1⊗E2 has
the lift of τ given by σ1 ⊗ σ2 satisfying (σ1 ⊗ σ2)2 = (−1)n1+n2 .

7Not to be confused with the field of order 2.
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Example 2.1.67. The projection map p : C2 \0→ P1 given by p : (ζ0, ζ1) 7→ [ζ0 :
ζ1] determines the tautological line bundle O(−1). One can see this by trivialising
the line bundle as

ρ0 = (p, ψ0) : p
−1(U0)→ U0 × C,
(ζ0, ζ1)→ ([ζ : 1], ζ1),

ρ1 = (p, ψ1) : p
−1(U1)→ U1 × C,
(ζ0, ζ1)→ ([1 : ζ−1], ζ0),

whereby ρ0 ◦ ρ−1
1

∣∣
(U0∩U1)×C : ([1 : ζ−1], ζ0)→ ([ζ : 1], ζ1), so the associated transi-

tion function is g01 = ζ1/ζ0 = ζ−1 [For91, §29].
Now P1 has the antiholomorphic involution [ζ0 : ζ1] 7→ [−ζ̄1 : ζ̄0], or equiv-

alently ζ 7→ −1/ζ̄. This naturally lifts to an antiholomorphic involution of the
total space of the bundle given by σ : (ζ0, ζ1) 7→ (−ζ̄1, ζ̄0) such that σ2 : (ζ0, ζ1)→
(−ζ0,−ζ1). As such, O(−1) has a quaternionic structure, and one can determine
whether O(k) has a real or quaternionic structure by the parity of k. Pulling
back by π : TP1 → P1 the same argument shows π∗O(k) has a real/quaternionic
structure relative to the antiholomorphic involution τ depending on the parity of
k.

Using the known Leray cover we can determine the line bundles on TP1.

Proposition 2.1.68 ([AHH90], Proposition 2.2). The cohomology group H1(TP1,OTP1)
is generated by monomials ηiζj where i > 0 and −2i < j < 0.

Definition 2.1.69. We define a line bundle Ls → TP1 for s ∈ R with transition
function g10 = esη/ζ. Denote L := L1 and Ls(k) := Ls ⊗ π∗O(k).

Remark 2.1.70. In Definition 2.1.69 I am using the convention that, when spec-
ifying transition functions, one has sections fi defined on an open cover {Ui} re-
lated by fi = gijfj. With this convention, the bundle O(k) has transition function
g01 = ζk. This agrees with the conventions when they were set out in §2.1.2.

Remark 2.1.71. The line bundle L has a more intrinsic definition, given by
Hitchin in [Hit82, §5]. Namely, on any compact curve there is the natural function
1 ∈ H0(C,OC) hence by Serre duality a natural class ω ∈ H1(C, KC), and given
a vector bundle E

π→ C there is the tautological section of the pullback by π of
the total space s0 ∈ H0(E, π∗E). Taking E = K∗

C these together define s0π
∗ω ∈

H1(K∗
C ,OK∗

C
) which by the exponential sequence will define a line bundle over E

(see §2.1.2). Taking C = P1 gives E = TP1, ω is a differential-valued Laurent
tail divisor with representative given solely by dζ/ζ at ζ = 0, and the tautological
section takes fibre value η d

dζ
, so the class in H1(TP1,OTP1) is a Laurent tail

divisor with representative given solely by η/ζ at ζ = 0.

Realising the embedding of TP1 in the cone in P3 gives the following corollary
of Proposition 2.1.63.

Proposition 2.1.72. Let C ⊂ TP1 be a curve in the linear system |π∗O(2k)| for
k ≥ 1. Then g(C) = (k − 1)2, and C is not hyperelliptic for k ≥ 2.
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Cubics

Moreover, much is known for cubic surfaces F ⊂ P3, for example the famous
result on 27 lines [Sal82, p. 500]. A classical result from [SR49, p. 122-124] gives
that a generic cubic surface can be written as the vanishing of a determinant

det

u1 v1 w1

u2 v2 w2

u3 v3 w3

 = 0,

where u1, . . . , w3 are linear homogeneous functions of the P3 coordinates, that is
to say P = [L1 : L2 : L3 : L4] ∈ F ⊂ P3 if and only if there exists P ′ = [X : Y :
Z] ∈ P2 such that

Xui(P ) + Y vi(P ) + Zwi(P ) = 0.

Thinking of P ′ as a point in a plane Π we get a birational transformation Π↔ F ,
P ′ ↔ P . The map Ψ : Π→ F will have the La as homogeneous cubics in X, Y, Z.
To see this rewrite the determinant equation as (for i = 1, 2, 3)

4∑
a=1

aia(P
′)La = 0 (2.3)

for some aia linear homogeneous in the X, Y, Z. On each affine patch La ̸= 0
solving Equation 2.3 involves inverting a 3×3 matrix whose entries are linear ho-
mogeneous polynomials in X, Y, Z. Likewise, given the La, we have a 3-parameter
family of cubics given by

aL1 + bL2 + cL3 + dL4 = 0 for [a : b : c : d] ∈ P3.

A cubic in P2 has 10 projective coefficients, and so a 3-parameter family is defined
by six constraints. Generically we can take those constraints to come in the form
of intersection with six generic points Oi ∈ Π.

Finally, I shall set some definitions from classical geometry that will be used
later in §2.3.

Definition 2.1.73 ([Hir86], p. 192). An Eckardt point of a surface is a point
where three lines contained within the surface intersect.

Definition 2.1.74 ([Hir86], p. 182, [Sal82], p. 500). A double-six is a collection
of twelve lines a1, . . . , a6, b1, . . . , b6 in P3, arranged as

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

so that each line is disjoint from those in the same row and column, but intersects
the other five lines.

Definition 2.1.75 ([Sal82], p. 104). The osculating plane Π at a point P on
a curve C is the limiting plane through P , P ′, P ′′ as P ′, P ′′ → P on the curve.
Equivalently this is a plane such that Π ∩ C ≥ 3P .

24



Symmetries of Riemann Surfaces and Magnetic Monopoles 25

2.1.4 The Automorphism Group

Given a compact Riemann surface C, we have the associated group Aut(C) of
automorphisms (i.e. self-isomorphisms) acting holomorphically on C. The au-
tomorphism group of a curve is a powerful tool for studying the corresponding
curves geometry, and will be fundamental for the rest of the thesis.

Example 2.1.76 ([FK92], p. 277). The automorphism group of the projective
line is Aut(P1) = PSL2(C), acting by Möbius transformations.

Example 2.1.77. An elliptic curve E has an automorphism group as an object in
the category of projective varieties, and also an automorphism group as an object
in the category of groups. To consider the group structure on an elliptic curve
E we need to also give a base point O ∈ E which acts as the additive identity,
which corresponds to picking a base point of the Abel-Jacobi map E → Jac(E).
A morphisms of pairs (E , O) → (E ′, O′) must map O → O′. If we denote the
group of automorphisms of E as a projective variety as Aut(E), and the group of
O-fixing automorphisms as AutO(E), then we have the short exact sequence

0→ TE → Aut(E)→ AutO(E)→ 0,

where TE is the group of translations of E. It is a classical theorem that AutO(E) ∈
{C2, C4, C6}, where Cn is the cyclic group of order n [Sil09, Theorem III.10.1].
Note that, because any elliptic curve has the hyperelliptic involution, AutO(E) is
never the trivial group.

Definition 2.1.78. An automorphism of a projective plane curve is called a
collineation if it acts on the projective coordinates via the natural action of
PGL3(C).

Example 2.1.79. The action of an automorphism on the canonical embedding
of the curve corresponds to the analytic representation, that is the automorphism
group is represented as a subgroup of PGLg(C). The automorphisms of a smooth
plane quartic are therefore always collineations.

Given a finite groupG acting holomorphically and effectively (that is such that
no nonidentity element acts trivially) on a Riemann surface C we can construct
the quotient Riemann surface C/G, whose points are orbits of the G action8

[Mir95, Theorem III.3.4]. This quotient comes with a canonical morphism π :
C → C/G of degree |G| ramified at the P where the corresponding isotropy
subgroup GP := {g ∈ G | g · P = P} is nontrivial.

Lemma 2.1.80 ([FK92], §III.7.7). The isotropy group GP is cyclic.

As points in the same G orbit of C have conjugate isotropy subgroups, we can
label the finitely many nontrivial isotropy subgroups of the ramification points
with conjugacy classes Ci of subgroups of G, the elements of which must have
constant order ci as the subgroups are cyclic.

8I am following the precedent of [Mir95, §III.3] in choosing the convention “G action” over
the more common choice “G-action”. As such I shall also use “G orbit” over “G-orbit”.

25



26 Alec Linden Disney-Hogg

Definition 2.1.81 ([MSSV02], §2). We call the ramification type of the G ac-
tion on C the data of the tuple (g(C), G, (C1, . . . , Cr)). The vector c = (c1, . . . , cr)
(or sometimes (g0; c1, . . . , cr) where g0 = g(C/G)) is called the signature. I will
use exponents to indicate how many times a value of ci is repeated as in [Bro91].
A generating vector for the action is {α1, β1, . . . , αg0 , βg0 , γ1, . . . , γr} ⊂ G such
that

γc11 = · · · = γcrr =

g0∏
i=1

(αiβiα
−1
i β−1

i )
r∏

j=1

γj = 1.

Example 2.1.82. The genus-2 hyperelliptic curve given by y2− (x5− 1) = 0 has
a natural action of C5. The two points at x = 0 and the one point at x =∞ are
fixed by this action, so the signature of the action is (0; 5, 5, 5), which will also be
denoted as (0; 53), or just (53) if omitting the quotient genus.

The ramification type determines g(C/G) by Riemann-Hurwitz,

2 [g(C)− 1] = |G|

{
2 [g(C/G)− 1] +

r∑
i=1

(
1− 1

ci

)}
. (2.4)

Considerations of the possible ramification type lead to results bounding the
size of the automorphism group when g(C) ≥ 2.

Definition 2.1.83 ([MSSV02], §1.3). If G ≤ Aut(C) has order |G| > 4 [g(C)− 1],
the automorphism group G is said to be large. If G is large, g(C/G) = 0.

Remark 2.1.84. Note that the property of having a large automorphism group is
different to the concept of having many automorphisms, as defined in [Rau70].
Moreover, be aware that some authors use large to mean the condition g(C/G) =
0, for example in [BRR13].

One also gets results about the maximum order of a single automorphism on a
curve, for example the maximal order of a single automorphism is 2(2g + 1) (the
Wiman bound) [Wim95a, MSSV02], and one can get further stricter results
considering odd automorphism groups [Wea03] or prime-order actions [RCR22].

Theorem 2.1.85 (Hurwitz’s Theorem, [Hur92]). Given C with g(C) ≥ 2, |Aut(C)| ≤
84(g − 1). Curves that achieve this bound are called Hurwitz curves.

Example 2.1.86. Klein’s curve has genus 3 and automorphism group PSL2(F7)
of order 168 [Kle79]. There are infinitely many curves achieving the Hurwitz
bound [Mac61].

Hurwitz’s theorem is in fact a special case of a more general result.

Theorem 2.1.87 (de Franchis’ theorem, [Mar83]). Given Riemann surfaces C, C ′
with g := g(C) ≥ g(C ′) ≥ 2, the number of holomorphic maps C → C ′ is finite.

The next result gives a link between Weierstrass points and symmetry.
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Theorem 2.1.88 ([FK92], p. 242). Automorphisms of compact Riemann surfaces
permute Weierstrass points, that is we get a group homomorphism Aut(C) →
SW (C), and moreover the homomorphism is injective unless C is hyperelliptic in
which case the kernel is generated by the hyperelliptic involution.

Theorem 2.1.88 is trivial from the perspective of Weierstrass points as stalls9

of the canonical embedding, showing the utility in the mantra that the intrin-
sic geometry of the curve is reflected in the extrinsic geometry of its canonical
embedding. A useful result for showing a point is a Weierstrass point is the
following.

Proposition 2.1.89 ([Lew63, MV06, LS12]). If an automorphism of a compact
Riemann surface, genus g ≥ 2, fixes more than 4 points then these fixed points
are Weierstrass points.

Automorphisms of C induce symplectic automorphisms of Jac(C), that is
an automorphism of the complex torus that fixes the principal polarisation,
which at the level of the rational representation requires that the matrix R
is symplectic. In the event that C is hyperelliptic the map gives an isomor-
phism Aut(C) ∼= Aut(Jac(C)); when C is non-hyperelliptic the isomorphism is
Aut(C) ∼= Aut(Jac(C))/ ⟨−1⟩ [BSZ19, Theorem 4.11].

The classification of Riemann surfaces by their automorphism group is a deep
field with a long history. The classification for genera 0 and 1 curves was done
during the advent of Riemann surface theory, the case of genus-2 curves was com-
pleted by Bolza in [Bol87], the case of genera 3 and 4 by Wiman in [Wim95b]
(see also [Bar12]). Separately, algorithms for computing all possible ramifica-
tion types were created by Breuer in [Bre00], and developed by Paulhus for the
LMFDB [LMF23].

The code of [BSZ19], implemented in Sage, gives a way to construct the
rational representation of the automorphism group given a plane model of the
curve. The code of [BRR13] can compute this from the data of ramification type
and a generating vector provided the quotient genus is 0.

2.1.5 Elliptic Curves and Functions

Elliptic curves are Riemann surfaces of genus 1. Over C, every elliptic curve can
be written in terms of affine coordinates x, y in Weierstrass form

E : y2 = 4x3 − g2x− g3

for some g2, g3 ∈ C. In these coordinates, the differential dx
y
is globally holomor-

phic. In this brief section I will survey some of the basic results required in this
thesis, namely in §2.3 and §3.4; more can be found in [DLMF, MM97, Sil09].

9A stall of a plane curve is a point where the osculating (hyper)plane has a 4-point inter-
section [Edg71]. According to Harris “This is a completely archaic, nineteenth-century word,
and I suggest you forget it immediately.”
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The Weierstrass ℘ Function and Lattice Invariants

As seen in Corollary 2.1.47, with a choice of basepoint the Abel-Jacobi map
provides an isomorphism E ∼= Jac(E).
Remark 2.1.90. As elliptic curves with a choice of identity are abelian varieties
we can ask about isogenies and the equivalence classes under isogeny. It shall be
helpful now to note a point that will be important later when discussing Bring’s
curve, namely that by a famous theorem of Shafarevich over any number field L
the L-isogeny class of any elliptic curve is finite [Sil94, Corollary IX.6.2].

Written in Weierstrass form, it is natural to take the point at x =∞, y = +∞
as the basepoint, and so the AJ map is

(x(P ), y(P )) 7→
∫ P

∞

dx

y
.

We can define the inverse function ℘(z) by

z =

∫ ℘(z)

∞

dx√
4x3 − g2x− g3

,

so equivalently (℘′)2 = 4℘3 − g2℘− g3 with ℘(0) =∞. This is the Weierstrass
℘ function. It is a doubly-periodic meromorphic function, more properties about
which can be read in [AS72, §18].

As g = 1, the period lattice for the elliptic curve is given by Λ := 2ωZ+2ω′Z,
with τ = ω′/ω. The functions g2, g3 turn out to depend on ω, ω′ alone, satisfying
the following:

(i) gk(λω, λω
′) = λ−2kgk(ω, ω

′),

(ii) given ( a b
c d ) ∈ SL(2,Z), gk(1, (aτ + b)/(cτ + d)) = (cτ + d)2kgk(1, τ),

(iii) limIm τ→∞ g2(1, τ) =
4π4

3
, limIm τ→∞ g3(1, τ) =

8π6

27
,

(iv) when τ = i, g2(1, τ) =
Γ(1/4)8

256π2 , g3(1, τ) = 0,

(v) when τ = e2πi/3, g2(1, τ) = 0, g3(1, τ) =
Γ(1/3)18

(2π)6
.

We shall call the gk the lattice invariants. We have [JS87, Theorem 3.16.2]

g2, g3 ∈ R⇔ ∀z ∈ C, ℘(z̄; g2, g3) = ℘(z; g2, g3)⇔ Λ = Λ.

Lattices for which Λ = Λ are called real lattices and they fall into two classes:
rectangular lattices (ω ∈ R, ω′ ∈ iR), and rhombic lattices (ω = ω′). The rhombic
lattices correspond to τ being on the boundary of the fundamental domain of the
SL2(Z) action on the upper half plane while the rectangular lattices correspond
to τ on the imaginary axis with ℑ(τ) ≥ 1. When restricted to rectangular or
rhombic lattices we can say more about the values of g2(1, τ) and g3(1, τ). This
is done by relating the gk to the roots ei of the corresponding cubic equation by

g2(1, τ) = 2(e21 + e22 + e23), g3(1, τ) = −4e1e2e3.
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(i) On a rectangular lattice have ei ∈ R so g2 > 0; further, g3 > 0 if |τ | > 1,
g3 < 0 if |τ | < 1.

(ii) On a rhombic lattice, e1 ∈ R, e2 = ē3, and sgn(e1) = sgn(g3).

A related concept that will occur multiple times in §3.2 and §3.4 is the com-
plete elliptic integral of the first kind defined by

K(k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

, k ∈ (0, 1).

This is very often denoted as K(m) where m = k2, and the notation k′ is used
for
√
1− k2; in this thesis I shall use both. The complete elliptic integral can be

used to express the periods of an elliptic curve when the corresponding modulus
k is defined in terms of the ei; vast numbers of relations of this kind are given in
[AS72, §17, §18].

The j-Invariant

From the gk one can construct the modular j-invariant

j(τ) := 1728
g2(τ)

3

g2(τ)3 − 27g3(τ)2
. (2.5)

This is invariant under modular transformations of τ as the name suggests. The
j-invariant classifies elliptic curves over C up to isomorphism [Har77, Theorem
4.1]. Given a specific value of j, there exist methods to invert j to find the
corresponding value of τ [BBG95]. In particular, one that shall be used later in
constructing monopole solutions is the following: solve the quadratic equation
4α(1− α) = 1728/j for α ∈ C, and then τ is given by

τ = τ(α) = i
2F1(1/6, 5/6, 1; 1− α)

2F1(1/6, 5/6, 1;α)
. (2.6)

This is multi-valued when α < 0 [DLMF, 15.2.3], with a principal branch τp and
second branch τp + 1, but for our purposes this difference will not be important.
Picking the other root of the quadratic gives −1/τ , which is clearly just as valid a
period. I will require some properties of τ(α) when computing monopole spectral
curves in §3.4, and so I shall briefly describe them now. The specific properties
we require are that

(i) ∀α ∈ (0, 1), τ(α) ∈ iR>0,

(ii) τ(0+) = +i∞, τ(1/2) = i, τ(1−) = 0,

(iii) ∀α < 0, Re(τ(α)) ≡ 1/2 mod 1,

(iv) τ(−∞) = e2πi/3, τ(0−) = 1
2
+ i∞.
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Evaluated at the specific τ(α) in Equation 2.6 we find that

sgn(g3(1, τ(α))) =

{
1, α < 1/2,
−1, α ∈ (1/2, 1).

Here we provide the necessary definitions and proofs. We can understand the be-
haviour of τ using known results about hypergeometric functions (see for example
[AS72, §15]). First, in the region α ∈ (0, 1), we may use the series expression for

2F1(a, b, c; z) when |z| < 1:

2F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (a)n is the rising Pochhammer symbol

(a)n =

{
1, n = 0,

a(a+ 1) . . . (a+ n− 1), n ≥ 1.

This means we have (i) that for all α ∈ (0, 1), τ(α) ∈ iR>0. This is important
as it makes the lattice rectangular, which forces the Weierstrass ℘ function to be
real on the real axis [DLMF, §23.5]. Moreover, as 2F1(a, b, c; z) is increasing in
z ∈ (0, 1), Im τ(α) is strictly decreasing in α. We can calculate the limits to be

τ(0+) = +i∞, τ(1−) = 0,

so giving (ii). We may use [AS72, 15.3.10] which says that when |1− z| < 1,
|arg(1− z)| < π,

2F1(a, b, a+ b; z) =
Γ(a+ b)

Γ(a)Γ(b)

∞∑
n=0

(a)n(b)n
(n!)2

[2ψ(n+ 1)− ψ(a+ n)

−ψ(n+ b)− log(1− z)] (1− z)n,

where ψ is the digamma function [AS72, 6.3.1], to understand exactly this limiting
behaviour, namely that the divergence is logarithmic.10 We can also highlight a
special value in this region, namely τ(1/2) = i. For α ̸∈ [0, 1] we no longer have
that τ lies on the imaginary axis, and we would thus need to get a rhombic lattice
(that is Re τ = 1/2) for the reality of ℘. Numerical tests suggest that while this
happens for α < 0; for α > 1 we instead get Re(−1/τ) = 1/2. Indeed we may

10In this thesis I will use log to denote the natural logarithm.
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use [DLMF, 15.10.29] to say11

2F1(1/6, 5/6, 1; 1− α) = e5πi/6
Γ(1)Γ(1/6)

Γ(1)Γ(1/6)
2F1(1/6, 5/6, 1;α)

+ e−πi/6 Γ(1)Γ(1/6)

Γ(5/6)Γ(1/3)
α−1/6

2F1(1/6, 1/6, 1/3; 1/α),

= e5πi/62F1(1/6, 5/6, 1;α)

+ (−α)−1/6 Γ(1/6)

Γ(5/6)Γ(1/3)
2F1(1/6, 1/6, 1/3; 1/α),

and hence when α < 0 (and taking the principal branch of the hypergeometric
function) we get

τ(α) = i
[
e5πi/6 + T (α)

]
with

T (α) = (−α)−1/6 Γ(1/6)

Γ(5/6)Γ(1/3)
2F1(1/6, 1/6, 1/3; 1/α)

2F1(1/6, 5/6, 1;α)
∈ R.

This means Re(τ(α)) ≡ 1/2 mod 1, which yields (iii). To get the asymptotics
as α→ −∞, we use [AS72, 15.3.7]

2F1(a, b, c; z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−a
2F1(a, a+ 1− c, a+ b− 1; z−1)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b
2F1(b, b+ 1− c, b+ a− 1; z−1).

Taking α = −ϵ−1, this gives that as ϵ→ 0+,

2F1(a, b, c;−ϵ−1) ∼ Γ(2/3)

Γ(5/6)2
ϵ1/6, 2F1(a, b, c; 1 + ϵ−1) ∼ Γ(2/3)

Γ(5/6)2
(−ϵ)1/6,

and so τ(−∞) = e2πi/3 = −1
2
+ i

√
3

2
. To get the remaining asymptotics of (iv), as

α→ 0− we write α = −ϵ. Then

2F1(a, b, c;−ϵ) ∼ 1, 2F1(a, b, c; 1 + ϵ) ∼ −Γ(1)
Γ(1/6)Γ(5/6)

log(−ϵ) = −1
2π

(iπ+ log ϵ),

and so τ(0−) = 1
2
+ i∞. To get the asymptotics as α → 1+ we recognise that

τ(1− α) = −1/τ(α) and so −1/τ(1+) = 1
2
+ i∞. Finally to get the asymptotics

as α→∞ we do the same, so −1/τ(∞) = 1
2
+ i

√
3

2
.

11I am very grateful to Adri Olde Daalhuis for this argument.
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2.2 Theta Characteristics

Now the various species of whales need some sort of
popular comprehensive classification, if only an
easy outline one for the present, hereafter to be
filled in all its departments by subsequent laborers.
As no man better advances to take this matter in
hand, I hereupon offer my own poor endeavors. I
promise nothing complete; because any human
thing supposed to be complete, must for that very
reason infallibly be faulty. I shall not pretend to a
minute anatomical description of the various
species, or - in this place at least - to much of any
description. My object here is simply to project the
draught of a systemization of cetology. I am the
architect, not the builder.

– Herman Melville
Moby Dick

In this section I will devote some time to studying theta characteristics, and
specifically their orbit structure. In [Ati71] theta characteristics were shown to be
equivalent to spin structures on compact Riemann surfaces (and more generally
on compact complex manifolds), and as such I will use the terms interchangeably.
The term theta characteristic itself comes historically from the relations between
theta characteristics and the transcendental theta function on the curve; in this
thesis I will take a more modern algebraic treatment, which has the benefit of a
slightly cleaner approach, though I will touch upon the relation to theta functions
in §2.2.1. For a brief, but more complete, history of different approaches to theta
characteristics see [Far12].

Definition 2.2.1. A square root of L ∈ Pic(C) is L̃ ∈ Pic(C) such that L̃2 = L.
Equivalently by the equivalence of §2.1.2 this is a solution in the divisor class group
to 2DL̃ = DL.

The question of how many, if any, square roots of a line bundle exist is neatly
governed by the following result.

Proposition 2.2.2. Given L ∈ Pic(C),

• L has a square root if and only if degL is even, and

• if L has a square root it has exactly 22g(C) square roots.

Proof. Use the snake lemma [Wei95, Lemma 1.3.2] applied to the diagram

0 Pic0(C) Pic(C) Z 0

0 Pic0(C) Pic(C) Z 0,

⊗n ⊗n ×n
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taking n = 2. For the second point, note that if we had two square roots L̃1, L̃2,
then M = L̃1 ⊗ L̃−1

2 satisfies M2 = OC. Hence M is a 2-torsion element of the
Picard group, and moreover degM = 0 so M ∈ Pic0(C) ∼= Jac(C). Square roots
are thus in 1-1 correspondence to the half-period elements of the Jacobian lattice,
of which there are 22g.

Definition 2.2.3. A theta characteristic on C is a square root of KC. Denote
the set of all theta characteristics as S(C).

It is a consequence of the proof of Proposition 2.2.2 that S(C) is an affine
space12 over Z2 modelled on H1(C,Z2).

Definition 2.2.4 ([Dol12], p. 195, p. 210). A theta characteristic is called odd/even
based on the parity of its index of speciality. An even theta characteristic D is
called vanishing if i(D) > 0 and nonvanishing otherwise.

Lemma 2.2.5 ([Fay73], p. 11, [Ati71], Theorem 3). On a Riemann surface of
genus g there are 2g−1(2g − 1) odd theta characteristics and 2g−1(2g + 1) even
theta characteristics.

There are many equivalent definitions of parity for a theta characteristic,
and while Definition 2.2.4 is not computationally the easiest, it is one of the
easiest to state. [Far12] provides a nice overview of different definitions and their
connections. Note that for a theta characteristic dimH0(C, L) = dimH1(C, L)
by Riemann-Roch.

Example 2.2.6. On P1, there is only one square root of KP1
∼= O(−2), given by

O(−1). In this instance dimH0(P1,O(−1)) = 0 and hence the characteristic is
even.

Example 2.2.7 ([Mum71, KS10]). Suppose we have a hyperelliptic curve C given
by y2 =

∏2g+2
i=1 (x − ei). We have a natural degree-2 map π : C → P1 given by

(x, y) 7→ x and we can label with pi the points (ei, 0) such that π(pi) = ei. The
canonical divisor class on P1 is represented by KP1 = −2q for any q ∈ P1, as can
be seen as it is the divisor of dϕ where ϕ(x) = x−q

x
is a Möbius transformation of

P1, and pulling back by π we get

π∗(−2q) =
{
−2(a+ b), {a, b} = π−1(q), q /∈ {ei} ,
−4pi, q = ei.

Moreover, the ramification divisor of the cover is clearly given by Rπ =
∑

i pi,
and hence a classical description of the canonical divisor on C is given by

KC = −2D +
∑
i

pi

where

D =

{
a+ b, a, b /∈ {pi} ,
2pi, otherwise.

12Equivalently S(C) is a torsor for the Z2 vector space H1(C,Z). This means that, given
a choice of any theta characteristic to act as the ‘origin’, the set of theta characteristics is
isomorphic to H1(C,Z2).
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Note D corresponds to the divisor of π∗O(1) (this is perhaps clearer by thinking
of the divisor of O(1) being the intersection of a hyperplane with P1). Moreover,
one can calculate that

(y) = −(g + 1)(∞+ +∞−) +
∑
i

pi,

where ∞± are the two preimages of x = ∞ under π. We can then write ∞+ +
∞− ∼ D, and as such one gets the additional divisor relation (g + 1)D ∼

∑
i pi.

This lets us write KC ∼ (g − 1)D, and so we can construct a class of theta
characteristics given by

∆ =

g−1∑
j=1

pij ,

as then 2∆ =
∑

j 2pij ∼
∑

j D = (g− 1)D ∼ KC. If we have some of the ij equal
then we can replace these terms with a copy of D, so we equivalently get a class
of characteristics

∆l = lD +

g−1−2l∑
j=1

pij

where now all the ij are distinct and 0 ≤ l ≤
⌊
g−1
2

⌋
. Considering the function on

C given by ϕ ◦ π where ϕ(x) = x−ei
x−ej

we have (ϕ ◦ π) = 2(pi − pj) (when i ̸= j) so

pi − pj is not a principal divisor, and in general

r∑
k=1

(pik − pjk) ∼ 0⇔ r = g + 1

(the equivalence when r = g+1 coming from the divisor of y, and again assuming
all the indices are unique). Hence our presentation of the effective characteristics
is unique. Moreover, we can extend to allow l = −1, and the condition with
r = g + 1 halves the number of characteristics this allows. Characteristics with
l < −1 are equivalent to those with larger l as we can tell by counting how many
characteristics we have already found. The parity of these characteristics is given
by the parity of

dimH0(C,OC(∆l)) = l + 1.

2.2.1 Methods of Computation

We have seen in Examples 2.2.6 and 2.2.7 how to compute the theta character-
istics on simple Riemann surfaces. I will now provide some details on four other
methods used to compute theta characteristics.

The Riemann Constant Vector

Definition 2.2.8 ([FK92], p. 290). Letting τ be the Riemann matrix of the genus-
g curve C and {aj, bj} a choice of canonical homology basis, the Riemann Con-
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stant Vector (RCV) based at Q ∈ C is given by

(KQ)j = −
1 + τjj

2
+

g∑
k ̸=j

∮
ak

ωk(P )(AQ(P ))j, j = 1, . . . , g.

The RCV is related to the canonical divisor by 2KQ ≡ AQ(KC). We then have
the following theorem about the Szegő kernel divisor ∆C, defined in [Fay73,
p. 7].

Theorem 2.2.9 ([Fay73], p. 7-8). KQ = AQ(∆C), and as such ∆C is a theta
characteristic.

Remark 2.2.10. The choice of sign of KQ varies widely between authors, and
hence one should be alert. The convention taken in Definition 2.2.8 is chosen to
ensure that KQ is the image of a theta characteristic.

The definition of the RCV also requires that the differentials are normalised
with respect to the homology basis taken {aj, bj} such that

∮
aj
ωi = δij. As such,

hidden in Theorem 2.2.9 is the fact that the Szegő kernel divisor is homology
dependent, because the RCV is. Because S(C) is affine, modelled on H1(C,Z2),
we know that the image under the Abel-Jacobi map based at Q ∈ C of S(C) is now
the set {KQ + h |h ∈ Jac(C), 2h ≡ 0}. Numerical computational methods exist
to calculate the RCV and the period matrix, for example [DPS15] and [BSZ19]
respectively, and thus this gives a way to numerically calculate the image in the
Jacobian of all the theta characteristics.

With the RCV one can define a (g − 1)-dimensional subvariety of the Jaco-
bian Wg−1 −KQ := Θ called the theta divisor. This definition is independent
of the basepoint chosen for the Abel-Jacobi map. The Riemann Vanishing The-
orem states that Θ is exactly the subvariety of the Jacobian on which the theta
function

θ(z; τ) =
∑
n∈Zg

exp

[
2πi

(
1

2
nT τn+ nT z

)]
(2.7)

vanishes, and moreover if D is a degree-(g − 1) effective divisor then the multi-
plicity of the zero of θ at AQ(D)−KQ is equal to i(D) [FK92, p. 298]. As such,
if ∆C were effective, θ(0; τ) = 0, which is not true for a generic Riemann surface
[Fay73, p. 7] hence ∆C is generically an even characteristic.

Odd Characteristics and Tangent Hyperplanes

Recall that when we consider the canonical embedding of a curve of genus g ≥ 3 in
Pg−1, the intersection with a hyperplane gives an effective element of the canonical
divisor class of the curve, as it corresponds to the zero-locus of a holomorphic
differential on the curve. Clearly then, given a hyperplane H which is tangent to
the canonical embedding at g − 1 points, each intersection has multiplicity two.
Writing

H ∩ Ccan = 2(P1 + · · ·+ Pg−1) ∼ KC,

we see that ∆ := P1 + · · · + Pg−1 is an effective theta characteristic. Note effec-
tiveness is equivalent to l(∆) ≥ 1.

35



36 Alec Linden Disney-Hogg

In the case of small genera, even more can be said. By Clifford’s theorem
(Proposition 2.1.52) we know l(∆) < (g+1)/2, and so when g = 3 we must have
l(∆) = 1 hence the theta characteristic is odd. In fact this remains true for curves
of genus 4 when the quadric the canonical embedding lies in (recall Example 2.1.61
and §2.1.3) is nonsingular [HL17, Theorem 2.2]. Conversely, when the quadric
is singular the curve has a g13 corresponding to the tangent plane to the cone
through the cone point [Har77, Example IV.5.5.2], and this yields a vanishing
even theta characteristic [Dol12, p. 210].

Moreover, from the discussion in §2.1.2, we know that for any ∆ an odd theta
characteristic l(∆) > 0 and hence there exists an effective divisor E linearly
equivalent to ∆. As such, each odd theta characteristic determines a tangent
hyperplane.

These two discussions taken together give us the following results character-
ising odd theta characteristics.

Proposition 2.2.11 ([Dol12], p. 251, [HL17], Theorem 2.2). For any smooth
plane quartic, the 28 bitangents are in 1-1 correspondence with the 28 odd theta
characteristics.

Moreover, for any sextic that is the intersection of a smooth quadric and
smooth cubic in P3, the 120 tritangent planes are in 1-1 correspondence with the
120 odd theta characteristics.

These tangent hyperplanes are important to the curve, as they have been
shown to determine the curve itself [CS03b, CS03a], and algorithms to do this
reconstruction have been given for certain genera [CKRSN19, Leh22]. [Guà02]
gives equations for the tangent hyperplanes in terms of the period matrix and
the theta function on the curve when l(∆) = 1.

Even Characteristics and Scorza Theory

Even theta characteristics are harder to study than odd characteristics, as the
line bundle corresponding to a generic even theta characteristic has no sections,
which is an obstacle to their study [TZ11]. In the case of genus 3, one particular
technique exists using Scorza theory. To introduce this, we first make some
definitions.

Definition 2.2.12 ([Dol12], p. 5). Given F = F (X0, . . . , Xr) a homogeneous
polynomial and a = (a0, . . . , ar) ∈ Cr+1, the polarisation of F at a is Pa(F ) :=∑

i ai
∂

∂Xi
F .

Definition 2.2.13. The rank of a quadric F (X0, . . . , Xr) is the rank of the
Hessian matrix H given by Hij =

∂2F
∂Xi∂Xj

.

Definition 2.2.14 ([Stu08], p. 161, [Dol12], p. 155). The quartic and sextic
invariants I4, I6 generating the ring of invariants of ternary cubics (that is homo-
geneous degree-3 polynomials F (X0, X1, X2)) under the natural action of GL3(C)
are called the Aronhold invariants
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Definition 2.2.15 ([Dol12], p. 279). The Clebsch covariant quartic of a
ternary quartic F is the plane quartic curve

C(F ) :=
{
a ∈ P2 | I4(PaF ) = 0

}
.

We can now define two correspondences (in the sense of [Dol12, §5.5.1]) which
we will soon equate, namely to a plane quartic curve given by F = 0 for which
C(F ) is nonsingular assign the symmetric (3, 3)-correspondence without united
points [DK93, Proposition 6.8.1]

TF = {(a, b) ∈ C(F )× C(F ) | rank(PaPbF ) = 1} ,

and to a nonvanishing theta characteristic ∆ on a genus-g curve C the symmetric
(g, g)-correspondence without united points [DK93, §7.1]

T∆ = {(P,Q) ∈ C × C | l(∆ + P −Q) > 0} .

The latter is called the Scorza correspondence. These are related by the
following key theorem.

Theorem 2.2.16 ([DK93], Lemma 7.7.1, Theorem 7.8). Given F defining a plane
quartic such that C(F ) is nonsingular, there exists a unique nonvanishing theta
characteristic ∆ on C(F ) such that TF = T∆. This defines the Scorza map

Sc : F 7→ (C(F ),∆),

which is an injective birational isomorphism from the space of such F to the space
of nonsingular quartics with an even theta characteristic. Projecting to C(F ), the
map is an unramified 36 : 1 cover.

Clearly C(F ) can be computed efficiently from knowledge of F , and moreover
given explicit knowledge of the correspondence TF , ∆ = b1 + b2 + b3 − a where
{b1, b2, b3} ⊂ C(F ) is the image of a ∈ C(F ) under the correspondence [DK93,
Theorem 7.6]. This can be done explicitly assuming that at a ∈ C(F ) we can
write PaF =

∑3
i=1 l

3
i for linear forms li, namely ∆ = a12 + a13 + a23 − a where

aij = {li = 0 = lj}. The Scorza map is in fact PSL3(C)-equivariant, and this shall
be relevant when considering orbits of even characteristics on genus-3 curves.

[DK93] also gives an implicit prescription for assigning a plane quartic curve,
the Scorza quartic, to any pair (Ccan,∆) satisfying some conditions where Ccan
is the canonical embedding of a genus-g curve and ∆ is a nonvanishing theta
characteristic on it. It was shown there that when Ccan is genus 3 any such pair
satisfies the required conditions and this process is the inverse of the Scorza map.
More recently it has been shown that a generic pair of any genus satisfies the
required conditions, and the Scorza quartic has been found explicitly for some
trigonal curves coming from Hilbert schemes [TZ11].
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Spin Structures

On a Riemann surface C denote with UC the unit tangent bundle with the SES

0→ S1 i→ UC π→ C → 0.

This gives two corresponding SESs of singular (co)homology

0→ H1(S
1,Z2)

i∗→ H1(UC,Z2)
π∗→ H1(C,Z2)→ 0,

0← H1(S1,Z2)
i∗← H1(UC,Z2)

π∗
← H1(C,Z2)← 0,

related to each other by Poincaré duality. Within this context, a spin structure
is a cohomology class in H1(UC,Z2) which restricts under i∗ to the generator 1
of H1(S1,Z2) ∼= Z2 = {0, 1}. Given a basis {γ1, . . . , γ2g} of H1(C,Z) which I will
always take to be in canonical form {ai, bi}, Kallel and Sjerve [KS10] construct
a basis {η, ζ1, . . . , ζ2g} of H1(UC,Z2) such that the ζi are dual to the γi and the
set of spin structures is given by

Spin(C) =

{
s(x) = η +

2g∑
i=1

xiζi |x ∈ Z2g
2

}
. (2.8)

As it will be relevant for proving a subsequent lemma, I shall give the details of
how this basis is constructed. We shall think of the space H1(UC,Z) as the space
of framed curves, that is a smooth curve in C with a smooth vector field along
the curve. There is a distinguished element z = i∗(1) ∈ H1(UC,Z) corresponding
to a small tangentially framed curve. Moreover, to a cycle a ∈ H1(C,Z), [Joh80]
defined ã ∈ H1(UC,Z2) such that for any two cycles a, b ∈ H1(C,Z), we have

that ã+ b = ã + b̃ + (a ◦ b)z. Note this is well defined with coefficients in Z2.

Together
{
z, ζ̃1, . . . , ζ̃2g

}
give a basis of H1(UC,Z2), and then {η, ζ1, . . . , ζ2g} is

the Poincaré dual basis of H1(UC,Z2).

In [Ati71, Proposition 3.2], Atiyah proved the equivalence between theta char-
acteristics and spin structures on a Riemann surface such that the corresponding
actions of Aut(C) are equivalent. Moreover, we get the following result about the
parity.

Lemma 2.2.17. Writing x = (u,v) for u,v ∈ Zg
2, the parity of s(x) is q(x) :=

u · v.

Proof. This is proven in [Joh80, §5], but not in the notation of Equation 2.8,
so I shall briefly be specific here. Namely Johnson shows that the parity of
ξ ∈ Spin(C), which he calls the Atiyah invariant, is given by

∑g
i=1 ⟨ξ, ãi⟩ ⟨ξ, b̃i⟩.

We are then done using the fact that

⟨s(x), ãi⟩ = ⟨η, ãi⟩+
∑
i

xi ⟨ζi, ãi⟩ = ui

and likewise for b̃i and vi.
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As a result of Lemma 2.2.17 we see the parity of a spin structure is given by
a quadratic form on H1(C,Z2) such that the associated bilinear form H(x,y) :=
q(x + y) − q(x) − q(y) is the reduction mod 2 of the intersection pairing on
H1(C,Z).

2.2.2 Orbits of Theta Characteristics

Having defined theta characteristics and seen a few ways of computing them,
we are able to move on to discuss their orbits under the automorphism group
of the corresponding curve. By considering the ramification divisor associated
with f ∈ Aut(C), one can see that the canonical divisor KC pulls back to itself
under f and hence the pullback of a theta characteristic by an automorphism is
again a theta characteristic. What we shall want to know is the orbit structure of
the characteristics under Aut(C), and especially the existence of characteristics
invariant under the whole group.

Example 2.2.18. By our explicit expressions for the theta characteristics on a
hyperelliptic curve in Example 2.2.7, we can see that the hyperelliptic involution
fixes every theta characteristic. In fact the hyperelliptic involution is the unique
automorphism to fix every theta characteristic [BGS07, KS10], as we will see
later.

Computing Orbits

Given f ∈ Aut(C), recall the notation T = ρa(f) and R = ρr(f) for the image
under the analytic and rational representations respectively. It is worth noting
that these can be computed in Sage using the method of [BSZ19].

If one is content with inexact numerical computations of the orbit structure,
one may use the definition of the image of theta characteristics in the Jacobian
using the RCV to calculate the orbits, namely given x ∈ Cg/Λ such that 2x ≡
AP (KC), this transforms as

x 7→ Tx+ (g − 1)AP (f(P )).

This does allow one to identify the orbit of a given characteristic explicitly, but
overall the method is slow and its correctness relies on the correctness of numerical
computations. For this reason I shall not discuss it further, but an implementation
may be seen in the code available at https://github.com/DisneyHogg/Brings_
Curve which corresponds to §2.3.4.

When one is considering effective theta characteristics in terms of tangent
hyperplanes the orbits can be computed in terms of T again recalling Example
2.1.79. While the equations of the contact points may be computed numerically,
in some cases this may be done exactly giving exact orbits, and an example of
this may be seen for the odd characteristics on Bring’s curve in Corollary 2.3.29.

In the special case of a non-hyperelliptic genus-3 curve one can compute the
orbits of the even characteristics analytically using Scorza theory. Because of the
equivariance of the Scorza map, it is known Aut(F ) ≤ Aut(C(F )). Hence on
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C with theta characteristic ∆, letting F be such that Sc(F ) = (C,∆), we have

|O∆| = |Aut(C)|
|Aut(F )| determining the size of the corresponding orbit [Ott16].

Example 2.2.19. In [DK93, §8] the orbit decomposition of the even character-
istics on Klein’s curve is shown to be 36 = 1 + 7 + 7 + 21.

Moreover, it is given in [DK93, §8.1] that, letting

Fa := X4 + Y 4 + Z4 + 6a(X2Y 2 + Y 2Z2 + Z2X2)

for a ∈ C, C(Fa) ∝ Fb where b = 1−2a+a2

6a2
. Each Fb has automorphism group S4

(generically), and so the curve given by Fb = 0 has exactly two invariant even
theta characteristics corresponding to the two roots of (1− 6b)a2 − 2a+ 1 = 0.

Because of the current limitations in extending Scorza theory to higher genus
curves, this method is in practice not helpful for calculating most orbits decom-
positions.

The final approach to calculate the orbit decomposition I shall mention, which
will be used to construct tables of orbit decompositions in §2.2.2 uses the con-
nection to spin structures. These transform as s(x) 7→ s(x̃) where

x̃ = RTx+ v mod 2. (2.9)

Here the vector v is computed as vi =
∑

j<j′ RjiRj′iJjj′ , J =
(

0 Idg
− Idg 0

)
.

Remark 2.2.20. Note Igusa [Igu72, §V.1] derives this behaviour independently
from the perspective of theta functions, taking characteristics to be vectors x in
R2g such that 2x ≡ 0 mod 1.

One can think of this action on x as matrix multiplication(
x
1

)
7→
(
RT v
0 1

)(
x
1

)
.

We note that multiplying two of these matrices together we get

(RT ,v) ∗ ((R′)T ,v′) = (RT (R′)T , RTv′ + v).

The fact that this is an affine representation of the automorphism group reduces
down to the types of calculations done in [Igu72, II.§5]. This method is fast and
exact to implement as it only uses binary computations, and the computation of
parity of a given characteristic is simple. Again an implementation of this method
may be seen in the code available at https://github.com/DisneyHogg/Brings_
Curve which corresponds to §2.3.4.

Remark 2.2.21. The computation of orbit decompositions using Equation 2.9
was vital for the later tables in §2.2.2, and so I shall make a few remarks about
how it works here. The computation of the rational representation of the auto-
morphism group following [BSZ19] takes two stages; compute a basis of the en-
domorphism ring of the Jacobian, and find the symplectic elements of this ring.
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Though the authors do not complete a complexity analysis, in practice I find that
the first step is the slowest part of the algorithm in general. The computation
of the endomorphism basis uses the LLL algorithm [LLL82], so one option to
speed up this calculation is to use a parallelisation of LLL. Alternatively, as all
the computation of the orbit decompositions requires is the rational representa-
tion mod 2, one might wonder whether calculating over Z2 the computation can
be sped up; this may be an interesting direction for future research. The sec-
ond part of the computation of the orbit decomposition which takes a significant
time is the partition of the characteristics into orbits using the group action cal-
culated via the rational representation. The method I have implemented näıvely
loops over characteristics computing their orbits to partition the set of charac-
teristics (sometime called a union-find approach), but recent work has described
exponentially faster approaches in the case of linear actions on binary vectors as
considered here [AKPW23]. Any further computation at higher genera will want
to implement both of these approaches to immediately improve the performance
of the computation.

Example 2.2.22. Suppose R = I is the identity matrix, then

vi =
∑
j<j′

δjiδj′iJjj′ = 0.

Suppose instead we had parametrised our characteristics as the set

S(C) =

{
ηy +

∑
i

x′iζi

}

where ηy = η +
∑

i yiζi for some y ∈ Z2g
2 . One can derive the corresponding

action on x′ by noting

x = x′ + y 7→ RT (x′ + y) + v,

= RTx′ +
[
v + (RT − I)y

]
+ y,

and so
x′ 7→ RTx′ + vy,

where vy = v+(RT − I)y. If y were fixed by the action of R, that is y = ỹ, then
vy = 0 and moreover the converse is true. As such, we have seen the following
proposition.

Proposition 2.2.23. There is an invariant characteristic on a curve C if and
only if the corresponding affine representation on Z2g

2(
x
1

)
7→
(
RT v
0 1

)(
x
1

)
is equivalent by a translation x→ x′ := x− y to the linear action(

x′

1

)
7→
(
RT 0
0 1

)(
x′

1

)
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for some y ∈ Z2g
2 .

Invariant Characteristics

To make progress from Proposition 2.2.23, we now use that the question of
whether an affine representation can be reduced to a linear one can be pre-
sented as a cohomology problem13. In particular, given a group G and a (left)
G-representation ρ : G→ GL(V ) we have the following results.

Proposition 2.2.24. An affine representation of G on V which acts multiplica-
tively via ρ determines a 1-cocycle in the group cohomology14 H1

Grp(G, V ) (making
V into a G-module in the natural way with ρ) with the standard linear represen-
tation G× V → V , (g, x) = ρ(g)x, corresponding to the zero 1-cocycle.

Proof. An affine representation acting multiplicatively by ρ is defined by

G× V → V,

(g, x) 7→ g · x := ρ(g)x+ v(g).

for some set map v : G→ V . By definition the set map v is exactly a 1-cochain
in group cohomology, with the linear representation giving the zero 1-cochain.
Moreover, to truly get an action we require ∀ g, h ∈ G, x ∈ V , g · (h ·x) = (gh) ·x.
We can compute from the definition

g · (h · x) = ρ(g)(h · x) + v(g),

= ρ(g)[ρ(h)x+ v(h)] + v(g),

= ρ(gh)x+ ρ(g)v(h) + v(g),

= (gh) · x+ ρ(g)v(h)− v(gh) + v(g),

and so we must have

∀ g, h ∈ G, 0 = ρ(g)v(h)− v(gh) + v(g). (2.10)

In particular, setting g = e in Equation 2.10 shows v(e) = 0. Equation 2.10 is
exactly the condition that the 1-cochain v is in fact a 1-cocycle [Wei95, Example
6.5.6].

Proposition 2.2.25. Two affine representations as defined in Proposition 2.2.24
are equivalent under a translation of V if and only if the associated 1-cocycle is
a 1-coboundary.

Proof. Fixing y ∈ V and v : G → V defining an affine representation we have
that

g · (x+ y) = ρ(g)(x+ y) + v(g),

= {ρ(g)x+ [v(g) + (ρ(g)− I)y]}+ y.

13I am grateful to Andrew Beckett for highlighting this to me.
14For an introduction to group cohomology with necessary definitions see [Wei95, §6]. I shall

from here on in drop the Grp subscript as through context it shall not cause confusion with
any other cohomologies in this thesis.
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This defines a different affine action on V given by 1-cocycle vy(g) := v(g) +
(ρ(g)− I)y. This new affine action is actually linear if and only if

∀g ∈ G, (ρ(g)− I)y + v(g) = 0⇔ ∀g ∈ G, g · y = y ⇔ y ∈ V G, (2.11)

where I have used V G to denote the subset of V invariant under G. The condition
that v(g) = ρ(g)y − y for some y ∈ V is exactly the condition that v is a 1-
coboundary [Wei95, Example 6.5.6].

To fix notation, I will follow Weibel to use Z1 to denote the 1-cocycles (also
called the derivations or crossed homomorphisms), and B1 to denote the 1-
coboundaries (also called the principal derivations).

In the case at hand of considering the group action of the automorphism group
on theta characteristics the representation will be the reduction mod 2 (with the
mod 2 reduction of R denoted by R) of the transpose of the rational representation
ρ = ρTr acting on V = H1(C,Z2) ∼= Z2g

2 . Moreover, we can count the number of
invariant characteristics as the size of H0(G, V ), as H0(G, V ) = V G is exactly the
submodule of invariants. This fact gives us an immediate refinement of [KS10,
Corollary 1.3].

Proposition 2.2.26. The number of characteristics invariant under the action
of the whole group is either 0 or 2k, where k = dimH0(G, V ) is the dimension of
the subspace of invariants.

Proof. This is immediate from the fact H0(G, V ) is a vector space over Z2.

Example 2.2.27. I shall do a simple example, namely suppose we just have
G = C2 = {±1}, where the generator of the C2 is the hyperelliptic involution for
which the rational representation is given by R = −I. Indeed the hyperelliptic
involution is the only nonidentity automorphism τ for which ρr(τ) = I mod 2
[KS10]. An element of Z1 defined by v : G → V must satisfy v(1) = 0 ∈ V ,
and then v(−1) := x is arbitrary. An element of B1 has the additional condition
that ∃y ∈ V , v(−1) = y − y = 0, and so with the hyperelliptic representation the
cohomology group is given by H1(C2, V ) = V . Note this is what we would expect,
as if the representation is trivial, then ∀y,vy = v, meaning that the action is
always given by the specific shift v.

At this point we recall a lemma of Atiyah whose proof will be useful.

Lemma 2.2.28 ([Ati71], Lemma 5.1). Let V be a finite dimension Z2 vector
space and q : V → Z2 a quadratic function fixed under an affine transformation
x 7→ Ax+ b whose associated bilinear H defined by

H(x, y) = q(x+ y)− q(x)− q(y)

is non-degenerate. Then the affine transformation has a fixed point.

Proof. As the transform preserves q we get

q(x) = q(Ax+ b) = q(Ax) + q(b) +H(Ax, b).
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Setting x = 0 gives q(b) = 0 and hence q(x) = q(Ax) + H(Ax, b). We can thus
say

H(x, y) = q(x+ y)− q(x)− q(y),
= [q(A(x+ y)) +H(A(x+ y), b)]− [q(Ax) +H(Ax, b)]

− [q(Ay) +H(Ay, b)] ,

= [q(Ax+ Ay)− q(Ax)− q(Ay)] ,
= H(Ax,Ay),

and so defining A∗ to be the dual of A with respect to the inner product H we
have A∗A = I. Suppose we have x ∈ Ker(A− I)∗, then

A∗x = x⇒ Ax = x⇒ H(x, b) = 0

and hence we know b ⊥ Ker(A − I)∗. It is an exercise in undergraduate linear
algebra that (Ker(A− I)∗)⊥ = Im(A− I), so

b ∈ Im(A− I)⇒ ∃y ∈ V, b = (A− I)y ⇒ ∃y ∈ V, Ay + b = y.

This shows us how to restrict the ongoing hyperelliptic example further. The
quadratic function on H1(C,Z2) given by the parity is preserved under the affine
action of Aut(C), so the affine transformation given by the hyperelliptic involution
has a fixed point. The vector b in the proof of Lemma 2.2.28 is the value v(−1),
and so we must have v(−1) ∈ Im 0 = 0. Hence we have an invariant spin
structure, and moreover we have 22g = |V | of them.

Example 2.2.29 (Cyclic groups). Let us now try and understand [KS10, The-
orem 1.1] in this language of group cohomology. Suppose we take a cyclic auto-
morphism group ⟨a⟩ = G, and let n be the order of a. A cocycle v ∈ Z1 must
have v(1) = 0 as before, and then it is specified by v(a), which is subject only to
the condition that

(I + A+ · · ·+ An−1)v(a) = v(an) = v(1) = 0, (2.12)

where A = ρ(a) (already reduced mod 2). Provided A ̸= I, given that we have
(A− I)(

∑n−1
k=0 A

k) = An− I = 0, the sum
∑n−1

k=0 A
k has nontrivial kernel in which

v(a) must lie. A coboundary is given by v(a) = (A − I)y for some y ∈ V , and
hence

H1(G, V ) ∼= Ker(I + · · ·+ An−1)/ Im(A− I).

Note this result is contained in [Wei95, Theorem 6.2.2].
Certainly if A − I is invertible, then there is necessarily an invariant spin

structure as H1 = 0, and it is unique as then H0(G, V ) = Ker(A − I) = 0.
Moreover the converse is true that if there is a unique invariant characteristic then
A−I is invertible, as Ker(A−I) = 0 is exactly the condition for invertibility. By
the argument required in [BN12, p. 17], we can see that for A− I to be invertible,
it is necessary that

∑n−1
k=0 A

k = 0, and in fact this is sufficient when n is odd as we
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can simply write down the inverse which is n−1
∑n

k=1 kA
k−1. Note also certainly

if n = 2 then A− I cannot be invertible as

(A− I)2 = A2 − 2A+ I = 0.

This in fact generalises; if n = 2k then A− I cannot be invertible as

(A− I)n =
n∑

i=0

(
n

i

)
Ai = An − I = 0

using Lucas’ theorem for the binomial coefficient of a prime power mod that prime
(see for example [Fin47, Theorem 3], or alternatively prove this with induction).

Now, as in Example 2.2.27, the quadratic function given by the parity is pre-
served under the affine transformation generating the group action on H1(C,Z2),
so the transformation has a fixed point. As such, the remaining question is just
how many invariant characteristics there are. This is given by dimZ2 ker(A − I)
and Proposition 2.2.26, and [KS10] shows how to compute whether this is zero
using cyclotomic polynomials. Importantly they show that a necessary and suf-
ficient condition when n is odd is that the genus of the quotient g = g(C/ ⟨a⟩),
related to a by dimZ ker(ρr(a)− I) = 2g, is 0.

Example 2.2.30 (Direct product of cyclic groups). Suppose next we consider
the action of a group

⟨a, b, |ab = ba, an = 1 = bm⟩ = G.

For v ∈ Z1, v(a), v(b) are subject to the same condition of Equation 2.12, and
then we also have

v(bl) + blv(ak) = v(akbl) = v(ak) + akv(bl)

and so we get the additional condition that

(A− I)v(b) = (B − I)v(a),

taking A = ρ(a), B = ρ(b). The conditions on v ∈ B1 for v(a), v(b) are again
the same as for a single cyclic group, but now note the vector y must be the same
for both, that is ∃y ∈ Y such that v(a) = (A− I)y and v(b) = (B − I)y. We can
then write out the cohomology in the somewhat laborious way

H1(G, V ) =

{
(x, x′) ∈ Ker

(∑
k A

k
)
×Ker

(∑
k B

k
)
| (A− I)x′ = (B − I)x

}
{(x, x′) ∈ Im(A− I)× Im(B − I) | “(A− I)−1x = (B − I)−1x′”}

where I have used quotes to indicate an approximate condition as (A − I) and
(B−I) do not necessarily have inverses. Indeed if we have either of A−I or B−I
invertible then these spaces would be the same and we would have H1(G, V ) = 0,
and so a spin structure invariant under the whole group would exist. Assume
without loss of generality that A − I is invertible, then the number of invariant
spin structures is 1, as V G ⊂ V ⟨a⟩ = 0.
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By Lemma 2.2.28, we know that the class corresponding to the action on
characteristics lies in the subgroup

{(x, x′) ∈ Im(A− I)× Im(B − I) | (A− I)x′ = (B − I)x}
{(x, x′) ∈ Im(A− I)× Im(B − I) | “(A− I)−1x = (B − I)−1x′”}

.

This we can then reduce to write as (breaking the symmetry between a and b)

Im(A− I) ∩Ker(B − I) ∼= H1(G, V ) ∼= Ker(A− I) ∩ Im(B − I).

which is to say

H1(G, V ) ∼= Ker(A− I)(B − I)/Ker(B − I).

Suppose we had for our closed cycle v(a) = (A − I)y1, v(b) = (B − I)y2 for
y1 ̸= y2. Then we know y1 − y2 ∈ Ker((A− I)(B − I)).

At this stage we have said all we can without using extra information of the
exact representation ρ. A glance ahead at Tables 2.1 and 2.2 shows that the
number of invariants under a V4 = C2 × C2 action depends on the signature of
the action.

A key question I shall want to address using group cohomology is when the
action of G has a Unique Invariant Characteristic (UIC). To make more
progress, we use the inflation-restriction exact sequence. That is for subgroup
N ◁ G and abelian group V with G action the SES

0→ H1(G/N, V N)→ H1(G, V )→ H1(N, V )G/N → H2(G/N, V N)→ H2(G, V ),

so named because the 3 inner maps are inflation, restriction (or coinfla-
tion), and transgression [Wei95, 6.8.3]. Suppose we know H1(N, V ) = 0 and
H0(N, V ) = V N = 0 (as we have when N is an odd-order cyclic group), then
denoting K = G/N we have

0→ H1(K, 0)→ H1(G, V )→ 0→ H2(K, 0)→ H2(G, V ).

This trivially gives H1(G, V ) = 0, and moreover because we have (V N)(G/N) ∼=
V G, we get H0(G, V ) = 0.

In fact we do not need the restrictive condition that H1(N, V ) = 0 in the
situation we care about, as we want the case where there is a unique characteristic
invariant under N , which is the case when H0(N, V ) = V N = 0 but also when
the specific affine representation of G as an element in H1(G, V ) is the zero class
when restricted to the action as an element in H1(N, V ). This means that the
class in H1(G, V ) is in the kernel of the restriction map, and as we have said that
the image of the inflation map is trivial, this means the class in H1(G, V ) must
be the zero class.

Read together these tell us that if we have a normal subgroup given with a
UIC, then the action of the whole group has a UIC. Moreover, this extends to
if we have a subgroup which is subnormal in the original group (that is H ≤ G
such that ∃Hi with H ◁H1 ◁ · · · ◁Hk ◁ G). In summation this gives the following
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proposition.

Proposition 2.2.31. If there exists f ∈ G ≤ Aut(C) such that f has odd order,
⟨f⟩ is subnormal in G, and g(C/ ⟨f⟩) = 0, then C has a unique theta characteristic
invariant under the action of G. We will call this property of a curve SubNormal
Odd cyclic Gonality (SNOG).

Tables of Orbits

I shall now give table of orbit decompositions for many curves of different genera,
giving those for all possible curves of genus 2, 3, and 4. This I shall do compu-
tationally, using the representation in terms of binary vectors via spin structures
as in [KS10]· In doing these computations, we are aided by the fact that we need
only choose one representative curve from each class because the decomposition
is uniquely determined by the rational representation and two curves in the inte-
rior of an equisymmetric family (in the sense of [Bro90]) have equivalent rational
representations [RCR22, p. 896]. One can understand this intuitively; if the coef-
ficients of the curve are varied only slightly (and generically) then as the rational
representation is given in terms of integer valued matrices these would not be
expected to change.

From Examples 2.2.18 and 2.2.27 we know that the only nonidentity automor-
phism of a curve that fixes every theta characteristic on a curve is the hyperellip-
tic involution ι (if it exists), hence we know that the reduced automorphism
group [Rau70, Pop72]

Aut(C) :=
{

Aut(C)/ ⟨ι⟩ , C is hyperelliptic,
Aut(C), otherwise,

acts faithfully on the theta characteristics. There is no a priori reason to expect
Aut(C) to have an action on C when C is hyperelliptic [Rau70].

Example 2.2.32. For Burnside’s curve given by y2 = x(x4 − 1), the full auto-
morphism group is GL2(3) generated by the automorphisms

f(x, y) =

(
x+ 1

x− 1
,

2
√
2 y

(x− 1)3

)
, g(x, y) = (ix, exp(iπ/4) y) , h(x, y) =

(
−1
x
,
−y
x3

)
.

These satisfy f 2 = 1 and g4 = ι = h2, whence the reduced automorphism group is
S4. By [Bre00, Table 9], S4 has no action on a genus-2 curve.

I shall subsequently give tables of curves of a given genus as a plane curve
f(x, y) = 0, their reduced automorphism group (with the GAP group ID if the
presentation given of the group is not specific [GAP22]), the quotient genus g0 and
signature c of the Aut action on the curve (recall Definition 2.1.81) when it exists
and is known, the Aut orbits of the odd and even characteristics respectively
presented as a list of values ab indicating b orbits of size a, and the total number
of characteristics invariant under the group action. When giving f I shall leave
in free parameters where possible, not specifying values that must be avoided.
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Moreover, I shall use the notation of [Bar12, BB16] that Ld(x, y, . . . ) is a generic
homogeneous degree-d polynomial in the arguments. The code to recreate this
data (except for the signature) is given in the Sage notebooks list_of_plane_
curves.ipynb and theta_characteristic_orbit.ipynb.

Remark 2.2.33. Throughout signatures are computed with the help of the LMFDB
[LMF23], and in cases of ambiguity were verified by comparing the character of
the rational representation found using this character and the Eichler trace for-
mula [Bre00, p. 41] to that found by computing directly with Sage.

Remark 2.2.34. As part of the computation we employ (a wrapper of) GAP’s
StructureDescription method. Note GAP warns about this method because
it is not an isomorphism invariant, and moreover it does not specify the map
giving a semidirect product. Semidirect products will always be given in the form
N : H = N ⋊H. Moreover, throughout I will use the convention that the dihedral
group Dn be of size 2n.

Table 2.1: Orbit decomposition, all genus-2 curves

f Aut, c Odd Even I

y2 − (x2 − 1)(x2 − a)(x2 − b) C2, (1; 2
2) 23 14, 23 4

y2− (x2−1)(x2−a)(x2−a−1) V4, (0; 2
5) 21, 41 12, 22, 41 2

y2 − (x5 − 1) C5, (0; 5
3) 11, 51 52 1

y2 − (x6 − ax3 + 1) S3, (0; 2
2, 32) 61 11, 33 1

y2 − (x6 − 1) D6, (0; 2
3, 3) 61 11, 31, 61 1

y2 − x(x4 − 1) S4 61 41, 61 0

There are a few relevant comments to make about Table 2.1, which provides
the orbit decomposition for genus-2 curves.

• The complete list of genus-2 curves with nontrivial reduced automorphism
group comes from [Bol87].

• Every genus-2 curve with a unique invariant characteristic satisfied the con-
ditions of Proposition 2.2.31, that is it is SNOG.

Table 2.2: Orbit decomposition, all non-hyperelliptic and hyperelliptic genus-3
curves

f Aut, c Odd Even I

1 + L2(x, y) + L4(x, y) C2, (1; 2
4) 14, 212 112, 212 16

L1(x, y) + L3(x, y) C3, (0; 3
5) 11, 39 312 1

1+y4+x4+(ay2+bx2)+cx2y2 V4, (0; 2
6) 26, 44 18, 26, 44 8

bx2y2 + x3 + y3 + axy + 1 S3, (0; 2
4, 3) 11, 33, 63 13, 39, 61 4

y4 + x3 + ay2 + 1 C6,
(0; 2, 32, 6)

11, 31, 64 34, 64 1

1+y4+x4+a(x2+y2)+bx2y2 D4, (0; 2
5) 45, 81 14, 24, 44, 81 4
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xy3 + x3 + 1 C9, (0; 3, 9
2) 11, 93 94 1

y4 + ay2 + x4 + 1 (C4 × C2)⋊
C2
∼= (16, 13),

(0; 23, 4)

41, 83 26, 83 0

1+ y4+x4+ a(y2+x2+ y2x2) S4, (0; 2
3, 3) 41, 122 12, 32, 41, 62,

121

2

x4 + y4 + x ((C4 ×C2)⋊
C2)⋊ C3
∼= (48, 33),
(0; 2, 3, 12)

41, 241 62, 241 0

y4 + x4 + 1 (C2
4 ⋊ C3)⋊

C2
∼= (96, 64),

(0; 2, 3, 8)

121, 161 42, 121, 161 0

xy3 + x3 + y PSL3(F2),
(0; 2, 3, 7)

281 11, 72, 211 1

y2− (x8+ ax6+ bx4+ cx2+1) C2, (1; 2
4) 14, 212 112, 212 16

y2 − x(x2 − 1)(x4 + ax2 + b) C2 14, 212 14, 216 8
y2−(x4+ax2+1)(x4+bx2+1) V4, (0; 2

6) 26, 44 18, 26, 44 8
y2 − (x4 − 1)(x4 + ax2 + 1) V4 12, 23, 45 12, 27, 45 4
y2 − x(x6 + ax3 + 1) S3, (0; 2

4, 3) 11, 33, 63 13, 39, 61 4
y2 − (x8 + ax4 + 1) D4,

(0; 22, 42)
45, 81 14, 24, 44, 81 4

y2 − (x7 − 1) C7, (0; 7
3) 74 11, 75 1

y2 − x(x6 − 1) D6 11, 31, 62,
121

11, 21, 31, 65 2

y2 − (x8 − 1) D8 41, 83 12, 21, 42, 83 2
y2 − (x8 + 14x4 + 1) S4, (0; 3, 4

2) 41, 122 12, 32, 41, 62,
121

2

Again, I shall make remarks about Table 2.2.

• The complete list of non-hyperelliptic genus-3 curves with nontrivial (re-
duced) automorphism group comes from [Bar12]. Bars attributes the first
work completing this to Henn in 1976, but Wiman appears to have com-
pleted the calculation earlier in [Wim95a]. Bars and Dolgachev disagree on
the automorphism group of the curve given by f = 1 + y4 + x4 + a(x2 +
y2) + bx2y2; using Sage I find agreement with Bars.

• The list of hyperelliptic curves with many automorphisms comes from [Sha07,
MP21]. The latter reference will also be used for higher genera.

• [Sha07, Table 4] was used to verify the signatures of the non-hyperelliptic
actions.

• At genus 3, not every curve with a unique invariant characteristic is SNOG.
There is a single exception, Klein’s curve, whose automorphism group PSL3(F2)
is simple and so cannot have a nontrivial subnormal cyclic group. There
is a C7 subgroup of the automorphism group quotienting to P1 (as clearly
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seen by writing Klein’s curve in Lefschetz form [Lef21a, Lef21b, Zom10]),
but it is not subnormal.

• The non-hyperelliptic curve with Aut = S4 is the first example of a curve
with large automorphism group without I ≤ 1.

Table 2.3: Orbit decomposition, all non-hyperelliptic genus-4 curves stratified by
whether the corresponding quadric is singular, and separately some hyperelliptic
genus-4 curve with many automorphisms

f Aut Odd Even I

y3 + y(ax4 + bx2 + c) + (dx6 +
ex4 + fx2 + g)

C2, (1; 2
6) 124, 248 140, 248 64

y3+y(ax4+bx2+c)+dx(x4+
ex2 + f)

C2, (2; 2
2) 260 116, 260 16

y3+y[a(x4+1)+bx2]+x[c(x4+
1) + dx2]

V4, (1; 2
3) 224, 418 116, 224, 418 16

y3+y[a(x4+1)+bx2]+x(x4−1) V4, (1; 2
3) 430 14, 218, 424 4

y3 + ayx2 + x(x4 + 1) D4, (0; 2
4, 4) 412, 89 14, 26, 418, 86 4

y3 + y(x4 + a) + (bx4 + c) C4, (0; 2, 4
4) 14, 210, 424 14, 218, 424 8

y3 + ayx2 + (x6 + bx3 + 1) S3, (0; 2
6) 16, 318, 610 110, 330, 66 16

y3 + ayx2 + (x6 + 1) D6, (0; 2
5) 23, 613, 123 14, 23, 312,

69, 123

4

y3+y(ax3+ b)+(x6+cx3+d) C3, (1; 3
3) 13, 339 11, 345 4

y3+ay(x3+1)+(x6+20x3−8) A4, (0; 2, 3
3) 43, 129 11, 31, 66,

128

1

y3 + ay + (x6 + b) C6, (0; 2, 6
3) 13, 37, 616 11, 313, 616 4

y3 + y + x6 C12,
(0; 4, 6, 12)

11, 21, 31, 63,
128

11, 31, 66,
128

2

y3 + ay + (x5 + b) C5, (0; 5
4) 524 11, 527 1

y3 + y + x5 C10,
(0; 5, 102)

1012 11, 53, 1012 1

y3 − (x6 + ax5 + bx4 + cx3 +
dx2 + ex+ f)

C3, (0; 3
6) 340 11, 345 1

y3 − (x6 + ax4 + bx2 + 1) C6,
(0; 22, 33)

38, 616 13, 313, 616 1

y3 − x(x4 + ax2 + 1) C6 × C2,
(0; 22, 3, 6)

68, 126 11, 35, 68,
126

1

y3 − (x6 + ax3 + 1 C3 × S3,
(0; 22, 32)

32, 61, 96,
183

11, 33, 910,
182

1

y3 − (x5 + 1) C15,
(0; 3, 5, 15)

158 11, 159 1

y3 − (x6 + 1) C6 × S3,
(0; 2, 62)

62, 184, 361 11, 31, 61, 94,
183, 361

1

y3 − x(x4 + 1) C3 × S4,
(0; 2, 3, 12)

122, 241, 362 11, 31, 122,
182, 362

1
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y4(x+ 1) + y3(x2 + ax+ 1) +
y2[b(x3 + 1) + cx(x + 1)] +
y[dx(x2+1)+ex2]+fx2(x+1)

C2, (1; 2
6) 124, 248 140, 248 64

y6+y4(x2+ax+1)+y2x(dx2+
bx+ e) + cx3

C2, (2; 2
2) 260 116, 260 16

y6+y4(x2+ax+1)+y2x[d(x2+
1) + bx] + cx3

V4, (1; 2
3) 224, 418 116, 224, 418 16

y6 + y2[cx(xy2 + 1) + b(x3 +
y2) + ax(y2 + x)] + x3

V4, (1; 2
3) 430 14, 218, 424 4

by2(y2 − x)(x2 − 1) − y6 −
axy2(y2 + x2)− x3

D4, (0; 2
4, 4) 412, 89 14, 26, 418, 86 4

y6+ay3(x3+1)+bxy4+cx2y2+
x3

S3, (0; 2
6) 16, 318, 610 110, 330, 66 16

y6+ay3(x3+1)+bxy4+bx2y2+
x3

D6, (0; 2
5) 23, 613, 123 14, 23, 312,

69, 123

4

by2(y2−x)(x2− 1)− (y2+x)3 S4, (0; 2
3, 4) 46, 126, 241 14, 46, 66,

126

4

x3y3 + y6 + (a+ b+ 1)y2(x3−
y3) + (ab+ a+ b)y(x3 − y3) +
ab(x3 − y3)

S3, (0; 2
2, 33) 620 11, 315, 615 1

y4(a+ y2) + x3(1 + ay2) D6,
(0; 22, 3, 6)

1210 11, 33, 613,
124

1

x3y3 + y6 + ax3 + y3 S3 × S3,
(0; 23, 3)

62, 186 11, 36, 99,
361

1

x3y3 + y6 − x3 + y3 (S3 × S3) ⋊
C2
∼= (72, 40),

(0; 2, 4, 6)

121, 363 11, 63, 93,
183, 361

1

x2y3 + y4 + a5x3 + xy D5,
(0; 22, 55)

1012 11, 515, 106 1

xy − x3 + y4 + x2y3 S5,
(0; 2, 4, 5)

203, 601 11, 53, 103,
303

1

y2 − (x9 − 1) C9, (0; 9
3) 31, 913 11, 915 1

y2−x(x4−1)(x4+2i
√
3x2+1) A4 43, 64, 127 41, 64, 129 0

y2 − x(x8 − 1) D8 85, 165 22, 41, 810,
163

0

y2 − (x10 − 1) D10 104, 204 11, 53, 108,
202

1

Again, I shall make remarks about Table 2.3.

• The complete list of non-hyperelliptic genus-4 curves with nontrivial (re-
duced) automorphism group comes from [Wim95b]. Wiman distinguishes
his curves by whether they lie on the nonsingular quadric or the cone, and
I have followed this putting those that lie on the cone in the first portion
of the table. For the curves which lie on the nonsingular quadric Wiman
described the curve by providing the quadric and cubic, hence one must use
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the resultant to get a single plane equation, and this may require a projec-
tive linear transformation to find a nondegenerate coordinate system. We
find a typo in Wiman’s curve (8) with octahedral symmetry.

• At genus 4 one sees the first example of curves of the same genus with iso-
morphic reduced automorphism groups but distinct orbit decompositions.
It remains an open question as to whether the pair (Aut, c) completely de-
termines the orbit decomposition. This is not immediately obvious, as the
signature does not fully the determine the rational representation, one must
also pick a generating vector [Bro91, Definition 2.2].

• At this genus not all curves with a unique invariant characteristic are SNOG.
The exceptions are

1. the curve with (Aut, c) = (A4, (0; 2, 3
3)),

2. the curve with (Aut, c) = (S5, (0; 2, 4, 5)), Bring’s curve.

More will be said on Bring’s curve in 2.3.4, here I only note that similarly
to Klein’s curve there is an odd order cyclic group quotienting to P1 (here
a C5) that is not subnormal. On the A4 curve, we note that the quotient
of the curve by the C3 action has genus 1, and hence presents the first
case where the existence of a UIC is not clearly governed by an odd cyclic
quotient to P1.

At this point, above genus 4 I am unaware of any complete lists classifying
curves by their automorphism groups and giving plane models of the curves.
Curves of genus (d−1)(d−2)/2 for d ≥ 3 stand out because of the Plücker formula
(Example 2.1.13). In order to implement the numerical method for computing
the rational representation it is also necessary to have a model of the curve with
coefficients in Q, and so this further limits the possible curves we may investigate.
I am unaware of any plane models of non-hyperelliptic curves of genus 8 and so
examples in this genus are sadly missing; one can in principle get such models
from the methods of [Shi95], using Sage’s modular symbol functionality, but
in practice the process of going from a canonical embedding to a plane model
becomes infeasible. Likewise, one could use the methods of [Swi16] to get the
canonical embedding, but the problem of finding a plane form from this remains.

I shall subsequently give some particular curves of interest; as the LMFDB
does not contain the data of signatures with quotient genus > 0 at these genera
I shall sometimes omit the signature of the action where it is unknown.
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Table 2.4: Orbit decomposition, two non-hyperelliptic genus-5 curves, and sepa-
rately all hyperelliptic genus-5 curves with many automorphisms

f Aut, c Odd Even I

y4 − 4(x4 − ax2 + 1)y2 + b2x4 C4
2 440, 830, 166 132, 440, 830,

166

32

4x8 + 36x4y4 + 81y8 + 8x6 +
30x2y4 + 5x4 + 14y4 + 2x2 + 1

(((C4 × C2)⋊
C4)⋊ C3) ⋊
C2
∼= (192, 181),
(0; 2, 3, 8)

161, 242, 481,
964

11, 31, 41, 62,
121, 161, 244,
484, 962

1

y2 − (x11 − 1) C11, (0; 11
3) 11, 1145 1148 1

y2 − x(x10 − 1) D10 11, 53, 1012,
2018

11, 21, 53,
1027, 2012

2

y2 − (x12 − 1) D12 11, 31, 62,
1212, 2414

11, 21, 31, 65,
1225, 248

2

y2 − (x12 − 33x8 − 33x4 + 1) S4 11, 31, 62,
128, 2416

32, 41, 63, 81,
1213, 2414

1

y2 − x(x10 + 11x5 − 1) A5, (0; 3
2, 5) 11, 151, 306,

605

63, 103, 154,
3012, 601

1

The first non-hyperelliptic curve of genus 5 used in Table 2.4 is the family of
Humbert curves given in [KR89, (5.9)], the second comes from taking resultants of
the polynomials provided in [Wim95b], hence one may choose to call it the Wiman
octic for want of a better name. The Wiman octic is not SNOG; there is a unique
characteristic invariant under the ((C4 × C2) ⋊ C4) ⋊ C3 normal subgroup, but
not under any subnormal cyclic group. Moreover, again we find that the quotient
by C3 has genus 1, and so the Wiman octic presents the second case where the
existence of a UIC is not clearly governed by an odd cyclic quotient to P1.

Table 2.5: Orbit decomposition, some non-hyperelliptic genus-6 curves, and sep-
arately all hyperelliptic genus-6 curves with many automorphisms

f Aut, c Odd Even I

L5(x, y) + L3(x, y) + L1(x, y) C2 196, 2960 1160, 2960 256
x5+ax2y3+bx3y+y4+cxy2+
dx2 + ey

C3 16, 3670 110, 3690 16

L5(x, y) + L1(x, y) C4 116, 240, 4480 280, 4480 16
x5+axy4+bx2y2+cx3+dy2+
ex

C4 18, 244, 4480 18, 276, 4480 16

1 + L5(x, y) C5 11, 5403 5416 1
x5+ax2y3+bx3y+y4+cxy2+
dx2 + y

S3 16, 390, 6290 110, 3150, 6270 16

x5 + y4 + ax3 + x C8 14, 26, 420,
8240

440, 8240 4
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x5 + y5 + axy3 + bx2y + 1 D5 16, 590, 10156 110, 5150,
10132

16

x5 + y5 + ax3 + x C10 11, 519, 10192 532, 10192 1
x5 + y4 + x C16 12, 21, 43,

810, 16120

820, 16120 2

x5 + y5 + x C20 11, 53, 108,
2096

1016, 2096 1

x5 + y4 + y C5 × S3,
(0; 2, 10, 15)

11, 51, 1518,
3058

52, 1530, 3054 1

x4y + y4 + x C13 ⋊ C3
∼= (39, 1),
(0; 32, 13)

11, 135, 3950 1310, 3950 1

y3 − (x4 − 2i
√
3x2 + 1)(x4 +

2i
√
3x2 + 1)2

(V4 ⋊ C9) ⋊
C2
∼=(72, 15),

(0; 2, 4, 9)

184, 366,
7224

11, 97, 184,
3630, 7212

1

(x6+y6+1)+(x2+y2+1)(x4+
y4 + 1)− 12x2y2

S5,
(0; 2, 4, 6)

62, 122, 203,
302, 6017,
1207

12, 21, 102,
123, 156, 202,
309, 6021,
1203

2

x5 + y5 + 1 C2
5 ⋊ S3
∼= (150, 5),
(0; 2, 3, 10)

11, 151, 255,
7513, 1506

152, 2510,
7520, 1502

1

y2 − (x13 − 1) C13, (0; 13
3) 11, 13155 13160 1

y2 − x(x12 − 1) D12 21, 41, 61,
1217, 2475

21, 42, 63,
1243, 2464

0

y2 − x(x4 − 1)(x8 + 14x4 + 1) S4 64, 83, 126,
2479

44, 64, 83,
1230, 2469

0

y2 − (x14 − 1) D14 1416, 2864 11, 77, 1441,
2852

1

Some remarks on Table 2.5 are appropriate.

• The non-hyperelliptic genus-6 curves come from a list of all nonsingular
plane quintics in [BB16]. The curve with automorphism group of order 150
is the Fermat quintic curve which has maximal automorphism group for
a genus-6 curve [MSSV02], the curve with automorphism group S5 is the
Wiman sextic [Wim95b, Edg81a], and the curve with automorphism group
of order 72 is given in the LMFDB with label 6.72-15.0.2-4-9.1. The curve
with automorphism group of order 39 is attributed to Snyder in [Lef21b,
p. 464], where it is constructed in a manner similar to Klein’s curve.

• At this genus every curve written down with a UIC is SNOG.

54



Symmetries of Riemann Surfaces and Magnetic Monopoles 55

Table 2.6: Orbit decomposition, some non-hyperelliptic genus-7 curves, and sep-
arately some hyperelliptic genus-7 curves including all with many automorphisms

f Aut, c Odd Even I

(x3 + y3)2 − x2y2 − 1 D6 14, 212, 312,
6232, 12556

112, 212, 336,
6336, 12508

16

x6 + y6 − x3 − y3 C3 × S3 11, 31, 67,
920, 18439

34, 66, 960,
18426

1

x6 + y4 − 1 C12 × C2,
(0; 4, 6, 12)

11, 31, 66,
1242, 24316

11, 21, 31,
611, 1266,
24308

2

(x4 + y4)2 − x3y3 − x2y2 C8 ⋊ V4
∼= (32, 43),
(0; 23, 8)

816, 1684,
32208

24, 422, 842,
16129, 32180

0

x7 + y7 − x2y2 C3 ×D7 11, 2121,
42183

31, 2163,
42165

1

y21 − x(x+ 1)13(x− 1)7 C3 ×D7,
(0; 2, 6, 21)

11, 2121,
42183

31, 2163,
42165

1

x9 + y9 − x6 C3 ×D9,
(0; 2, 6, 9)

11, 183, 2721,
54139

31, 184, 2763,
54120

1

x9 + y9 − x3y3 C3 ×D9,
(0; 2, 6, 9)

11, 183, 2721,
54139

31, 184, 2763,
54120

1

y8 − (x2 − 1)(x2 + 1)3 (C16 ⋊ C2)⋊
C2
∼= (64, 41),

(0; 2, 4, 16)

168, 3242,
64104

42, 89, 1615,
3264, 6492

0

y16 − x(x− 1)9(x+ 1)6 (C8 ⋊ C4) ⋊
C2
∼= (64, 41),

(0; 2, 4, 16)

168, 3242,
64104

42, 89, 1615,
3264, 6492

0

y9 − 6y6 + 3(9x4 − 5)y3 − 8 ((C4 × S3) ⋊
C2)⋊ C3
∼= (144, 127),
(0; 2, 3, 12)

41, 121, 242,
362, 7241,
14435

62, 122, 186,
242, 3628,
7228, 14435

0

28x4y4+2x7+2y7+35x3y3+
21x2y2 + 7xy + 1

PSL2(F8),
(0; 2, 3, 7)

281, 361,
25214, 5049

283, 363,
12616, 25218,
5043

0

y2 − x(x6 − 1)(x8 − 2) C2 164, 24032 164, 24096 128
y2 − x(x7 − 1)(x7 − 2) D7 11, 763, 14549 13, 7189,

14495

4

y2 − (x15 − 1) C15, (0; 15
3) 31, 52, 15541 11, 51, 15550 1

y2 − (x8 − 1)(x8 − 2) D8 872, 16472 14, 24, 425,
8170, 16424

4

y2 − x(x14 − 1) D14 11, 77, 1457,
28260

11, 21, 77,
14120, 28233

2

y2 − (x16 − 1) D16 84, 1662,
32222

12, 21, 43,
814, 16112,
32198

2
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y2 − (x16 + 1) D16 84, 1662,
32222

12, 21, 43,
814, 16112,
32198

2

I shall make some comments on Table 2.6.

• The curve with automorphism group PSL2(F8) is the Fricke-Macbeath curve
[Fri99, Mac65], the unique Hurwitz curve of genus 7, the rational plane
model of which is a attributed to Brock in [Hid17]. The remaining curves
come from [Zom10, Table 2, Table 5]. Table 5 in Zomorrodian gives all
possible automorphism groups of non-hyperelliptic genus-7 curves where
|Aut| < 65, and a plane curve form for each; this list contains some errors,
for example a typo in curve 4 and the fact that curve 8 is hyperelliptic (as
checked with Maple [Map22]).

• Edge describes the orbits of some of the odd characteristics of the Fricke-
Macbeath curve in terms of tangent hyperplanes [Edg67].

• All the curves written with a unique invariant characteristic are SNOG

Table 2.7: Orbit decomposition, all hyperelliptic curves of genus 8 with many
automorphisms

f Aut, c Odd Even I

y2 − (x17 − 1) C17, (0; 17
3) 171920 11, 171935 1

y2 − x(x4 − 1)(x12 − 33x8 −
33x4 + 1)

S4 42, 82, 1294,
241312

42, 68, 84,
1290, 241322

0

y2 − x(x16 − 1) D16 1672, 32984 22, 41, 87,
16188, 32932

0

y2 − (x18 − 1) D18 61, 1863,
36875

11, 31, 61,
914, 18182,
36819

1

There is little to say about Table 2.7, except for that the two curves which
have a UIC are SNOG.

Table 2.8: Orbit decomposition, two non-hyperelliptic curves of genus 9, and all
hyperelliptic curves of genus 9 with many automorphisms

f Aut, c Odd Even I

x5y2 + y5 + x2 C19 ⋊ C3
∼= (57, 1),
(0; 32, 19)

11, 1927,
572286

1936, 572292 1

y − x3 − x4y3 + xy4 + 3x2y2 S5,
(0; 2, 5, 6)

61, 104, 2012,
3035, 60300,
120929

12, 56, 61,
1010, 1524,
206, 3085,
60402, 120867

2
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y2 − (x19 − 1) C19, (0; 19
3) 11, 196885 196912 1

y2−(x12−33x8−33x4+1)(x8+
14x4 + 1)

S4 12, 21, 32,
42, 613, 811,
12172, 245357

34, 44, 618,
816, 12290,
245316

2

y2 − x(x18 − 1) D18 11, 31, 62,
914, 121,
18245, 363507

11, 21, 31, 65,
914, 18497,
363395

2

y2 − (x20 − 1) D20 11, 53, 1012,
20246, 403144

11, 21, 53,
1027, 20504,
403024

2

y2 − (x20 − 228x15 + 494x10 +
228x5 + 1)

A5, (0; 3, 5
2) 11, 53, 103,

154, 209,
30117, 602117

63, 1012,
1516, 2012,
30345, 602006

1

Finally some comments on Table 2.8.

• The curve with Aut = S5 is the Fricke octavic curve, defined in [Edg84],
constructed similarly to Bring’s curve in P3 and so a plane form of the curve
is found using resultants and a judicious choice of projective transformation
to find a well conditioned coordinate system.

• The curve with automorphism group of order 57 is a generalisation of Klein’s
curve and Snyder’s curve [Lef21b, p. 464].

• Not all the curves written here with a UIC are SNOG, the hyperelliptic
curve with Aut ∼= A5 cannot have a subnormal cyclic group.

At this genus the computations were becoming prohibitively slow, with the
calculation of the symplectic automorphism group of the Fricke octavic curve in
Sage taking just under three hours on a laptop.

Leaving behind the criteria of requiring a plane model of the curve, one
can compute additional examples of theta characteristic decompositions using
the code from [BRR13], available at https://sites.google.com/a/u.uchile.
cl/mat-ciencias-prof-anita-rojas/home/proyectos,15 from the data of a
group, signature, and choice of generating vector provided the quotient genus is
0. The Sage notebook genus_order_invariants_data.ipynb shows how this
can be done.

Having computed now many examples in low genera, we can pick out some
families of curves with unique invariant characteristics, giving us the following
theorem.

Theorem 2.2.35. There are infinitely many curves, both hyperelliptic and non-
hyperelliptic, with a unique invariant characteristic.

Proof. It is sufficient to consider only curves of Lefschetz type, in particular
the two families we shall consider are one of the Wiman hyperelliptic curves

15I am grateful to Anita Rojas for her correspondence on the workings of this code.
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y2 = x2g+1 − 1 and the Lefschetz curves of the form xmyn + ym + xn = 0 for
coprime m,n where p := m2 −mn+ n2 > 7 is a prime congruent to 1 mod 3.

The former has automorphism group C2g+1 × C2, which contains the normal
subgroup C2g+1 of odd order which quotients to P1.

The latter has automorphism group of the form Cp ⋊ C3, which contains the
normal subgroup Cp of odd order which quotients to P1, which is easiest seen by
writing the curve in the from ỹp + x̃a(1 + x̃) = 0 as can always be done for some
a [Lef21b, p. 464].

For the hyperelliptic family in the proof of Theorem 2.2.35 we can say more
in the case that 2g + 1 is a prime p, as all characteristics that are not invariant
are in orbits of order p. In this we must have that

2p−1 = 22g ≡ 1 mod p,

a fact that is an immediate consequence of Fermat’s little theorem for odd primes.
As p is an odd prime, this means 2g ≡ ±1 mod p (p|a2 − 1 ⇒ p|a − 1 or
p|a + 1). Moreover, we know that orbits decompose into those of even and odd
characteristics, hence we must have one of 2g−1(2g±1) congruent to 0 mod p and
the other congruent to 1. We can identify the two cases as follows:

1. if 2g ≡ 1, 2g−1(2g − 1) ≡ 0, and 2g−1(2g + 1) ≡ 2g ≡ 1,

2. if 2g ≡ −1, 2g−1(2g − 1) ≡ −2g ≡ 1, and 2g−1(2g + 1) ≡ 0,

Hence the question reduces down to what value 2g = 2
p−1
2 is mod p. Suppose

first we have that 2 is a square mod p, that is ∃a such that a2 ≡ 2 mod p. Then
we immediately get 2g ≡ ap−1 ≡ 1 by another application of the little theorem.
The converse, that if 2 is not a square then 2g ≡ −1, was proven in [Isr19]. One
can look at the OEIS to get a characterisation of the values of g which give these
cases, by considering what value g is mod 4. We have

g ≡ 3, 0 mod 4⇒ p ≡ ±1 mod 8⇒ 2 is a square,

g ≡ 1, 2 mod 4⇒ p ≡ ±3 mod 8⇒ 2 not a square.

which correspond to the cases where the invariant characteristic is even/odd
respectively.

2.2.3 Future Directions

In this section I have begun an investigation of the orbits of theta characteristics,
providing a group cohomology framework with which to frame the question, and
ample data to begin investigating conjectures. Nevertheless, the structure of a
theorem determining when a group action on a curve will have a unique invariant
characteristic remains unclear. To this end I shall speculate on possible directions
of study that may be fruitful in at least describing the correct results to prove.

• The algorithm ran to get the orbit decomposition under the reduced auto-
morphism group can be trivially extended to give the orbit decomposition
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under any subgroup of this. It is possible that this richer dataset will pro-
vide more insight, and so the construction of an effective way to store and
present this data would be a stepping stone towards understanding the full
theory.

• [MSSV02] defines normal homocyclic covers of P1 to be those curves
C with a G ◁ Aut(C) isomorphic to a product of cyclic groups such that
C/G ∼= P1. For a subset of these, where G is cyclic, we have already
classified when there is a unique invariant characteristic, and so perhaps
this subset of curves presents a more simple classification task.

• We saw that there was only one exception to the rule that every curve with
a unique invariant characteristics that was not SNOG still had an odd-order
cyclic subgroup quotienting to P1; this came from a curve in genus 4 with
A4 automorphism group. This is perhaps therefore a sensible condition to
investigate.

• Machine classification (namely a pipeline using a Standard Scaler followed
by a Random Forest classifier16) using features built from the group data
and the signature alone achieved an accuracy of approximately 93% in cross-
validation when predicting if the corresponding group action gave a unique
invariant characteristic when trained on data of over 1000 group actions,
a far higher accuracy than the approximately 54% one would expect if
choosing randomly with prior knowledge of the frequency of actions with
a UIC in the dataset. Specifically, I provided the features of genus, group
order, whether the group action was large, the maximum power of 2 dividing
the group order, the number of involutions in the group, the number of
involutions up to conjugacy, the number of entries in the signature, the
number of even entries in the signature, the maximum entry of the signature,
and the dimension of the corresponding family for 1326 group actions in
genus 12 or less. This suggests that from very basic heuristics along one
should be able to get strong results understanding the behaviour of UICs.
Moreover, estimating feature importance using these methods showed that
whether or not a group action was large for a given genus was unimportant
in determining whether a given action led to a UIC. I expect that such
computational methods could lead to better understanding of which features
to include when formulating theorems. To lay a benchmark for future work
I provide in Table 2.9 the prediction of the classifier given the corresponding
data for all the simple Hurwitz group with order < 106, provided in [Con87]
(the Ji are the first two Janko groups). These results are correct for the two
Hurwitz curves known, though removing their data from the training set
makes the classifier less accurate. Running a similar pipeline which instead
predicts whether a group action has 0, 1, or many invariants characteristics
confirms the predictions of Table 2.9, predicting those without a unique
invariant characteristic have zero.

16I am very grateful to Jacob Bradley for showing me how to do this.
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• Every finite group has a composition series, which provides one way of
finding subnormal groups. The smallest nontrivial subnormal group in the
composition series is a simple group, and so if G is a finite group of odd
order then the smallest nontrivial entry in the composition series is H ∼= Cp

for p some odd prime, and each composition factor is likewise isomorphic to
Cpi for some odd primes pi. The computed data shows that for any curve
with Aut(C) odd (necessarily non-hyperelliptic) with quotient genus g0 = 0,
there is a unique invariant characteristic. One might suspect that this can
be proven with the machinery of the inflation-restriction exact sequence.
This would generalise the infinite family of non-hyperelliptic curves with a
UIC given in Theorem 2.2.35 by results of [Wea03].

Table 2.9: Machine prediction of whether I = 1, all simple Hurwitz groups of
order < 106

G g I = 1

PSL(2, 7) 3 True
PSL(2, 8) 7 False
PSL(2, 13) 14 True
PSL(2, 27) 118 True
PSL(2, 29) 146 True
PSL(2, 41) 411 False
PSL(2, 43) 474 True
J1 2091 False
PSL(2, 71) 2131 False
PSL(2, 83) 3404 True
PSL(2, 97) 5433 False
J2 7201 False
PSL(2, 113) 8589 False
PSL(2, 125) 11626 True

2.3 Bring’s Curve

However, no method belonging to the study of
Mathematics should have been left behind, untried
and extended, from this lovable science by its
untiring lovers and worshippers

– Erland Samuel Bring
Transformation of Algebraic Equations

This section shows how the theory laid out in §2.1 and §2.2 may be used to
gain insight into specific algebraic curves, and in the process discover beautiful
geometry. In particular, in this section I will use the geometry of cubic surfaces
to identify two models of Bring’s curve, explicitly identify the automorphism
group of Bring’s curve to complete the picture of its quotient structure, determine
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the orbits of its theta characteristics using Weierstrass points, and connect its
unique invariant theta characteristic with the Riemann constant vector. This
work, completed in collaboration with Harry Braden, has been submitted for
publication and is available as a preprint [BDH22]. Jupyter notebooks containing
code used for calculations are available at https://github.com/DisneyHogg/

Brings_Curve.
Let us start by defining Bring’s curve as a projective curve.

Definition 2.3.1. Bring’s Curve B is defined in P4 by the (homogeneous)
equations17

Hk :=
5∑

i=1

xki = 0, k = 1, 2, 3, (2.13)

where we have taken the coordinates [x1 : x2 : x3 : x4 : x5] ∈ P4.

One can easily check that this is indeed a smooth projective curve. Bring’s
curve was introduced by Erland Bring in 1786 [Kle88, p. 157] in relation to
solutions of the quintic equation, namely given a quintic polynomial

∏5
i=1(x−xi),

the equations of Bring’s curve determine when the quintic is in reduced Bring-
Jerrard form.18

As said in §2.1.1, one knows Bring’s curve must have a (possibly singular)
plane curve model, which we give now.

Definition 2.3.2. The Hulek-Craig (HC) model of Bring’s curve is the (sin-
gular) plane curve in P2 given by

F (X, Y, Z) := X(Y 5 + Z5) + (XY Z)2 −X4Y Z − 2(Y Z)3 = 0, (2.14)

taking homogeneous coordinates [X : Y : Z] ∈ P2. We denote its normalisation
by B.

This model was used in [Hul87, Cra02] where they studied the curves modular
properties, but I shall not discuss these aspects in this thesis. Another plane
model of Bring’s curve giving in [Web05, Proposition 3.1] is given by (x− 1)y5−
(x + 1)x2 = 0, found by considering the curve as a cyclic cover of P1. I will call
Equation 2.13 the P4-model of Bring’s curve, Equation 2.14 the HC model of
Bring’s curve; in Proposition 2.3.7 I will prove their equivalence.

2.3.1 Basic Properties

In order to study Bring’s curve we will first need some introductory properties.
Taking affine coordinates (x, y) = (X/Z, Y/Z) such that the HC model is19 0 =
f(x, y) = F (x, y, 1), Resy(f(x, y), ∂yf(x, y)) = x4(x5−1)2(256x10−837x5+3456)

17Note here we use the notation Hk of [Bur83] for the symmetric sum, whereas [Edg78] uses
Sk.

18Bring, unlike Jerrard, never made the mistake of suggesting that the reduction to Bring-
Jerrard form gives a general method for solving quintics [Caj94, p. 349].

19Note the coordinates x, y will also interchangeably be used as coordinates on the normali-
sation away from the preimages of singular points.
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determines the branch locus of the curve (recall Example 2.1.8). Within this, one
can determine the singular points.

Lemma 2.3.3 ([BN12]). The only singular points in the HC model of the curve
are Vk = [ζk : ζ2k : 1] for k = 0, . . . , 4, where ζ = exp(2πi/5), and V5 = [1 : 0 : 0].

We shall return to these points in due course; each of these singular points
desingularises to two points. We also have nonsingular points a = [0 : 0 : 1],
b = [0 : 1 : 0], about which we can take a local coordinate t such that nearby
points are to leading order [2t3 : t : 1] and [2t3 : 1 : t] respectively. The point V5
desingularises to two points on B, which we denote

c = [1 : 0 : 0]2, d = [1 : 0 : 0]1,

which in the vicinity of these points have local behaviour [1 : t : t4] and [1 : t4 : t]
respectively.

Corollary 2.3.4. On B we have the divisors

(x) = 3a+ 2b− 4c− d, (y) = a− b− 3c+ 3d, Rx = 2a+ b+ 3c+
∑
i

ri,

where Rx is the ramification divisor corresponding to the map x : B → P1 and the
ri are the roots of the polynomial 256x10−837x5+3456 appearing in the resultant.

Lemma 2.3.5 ([BN12], p. 18). The genus of Bring’s curve is g = 4 and we have
the ordered basis of (unnormalised) differentials on B

v1 =
(y3 − x)dx
∂yf(x, y)

, v2 =
(y2x− 1)dx

∂yf(x, y)
, v3 =

(y − x2)dx
∂yf(x, y)

, v4 =
y(x2 − y)dx
∂yf(x, y)

.

One can compute such differentials algorithmically from the HC model (as
Braden and Northover do), and thus find the genus to be four this way, but
another route which will be conceptually helpful will be to note that in the P4-
model, using H1 to eliminate one of the coordinates, Bring’s curve is written
as the intersection of a quadric and cubic in P3. Such a complete intersection
is known, as mentioned in Example 2.1.61, to be the canonical embedding of a
genus-4 curve. Moreover, because the quadric surface containing B is unique,
it must be the case that the differential vi satisfy a quadratic relation and that
the corresponding quadric is nonsingular hence isomorphic to P1 × P1 by §2.1.3.
Specifically, here one finds the quadric is given by

Q : v1v2 + v3v4 = 0, (2.15)

with the map Q → P1 × P1 given by

φ : P1 × P1 → Q ⊂ P3,

([u : v], [z : w]) 7→ [uz : vw : vz : −uw] := [v1 : v2 : v3 : v4].
(2.16)
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The inverse map φ−1 : Q → P1 × P1 is given by

φ−1([v1 : v2 : v3 : v4]) =


([v1 : v3], [v3 : v2]), {v1, v3} ≠ {0} ≠ {v2, v3} ,
([−v4 : v2], [v3 : v2]), {v1, v3} = {0} ≠ {v2, v3} ,
([v1 : v3], [v1 : −v4]), {v1, v3} ≠ {0} = {v2, v3} ,
([−v4 : v2], [v1 : −v4]), {v1, v3} = {0} = {v2, v3} .

Proposition 2.3.6 ([BN12]). The canonical divisor class on Bring’s curve B is
[KB] = [a+ 2b+ 3c].

Proof. This may be shown analytically or (as given in the accompanying note-
book) entirely using computer algebra. To show this analytically we start by
considering the numerator of v3. We can calculate

Resy(f(x, y), y − x2) = −x(x5 − 1)2.

Thus to determine the divisor we need to consider the finite points x = 0 (i.e. a,
b), x = ζk and the infinite points c, d. We have a simple zero at a, a simple pole
at b, a pole of order 8 at c and a pole of order 2 at d, which can be worked out
by using the local expansions defining a, b, c, d, e.g at a we have

y − x2 ∼ t− (2t3)2,

so our simple zero. As noted previously the singular points Vk desingularise to
two points Pk, P

′
k; at these points the function y−x2 has a simple zero. Thus we

obtain

(y − x2) = a− b− 8c− 2d+
4∑

k=0

[Pk + P ′
k],

(∂yf) = 2a− 2b− 16c− 4d+
∑
k

[Pk + P ′
k] +

∑
i

ri,

both of which can be checked to be degree 0. Finally, use the ramification divisor
Rx = 2a+ b+ 3c+

∑
i ri to get

(dx) = −2(4c+ d) +Rx ⇒ (v3) = (y − x2) + (dx)− (∂yf) = a+ 2b+ 3c.

We now establish the main result of this subsection.

Proposition 2.3.7. The HC model (Equation 2.14) is a model of Bring’s curve
(Equation 2.13).

Proof. We will prove this by explicitly constructing the birational transform. To
do so we make use of the proof of [Dye95, Theorem 3], where the author considers
a particular Clebsch hexagon20, constructs a pencil of plane sextics from this, and

20For the purposes of this definition a hexagon is a set of 6 points in P2, no three of which
are collinear, called the vertices. A Brianchon point of a hexagon is a vertex point through
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finds Bring’s curve as the canonical model of a distinguished point in this pencil.
By assuming that the HC model is already the distinguished curve in a pencil,
we can construct the birational map. Note this is a fundamentally different
approach to the that originally taken with the HC model, which was derived
from considerations of the modular theory of the curve.

Explicitly, Dye introduces j as a solution to j2 − j − 1 = 0 and then defines
the pencil of curves21 Sλ = S + λ |C|3 where

S(x, y, z) = (x+ jy)6 + (x− jy)6 + (y + jz)6 + (y − jz)6 + (z + jx)6 + (z − jx)6,
C(x, y, z) = x2 + y2 + z2.

(2.17)

Next Dye considers the Clebsch hexagon H with vertices

(1,±j, 0), (0, 1,±j), (±j, 0, 1),

for which the corresponding 10 Brianchon points are at

(±j2, 1, 0), (0,±j2, 1), (1, 0,±j2), (1,±1,±1).

Dye shows that there is a unique member of the pencil, which he calls Γ, that
contains the vertices. Moreover, Γ has the vertices and only the vertices as double
points.

To get a canonical model for Γ, which Dye shows has genus 4, we now need
that a generic cubic surface in P3 is birational to the vanishing condition for
a system of plane cubics through 6 base points in generic positions, as seen in
§2.1.3. We apply this taking these six points to be the vertices of the hexagon
H. We shall see a posteriori that these are indeed in general position.

We shall now proceed as follows.

1. We construct the cubic which corresponds to the vanishing condition for
the cubics through the 6 points Vk on the HC model.

2. We verify that the constructed map is birational from P2 to the cubic.

3. Motivated by the geometry of Bring’s curve, we find a collineation which
maps the found cubic to the standard Clebsch surface (defined below) in
P4.

4. We verify that restricting to the HC model in P2 corresponds to restricting
to Bring’s curve in the Clebsch surface.

5. We give examples of this new birational map from the (normalisation) of
the HC model to Bring’s curve on some particular points.

We do this now.

which 3 edges (the lines joining two distinct vertices) pass that is not a vertex. A Clebsch
hexagon is a hexagon with 10 Brianchon points [Dye91].

21We are using the coordinates [x : y : z] here, distinct from [X : Y : Z], to highlight that
these are not those of the HC model.
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1. For our purposes, the six points we want to intersect with are the vertices of
the Clebsch hexagon, which are the double points of the exceptional curve
Γ. Assuming the HC model gives such an exceptional curve, we take the
points Vk identified in Lemma 2.3.3. Hence, if we write a generic cubic in
X, Y, Z as

a0X
3+a1X

2Y+a2X
2Z+a3XY

2+a4XY Z+a5XZ
2+a6Y

3+a7Y
2Z+a8Y Z

2+a9Z
3

the equations on the coefficients we get (coming from intersecting with Vk
(k = 0, . . . , 4) and V5 respectively) are

a0ζ
3k + a1ζ

4k + a2ζ
2k + a3 + a4ζ

3k + a5ζ
k + a6ζ

k + a7ζ
4k + a8ζ

2k + a9 = 0,

a0 = 0.

Setting the coefficients of ζnk to be zero gives us the 3-parameter family of
cubics

0 = aX2Y + bX2Z + cXY 2 + dXZ2 − dY 3 − aY 2Z − bY Z2 − cZ3,

:= aL1 + bL2 + cL3 + dL4.

Precisely because the resulting family of cubics is 3-parameter, we know
that the six points from H must have been sufficiently general.

Comparing the coefficients we see that our map into P3 is (essentially) the
canonical embedding. as

[v1 : v2 : v3 : v4] = [−L4 : L3 : −L2 : L1].

One can check, using for example Gröbner bases, that the La satisfy the
equation

L2L
2
4 − L2

1L4 − L1L
2
3 + L2

2L3 = 0.

This is the cubic we call F .

2. One can use the package Cremona in Macaulay2 [Sta18, GS] to check that
the map Ψ is birational. Note one needs to make sure that the range is
chosen such that the map is explicitly surjective, not just use the implicit
knowledge that the map is surjective onto its image. Doing so and asking
for the inverse map gives

[X : Y : Z] = [L2
2 − L1L3 : L1L4 : L2L4].

For example, we can see

L2
2 − L1L3

L1L4

=
(X2Z − Y Z2)

2 − (X2Y − Y 2Z) (XY 2 − Z3)

(X2Y − Y 2Z) (XZ2 − Y 3)
,

=
X4Z2 −X2Y Z3 −X3Y 3 +XY 4Z

X3Y Z2 −XY 2Z3 −X2Y 4 + Y 5Z
=
X

Y
,
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and
L1L4

L2L4

=
L1

L2

=
X2Y − Y 2Z

X2Z − Y Z2
=

(X2Z − Y Z2)(Y/Z)

X2Z − Y Z2
=
Y

Z
.

3. We now have a cubic surface in P3 corresponding to the system of curves
intersecting the Vi. From [Hir86, p. 198-201] we know there exists a coor-
dinate system in which this cubic can be written as the subset of P4

H3 = 0 = H1

(this is called ‘the’ Clebsch surface). To look for such a coordinate system,
we write this surface in P3 as

0 = x21x2 + x1x
2
2 + x21x3 + x22x3 + x1x

2
3 + x2x

2
3 + x21x4 + x22x4 + x23x4 + x1x

2
4

+ x2x
2
4 + x3x

2
4 + 2x1x2x3 + 2x1x2x4 + 2x1x3x4 + 2x2x3x4.

From here, one can use the fact that the 10 Eckardt points of the cubic in
La form the 10 vertices of a pentahedron [Hir86, p. 199], and that in the
coordinate system of the Clebsch surface in P4 these lie at the permutations
of [1 : −1 : 0 : 0 : 0] [Edg78]. This gives us a possible way of spotting the
transform if we can calculate the Eckardt points of F . To do this, we use
the identification from [Dye95], that the 3 lines in F intersecting to give an
Eckardt point come from the 3 edges of H intersecting at a Brianchon point.
To this end we find the images of the ViVj for which we give a generating
set of the ideal corresponding to the line, for example

Ψ(V0V5) : ⟨L4 − L3, L2 − L1⟩ ,
Ψ(V1V2) :

〈
L4 + (ζ2 + ζ + 1)L2 + (ζ4 − ζ2 − ζ)L1,

L3 + (ζ3 + 2ζ2 + ζ)L2 + (ζ3 + ζ2 + ζ)L1

〉
,

Ψ(V3V4) :
〈
L4 + (−ζ2 − ζ)L2 + (ζ3 + 2ζ2 + ζ)L1,

L3 + (ζ3 − ζ − 1)L2 + (ζ2 + ζ + 1)L1

〉
.

Then

Ψ(V0V5) ∩Ψ(V1V2) ∩Ψ(V3V4) = [−ζ3 − ζ2 − 1 : −ζ3 − ζ2 − 1 : 1 : 1],

= Ψ(V0V5 ∩ V1V2 ∩ V3V4).

One can do likewise to find the other Eckardt points.

Armed now with the knowledge of the Eckardt points, we can find appropri-
ate projective transforms A that biject the sets of Eckardt points by acting
(x1, x2, x3, x4)

T = A(L1, L2, L3, L4)
T , for example

A =


ζ3 −1 −ζ2 ζ
1 −ζ3 −ζ ζ2

ζ2 −ζ −1 ζ3

ζ −ζ2 −ζ3 1

 .
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We can then use again Macaulay2 to check that this transform then gives
us the correct cubic in P3.

4. Moreover, if we now restrict to the HC model in the system of curves that
intersect the Vi, that is we impose the condition that F (X, Y, Z) = 0, we
get the final degree-2 polynomial on the xi (H2 = 0). This quadric is in
fact the Schur quadric corresponding to a distinguished double-six of lines
that necessarily exist on a cubic surface constructed as above [Dye95]. An
equivalent rational map is given in [Dol12, p. 557], but the inverse is not
provided.

5. To see this working, let us consider c and d, and verify that these are
desingularised on the smooth canonical embedding. Taking [X : Y : Z] =
[1 : t : t4] we get

[L1 : L2 : L3 : L4] = [1 : t3 : t+ t6 : −t2],

and so taking the limit we get [1 : 0 : 0]2 7→ [1 : 0 : 0 : 0] in L coordinates.
Acting with A, we get the point in P4 given by

[x1 : x2 : x3 : x4 : x5] = [ζ3 : 1 : ζ2 : ζ : ζ4].

Repeating the process taking [X : Y : Z] = [1 : t4 : t] gives [1 : 0 : 0]1 7→
[0 : 1 : 0 : 0] in L coordinates, which is equivalently

[x1 : x2 : x3 : x4 : x5] = [1 : ζ3 : ζ : ζ2 : ζ4].

This makes sense, as the change Y ↔ Z corresponds to L1 ↔ L2, L3 ↔ L4.

Moreover, to clarify our last point on the imposition of H2 = 0, we consider
the point [X : Y : Z] = [0 : 1 : 1] which does not lie on the HC model of
the curve. Under our birational map this corresponds to the point

[L1 : L2 : L3 : L4] = [1 : 1 : 1 : 1],

⇒ [x1 : x2 : x3 : x4 : x5] = [2−
√
5 : −2 +

√
5 : −1 : 1 : 0].

This point does lie on the Clebsch diagonal surface given by H1 = 0 = H3,
but does not satisfy H2 = 0.

Note that in the above proof of the equivalence of the Riemann surfaces, the
birational map we constructed was defined over Q[ζ]. As such, to equate the
two algebraic curves we need to be working over a field containing Q[ζ]. We will
later see when looking at quotients of Bring’s curve that it is insufficient to work
over Q. Indeed, note that over Q there are no solutions to the equations defining
Bring’s curve in the P4-model because the quadric term forces each xi to be 0.
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The Period Matrix

In this short subsection we introduce the notation of the Riemann matrix of
Bring’s curve, indicating how it has been calculated multiple ways in the past.

Theorem 2.3.8 ([RR92, GAR00, BDH22]). Define the matrices M , MS by

M =


4 1 −1 1
1 4 1 −1
−1 1 4 1
1 −1 1 4

 , MS =


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 .

A Riemann matrix for Bring’s curve is given by τB = τ0M , where the complex
number τ0 is given by the conditions

j(τ0) = −
293 × 5

25
, j(5τ0) = −

25

2
, (2.18)

with j the elliptic-j function on the upper half plane (Equation 2.5). Then τ0 =
−0.5 + 0.186676i (6.d.p). Further, there exists a symplectic transformation such
that τB = τ0MS.

Proof. This is known, and has been proven in multiple different ways. We sum-
marise these and highlight a numerical approach.

1. This was first shown in [RR92], but the equations for j(τ0), j(5τ0) were
incorrectly swapped as first noted22 in [BN12].

2. It was calculated in [BN12] going via the HC model.

3. In [Web05], by viewing the curve as a cyclic cover of P1, a period matrix is
constructed with respect to a homology basis with intersection matrix

IW =



0 1 1 −1 −1 0 0 1
−1 0 1 1 0 1 0 −1
−1 −1 0 1 0 −1 0 0
1 −1 −1 0 0 0 1 0
1 0 0 0 0 1 1 −1
0 −1 1 0 −1 0 1 1
0 0 0 −1 −1 −1 0 1
−1 1 0 0 1 −1 −1 0


,

that is given as Ω = (A,B) where the columns23 Ak, Bk are

Ak =


ζk(1− ζ2)

ζ2k+3/2(1− ζ4)(lΦ− 1)
ζ4k+3(1− ζ3)Φ(1− l)

ζ3k+2(1− ζ)l

 , Bk =


ζ2k+3/2(1− ζ4)(lΦ− 1)
ζ4k+3(1− ζ3)Φ(1− l)

ζ3k+2(1− ζ)l
ζk(1− ζ2)

 ,

22Note the approximation of τ0 in [BN12] contains a typographic error.
23Note [Web05, Lemma 5.1] uses ζ = exp(2πi/10), whereas we take ζ = exp(2πi/5). As such,

the columns of Ω look different to those of Weber in terms of the exponent of ζ, but they do
indeed agree.
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for k = 0, . . . , 3, Φ = 1
2
(1 +

√
5), and l =

∣∣∣ I(−1,0)
I(−∞,−1)

∣∣∣ ≈ 0.848641 where

I(a, b) =

∫ b

a

(t− 1)−1/5t−3/5(t+ 1)−4/5dt.

One can find (using Sage) the matrix

C =



0 1 −2 1 1 1 0 −1
0 1 −1 1 0 0 −1 0
0 0 −1 0 0 1 1 0
1 1 −2 2 0 1 −1 −1
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0


such that CT IWC = Jg =

(
0 Idg

− Idg 0

)
, i.e. C transforms the homology

basis to one which is canonical. This means we get a Riemann matrix
τW = (AC)−1(BC) = C−1A−1BC, and one can numerically find that the
matrix

R =

(
δ β
γ α

)
=



0 0 0 1 0 0 1 2
0 −1 1 0 −1 −2 1 1
1 0 1 0 2 1 1 1
0 1 0 0 1 2 0 0
1 0 0 0 2 1 0 1
1 0 1 −1 1 1 1 −1
−1 0 0 1 −1 −1 1 2
1 0 1 −1 1 2 1 −1


relates τW to τB.

4. For a numerical approach, we may consider the Riemann matrix calculated
by SageMath, and find a transform to τB, as is done in the corresponding
notebook.

Riera and Rodriguez (hereafter abbreviated to R&R) constructed the con-
straints on τ0 via j-invariants by considering the quotients by group actions of
the curve to elliptic curves [RR92]. They show that these constraints give a
unique value of τ0 modulo Γ0(5), or equivalently in the language of [GAR00] that
τ0 gives a distinguished point in the modular curve X0(5). As we will see later in
§2.3.3, there are additional quotients to elliptic curves not considered by R&R,
which have j-invariants

j(15τ0) = −
52 × 2413

23
, j(3τ0) =

5× 2113

215
. (2.19)
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The latter is identified in relation to Bring’s curve in [Ser08, Exercise 8.3.2c]. Serre
says that this curve (50H) and 50E (using the naming convention of [BK75, Table
1]) with j(5τ0) are 15-isogenous over Q. This isogeny is not too mysterious when
we think on the level of the corresponding elliptic curves over C as C/ ⟨1, 3τ0⟩
and C/ ⟨1, 5τ0⟩, wherein the isogeny C/ ⟨1, 3τ0⟩ → C/ ⟨1, 5τ0⟩ is the composition
of the quotients by the maps z 7→ z+ τ0 and z 7→ z+1/5 respectively. There is a
complete Q-isogeny class of elliptic curves of order four with periods τ0, 3τ0, 5τ0
and 15τ0 [BK75, Table 1].

It follows from Equation 2.18 and Proposition 2.1.43 that τ0 is transcendental.
In Weber’s form of the period matrix, the transcendentality comes about because
of the constant l, which is a ratio of Schwarz-Christoffel integrals which arise from
the map of a Euclidean quadrilateral to a hyperbolic quadrilateral.

The Automorphism Group

This subsection is devoted to the following result.

Proposition 2.3.9 ([Wim95b]). Aut(B) = S5. This is the maximal possible
automorphism group for a genus 4 surface, and Bring’s curve is the only curve
to achieve it.

Wiman’s proof was enumerative and produced equations for the curves with a
given automorphism group, as we have already seen in §2.2.2. One can certainly
see from the form of the equations determining the P4-model of the curve that
S5 ≤ Aut(B), acting as permutations of the xi coordinates fixing the subspace∑

i xi = 0. Moreover, [Hir86, p. 201] gives that Aut(B) ≤ S5 from the perspective
of the Clebsch surface, thus fixing the automorphism group of Bring’s curve.
Other different proofs of Wiman’s result may be found in [KK90, MSSV02].

The uniqueness of the quadric Q in which Bring’s curve lays means that
automorphisms of the curve become automorphisms of Q ∼= P1 × P1, hence we
know Aut(B) is isomorphic to a finite subgroup of Aut(P1×P1) = C2⋉(PGL2(C)×
PGL2(C)). Moreover, by Example 2.1.79 we know Aut(B) is isomorphic to a finite
subgroup of PGL4(C). What is nontrivial is the following fact.

Theorem 2.3.10 ([Dye95]). The A5 subgroup of Aut(B) can be realised as a
group of collineations in the HC model, that is, can be realised as a subgroup of
PGL3(C).

Proof. We will be explicit about the construction here as this will be profitable
later but the result is classical; [BN12] explains how this representation follows
from [Dye95], and more details may be found in [CS16]. The group A5 has two
inequivalent irreducible 3-dimensional representations, one of which is given by
⟨R, S⟩ where

R :=
1√
5

1 2 2
1 ζ2 + ζ−2 ζ + ζ−1

1 ζ + ζ−1 ζ2 + ζ−2

 , R2 = I, S :=

1
ζ

ζ−1

 , S5 = I, (RS)3 = I.

(2.20)
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Note the other inequivalent irreducible 3-dimensional representation comes from
replacing ζ in Equation 2.20 with ζ2 or ζ3. The invariants of the representation
⟨R, S⟩ (when acting on (X, Y, Z)T via left multiplication) are

i2 =

(
X

2

)2

+
4∑

k=0

(
X
2
+ Y ζk + Zζ−k

√
5

)2

=
1

2
X2 + 2Y Z,

i6 =

(
X

2

)6

+
4∑

k=0

(
X
2
+ Y ζk + Zζ−k

√
5

)6

,

i10 =

(
X

2

)10

+
4∑

k=0

(
X
2
+ Y ζk + Zζ−k

√
5

)10

,

i15 =

∣∣∣∣∂{i2, i6, i10}∂{X, Y, Z}

∣∣∣∣ .
There is a polynomial relation between i215 and i2, i6, i10. In particular the
vanishing of i6 − λi32 gives us Dye’s 1-parameter family of A5-invariant sextics
in P2; this pencil24 appears to have first been studied by Winger [Win25]. This
pencil yields curves of genus 10 for generic λ [Dye95]. The special value25 of
λ = 13/100 yields a genus-4 curve, namely Bring’s curve, as we have that

1

12

(
100i6 − 13i32

)
= X(Y 5 + Z5) + (XY Z)2 −X4Y Z − 2(Y Z)3 = F (X, Y, Z).

To complete our picture, we use the following result.

Proposition 2.3.11. The map

U : (x, y) 7→
(
−y

5 + x3y − 3xy2 + 1

(y − x2)(y3 − x)
,−y

2x− 1

y3 − x

)
is an automorphism of the HC model, and which together with R and S generates
the entire automorphism group S5.

Proof. The proof that U is an automorphism is simple algebraic verification.
In order to find this map, we adapted the methods of [BSZ19]. To see that
⟨R, S, U⟩ ∼= S5, note that U is of order 4, for example by checking that it has
the orbit a 7→ c 7→ b 7→ d 7→ a. As such, U corresponds to an odd permutation
under the isomorphism Aut(B) ∼= S5, and a single odd permutation and all of A5

together generate S5.

By fixing a map from (the normalisation of) the HC model to the P4-model
as we did in the proof of Proposition 2.3.7, we have fixed an isomorphism from

24A variation on this pencil has been used to explain why Bring’s curve is uniquely defined as
an A5-invariant curve of genus 4, but there is a 1-parameter family of 4-dimensional A5-invariant
principally polarised abelian varieties, deforming Jac(B) [Zi21, LZ23]. The paper [Mel03] gives
further interesting representation theoretic perspectives on Bring’s curve.

25For λ = 17/180 the curve is of genus 0; for λ = 1/10 the curve is reducible.
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the automorphism group of the curve (in the HC model) to S5, which we shall
denote ψ : ⟨R, S, U⟩ → S5. For example, it is simple to verify that we have
U2([X : Y : Z]) = [X : Z : Y ]. We see U2([L1 : L2 : L3 : L4]) = [L2 : L1 : L4 : L3],
and so U2([x1 : x2 : x3 : x4 : x5]) = [x2 : x1 : x4 : x3 : x5], that is (12)(34).
Through similar calculation we can find

ψ(R) = (13)(24), ψ(S) = (13425), ψ(U) = (1324).

There are myriad choices that can be made in constructing the birational trans-
formation (such as the labelling of the coordinates in P3 and the ordering of the
rows of A, or indeed composing with any automorphism of the P4-model), and
changing these would give different isomorphisms to S5.

As we have previously described in this section, the uniqueness of the quadric
Q whose intersection with a cubic yields the canonical model of the curve leads
to an isomorphism of the automorphism group of the curve and a subgroup of
Aut(Q) = C2⋉ (PGL2(C)×PGL2(C)) which we now write down. Let ([u : v], [z :
w]) be the coordinates on P1 × P1, then using the birational map constructed
in Proposition 2.3.7 one can conjugate the standard irreducible 4-dimensional
representation of S5 on [x1 : x2 : x3 : x4] to an action on [v1 : v2 : v3 : v4]. The
resulting action of (12) is (projectively)(
v
u

)
7→
(
j −1
−1 −j

)(
w
z

)
:= A

(
w
z

)
,

(
w
z

)
7→
(
−1 j − 1
j − 1 1

)(
v
u

)
:= B

(
v
u

)
,

(2.21)

where j = −ζ3 − ζ2 satisfies j2 − j − 1 = 0; that is, it is the j defined by Dye.
One can show that (34) has the same action, where the other root j′ = ζ3+ζ2+1
is taken. One can check that AB = 1 ∈ PGL2(C), consistent with the fact that
(12)2 = 1 ∈ S5. Note the transposition interchanges the two copies of P1, which
is the action of the semi-direct product with C2. Combining the two transforms
one gets that (12)(34) acts as

[u : v] 7→ [−v : u], [z : w] 7→ [−w : z].

This fixes each copy of P1 and acts via a rotation on each. Moreover, we can
calculate the action of (145) on the copies to be(

v
u

)
7→
(

ζ −ζ3 − ζ
−ζ2 − 1 −ζ2

)(
v
u

)
,

(
w
z

)
7→
(
ζ3 + 1 ζ2

ζ4 −ζ3 − ζ

)(
w
z

)
.

(2.22)

As ⟨(12)(34), (145)⟩ ∼= A5, we discover that the action of A5 does not interchange
the two copies of P1, but odd-parity elements in S5 do. Here A5 is given by the
diagonal embedding in PGL2(C)× PGL2(C).
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2.3.2 Geometric Points

We now have a good understanding of how the automorphism group acts on the
curve, and so before looking at quotient Riemann surfaces in §2.3.3 we want to
first consider orbits of points that have geometric significance on the curve. These
points will have important connections to the function theory of the curve; they
are also related to physical aspects of Euclidean realisations (i.e. immersions in
Euclidean 3-space) of the curve. Such orbits are characterised by the following
result from Wiman.

Proposition 2.3.12 ([Wim95b]). There are only 3 orbits of points of size less
than 120 on B and these have sizes 24, 30, and 60 respectively.

Proof. By Lemma 2.1.80 we know the stabiliser of a point must be a cyclic group.
The cyclic subgroups of S5 are C2, C3, C4, C5, C6; the corresponding orbits would
thus be of (respective) sizes 60, 40, 30, 24 or 20. To obtain Wiman’s result we
must show that C3 does not fix a point on Bring’s curve. Using Riemann-Hurwitz
we have

3 = 120(g − 1) + 30a60 + 40a40 + 45a30 + 48a24 + 50a20,

where ak ≥ 0 are the number of S5 orbits of size k. There are no solutions to
this for g ≥ 1. For g = 0 we have the unique solution 1 = a60 = a30 = a24. This
shows there can be no points with C3 stabiliser.

Remark 2.3.13. What we have shown in Proposition 2.3.12 is that the signature
of the action of S5 on Bring’s curve is (0; 2, 4, 5), a fact we have seen previously
in Table 2.3.

These points and corresponding geometric structures are important when re-
lating Clebsch’s diagonal surface to Hilbert modular surfaces [Hir76, Bel04]. We
identify these orbits as the geometric points26 on the curve as defined in [SW97].
Explicitly they are the vertices, face-centres, and edge-centres of the universal
map {5, 4}6 - the Petrie polygon (as defined in [CM80, §8.6]) of degree 6 coming
from the tiling of the hyperbolic disk by pentagons, where four pentagons meet
at a vertex [Sin88]. It is noted in [Web05] that this tessellation has a Euclidean
realisation as a dodecadodecahedron (Figure 2.2a). This has 30 vertices, 60 edges,
and 24 faces, giving genus

g = 1− V − E + F

2
= 4,

as we expect. In a recent paper, this connection to the dodecadodecahedron was
used to identify Bring’s curve as the moduli space of equilateral plane pentagons
up to the action of the conformal group [Ram22]. The (small) stellated dodec-
ahedron (Figure 2.2b) also has genus 4 (having V = 12 = F , E = 30), coming
from the tessellation {5/2, 5} ∼= {5, 5|3}, which can be interpreted as adding

26Being a geometric point on a curve is a priori not an interesting statement unless we know
the corresponding map is regular, as we have in this case.
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(a) Dodecadodecahedron (b) Small Stellated Dodecahedron

Fig. 2.2 Geometric realisations

three ‘holes’ to the {5, 5} tessellation [CM80, §8.5]. This {5, 5|3} tessellation has
automorphism group C2 × A5, which is an index-2 subgroup of C2 × S5, the au-
tomorphism group of {5, 4}6. This is due to the map D1 defined in [Hen13, §3.1],
which maps the dodecadodecahedron to the small stellated dodecahedron. We
include both these tessellations in Figure 2.3 below. Klein connected the small
stellated dodecahedron to Bring’s curve through a degree-3 covering B → P1

constructed from the hyperbolic triangles giving the tessellation [Web05], and we
will see this map later in §2.3.4 in a different context.

Weierstrass Points

Recall we defined Weierstrass points in §2.1.2. In [SW97] the Weierstrass points
are shown (implicitly) to correspond to the edge-centres of the universal map
(defined within). This shows that the order-2 rotation that permutes the vertices
and face-centres adjacent to an edge-centre will preserve the corresponding Weier-
strass point. They can also be interpreted geometrically as pairwise-symmetric
distributed along the edges of the small stellated dodecahedron. As Weber identi-
fies the order-3 symmetry as the rotation about the axis through opposite vertices
of the unstellated dodecahedron, one might wonder from this picture whether
Weierstrass points are fixed points of the order-3 permutations in the group.
This turns out not be the case and a counting argument helps elucidate: the
small stellated dodecahedron has 12 faces, which in turn means we want to have
60
12

= 5 Weierstrass points per face. Hence where three faces overlap there must
be three Weierstrass points ‘stacked’ there, which are invisibly permuted by the
action.

Having now identified the Weierstrass points as some of the geometric points,
we give a concrete result about what the Weierstrass points are.

Proposition 2.3.14 ([Edg78]). Bring’s curve has 60 Weierstrass points, on
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(a) {5, 4} tessellation (b) {5, 5} tessellation

Fig. 2.3 Hyperbolic tilings

which Aut(B) acts transitively. Letting {α, β, γ} be the roots of the cubic x3 +
2x2 + 3x+ 4, these are given in the P4-model by Wijk where, for example,

W345 = [1 : 1 : α : β : γ].

Proof. Edge, working in the P4-model, identifies the Weierstrass points with the
60 intersections of the curve with the 10 planes Πij = {xi = xj}. To do this, Edge
quotes [Wim95b] to show that these intersection points are stalls, i.e. inflection
points of certain linear series, and for the canonical embedding these are exactly
the Weierstrass points by Proposition 2.1.62. Simple algebra then gives the exact
expression we write down. This viewpoint makes it clear that the Weierstrass
points at the intersection with Πij are preserved by the transposition27 (ij) only,
so have orbits of size 120

2
= 60, and as the automorphism restricts to a permutation

of the Weierstrass points, the action is then transitive.

With our naming convention, note Wijk is defined by xi = α, xj = β, xk =
γ. If we choose a different labelling of the roots of the cubic, this would give
a different labelling of the Weierstrass points. The Weierstrass points split as
60 = 6 × 10, with 6 Weierstrass points being fixed by each of the 10 involutions
in S5.

The property that the automorphism group acts transitively on the Weier-
strass points is very rare, as characterised by the following result.

Theorem 2.3.15 ([LS12], Theorem 15). If X is a Riemann surface of genus
g > 2 with g3− g Weierstrass points on which AutX acts transitively then either

• g = 4 and X is Bring’s curve,

27In [Dye95, Theorem 4], these transpositions are associated with the Brianchon points of
the Clebsch hexagon H from the proof of Proposition 2.3.7.
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• g = 3 and X is Klein’s curve, or

• g = 3 and AutX ∼= S4.

Remark 2.3.16. As we have an explicit birational map from our plane model
to our canonical embedding of the curve, we can get the explicit forms of the
Weierstrass points in the HC model using Edge’s identification of the Weierstrass
points in the P4-model. If one does not have this information, it is still possible to
calculate the Weierstrass points using Sage and some educated guesswork. Using
computer algebra, and the characterisation of Weierstrass points as zeros of the
Wronskian determinant, one can check that in the HC model the Weierstrass
points have base coordinates at the 60 roots of the polynomial equations

0 = x12 − 32x11 − 114x10 − 200x9 + 100x8 + 48x7 − 936x6 + 1728x5 − 2000x4

+ 3200x3 − 2624x2 + 768x− 64,

0 = x24 − 24x23 + 1306x22 − 2864x21 + 10096x20 − 32704x19 − 5704x18 − 41824x17

+ 43056x16 + 831616x15 + 837856x14 + 992256x13 + 2603136x12 + 1238016x11

+ 1560576x10 + 5584896x9 + 3357696x8 + 3838976x7 + 5856256x6 + 2543616x5

+ 2200576x4 + 1355776x3 + 454656x2 + 65536x+ 4096,

0 = x24 + 56x23 + 1176x22 − 1784x21 − 3904x20 + 36096x19 + 12776x18 − 211904x17

+ 304736x16 + 431616x15 + 339456x14 − 1985664x13 − 625344x12 + 1034496x11

+ 3512576x10 − 584704x9 − 3572224x8 − 2018304x7 + 3303936x6 + 3055616x5

+ 1099776x4 + 45056x3 + 229376x2 − 16384x+ 4096.

One can check that the Galois group of each polynomial is C4 × S3. We have
seen that in the HC model the automorphisms have coefficients in Z[ζ], and so
we know the splitting field must be an extension of Q[ζ], which accounts for the
C4 factor in the Galois group. S3 has a subgroup of order 2, corresponding to an
extension of degree 2, and a brute force calculation shows that we also wish to
adjoin i

√
2. This has already nearly reduced the problem, and then one needs a

small moment of inspiration to find the last thing to adjoin. Looking at [RR92]
then may direct one to adjoin the real root of the polynomial x3 + 7x2 + 8x + 4,
say ξ, and this gives the full splitting field. We can solve the cubic explicitly using
Cardano’s formula to find

ξ = −1

3

{
7 +

[
3

√
145 + 30

√
6 +

3

√
145− 30

√
6

]}
,

and as such we could also take our splitting field to be

Q
[
ζ, i
√
2,

3

√
145 + 30

√
6

]
.

We observe by Cardano’s formula that α, β, γ ∈ Q[i
√
2,

3
√
30 + 15

√
6], and this

latter field is isomorphic to Q[i
√
2,

3
√
145 + 30

√
6]. With these expression for the

Weierstrass points, and the explicit knowledge of the automorphism group as an
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action on affine coordinates, we can find explicitly the transposition that preserves
a given Weierstrass point.

We now have seen how our Weierstrass points satisfy characterisations 1 and
4 of Proposition 2.1.62, and we complete the picture with the following result
which we believe new.

Proposition 2.3.17. Define the points P345, P
′
345 corresponding to the Weier-

strass point W345 (and similarly for the other Weierstrass points) by

P345 = [δ′ : δ : (−43α2 − 113α− 92)β/112

− (13α2 − 27α− 20)/28 : (43α2 + 25α− 4)β/112 + (13α2 + 3α− 24)/28 : 1],

P ′
345 = [δ : δ′ : (−43α2 − 113α− 92)β/112

− (13α2 − 27α− 20)/28 : (43α2 + 25α− 4)β/112 + (13α2 + 3α− 24)/28 : 1].

Here α, β were defined in Proposition 2.3.14 and δ, δ′ are the roots of

x2 −
[
(11α + 12)β + 4(3α + 2)

14

]
x+

[
23(155α + 388)β + 92(97α + 172)

6272

]
.

Then there is a holomorphic differential ν345 on Bring’s curve with divisor

4W345 + P345 + P ′
345,

and a meromorphic function on Bring’s curve with divisor

P145 + P ′
145 + P245 + P ′

245 − 4W345.

Proof. Note that algorithmically it is possible to construct these through the
work in [Hes02b], the tools for which are partially implemented in Sage but not
with enough generality for us to use out-the-box. As such we need a different
approach.

We know that for any Weierstrass point W there is a hyperplane H ⊂ P3

intersecting the canonical embedding with multiplicity g = 4 at W (that is H ∩
B = 4W + P + P ′ for some P, P ′ ∈ B). Such a hyperplane gives a holomorphic
differential νijk with (νijk) = 4Wijk + Pijk + P ′

ijk. From [Edg78] we know that
for Bring’s curve the osculating plane at W intersects four times, and so this is
the plane we are looking for. As Edge gives a formula for the osculating plane
(attributed to Hesse), we can explicitly calculate the remaining two intersections
with the curve in terms of a polynomial roots. This gives us the first result for
the divisor of the meromorphic differential.

Furthermore, from [Edg81b] we have a tritangent plane which has intersection
with Bring’s curve

2(W145 +W245 +W345).

We will discuss this plane (and others like it) more in §2.3.4, but for now all

we need is that this means there is a holomorphic differential28 ω
(1)
45α on B with

28Here I am using notation to pre-empt Proposition 2.3.28.
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(ω
(1)
45α) = 2(W145 +W245 +W345). As such we get the divisor of the meromorphic

function  ν145ν245(
ω
(1)
45α

)2
 = P145 + P ′

145 + P245 + P ′
245 − 4W345.

As we can calculate the formula for all these planes explicitly if we wish, we could
(in principle) construct the corresponding function and differential.

Remark 2.3.18. We are able to verify the results in Proposition 2.3.17 using
the Abel-Jacobi map implemented in SageMath [DH21]; see the Bring’s curve
notebooks.

Vertices and Face-Centres

Using Figure 2 of [BN12] we are able to link the Petrie polygon to the R&R model
of the curve, and this gives us a concrete expression for the remaining geometric
points.

Proposition 2.3.19. The face-centres are exactly the points fixed by an order-5
automorphism of the curve. They are given in the P4-model by the permutations
of [1 : ζ : ζ2 : ζ3 : ζ4]. The corresponding points in the normalisation B of the
HC model are the desingularisations of Vk, together with a, b, c, d, and

1. [−2ζ3− 2ζ2 : ζ3+ ζ2− 1 : 1] = [
√
5+1 : −

√
5/2− 3/2 : 1] = [2j : j′− 2 : 1],

2. [−2ζ3 − 2 : −2ζ3 − ζ − 1 : 1],

3. [−2ζ2 − 2ζ : −ζ3 + ζ + 1 : 1],

4. [2ζ3 + 2ζ2 + 2ζ : ζ3 + 2ζ2 + 2ζ + 1 : 1],

5. [−2ζ2 − 2 : ζ3 − ζ2 + ζ : 1],

6. [2ζ3 + 2ζ + 2 : ζ2 − ζ + 1 : 1],

7. [−2ζ3 − 2ζ : 2ζ3 + ζ2 + ζ + 2 : 1]

8. [2ζ3+2ζ2+2 : −ζ3−ζ2−2 : 1] = [−
√
5+1 :

√
5/2−3/2 : 1] = [2j′ : j−2 : 1],

9. [2ζ2 + 2ζ + 2 : −ζ3 − 2ζ2 − ζ : 1],

10. [−2ζ − 2 : −ζ2 − 2ζ − 1 : 1],

where j, j′ are the roots identified by Dye mentioned in §2.3.1.

Proof. Certainly the order-5 rotation about a face-centre fixes that centre, and
so a Riemann-Hurwitz counting argument gives us that the 24 face-centres are
the fixed points of order-5 automorphisms. It is a simple matter of computation
to verify the given expressions are fixed; this may be done in Sage.
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The Galois group Gal(Q[ζ]/Q) ∼= C4 acts element-wise on the face-centres
and the orbits partition the set of face-centres into six sets of four. Each set of
four face-centres form the vertices of a quadrilateral whose edges lie in {H2 = 0}
[Edg78]. Moreover, the faces of the dodecadodecahedron corresponding to the
face-centres in each quadrilateral are parallel. We have a similar result for the
vertices.

Proposition 2.3.20. The vertices are exactly the points fixed by an order-4 au-
tomorphism of the curve. They are given in the P4-model by the permutations of
[1 : i : −1 : −i : 0].

We could use our birational map as above to give the vertices in HC coordi-
nates, but these are not very illuminating. For example, the vertex [1 : i : −1 :
−i : 0] maps to

[X : Y : Z] = [(3ζ3−ζ2+2ζ+1)i+3ζ3+3ζ2+5 : (2ζ3+2ζ+1)i+2ζ3+2ζ2+2 : 1]

though [1 : −1 : i : −i : 0] maps to [1 : (−1 + i)/2 : (−1 + i)/2].

2.3.3 Quotients by Subgroups

Both [RR92] and [Web05] consider the quotient of B by the action of subgroups
of S5. In this section we shall study the various quotients of Bring’s curve of
nonzero genus and the relations between them, both clarifying and extending
previous work. In §2.3.3 we will use the Riemann-Hurwitz theorem to describe
possible quotients. In §2.3.3 we shall note the various relationships we expect
between the quotients just on group theoretic grounds, while in §2.3.3-§2.3.3 we
turn to their explicit construction. In so doing we discover a number of curious
isomorphisms beyond those expected. In §2.3.3 we summarise our calculations
and relate them to known isogeny results. Throughout we will use the following:
for any subgroup H of the automorphisms Aut(C) of a curve C, H ≤ Aut(C), then
the normaliser NAut(C)(H) acts on the H orbits and NAut(C)(H)/H ≤ Aut(C/H);
if g ∈ NAut(C)(H) we will denoted by g the H-coset of NAut(C)(H) containing this.
The quotient curves of this section are summarised in Figures 2.4 and 2.6.

Genera of Quotients

Our first step is to know the topology of the quotients we are going to find. To
this end, we give the following result.

Proposition 2.3.21. The data of the quotients of B by subgroups ⟨σ⟩ ≤ S5 is
summarised by the following table:
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σ Example |cl(σ)| |Fix(σ)| Fixed Points NS5(⟨σ⟩)/ ⟨σ⟩ g (B/ ⟨σ⟩)
(12) - 10 6 Edges S3 1

(123) RS 20 0 - V4 2

(12)(34) R 15 2 Vertices V4 2

(1234) U 30 2 Vertices C2 1

(123)(45) - 20 0 - C2 1

(12345) S 24 4 Face-centres C4 0

Here cl(σ) is the conjugacy class of σ, Fix(σ) = {P ∈ B |σ(P ) = P}.

Proof. As conjugate elements yield isomorphic quotients we need only to give one
σ per conjugacy class. The first three columns follow from the group theory we
have previously shown in §2.3.1, the fourth and fifth follow from §2.3.2 and the
sixth is elementary group theory. The final column remaining is then a Riemann-
Hurwitz argument for genus, which will we demonstrate for the quotient by (2345)
as in [RR92].

For general σ, denoting by π the projection B → B/⟨σ⟩ := C, Riemann-
Hurwitz says

gB − 1 = (deg π)(gC − 1) +
1

2
B,

where B is the degree of ramification of π, which in the case of a quotient by a
group action corresponds to the fixed point structure of σ.

Consider (24)(35). A fixed point of B under this, given by projective coordi-
nates xi, i = 1, . . . , 5, must have

(x1, x4, x5, x2, x3) = (λx1, λx2, λx3, λx4, λx5).

From this we can see λ = ±1. Taking λ = 1 gives no solutions, but taking λ = −1
one finds the equations

x1 = 0, x21 + 2x22 + 2x23 = 0, x31 = 0,

which gives the 2 fixed points [0 : 1 : ±i : −1 : ∓i]. Hence we have

4− 1 = 2(gC − 1) +
1

2
(1 + 1)⇒ gC = 2.

Moving now to (2345), thinking about the possible branching structure we get
from Riemann-Hurwitz

3 = 4(gC − 1) +
1

2

 ∑
P∈Fix(σ)

3 +
∑

P∈Fix(σ2)\Fix(σ)

1

 .
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Fixed points of (2345) will correspond to points such that

(x1, x3, x4, x5, x2) = (λx1, λx2, λx3, λx4, λx5),

and we get the constraint λ4 = 1. The equations of the curve become

x1 + x2(1 + λ+ λ2 + λ3) = 0,

x21 + x22(1 + λ2 + 1 + λ2) = 0,

x31 + x32(1 + λ3 + λ2 + λ) = 0,

and checking the possible cases one finds that the only fixed points of (2345) are
[0 : 1 : ±i : −1 : ∓i]. These are also the only fixed points of (24)(35) = (2345)2

and so the second sum vanishes, hence we find gC = 1.

R&R [RR92] provides a nice visual interpretation of the quotient by a 4-cycle,
namely think of a sphere with four handles attached around an equator, then
(2345) is the cycle rotating these handles to each other by a quarter turn about
the axis through the centre of the equator. The fixed points are then where this
axis intersects the sphere. Edge [Edg78], citing Wiman, says that Bring’s curve
“is, in ten different ways, in (2, 1) correspondence with a plane curve of genus 1”.
The ten (2, 1) correspondences noted by Edge are exactly the ten quotients by a
transposition giving a 2 : 1 map B → E , where E is an elliptic curve. Such a map
is called a bielliptic structure, and Bring’s curve is the unique genus-4 curve to
have 10 such structures [CDC05]. This table also lets us reconstruct the results
about the gonality of Bring’s curve from [GWW10].

Relations between Quotients

We now consider the various relationships we might expect between the quotient
curves of Bring’s curve. Recall Definition 2.1.83 that if C is a curve of genus g ≥ 2
and H ≤ Aut(C) is such that |H| > 4(g − 1), a so called ‘large automorphism
group’, then the genus of the quotient curve gC/H = 0. For Bring’s curve we
are therefore interested in subgroups of S5 of order less than or equal to 12,
and as we have seen the quotient by a 5-cycle leads to quotient genus 0 we may
exclude subgroups containing such. The relevant conjugacy classes of subgroups
are then29

(a) ⟨(12)(34)⟩ ∼= C2, ⟨(12), (34)⟩ ∼= V4, ⟨(1324)⟩ ∼= C4, ⟨(1324), (12)⟩ ∼= D4. Each
of these groups H have the same normaliser: NS5(H) = ⟨(1324), (12)⟩ ∼= D4.

(b) ⟨(12)⟩ ∼= C2, ⟨(345)⟩ ∼= C3, ⟨(345), (12)⟩ ∼= C6, ⟨(345), (34)⟩ ∼= S3, ⟨(345), (12)(34)⟩ ∼=
S3 (we shall call this subgroup S

′
3), ⟨(345), (12), (34)⟩ ∼= D6

∼= S3×C2. Each of
these groupsH have the same normaliser: NS5(H) = ⟨(345), (12), (34)⟩ ∼= D6.

(c) ⟨(12)(34), (13)(24)⟩ ∼= V4, ⟨(234), (12)(34)⟩ ∼= A4. Each of these groups H
have the same normaliser: NS5(⟨(234), (12)(34)⟩) = ⟨(234), (12), (34)⟩ ∼= S4.

29Note that here we are using the Sage convention for the dihedral group that |Dn| = 2n, the
same convention as used in §2.2.2.
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The groupings here are such that if H, H ′ are from the same item then they
share the same normaliser N = NS5(H) = NS5(H

′). In particular each of H, H ′

and HH ′ = H ′H are normal in N and we have commutativity of the following
diagram of quotients

B B/H

B/H ′ B/HH ′

H

H′ HH′
HH′/H

HH′/H′

where the arrows are labelled by the symmetry being quotiented; by an isomor-
phism theorem we have of course that HH ′/H ∼= H ′/(H ∩ H ′) and HH ′/H ′ ∼=
H/(H ∩ H ′). If, say H ≤ H ′, then HH ′ = H ′ and one side of this diagram
collapses.

Now a Riemann-Hurwitz calculation shows that the each of the quotients by
⟨(12), (34)⟩, ⟨(1324), (12)⟩, ⟨(345), (34)⟩ and ⟨(345), (12), (34)⟩ is of genus 0 and so
not being considered. Thus from the preceding discussion we have the following
relations amongst quotients for the subgroups of (a), (b) and (c):

B

C E

(a)

(12)(34)
(1324)

B E ′

E ′′ C ′ E ′′′

(b)

(12)

(345)
S′
3 C6

(345)

(12)(12)(34)

B

C E (iv) E (v)

(c)

V4
(12)(34) A4

(234)

Here C, C ′ are genus-2 curves and E ,. . . ,E (v) elliptic curves that we cannot yet
specify purely on group theoretic grounds. We turn now to their specification
and indeed we shall find some interesting identities between them, which will
then be summarised in §2.3.3.

Quotients by a 4- and 2,2-cycle

Armed with the knowledge of the genus of the quotients we expect we shall now
write them explicitly. We will begin with the 2,2-cycle corresponding to U2 with
the 4-cycle U arising in the discussion. Recall that we have

U2 : [X, Y, Z]→ [X,Z, Y ], ψ(U2) = (12)(34).
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The normaliser of ⟨(12)(34)⟩ in S5 is NS5(⟨(12)(34)⟩) = ⟨(12), (1324)⟩ ∼= D4.
As we remarked earlier, NS5(⟨(12)(34)⟩)/ ⟨(12)(34)⟩ ∼= V4 are symmetries which
remain when we go to the quotient B/ ⟨U2⟩ and we expect the quotient genus-
2 curve to have (at least) this V4 symmetry group. One of these involutions,
which we will later see30 to be (12) = (34), is the hyperelliptic involution of the
quotient curve and so further quotienting by this symmetry gives P1. Quotienting
by the other two involutions will yield elliptic curves, and we will complete this
construction now, both from the perspective of the HC model, and the P4-model.

Starting in the HC model, in order to get the first quotient B/ ⟨U2⟩ we express
our curve in terms of the invariants of U2: X, T := Y + Z, and V := Y Z. Then

0 = X(Y 5 + Z5) + (XY Z)2 −X4Y Z − 2(Y Z)3,

= X(T 5 − 5T 3V + 5TV 2) +X2V 2 −X4V − 2V 3.

In P1,1,2 this is our genus 4 curve. Setting31 T = 1 and viewing

0 = X(1− 5V + 5V 2) +X2V 2 −X4V − 2V 3

as the affine part of a projective curve we have (after a not-very-illuminating
transformation, for which Maple was used, see the corresponding notebooks) the
hyperelliptic curve

C1 : B2 = A6 + 4A5 + 10A3 + 4A+ 1. (2.23)

This is the genus-2 curve of [RR92] with automorphism group V4. Calculating
the Igusa-Clebsch invariants (which give the Q-isomorphism class of a curve) and
searching the LMFDB [LMF23] shows that this is a model for the modular curve
X0(50), which we verify by directly calculating a model for X0(50) over Q using
[Shi95]. The substitutions A = (2 + A′)/(2 − A′), B = 4B′/(2 − A′)3 make the
V4 symmetry clearer, giving

(B′)2 +
[
(A′)6 − 5(A′)4 − 40(A′)2 − 80

]
= 0,

where we have the hyperelliptic involution B′ → −B′ and the map A′ → −A′

generating V4. We shall now be explicit about how these work.

As previously mentioned, quotienting C1 by either of the two non-hyperelliptic
involutions yields an elliptic curve, with each involution having two fixed points
from Riemann-Hurwitz. Quotienting by (B′, A′) → (B′,−A′) by introducing
A′′ = −(A′)2 yields

E1 : (B′)2 = (A′′)3−5(A′′)2−40(A′′)−80 with j-invariant jE1 = −
5× 293

25
:= j(τ0).

(2.24)
The fixed points are (A′, B′) = (0,±

√
−80), corresponding to the two points

30The ⟨(12)(34)⟩ cosets of the normaliser are {e, (12)(34)}, {(12), (34)}, {(13)(24), (14)(23))},
and {(1324), (1423)}.

31Equally one may set X = 1 but we note that setting V = 1 yields a genus-4 curve as here
V is not of weight 1.
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(X, V ) = ([1 ±
√
5]/2,−1 ±

√
5/2), which are the images of the four vertices

[1 : ±i : ∓i : −1 : 0] and [1 : ±i : −1∓ i : 0] respectively, depending on sign. We
recognise E1 to be the elliptic curve E1 in [RR92].

We may also quotient C1 by (B′, A′)→ (−B′,−A′). To do this write C1 as

(B′)2C4 +
[
(A′)6 − 5(A′)4C2 − 40(A′)2C4 − 80C6

]
= 0,

from where we see the same automorphism acts as C → −C. Quotienting by this
action by introducing C ′ = −C2 yields

(B′)2(C ′)2 = (A′)6 − 5(A′)4(C ′)− 40(A′)2(C ′)2 − 80(C ′)3.

Setting A′ = 1 and taking B′′ = B′C ′ gives the standard elliptic form

E2 : (B′′)2 = 1− 5(C ′)− 40(C ′)2 − 80(C ′)3, jE2 = −
25

2
= j(5τ0). (2.25)

The fixed point of this involution is [B′ : A′ : C] = [1 : 0 : 0]; this is a singular
point where the desingularisation corresponds to the two points at infinity, or
correspondingly (X, V ) = (∓i/2 − 1/2, 1/4), which are the images of the two
vertices [1 : −1 : ±i : ∓i : 0]. We recognise32 E2 to be E2 in [RR92].

Next let us quotient the P4-model directly by the action of (12)(34) and com-
pare with these quotients just obtained from the HC model. To this end we
introduce semi-invariants of the action of (1324) = ψ(U), defined by

(s1, s2, s3, s4)
T =


1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i

 (x1, x2, x3, x4)
T .

These are constructed such that U · sj = ij−1sj, and so we have33 U2-invariants
[s : t : u : v] := [s1 : s2s4 : s3 : s24] ∈ P(1 : 2 : 1 : 2). In terms of these invariants
we have

H2 =
1

4

(
5s2 + u2 + 2t

)
,

H3 =
3

16

(
−5s3 + su2 +

t2u

v
+ 2st+ uv

)
.

Eliminating t from these equations, and setting s = 1, we can use Maple to get
the genus-2 curve in Weierstrass form

C1 : y2 = 100− 25x2 − 10x4 − x6, (2.26)

where x = u and y = −10 + 2uv. The roots of the sextic here are a Möbius

32There is a typo in the constant term of R&R’s E2 if it is to have the stated j-invariant.
33Note one could have instead taken v = s22 for the last invariant, but the choice v = s24

happens to be better around the vertices that are the fixed points of the 4-cycle. Moreover,
recognise that the invariants taken are defined over the field extension Q[i] and not Q.
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transform (namely x 7→
√
20/x) of that in the curve C1 previously given in Equa-

tion 2.23, so these two curves are isomorphic over Q[
√
5]. Note the reason we see

Q[
√
5] here is that it is the degree-2 subfield of Q[ζ], the field required to have

equivalence of the Hulek-Craig and P4-models of Bring’s curve. We now aim to
identify the V4 of this curve described earlier with the quotient of the normaliser
⟨(12), (1324)⟩ / ⟨(12)(34)⟩. One can check that (12) : [s : t : u : v] → [s : t : u :
t2/v]. This fixes x, and so must be the automorphism y → −y; that is (12) = (34)
is the hyperelliptic involution of C1. Indeed one can check

y = −10 + 2uv 7→ −10 + 2
t2u

v
,

= −10− 2
(
−5 + u2 + 2t+ uv

)
,

= −10− 2
(
−10 + uv + (5 + u2 + 2t)

)
,

= 10− 2uv = −y.

Likewise, (1324) : [s : t : u : v] → [s : t : −u : −v], and so leads to the automor-
phism (x, y)→ (−x, y). Now if x = x2, the elliptic curve y2 = 100−25x−10x2−x3
has j-invariant −25/2 and so we may identify E2 ∼= B/ ⟨(12)(34), (1324)⟩ =
B/ ⟨(1324)⟩. Similarly (13)(24) : [s : t : u : v] → [s : t : −u : −t2/v] leads
to (x, y) → (−x,−y) and we may identify E1 ∼= B/ ⟨(12)(34), (13)(24)⟩. Note
when we compare with [RR92], we differ from R&R in the identification of which
quotient is being taken and their ascribing of τ0 and 5τ0. Our results agree with
those of [Web05], wherein the author describes an order-4 rotation (which he calls
ϕ, but we shall call Ũ), and calculates the quotient by its action T = B/⟨Ũ⟩ to
be

T : y2 = 4x3 − 75x− 1475, jT = −25

2
= j(5τ0).

Note that our strategy of semi-invariants can be used directly to calculate the
quotient by the 4-cycle (1324), something we were unable to do in the HC model
because of the nonlinearity of the automorphism U . To do so introduce new
variables invariant under (1324) (and so necessarily under (12)(34)) given by
u′ = uv, v′ = v2. These let us rewrite the defining equations of Bring’s curve as

H2 =
1

4

(
5s2 +

(u′)2

v′
+ 2t

)
,

H3 =
3

16

(
−5s3 + s(u′)2

v′
+
t2u′

v′
+ 2st+ u′

)
,

and we can apply Maple to find a Weierstrass form of the resulting elliptic curve.
This is exactly the process of quotienting by (x, y) 7→ (−x,−y) as above, but in
a different language.

Furthermore, from our previous investigation using group theory, we know
that the quotient B/V4, where this V4 is the one containing only 2,2-cycles, can
further be quotiented by (234) to give B/A4. Rather than attempt to construct
this quotient using the invariants previously calculated on the 2,2-quotient, we
step back and recall that the invariant ring Q[x1, . . . , xn]

An is generated by the
symmetric polynomials sk =

∑n
i=1 x

k
i for k = 1, . . . , n and the Vandermonde
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polynomial V =
∏

1≤i<j≤n(xj − xi). As generators of the invariant algebra we

know that there must be a relation between V 2 and the other generators as V 2

is an Sn-invariant, and the Sn-invariant algebra is generated by the sk. Taking
n = 4 in the case of Bring’s curve, the relations imposed from the curve are
s2 + s21 = 0 = s3 − s31, and this gives for the additional relation,

4s34 −
373

16
s41s

2
4 +

431

8
s81s4 −

701

16
s121 + V 2 = 0. (2.27)

Setting s1 = 1 (as we may do at all points on the quotient except those points
coming from the vertices on Bring’s curve) we see this is clearly an elliptic curve
E3 with hyperelliptic involution V → −V , and for which we can calculate34

the j-invariant to be 2113×5
215

= j(3τ0). Further quotienting by the hyperelliptic
involution then corresponds to the quotient B/S4, which is P1 as expected, being
the quotient by a large automorphism group.

Quotients by a 3-cycle

We may utilise the same methods illustrated above for the 2,2-cycles to calculate
the quotient of Bring’s curve by a 3-cycle. We will work with the 3-cycle (345)
for purely aesthetic reasons. The normaliser of ⟨(345)⟩ in S5 is NS5(⟨345⟩)) =
⟨(12), (34), (345)⟩ ∼= D6 and we expect the quotient genus-2 curve B/ ⟨(345)⟩ to
have D6/C3

∼= V4 symmetry group. Again one of these involutions, which we will
later see to be35 (34), is the hyperelliptic involution on the curve and so further
quotienting by this symmetry gives P1. Quotienting by the other two involutions
again yields elliptic curves we shall now describe. As the quotients of both the
HC model and P4-model via semi-invariants proceed analogously we shall present
here only the P4-model calculations.

Letting ρ be a primitive cube-root, we take semi-invariants of the action of
(345)

(s1, s2, s3, s4)
T =


1 0 0 0
0 1 1 1
0 1 ρ ρ2

0 1 ρ2 ρ

 (x2, x3, x4, x5)
T .

We correspondingly take invariants36 [s : t : u : v] = [s1 : s2 : s3s4 : s
3
3] ∈ P(1 : 1 :

2 : 3). In terms of these variables we have

H2 =
2

3

(
3s2 + 3st+ 2t2 + u

)
,

H3 =
1

9

(
−27s2t− 27st2 − 8t3 + v + 6tu+

u3

v

)
.

Eliminating u from these and setting s = 1, we can use Maple to get the genus-2

34This is the curve 15-isogenous to E2 noted by Serre, see §2.3.1.
35The cosets of ⟨(345)⟩ in the normaliser are now {e, (345), (354)},
{(12), (12)(345), (12)(354)}, {(34), (45), (35))}, and {(12)(34), (12)(45), (12)(35))}.

36Note in this case that the invariant v is not defined over Q, but over the cyclotomic extension
Q[ρ].
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curve in Weierstrass form

C2 : y2 = 108
(
4 + 12x+ 95x2 + 170x3 + 155x4 + 72x5 + 16x6

)
(2.28)

where x = t and y = −90t− 90t2 − 40t3 + 4v. Examining the roots of the sextic
confirms that C2 is a genuinely distinct genus-2 curve from C1. Indeed, this curve
does not currently exist37 in the LMFDB, but one can check that over Q[

√
5] it is

isomorphic to the curve 2500.a.400000.1 given by y2 = −7x6−8x5+10x3−8x−7.
Moreover, introducing x′, y′ by x = −2/(1 + x′), y = y′/(1 + x′)3, yields

(y′)2 = 432
[
(x′)6 + 80(x′)4 + 125(x′)2 + 50

]
.

This makes the V4 symmetry evident, being generated by x′ → −x′ and y′ → −y′.
The elliptic curve obtained from quotienting by the action x′ → −x′ is

E4 : (y′)2 = 432
[
(x′′)3 + 80(x′′)2 + 125x′′ + 50

]
, jE4 = −

52 × 2413

23
= j(15τ0).

(2.29)
To our knowledge this elliptic curve has not been previously noted in discussions
of Bring’s curve. The elliptic curve obtained from quotienting by the action
(x′, y′)→ (−x′,−y′) is the previously seen

E1 : (y′′)2 = 432
[
1 + 80z′ + 125(z′)2 + 50(z′)3

]
, jE1 = −

5× 293

25
= j(τ0).

We now wish to identify the quotient ⟨(12), (34), (345)⟩ / ⟨(345)⟩ ∼= V4 with
the V4 just described. It requires a little effort to see (12) : [s : t : u : v] →
[−s − t : t : u : v], which corresponds to x′ → −x′, and that (34) : [s : t :
u : v] → [s : t : u : u3/v], which fixes x′ and so must be the map y′ → −y′.
This means that the remaining involution (x′, y′) → (−x′,−y′) comes from the
group element (12)(34). As such we identify E4 ∼= B/ ⟨(12), (345)⟩, and we have
a curious isomorphism, namely

B/ ⟨(12)(34), (345)⟩ ∼= B/ ⟨(12)(34), (13)(24)⟩ ∼= E1 corresponding to

B C2

C1 E1

(345)

(12)(34) (12)(34)

(13)(24)

.

As before we can also consider distinguished points on the quotients coming
from fixed points. Whereas (345) has no fixed points when acting on B each
involution on C2 that gives a quotient to an elliptic curve has two fixed points.
The fixed points of (12) are the orbits under (345) of the six fixed points of (12)
that are Weierstrass points. The fixed points of (12)(34) are the orbits under (345)
of the 3× 2 fixed points of (12)(34), (12)(45), and (12)(35) that are vertices.

37This is to be expected, as it does not satisfy the conditions to be included in curves inves-
tigated in [BSS+16].
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Quotients by a Transposition

The strategy of quotienting from the P4-model using semi-invariants from the
previous sections can also be used to calculate the quotient of Bring’s curve by a
transposition. We take semi-invariants

(s1, s2, s3, s4)
T =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (x1, x2, x3, x4)
T ,

and in terms of these variables the defining equations of Bring’s curve become

H2 =
1

2
(s21 + s22) + s23 + s24 + (s1 + s3 + s4)

2,

H3 =
1

4
(s31 + 3s1s

2
2) + s33 + s34 − (s1 + s3 + s4)

3.

Taking invariants [s : t : u : v] = [s1 : s22 : s3 : s4] and eliminating t yields the
elliptic curve

E2 : 4s3 + 8s2u+ 7su2 + u3 + sv2 − uv2 = 0, jE2 = −
25

2
= j(5τ0). (2.30)

We observe that (also curiously) the quotient of B by a transposition is isomorphic
to the quotient by a 4-cycle. It is not clear that there is any a priori reason for
this to be the case. We are however able to relate the elliptic curves E2 and E4 as
follows.

The normaliser38 of ⟨(12)⟩ in S5 is NS5(⟨(12)⟩) = ⟨(12), (34), (345)⟩ ∼= D6

where now NS5(⟨(12)⟩)/ ⟨(12)⟩ ∼= S3. We may immediately identify the action of
(34) as the hyperelliptic involution on E2 as it acts as v → −v, but we also retain
another group action, that of (345). To understand this action recall that there
are six fixed points of the action of (12) on B, which are all Weierstrass points.
This gives six more distinguished points on the curve E2 in addition to the two
images of the vertices we have seen previously. The six Weierstrass points fixed
by (12) break into two orbits of three under (345) which we denote by {Hi},
{H ′

i} (i = 1, 2, 3). Just as (345) gives Bring’s curve as an unramified cover of
the genus-2 curve C2, quotienting each by a transposition has (345) yielding an
unramified automorphism of the quotient curves. Hence there exists a quotient
from E2 = B/⟨(12)⟩ to another elliptic curve E4 = B/ ⟨(12), (345)⟩ such that the
following diagram commutes,

B C2

E2 E4

(345)

(12) (12)

(345)

38The cosets of ⟨(12)⟩ in the normaliser are {e, (12)}, {(345), (12)(345)}, {(354), (12)(354)},
{(34), (12)(34)}, {(35), (12)(35)}, and {(45), (12)(45)}.
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To view this action on the elliptic curve E2, we calculate that (345) : [s : t :
u : v] → [s : t : −s − u/2 − v/2 : s + 3u/2 − v/2]. In the s = 1 affine chart
4 + 8u+ 7u2 + u3 + (1− u)v2 = 0 we can take as a cohomology basis

η :=
du

2v(1− u)
,

and it is a simple algebraic calculation to see that this differential is invariant
under the action of (345). If {H i}, {H ′

i} are the images of the Weierstrass points
on E2 such that (345)(Hi) = Hi+1, (345)(H i) = H i+1 and so forth, the invariance
of η tells us that∫ H2

H1

η =

∫ H3

H2

η = . . . ,

∫ H′
2

H′
1

η =

∫ H′
3

H′
2

η = . . . ,

∫ H′
1

H1

η =

∫ H′
2

H2

η = . . .

This means that if Λ = ⟨1, 5τ0⟩ is the period lattice of the elliptic curve E2
then

∫ Hi+1

Hi
η and

∫ H′
i+1

H′
i

η are the same fixed element of Λ/3. By choosing an

appropriate basis we may take (345) : z → z + 1/3 for z ∈ C/ ⟨1, 5τ0⟩. Then
the quotient map will be a 3:1 isogeny of elliptic curves and we have the period
of E4 to be 15τ0 and jE4 = j(15τ0). Under this isogeny the six images on E2 of
the Weierstrass points [1 : 1 : α : β : γ] are mapped to two on E4. Indeed, one
may construct the isogeny explicitly using the Weierstrass ℘ function and the
Abel-Jacobi map via the diagram

E2 E4

J(E2) J(E4)

P 7→
∫ P
∞ η

z 7→3z

z 7→(℘(z),℘′(z))

where J(E) represents the Jacobian of the elliptic curve viewed as C/ ⟨1, τ⟩.

Remark 2.3.22. This calculation may be verified numerically, as shown in the
Bring’s curve notebooks.

Remark 2.3.23. Using the language of Example 2.1.77, (345) is a translation.
To see this take variables x, y defined by

u =
−70s3 + 6sx

2(25s2 + 3x)
, v =

−3y
25s2 + 3x

,

which in the affine patch where s = 1 give E2 as the curve x3−25/3x+2950/27+
y2 = 0. In these coordinates (345) acts as

x 7→ 5(275− 3x+ 15y)

3(65 + 15x− 3y)
, y 7→ 20(55− 15x− 3y)

(65 + 15x− 3y)
.

Indeed for the projective coordinates [X : Y : Z] of our curve X3 − 25/3XZ2 +
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B

E5τ0 C2 C1

E15τ0 P1 P1 Eτ0 Eτ0 E5τ0

P1 P1 E3τ0

P1

Fig. 2.4 Quotient structure of Bring’s curve

2950/27Z3 + Y 2Z = 0 we have under (345) that

[X : Y : Z] 7→ [5(275Z/3−X + 5Y ) : 20(55Z − 15X − 3Y ) : 65Z + 15X − 3Y ],

7→ [275Z/3−X − 5Y : −220Z + 60X − 12Y : 13Z + 3X + (3Y )/5],

7→ [X : Y : Z].

When working with a Weierstrass model of an elliptic curve it is standard to take
the distinguished basepoint to be ∞ = [0 : 1 : 0] and we see in terms of (x, y) that
∞ 7→ (−25/3, 20) 7→ (−25/3,−20) 7→ ∞.

Summarising

We can collect the information of the quotients we have seen into Figure 2.4.
Solid arrows represent a covering map coming from a quotient, whereas ‘squiggly’
arrows indicate isomorphisms that we were unable to explain by group theory
alone.

Figure 2.5 shows the corresponding groups which are quotiented by, where an
arrow now indicates that a source group is normal in the target, whereas a dashed
line just indicates that a group is a subgroup. The label used corresponds to the
list in §2.3.3, except where that label is ambiguous and the exact group must be
specified.

Finally, we recall from a Riemann-Hurwitz argument that each elliptic curves
that arises as a quotient from a genus-2 curve with V4 symmetry has two marked
points which are the branch points of the covering map, equivalently the images
of the fixed points of the involution being quotiented by. We have shown that
the preimages of these on Bring’s curve are geometric points. In Figure 2.6 we
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{e}

⟨(12)⟩ C3 ⟨(12)(34)⟩

C6 S3 ⟨(12), (34)⟩ S ′
3 ⟨(12)(34), (13)(24)⟩ C4

D6 D4 A4

S4

Fig. 2.5 Subgroup structure of S5 corresponding to the quotients of Bring’s curve

illustrate the quotient structure highlighting these points. (We do not decorate
the curve B/A4

∼= E3τ0 , but include it so as to show every quotient with genus
greater than 0.) Note the nodes of Figure 2.6 do not correspond directly to the
placements of those in Figures 2.4 and 2.5.

With the information of the quotients, we can now discuss the isogeny class
and isomorphism class of the Jacobian of Bring’s curve with the following results.

Proposition 2.3.24 ([RR92], §4, [Web05], Corollary 5.5). The C-isogeny class
of the Jacobian of Bring’s curve is E43 .

Proof. As we will later want to strengthen this result, we will use methods which
relate subvarieties of the Jacobian to idempotents, and thus to subgroups of the
automorphism group. Namely we will use [LR04, §4.2], which gives the isogeny
decomposition in terms of Prym varieties of the Jacobian of a curve with an A5

action. Note, because of comments made before in §2.3.1, Bring’s curve is the
unique genus-4 curve for which we could apply this argument. The result follows
as, using the notation of Lange, XA4 = E3, XD5 = XZ5 = Y = P1.

This proof also follows from [LR04, Proposition 5.1], which uses only the
action of S4 on the curve. Moreover, one could use [KR89, Theorem C] taking the
subgroups to be ⟨(12)⟩ , ⟨(34)⟩, C4 and A4. Alternatively, using the isomorphism
A5
∼= PSL2(F5) and [KR89, Example 2] one can find JacB ∼ Jac C1 × Jac C2

and proceed from there. These proof strategies all follow the same approach of
looking for idempotents.

One may also obtain the result following the same method as R&R. We use
that fact that isogenies act on the period matrix by right multiplication by ma-
trices R ∈ M4(Z), and so we have the required isogeny by taking λ = 1 in the
identity (

λ−1 Id
) (

1 τM
)(λ Id 0

0 M ′

)
=

(
Id

5

λ
τ Id

)
,
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6×, 4⊗, 2#, 4□

6× 2×, 2# 2#, 2□

2× 2# 2□ 2#

Fig. 2.6 Quotient structure including marked points × (Weierstrass points [1 :
1 : α : β : γ] and permutations), ⊗ (vertices [1 : −1 : 0 : ±i : ∓i] and [1 : −1 : ±i :
0 : ∓i]), # (vertices [1 : −1 : ±i : ∓i : 0]), and □ (vertices [1 : ±i : ∓i : −1 : 0]
and [1 : ±i : −1 : ∓ : 0])

where

M ′ := 5M−1 =


2 −1 1 −1
−1 2 −1 1
1 −1 2 −1
−1 1 −1 2

 .

Note that we are able to construct the quotient B/A4 directly from the P4-
model using transformations with coefficients in Q, and the resulting curve is
defined over Q, so by [KR89, Remark 6] Proposition 2.3.24 can be strengthened
to a statement about the Q-isogeny class of the Jacobian of Bring’s curve. Cal-
culating using Sage we find that the Q-isogeny class of B/A4 is 50a using the
Cremona labels for elliptic curve Q-isogeny classes. Hence the following result
holds.

Proposition 2.3.25 ([Ser08], Exercise 8.3.2(b)). The Q-isogeny class of the Ja-
cobian of the P4-model of Bring’s curve is (50a)4.

Note in Proposition 2.3.25 we had to be careful to specify the Jacobian of
the P4-model of Bring’s curve, as we have seen that HC model is not birationally
equivalent over a field that does not contain Q[ζ]. The Q-isogeny class of the el-
liptic curve B/ ⟨(12)(34), (13)(24)⟩ calculated via the HC model is 50b. Similarly,
the Q-isogeny class of the two elliptic curves covered by C2 is 450b, and the com-
putation of the quotient required the coefficient field to be Q[ρ]. In order to not
have a contradiction with Proposition 2.3.25, we must have that the Q-isogeny
classes 50b and 50a merge over Q[

√
5], and that the isogeny classes 450b and 50a

merge over Q[ρ], which is indeed the case.39

39The isogeny classes 450b and 50b merge over Q[
√
−15].
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One could use computational tools such as those in [BSS+16, Lom18]40 to
numerically find the Q-isogeny class of the Jacobian of the HC model of Bring’s
curve, as we did in the notebooks. Such computational results using idempotents
can be helpful for developing our understanding, for example one can use com-
puter algebra to search for relations between the characters IndS5

H (1H), that is
the characters of S5 induced from the trivial representation of H ≤ S5. Doing
so gives relations between subvarieties of the Jacobian of Bring’s curve following
[KR89, Theorem 3], for example

J⟨(12)⟩ × J⟨(12)(34),(13)(24)⟩ ∼ J⟨(12)(34)⟩ × J⟨(12),(34)⟩,
J⟨(12)(34),(13)(24)⟩ × JS3 ∼ J⟨(12),(34)⟩ × JS′

3
,

(2.31)

where I have used the shorthand notation JH := Jac(B/H). Using Riemann-
Hurwitz arguments these would let us say that

B/ ⟨(12)⟩ ∼ B/C4 and B/ ⟨(12)(34), (13)(24)⟩ ∼ B/S ′
3

without having to do any calculation, entirely from group theory. The reason
why these isogenies are actually isomorphisms is not clear.

Proposition 2.3.24 can also be strengthened in a different direction.

Proposition 2.3.26 ([GAR00], Theorem 4.1). The Jacobian of Bring’s curve is
isomorphic as a complex torus to E32 × E1.

Proof. The proof in [GAR00] is very general, considering Jacobians whose period
matrix is invariant under Sn for any n. The isomorphism from the period matrix
given in [RR92] is

C
(
1 τM

)(D 0
0 E

)
=
(
1, τ diag(5, 5, 5, 1)

)
,

where

C =


−1 1 −1 2
1 0 0 1
0 −1 0 1
0 0 0 1

 , D =


0 1 0 −1
0 0 −1 1
−1 −1 −1 4
0 0 0 1

 , E =


−1 1 0 0
1 0 −1 0
−2 −1 −1 1
1 0 0 0

 .

Note it would not be possible that the Jacobian is isomorphic to the product of
the elliptic curves as a principally polarised abelian variety, as it is well known that
the Jacobian of any smooth compact Riemann surface with canonical principal

polarisation is irreducible [GAR00]. In particular this means the matrix

(
D 0
0 E

)
of the proposition is not symplectic.

40To make the reconstruction process of Lombardo more accessible, we recreated in Sage
some of the functions implemented by Lombardo in Magma.
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2.3.4 Theta Characteristics

We now investigate the theta characteristics of Bring’s curve, of which we have
already seen some details in Table 2.3. Among other results we shall identify the
unique invariant spin structure of Bring’s curve. Note that because Bring’s curve
has genus 4, there are 120 odd and 136 even characteristics on the curve.

Example 2.3.27. It is a computational exercise using the methods of Proposition
2.3.6 to verify the divisors of the differentials (v2) = 3b + c + 2d and (v4) =

2a + b + 3d, hence KB ∼
(

−xv3v4
v2

)
= 2(3a + b− c). As such ∆ = 3a + b− c is a

theta characteristic on Bring’s curve. A simple calculation in Sage shows that it
is even.

Tritangent Planes and Odd Characteristics

Recalling Proposition 2.2.11, we know that on Bring’s curve the tritangent planes
are in 1-1 correspondence with the odd theta characteristics, and as such to
understand the orbit structure of the odd characteristics we need only understand
the tritangent planes, about which we have the following result.

Proposition 2.3.28 ([Edg81b]). The 120 tritangent planes on Bring’s curve split
into two classes, 60 in each class:

1. those where all three contact points are Weierstrass points, and

2. those where only one contact points is a Weierstrass point.

Planes in the first and second class respectively have equations (recalling notation
from §2.3.2)

Π
(1)
αjk :=

{
xj
β
− xk

γ
= 0

}
,

Π
(2)
ijk := {(α− 1)(α + 4)xi + (β − 1)(β + 4)xj + (γ − 1)(γ + 4)xk = 0} ,

where [xi] ∈ P4 and i, j, k distinct.

To clarify the notation we have used for the planes, recall that the position of
the indices on Weierstrass points Wijk indicates which root was equal to xi. The

same principle holds for Π
(1)
αjk,Π

(1)
iβk, and Π

(1)
ijγ.

Corollary 2.3.29. The orbit decomposition of odd theta characteristics on Bring’s
curve is

120 = 20 + 20 + 20 + 60. (2.32)

Proof. The characteristics coming from the tritangent planes are

T
(1)
αjk =

5∑
i=1
i ̸=j,k

Wijk,

T
(2)
ijk = Wijk +O+

ijk +O−
ijk.
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Here we define the points O±
ijk by, for example,

O±
345 =

[
1± i

√
15

2
:
1∓ i

√
15

2
: α2 + α + 1, β2 + β + 1, γ2 + γ + 1

]
.

A simple orbit-stabiliser argument then gives the orbit decomposition as, for
example, T

(1)
α45 is stabilised by the symmetric group S{1,2,3} and T

(2)
345 is stabilised

by S{1,2}.

Even Characteristics

In Corollary 2.3.29 we were able to fully characterise the odd theta characteristics
on Bring’s curve without too much difficulty through the use of existing work
giving the stalls of the canonical embedding. The story for even characteristics is
different because Scorza theory cannot be used here. In [Bur83], motivated by its
realisation via an elliptic modular surface, Burns identified a theta characteristic
on Bring’s curve invariant under the A5 subgroup of the automorphism group,
though he described this characteristic only in terms of two line bundles on the
curve, not directly in terms of points on the curve. We shall now fully classify
the orbits of the even characteristics and give an explicit description of Burns’
divisor in the process.

We have two distinct methods of probing the orbit decomposition of the theta
characteristics on Bring’s curve as described in §2.2.2.

1. Use the method of [KS10], wherein theta characteristics are identified with
vectors in Z2g

2 , and the action of automorphisms given by the homology
representation of the automorphism group of the curve as found using the
methods of [BSZ19].

2. Identify theta characteristic with the 22g translates by half-lattice vectors
of a half-canonical vector in the Jacobian of the curve, done using the
implementation of the Abel-Jacobi map I developed [DH21], and the action
of automorphisms given by the analytic representation of the automorphism
group of the curve as found using the methods of [BSZ19].

Both methods not only verify Corollary 2.3.29 but also gives the following result.

Theorem 2.3.30. The orbit decomposition of even theta characteristics on Bring’s
curve is

136 = 1 + 5 + 5 + 5 + 10 + 10 + 10 + 30 + 30 + 30. (2.33)

Corollary 2.3.31. Bring’s curve has a unique theta characteristic invariant un-
der the action of the automorphism group, which is also the theta characteristic
invariant under the A5 subgroup found in [Bur83].

Remark 2.3.32. Note in both the orbit decomposition of the odd characteristics
and the even characteristics there is an as of yet unexplained ‘threeness’ whereby
if an orbit of a certain size occurs, it occurs either exactly once or exactly thrice.
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The existence of the unique invariant theta characteristic was known in [BN12],
but it had not been identified. This we rectify with the following result.

Theorem 2.3.33. The theta characteristic ∆ (defined in Example 2.3.27) is the
unique invariant theta characteristic on Bring’s curve.

Proof. We first consider the action of S on a, b, c, d. We have

a := [0 : 0 : 1] ≃ [2t3 : t : 1]
S−→ [2t3 : ζt : ζ−1] = [2ζt3 : ζ2t : 1] = [2(ζ2t)3 : ζ2t : 1]

= [2ϵ3 : ϵ : 1],

b := [0 : 1 : 0] ≃ [2t2 : 1/t : 1]
S−→ [2t2 : ζ/t : ζ−1] = [2ζt2 : ζ2/t : 1] = [2(t/ζ2)2 : ζ2/t : 1]

c := [1 : 0 : 0]2 ≃ [1 : t : t4]
S−→ [1 : ζt : ζ−1t4] = [1 : ζt : (ζt)4],

d := [1 : 0 : 0]1 ≃ [1 : t4 : t]
S−→ [1 : ζt4 : ζ−1t] = [1 : (ζ−1t)4 : ζ−1t].

Thus a, b, c and d are invariant under the symmetry S and consequently ∆ =
3a+ b− c is also invariant.

Similarly, as mentioned in Proposition 2.3.11, the action of U on a, b, c, d can
be calculated as

a 7→ c 7→ b 7→ d 7→ a,

and so

∆ = 3a+ b− c 7→ 3c+ d− b = 3a+ b− c− (3a+ 2b− 4c− d) = ∆− (x) ∼ ∆.

We have thus shown that ∆ is invariant under ⟨S, U⟩. To complete the proof
that ∆ is the invariant theta characteristic, one could attempt to show that ∆ is
invariant under the action of R by direct computation, but this proves to be diffi-
cult. It is instead better to check in Sage that the unique spin structure invariant
under the whole automorphism group is actually also the unique spin structure
invariant under the subgroup generated by S and U . In fact, by [KS10, Theo-
rem 1.2] and our work in §2.3.3, we know there is a unique theta characteristic
invariant41 under ⟨S⟩, and this completes the proof.

This proof strategy42 is similar to the identification of the unique invariant
theta characteristic on Klein’s curve in [KS10], proven to exist in [Bur83].

We now want to make the connection to [Bur83]. Recall Equations 2.15 and
2.16. This gives us two degree-3 maps fi : B → P1, namely fi = πi ◦ φ−1|B,
i = 1, 2, where φ was the isomorphism P1 × P1 → Q, and πi the projection to
the two factors of P1×P1. These are the two g13 on any non-hyperelliptic genus-4
curve whose associated quadric is nonsingular [Har77, Example IV.5.5.2]. What
are the corresponding divisors? Working in the La coordinates, we can use Sage

41Under the action of S, the orbit decompositions are 120 = 24× 5 and 136 = 1 + 27× 5.
42The final part of the proof in that paper, showing invariance under the order-2 generator of

PSL2(F7), is in our opinion incomplete; Kallel (private correspondence) believes our reasoning
correct. The theorem remains correct nevertheless, as one can check using their methodology
that invariance under the order-7 generator is enough to specify the unique invariant spin
structure, as the decompositions are 28 = 4× 7 and 36 = 1 + 5× 7. It is a curious coincidence
that in both cases it was a generator of order 2 for which the direct calculation was difficult.
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to find that f−1
1 ([1 : 0]) = 2[0 : 0 : 0 : 1] + [1 : 0 : 0 : 0] = 2b + c := L′, while

f−1
2 ([1 : 0]) = 2[0 : 1 : 0 : 0] + [0 : 0 : 0 : 1] = 2d+ b := L.

Proposition 2.3.34. The divisors L, L′ satisfy the properties described in [Bur83],
namely

∆ ∼ 3(L′ − L) + L, KB ∼ L+ L′, 0 ∼ 5(L′ − L).

Proof. This is straightforward verification from the definitions.

Note we can connect this back to the degree-3 map given by Klein. We know
from [Web05] that we expect this map to be branched at face-centres of the
{5, 5|3} tessellation, and these come from face-centres of the {5, 4}6 tessellation,
and indeed recall we saw that a, b, c, d were face-centres.

An additional characterisation of the invariant theta characteristic is given by
the following result.

Proposition 2.3.35. In the homology basis of [RR92], the RCV satisfies

Ka =
1

10
(3, 2,−2,−3) + ℑ(τ0)(1,−2,−2, 1)i = Aa(∆).

As such, in the R&R homology basis, the unique invariant theta characteristic is
the divisor (class) of the Szegő kernel, i.e. ∆ = ∆B.

Proof. The first equality is shown analytically in [BN12]. The second is shown
numerically in the corresponding notebooks, using the Abel-Jacobi map devel-
oped by Disney-Hogg [DH21]. To verify the RCV we followed the procedure laid
out in §2.2.1, implementing the methodology of [DPS15] using the theta function
in Sage developed by Bruin and Ganjian [Bru21]. While these calculations are
numerical in nature, the calculations can be done with arbitrary binary preci-
sion. We were satisfied by calculating with 400 binary digits of precision, giving
an absolute error of less than 10−118 for the first equality, and of less than 10−23

for the second equality.
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Chapter 3

Magnetic Monopoles

Particularly I am glad to see the Monopoleon again
in Cambridge. This title shall indicate that I have
a friendlier view to his theory of ‘monopoles’ than
earlier: There is some mathematical beauty in this
theory

Wolfgang Pauli
Letter to Niels Bohr, March 5th, 1949

I will now move onto a different topic, and one motivated by fundamental
physics; that of magnetic monopoles. In the 20th Century and earlier magnetic
fields had been discovered, and it was observed that sources of the magnetic field
only came in pairs, in contrast to the behaviour of the electric field which is
sourced by electrons. The first serious suggestion of the possibility of sources
of the magnetic field, now called magnetic monopoles, was in a 1931 paper by
Dirac in which he showed that, in the presence of a monopole, electric charge
had to be quantised. For a more complete review of the literature up until 1990
including historical sources, see [GT90], and for specific sources on experimental
evidence for monopoles see [Mil06]. One particular reference deserving of being
singled out is [Cab82], describing how a “single candidate event, consistent with
one Dirac unit of magnetic charge” was observed on the 14th of February, 1982,
thus earning the moniker the ‘valentines-day monopole’. Such an event has never
been replicated.

This chapter shall not be on the physical aspects of monopoles, but instead
their modern treatment in terms of gauge theory, and how to construct solutions
using methods from algebraic geometry. §3.1 will describe the gauge-theoretical
formulation of monopoles, laying down a concrete definition of what indeed a
monopole is, and briefly describing some aspects of the moduli space of all
monopole solutions. I will not provide any background or preliminaries on gauge
theory as they shall largely be immaterial, but for a general introduction see
[FO06]. §3.2 will introduce the breakthrough tool from algebraic geometry used
to study monopoles: the spectral curve. I will discuss two approaches to con-
structing this data, how it may be used to reconstruct the monopole gauge fields
themselves, and in particular I shall give new interpretations and visualisations
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of existing constraints which are required of monopole spectral curves. In §3.3 I
will discuss how symmetries act on the many presentations of monopole data and
describe how this can be used to construct monopole data invariant under certain
symmetry groups, computations for which code is provided (see nahm_data.py).
Finally in §3.4 I will complete a partial classification of charge-3 monopoles by
identifying a subset of all possible monopole spectral curves amenable to solutions
in terms of elliptic functions.

In the remainder of this section I will lay some ground work for the coming
study of monopoles by highlighting some basic properties of the Lie group SU(2)
that we shall require throughout.

Properties of SU(2)

SU(2) is the group of all complex 2× 2 unitary matrices with determinant 1, for
which we have the useful parametrisation

SU(2) =

{(
p q
−q̄ p̄

)
| p, q ∈ C, |p|2 + |q|2 = 1

}
.

Given the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

which satisfy1 σjσk = δjk + iϵjklσl, the matrices Tj = − i
2
σj form a basis of the

associated Lie algebra su(2). Moreover, taking the inner product on su(2) to be
⟨X, Y ⟩ = −2Tr(XY ) = 2Tr(X†Y ), this basis is orthonormal.

Remark 3.0.1. The choice of normalisation of the inner product is arbitrary,
but later conventions must be chosen to be compatible with this (for example the
asymptotic behaviour of a monopoles Higgs field, see Remark 3.1.6). Effort will
be made to highlight these choices when they occur.

It is a classical result that the irreducible representations of SU(2) are clas-
sified by their dimension [Hal15, §4.2], that is every r-dimensional irreducible
representation is equivalent to Sr−1, the action of SU(2) on degree-(r − 1) ho-
mogeneous bivariate polynomials, which is equivalently the action on sections
H0(P1,O(r − 1)). Because of this, I will use ζ0,1 to denote the two variables.
Moreover, the irreducible representations of SO(3) are exactly the pushforwards
under the projection π : SU(2)→ SO(3) of the even degree spaces, π∗S2n [Hal15,
§C.1]. The following theorem describes the decomposition of a tensor product of
these representations.

Proposition 3.0.2 ([Hal15], Theorem C.1).

Sr ⊗ Ss =

min(r,s)⊕
i=0

Sr+s−2i.

1Here I am using summation notation to implicitly sum over the repeated index l. At various
points in this thesis I shall use summation notation, and it should be clear from context when
this occurs.
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Example 3.0.3. The natural representation of SO(3) acting on R3 via matrix
multiplication is equivalent to S2.

We may take the derivative of these Lie group representations to get rep-
resentations of the Lie algebras su(2) ∼= so(3). I will fix notation by letting
su(2) = ⟨X, Y,H⟩ subject to the commutation relations

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

Lemma 3.0.4 ([Hal15], §4.2). The derivative Lie algebra representation2 Π :
su(2)→ gl(S2r) is given by

Π(X) = ζ1
∂

∂ζ0
, Π(Y ) = ζ0

∂

∂ζ1
, Π(H) = −ζ0

∂

∂ζ0
+ ζ1

∂

∂ζ1
.

Recall now a standard definition.

Definition 3.0.5. A highest-weight vector v of weight 2r in an su(2) repre-
sentation space is defined by the conditions

X · v = 0, H · v = 2rv.

The vector space then spanned by
{
(Y ·)kv

}
is a highest-weight subspace of

dimension 2r + 1.

Example 3.0.6. The highest-weight vector of weight 2r in S2r is ζ2r1 , and so any
P ∈ S2r can be written as

P (ζ0, ζ1) = P̃ (ζ0∂ζ1)ζ
2r
1

for some univariate polynomial P̃ . Moreover, the highest-weight vectors vi ∈
S2 ⊗ S2(r+i) of weight 2r can be given, e.g. v−1 = ζ21 ⊗ ζ2r−2

1 .

Remark 3.0.7. Note the symmetry between ζ0 and ζ1 has been broken in the
definition of the derivative representation. We will see the impact of this later in
§3.3.2.

3.1 Monopoles in Gauge Theory

F. Klein wrote that “... a physicist, for his
problems, can extract from these theories only very
little, and an engineer nothing.” The development
of the sciences in the following years decisively
disproved this remark

– Vladimir Arnold
Mathematical Methods of Classical Mechanics

We will now want to write down explicitly the equations we will consider when

2I will not decorate the representation Π with r to indicate which image space is being used,
as this should be clear from the context.
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defining monopoles. Historically it was the physicists ’t Hooft and Polyakov who
simultaneously and independently (’t Hooft submitted his paper just 35 days
before Polyakov) showed that monopoles could exist in gauge theories whose
gauge group was compact and contained U(1) as a subgroup [tH74, Pol74], though
Polyakov did not use this language.

3.1.1 The Yang-Mills-Higgs Equations

Given some (simple, compact, [JT80, §IV.18]) gauge groupG, let P = G×Rd+1 be
the trivial principal G-bundle over Minkowski space (taking the mostly-positive
metric), with associated adjoint bundle ad(P ) = g×Rd+1. I will throughout this
thesis use the notation of x for the coordinates on Rd+1 taking in index notation
xµ for the spacetime coordinates, with x0 the time coordinate and the xi the
space coordinates.

P is the only possible G-bundle over Rd+1 because the base is contractible.
The bundle ad(P ) is flat and so we may view a connection A ∈ Γ(T ∗Rd+1⊗ad(P ))
and adjoint scalar field (also called the Higgs field) ϕ ∈ Γ(ad(P )) as a g-valued
one-form and scalar respectively. Letting ⟨·, ·⟩ be an ad-invariant inner product
on g, and extending it to an inner product on g-values forms using the induced
inner product on T ∗Rd+1, we can make the following definition.

Definition 3.1.1 ([JT80], I.1.9a). The Yang-Mills-Higgs (YMH) action is

SYMH [A, ϕ] =

∫
Rd+1

[
− |F |2 − |Dϕ|2 − V (ϕ)

]
dd+1x, (3.1)

where F = dA+A∧A and D = d+A are the curvature and covariant derivative
associated with A, and V (ϕ) = λ

(
1− |ϕ|2

)2
is the ϕ4-potential. By our choice

of signs, we want λ ≥ 0. If we remove the terms containing ϕ, this is just the
pure Yang-Mills action.

Equation 3.1 is, up to conventions on factors which will not be important,
the action taken by ’t Hooft in [tH74]. There it was argued that in order to
get magnetic monopoles one would want G to be nonabelian, compactly covering
U(1), and so the simplest choice is to take G = SU(2) which I will take herein.
The case G = U(1) is of particular importance historically, as it is related to the
Dirac monopole [Dir31, MS04].

Through the standard principle of least action one can get equations associated
with the action relevant to mathematical physics.

Proposition 3.1.2 ([JT80], I.1.17, I.2.2). The variational equations correspond-
ing to SYMH in Minkowski Rd+1 are the Yang-Mills-Higgs equations

DF = 0 (Bianchi),

(−1)d+1 ⋆ D ⋆ F = − [ϕ,Dϕ] ,

⋆D ⋆ Dϕ = − 1

2 |ϕ|
V ′(ϕ)ϕ,

(3.2)

where ⋆ is the Hodge star operator on the corresponding Minkowski space.
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We will want to look for static solutions, i.e. time-independent solutions with
A0 = 0, of Equations 3.2. For such solutions the action SYMH is infinite, but
for a constant-time hyperplane we may define the energy to be the integral of
the Lagrangian density over this hypersurface and search only for finite-energy
static solutions. This is equivalent to asking for finite-action solutions to the
Yang-Mills-Higgs equations on Euclidean Rd, called solitons [JT80, §I.2].

Remark 3.1.3. One can ask for finite-action solutions to the Yang-Mills-Higgs
equations on manifolds different from Rd. While I will not go into this subject in
any details, at various points I will mention one such case of particular interest
to current research, namely hyperbolic 3-space H3.

The existence of such finite-action solutions is not guaranteed a priori, and
indeed they do not for d > 4; d = 4 solutions are called instantons and are gauge
equivalent to pure Yang-Mills solitons; d = 3 solutions are called monopoles;
and d = 2 solutions are vortices [JT80, p. 10, Corollary II.2.3]. In this thesis I
will only want to consider monopoles, and so now restrict to considering d = 3.

It is clearly a necessity that tending towards the sphere at infinity |Dϕ| → 0,
and for λ ̸= 0, |ϕ| → 1. This process is called symmetry breaking as at
infinity the SU(2) gauge symmetry is broken and only a U(1) symmetry remains.
Symmetry breaking is relevant in phenomenology [Hig64], but we will interpret
it as giving a topological charge to the soliton.

Remark 3.1.4. The symmetry breaking works as the bundle P of which F is
the curvature decomposes into a direct sum of eigenbundles of ϕ on the sphere
at infinity, breaking the gauge group from SU(2) to S(U(1) × U(1)) ∼= U(1).
Starting with the more generic SU(n) gauge group there are different possibilities
for the symmetry breaking depending on the eigenvalues of ϕ; maximal symmetry
breaking is when all the eigenvalues are distinct and the gauge group breaks to
U(1)n−1, minimal symmetry breaking is when all but one of the eigenvalues are
the same and the gauge group breaks to U(n− 1) [MS04, BN22].

BPS Limit

The variational equations we have found so far are second order, but we want
to apply the classic strategy when working with topological solitons: write the
energy functional of a static configuration as the integral of a square term plus a
topological term, and then we locally must have a minimising solution by setting
the squared term to 0. This will be possible if we set λ = 0 but retain that |ϕ| = 1
at infinity. We are more specific about the conditions we want.

Definition 3.1.5 ([Hit82], §6, [Hit83], §1). We define the monopole boundary
conditions to be that as r := |x| → ∞,

1. |ϕ| = 1− k
r
+O(r−2),

2. ∂|ϕ|
∂Ω

= O(r−2),

3. |Dϕ| = O(r−2).
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Remark 3.1.6. This may seem to contradictory to [AH88, §2], where the first
condition is |ϕ| ∼ 1− k

2r
. Note however that there the convention used is that the

norm on su(2) is |X|2 = −1
2
Tr(X2). We will see a concrete example of this in

Example 3.1.17. The dependence of asymptotics on the choice of normalisation
will ultimately come down to the fact that the asymptotics of ϕ are governed by a
topological condition, and so any change in the definition of the norm comes with
a corresponding change of the apparent k. Indeed, [Hit83] cites work of Taubes
that shows that all the monopole boundary conditions are automatic for a solution
of F = ⋆Dϕ with |ϕ| → 1. The conventions used by other authors are collected
in §A.1.

Remark 3.1.7. Recall that the angular derivative is defined as

∂ |ϕ|
∂Ω

=

√(
∂ |ϕ|
∂θ

)2

+ sin2 θ

(
∂ |ϕ|
∂φ

)2

.

The second monopole boundary condition evaluated at large distances means k is
a constant.

With λ = 0 we can rewrite the energy functional of static configurations at
any time using the following lemma

Lemma 3.1.8 ([Bog76, Ati87]). Taking ⋆ to be the Hodge star operator on Eu-
clidean R3 and S2

R a sphere of radius R centred at the origin,

E =

∫
R3

(
|F |2 + |Dϕ|2

)
d3x =

∫
R3

|F ∓ ⋆Dϕ|2 d3x∓ 2 lim
R→∞

∫
S2
R

⟨ϕ ∧ (dϕ ∧ dϕ)⟩ .

This boundary term turns out to be a topological contribution3 taking a value
in 8πZ which can be interpreted in two ways, either as the degree of ϕ as a contin-
uous map of 2-spheres S2

∞ → {X ∈ su(2) | |X| = 1}, or as the Chern class of the
associated eigenvalue-1 complex eigenbundle L → S2

∞. This first interpretation
can also be viewed from the perspective of symmetry breaking as a map into the
coset space SU(2)/U(1) [MS04, §8.13]. For any given value of the topological
term, the energy functional is made stationary (actually locally minimal) when
the square term is zero. This gives us the following definition.

Definition 3.1.9 ([Bog76, PS75]). We define the Bogomol’nyi-Prasad-Sommerfield
(BPS) equation(s) to be

F = ± ⋆ Dϕ.

The sign is chosen to saturate the positive bound E ≥ ±8πk for some k ∈ Z.
We will want to have k > 0 and so take the equation F = ⋆Dϕ (this sign is
also motivated by a reduction of an anti-self-dual field of higher dimension, see
§3.1.1).

3By a topological contribution, I mean a term which depends only on the fields up to a
homotopy.
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Remark 3.1.10. Historically, the name BPS comes about because of the two
separate contributions cited, with Bogomol’nyi providing the ‘trick’ for rewriting
the energy functional in Lemma 3.1.8, and Prasad-Sommerfield considering the
limiting case where the potential is zero, i.e. λ = 0. The limit λ → 0 was first
called the Prasad-Sommerfield limit in [Man77].

Lemma 3.1.11 ([JT80], p. 5). Given one solution (A(x), ϕ(x)) to the BPS
equation, there is a corresponding 1-parameter family of solutions for µ ∈ R×,
(Aµ(x), ϕµ(x)) = (µA(µx), µϕ(µx)).

As a result of how we derived the BPS equation, it is clear any solution of the
BPS equation solves the YMH equations with λ = 0.

Definition 3.1.12. An SU(2) Euclidean BPS monopole is a smooth solu-
tion to the BPS equation with gauge group SU(2) on R3 satisfying the monopole
boundary conditions. The integer k determining the energy to be E = 8πk is
called the charge of the solution.

Remark 3.1.13. Schematically, for a solution of the BPS equation where B =
⋆F ∼ Dϕ determines the magnetic field, taking the first monopole boundary con-
dition we expect Dϕ ∼ k

r2
, which looks like the electric field of a classical electron.

This gives a partial interpretation to the understanding of a solution to the BPS
as a magnetic analogue of the electron.

Proposition 3.1.14 ([War81c], p. 317-318, [Hit83], p. 155). Given a BPS monopole,
c1(L) = k = − deg ϕ where k is the integer in the asymptotic expansion of |ϕ| and
L→ S2

∞ is the (1)-eigenbundle of ϕ over the sphere at infinity.

Remark 3.1.15. The proof of this fact uses Ward’s formula that ∇2 |ϕ|2 =
2 |Dϕ|2, which is related to k by the fact that the energy of a BPS solution is
E =

∫
R3 2 |Dϕ|2 d3x. As such we can think of ∇2 |ϕ|2 as the energy density E(x)

normalised such that
∫
Ed3x = 8πk.

Remark 3.1.16. The connection between the degree of a map P1 → P1 and the
Chern class of a line bundle L→ P1 is exactly that seen in §2.1.2.

Example 3.1.17 (Prasad-Sommerfield solution [PS75]). We can make an ansatz
of spherical symmetry for a static monopole in R3 to assume our solution has the
form

ϕ = ih(r)
xjσj
r

=
−2h(r)xjTj

r
=
H(r)xiTi

r2
,

Aj = −
i

2
[1− k(r)]

ϵ l
jk x

kσl

r2
= [1− k(r)]ϵjklx

kT l

r2
,

that is, H = −2rh. The functions h, k are those used in [MS04, (8.79)], k is not
to be confused with the charge. It is a computational task to determine that the
BPS equation reduces to the ODEs

rH ′ −H = k2 − 1, rk′ = kH,
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and these give the solutions

H(r) = 1− r coth r, k(r) =
r

sinh(r)
.

Note we can verify here that ϕ∞ = −x̂ · T ⇒ deg ϕ = −1 as the corresponding
map of spheres is the antipodal map. We can verify Proposition 3.1.14 here, as
we know from our degree calculation that k = 1, and

|ϕ|2 = H2

r4
xixj ⟨Ti, Tj⟩ =

H2

r2
,

⇒ |ϕ| = 1− 1

r
+O(r−2).

This spherically symmetric solution with ϕ pointing outwards gets the name the
hedgehog solution from Polyakov, who wrote down the equations (in second
order form) in [Pol74], or the name Prasad-Sommerfield solution, from the
first authors to solve the equations exactly [PS75]. Somewhat amusingly they
describe the discovery of such a solution via “shimmying” trial solutions involving
hyperbolic trigonometric functions.

If we substitute back in H = −2rh into the ODEs for the BPS solution we get

−2r(h+ rh′) + 2rh = k2 − 1, rk′ = −2rkh

or equivalently

−2r2h′ = k2 − 1, k′ = −2kh

as they are written in [MS04, (8.87), (8.88)]. Consider now the 1-parameter
family of functions

hµ(r) =
µ

2

[
coth(µr)− 1

µr

]
, kµ(r) =

µr

sinh(µr)
,

which one can verify also gives a solution to the BPS equation if we define anal-

ogously ϕµ = ihµ(r)
xjσj

r
, which is nothing but the scaling of Lemma 3.1.11. Now

Tr(ϕ2
µ) = −2hµ(r)2 ∼r→∞ −

µ2

2

[
1− 2

µr
+O

(
1

r2

)]
.

Hence if we had instead defined the norm on our Lie algebra as |X|2 = −αTr(X2),
to have ϕµ → 1 we need µ =

√
2/α. As the first order to the correction of |ϕµ|2 is

2
µr
, if we always want the Prasad-Sommerfield solution to be a monopole then we

know that our asymptotic conditions in Definition 3.1.5 must be defined relative
to our choice of norm on su(2), as discussed in Remark 3.1.6.

Remark 3.1.18. Note the hedgehog has a singular zero of ϕ at r = 0, and no
poles. In general the charge of the monopole will correspond to the number of
zeros of ϕ counted with multiplicity as we have already seen through Proposi-
tion 3.1.14 [AFG75]; we need to count with multiplicity, as the Higgs field can
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have an ‘anti-zero’ [Sut96a]. As mentioned in §3.1.1, the existence of a charge-
k monopole for any k is not immediately clear from the variational approach,
and indeed because of the repulsive magnetic Coulomb force an attractive force
is required. It was argued heuristically by Manton [Man77] (using the asymp-
totic forces between monopoles with the Higgs field providing the attractive force)
and proven by Taubes [Tau81, JT80] that there exists a charge-k monopole which
can be written as k well-separated charge-1 monopoles, with the positions of the
monopoles corresponding to the zeros of ϕ [War81a]. For gauge groups differ-
ent from SU(2) this identification between charge and zeros of ϕ need not occur
[War81b].

Self-Dual Reduction

We mentioned briefly in §3.1.1 how solutions to the YMH equations on Euclidean
R3 come from static solutions to the YMH equations on Minkowski R4. It is
worthwhile to also note that one can get solutions to the BPS equation from time-
independent pure Yang-Mills solutions on Euclidean R4, which give instantons.
In particular, given that the connection 4A = 4Aµdx

µ is time-independent, we
can write it as 4A = ϕdx0 + 3Aidx

i where ϕ, 3Ai are functions of xi only
4, and

then one has the following result.

Proposition 3.1.19 ([Man77], attributed to J. M. Cervero). The electromagnetic
tensor 4F is (anti-)self-dual if and only if (3F, ϕ) satisfy the BPS equation, that
is

⋆4
4F = ±4F ⇔ 3F ± ⋆3Dϕ = 0.

Here I have made explicit which dimension to consider for the Hodge star.

Proposition 3.1.19 is unsurprising when viewed through the lens that both
the self-duality equation and the BPS equation can be formulated in terms of a
quaternionic moment map equation [Hit87] (see Proposition 3.1.23) though this
development followed later. For a thorough review of solutions to the Yang-Mills
equations including the relation to monopoles see [Act79].

Remark 3.1.20. Here we have written R4 ∼= R × R3, and then asked for R-
invariance giving a Euclidean monopole on R3. One also has that R4 \ R2 is
conformally equivalent to S1 × H3 (H3 being hyperbolic 3-space) and so asking
for S1-invariance gives hyperbolic monopoles on H3 [Ati87, §5]. Note we need to
remove the R2 that is fixed by an S1 action on R4.

3.1.2 The Moduli Space

We have now described the solutions we want to investigate, and a starting point
would be to try and understand the moduli space of such solutions. Having
introduced the concept of the moduli space of monopoles in this section we will

4Here I have used 4A and 3A to distinguish between the connection on R4 independent of
x0 and the corresponding induced connection on R3.
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see later in §3.3.1 how to bound the dimension of certain submanifolds of the
moduli space corresponding to monopoles with symmetries.

Remark 3.1.21. On a historical note, it was Riemann who introduced the concept
of moduli in his 1857 paper [Ji15].

The specific moduli space one initially wants to consider is Nk, the space of
monopoles gauge fields up to gauge equivalence. Using an index theorem calcu-
lation applied to a Dirac operator constructed from the monopole data Weinberg
[Wei79] showed that dimRNk = 4k − 1, with the interpretation being that a
charge-k monopole comes with four parameters corresponding to the position
and phase of each of the k 1-monopole constituents and that an overall phase can
be factored out by gauge transform. As the monopole fields are naturally acted
on by the Euclidean group E(3), Nk inherits an action. One typically enlarges
Nk by a U(1) phase to Mk, the moduli space of charge-k framed monopoles, by
restricting possible gauge transforms to those which tend to the identity along a
fixed direction [AH88, HMM95]. As such dimRMk = 4k, and moreover it now has
an action of U(1) in addition to the inherited action of E(3). Associated with Mk

is the submanifold of (strongly-) centred charge-k monopoles M0
k ⊂ Mk with an

action of the orthogonal group O(3) which parametrises monopoles up to gauge
transform with fixed centre, or equivalently framed monopoles with fixed centre
and phase [AH88, MS04]. M0

k is a totally geodesic manifold of real dimension
4(k − 1).

Example 3.1.22. We saw in Example 3.1.17 that there was a unique spherically-
symmetric 1-monopole parametrised by its position. We will see in §3.2.2 using
the spectral curve and Nahm matrices that these are in fact the only 1-monopoles,
so M0

1 = ∗ the one-point space and M1 = R3 × S1.

Hyperkähler Metric

We have seen now that 4 divides the dimension ofMk andM
0
k , which is a necessary

condition for them to be hyperkähler manifolds as the tangent space becomes
a quaternionic vector space. In fact Mk is hyperkähler, as made clear by the
following sequence of results.

Proposition 3.1.23 ([Hit87], p. 23). The BPS equation F = ⋆Dϕ is equivalent
to the vanishing of a hyperkähler moment map on the space of L2 fields5 (A, ϕ)
with the quaternionic group action being the SU(2) ∼= Sp(1) gauge transformations
which preserve normalisability.

The gauge transformations which preserve normalisability with respect to the
L2 norm are exactly those which we restricted to in defining Mk as S1-bundle
over Nk [AH88, Chapter 3], yielding the following result.

Corollary 3.1.24 ([Hit87], p. 76). The monopole moduli space Mk is a hy-
perkähler quotient, with metric inherited from the L2 metric.

5By “L2 fields” I am referring to fields on R3 whose L2 norm ∥f∥ =
∫
R3 |f |2 d3x is finite.
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Monopole moduli spaces thus provide important examples of hyperkähler
manifolds with an SO(3)-invariant metric.

Example 3.1.25. The hyperkähler metric on M1
∼= R3 × S1 is the flat metric

[AH88]. M0
2 is the simplest nontrivial example of the monopole moduli space, and

the metric was calculated explicitly in [AH85, AH88] in terms of elliptic functions.
As such, M0

2 is often called the Atiyah-Hitchin manifold.

Remark 3.1.26. M0
2 as a hyperkähler manifold has been discovered in other

areas of mathematical physics, for example as the Coulomb branch of the vacuum
moduli space of pure SU(2) (2+1)-dimensional N = 4 supersymmetric gauge
theory [SW96, CH97, HW97].

In this thesis I shall not go into any detail on the hyperkähler geometry of the
moduli space, but it remains an active area of research because of attempts to
understand the geometry of the moduli space of hyperbolic monopoles. For these
monopoles the L2 metric diverges, and so various attempts have been made to
understand what the most natural structure and metric are [BA90, Nas07, Hit08,
BCS15, Sut22a, Sut22b, FR23].

Rational Maps

One way to understand the monopole moduli space was given in terms of rational
maps.

Theorem 3.1.27 ([Don84, Hur85b]). The framed monopole moduli spaceMk and
the moduli space Rk of degree-k rational maps S : P1 → P1 such that S(∞) = 0
are diffeomorphic.

Remark 3.1.28. The condition in Theorem 3.1.27 that S(∞) = 0 is present to
fix an orientation of the target P1 relative to the source P1. Such rational maps are
sometimes called based, for example in [HS96a]. Note that without this condition
the space of degree-k rational maps has real dimension 2×2× (k+1)−2 = 4k+2
(there are k + 1 complex coefficients in the numerator and denominator of a
degree-k rational map, and we remove and overall scale), whereas dimRRk =
2(k + 1) + 2k − 2 = 4k as desired.

The submanifold of Rk corresponding to M0
k can also be identified, namely

given a rational map given by p(ζ)/q(ζ) and labelling the roots of q(ζ) as βi,
i = 1, . . . , k, one gets that the framed monopole corresponding to the rational
map is centred if and only if [Hur83, AH88, HMM95]

∑
i

βi = 0,

∣∣∣∣∣∏
i

p(βi)

∣∣∣∣∣ = 1.

Note computing these quantities does not require explicitly finding the roots of
q; the sum

∑
i βi is proportional to the coefficient of ζk−1 in q, and the product∏

i p(βi) is proportional to the resultant of p and q. To actually get M0
k we need

to fix a phase of the framed monopole so we are considering strongly-centred
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framed monopoles not just centred framed monopoles, which we can do without
loss of generality by imposing the condition

∏
i p(βi) = 1. Note the condition

that
∏

i p(βi) = 1 is invariant under p 7→ e2πi/kp, and M0
k is actually the quotient

of M̃0
k := {

∑
i βi = 0,

∏
i p(βi) = 1} by this Ck action. As such M̃0

k is a k-fold
cover of M0

k , and it turns out to be the universal cover [AH88, p. 20].

Example 3.1.29. The rational maps corresponding to M1 are given by S(ζ) =
a

ζ−b
for a, b ∈ C. The submanifold corresponding to M0

1 is given just by S(ζ) = 1
ζ

[AH88, p. 18].

Example 3.1.30. The rational maps corresponding to monopoles inM0
2 are given

by

S(ζ) =
a0 + a1ζ

ζ2 + b0

where a0, a1, b0 ∈ C satisfy a20 + a21b0 = 1 [AH88, p. 20].

Theorem 3.1.27 was initially conjectured based upon work of Atiyah [Ati87,
Ati84] finding rational maps associated with hyperbolic monopoles. Donaldson
proved the theorem from the perspective of Nahm data (§3.2.2), and Hurtubise
showed the connection to spectral curves and the scattering picture of Hitchin
(§3.2.1). The assignment of a rational map to a given monopole is such that Rk

inherits a natural group action, though the choice of map breaks some of the
symmetry of the monopole moduli space by choosing a distinguished direction
[AH88, HMM95].

Jarvis [Jar98] also gave a construction of a rational map associated with a
monopole in a way that naturally generalised in the case of non-maximal sym-
metry breaking and arbitrary gauge group. Jarvis’ construction has the added
benefit that rather than fixing a direction, it requires just a fixing of origin,
which makes the associated rational maps much more useful when studying sym-
metries of monopoles which fix an origin. The construction associates to each
k-monopole an equivalence class of degree-k rational maps, where two rational
maps are equivalent if they are related by an SU(2) Möbius transformation [IS99].

The rational map approach has a number of uses for understanding monopoles.
Numerically, given a rational map one can construct the Higgs field, allowing for
the plotting of approximate energy density isosurfaces [IS99]. This process still
involves solving a PDE, so lacks the computational gains that come from plotting
energy density isosurfaces via Nahm data (see §3.4.2). Moreover, as described
in the appendix of [HMS98], understanding the rational maps symmetric under
finite groups G ≤ SU(2) can give existence results for G-symmetric monopoles
(see Propositions 3.3.6 and 3.3.8).

Geodesic Approximation

The monopole solutions we consider are static, but one can ask about time-
dependent YMH solutions which are ‘close’ to monopole solutions at any point
in time, interpreted as a scattering process. It was suggested by Manton in
[Man82] and proven rigorously in [Stu94] that such dynamical processes are well-
approximated in the low-energy limit by geodesics in the moduli space Mk. As
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such, if one can find a 4-dimensional geodesic submanifold of the moduli space this
generically corresponds to the SO(3) orbits of a geodesic in Mk, and so one can
obtain a scattering of monopoles. It was in this way that scattering corresponding
to M1 and M0

2 was first understood [AH85].

A long standing question is whether the geodesic motion in M0
2 is integrable.

The geodesic does have three known conserved quantities, total angular momen-
tum, a generalised momentum, and energy. Moreover, the asymptotic region of
the moduli space limits to the asymptotic region of Taub-NUT space, gaining an
extra SO(2) symmetry and so an additional conserved quantity corresponding to
relative electric charge, and as such the corresponding geodesic motion is Liou-
ville integrable [Sch91]. As this quantity is not conserved away from the limiting
region of the moduli space, the geodesic motion in the full moduli space M0

2 is
conjectured to be nonintegrable, a notion supported by numerical investigations
involving Poincaré recurrence plots [TR88, TR89]. At present attempts to prove
the nonintegrability of the geodesic motion using differential Galois theory have
been unsuccessful [MPV23].

3.2 Monopole Spectral Curves

Says Plowden, the whale so caught belongs to the
King and Queen, “because of its superior
excellence.” And by the soundest commentators
this has ever been held a cogent argument in such
matters.

– Herman Melville
Moby Dick

Now, over half way through this thesis, I shall introduce the rallying banner
uniting the study of Riemann surface and magnetic monopoles, namely the spec-
tral curve. An object of “superior excellence”, it is a key tool of study which
allows us to use the machinery of algebraic geometry to understand monopoles,
and of itself the spectral curve provides gems in the realms of pure mathematics.
We will approach the spectral curve from two equivalent perspectives, Hitchin’s
scattering approach, and through Nahm’s equations.

3.2.1 Hitchin’s Scattering Approach

In [Hit82], Hitchin will define the spectral curve by considering a scattering
picture which I will briefly cover now. This will involve the construction of a
vector bundle over minitwistor space, and in fact can be viewed as R-invariant
instanton bundles over twistor space, as monopoles are R-invariant instantons
[CG81, WW91]. The distinction between the instanton bundles and the monopole
bundles will be that for the latter there is a canonically defined algebraic curve,
and this will be the spectral curve we seek. Note the scattering discussed here
is of particles scattering in a monopole background, distinct from the picture of
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monopole scattering discussed in §3.1.2.

Monopole Bundles

Let MT be the Euclidean minitwistor space introduced in §2.1.3, and fix some
gauge and Higgs field (A, ϕ) associated with the trivial SU(2) bundle P . Moreover
let Ẽ ∼= R3 × C2 be the rank-2 complex vector bundle associated with P by the
standard6 matrix representation of SU(2). Over an oriented line l ∈ MT with
direction u one can define a 2-dimensional complex vector space

El =
{
s ∈ Γ(l, Ẽ) | (Du − iϕ)s = 0

}
,

where Γ(l, Ẽ) is the space of (smooth) sections of Ẽ over the line l, and Du is
the covariant derivative in the direction of l. This gives a corresponding complex
vector bundle E → MT called the monopole bundle. MT has an involution
l → −l coming from reversing the orientation of a line, and this lifts to a map
El → E−l.

Remark 3.2.1. In [Hit82, Hit83] Hitchin uses the notation E, Ẽ the other way
around.

Remark 3.2.2. The operator (Du − iϕ) is the Dirac operator considered in
[Wei79] when Weinberg gave the dimension of the moduli space of monopoles.

Now we have seen in §2.1.3 that MT can be given the structure of a com-
plex manifold, whereby it is isomorphic to TP1, and the orientation-reversing
involution on MT corresponds to an antiholomorphic involution τ of TP1 (see
Definition 2.1.65). Moreover, when (A, ϕ) corresponds to a BPS monopole, it is
a consequence of the hyperkähler moment map picture discussed in §3.1.2 that
the operator defining E is in fact holomorphic [Hit87, §II.2], and so we get the
following theorem.

Theorem 3.2.3 ([Hit82], Theorem 4.2). If A, ϕ, satisfy the SU(2) BPS equation
then E → TP1 is a holomorphic vector bundle such that

• E is trivial along the image of a real section of TP1 → P1, that is the image
of a section invariant under τ ,

• E has a symplectic structure, that is a symplectic form ωz on each fibre Ez

varying holomorphically with z, and

• E has a quaternionic structure (in the sense of §2.1.3), that is an antilinear
map σ : Ez → Eτz such that σ2 = −1 varying antiholomorphically in z.

Moreover, every such E gives a solution to the BPS equations.

Remark 3.2.4. Hitchin [Hit82, p. 587] remarks that nothing about the proof of
Theorem 3.2.3 is specific to SU(2), and so can be rephrased for any real form of
a complex Lie group.

6Calling this representation the ‘standard’ representation is using terminology from [Hal15,
§4.2].
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Remark 3.2.5. Hitchin [Hit82] remarks that the approach of using TP1 to study
objects in R3 was first done by Weierstrass in his study of minimal surfaces.
Small takes this further in [Sma02] to consider the minimal surfaces determined
by monopoles.

The Spectral Curve

To include all the information for a monopole solution we also need to consider
boundary conditions. The following result shows that this is not immediate.

Lemma 3.2.6 ([Hit87], p. 37). Not every line admits nontrivial L2 solutions to
(Du − iϕ)s = 0.

This leads us to make the following definition.

Definition 3.2.7 ([Hit87], p. 37). A spectral line is l ∈MT in the direction u
along which

(Du − iϕ)s = 0

admits a nontrivial L2 solution. The spectral curve C ⊂ TP1 is the collection
of spectral lines after identifying MT and TP1.

At this point the name “spectral curve” is unjustified, as we only know that
that the spectral curve is some subset of TP1. In fact, it is a consequence of the
proof of Lemma 3.2.6 that the spectral curve lies in some compact subset of TP1,
and so provided it is closed it is also compact [Hit82, p. 595]. To get a geometric
description of the curve, we first note that along any given line parametrised by
t, using the asymptotic form of A, ϕ in the ’t Hooft gauge7 [tH74]

ϕ ∼
(
1− k

2r

)(
i 0
0 −i

)
+O(r−2),

there is a unique (up to scale) solution s± that is normalisable with respect to the
L2 norm as t → ±∞. As such we define the holomorphic line bundles L± ⊂ E
corresponding to such solutions. In terms of these we can write the spectral curve
as C = {z ∈ TP1 |L+

z = L−
z }. Recalling Definition 2.1.69 the key result is then

the following.

Proposition 3.2.8 ([Hit82], Theorem 6.3). L+ ∼= L(−k), and E can be given as
an extension of line bundles

0→ L+ → E → (L+)∗ → 0,

equivalently
0→ L(−k)→ E → L∗(k)→ 0.

The proof proceeds by showing that L+ is a holomorphic subbundle of E,
whereby one knows there is an SES 0→ L+ → E → L′ → 0 for some line bundle
L′. The symplectic form on E ensures that L′ = (L+)∗, and then Hitchin goes

7This is called the ‘Abelian gauge’ in [AFG75].
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on to identify L+ ∼= L(−k). In this context one should think of L as being the
monopole bundle corresponding to the trivial solution of the U(1) BPS equation.
Clearly this process could be carried out using L− instead so one also has that E
can be written as an extension 0→ L− → E → (L−)∗ → 0.

Moreover, as τ corresponds to reversing the orientation of geodesics in minitwistor
space, it must be the case that τ ∗L+ = L−. This allows us to identify L− from the
identification L+ ∼= L(−k), recalling that g01 = e−η/ζζ−k is the transition function
for L(−k), hence τ ∗g01 = e−η/ζ(−ζ)k is the transition function for τ ∗L(−k), and
it must be the transition function from Ũ0 to Ũ1. Up to a factor of (−1)k, the
term e−η/ζ(−ζ)k is equal to the transition function from Ũ0 to Ũ1 of L∗(−k), so
L− ∼= L∗(−k).

As such, restricting to C where L+ = L− one has L ∼= L∗ and so the line
bundle L2 → C is trivial. Hence, temporarily just assuming that C is a smooth
genus-g curve, L ∈ Pic0(C) and the corresponding vector in the Jacobian is a 2-
torsion point, which imposes g constraints on the period matrix of C. Moreover,
because τ maps L → L∗ ∼= L−1, L is an imaginary point in Jac(C) under the
complex structure induced by τ . As such, the g constraints imposed on C are real
constraints.

The k occurring in Proposition 3.2.8 is the charge of the corresponding monopole,
and the construction of E as an extension is the equivalent of the Ak ansatz for
the construction of charge-k instantons [AW77]. It is a result of homological al-
gebra that extensions of holomorphic vector bundles over a complex manifold X
of the form

0→ L1 → E → L2 → 0

are classified by sheaf cohomology H1(X,L1 ⊗ L−1
2 ). To see this we require two

facts:

1. given R-modules A, B, equivalence classes of extensions of A by B are in
1-1 correspondence with Ext1R(A,B) [Wei95, Theorem 3.4.3],

2. fixing a sheaf of R-modules F on a ringed space (X,R), H1(X,F ) =
Ext1R(R,F ), which follows as the sheaf cohomology and Ext functors are
the right-derived functors of the same global section functor Γ(X, ·) =
HomR(R, ·).

The result then follows by thinking of the line bundles as sheaves of OX-modules
and tensoring the SES to get

0→ L1 ⊗ L−1
2 → E ⊗ L−1

2 → OX → 0.

This can also be interpreted as saying that the transition function of E is upper
triangular, with the diagonal entries being the transition functions of L1,2, and
the off-diagonal entry giving maps in Hom(L2, L1) (see Theorem 3.2.33). As such,
the monopole bundle is classified by a cohomology class Γ ∈ H1(TP1, L2(−2k)).

We can now express the spectral curve as an algebraic curve concretely.

Theorem 3.2.9 ([Hit82], Proposition 7.3). The spectral curve is represented in
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Ũ0 by the polynomial

P (ζ, η) = ηk + a1(ζ)η
k−1 + · · ·+ ak(ζ) = 0, (3.3)

where ar is a polynomial of degree 2r, i.e. ar ∈ H0(P1,O(2r)).

Proof. Recall that we have a symplectic form ω on E. As we want to find the z ∈
TP1 such that L+

z = L−
z , this is equivalent to finding the z such that ω(L+

z , L
−
z ) =

0. The concept of projection in E can be defined using ω, and so the spectral
curve is now given by the z ∈ TP1 such that the projection map Pz : L

−
z → (L+

z )
∗

is the zero map (viewed as a projection of subspaces of Ez). We can view Pz ∈
(L−

z ⊗ L+
z )

∗, so we are getting the zeros of the section

P ∈ H0(TP1, π∗O(2k)),

recalling π is the projection TP1 → P1. As Ũ0,1 give a Leray cover of TP1

with respect to the sheaf π∗O(2k), such a section is given by (f0, f1) with the fi
holomorphic on Ũi satisfying

f0(ζ, η) = ζ2kf1(1/ζ, η/ζ
2),

on Ũ0∩ Ũ1. For the fi to be holomorphic we must have that the Laurent series for
f0 contains no ζ−1 terms, and that the series for f1 likewise contains no ζ terms.
This limits the range of their expansions so we must have

f0(ζ, η) =
k∑

i=0

ai(ζ)η
k−i,

and because of the ζ2k term we must have that ai has degree at most 2i. Moreover,
in order to get compactness we know that as η →∞ we cannot have any solutions,
and so as a0 is a constant it must be the case a0 ̸= 0. Hence we rescale to get

f0(ζ, η) = ηk + a1(ζ)η
k−1 + · · ·+ ak(ζ).

I will often abuse notation by writing f0 = P and calling this the section.

Remark 3.2.10. By thinking of the spectral curve as the zero locus of a section
of the line bundle π∗O(2k), we can equivalently think of it as a (Weil) divisor in
the linear system |π∗O(2k)| recalling the line bundle/divisor correspondence from
§2.1.2. As such, by Proposition 2.1.72 we know g(C) = (k− 1)2. This result only
applies when the curve is nonsingular; one must use [Hit83, Proposition 3.1] and
the arithmetic genus when the curves are reducible.

This approach to getting the genus is succinct, but it presents two issues:

1. it does not give an intuition as to what the differentials on the curve are,
and

2. it is rather nonelementary.
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Tackling the second point first using the machinery of Riemann-Hurwitz, suppose
we wrote

ηk +
k∑

i=1

ai(ζ)η
k−i =

k∏
j=1

[η − ηj(ζ)] ,

whereby ai is the elementary symmetric polynomial of degree i in the ηj. A generic
ζ has k preimages, and the branch points are the ζ∗ where some ηj coincide.
Generically we may ensure these branch points are not at ζ =∞. Around such a
ζ∗, the part of the curve contributing to multiplicity will look like η2−p(ζ−ζ∗) = 0
where p is a quartic polynomial, so one gets a contribution of 4 to the ramification
index. Hence

g(C) = 1− k + 1

2
· 4 ·

(
k

2

)
= (k − 1)2.

Tackling now the first point, one can check that the differentials

ωi,j :=
ζ iηjdζ

∂ηP
, i, j ≥ 0,

are holomorphic if i+2j ≤ 2k−4, which gives the correct number of differentials.
I will denote the basis {ωi,j} as

{
Ω(l) | 1 ≤ l ≤ g

}
, ordering lexicographically in

j, i [HMR00, (23)], that is

Ω(1) =
ηk−2dζ

∂ηP
, Ω(2) =

ηk−3dζ

∂ηP
, Ω(3) =

ηk−3ζdζ

∂ηP
, . . . , Ω(g) =

ζ2k−4dζ

∂ηP
.

(3.4)

The action of τ preserves C, that is the variety corresponding to P (ζ, η) is
preserved, as is clear by considering it as the set of spectral lines. This means
P must transform in a predictable way under τ , and this is made precise by the
following lemma (recalling the notation of Definition 2.1.66).

Lemma 3.2.11. (−1/ζ2)kP = P τ .

Proof. Note first that, as we know C is preserved by the pullback of τ , it must
be the case that P ◦ τ = fP for some function f . Recall that when we write
P ∈ H0(TP1, π∗O(2k)), we are using η to denote the tautological section η d

dζ
,

which pulls back under τ to −η d
dζ
. Hence, as we fixed that P was monic of

degree-k in η, we find τ ∗P = (−1/ζ2)kP .

Corollary 3.2.12. If (ζ, ηj(ζ)) is a root of P , (−1/ζ,−ηj(ζ)/ζ
2
) is a root of P .

More specifically, if ζ is a branch point, so is −1/ζ, and the monodromy8 at each
has the same cycle type.

We can check that this condition implies ai(ζ) = (−1)iζ2iai(−1/ζ̄), and so
each ai can be described by 2i+ 1 real parameters as [Bra11, p. 306]

ai(ζ) = χi

i∏
l=1

(
αi,l

αi,l

) 1
2

(ζ − αi,l)

(
ζ +

1

αi,l

)
, χi ∈ R, αi,l ∈ C. (3.5)

8I did not cover monodromy in §2.1, but for an introduction to the fundamental concepts
see [Mir95, §III.4].
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This gives a total of
∑k

i=1 2i+ 1 = k2 + 2k real parameters.

Remark 3.2.13. The data (C, τ) of a Riemann surface and an antiholomorphic
involution on the surface defines a real Riemann surface, or equivalently a
Klein surface [Sch16].

We have thus seen that the monopole determines the spectral curve, and in
fact the converse is true.

Theorem 3.2.14 ([Hit82], Theorem 7.6). The cohomology class corresponding
to E is Γ = δ(ρ) for ρ ∈ H0(C, L2) a trivialisation and

δ : H0(C, L2)→ H1(TP1, L2(−2k))

the connecting map of a long exact sequence of cohomology. In particular, C
determines E.

The particular short exact sequence of sheaves of sections inducing the long
exact sequence is

0→ OTP1(L2(−2k)) ⊗P→ OTP1(L2)→ OC(L
2).

Coupled to Theorem 3.2.3, this says that given the spectral curve of a monopole,
one can in principle determine the original monopole.

Remark 3.2.15. Historically, it was noticed that imposing g = (k − 1)2 real
constraints on the k2+2k parameters leaves 4k−1 degrees of freedom, which was
the maximal number of degrees of freedom found of a solution ‘constructed’ using
twistor methods and the Ak ansatz in [CG81], which suggested that the degrees
of freedom of the spectral curve could fully encode the degrees of freedom in the
monopole solution.

Example 3.2.16 ([Hit82], Example 7.7). The most generic form of a curve given
by Equation 3.5 when k = 1 is

η +
[
(ix1 − x2)− 2x3ζ + (ix1 + x2)ζ

2
]
= 0,

where (x1, x2, x3) := x ∈ R3. This has three real parameters, so one may expect
this to be a monopole spectral curve, and indeed we will see in Example 3.2.51
that this is the spectral curve for a hedgehog centred at x.

The Hitchin Conditions and the Ercolani-Sinha Constraints

Having seen some properties of the spectral curve, we make the following defini-
tion.

Definition 3.2.17 ([Hit83], p. 146). The Hitchin conditions on a compact
algebraic curve C ⊂ TP1, C ∈ |π∗O(2k)|, are

1. C has no multiple components,
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2. C is real with respect to the real structure τ ,

3. L2 → C is trivial and L(k − 1)→ C is real (in the sense of §2.1.3), and

4. ∀s ∈ (0, 2), H0(C, Ls(k − 2)) = 0.

These conditions are necessary and sufficient conditions on a curve for it to
be a monopole spectral curve [Hit83]; as we will see later in Theorem 3.2.47 this
fits into a triality with monopole gauge data and Nahm data. Hitchin interprets
the fourth condition as “equivalent to the non-singularity of the monopole”. Hur-
tubise remarks that the condition that L(k − 1)→ C is real can be rephrased as
saying that the natural pairing on sections of L2 given by ⟨s, s′⟩ = sτ ⊗s′, coming
from the fact τ ∗L2 = L−2, is (−1)k−1-definite [Hur83].

Example 3.2.18. The final condition on H0(C, Ls(k−2)) was not initially iden-
tified in [Hit82], Hitchin’s first paper defining the monopole spectral curve. There
the spectral curves corresponding to the axially-symmetric monopoles found in
[War81c, Pra81, PR81, FHP81] were written down as

P (ζ, η) =

{ ∏l
i=1 [η

2 + (k0/2 + ki)
2π2ζ2] , k = 2l,

η
∏l

i=1 [η
2 + k2i π

2ζ2] , k = 2l + 1,

for some ki ∈ Z. This was fixed in [Hit83, Theorem 8.2], where it was shown that
the condition on H0 forces k0 = 1, ki = i.

Remark 3.2.19. Using the adjunction formula in the form of [Har77, Propo-
sition II.8.20], or equivalently by viewing the spectral curve as the nonsingular
complete intersection of a quadric and cubic in P3 (as TP1 is the smooth part of
a singular quadric) and using [Har77, Exercise II.8.4], one finds that the canon-
ical line bundle on the curve is KC = π|∗C O(2k − 4) [Bie07].

Therefore, imposing the Hitchin conditions one finds that L(k − 2) is a non-
vanishing even theta characteristic. Moreover, from [Hit83, Proposition 4.5] we
know

dim0(C, π∗O(k − 2)) =

⌊k/2−1⌋∑
i=0

(k − 2i− 1) =

{
j2, k = 2j,

j(j + 1), k = 2j + 1.

This lets us calculate the parity of the characteristic π∗O(k − 2); for example
when k is odd π∗O(k− 2) is a vanishing even characteristic. Indeed, when k = 3
it is the unique such characteristic.

By Proposition 2.1.17 we know degLs(k − 2) = k(k − 2) = g(C) − 1, so we
get the picture that Ls(k − 2) is a straight line curve in Wg−1 of period 2 in
the direction [η/ζ] ∈ TLs(k−2) Pic

g−1(C) ∼= H1(C,OC), not intersecting the theta
divisor for any s ∈ (0, 2). Changing the basepoint of the AJ map which maps
the degree-(g − 1) divisor into Wg−1 ⊂ Jac(C) just corresponds to a translation,
so this statement is basepoint independent. The condition of not intersecting
the theta divisor is hard to impose explicitly on a curve, though as described in
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Example 3.2.18 it was done for axially symmetric monopoles, and so now we shall
discuss different ways of understanding the Hitchin conditions.

One approach is to identify [η/ζ] ∈ H1(C,OC) as a vector in Jac(C), or choos-
ing a basis as U ∈ Cg. Recalling the notation from Remark 3.2.10 we call
(ζ, ηj(ζ)) the preimages of ζ in C and let 0j = (0, ηj(0)), ∞j the image of 0j
under τ . By Remark 2.1.71 [η/ζ] corresponds to the set of Laurent tails

{
r0j
}
,

r0j =
ηj(0)

ζ
, and under Serre duality this gives the linear map on holomorphic

differentials

ω 7→
∑
j

Res0j

(
η

ζ
ω

)
. (3.6)

Remark 3.2.20. Labelling 0j = (0, ηj(0)) gives an explicit ordering to the sheets
above ζ = 0. We can then order the sheets above a general ζ by analytically
continuing along a path from 0 to ζ. In general, because of monodromy of the
curve C, this ordering will not be path independent and so we should be aware that
any time we use ηj(ζ) in an expression, either the expression should be invariant
under permutations of the index j (as with the Equation 3.6) or be defined on the
curve with branch cuts.

To get the coordinates of a vector in the Jacobian viewed at Cg/Λ, we first
fix a canonical homology basis {aj, bj} and basis of a-canonically normalised
differentials9 {νj} (i.e.

∫
ak
νj = δjk,

∫
bk
νj = τjk, where τ is the Riemann matrix).

The jth entry of the vector in Cg corresponding to a linear map f ∈ H0(C, KC)
∗

is now f(νj). Hence the jth entry of the vector in Cg corresponding to [η/ζ] is

Uj =
∑
l

Res0l

(
η

ζ
νj

)
.

If one can introduce a differential of the second kind γ0 such that γ0 ∼ d(η/ζ)
around 0j and γ0 is holomorphic everywhere else we may use the reciprocity law
for differentials of §2.1.2 to get that

Uj =
1

2πi

∑
l

∣∣∣∣
∮
al
νj

∮
al
γ0∮

bl
νj

∮
bl
γ0

∣∣∣∣ =
[

1

2πi

∮
bj

γ0

]
− τjl

[
1

2πi

∮
al

γ0

]
.

Such a differential exists, and moreover if we have two such differentials γ0, γ
′
0

then their difference is a everywhere holomorphic differential, so fixing the g
values

∮
ak
γ0 uniquely defines γ0 [GH78, p. 244]. I shall set

∮
ak
γ0 = 0 following

standard precedent.

Definition 3.2.21. Defining γ0, we call the vector U ∈ Cg defined by

Uj =
1

2πi

∮
bj

γ0

the winding vector.

9With regards to monopoles I shall use τ for both the antiholomorphic involution and the
Riemann matrix. Context shall hopefully be sufficient to distinguish each.
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Remark 3.2.22. There is nothing distinguished about the choice of ζ = 0 for
the location of the residues here. As η/ζ is a global meromorphic function, the
corresponding Laurent tail divisor gives the zero cohomology class in H1(C,OC),
and adding this to [η/ζ] would cancel the residues at ζ = 0, shifting them to be
taken at ζ =∞. One could analogously define a differential γ∞ ∼ d(−η/ζ) here,
which would be related to γ0 by γ∞ = d(−η/ζ) + γ0 [ES89, BE10b].

Proposition 3.2.23. τ : U 7→ −U

Proof. Applying τ to the set of Laurent tails we get
{
r∞j

}
where r∞j

= −ηj(0)ζ =
limP→∞j

(
η
ζ

)
(P ) [ES89, p. 395]. As such by our definition of γ∞ we would have

τ : Uj 7→
−1
2πi

∮
bj

γ∞ =
1

2πi

∮
bj

[
−γ0 + d

(
η

ζ

)]
= −Uj.

The triviality of L2 → C can now be understood in terms of the winding
vector.

Proposition 3.2.24 ([HMR00], §3, [BE10b], Lemma 2.1). Let C ⊂ TP1 be a
nonsingular curve in |π∗O(2k)|, Ω(l) be the ordered holomorphic differentials as
per Equation 3.4, and Ω = (A,B) the period matrix with respect to cycles ai, bi.
The triviality of Ls|C for s ∈ R is equivalent to the existence of a solution for
integers n,m ∈ Zg to the equation

g∑
j=1

Aljnj +Bljmj = −s δ1l, (3.7)

equivalently the existence of a homology cycle es satisfying∮
es

Ω(l) = −s δ1l. (3.8)

The n,m found are such that es =
∑

i aini + bimi and the winding vector corre-
sponding to L is given by

U =
1

s
[n+ τm] ,

where τ = A−1B is the Riemann matrix.

Proof. It will be informative to write out the proof of [HMR00]. Ls is trivial if
we have nowhere-zero holomorphic functions βi on Ũi ∩ C respectively such that
β0 = e−sη/ζβ1 on the intersection Ũ0 ∩ Ũ1 ∩C. As ζ → 0 on the jth sheet we have

d

(
η

ζ

)
∼
[
−ηj(0)

ζ2
+O(1)

]
dζ ⇒ d log β1 ∼

[
−sηj(0)

ζ2
+O(1)

]
dζ

as we cannot have an essential singularity in β0. If we take ω to be a holomorphic
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1-form on C then

ω =

[∑k−2
i=0 αi(ζ)η

k−2−i
]
dζ

∂ηP
(3.9)

for some polynomials αi of degree 2i. Introducing the notation gj such that
ω|0j = gj dζ|ζ=0, then thinking of d log β1 as a differential of the second kind the
reciprocity law says

1

2πi

g∑
i=1

[∮
ai
ω
∮
ai
d log β1∮

bi
ω
∮
bi
d log β1

]
= −s

k∑
j=1

ηj(0)gj.

Now for any cycle c ∈ H1(C,Z) have that
∮
c
d log βi ∈ 2πiZ, and so we may

introduce the notation

mj = −
1

2πi

∮
aj

d log β1, nj =
1

2πi

∮
bj

d log β1.

Note the integrals for β0 will be exactly the same as d log β0 = −s d
(

η
ζ

)
+d log β1,

and d
(

η
ζ

)
will have zero periods as it is an exact differential. We can thus define

the cycle es =
∑

j njaj +mjbj such that

∮
es

ω = −s
k∑

i=1

ηi(0)gi.

We can now calculate

(∂ηP )(ζ, η) =
k∑

i=1

k∏
j ̸=i

[η − ηj(ζ)]⇒ (∂ηP )(ζ, ηi(ζ)) =
k∏

j ̸=i

[ηi(ζ)− ηj(ζ)] ,

and hence

gi =

∑k−2
j=0 αj(0)η

k−2−j
i (0)∏k

j ̸=i [ηi(0)− ηj(0)]
,

⇒
k∑

i=1

ηi(0)gi =
k∑

i=1

∑k−2
j=0 αj(0)η

k−1−j
i (0)∏k

j ̸=i [ηi(0)− ηj(0)]
,

=
k−2∑
j=0

αj(0)

[
k∑

i=1

ηk−1−j
i (0)∏k

l ̸=i [ηi(0)− ηl(0)]

]
= α0,

using the Vandermonde identity, or equivalently Lagrange Interpolation (LI), and
that α0 is a constant. The result in terms of A,B then follows from expanding
out the integral.

In order to get the expression for U , note that d log β1 is a differential of the
second kind satisfying 1

s
d log β1 ∼ d(η/ζ) around ζ = 0, but

∮
aj

1
s
d log β1 ̸= 0. As
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such we can get the differential of the second kind γ0 as γ0 =
1
s

[
d log β1 + 2πi

∑
j mjνj

]
.

Definition 3.2.25. We call the requirement of a solution to Equation 3.7 (equiv-
alently 3.8) in the case s = 2 the Ercolani-Sinha (ES) constraints, and we
call es the Ercolani-Sinha cycle.

Proposition 3.2.26. If the ES cycle es exists it is unique.

Proof. Suppose we have two cycles es, es′ both satisfying the ES constraints, then
for any holomorphic differential ω we would have

∫
es−es′

ω = 0. As such, by the
nonsingularity of the period matrix this implies es = es′.

Remark 3.2.27. We would expect a solution to the ES constraints to exist only
if the curve had sufficient symmetry for the components of the period matrix to
be related to each other such that radicals and transcendentals cancel out of the
resulting equations. In fact, the satisfying of the ES constraints is enough to argue
that a monopole spectral curve must be transcendental, i.e. its coefficients cannot
be contained in Q̄ [Bra21].

Remark 3.2.28. Note the statement of Proposition 3.2.24 is written to empha-
sise the fact that we required none of the Hitchin conditions.

Suppose now a curve C satisfies the ES constraints, and moreover is real
with respect to the antiholomorphic involution τ on TP1. Here τ restricts to a
antiholomorphic involution of C, so induces a linear map τ∗ : H1(C,Z)→ H1(C,Z)
satisfying τ 2∗ = Id and

∀a, b,∈ H1(C,Z), a ◦ b = −(τ∗a) ◦ (τ∗b),

that is τ is orientation-reversing. We can describe how the ES cycle behaves
under τ .

Proposition 3.2.29 ([HMR00], §3). τ∗es = −es.

Proof. Houghton et al. prove this using the action of τ on the differentials. It is
also an immediate consequence of Proposition 3.2.23 and Proposition 3.2.24 for
us. I shall also give an additional proof from a different perspective in Remark
3.2.34.

Remark 3.2.30. One may verify this in Sage as done for the tetrahedral 3-
monopole [HMM95] in Ercolani-Sinha_ vector_ tetrahedral_ 3-monopole.

ipynb . The action of τ∗ is found computationally using [KK14, Proposition 3.1].

Remark 3.2.31. One can ask about the action of Aut(C) on es, or equiva-
lently the action on U . It was shown in [HMR00] that es is invariant under
the A4 tetrahedral subgroup of the S4 × C3 full automorphism group of the tetra-
hedral 3-monopole spectral curve, and more generally it was shown in [HMR00,
Bra11] that es is invariant under the action of any rotation (see §3.3.1). Braden
proved this algebraically, whereas Houghton et al. used a continuity argument.
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Computations in the Sage notebook Ercolani-Sinha_ vector_ tetrahedral_

3-monopole. ipynb show that, on the tetrahedral 3-monopole, the ES cycle is
invariant under the S4 subgroup of the automorphism group, but not under the
action of the C3.

This discussion shall be important in §3.4 as we can hope to simplify the
Hitchin conditions when we have a quotient map π : C → C/G := C ′. Such a map
gives an isogeny decomposition of the Jacobian

Jac(C) ∼ Jac(C ′)× Prym(C → C ′),

where Prym is the Prym variety, the orthogonal complement to Jac(C ′) with
respect to the polarisation on Jac(C) [Rie83, RCR19]. In the case where es is
invariant under the group action, it pushes down to a cycle on the quotient curve,
and so the corresponding vector U is a pullback from the quotient, hence lies in the
Jac(C ′) factor. We can then hope to impose the ES condition on this subvariety.

Finally, supposing on C one also imposes the nonsingularity condition of the
Hitchin constraints, one gets a further condition on the ES cycle.

Proposition 3.2.32 ([HMR00], §3). Let k > 1, then the Hitchin condition that
∀s ∈ (0, 2), H0(C, Ls(k − 2)) = 0 implies es is primitive, i.e. es is not an integer
multiple of another cycle.

The proof of this result uses two steps,

1. ∀s ∈ (0, 2), H0(C, Ls(k − 2)) = 0⇒ ∀s ∈ (0, 2), H0(C, Ls) = 0,

2. ∀s ∈ (0, 2), H0(C, Ls) = 0⇔ es is primitive.

As such, the proposition does not have an immediate converse, though in the
case of some curves the existence of a primitive ES cycle is in fact sufficient to
impose the fourth Hitchin condition. Denoting with Mk,NS the moduli space of
nonsingular k-monopole spectral curves satisfying the Hitchin constraints, and
Mk,ES the moduli space of nonsingular τ -invariant curves in |π∗O(2k)| satisfying
the ES constraints with es primitive, we then have Mk,NS ⊆ Mk,ES. Clearly in
the case k = 2 they are equal, and moreover in [BDE11, p. 646] the authors will
argue using the known dimension of the moduli space that in their case of certain
C3-invariant 3-monopoles, imposing the ES constraints with a primitive cycle
is itself sufficient. [HMR00, p. 242] and [BE06, p. 53] give examples of curves
which satisfy the ES constraints with a primitive cycle, but not the full Hitchin
condition on H0(C, Ls(k − 2)), and hence show that the inclusion can be proper.
One can ask about the dimension of Mk,ES; to do so it is helpful to take the
adapted cohomology basis of Vinnikov [Vin93] defined such that the differentials
satisfy τ ∗νl = νl. This basis can be related to that of Equation 3.4, whereby one
finds ν1 = iΩ(1), and hence the ES constraints become

(
A B

)(n
m

)
= v :=


−2i
0
...
0

 . (3.10)

122



Symmetries of Riemann Surfaces and Magnetic Monopoles 123

In [KK14] the authors take a homology bases adapted to the cohomology basis
of Vinnikov and show A = A, B = −B + AH, where H is some integer matrix
fixed by the topological type of the action of τ , and hence in our case fixed simply
by the genus g. Taking the sum and difference of Equation 3.10 and its complex
conjugate respectively, we get the following real equations

A(2n+Hm) = 0,

(2B − AH)m = 2v.
(3.11)

The first of Equations 3.11 imposes no constraints on the period matrix and is
simply a discrete condition on n,m corresponding to ( 1 H

0 −1 ) (
n
m ) = − ( n

m ) i.e.
τ∗es = −es, but the second equation imposes g = (k−1)2 real constraints on A,B.
Given that the real dimension of the space of nonsingular curves in |π∗O(2k)| is
k2 + 2k, we find dimRMk,ES = k(k + 2) − (k − 1)2 = 4k − 1 = dimRNk =
dimRMk,NS, so Mk,NS is a codimension-0 subset of Mk,ES.

An alternative way of interpreting the triviality of L2 comes from the work
of Corrigan & Goddard, who work directly with the cohomology class Γ ∈
H1(TP1, L2(−2k)), interpreting it as a component of the transition function of
the monopole bundle. In [CG81] they use the twistor perspective to write

Γ =

[
eγ+χ + (−1)ke−γ−χτ

ζ−kP

]
, (3.12)

where γ = η/ζ, χ(ζ, η) =
∑k−1

i=0 η
iχi(ζ) for χi(ζ) holomorphic on Ũ0 (in the sense

that is has a Laurent series in ζ), and P = P (ζ, η) a polynomial which turns out
to be that which defines C. With this data they define

Θ := 2γ + χ+ χτ . (3.13)

This object Θ shall be key in the ensuing discussion of the work of Corrigan &
Goddard.

Theorem 3.2.33. The form of Equation 3.12 can be deduced assuming one has
a monopole spectral curve and unpacking the connecting map of Theorem 3.2.14.

Proof. As per Remark 2.1.2 I shall compute using Čech cohomology with the
cochain differential δ̌ : Čk → Čk+1, using that Ũ0,1 is a Leray cover of TP1 with
respect to the sheaves L2, L2(−2k).

It will be helpful to identify exactly what component of the transition function

is being spoken about. Given a short exact sequence 0→ L(−k) α→ E
β→ L∗(k)→

0 we know there is a choice of vector subspace Vz ≤ Ez varying holomorphically
in z ∈ TP1 such that Ez = α(L(−k)z)⊕ Vz and β(Vz) = L∗(k)z. Writing g01 for
the transition function of L(−k), F01 for the transition function of E, and taking
sections f0,1 ∈ Γ(Ũ0,1, E) respectively we know

β(F01f1) = β(f0) = g−1
01 β(f1)⇒

(
0 1

)
F01 = g−1

01

(
0 1

)
⇒ F01 =

(
∗ ∗
0 g−1

01

)
.

Moreover, if we instead denote with f0,1 sections of L(−k) we have α(g01f1) =
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α(f0) = F01α(f1) and hence(
1
0

)
g01 = F01

(
1
0

)
⇒ F01 =

(
g01 ∗
0 g−1

01

)
⇒ F10 =

(
g−1
01 −∗
0 g01

)
.

Recall for L(−k) we have g01 = e−γζ−k. It is the ∗ term that is the component of
the transition function Corrigan & Goddard write down. The cohomology class
Γ ∈ H1(TP1, L2(−2k)) determining E was really classifying the bundle E⊗L(−k)
as an extension 0 → L2(−2k) → E ⊗ L(−k) → OTP1 → 0. As such, E ⊗ L(−k)
has a transition function

F ′
01 =

(
g201 ∗′
0 1

)
,

and so ∗′ = g01∗ = e−γζ−k∗.

An alternative way to connect the cohomology class in H1(TP1, L2(−2k)) to
the component of the transition function is pick a basis

{
v ⊗ (dζ)k/2

}
of (the fibres

of) L(−k) ∼= L+ and the dual basis

{
v∗ ⊗

(
d
dζ

)k/2}
of L∗(k). Here v represents

a choice of basis trivialising L over Ũ0. Then the component of the transition
function given by an element fl ∈ Č1(TP1,Hom(L∗(k), L(−k))), where l is the

linear map specified by v∗ ⊗
(

d
dζ

)k/2
→ v ⊗ (dζ)k/2, is simply f . To go between

fl ∈ Č1(TP1,Hom(L∗(k), L(−k))) and f ′l′ ∈ Č1(TP1,Hom(O, L2(−2k))), where
l′ is the linear map determined by 1 → v ⊗ v ⊗ (dζ)k, we must tensor with the
identity map v⊗ (dζ)k/2 → v⊗ (dζ)k/2 in Č1(TP1,Hom(L(−k), L(−k))). On the
overlap this identity map is given by the function e−γζ−k, the transition function
of L(−k), because the basis vectors are different on the two open sets; as such
we have fζkeγ = f ′.

Write now the SES of sheaves

0→ OTP1(L2(−2k)) ⊗P→ OTP1(L2)
i∗→ OC(L

2)→ 0,

where i∗ is the direct image functor of the inclusion map i : C ↪→ TP1. This
induces the LES of cohomology

· · · → H0(TP1, L2)→ H0(C, L2)
δ→ H1(TP1, L2(−2k))→ H1(TP1, L2)→ . . . ,

and we are told by Hitchin that δ(ρ) = Γ is the class defining the monopole
bundle for any ρ ∈ H0(C, L2). Abusing notation, take a class [ρ] ∈ H0(C, L2) for
ρ ∈ Č0(C, L2), and by exactness we have ρ = i∗ρ̃ for some ρ̃ ∈ Č0(TP1, L2). Then
we have, unpacking the proof of the Snake lemma,

0 = δ̌(ρ)︸ ︷︷ ︸
as H0 δ̌-closed

= δ̌(i∗ρ̃) = i∗δ̌(ρ̃)⇒ δ̌(ρ̃) ∈ ker(i∗)∩Č1(TP1, L2) = Im(⊗P )∩Č1(TP1, L2).

Hence we know there exists an element of H1(TP1, L2(−2k)) which, when ten-
sored with P , gives [δ̌(ρ̃)]. The connecting differential δ is then defined to give
this element, i.e. δ([ρ]) = [δ̌(ρ̃)⊗ P−1].
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As Ũ0,1 is a Leray cover of TP1 an element ρ̃ ∈ Č0(TP1, L2) is represented by a
pair (β0, β1) where βi is holomorphic on Ũi. The Čech differential of this element
is δ̌((β0, β1))10 = β0 − e−2γβ1 ∈ Č1(TP1, L2) (implicitly writing the function
restricted to Ũ0 ∩ Ũ1 in Ũ0 coordinates) by definition [GH78, §0.3], hence we get
that the transition function for E is

F10 =

(
ζkeγ Γ
0 ζ−ke−γ

)
, Γ = −ζkeγ δ̌((β0, β1))01

P
=

[
eγβ0 − e−γβ1

ζ−kP

]
. (3.14)

The condition that there exists [ρ] ∈ H0(C, L2) such that ρ = i∗ρ̃ means β1 =
e2γβ0 restricted to Ũ0 ∩ Ũ1 ∩ C, and as such we know the numerator vanishes
whenever the denominator vanishes.

As (β0|C , β1|C) determines a nonzero global holomorphic section, i.e. an ele-
ment of H0(C, L2), we know that if D is the divisor of the section l(D) > 0 and
so D is linearly equivalent to an effective divisor. Moreover, because L2 is trivial
on C we in fact know l(D) = 1 and so D is effective. As deg(D) = 0, it follows
that D = 0, and the βi must be nonzero everywhere on C. Write βi|C = eδi for
some (possibly multivalued) function δi which must be holomorphic on C ∩ Ũi.
Note δi plays the role of log βi in the proof of Proposition 3.2.24. From the SES
of sheaves [Hit82]

0→ IC/TP1 ⊗OTP1(L2)→ OTP1(L2)→ i∗OC(L
2)→ 0,

where IC/TP1 is defined to be the kernel of the map OTP1 → i∗OC, we get

i∗OC(L
2) ∼= OTP1(L2)⧸[IC/TP1 ⊗OTP1(L2)

]. (3.15)

The ideal sheaf IC/TP1 is generated by P and so Equation 3.15 says we can extend

from Ũi ∩ C to all of Ũi to write

βi = eχi + Pβi,coset,

with βi,coset, χi holomorphic on Ũi and χi|C = δi. We fix the ambiguity in the χi

extending δi by asking that it contains no terms of degree k or higher in η, i.e.
we take the residue mod P , as P is of degree k. Hence

Γ =

[
eχ0+γ − eχ1−γ

ζ−kP

]
.

The βi,coset term has disappeared as it corresponds to a contribution in the image
of Č0(TP1, L2(−2k))→ Č1(TP1, L2(−2k)) and so cohomologically it is zero.

We finish by proving a reality condition, namely that eχ1 = (−1)k−1e−χτ
0 . To

do so recall that we also had the extension 0 → L∗(−k) → E → L(k) → 0
defining E. The transition function for E coming from the trivialisation ρ is then

F10 =

(
ζke−γ Γ′

0 ζ−keγ

)
, Γ′ =

[
e−χ0−γ − e−χ1+γ

ζ−kP

]
. (3.16)
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This comes from the fact that the element (β′
0, β

′
1) ∈ Č0(TP1, L−2) which restricts

to ρ must be (β−1
0 , β−1

1 ), which exists as βi is nowhere-zero on Ũi.

We also get the cohomology class in H1(TP1, L−2(−2k)) defining E by ap-
plying σ, the lift of τ to the bundle, to Γ as noted in [Hit82, §8]. Applying
σ to the (10) class δ̌((β0, β1))10P

−1 ∈ H1(TP1, L−2(−2k)) we get the (01) class
δ̌((βτ

1 , β
τ
0 ))01(P

τ )−1 as (βτ
1 , β

τ
0 ) ∈ Č0(TP1, L−2) is the class restricting to ρ. Now

recalling from §3.2.1 the (01) transition function of τ ∗L(−k) is gτ10 = (−ζ)−keγ,
σ maps the SES defining E as

0 L(−k) E (L(−k))∗ 0,

0 (−1)kL∗(−k) τ ∗E (−1)k(L∗(−k))∗ 0,

σ

where −1 represents the line bundle on TP1 with transition function −1. This
gives transition function for τ ∗E ∼= E

F01 =

(
(−ζ)−keγ σΓ

0 (−ζ)ke−γ

)
, σΓ = (−ζ)ke−γ δ̌((β

τ
1 , β

τ
0 ))01

(−1)kP
=

[
eχ

τ
1−γ − eχτ

0+γ

ζ−kP

]
.

Multiplying by (−1)k we find F01 =
(

ζ−keγ (−1)kσΓ

0 ζke−γ

)
and so comparing to Equation

3.16 we get Γ′ = (−1)k−1σΓ. As such we get the equations

e−χτ
1 = (−1)k−1eχ0 , e−χτ

0 = (−1)k−1eχ1 ,

so we can write, taking χ = χ0,

Γ =

[
eχ+γ + (−1)ke−χτ−γ

ζ−kP

]
.

Note the condition that eχ0 = (−1)k−1e−χτ
1 is exactly the requirement that the

pairing of sections on L2, ⟨s, s′⟩ = sτ ⊗ s′, is (−1)k−1-definite as described by
Hurtubise [Hur83].

Remark 3.2.34. We can now look at the proof of Proposition 3.2.24 again as
saying that

mj =
−1
2πi

∫
aj

dχ =
1

2πi

∫
aj

dχτ , nj =
1

2πi

∫
bj

dχ =
−1
2πi

∫
bj

dχτ ,

provided d log(−1)k−1 has zero periods (otherwise the periods of dχτ are aug-
mented by subtracting the periods of d log(−1)k−1). Using that for any c ∈
H1(C,Z),

∫
c
dχτ =

∫
c
d(τ ∗χ) =

∫
τ∗c
dχ we can again derive in a new way the

fact τ∗es = −es. In particular taking the Kalla and Klein canonical homology
basis so τ∗bj = −bj +Hjlal we find

nj =
−1
2πi

∫
bj

dχτ =
1

2πi

∫
−bj+Hjlal

dχ = −nj −Hjlml ⇒ 2n+Hm = 0.
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An alternative perspective is to view the periods of dχ, dχτ as the summands of
automorphy of the corresponding multivalued functions [For91, Theorem 10.13].
The triviality of L2 forces these two multivalued functions to have summands
of the opposite sign, but the summands are related by the action of τ , and this
constrains the possible values of the summands.

Remark 3.2.35. Note how Γ in Equation 3.12 differs from the component of the
transition function of [War81a, p. 568, Case (b)]

ΓWard =
ef + (−1)ke−f

ψ
,

where f = f τ , ψ = ψτ . Ward shows such a transition function satisfies the
required reality condition as(

ζkef ΓWard

0 ζ−ke−f

)(
0 −1
1 ζkψ

)
=

(
ΓWard (−ζ)ke−f

ζ−ke−f ψe−f

)
.

From [CG81, (3.5)], supposing we can write γ = µ−ν as a splitting over Ũ0,1,
we can decompose the transition function(

ζkeγ Γ
0 ζ−ke−γ

)
=

(
e−ν 0
0 eν

)(
ζk ρ
0 ζ−k

)(
eµ 0
0 e−µ

)
where ρ = eµ+νΓ. As such combining two transformations of this type we can say
that (

ζkeγ Γ
0 ζ−ke−γ

)
∼
(
ζkeΘ/2 ΓΘ

0 ζ−ke−Θ/2,

)
where ΓΘ = eΘ/2+(−1)ke−Θ/2

ζ−kP
is of the form given by Ward with ψ = ζ−kP ; ∼

indicates gauge equivalence, and this equivalence ends up not relying on the ability
to split γ. This computation is also given in different notation in [Cor82].

On the data of Θ satisfying Θτ = Θ Corrigan & Goddard will impose two
conditions necessary for the nonsingularity of the monopole.

Definition 3.2.36. The Corrigan-Goddard (CG) constraints on Θ are

1. that eΘ|C +(−1)k = 0, i.e. Θ|C ∈ πi [(k − 1) + 2Z], such that the numerator
vanishes wherever the denominator vanishes and moreover that,

2. defining the functions Θr(ζ) by Θ(ζ, η) = 2πi
∑k−1

r=0 Θr(ζ)
(

η
ζ

)r
,

∀ 2 ≤ r ≤ k − 1, |s| < r,

∮
|ζ|=1

Θr(ζ)ζ
sdζ

ζ
= 0,∮

|ζ|=1

Θ1(ζ)
dζ

ζ
= 2.

(3.17)

Equation 3.17 imposes
∑k−1

r=1 2r−1 = (k−1)2 constraints, which one can check
are actually real constraints, and moreover they (generically) are independent
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[ORS82]. We recognise this as imposing g(C) constraints, and so we might expect
that there is a relation to the g ES constraints.

A more cohomology-minded approach is to think of the function Θ as a rep-
resentative of a class [Θ] ∈ H1(TP1,OTP1), real as Θτ = Θ. The first CG con-
dition on Θ simply says the restriction [Θ|C] ∈ H1(C,OC) lies in the subset
H1(C,Z). Now [Hit83, Proposition 3.1] gives that any class in H1(C,OC) can
be written uniquely in the form

∑k−1
r=1 η

rπ∗cr(ζ) where cr ∈ H1(P1,O(−2r)). In
this representation for [Θ|C] we can equate cr(ζ) = 2πiζ−rΘr(ζ). Furthermore,
Serre duality on P1 comes from the existence of the nondegenerate pairing on
H0(P1,O(n− 2))×H1(P1,O(−n)) [Vak10, Example 18.5.4]

⟨f, c⟩ = Resζ=0(fc) =
1

2πi

∮
|ζ|=1

ζf(ζ)c(ζ)
dζ

ζ
.

As such we can rephrase the second set of CG conditions as

〈
ζs+r−1, 2πiζ−rΘr(ζ)

〉
=

{
0, r > 1, |s| < r,
2, r = 1, s = 0.

Because of the nondegeneracy of the pairing, and the fact that {ζs+r−1 | |s| < r} is
a basis ofH0(P1,O(2r−2)), these conditions say that [cr] = [0] ∈ H1(P1,O(−2r))
for r > 1 and [c1] = [2/ζ]. Combined this means [Θ] = [2η/ζ] ∈ H1(C,OC), and
as such the CG conditions are exactly equivalent to the triviality of L2 → C.

Remark 3.2.37. Clearly [(−1)k−1eΘ|C ] = [e2γ] ∈ H1(C,O×
C ), so denote with

[Θ(u,v)] ∈ H1(C,OC) the classes in the preimage under the exponential map
such that the vector in Cg associated with [Θ(u,v)] is 2U + u + τv, u,v ∈ Zg.
Now for any logarithm of (−1)k−1 in H1(C,OC) there must be a corresponding
u,v such that [Θ(u,v)] = [log(−1)k−1 + Θ|C]. Furthermore, by the argument
laid out interpreting Equation 3.17 cohomologically, if the CG conditions hold
then [Θ|C] = [2γ], and as such it must be the case that the vector correspond-
ing to [log(−1)k−1] is exactly the corresponding u + τv. As such that sum-
mands of automorphy of dχτ are augmented as described in Remark 3.2.34, and
hence Θ is a multivalued function. It is worth remarking we always knew the
vector associated with [log(−1)k−1] was some lattice vector as the exponential
[(−1)k−1] ∈ H1(C,O×

C ) has zero Chern class.

This final point, that the CG conditions are equivalent to the triviality of
L2 → C and so to the ES constraints, appears in contradiction to the work of
[HMR00] where they prove that the CG constraints imply the ES constraints but
the converse only holds true when the ES cycle es can be written as the sum
of cycles on C lifting the equator |ζ| = 1. Such a condition does not hold for
the tetrahedral 3-monopole spectral curve. To prove this the authors, following
[CG81], write Θ using Lagrange interpolation as

Θ(ζ, η) = πi
k∑

r=1

[
νr
∏
s ̸=r

η − ηs(ζ)
ηr(ζ)− ηs(ζ)

]
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where ηr(ζ) is a labelling of the values of η at ζ ∈ Ũ0 ∩ Ũ1 ∩ C and the νr
are determined by Θ(ζ, ηr(ζ)) = πiνr. The first CG condition on Θ forces
that the νr are integers, odd when k is even and even when k is odd; the re-
ality condition then ensures that if (−1/ζ̄,−η̄r(ζ)/ζ̄2) = (−1/ζ̄, ηs(−1/ζ̄)) then
νr = −νs. In order to be able to consistently make such a labelling of the fi-
bre values one requires that the ηr are distinct on Ũ0 ∩ Ũ1 ∩ C and moreover
that the monodromy of the overlap is trivial. The former requirement can be
ensured by rotating the monopole such that are no branch points on the equa-
tor |ζ| = 1 and shrinking the overlap to be a small annulus containing the
equator. It is not clear that the latter condition above on monodromy can al-
ways be imposed, but it holds generically for all known spectral curves checked,
namely the 2-monopole, the tetrahedral 3-monopole, and the D6 and C4 3-
monopoles of §3.4.1 and §3.4.2 (see Ercolani-Sinha_vector_2-monopole.ipynb
and Ercolani-Sinha_vector_tetrahedral_3-monopole.ipynb for examples of
how to compute this in Sage). In fact, random sampling suggests that the mon-
odromy of the equator is trivial for any irreducible10 τ -invariant curve in the
linear system |π∗O(2k)|.

Having written Θ using Lagrange interpolation, Houghton et al. then deduce
that if the CG conditions hold then the ES cycle is11 es = 1

2

∑
i νiEi, where Ei is

the lift of the equator in the annulus to the sheet η = ηi(ζ).

Example 3.2.38. On the 2-monopole spectral curve given by η2+a2(ζ) = 0 label
the roots as ηi = (−1)i

√
−a2(ζ), picking some branch of the square root. One

then finds ν1 = −ν2 := ν and so Θ = πiνη√
−a2(ζ)

[War81a]. The simplest choice

ν = 1 suffices to get a solution to Equations 3.17. To see this, take the form of
the 2-monopole spectral curve given in [FHP83] where a2(ζ) = A(ζ4 + 1) + Bζ2,
A,B ∈ R. Picking then the square root such that

√
−a2(ζ) ∈ iR>0 when |ζ| = 1,∫

|ζ|=1

Θ1(ζ)
dζ

ζ
=

∫ 2π

0

ν

2i

idθ√
A(e2iθ + e−2iθ) +B

,

=
ν

2
√
B

∫ 2π

0

dθ√
1 + (2A/B) cos(2θ)

,

=
ν

2
√
B
√
1 + β

∫ 2π

0

dθ√
1− 2β

1+β
sin2(θ)

letting β =
2A

B
,

=
2ν√

B
√
1 + β

K

(
2β

1 + β

)
,

where K = K(m) is the complete elliptic integral of the first kind. Hence for
ν = 1 with appropriately chosen β, one can find A,B such that the CG conditions
are satisfied. It is worth remarking here that the two lifted equators give cycles
Ei ∈ H1(C,Z) satisfying E1 + E2 = 0, and the ES cycle for this monopole is

10The reducible curve given by P (ζ, η) = (η2 + 2iηζ − ζ2 + ζ/4)(η2 − 2iηζ − ζ2 − ζ3/4),
constructed by Derek Harland, shows this cannot be true for all τ -invariant curves.

11[HMR00] in fact incorrectly deduces that
∑

i νiEi is the ES cycle, but this factor of 2 error
comes from taking γ = η

2ζ .
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es = ±E1 = ±1
2
(E1 − E2) (with the sign depending on the branch of the square

root taken), as can be seen in the corresponding Sage notebook Ercolani-Sinha_
vector_ 2-monopole. ipynb or deduced from [FHP83, HMR00]. The easiest
way to get this is to observe∫

|ζ|=1

Θ1(ζ)
dζ

ζ
=

∫
|ζ|=1

ν

2

ζ

(−1)i−1ηi

dζ

ζ
=

∫
ν
2
(E1−E2)

dζ

2η
.

Moreover, [FHP83] will calculate here

χ(ζ, γ) =
2γ

β̃
√
−A

[
K(β̃−4)− Π(ζ2β̃−2/δ)

]
,

where β̃ =
√
−β−1 +

√
β−2 − 1, sin δ = β̃−2, and Π is the complete elliptic

integral of the third kind [AS72, §17.7]. The multivaluedness comes from the
elliptic integral; an easier way to see this is to use [Hur83] which gives that
dχ ∼ ℘ ⇒ χ ∼ ζ the Weierstrass ζ function [AS72, §18] which has simple
summands of automorphy.

Example 3.2.39. On the 3-monopole spectral curve given by η3+α2ηζ
2+β(ζ6−1)

label the roots at ζ = 1 by η1 = 0, ηi = (−1)i
√
−α2, i = 2, 3. One finds ν1 = 0,

ν2 = −ν3 = ν. [OR82] shows that for suitable parameter choices one can get a
solution to the CG conditions (see also [Sop82]). Again it is worth remarking
here that the equators lift to cycles satisfying E1 +E2 +E3 = 0, and the ES cycle
is es = ±(E1 − E2) (with the sign depending on the branch of the square root
taken).

Example 3.2.40. In contrast to Examples 3.2.38 and 3.2.39, consider the tetra-
hedral 3-monopole given by η3+χ(ζ6+5

√
2ζ3−1) = 0 where χ1/3 = −1

6
Γ(1/6)Γ(1/3)

21/6π1/2

[HMR00, BE10a].12 Define ηf (ζ) on an annulus around the equator by ηf (1) =

5
√
2 |χ|1/3 and then analytic continuation, and so the values ηi(ζ) = ωiηf (ζ) where

ω is a primitive 3rd root of unity. These ηi(ζ) are the roots of the polynomial
defining the spectral curve at any given ζ in the annulus. By acting on the ηi
with τ one finds for the νi that ν3 = 0, ν1 = −ν2 := ν, and so expanding our the
Lagrange interpolation formula

Θ =
2πiν

3
(ω − ω2)y(y − 1), y = η/ηf .

As such we get∫
|ζ|=1

Θ2(ζ)
dζ

ζ
=

−ν
√
3 |χ|1/3

∫ 2π

0

[
5
√
2 + 2i sin(3θ)

]−2/3

dθ,

the latter integral of which is strictly positive as one can check numerically. To
impose the CG conditions one would need

∫
|ζ|=1

Θ2(ζ)
dζ
ζ
= 0 ⇒ ν = 0, but then

12[HMR00] determined the value of χ numerically, and the value was later proven correct
analytically in [BE10a].
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Θ = 0 identically and one cannot solve
∫
|ζ|=1

Θ1(ζ)
dζ
ζ

= 2. The CG conditions

can therefore not be consistently solved on the tetrahedral 3-monopole curve.

Example 3.2.40 leads to an apparent contradiction, with the ES constraints
being imposable on the tetrahedral 3-monopole, but not the CG constraints; in-
deed in [HMR00] it is noted that es is not a sum of equators for the tetrahedral
3-monopole. The resolution to this seeming contradiction is a subtle point, that
the Lagrange interpolation formula is not the most general form of a function as-
sociated with a class in H1(C,OC) whose exponential takes value (−1)k−1 around
the equator. The easiest way to see this is with a counting argument: the La-
grange interpolation formula gives k integer parameters with which to describe
an element of H1(C,Z) ∼= Z2g, which is clearly insufficient to parametrise all el-
ements unless k = 2(k − 1)2 ⇒ k = 2 (and in fact even then it is insufficient,
as there is a linear relation between the equators in H1(C,Z)). What terms are
missing then?

To elucidate this, let us unpack the isomorphism between the homology group
H1(C,Z) and the (Čech) cohomology groupH1(C,Z). Taking a simplicial complex
associated with C, to each vertex (i.e. a 0-simplex) v in the complex assign an
open set St(v) called the star of v given by the union of all simplices13 containing
v, and take an open covering of C by taking the star of all vertices14, that is
{Uv := St(v)}. Two vertices v, v′ have St(v) ∩ St(v′) ̸= ∅ if and only if there is a
1-simplex containing them, thus the module of Čech 1-cochains

∏
v,v′ Z(Uv ∩Uv′)

obtains a Z factor exactly where there is a Z factor coming from the 1-simplex
{v, v′} in the module of simplicial 1-chains. Writing Θ using LI as done specifies
the values of an element of H1(C,Z) only at the overlaps Uv ∩Uv′ where {v, v′} is
a portion of a lift of the equator, assigning them the value πiνj when they form
the cycle Ej. This implicitly then assigns the value 0 to any other cycle, and
as such it follows directly that assuming the LI form of Θ gives es =

∑
i
1
2
νiEi.

To give a completely general form of Θ would be to give LI formula also at the
other overlaps, taking into account the necessary relations between these in the
cohomology group, and then there would be a single expression in ζ, η which is
equivalent as a cohomology class in H1(TP1,OTP1). It is worth pointing out just
how easy it is to overlook this point: Ũ0,1∩C is a Leray cover for the sheaf OC but
not the constant sheaf Z, and this is why the more refined open cover is required
when specifying an element of H1(C,Z).

In order to be able to best utilise the perspective of the CG constraints in fu-
ture research on monopoles, it would be helpful to be able to classify the monopole
spectral curves for which the ES cycle is a sum of equators, and moreover in the
cases where it is not provide an explicit representative of the function Θ. This
may be especially relevant when starting to understand the equivalent of the
ES constraints for hyperbolic monopoles [NR07]. In better understanding the
connection, it may helpful to use the perspective of the generalised Legendre
transform [Hou00, Bie09].

A final way of interpreting the condition on the triviality of L2 is given in
[Nas07]. I shall not go into this approach in detail, but briefly it works as follows:

13I am following [GH78] in taking the plural of simplex to be simplices and not simplexes.
14Note this open cover is such that the nerve of the cover is the original simplicial complex.
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for a generic curve C in the linear system |π∗O(2k)|, fixing a trivialisation of
ρ ∈ H0(C, L2) by normalising it uniquely up to a U(1) factor, Nash considers the
deformation space of Ĉ := ρ(C) ⊂ L2. As is standard the deformation space is
identified with the space of global sections of the normal bundle, so deformations
of Ĉ are governed by H0(Ĉ, N̂), where N̂ is the normal bundle to Ĉ in L2; likewise
the deformations of C are governed by H0(C, N) where N is the normal bundle of
C in TP1. Using ρ to view N̂ as a vector bundle over C and restricting L2, Nash
shows that there is a SES of bundles

0→ L2 → N̂ → N → 0,

as so using the main vanishing theorem [Nas07, Theorem 2.8, Corollary 2.9] and
that N ∼= π|∗C O(2k) this gives the portion of the LES

0→ H0(C, L2)→ H0(C, N̂)→ H0(C, π|∗C O(2k))→ H1(C, L2)→ 0.

Identifying H0(C, N̂) with H0(Ĉ, N̂) we see that requiring the triviality of L2

restricts the deformations in |π∗O(2k)| that are valid, precisely by g degrees of
freedom.

3.2.2 Nahm Data

Hitchin’s scattering approach to the spectral curve makes clear how the curve
determines the original monopole at the level of cohomology, but it is not con-
venient for the reconstruction of the gauge fields from this data. An alternative
approach bridging this difficulty is given by Nahm in [Nah83], described in [Hit83]
by Hitchin as “a bold adaptation of the ADHM construction of instantons”. I
shall not give details of the ADHM construction [AHDM78] here, but as a brief
overview it involves the construction of a linear operator between quaternionic
vector spaces. Using the identification of monopoles as certain time-invariant
instantons, Nahm was able to give the data of a monopole in terms of a triple of
matrices.

Definition 3.2.41. The data {Ti(s) |Ti ∈Mk(C∞), s ∈ [0, 2], i = 1, 2, 3} is called
Nahm data if

1. the Ti satisfy Nahm’s equations,

dTi
ds

:= T ′
i =

1

2

3∑
j,k=1

ϵijk [Tj, Tk] ,

2. the Ti(s) are regular for s ∈ (0, 2), and moreover they have simple poles at
s = 0, 2 with residues that form the irreducible k-dimensional representation
of su(2), and

3. Ti(s) = −T †
i (s), Ti(s) = T T

i (2− s).

The Ti are called Nahm matrices.
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Remark 3.2.42. One often sees the parameter s having range [−1, 1] instead, and
this is equally valid, so I will be lax on which I choose in a given scenario. It will
turn out when we connect Nahm data to a solution of the BPS equation, defining
the Nahm data on [−a/2, a/2] is required for the Higgs field ϕ = −(i/2)ϕ·σ = ϕ·T
to have

√
−2Tr(ϕ2) = |ϕ| → a [CG84, §4].

The data of the triple of matrices Ti(s) at any fixed s can be thought of as
an element T ∈ R3 ⊗ u(k). We also could have here included another matrix
T4 = −T †

4 by modifying Nahm’s equations to

T ′
i = [T4, Ti] +

1

2

3∑
j,k=1

ϵijk[Tj, Tk],

but this can always be gauged away by the transform

Ti 7→ UTiU
−1,

T4 7→ UT4U
−1 − dU

ds
U−1,

for U : (0, 2)→ U(k) satisfying U(2− s) =
(
UT (s)

)−1
[Don84, §1]. Restricting to

T4 = 0 one still retains the gauge freedom to transform Tj 7→ UTjU
−1 for fixed

U ∈ U(k), which I shall denote as T 7→ UT .

Remark 3.2.43. In analogy to Proposition 3.1.19, the equations for a self-dual
connection independent of xi, i = 1, 2, 3 are equivalent to Nahm’s equations.
This was observed in [CG84], where it was given as an example of a “reciprocity”
between the self-duality equations in d dimensions and 4 − d dimensions (with
the ADHM equations being the example for d = 0). Even more generically, given
a subgroup Λ ≤ R4, Λ-independent instantons on R4 correspond to Λ∗-invariant
instantons on (R4)∗ under a generalised interpretation of the Nahm transform
[Jar04].

Remark 3.2.44. When constructing Nahm data, rather than strictly impose the
condition Ti(s) = Ti(2 − s)T themselves, [HMM95, HS96d, HS96c] appeal to the
argument of [Hit83, p. 181] which says (equivalently) that a basis always exists
for which Ti(s) = Ti(2 − s)T provided on the corresponding spectral curve C (to
be defined subsequently) we have that L2 → C is trivial. This is equivalent to the
existence of the Ercolani-Sinha vector, and so they claim that this can be done.

The correct interpretation of this statement comes from thinking about SU(2)
monopoles within the wider context of G-monopoles where G is a classical group
[HM89]. There the transpose condition (up to conjugacy) is only required for SO-
or Sp-monopoles. The fact that this condition is then present for Nahm data
that arises for a SU(2) monopole is down to the isomorphism SU(2) ∼= Sp(1). In
[Hit83] Hitchin uses the transpose condition to show that it makes the operator
required for the ADHMN construction

∆ =

(
Idk⊗

∑
µ

xµσµ

)
+

(
Id2k

d

ds
+
∑
µ

Tµ ⊗ σµ

)
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quaternionic-linear, but reading [AHDM78] shows that in the case of G = SU(2)
the operator need only be complex linear, not quaternionic linear. [CFTG78]
describes this difference explicitly.

Example 3.2.45. In the case k = 1, Nahm data is15 given by Tj(s) = ixj for
(x1, x2, x3) ∈ R3.

Example 3.2.46. In the case k = 2, taking the ansatz that Tj(s) =
1
2i
fj(s)σj (no

sum), Nahm’s equations give

1

2i
f ′
jσj =

1

2

∑
k,l

ϵjkl

[
1

2i
fkσk,

1

2i
flσl

]
=
−i
4

∑
k,l,m

ϵjklfkflϵklmσm,

which become the Euler top equations f ′
1 = f2f3 (and cycles). These may be solved

with the correct boundary conditions to get Nahm data, and in fact they give the
most general Nahm data in charge 2 [BE21, §3.6].

The circle of ideas connecting monopoles, spectral curves, and Nahm data,
was proven by Hitchin in the form of the following key theorem.

Theorem 3.2.47 ([Hit83]). The following data are equivalent:

• gauge fields (A, ϕ) satisfying the BPS equation (Definition 3.1.12) subject
to the monopole boundary conditions (Definition 3.1.5) up to gauge equiva-
lence,

• a spectral curve C satisfying the Hitchin conditions (Definition 3.2.17), and

• Nahm data (Definition 3.2.41) up to gauge equivalence.

It is a consequence of the proof of Theorem 3.2.47 that the Ti(s) gain the
interpretation as endomorphisms of the vector space H0(C, Ls(k − 1)), whose
dimension is k for s ∈ (0, 2), but whose dimension jumps when Ls is trivial,
i.e. s = 0, 2, unless k = 1. This is the reason for the distinguished behaviour
of the matrices at the endpoint. Moreover, this identifies the two instances of
the parameter s, giving the interpretation that Nahm’s equations linearise on
Jac(C) (i.e. the solution to Nahm’s equation corresponds to a straight line in the
Jacobian). This we shall discuss slightly more in the next section.

Remark 3.2.48. Keeping T4, one can see that Nahm’s equations come from
a quaternionic moment map equation [Hit87], essentially as an avatar of the
reciprocity observed in [CG84]. With this realisation the connection to the BPS
equation for monopoles is unsurprising but not complete, as we need to deal with
the boundary conditions. Moreover, it means there is a construction of the moduli
space of solutions to Nahm’s equations with the correct boundary behaviour up
to gauge transform as a hyperkähler quotient, and so the moduli space has a
hyperkähler metric [HKLR87]. The transform between Nahm data and monopole
gauge fields is an analogue of a Fourier transform (namely the Fourier-Mukai
transform), and so it was conjectured in [AH88], proven in [Nak93], that this
transform is a hyperkähler isometry. This metric on the space of Nahm data can
be computed explicitly, for example as done in [BS97].

15On the use of data in the singular, I direct the reader to [Joh22].
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The Integrability of Nahm’s Equations

In the second half of the 20th century Peter Lax gave a principle for associat-
ing commuting linear operators, a Lax pair, to a nonlinear evolution equation
such that the eigenvalues of the linear operators were conserved quantities of the
original system i.e. the operators are isospectral [Lax68]. Krichever subsequently
showed how solutions to the nonlinear system could be constructed in terms of
function theory on a Riemann surface given by the eigenvalues [Kri76, Kri77].
While I will not develop this perspective in this thesis, the interested reader can
see [FHP83, BBT03, BE18, BE21]. The following proposition will give such a Lax
formulation of Nahm’s equation, and thus make the link to the spectral curve.

Proposition 3.2.49 ([Hit83], Proposition 4.16). Nahm’s equations are equivalent
to the Lax equation [

d

ds
+M,L

]
= 0

where the Lax matrices with spectral parameter ζ are given by

L(ζ) = (T1 + iT2)− 2iT3ζ + (T1 − iT2)ζ2,
M(ζ) = −iT3 + (T1 − iT2)ζ.

(3.18)

Remark 3.2.50. Here I am overloading the notation L, now meaning both the
line bundle L → TP1 and the Lax matrix built out of Nahm matrices, under
the assumption that both are sufficiently distinct such that one can work out the
correct meaning from context.

As a result of the isospectrality of the matrix L, the characteristic polynomial
defined by16 det[η Idk +L(ζ)] = 0 defines a algebraic curve independent of s. A
consequence of the proof of Theorem 3.2.47 is that interpreting ζ, η as coordinates
on TP1, the characteristic polynomial is exactly the corresponding spectral curve
C, and so we shall consider them the same from now on. This now gives another
interpretation for the fact that Nahm’s equations linearise on the Jacobian of
C, which is a generic occurrence for Lax integrable systems satisfying a certain
cohomological condition, described in [Gri85, Corollary 7.8].

Example 3.2.51. Using the 1× 1 Nahm data from Example 3.2.45, we see that
the spectral curve for a 1-monopole is

η +
[
(ix1 − x2) + 2x3ζ + (ix1 + x2)ζ

2
]
= 0.

This recreates the result of Example 3.2.16.

Example 3.2.52. Knowing now that the spectral curve associated with the Nahm
Lax pair is the same as the spectral curve of the monopole, we can simply calculate

16The unusual choice of sign in the characteristic polynomial here ensures that the corre-
sponding curve in TP1 is exactly the monopoles spectral curve [Hit83, Proposition 4.16].
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Fig. 3.1 Charge-2 monopole spectral curve for m = 0.1, 0.5, and 0.9, plotted on
the cone

the spectral curve for all 2-monopoles using the Nahm solution of Example 3.2.46
to get [ES89, BE21]

C : η2 +
K2

4

[
(ζ4 + 1) + 2(k2 − k′2)ζ2

]
= 0.

Here k, k′, K(k) are the standard concepts of elliptic functions seen in §2.1.5.
Note that Aut(C) = C2 (ignoring translations, see Example 2.1.77), and so every
2-monopole spectral curve has nontrivial automorphism group.

I will take this opportunity to provide a visualisation of these curves I have
not previously encountered, namely by plotting them on the cone described by the
embedding of TP1 in a cone in P3. Recalling the transform of §2.1.3 and writing
the resulting cone as x2 + y2 − z2 = 0, the monopole spectral curves are given by
the intersection of the cone and

1 +
K(m)2

2

[
(x2 − y2) + (2m− 1)z2

]
= 0,

where m = k2. I have plotted this for three values of m in Figure 3.1. The as-
sociated Sage notebook for producing this figure is plotting_ curve_ on_ cone.
ipynb .

As a further consequence of the Lax formalism of Nahm’s equations, one
can use integrable systems techniques to construct Nahm data from the function
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theory on C. I shall not discuss this in any detail in this thesis, for more see
[ES89, BE10b].

Monopoles from Nahm Data

In this section we will state how to go from Nahm data to a solution of the BPS
equation.

Theorem 3.2.53 ([Nah83], [CG84], §4, [BE18], Theorem 2.1). Given k×k Nahm
data on the interval [−1, 1], a nonsingular, charge-k solution to the BPS equation
is given by

(ϕ(x))ab = i

∫ 1

−1

sv†
a(s,x)vb(s,x) ds,

(Ai(x))ab =

∫ 1

−1

v†
a(s,x)∂ivb(s,x) ds,

(3.19)

for x ∈ R3, where the two vectors v0,1(s,x) ∈ C2k form an orthonormal basis of
normalisable solutions to the Weyl equation

∆†v :=

[
i
d

ds
−

3∑
j=1

σj ⊗ (Tj + ixj Idk)

]
v = 0

on the interval [−1, 1] with respect to the inner product

⟨v,w⟩ =
∫ 1

−1

v†(s,x)w(s,x) ds.

Moreover, all solutions can be obtained as such.

Remark 3.2.54. Implicit in Equation 3.19 is that, if n = dimker∆†, then the
matrices for ϕ,Ai constructed by the integrals are n × n. As such to get SU(2)
gauge fields it is necessary that dimker∆† = 2. This is ensured by fixing the
boundary conditions; different boundary conditions give rise to different numbers
of normalisable solutions and hence correspond to monopoles with different gauge
groups and amounts of symmetry breaking [HM89, Dan92].

The fact that the nonsingularity of the monopole is immediate from the ex-
istence of Nahm data is an important appeal of this method, as is the fact that
the construction of the monopole from the gauge fields from the Nahm data just
involves solving a matrix ODE and computing integrals. For almost all known
Nahm data this process is too hard to do analytically, but it may be done numer-
ically [HS96d], and this is how I will plot energy density isosurfaces of monopole
solutions in Figure 3.4. If one calculated with a gauge-equivalent triple of Nahm
matrices UT , one can check that the corresponding normalisable solutions are
given by vU = ( U 0

0 U )v, which does not change ϕ or A.

Remark 3.2.55. An inverse transform may be used to show that all monopoles
have corresponding Nahm data. One can also do so by completing the circle of
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idea mentioned at the beginning of this part. See [CG84, §1] for a more detailed
history.

Example 3.2.56 (The Hedgehog Solution, [MS04], §8.6). As with all the avatars
with which one can interpret monopoles, I will demonstrate how the Prasad-
Sommerfield monopole calculated in Example 3.1.17 can be recovered from Nahm
data. The case of the hedgehog is the only known example where the full gauge
field data can be recovered analytically in this way.

As seen in Example 3.2.45, when k = 1 the Nahm data is given by Tj(s) = icj
for cj ∈ R. For this example the Weyl equation is

i

[
d

ds
− (x+ c) · σ

]
v = 0,

which has solutions

va(s,x) = es[(x+c)·σ]va(0) = [cosh(ρz) + n̂ · σ sinh(ρz)]va(0), (3.20)

where we have set

n̂ =
x+ c

|x+ c|
, ρ = |x+ c|, (3.21)

and made use of the fact (in̂ · σ)2 = −1 ⇒ eian̂·σ = cos(a) + in̂ · σ sin(a). As
such

v†
a(s)vb(s) = v†

a(0) [cosh(2ρs) + n̂ · σ sinh(2ρs)]vb(0)

and for orthonormality we require

δab =

∫ 1

−1

v†
a(s)vb(s) ds =

sinh(2ρ)

ρ
v†
a(0)vb(0) (3.22)

and so we may take

va(0) =

√
ρ

sinh(2ρ)
ea ⇒ va(s) =

√
ρ

sinh(2ρ)
[cosh(ρs) + n̂ · σ sinh(ρs)] ea

where

e1 =

(
1
0

)
, e2 =

(
0
1

)
.

Thus the Higgs field is then given by

ϕab(x) = i
ρ

sinh(2ρ)

∫ 1

−1

s [δab cosh(2ρs) + (n̂ · σ)ab sinh(2ρs)] ds,

= i
1

2 sinh(2ρ)
(n̂ · σ)ab

[
2 cosh(2ρ)− 1

ρ
sinh(2ρ)

]
,

= i

[
coth(2ρ)− 1

2ρ

]
(n̂ · σ)ab .

(3.23)

This solution has the right asymptotic behaviour taking |ϕ|2 = −1
2
Trϕ2. One can

also recover Ai via this method, and thus check this is the solution of Example
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3.1.17 with µ = 2, translated such that the origin is at −c. Hence in this case
the centre of the monopole, which for the hedgehog is the point where ϕ vanishes,
is given by (iTr(Tj)) ∈ R3.

3.3 Symmetries of Monopoles

This method does not help in finding general
solutions, only finding symmetric solutions. Still,
knowing only a few symmetric solutions is better
than knowing nothing at all.

– Sidney Coleman
Aspects of Symmetry

The purpose of this section will be to introduce the necessary machinery for
constructing Nahm data with certain rotational symmetries, a technique that will
be vital in §3.4 facilitating the construction of new charge-3 spectral curves.

3.3.1 Group Actions on Monopole Data

Translations and Rotations

The 3-dimensional Euclidean group E(3) = R3 ⋊O(3) has an induced left action
on monopole gauge fields from the corresponding left action on R3. It will be
helpful in constructing monopole solutions to understand how this group action
translates to an action on the corresponding Nahm data and spectral curve.

I will start with Nahm data, where Theorem 3.2.53 tells us how the Tj trans-
form under x ∈ R3 and A ∈ O(3). For x ∈ R3 the transform is simple, namely

x : Tj 7→ Tj + ixj Idk .

This gives the interpretation of the centre of the corresponding monopole as
(iTr(Tj)) ∈ R3 as we have previously seen in Example 3.2.56. For transforma-
tions A ∈ SO(3) the situation is more complicated. In order to preserve the form
of ∆†, one requires Ti 7→ AijTj, but this rotates the residues of the Ti, so there
must be a corresponding conjugation by the unitary matrix U = U(A) represent-
ing the image of A in SU(k) under the SU(2)-representation determined by the
irreducible k-dimensional su(2)-representation given by the residues. Hence the
overall transform is

A : Ti 7→ AijT
U(A)
j = Aij

[
U(A)TjU(A)

−1
]
.

The conjugation part of the action does not represent a physical transform of the
monopole, but rather a gauge transform. I will not discuss the action of elements
of O(3) \ SO(3) just yet.

The action of the Euclidean group also induces an action on minitwistor space,
and so we can work out the corresponding action on the coordinates of TP1. To
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do so it is helpful to be explicit about the map from MT to TP1: writing

MT =
{
(u,v) ∈ S2 × R3 |u · v = 0

}
we take ζ = u1+iu2

1−u3
, η = [(iv1 − v2) + 2v3ζ + (iv1 + v2)ζ

2] [Hit82, §3]. This slightly
strange looking choice of convention ensures agreement with those already set for
the Nahm matrices as we will see shortly. Note that indeed the orientation-
reversing involution on MT given by (u,v) 7→ (−u,v) corresponds to the anti-
holomorphic involution (ζ, η) 7→ (−1/ζ̄,−η̄/ζ̄2) as claimed in §2.1.3. For x ∈ R3

the translation transform is likewise simple as it was in the Nahm data picture,
given by

x : η 7→ η +
[
(ix1 − x2) + 2x3ζ + (ix1 + x2)ζ

2
]
. (3.24)

Remark 3.3.1. To see that this is the correct result to agree with the transform
of the Nahm matrices, use the charge-1 case. Taking the Nahm matrices Tj = icj
for cj ∈ R, the corresponding spectral curve is

0 = det(η + L) = η +
[
(ic1 − c2) + 2c3ζ + (ic1 + c2)ζ

2
]
.

Now a translation by x sends Tj to Tj + ixj and so the spectral curve to

0 = η +
[
(ic1 − c2) + 2c3ζ + (ic1 + c2)ζ

2
]
+
[
(ix1 − x2) + 2x3ζ + (ix1 + x2)ζ

2
]
.

This recovers the transform of Equation 3.24.

For A ∈ SO(3) corresponding to a rotation about n ∈ S2 by angle θ, let
( a b
c d ) = (

p q
−q̄ p̄ ) be the corresponding matrix in PSU(2) ∼= SO(3) given by

p = cos(θ/2) + in3 sin(θ/2), q = n2 sin(θ/2)− in1 sin(θ/2).

This acts as the Möbius transformation [MS04, (8.219)]

A : (ζ, η) 7→
(
aζ + b

cζ + d
,

η

(cζ + d)2

)
.

Example 3.3.2. If A is a rotation about (0, 0, 1) by 2π/k radians then p =
eiπ/k, q = 0, and (ζ, η) 7→ (e2πi/kζ, e2πi/kη). At certain points throughout I shall
call this map s = sk. Furthermore, the rotation diag(1,−1,−1) corresponds to
the map r : (ζ, η) 7→ (1/ζ,−η/ζ2).

Remark 3.3.3. The full Möbius group PSL2(C) acts on ζ and hence η, and if
this transform sends C to C ′ the two curves will have the same period matrix,
but only the subgroup PSU(2) preserves the reality property of invariance under
τ [HMR00, Bra11]. The action of a translation on ζ, η also commutes with τ .
The full action of the Euclidean group on Nahm matrices preserves the property
Ti = −T †

i .

The action of O(3) is antiholomorphic and can be worked out from the defi-
nition with, for example,

− Id : (ζ, η) 7→ (−1/ζ̄, η̄/ζ̄2).
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Example 3.3.4. Composing the transformation for − Id with the rotation s2
we see that the reflection R3 = diag(1, 1,−1) corresponds to the map (ζ, η) 7→
(1/ζ̄,−η̄/ζ̄2), and further composing with the map r we see that diag(1,−1, 1)
corresponds to t : (ζ, η) 7→ (ζ̄ , η̄).

Remark 3.3.5. The map − Id is called inversion in [HS96a, Bie20], whereas
the map R3 is called inversion in [HMM95].

These two descriptions of the action on Nahm matrices and on TP1 are com-
patible (up to conventions that shall not be material). Through the action of a
translation we can always centre a monopole, and this corresponds to being able
to make the Ti traceless, equivalently setting the ηk−1 coefficient of the spectral
curve to zero. As one would expect, the property of being centred is preserved
under the action of O(3).

Having determined how the TP1 coordinates and the Nahm matrices trans-
form under the Euclidean group we can ask what is the resulting effect on the
spectral curve given by P (ζ, η) = det [η + L(ζ)]. Clearly conjugating the Nahm
matrices has no effect on the spectral curve, and so the holomorphic action of
R3⋊O(3) on the TP1 coordinates must correspond to the action on the R3 factor
of the R3 ⊗ su(k) representation space supporting the Ti. As such, invariance
of the spectral curve under A ∈ SO(3) which maps (ζ, η) 7→ (ζ̃ , η̃) can equally

be rephrased as the condition det [η + L(ζ)] = 0 = det
[
η̃ + LU(A)(ζ̃)

]
, where the

Lax matrix LU is constructed from the transformed Nahm matrices TU
i .

We can apply the same logic to the action of A ∈ O(3) \ SO(3) on the Nahm
data. We know from [Hit83] that the antiholomorphic involution acts on the
Nahm matrices as Ti → T †

i , but we also know it acts on the TP1 coordinates as
(ζ, η) 7→ (−1/ζ̄,−η̄/ζ̄2). This TP1 transformation maps

η +
[
(T1 + iT2)− 2iT3ζ + (T1 − iT2)ζ2

]
7→ − 1

ζ̄2
{
η +

[
(T̄1 + iT̄2)− 2iT̄3 + (T̄1 − iT̄2)ζ2

]}
,

and thus maps Ti to T̄i. This means that the action of τ on the su(k) com-
ponent of the Nahm matrices’ representation space is the transpose. Note that
A ∈ O(3) \ SO(3) is orientation-reversing on P1, and so must correspond to an
antiholomorphic automorphism of TP1, hence composing with τ corresponds to
a holomorphic automorphism. One can check that under the map Ti 7→ AijTj a
solution to Nahm’s equations is mapped to a solution of the anti-Nahm equations
[CDL+22, Remark 2.7]

dTi
ds

= −1

2

3∑
j,l=1

ϵijl [Tj, Tl] ,

so composing with the transpose one regains a solution to Nahm’s equations.

The Moduli Space of Symmetric Monopoles

As mentioned, we will go on to see clear examples of how the action of symmetries
on monopole data was used to partially classify 3-monopoles in §3.4, but before
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that I will present one generality of this approach, namely the ability to gain
information about the dimension of the moduli space of monopoles with a given
symmetry.

Let us suppose that we are considering the moduli space of charge-k monopoles
invariant under a fixed action of finite group G, that is (Mk)

G. For G ≤ O(3), it is
known that (Mk)

G is a totally geodesic submanifold ofMk, and likewise for (M0
k )

G

as a submanifold of M0
k [HMM95, Bie20]. This moduli space we shall distinguish

from (M0
k )

[G] which is the moduli space of monopoles invariant under an element
of the conjugacy class of G inside O(3); clearly (M0

k )
G ⊂ (M0

k )
[G] and when G is

discrete we have dimR(M
0
k )

G−dimRNO(3)(G) = dimR(M
0
k )

[G]−dimR O(3), where
NO(3)(G) is the normaliser.

Some results on such submanifolds are known for specific simple choices of G,
for example the following two propositions. Recall the two different definitions of
inversion as R3 or − Id from Remark 3.3.5.

Proposition 3.3.6 ([HMM95], Proposition 2). dimR(Mk)
⟨R3⟩ = 2k, and more-

over dimR(M
0
k )

⟨R3⟩ = 2k − 2.

Corollary 3.3.7. k = 2 is the only charge for which every centred monopole is
symmetric under a reflection in a plane

Proof. The SO(3) (and hence O(3)) orbit of R3 in O(3) is the set of all reflections
in a plane through the origin, and this is a 2-dimensional submanifold of O(3).
Equivalently this is saying dimNO(3)(⟨R3⟩) = 1, corresponding to the rotations
about the x3 axis. As such if every centred monopole is invariant under a reflection
in a plane one must have

dimRM
0
k = dimR(M

0
k )

⟨R3⟩ + 2⇔ 4k − 4 = 2k − 2 + 2⇔ k = 2.

Proposition 3.3.8 ([Bie20], Proposition 1.1). dimR(M
0
k )

⟨− Id⟩ = 4 ⌊k/2⌋.

For a generic choice of G we can say more. If C is the spectral curve corre-
sponding to a monopole in (M0

k )
G we must have that G ≤ Aut(C), and so we

get ramification data (g0; c1, . . . , cr) associated with the quotient C → C/G as in
§2.1.4. This ramification data gives us a bound on the dimension of the symmetric
moduli space as follows.

Proposition 3.3.9 ([BDH23]). For k ≥ 3 and G ≤ O(3) discrete (i.e. finite),
dimR(M

0
k )

G − dimRNO(3)(G) ≤ 3g0 − 3 + r.

Proof. [MSSV02, Lemma 3.1] gives that the complex dimension of each com-
ponent of the locus of equivalence classes of genus g ≥ 2 curves admitting an
action of a group isomorphic to G with signature c is (provided it is nonempty)
δ(g,G, c) := 3(g0− 1)+ r = dimCMg0,r the moduli space of genus g0 curves with
r marked points. The action of SO(3) on (M0

k )
[G] is trivial on the moduli space

of curves because it induces a birational isomorphism. The result then follows
as the SO(3) orbits of the moduli space of monopoles will form a component of
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this locus, hence17 dimR(M
0
k )

G− dimRNSO(3)(G) = dimR(M
0
k )

[G]− dimR SO(3) ≤
dimR

(
Mτ

g0,r

)
, and using the fact from Teichmüller theory that dimR

(
Mτ

g0,r

)
=

dimCMg0,r [Ear71, §3.1].

Remark 3.3.10. Note in the statement and proof of Proposition 3.3.9 we could
have used H ≤ G and its corresponding signature, but this would have given a
weaker bound as δ(g,G, cG) ≤ δ(g,H, cH) [MSSV02].

The remarkable fact about Proposition 3.3.9 is that the bound depends on
the signature only.

The curves of [HMM95], with group of rotational automorphisms H of order
2k(k − 1) for k = 3, 4, 6, have signature cH = (1; k − 1) [HMM95, Proposition
4]. For these curves, and all known monopole spectral curves of charge 3 with a
quotient by H ≤ Aut(C) to an elliptic curve (see §3.4) where H is generated by
rotations, we have dimR(M

0
k )

H −dimRNSO(3)(H) = δ(g,H, cH)
′− 1, where δ′ ≤ δ

is the dimension of the moduli space of curves in the linear system |π∗O(2k)|
with the corresponding ramification type. As such one might make the following
conjecture.

Conjecture 3.3.11. When H ≤ SO(3) acts on charge-k monopole spectral curves
C such that g(C/H) = 1, the dimension of the moduli space of centred H-invariant
k-monopoles is given by

dimR(M
0
k )

H − dimRNSO(3)(H) = δ(g,H, cH)
′ − 1.

Requiring H ≤ SO(3) ensures that the ES vector is a pullback from the Jaco-
bian of the quotient elliptic curve as described in Remark 3.2.31. The requirement
that the ES vector is a pullback is strict for this conjecture, as we will see later
in §3.4.3 in the context of ⟨R3⟩-invariant 3-monopoles.

It is certainly true that the larger moduli space of H-invariant nonsingular
τ -invariant centred curves in the linear system |π∗O(2k)| satisfying the ES con-
straint will satisfy dimR(M

0
k,ES)

H − dimRNSO(3)(H) = δ′ − 1 because when the
ES vector is a pullback the ES conditions become constraints on the Jac(C/H)
factor of the Jacobian only. As such the conjecture reduces to showing that the
codimension of (M0

k )
H ⊂ (M0

k,ES) is 0. We have seen previously that this is cer-
tainly the case when H is trivial. One might wonder whether it is further possible
that one would have dim(M0

k,ES)
H − dimRNSO(3)(H) = δ′ − g0, appealing to the

connection with the ES constraints. We know that rotationally cyclically sym-
metric charge-k monopoles satisfy the pullback condition with H = Ck, g0 = k−1
and the quotient is unramified [Bra11, §2]. For such curves one can count that
δ′ = k ≤ 3k − 6 = δ when k ≥ 3. The extended conjecture would then suggest
that dimR(M

0
k,ES)

H − 1 = δ′ − g0 = 1, and this is the result found in [HMM95,
§12]. As such there is some evidence for the extended conjecture.

17As described in Earle, points in the moduli space of genus g ≥ 2 Riemann surfaces corre-
spond to equivalence classes of complex structures on a fixed smooth surface of the correspond-
ing genus. There is a natural conjugate involution on this moduli space of complex structures,
such that any complex structure fixed under an orientation-reversing involution of the surface
corresponds to a fixed point of the conjugate involution of the moduli space. Hence we may
consider the moduli spaceMτ

g0,r ⊂Mg0,r of curves invariant under τ by this procedure.
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3.3.2 Constructing Symmetric Monopole Data

Historically, the first attempts to construct symmetric monopoles involved impos-
ing an ansatz of continuous rotational symmetry on the gauge fields themselves,
as in [tH74, PS75, HM77, Ju78, WB79, MIM82], but this quickly proved to be
difficult. [Koi82] took an interesting approach which is closer to that we shall
develop in this subsection, namely showing that imposing a spherical symme-
try ansatz on the BPS equation allows it to be formulated as an ODE with a
Lax pair where the r coordinate represents ‘time’, and then solving this Lax
equation with the inverse scattering method. [Ath83] also showed how one could
impose continuous symmetries on the data of Corrigan and Goddard. Here I shall
present a method which uses the representation theory of the Nahm matrices in
order to construct monopoles with discrete groups of rotational symmetries. This
method can also be extended to construct Nahm data with continuous symmetries
[BCG+83, CDL+22].

The HMM Representation Space

We will now want to adapt the work of [HMM95] in thinking of R3 ⊗ u(k) as
the SU(2)-representation space of the Nahm triple T . In fact, we shall only work
with centred Nahm matrices, so that the representation space is actually the
real Lie algebra R3⊗ su(k), which I will call the HMM representation space.
Considering the action of SO(3) on T described in §3.3.1, one finds that in terms
of the irreducible SU(2) representation spaces of §3, R3 ∼= S2 and

u(k) ∼= Sk−1 ⊗ Sk−1 = S2k−2 ⊕ S2k−4 ⊕ · · · ⊕ S0 ⇒ su(k) ∼= S2k−2 ⊕ · · · ⊕ S2.

Clearly for this to be valid we require k ≥ 2, and so I will assume that to always be
through in this section. These isomorphisms are actually as complex Lie algebras,
so initially I will work with these, and then implicitly restrict to real Lie algebras
when working with R3⊗ su(k) and imposing the condition Ti = −T †

i . Combining
the two isomorphisms we see that the HMM representation space is isomorphic
to

HMM := (S2k
−1 ⊕ S2k−2

0 ⊕ S2k−4
1 )⊕ · · · ⊕ (S4

−1 ⊕ S2
0 ⊕ S0

1), (3.25)

where I have used S2r
i to denote the copy of S2r in the representation space

coming from the tensor18 S2⊗ S2(r+i). We will want to interpret these S2r factors
as corresponding to the homogeneous degree-2r polynomials appearing in the
spectral curve, which we will do later concretely in Proposition 3.3.24.

The reason for introducing the HMM representation space is that it will be a
clarifying framework for the construction of monopole solutions with symmetry,
namely for G ≤ PSU(2) we want to construct the G-invariant subspace of the

HMM representation space (R3 ⊗ su(k))
G
. Trivially we know (R3 ⊗ su(k))

{e}
=

R3⊗su(k), and moreover (R3 ⊗ su(k))
PSU(2)

= ⟨(ρi)⟩ where (ρi) is the triple of ma-
trices spanning the S0

1 subspace. In practice, these ρi generate the k-dimensional
irreducible representation of su(2) containing the residues of the Ti.

18[HS96c] will use the letters u, m, and l to distinguish between these.
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Example 3.3.12. In the case k = 2 one can take ρj =
σj

i
, whereas for k = 3 one

can take

ρ1 =

0 0 0
0 0 −2
0 2 0

 , ρ2 =

 0 0 2
0 0 0
−2 0 0

 , ρ3 =

0 −2 0
2 0 0
0 0 0

 .

We shall want to find additional triples (S
(j)
i ) ∈ R3 ⊗ su(k) such that〈

(ρi), (S
(j)
i )
〉
=
(
R3 ⊗ su(k)

)G
.

This is a hard task at the level of matrices, but if we have an equivariant map that
takes a homogeneous polynomial in HMM to a triple in R3 ⊗ su(k) the problem
is greatly simplified as the action of SU(2) on S2r is understood simply. As such
I will describe this algorithm now.

The idea behind this approach will be to identify highest-weight subspaces of
the two representation spaces, thinking of them now as su(2) representations. In
particular I will construct an isomorphism

S2r
i → S2r

−1
Polar→ S2 ⊗ S2r−2

∣∣
S2r−1

h.w.v→ S2 ⊗ S2(r+i)
∣∣
S2ri

h.w.v→ R3 ⊗ su(k)
∣∣
S2ri
, (3.26)

where h.w.v. indicates that the corresponding isomorphisms are constructed by
identifying highest-weight vectors and Polar is a map that will be defined shortly
in Equation 3.27. To get three matrices from an element of R3 ⊗ su(k) I will
then provide a method that is consistent with the above definition of the ρi as
the triple of matrices spanning S0

1.
I shall start with some notation. Fixing a scale19 on the ρi giving the repre-

sentation su(2)→ su(k) such that

[ρ1, ρ2] = 2ρ3, [ρ2, ρ3] = 2ρ1, [ρ3, ρ1] = 2ρ2,

we may realise the principal 3-dimensional simple subalgebra of su(k) to be a0 =
⟨X0, Y0, H0⟩ given by

X0 =
1

2
(ρ1 − iρ2), Y0 = −

1

2
(ρ1 + iρ2), H0 = −iρ3,

which is a copy of su(2).

Remark 3.3.13. Notice we have

X†
0 =

1

2
(ρ†1 + iρ†2) =

1

2
(ρ1 + iρ2) = Y0, H†

0 = iρ†3 = H0,

if ρ†i = −ρi, as in the cases given in Example 3.3.12. Indeed using the irreducible
representations described in [Hal15, §4.6] we can always ensure that X0, Y0, H0

are real and satisfy XT
0 = Y0, H0 = HT

0 .

19The scale taken here is nonstandard for representations of su(2), but has been taken to
align with the choice in [HMM95].
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By a theorem of Kostant [Kos59], su(k) decomposes into a direct sum of
irreducible representations of a0 acting via the adjoint action, and so we can
use this to identify copies of S2r inside the representation space if we know its
highest-weight vectors.

Lemma 3.3.14. Xr
0 ∈ su(k) is a highest-weight vector of weight 2r. Moreover,

we have highest-weight vectors vi ∈ S2r
i ⊂ R3 ⊗ su(k) of weight 2r given by

v−1 = X ⊗Xr−1
0 ,

v0 = adY X ⊗Xr
0 −

1

r
X ⊗ adY0 X

r
0 ,

v1 = ad2
Y X ⊗Xr+1

0 − 1

r + 1
adY X ⊗ adY0 X

r+1
0

+
1

(r + 1)(2r + 1)
X ⊗ ad2

Y0
Xr+1

0 .

Proof. This follows simply from computation.

Remark 3.3.15. Here I am taking the notation that adA(B) = [A,B]. This is

the opposite sign notation to [HMM95, HS96c], which I will denote as ãdA(B) =
[B,A] to avoid ambiguity.

Remark 3.3.16. In proving Lemma 3.3.14, one only needs properties of su(2)
and highest-weight vectors, not anything specific to su(k). As a result this gives a
generic formulation for the highest-weight vectors of weight 2r in S2⊗V for some
su(2) representation space V for which a highest-weight vector of weight 2(r + i)
is known.

With these conventions set, we can describe how to construct a triple of ma-
trices in R3 ⊗ su(k) from a polynomial Q ∈ S2r

i , by describing the maps from
Equation 3.26. We have the morphism

Polar : S2r ↪→ S2 ⊗ S2r−2,

Q(ζ0, ζ1) 7→ ζ20 ⊗
∂2Q

∂ζ20
+ 2ζ0ζ1 ⊗

∂2Q

∂ζ0∂ζ1
+ ζ21 ⊗

∂2Q

∂ζ21
,

= (ζ0∂ζ1)
2 ζ21 ⊗

1

2

∂2Q

∂ζ20
+ (ζ0∂ζ1) ζ

2
1 ⊗

∂2Q

∂ζ0∂ζ1
+ ζ21 ⊗

∂2Q

∂ζ21
.

(3.27)

Call Polar(Q) the polarisation of Q. Note this maps the highest-weight vector
ζ2r1 ∈ S2r of weight 2r to the highest-weight vector 2r(2r − 1)v−1 = 2r(2r −
1)ζ21 ⊗ ζ2r−2

1 ∈ S2 ⊗ S2r−2 of the same weight, and so the inclusion Polar is an
isomorphism onto its image S2 ⊗ S2r−2|S2r−1

.

Moreover by identifying highest-weight vectors and the action of the lowering
operator Y ∈ su(2) one get the isomorphism of the subspaces

ϕi,j : S2 ⊗ S2(r+i)
∣∣
S2ri
→ S2 ⊗ S2(r+j)

∣∣
S2rj
,

(Y ·)kvi 7→ (Y ·)kvj,
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so the highest-weight isomorphism S2 ⊗ S2r−2|S2r−1

h.w.v→ S2 ⊗ S2(r+i)
∣∣
S2ri

is ϕ−1,i.

The highest-weight isomorphism S2 ⊗ S2(r+i)
∣∣
S2ri

h.w.v.→ R3 ⊗ su(k)|S2ri is given like-

wise, but here only on the second component of the tensor product.
Having constructed this isomorphism we need a way to read off the corre-

sponding triple of matrices from an element of R3 ⊗ su(k). To do this, note that
the element

v = X ⊗ ad2
Y0
X0 − adY X ⊗ adY0 X0 + ad2

Y X ⊗X0,

= −2X ⊗ Y0 −H ⊗H0 − 2Y ⊗X0,

= X ⊗ (ρ1 + iρ2) + adY X ⊗ (−iρ3) + ad2
Y X ⊗

1

2
(ρ1 − iρ2),

spans the S0 subspace of R3 ⊗ su(k). Reading off the second components of the
final expression as ρ′1, ρ

′
2, ρ

′
3 respectively, we would find the relations

ρ1 =
1

2
ρ′1 + ρ′3, ρ2 =

−i
2
ρ′1 + iρ′3, ρ3 = iρ′2.

To generalise this, if we take a polynomialQ ∈ S2r and from it construct the vector
X ⊗ S ′

1 + adY X ⊗ S ′
2 + ad2

Y X ⊗ S ′
3 then the corresponding triple of matrices is

(Si) given by

S1 =
1

2
S ′
1 + S ′

3, S2 =
−i
2
S ′
1 + iS ′

3, S3 = −iS ′
2. (3.28)

Remark 3.3.17. If we work instead with ãd when creating the S ′
i, and modify

the basis change to have S3 = −iS ′
2, we recreate exactly the same results in all

the cases presented in [HMM95].

Remark 3.3.18. The freedom of choice in the ρi represents the freedom of choice
in the orientation of the corresponding Nahm matrices.

Example 3.3.19. We can be very explicit about how this works in the case of
finding the matrices corresponding to Q ∈ S2r

−1 where the algorithm is more simple
because ϕ−1,−1 is the identity. The process is as follows.

1. Polarise Q(ζ0, ζ1) (i.e. compute Polar(Q)) as

ζ20 ⊗Q00(ζ0, ζ1) + 2ζ0ζ1 ⊗Q01(ζ0, ζ1) + ζ21 ⊗Q11(ζ0, ζ1).

2. Find univariate polynomials Q̃00, Q̃01, Q̃11 such that

1

2
Q00(ζ0, ζ1) = Q̃00

(
ζ0

∂

∂ζ1

)
ζ2r−2
1 ,

Q01(ζ0, ζ1) = Q̃01

(
ζ0

∂

∂ζ1

)
ζ2r−2
1 ,

Q11(ζ0, ζ1) = Q̃11

(
ζ0

∂

∂ζ1

)
ζ2r−2
1 .
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3. Calculate matrices S ′
i as

S ′
1 = Q̃11(adY0)X

r−1
0

and likewise for S ′
2 with Q̃01, S

′
3 with Q̃00.

4. Calculate the Si from the S ′
i with Equation 3.28.

We shall call this the upper-invariant algorithm. In the case of Q ∈ S2r
0 , the

situation would be more complicated as we must implement ϕ−1,0, namely we get
the following steps.

1. Calculate the polarisation of Q in S2 ⊗ S2r−2 as in step 1 of the upper-
invariant algorithm.

2. Find the univariate polynomial Q̃ such that

Polar(Q) = Q̃(ζ0∂1 ⊗ 1 + 1⊗ ζ0∂1)(ζ21 ⊗ ζ2r−2
1 ).

3. Find univariate polynomials Q̃00, Q̃01, Q̃11 such that

Q̃(ζ0∂1 ⊗ 1 + 1⊗ ζ0∂1)(2ζ0ζ1 ⊗ ζ2r1 − 2ζ21 ⊗ ζ0ζ2r−1
1 ) = 2ζ20 ⊗ Q̃00(ζ0∂1)ζ

2r
1

+ 2ζ0ζ1 ⊗ Q̃01(ζ0∂1)ζ
2r
1

+ ζ21 ⊗ Q̃11(ζ0∂1)ζ
2r
1 .

4. Apply steps 3 and 4 of the upper-invariant algorithm.

This shall give us the middle-invariant algorithm.
There is likewise a process for the lower invariant. In all of these we find a

univariate polynomial Q̃ such that Polar(Q) = Q̃(Y ·)v−1, then write Q̃(Y ·)vi =
2ζ20 ⊗ Q̃00(Y ·)ζ2(r+i)

1 + . . . .

Example 3.3.20. Let us see Example 3.3.19 in action.
First consider Q = ζ20 . Polarising we get ζ20 ⊗ 2, so Q00 = 2, Q01 = 0 = Q11.

As such Q̃00 = 1, Q̃01 = 0 = Q̃11 and (S ′
i) = (0, 0, Id).

Next consider Q = ζ0ζ1. Polarising would give 2ζ0ζ1 ⊗ 1, hence Q01 = 1,
Q00 = 0 = Q11, and so Q̃01 = 1, Q̃00 = 0 = Q̃11. As such we find (S ′

i) = (0, Id, 0).
Finally take Q = ζ21 . Polarising yields ζ21 ⊗ 2, so Q11 = 2, Q00 = 0 = Q01,

and Q̃11 = 2, Q̃00 = 0 = Q̃01. Now we find (S ′
i) = (2 Id, 0, 0).

Example 3.3.21. Suppose now we have the vector (Si) ∈ R3⊗ su(k) constructed
from a polynomial Q, what is the polynomial corresponding to (S̃i) := (S†

i )? We
can compute

S̃ ′
1 = S̃1 + iS̃2 = S†

1 + iS†
2 = (S1 − iS2)

† = 2(S ′
3)

†,

and likewise S̃ ′
2 = −(S ′

2)
†, S̃ ′

3 =
1
2
(S ′

1)
†.

Now we know, for example S ′
1 = Q̃11(adY0)X

r+i
0 , and so by Remark 3.3.13

S̃ ′
3 =

1
2
Q̃11(− adX0)Y

r+i
0 , likewise for S̃ ′

2 and S̃ ′
1. Identifying X0 with ζ21 , Y0 with

148



Symmetries of Riemann Surfaces and Magnetic Monopoles 149

ζ20 , adX0 with ζ1
∂
∂ζ0

, and adY0 with ζ0
∂
∂ζ1

, the action of conjugate transpose on the

su(k) factor of R3 ⊗ su(k) corresponds to [ζ0 : ζ1] 7→ [−ζ̄1 : ζ̄0] in HMM under
the isomorphism described. This is exactly what we would expect from §3.3.1 as
both actions correspond to the antiholomorphic involution τ .

Note that the construction described here can all be computed explicitly in
Sage, as is done in the code nahm_data.py. An example computation implement-
ing the construction is given in the Sage notebook charge_3_V4_symmetric_

potential_monopole.ipynb.
Given now some set of d polynomials Q(j) as inputs for the algorithms we get

triples (S
(j)
i ) for j = 1, . . . , d, and so because we know

R3 ⊗ su(k) =
(
R3 ⊗ su(k)

){e}
,

⟨(ρi)⟩ =
(
R3 ⊗ su(k)

)PSU(2)
,

we know there exist subgroups H ≤ G ≤ SO(3) such that(
R3 ⊗ su(k)

)G ⊆ 〈(ρi), (S(j)
i )
〉
⊆
(
R3 ⊗ su(k)

)H
,

and moreover H (respectively G) is maximal (respectively minimal) with respect
to inclusion. Identifying H with a subgroup of PSU(2), we know that each Q(j) is

in (SdegQ(j)
)H . We shall often seek to find Q(j) such that H = G, which we may

achieve by taking a basis of invariant polynomials as the inputs to the algorithm,
which by equivariance must give a basis of invariant triples. Note this need not
be true if we instead considered a group G ≤ O(3) not generated entirely by
rotations, and we will see an example of this in §3.4.3.

Nahm’s Equations on a Basis

We suppose now that we are given triples of matrices (ρi), (S
(j)
i ) for j = 1, . . . , d,

which in practice come from the algorithm described in the previous section. I
shall describe the process of constructing solutions to Nahm’s equations where

(Ti), (T
′
i ) ∈

〈
(ρi), (S

(j)
i )
〉
, modifying the method of [HMM95] to allow for the

possibility that such a solution does not exist.
To start we shall recall the concept of vectorisation. The details of this will

not be important, but it is a linear map Vec := V sending m × n matrices to
vectors of length mn such that

V (ABC) = (CT ⊗ A)V (B).

We can check that this makes sense: if A,B,C are k×l, l×m, andm×n matrices
respectively, then V (ABC) is vector of length kn, CT ⊗ A is a kn × lm matrix,
and V (B) is a vector of length lm. Letting π(A) = 1 ⊗ A − AT ⊗ 1, this means
we have

V ([A,B]) = π(A)V (B).

We can thus write out Nahm’s equations as a matrix equation, and introducing
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the notation for vertically concatenated triples of vectors that with a being a
lower index, b = a+ 1 mod 3 and c = a+ 2 mod 3, they become(

V (T ′
a)
)
=
(
π(Tb)V (Tc)

)
.

The vectors are of length 3k2 and the matrix has dimensions 3k2 × 3k2. As
mentioned, I will want to consider the case where the vectors are in the span of
V (ρa), V (S

(j)
a ). Suppose we have a solution to Nahm’s equations given by

Ti(s) = x(s)ρi + yj(s)S
(j)
i , (summing over j),

then (
V (T ′

a)
)
=
(
V (ρa), V (S

(j)
a )
)(x′

y′j

)
=M

(
x′

y′j

)
,(

π(Tb)V (Tc)
)
=
([
xπ(ρb) + ylπ(S

(l)
b )
] [
xV (ρc) + ymV (S

(m)
c )

])
,

= x2
(
π(ρb)V (ρc)

)
+ xyl

(
π(ρb)V (S

(l)
c ) + π(S

(l)
b )V (ρc)

)
+ ylym

(
π(S

(l)
b )V (S

(m)
c )

)
.

where I have letM be the 3k2×(d+1) matrix
(
V (ρa), V (S

(j)
a )
)
and we presently

sum over all l,m = 1, . . . , d. Note we can rewrite∑
l,m

ylym

(
π(S

(l)
b )V (S

(m)
c )

)
=
∑
l

y2l

(
π(S

(l)
b )V (S

(l)
c )
)

+
∑
l<m

ylym

(
π(S

(l)
b )V (S

(m)
c ) + π(S

(m)
b )V (S

(l)
c )
)
,

=
∑
l≤m

1

1 + 1l=m

ylym

(
π(S

(l)
b )V (S

(m)
c ) + π(S

(m)
b )V (S

(l)
c )
)
,

Note here 1l=m is the indicator function20. As such, introducing the vectors

X
(l)
α,β =

(
π(ρb)V (S

(l)
c ) + π(S

(l)
b )V (ρc)

)
,

X̂
(l,m)
γ,δ =

1

1 + 1l=m

(
π(S

(l)
b )V (S

(m)
c ) + π(S

(m)
b )V (S

(l)
c )
)
,

and using the known commutation relations of the ρi we have

M

(
x′

y′j

)
= 2x2

[
M

(
1
0

)]
+ xylX

(l)
α,β + ylymX̂

(l,m)
γ,δ , (3.29)

restricting the double sum to be over l ≤ m. The existence of a solution to

Nahm’s equations in
〈
(ρi), (S

(j)
i )
〉
is then a question of consistency of some linear

20Here the notation used is such that the indicator function 1A takes the value 1 if the
statement A is true, and 0 otherwise.
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inhomogeneous equations (and analytic questions about existence of solutions
to inhomogeneous ODEs which I shall not discuss). Certainly if we can find
constants α(j), β(j,k), j, k = 1, . . . , d which solve the d equations

M


α(j)

β(j,1)

...
β(j,d)

 = X
(j)
α,β (3.30)

and constants γ(j,k), δ(j,k,l), j, k, l = 1, . . . , d, j ≤ k which solve the 1
2
d(d + 1)

equations

M


γ(j,k)

δ(j,k,1)

...
δ(j,k,d)

 =
1

1 + 1j=k

X
(j,k)
γ,δ = X̂

(j,k)
γ,δ (3.31)

then the full commutation relations have a solution. Equations 3.30 and 3.31
correspond to the equations defining α, β, γ, δ in [HMM95, p. 679]. The total
number of constants is d(1+d)+ 1

2
d(d+1)(1+d) = 1

2
d(d+1)(d+3), and Nahm’s

equations then become

x′ = 2x2 + α(k)xyk + γ(k,l)ykyl,

y′j = β(k,j)xyk + δ(k,l,j)ykyl.

Conversely, provided that rank(M) = d + 1 we could perform Gaussian elimi-
nation to put M in echelon form, and then we would get consistent ODEs on a
submanifold specified by the linear constraints in xyl and ylym. The rank con-
dition also ensures that these ODEs would be unique. If the rank was less than
d + 1, M would have a right kernel, and the number of degrees of freedom if a
solution exists would be 1

2
d(d+ 3) dimKerrightM .

Example 3.3.22. Suppose that one generated the set of S
(j)
i by applying the

algorithm described in §3.3.2 to all of the HMM representation space HMM, then

d = (2n+ 1)︸ ︷︷ ︸
S2n−1

+2(2n− 1)︸ ︷︷ ︸
S2n−2
−1,0

+
n−1∑
k=2

3(2n− 2k + 1)︸ ︷︷ ︸
S2n−2k
−1,0,1

= 3n2 − 1,

and so M is square and there are no possible constraints if M is full rank.

Remark 3.3.23. This linearisation approach is different to that considered in
[HMM95], where the procedure is presented as consistent commutation relations,
and no process for finding the constants α, β, γ, δ is presented. By describing the
process in terms of vectorisation, it makes it clear how to implement the process
of computing the constants.

The main usage for this method of creating Nahm matrices from a basis is the
construction of monopoles invariant under G ≤ SO(3), as in [HMM95, HS96d,
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HS96c, HS96a, HS96b, Sut97b]. In these cases, a basis of polynomials in (S2r)G,
r = 1, . . . , k are chosen as the input to the algorithm of §3.3.2, which provides a
basis of (R3 ⊗ su(k))G. From this basis Nahm matrices are constructed, and due
to the symmetry enforced by G solving the resulting equations in the x, yj are
typically easier. We will see some examples of this later in §3.4.

It is helpful conceptually to notice that, if we construct Nahm matrices from

polynomials
{
Q

(j)
r | r = 1, . . . , k, j = 1, . . . , nr

}
such that

{
Q

(j)
r | j = 1, . . . , nr

}
forms a basis of (S2r)G for some fixed G ≤ SO(3), then the corresponding spectral

curve will be of the form ηk +
∑k

r=1 η
k−r
∑nr

j=1 cr,jQ
(j)
r for some cr,j ∈ C. This

follows simply from symmetry considerations; if the Nahm matrices are invariant
under G, the spectral curve will be invariant under G, and so will be built from the
corresponding basis of invariant polynomials. In general, if the Nahm matrices
are given by Ti(s) = x(s)ρi + yj(s)S

(j)
i then the coefficient of the polynomial Q(j)

in the spectral curve will not just be yj because the determinant is a nonlinear
construct, and we see examples of this in §3.4. In the case of the leading order
ηk−1, the behaviour is actually very regular, as described by the next result.

Proposition 3.3.24. Take the Nahm matrices Ti(s) = x(s)ρi + yj(s)S
(j)
i , where

the triples (S
(j)
i ) are constructed from some polynomials Q(j). Without loss of

generality assume that Q(1) = ζ20 , Q
(2) = ζ0ζ1, and Q

(3) = ζ21 . The coefficient of
ηk−1 in the spectral curve is then 2k(y3 + y2ζ + y1ζ

2).

Proof. Taking the spectral curve to be given by P (ζ, η) = det [η + L(ζ)] where

L = (T1 + iT2)− 2iT3ζ + (T1 − iT2)ζ2,

we get that the coefficient of ηk−1 in P is Tr(L), which we shall now rewrite. As
in Remark 3.3.13, we will take the ρi to be real satisfying ρ†i = −ρi. This means
they are traceless, and we have

Tr(L) = yj

[
(S

(j)
1 + iS

(j)
2 )− 2iS

(j)
3 ζ + (S

(j)
1 − iS

(j)
2 )ζ2

]
,

= yj

[
S
′,(j)
1 + 2S

′,(j)
2 ζ + 2S

′,(j)
3 ζ2

]
.

Now the S
′,(j)
i will be given by Q̃(adY0)(X

r+i
0 ) for some univariate polynomial

Q when taking the triple of matrices corresponding to Q(j) ∈ S2r
i , and this can

only have nonzero trace when r + i = 0, that is r = 1 and i = −1. Hence
the only contribution comes from applying the upper-invariant algorithm to Q(j),
j = 1, 2, 3. We calculated the result of applying the algorithm to these input
polynomials in Example 3.3.20, and then taking the trace gives the desired result.

3.3.3 Ck-invariant Nahm Matrices

I will now briefly discuss one particular class of symmetric monopoles, first studied
from the Nahm perspective in [Sut96b] for their connection to Seiberg-Witten
theory, and later in [Sut97b, Bra11]. This will serve as a springboard for a later
construction in §3.4.1.
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The specific symmetry considered is that of a rotation about an axis by 2π/k
radians. By an overall rotation we may choose the axis of rotation to be (0, 0, 1),

so the SO(3) element generating the symmetry is

(
cos(2π/k) − sin(2π/k) 0
sin(2π/k) cos(2π/k) 0

0 0 1

)
with

corresponding transform on ζ, η given by s = sk : (ζ, η) 7→ (e2πi/kζ, e2πi/kη) as per
Example 3.3.2. The generic form of a spectral curve invariant under Ck = ⟨s⟩
(with reality imposed) is given by

C : P (ζ, η) := ηk+α2η
k−2ζ2+α3η

k−3ζ3+. . .+αk−1η ζ
k−1+αkζ

k+β
[
ζ2k + (−1)k

]
= 0,

(3.32)
where αi, β ∈ R. The work of [Bra11] shows C given in Equation 3.32 is the
unbranched cover of the genus-(k − 1) hyperelliptic curve

C ′ : y2 = (xk + α2x
k−2 + α3x

k−3 + . . .+ αk)
2 − (−1)k4β2, (3.33)

where x = η/ζ, y = β[ζk − (−1)kζ−k], and the covering map is given by the
quotient π : C → C ′ := C/Ck. The curve determined by Equation 3.32 also
has the symmetry t : (ζ, η) 7→ (−1/ζ,−η/ζ2) and G = ⟨s, t⟩ ∼= Dk is the full
automorphism group. The transformation t corresponds up to an action of τ
to a reflection diag(1,−1, 1) ∈ O(3) (see Example 3.3.4) and it becomes the
hyperelliptic involution t : (x, y) → (x,−y) on the quotient curve. The relation
of the linear flow in Jac(C) to a flow in the Jacobian of the quotient curve was
made precise in the following theorem.

Theorem 3.3.25 ([Bra11], Theorem 4.2). Recall the definition of the winding
vector U ∈ Jac(C) from Definition 3.2.21 and Proposition 3.2.24, which gives the
direction of the flow in the Jacobian. The winding vector is invariant under the
action of Ck, that is

U = π∗U ′

for some U ′ ∈ Jac(C ′). Equivalently

ζk−2−sηsdζ

∂ηP
= π∗

(
−1
k

xsdx

y

)
,

that is the Ck-invariant differentials on C reduce to hyperelliptic differentials.

Remark 3.3.26. The equivalence of the conditions in Theorem 3.3.25 may not
be immediately clear but follows from the proof of Proposition 3.2.24.

Remark 3.3.27. [Bra11, Lemma 4.1, Theorem 4,2] actually show together that
for any G ≤ Aut(C) generated by rotations with quotient π : C → C ′ := C/G
we will have U = π∗U ′ for some U ′ ∈ Jac(C ′). We discussed this earlier in
Remark 3.2.31. Note that as part of the proof it is shown that there is a particular
differential on a monopole spectral curve that is invariant under any rotation, and
so the quotient genus is necessarily always positive.

In [Bra11], following an ansatz of [Sut96b], Braden shows that Nahm’s equa-
tions for charge-k monopoles with Ck rotational symmetry are equivalent to the
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A
(1)
k−1 affine Toda equations given in real Flaschka variables by

a′i =
1

2
ai(bi − bi+1), b′i = a2i − a2i−1, (3.34)

where i is taken mod k, and we use ′ to denote d
ds

as with the Nahm matrices.
This is done by putting the associated Nahm matrices in an explicit form from
where the ODEs can be read off. We are able to do this explicitly with the Nahm
matrices we get from the algorithm of §3.3.2 via the following steps.

1. Take the input polynomials to be Q(i) = ζ i0ζ
i
1, i = 1, . . . , k and Q(k+1) =

ζ2k0 − ζ2k1 , acted on by Ck as (ζ0, ζ1) 7→ (eπi/kζ0, e
−πi/kζ1).

2. Construct the invariant vectors (ρi), (S
(j)
i ), and scale them so they are all

anti-Hermitian, which can clearly be done by Example 3.3.21. We can
calculate that the number of S invariant vectors will be

d = 2× 1 + 1× 2 + (k − 2)× 3 = 3k − 2.

3. Calculate the (now anti-Hermitian) Ti. Note the variables x, yj are now
always real-valued.

4. Diagonalise the matrix T3 with a unitary matrix U whose columns are the
normalised eigenvectors of T3, that is construct U−1T3U . As T3 is anti-
Hermitian and linear in the invariant vectors ρ3, S

(j)
3 , the diagonal entries

which are the eigenvalues will be pure-imaginary and linear in {x, yj}.

5. From [Bra11], conjugate by the same unitary matrix to give

U−1(T1 + iT2)U =
k∑

j=1

ajEj,j+1, U−1(T1 − iT2)U =
k∑

j=1

−ājEj+1,j,

for some a1, . . . , ak ∈ C, where (Eij)ab = δaiδbj.

6. Writing aj = rje
iϕj (as generically aj ̸= 0) and solving

ϕj + θj+1 − θj = 0, j = 1, . . . k − 1,∑
j

θj = 0, (3.35)

for θ1, . . . , θk ∈ R, defines a unitary matrix D = diag(eiθ1 , . . . , eiθn). Conju-
gating by D preserves the form of T3, but acts to make each aj real for j =
1, . . . , k−1 (as it multiplies aj by e

i(θj+1−θj)). Note that generically we could
not have made all the aj real as Equations 3.35 would be overdetermined;

the effect on ak is to multiply it by ei(θ1−θk) = ei(ϕ1+···+ϕk−1) =
∏k−1

j=1(aj/rj).
After quotienting by this action the number of independent variables we
have is 3k − 2 + 1 − (k − 1) = 2k (as we are using k − 1 variables, but
there is a redundancy in the solutions of the θ to pick arbitrary θ1 and get
a solution). This is the correct count for Sutcliffe’s ansatz.
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7. Thinking now about the permutations contributing to the determinant

det(η + L(ζ)) = det
(
η +

[
(T1 + iT2)− 2iζT3 + (T1 − iT2)ζ2

])
,

the only such permutations with no fixed points (that is, giving no η con-
tributions) are σ = (1, 2, . . . , k) and σ−1. These contribute terms

(−1)k−1

k−1∏
j=1

rj × ak
k−1∏
j=1

(aj/rj) +
k−1∏
j=1

−ζ2rj ×−ζ2ak
k−1∏
j=1

(aj/rj)

 ,
which can be written as

(−1)k−1
[
β + (−1)kβ̄ζ2k

]
,

where β =
∏k

j=1 aj. Now looking at the spectral curve, we have set β to be
real in the beginning, through a rotation viewed as acting on ζ, η.

These variables are the Flaschka coordinates for the periodic Toda system.

Example 3.3.28. It will be helpful to demonstrate how this process works in the
case of k = 2, where the representation su(2) → su(k) is simply the identity.
Here we want the three input polynomials ζ0ζ1, ζ

2
0ζ

2
1 and ζ40 − ζ41 . Polarising these

three we get

2ζ0ζ1 ⊗ 2, ζ20 ⊗ 2ζ21 + 2ζ0ζ1 ⊗ 4ζ0ζ1 + ζ21 ⊗ 2ζ20 , ζ20 ⊗ 12ζ20 + ζ21 ⊗−12ζ21 ,

which at level -1 correspond to triples of polynomials (Q̃11(x), Q̃01(x), Q̃00(x))

(0, 1, 0), (x2, 2x, 1), (−12, 0, 3x2).

At this level there is no isomorphism to effect, so we simply get the triples (S ′
i)

(0, Id, 0), (ad2
Y X, 2 adY X,X), (−12X, 0, 3 ad2

Y X).

Using adY X = −H, ad2
Y X = −2Y , and converting to the triple (Si) we get

(0, 0, i Id), (−Y +X, iY + iX,−2iH), (−6X − 6Y, 6iX − 6iY, 0).

At level 0 we also get a contribution from the first polynomial. We can see

(ζ0∂1 ⊗ 1 + 1⊗ ζ0∂1)(ζ21 ⊗ 1) = 2ζ0ζ1 ⊗ 1,

(ζ0∂1 ⊗ 1 + 1⊗ ζ0∂1)(2ζ0ζ1 ⊗ ζ21 − 2ζ21 ⊗ ζ0ζ1) = 2ζ20 ⊗ ζ21 − 2ζ21 ⊗ ζ20 ,

so at level 0 from the first polynomial we get the triple of univariate polynomials
(−x2, 0, 1), corresponding to the triple of matrices (Si) = (Y +X,−iY + iX, 0).
Using

X =
1

2
(ρ1 − iρ2), Y = −1

2
(ρ1 + iρ2), H = −iρ3,

we recover that these triples of matrices are, up to a scale to set the vectors to
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have anti-Hermitian matrices as factors,

(0, 0, i Id), (ρ1, ρ2,−2ρ3), (ρ2, ρ1, 0), (−ρ2, ρ1, 0)

At charge-2, the ρj correspond to σj/i the scaled Pauli matrices (with some rein-
dexing to account for a sign), but this gives Nahm matrices

(Ti) = ((x+ y1)ρ1 + (y2 − y3)ρ2, (x+ y1)ρ2 + (y2 + y3)ρ1, (x− 2y1)ρ3 + iy0 Id).

Setting y0 = 0 corresponds to centring so we can do this. It moreover turns
out that one can set y3 = 0 consistently. If one acts with a rotation matrix

A =
(

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
, which corresponds to the SU(2) matrix U = diag(eiθ/2, e−iθ/2),

T3 is fixed. One can check that

ρ1 =

(
0 1
−1 0

)
, ρ2 =

(
0 i
i 0

)
⇒ ρU1 = cos(θ)ρ1 + sin(θ)ρ2, ρU2 = cos(θ)ρ2 − sin(θ)ρ1,

and so under the action of A we have

T1 7→ cos(θ) [(x+ y1) (cos(θ)ρ1 + sin(θ)ρ2) + y2 (cos(θ)ρ2 − sin(θ)ρ1)]

− sin(θ) [(x+ y1) (cos(θ)ρ2 − sin(θ)ρ1) + y2 (cos(θ)ρ1 + sin(θ)ρ2)] ,

and likewise for T2. Hence choosing θ = π/4 gives the standard ansatz for the
Nahm data of a charge-2 monopole of Tj(s) = fj(s)ρj for some real functions fj
[BE21, §3.6].

3.4 Classifying Charge-3 Monopoles

The upshot: monopole spectral curves are
interesting, encoding real as well as complex
algebraic geometry and number theory but they are
difficult to lay hands on. ... Victor’s love of
classical curves had him always looking for new
candidates, and he would be delighted if progress
could be made here.

– Harry Braden
Victor Enolski Memorial Tribute

Combining the ideas presented in §3.3.1, I will now present a partial classifica-
tion of charge-3 monopoles based upon their possible symmetry, work completed
in collaboration with Harry Braden which has been published [BDH23]. In par-
ticular, I will prove the following theorem.

Theorem 3.4.1. Let C ⊂ TP1 be a smooth charge-3 monopole spectral curve
with H ≤ Aut(C) such that the quotient genus g(C/H) = 1. Then, up to an
automorphism of TP1, the curve is given by the vanishing of one of the following
5 forms:
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1. η3+η[(a+ib)ζ4+cζ2+(a−ib)]+[(d+ie)ζ6+(f+ig)ζ4−(f−ig)ζ2−(d−ie)],

2. η3 + η[a(ζ4 + 1) + bζ2] + icζ(ζ4 − 1),

3. η3 + aηζ2 + ibζ(ζ4 − 1),

4. η3 + aηζ2 + b(ζ6 − 1),

5. η3 + iaζ(ζ4 − 1),

where a, b, c, d, e, f, g ∈ R.

The result does not itself guarantee the existence of monopole spectral curves
in these families, and the classes intersect (for example, 5 is a special case of 3).
In previous works monopole spectral curves of the form 3 and 5 have been under-
stood in [HS96b] and [HMM95] as corresponding to charge-3 twisted line scat-
tering and the tetrahedrally-symmetric monopole respectively, while one special
case of the form 2 was understood in [HS96a] as the class of inversion-symmetric
monopoles, with another in [Hit83] as the axially-symmetric 3-monopole (where
the SO(2) symmetry of rotations is given by (ζ, η) 7→ (eiθζ, eiθη)). Curves of the
form 2 had been observed in [Hou97, (3.71)], but the Hitchin constraints were
only imposed for a restricted subset. I will deal with curves of the form 4 in §3.4.1
and curves of the form 2 in §3.4.2, providing explicit Nahm data for parametri-
sations of both cases. Along with the class of charge-3 monopoles described via
an implicit condition in [BDE11], these form all the charge-3 monopole spectral
curves currently known, which fit together as shown in Figure 3.2 for some pa-
rameter values. Figure 3.3 shows the relations between the symmetry groups of
the curves, not specifying any constraints on the parameters.

η3 + α2ηζ
2 + α3ζ

3 + β(ζ6 − 1), [BDE11]

η3 + α2ηζ
2 + β(ζ6 − 1), here η3 + cζ(ζ4 − 1), [HMM95]

η[η2 + π2ζ2], [Hit83] η3 + bηζ2 + cζ(ζ4 − 1), [HS96b]

η [η2 + a(ζ4 + 1) + bζ2] , [HS96a] η3 + η[a(ζ4 + 1) + bζ2] + cζ(ζ4 − 1), here.

α3=0
α2=0 and rotation

β=0 b=0

c=0

a=0 a=0

c=0

Fig. 3.2 Known charge-3 spectral curves and their relations
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S3

S3, C6 ≤ D6 A4 ≤ C3 × S4

C2 × SO(2) C4 ≤ D4

V4 V4 ≤ V4.

α3=0
α2=0 and rotation

β=0 b=0

c=0

a=0 a=0

c=0

Fig. 3.3 Automorphism groups of known charge-3 spectral curves and their re-
lations, presented as G or H ≤ G where G is the full automorphism group and
H is the subgroup quotienting to an elliptic curve when it exists

The starting point for this classification is the identification made earlier in
Remark 3.2.10 and Proposition 2.1.63 that all smooth charge-3 monopole spec-
tral curves are non-hyperelliptic genus-4 curves whose canonical embedding in P3

lies in the quadric cone. One can also reach this conclusion going via del Pezzo
surfaces of degree 1 [CKRSN19]. Moreover, we saw in §2.2.2 that in 1895 Wiman
[Wim95b] classified all non-hyperelliptic genus-4 curves by their automorphism
group and gave explicit defining equations for these. Wiman’s classification had
two families: curves arose either as the intersections of a cubic surface and non-
singular quadric in P3, or as the intersection of a cubic surface and quadric cone
in P3. Thus charge-3 monopole spectral curves with automorphism group must
lie in Wiman’s second family. (The two rulings of the nonsingular quadric of
Wiman’s first family lead to projections from the curve to P1 × P1, which is
relevant for spectral curves of hyperbolic monopoles; this will be developed else-
where.) In Table 3.1 we give those curves in Wiman’s classification which lie on
a cone presenting21 these in terms of a curve given by the vanishing of a polyno-
mial P (x, z). We also write down their full automorphism group G := Aut(C) and
the corresponding signature c := cG = (g0; c1, . . . , cr) giving the quotient genus
g0 = g(C/G) and the ramification indices ci of the quotient map C → C/G (as
in §2.1.4). These have been calculated with the help of the information available
from [LMF23]. We make some remarks about Table 3.1.

• These curves have been noted previously in Table 2.3 during the discussion
of theta characteristics.

• The polynomial P (x, z) given is a single representative of the orbit of the
curve under the action of the whole automorphism group of TP1, not just
the subgroup which preserves invariance under τ .

• As in §2.2.2 the label Dn refers to the dihedral group of order 2n.

21We set y = 1 in Wiman’s notation so as to make clear the connection to monopole spectral
curves.
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• Wiman’s parameters are to be understood as generic: there may exist spe-
cific values of the parameters for which the automorphism group is larger
than that indicated.

• Wiman provides a form where the z2 term is always zero, equivalent to
centring the monopole.

• All the curves given are irreducible, so we can only find reducible spectral
curves as limiting members of the families provided.

• We recognise the curve with C3 × S4 symmetry as corresponding to the
tetrahedrally-symmetric monopole.

Table 3.1: Potential charge-3 monopole spectral curves with nontrivial automor-
phism group and those (with subgroups) quotienting to genus 1

P G cG H cH

z3 + z(ax4 + bx2 + c) + (dx6 + ex4 +
fx2 + g)

C2 (1; 26) C2 (1; 26)

z3+z(ax4+bx2+c)+dx(x4+ex2+f) C2 (2; 22)
z3+z[a(x4+1)+ bx2]+x[c(x4+1)+
dx2]

V4 (0; 27)

z3 + z[a(x4 + 1) + bx2] + x(x4 − 1) V4 (1; 23) V4 (1; 23)
z3 + azx2 + x(x4 + 1) D4 (0; 24, 4) C4 (1; 42)
z3 + z(x4 + a) + (bx4 + c) C4 (0; 2, 44)
z3 + azx2 + x6 + bx3 + 1 S3 (0; 26)
z3 + azx2 + x6 + 1 D6 (0; 25) S3, C6 (1; 22)
z3 + z(ax3 + b) + (x6 + cx3 + d) C3 (1; 33) C3 (1; 33)
z3 + az(x3 + 1) + (x6 + 20x3 − 8) A4 (0; 2, 33)
z3 + az + x6 + b C6 (0; 2, 63)
z3 + z + x6 C12 (0; 4, 6, 12)
z3 + az + x5 + b C5 (0; 54)
z3 + z + x5 C10 (0; 5, 102)
z3−(x6+ax5+bx4+cx3+dx2+ex+f) C3 (0; 36)
z3 − (x6 + ax4 + bx2 + 1) C6 (0; 22, 33)
z3 − x(x4 + ax2 + 1) C6 × C2 (0; 22, 3, 6)
z3 − (x6 + ax3 + 1) C3 × S3 (0; 22, 32)
z3 − (x5 + 1) C15 (0; 3, 5, 15)
z3 − (x6 + 1) C6 × S3 (0; 2, 62)
z3 − x(x4 + 1) C3 × S4 (0; 2, 3, 12) A4 (1; 2)

Not all curves on the list will yield monopoles spectral curves, for example by
the following result.

Proposition 3.4.2 ([BE10a]). There are only two curves in the family η3 +
χ(ζ6 + bζ3 + 1) = 0, χ, b ∈ R, that correspond to BPS monopoles; these are
tetrahedrally-symmetric monopole spectral curves.
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Genus-1 Reductions

Table 3.1 gives us a list of putative spectral curves with symmetry before we
have imposed the further constraints of Hitchin. We saw in §3.2.2 that Nahm’s
equations correspond to a linear flow in the Jacobian of the corresponding spectral
curve C; the direction of this linear flow given by the winding vector U . Braden
[Bra11] has shown that when we have a symmetry group G we may be able to
reduce to the quotient curve C π→ C ′ := C/G and reduced winding vector U ′

when U = π∗U ′. For example charge-k monopoles with Ck symmetry reduce to
questions about a genus-(k − 1) hyperelliptic curve, as seen in §3.3.3. The k = 3
case was studied in [BDE11]. The list of Table 3.1 is too general for current
methods to make progress and hence we require a further criterion to reduce
this. Here we adopt the following: does the genus-4 spectral curve (assumed with
real structure) quotient (either by Aut(C) or a subgroup) to an elliptic curve?
The rationale for this is that the remaining of Hitchin’s conditions are most
straightforwardly answered for elliptic curves; equivalently the Ercolani-Sinha
constraint becomes one on the real period of an elliptic curve. There are also a
number of curves known with this property [HMM95, HS96d, HS96a, HS96b], and
the usefulness of this property has been identified previously [Hou97, Sut97a].

Thus we seek curves C with real structure from Wiman’s list for which there
exists H ≤ Aut(C) such that g(C/H) = 1. Here we may use the database of
[LMF23] which has enumerated all the possible H and the corresponding signa-
tures for genus-4 curves. We may then use our knowledge of the explicit forms
of the curves to match up these cases, which leaves us with the reduced list in
the final two columns of Table 3.1. As previously noted, the H = A4 case cor-
responds to the tetrahedrally-symmetric monopole [HMM95], and the H = C4

case has already been solved in [HS96b]. We also see that the cases H = S3 and
H = C6 arise from the same curve, indicating that the curve has two distinct
quotients to an elliptic curve.

In the following sections we will investigate in more detail the two new cases
H = C6 (or equivalently H = S3) with full automorphism group G = D6, and
H = V4 (with full automorphism group G = V4). In these cases we will see that
the ES cycle on the spectral curve is invariant under the action of H and so
corresponds to a cycle on the quotient curve, hence we may impose the Hitchin
constraints on the quotient elliptic curve. This will not remain true for the curve
with C2 symmetry, and so though I shall make a few comments I will not construct
fully its Nahm data. I will begin with the D6 case which is both illustrative and
simpler, though ultimately the new solutions and their scattering family are less
interesting.

Before turning to these however we may complete the proof of Theorem 3.4.1.
With the exception of the H = C3 curve, imposing reality on the curves with
groups H listed in Table 3.1 yields the curves of Theorem 3.4.1 (and in the same
order). Note not all M ∈ GL2(C)/ ⟨−1⟩ ≤ Aut(P(1 : 1 : 2)) will commute
with the action of τ , but S ∈ SU(2) will. One may use Schur decomposition to
write M = STS−1 for some S ∈ SU(2), T an upper-triangular matrix, and so
when imposing reality on Wiman’s normal forms one should consider the orbits
under upper-triangular matrices. The only real forms present in the orbit of the
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G = H = C3 family have a = b = 0 in the corresponding defining equation P ;
the resulting curve then lies in the family described by Proposition 3.4.2. Only
the tetrahedrally-symmetric monopole within this family quotients to an elliptic
curve and by a rotation this may be written as η3 + iaζ(ζ4 − 1) = 0, the final
entry of the theorem. We have thus established Theorem 3.4.1.

3.4.1 D6

In this section I will now construct explicitly Nahm data for all D6-symmetric
3-monopoles. This will involve 3 steps:

1. construct (anti-Hermitian) matrices with the right symmetry to reduce
Nahm’s matrix ODEs to a system of ODEs in (real) functions,

2. solve the ODEs in terms of elliptic functions, and

3. impose the reality and boundary conditions of §3.2.2 to make the solutions
of Nahm’s equations into Nahm data

We shall complete these in order.

Constructing Symmetric Nahm Matrices

In order to construct Nahm data for the D6 monopoles, it is helpful to recall the
Ck-invariant monopole spectral curves described in §3.3.3. Taking k = 3 yields
the curve in Table 3.1 with full automorphism group G = S3 (= D3 in [LMF23]
notation). We saw in §3.3.2 a general discussion of how to use the algorithms
to construct Nahm matrices, and we put these into practice now yielding Nahm
matrices

T1 =

 0 iy0 iy1 + y5 + iy6
iy0 0 −2x− y2 + iy3

iy1 − y5 + iy6 2x+ y2 + iy3 0

 ,

T2 =

 iy0 0 2x+ y2 − iy3
0 −iy0 iy1 + y5 + iy6

−2x− y2 − iy3 iy1 − y5 + iy6 0

 ,

T3 =

 iy1 + iy4 − 2
3
iy6 −2x+ 2y2 0

2x− 2y2 iy1 + iy4 − 2
3
iy6 0

0 0 −2iy1 + iy4 +
4
3
iy6

 .
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with accompanying ODEs in 8 real variables

x′ = 2x2 − 1

3
y20 −

5

6
y21 −

1

2
y22 +

1

6
y23 +

1

6
y25 +

5

6
y26,

y′0 = −4xy0 + 4y0y2,

y′1 = −4xy1 −
16

5
y1y2 −

6

5
y3y5 −

6

5
y2y6,

y′2 =
2

3
y20 −

4

3
y21 − 2xy2 − y22 −

1

3
y23 −

1

3
y25 − y1y6 +

1

3
y26,

y′3 = 2xy3 − 2y2y3 − 3y1y5 + 2y5y6,

y′4 = 0,

y′5 = −3y1y3 + 2xy5 − 2y2y5 + 2y3y6,

y′6 = −
9

5
y1y2 +

6

5
y3y5 + 6xy6 +

6

5
y2y6.

The associated spectral curve is

η3 + α1η
2ζ + α2ηζ

2 + α3ζ
3 + βζ6 − β̄ = 0,

where

α1 = −6y4,

α2 = 4y20 − 8y21 + 48xy2 − 12y22 + 4y23 + 12y24 + 4y25 + 24y1y6 −
4

3
y26,

α3 = −160x2y1 + 16y20y1 + 8y31 + 128xy1y2 − 40y1y
2
2 − 8y1y

2
3 − 8y20y4

+ 16y21y4 − 96xy2y4 + 24y22y4 − 8y23y4 − 8y34 − 32xy3y5 + 32y2y3y5

− 8y1y
2
5 − 8y4y

2
5 −

32

3
y20y6 −

128

3
y21y6 − 32xy2y6 + 80y22y6 +

16

3
y23y6

− 48y1y4y6 +
16

3
y25y6 + 24y1y

2
6 +

8

3
y4y

2
6 +

16

27
y36,

β = −16x2y0 + 4y0y
2
1 − 16xy0y2 − 4y0y

2
2 + 8jy0y1y3 − 4y0y

2
3 − 16ixy0y5

− 8iy0y2y5 + 4y0y
2
5 + 8y0y1y6 + 8iy0y3y6 + 4y0y

2
6.

In order to make the variables real we have imposed the anti-Hermiticity condition
required of the Nahm matrices at the beginning, by making the invariant vectors
corresponding to each variable anti-Hermitian.

We may consistently set y3 = 0 = y5, which we may view as using the con-
jugation action of diagonal matrices diag(eiθ1 , eiθ2 , eiθ3), θ1 + θ2 + θ3 = 0. This
leaves us with the 2 × 3 = 6 real variables we would expect to have from the
corresponding Toda. Note that because α′

1 = 0, the centre of mass of the Toda
system is already fixed. Moreover, we may centre to consistently set y4 = 0, and
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so we now have the equations in the remaining five variables as

x′ = 2x2 − 1

3
y20 −

5

6
y21 −

1

2
y22 +

5

6
y26,

y′0 = −4xy0 + 4y0y2,

y′1 = −4xy1 −
16

5
y1y2 −

6

5
y2y6,

y′2 =
2

3
y20 −

4

3
y21 − 2xy2 − y22 − y1y6 +

1

3
y26,

y′6 = −
9

5
y1y2 + 6xy6 +

6

5
y2y6,

with conserved quantities

α2 = 4y20 − 8y21 + 48xy2 − 12y22 + 24y1y6 −
4

3
y26,

α3 = −160x2y1 + 16y20y1 + 8y31 + 128xy1y2 − 40y1y
2
2

− 32

3
y20y6 −

128

3
y21y6 − 32xy2y6 + 80y22y6

+ 24y1y
2
6 +

16

27
y36,

β = −16x2y0 + 4y0y
2
1 − 16xy0y2 − 4y0y

2
2

+ 8y0y1y6 + 4y0y
2
6.

At this stage the resulting ODEs are somewhat opaque and we may use the
connection to Toda to clarify, putting the Nahm Lax pair in Toda form

T1 + iT2 =

 0 −2
√
2x−

√
2y1 −

√
2y2 −

√
2y6 0

0 0 2
√
2x−

√
2y1 +

√
2y2 −

√
2y6

2y0 0 0

 ,

T1 − iT2 =

 0 0 −2y0
2
√
2x+

√
2y1 +

√
2y2 +

√
2y6 0 0

0 −2
√
2x+

√
2y1 −

√
2y2 +

√
2y6 0

 ,

−2iT3 =

 −4x+ 2y1 + 4y2 − 4
3
y6 0 0
0 −4y1 + 8

3
y6 0

0 0 4x+ 2y1 − 4y2 − 4
3
y6

 .

(3.36)

This gives us variables

a0 = 2y0, a1 = −2
√
2x−

√
2y1 −

√
2y2 −

√
2y6, a2 = 2

√
2x−

√
2y1 +

√
2y2 −

√
2y6,

b1 = 4x− 2y1 − 4y2 +
4

3
y6, b2 = 4y1 −

8

3
y6, b3 = −4x− 2y1 + 4y2 +

4

3
y6.

These may be inverted, with any 6-tuple satisfying
∑

i bi = 0 giving valid x, yj. In
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these new variables we get the Toda equations 3.34 together with the constants

α2 = b1b2 + b1b3 + b2b3 + a20 + a21 + a22,

α3 = b1b2b3 + b1a
2
2 + b2a

2
0 + b3a

2
1,

β = a0a1a2.

At this stage we have six variables and three constraints. The spectral curve is

η3 + α2ηζ
2 + α3ζ

3 + β(ζ6 − 1) = 0, α2, α3, β ∈ R,

which covers by the C3 quotient the hyperelliptic curve

y2 = (x3 + α2x+ α3)
2 + 4β2. (3.37)

One could in principle solve these explicitly using the fact that the flow lin-
earises on the Jacobian of the associated hyperelliptic curve as in [vM76, Theo-
rem 5.1] (equivalently by Theorem 3.3.25); for k = 3 this was the approach taken
in [BDE11] where a family of monopoles including the tetrahedrally-symmetric
monopole was investigated.

Following our starting strategy we will restrict to the curve with the D6 sym-
metry which quotients to an elliptic curve. I shall now give four different perspec-
tives on how this gives a simplification which eventually allows us to construct
Nahm data explicitly.

1. We may use Gröbner bases in Sage to utilise the constants α2, α3, 0 =
∑
bi

to eliminate the bi, and we get the equations,

0 =
2∑

i=0

a2i − α2 −
1

3
(d21 + d1d2 + d22),

0 = a21d2 − a22d1 + α3 +
1

3
α2(d1 − d2) +

1

27
(d1 − d2)3,

where we have introduced di =
2a′i
ai
. Using β = a0a1a2 to eliminate a0 we

then have two nonlinear ODEs in two variables, the maximal reduction one
can achieve with generic αi and β. One simplification which can be achieved
is by attempting to make the second equation a polynomial in d1 − d2. To
do this we would need a21 = a22. We can calculate that

d

ds
(a21 − a22) = 2

[
a1

(
1

2
a1(b1 − b2)

)
− a2

(
1

2
a2(b2 − b3)

)]
,

= a21(b1 − b2)− a22(b2 − b3),
= a21(b1 − 2b2 + b3) + (a21 − a22)(b2 − b3),
= −3b2a21 + (a21 − a22)(b2 − b3).

Hence we can consistently set a21−a22 = 0 provided b2a
2
1 = 0. As b′2 = a22−a21,

this means we can consistently set a21 = a22 and b2 = 0. Making these
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restrictions we can now eliminate the one remaining equation to find

0 = a20 + 2a21 − α2 − d21 ⇒ a21

(
2
da1
ds

)2

= β2 + 2a61 − α2a
4
1.

Upon setting u = a21 this becomes(
du

ds

)2

= β2 + 2u3 − α2u
2, (3.38)

to which we shall return. We record that the j-invariant of the associated
elliptic curve y2 = β2 + 2u3 − α2u

2 is 16α6
2/(β

2[α3
2 − 27β2]). Note the

restrictions a21 = a22, b2 = 0, make α3 = 0, and so the symmetry of the
spectral curve is enhanced to the D6 desired.

2. When Sutcliffe introduced the Toda ansatz for cyclic monopoles in [Sut96b],
he showed that for k = 2 Nahm data could be constructed, but for k = 3
although he could solve the equations he could not find solutions with the
correct pole behaviour. The solution was obtained from the infinite chain
solution as follows. We have from(

log a2j
)′′

= −a2j−1 + 2a2j − a2j+1

and the standard elliptic function identity for the Weierstrass ℘ function

d2

du2
log[℘(u)− ℘(v)] = −℘(u+ v) + 2℘(u)− ℘(u− v)

that taking u = ju0 + t+ t0 and v = u0 gives

d2

dt2
log[℘(ju0 + t+ t0)− ℘(u0)] = −℘([j + 1]u0 + t+ t0) + 2℘(ju0 + t+ t0)

− ℘([j − 1]u0 + t+ t0),

and we may identify aj = ℘(ju0+t+t0)−℘(u0). This yields the solution for
the infinite chain and we must still impose periodicity to obtain a solution.
Imposing periodicity yields (for k = 3) that aj = ℘(2jK/3 + t)− ℘(2K/3)
which is equivalent to the solution of [Sut96b] which is given in Jacobi
elliptic functions.22 The ansatz employed here forces only one of the aj to
be singular at any point, and this means the pole condition on irreducibility

22To make connection with [Sut96b] we use Lawden’s notation [Law89, §6.3.1, §6.9]. Thus
for k = 3 we take u0 = 2K/3. Now

dc2(u) =
℘(u)− e2
℘(u)− e1

= 1 +
e1 − e2

℘(u)− e1
= 1 +

1

e1 − e3
[℘(u+ ω1)− e1] = 1 + [℘(u+ ω1)− e1] ,

cs2(2K/3) = ℘(2K/3)− e1.

Note Sutcliffe’s ‘q2j ’ is our aj . Then [Sut96b, 3.41] is dc2(u) − 1 − cs2(2K/3) = ℘(u + ω1) −
℘(2K/3) = ℘(u + K) − ℘(2K/3) and so with u = 2jK/3 + t + K (his choice of δ) we get
aj = ℘(2jK/3 + t)− ℘(2K/3) and the corresponding asymptotics given in [Sut96b, 3.42-45].
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of the residues of the Nahm matrices cannot be satisfied. If we are to find
an alternative solution that does indeed yield a monopole then this would
suggest that one appropriate route would be to pick a simplification which
forces multiple variables to have poles simultaneously. Such is the case when
a21 = a22, the condition we found previously.

One can more rigorously approach this idea, of searching for algebraic re-
lations between the variables in order to have the correct pole structure,
by using Gröbner bases. Write the Toda ODEs 3.34 schematically in terms
of variables ui, i = 1, . . . , r (here r = 6) as u′i = qi(u1, . . . , ur) for some
quadrics qi, and denote the constants of motion ci, i = 1, . . . , s (here s = 4
corresponding to

∑
bi, α2,3, and β), as ci = ci(u1, . . . , ur). We can then

expand each ui as a Laurent series about s = 0 as ui(s) =
∑

j≥−1 ui,js
j

and require that the lowest power terms in s cancel out, which gives the
equations

ui,−1 + qi(u1,−1, . . . , ur,−1) = 0 = ci(u1,−1, . . . , ur,−1).

Note these equations are given entirely in terms of ui,−1. Using Gröbner
bases we may get a better understanding of the corresponding variety, which
informs us about what the possible residues look like. Applying this proce-
dure to the Toda equations and constants one finds that (up to permuting
indices) taking a21,−1 = a22,−1 is the only way to get an irreducible represen-
tation for the residues at s = 0.

3. We next show that a21 = a22 follows from imposing symmetry under the
action of A := diag(1,−1,−1) ∈ SO(3), which we saw in Example 3.3.2
corresponded to r : (ζ, η) 7→ (1/ζ,−η/ζ2). The Nahm matrices defined in
Equation 3.36 are, in Toda form,

T1 =
1

2

 0 a1 −a0
−a1 0 a2
a0 −a2 0

 , T2 =
1

2i

 0 a1 a0
a1 0 a2
a0 a2 0

 , T3 =
−i
2

b1 0 0
0 b2 0
0 0 b3

 ,

(3.39)

and so

TA
1 =

1

2

 0 −a1 a0
a1 0 a2
−a0 −a2 0

 , TA
2 =

1

2i

 0 −a1 −a0
−a1 0 a2
−a0 a2 0

 , TA
3 =

−i
2

b1 0 0
0 b2 0
0 0 b3

 .

Recalling §3.3.1, equivalence of the spectral curves means that there exists
a constant invertible matrix C such that

C(−TA
1 +iT

A
2 )C

−1 = T1+iT2, C(−TA
3 )C

−1 = T3, C(−TA
1 −iTA

2 )C
−1 = T1−iT2.
(3.40)

Because TA
3 = T3 is diagonal and traceless, the only way to achieve this is

if at least one of the bi is 0 and C permutes the other two. By conjugating
with a permutation matrix we can without loss of generality pick b2 = 0 so
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b1 = −b3, which gives that the generic C is C =
(

0 0 a
0 b 0
c 0 0

)
. Picking a generic

a, b, c, Equation 3.40 becomes

a0(a− c) = a1a+ a2b = a1c+ a2b = a1b+ a2c = a2a+ a1b = 0.

To avoid having an ai = 0 we required a = c, and so these reduce to

a1a+ a2b = 0 = a1b+ a2a,

and consequently (a/b)2 = 1⇒ a1 = ±a2, yielding the desired a21 = a22.

4. In order to get the curve with D6 symmetry of Table 3.1 we must set
α3 = 0. We have seen that for k = 3 this is a consequence of the symmetry
r : (ζ, η) → (1/ζ,−η/ζ2). For general k this means we keep only the even
terms of Equation 3.32,

ηk + α2η
k−2ζ2 + α4η

k−4ζ4 + . . .+ β[ζ2k + (−1)k] = 0. (3.41)

The full automorphism group of this curve is Dk ×C2; for k = 3 this is the
curve with full automorphism group D6

∼= D3 × C2 that we are interested
in. Now on the hyperelliptic curve C/Ck given by Equation 3.33 r acts as
r : (x, y) → (−x, (−1)k−1y); thus y is invariant under r only for k odd, in
which case it will be a function on the quotient curve C/ ⟨s, r⟩; for k-even
v = xy is invariant. Thus we can write the quotient hyperelliptic curve as

v2 = x2(xk + α2x
k−2 + α4x

k−4 + . . .+ αk)
2 − 4β2x2, k even,

y2 = (xk + α2x
k−2 + α4x

k−4 + . . .+ αk−1x)
2 + 4β2, k odd.

Setting k = 2l or k = 2l − 1 for the even and odd cases of the curves then
with u = xa21 we have these curves covering 2 : 1 the curves

v2 = u(ul + α2u
l−1 + α4u

l−2 + . . .+ αk)
2 − 4β2u, k even, (3.42)

y2 = u(ul−1 + α2u
l−2 + α4u

l−3 + . . .+ αk−1)
2 + 4β2, k odd. (3.43)

The first has genus l and the second has genus l− 1. From Theorem 3.3.25

ηk−2dζ

∂ηP
= π∗

(
−1

k

xk−2dx

y

)
for the curve given by Equation 3.33, and we observe that this differential
is invariant under r for k both even and odd. Furthermore

xk−2dx

y
=


x2l−2dx

y
=
x2l−2du

2xy
=
ul−1du

2v
,

x2l−3dx

y
=
x2l−4du

2y
=
ul−2du

2y
.

In each case we obtain the differential on the corresponding hyperelliptic
curve of maximum degree in u and the work of [Bra11] tells us the winding
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vector, if it is 2-torsion, will reduce to one on the quotient curve.

In particular the k = 3 curve y2 = (x3+α2x)
2+4β2 covers the elliptic curve

E = C/H,
y2 = u(u+ α2)

2 + 4β2,

with H = ⟨s, r⟩ ∼= S3. The j-invariant of this curve is jE = 16α6
2/(β

2[α3
2 −

27β2]), the value observed earlier. We note that the genus-2 curve also
covers the elliptic curve E ′ = C/H ′,

w2 = u2(u+ α2)
2 + 4β2u,

where now H ′ = ⟨s, rt⟩ ∼= C6 with w = xy the invariant coordinate.
Because π∗(du/(2w)) = dx/y does not pull back to the differential ap-
pearing in the Ercolani-Sinha constraint we cannot solve the Hitchin con-
straints in terms of E ′. We record that the curve is in general distinct
jE ′ = [α3

2(α
3
2 − 24β2)3] / [β6(α3

2 − 27β2)]. We have that E and E ′ are the two
quotients identified in Table 3.1.

We remark that the reduction of the spectral curve we have just described
may be understood directly in terms of the Toda equations and ‘folding’.
For the k = 3 case at hand set eρi := a2i = β2/3eqi−qi+1 (so that a0a1a2 = β)
and again take bj = q′j. Then the Toda equations take the form

ρ′′i = 2eρi − eρi−1 − eρi+1 = Kije
ρj

where Kij is the extended Cartan matrix of A2. Folding [OT83] corre-
sponds to the action ρi → ρσ(i) by a diagram automorphism σ of the ex-
tended Dynkin diagram: this retains integrability and here corresponds to
identifying ρ1 = ρ2 := ρ12, equivalently a

2
1 = a22. Using eρ0 = β2e−2ρ12 the

equations of motion ρ′′12 = eρ12 − eρ0 and ρ′′0 = 2(eρ0 − eρ12) reduce to the
one equation,

ρ′′12 = eρ12 − β2e−2ρ12 ,

the ODE reduction of the Bullough-Dodd equation, a known integrable
equation which may be directly integrated. With u = eρ12 we obtain pre-
cisely Equation 3.38. More generally we are seeing the reduction by folding
A

(1)
2l−1 → C

(1)
l for k = 2l even, and A

(1)
2[l−1] → A

(2)
2[l−1] for k = 2l− 1 odd, both

coming from an order-2 symmetry of the Dynkin diagram.

Solving Nahm’s Equations

A number of different arguments have then lead us to an elliptic reduction of the
Toda equations for k = 3 with corresponding ODE given in Equation 3.38. The
aim shall now be to show that Nahm data can be constructed from this. In doing
so we will use properties of hypergeometric functions, using some details laid out
in §2.1.5.

We have seen that the reduction leads to a21 = a22 and b2 = 0. In continuing
to solve for the Nahm data one finds that the choice of sign of a2 relative to a1
does not affect the ability to impose the Hitchin constraints. Indeed, changing
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the choice of sign merely corresponds to changing the sign of β, and again as we
will see this does not restrict the spectral curve. As such we take a2 = −a1 in
what follows. Now setting ũ = u− α2

6
and s̃ = s/

√
2 we may transform Equation

3.38 into standard Weierstrass form with solution

ũ = ℘((s− s0)/
√
2; g2, g3),

where g2 =
α2
2

3
and g3 =

α3
2

27
− 2β2. Here we assume ∆ := g32 − 27g23 = 4β2(α3

2 −
27β2) ̸= 0 to avoid nonsingularity, commenting on the singular limits at the
appropriate junctures. The j-invariant of the elliptic curve is as we have already
seen

j = 1728
g32

g32 − 27g23
=

16α6
2

β2(α3
2 − 27β2)

.

To be Nahm data we require that the Nahm matrices have a pole at s = 0
which can be achieved by setting s0 = 0. We can then express all the Flaschka
variables as

a1 = ±
√
℘(s/
√
2; g2, g3) +

α2

6
, a2 = −a1, a0 =

β

a1a2
,

b1 = ±
√
2a21 + a20 − α2, b2 = 0, b3 = −b1.

(3.44)

We have some signs of the square roots to set in Equation 3.44.

(i) Using that, around s = 0, ℘(s/
√
2; g2, g3) ∼ 2s−2 ⇒ a21 ∼ 2

s2
, we have

a0 ∼ βs2

2
. The ODE for a′0, with b3 = −b1, gives

b1 = −
a′0
a0
∼ − (βs)

(βs2/2)
= −2

s
.

This requires us to take the negative square root for b1 around s = 0. We
will want residues at s = 2, and it will turn out by applying similar analysis
that we need the positive root around s = 2. These swap over when b1 = 0,
which corresponds to a′1 = 0. As we see later this must happen at s = 1.
Alternatively one can see this from the observation that a1 is even about

s = 1 by a judicious choice of period, and so b1 =
2a′1
a1

is odd about the same
point.

(ii) The sign of a1 is a free choice, and does not affect the geometry of the
monopole, hence in what follows below we always take the positive sign.

Imposing Boundary Conditions

The corresponding Nahm matrices (Equation 3.39) have residues at s = 0 given
by

R1 =
1√
2

 0 1 0
−1 0 −1
0 1 0

 , R2 =
i√
2

 0 −1 0
−1 0 1
0 1 0

 , R3 = i

 1 0 0
0 0 0
0 0 −1

 ,
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which yield a 3-dimensional irreducible representation of su(2).

Next we require a simple pole at s = 2 again forming a 3-dimensional irre-
ducible representation. There are two ways to achieve a residue at s = 2:

(i) have that 2/
√
2 =
√
2 is in the lattice corresponding to the values g2, g3, or

(ii) have that around s = 2, ℘(s/
√
2; g2, g3) ∼ −α2

6
+O(s− 2).

These correspond to having a1 and a0 be singular at s = 2 respectively. (Because
of the constant β they cannot both be singular.) One can check that the second
condition would give a reducible representation at s = 2 (as again only one of the
ai have a pole here) and so we discount it.

Focusing then on the first condition, one way to fix the real period of the
associated lattice is to invert the j-invariant of the elliptic curve corresponding
to g2, g3 to give the period τ . Here this is most readily achieved by solving the
quadratic (for example, see [BBG95])

4α(1− α) = 1728

j
= 108(β2/α3

2)
[
1− 27(β2/α3

2)
]
,

for which we see the two solutions are α = 27β2

α3
2
, and 1 − α. The corresponding

normalised period is

τ = τ(α) := i
2F1(1/6, 5/6, 1; 1− α)

2F1(1/6, 5/6, 1;α)
.

Some analytic properties of this function we need were given in §2.1.5.

Remark 3.4.3. If we had taken the other root α in the numerator of the hyper-
geometric function then this would give the period −1/τ .

As we want the lattice corresponding to g2, g3 to be
√
2Z+

√
2τZ, we get the

transcendental equations

1

3
α2
2 =

1

4
g2(1, τ),

1

27
α3
2 − 2β2 =

1

8
g3 (1, τ) .

For any given value of α ∈ (0, 1), let α2
2 =

3
4
g2(1, τ). We then have two equations

defining β:

β2 =
αα3

2

27
, β2 =

1

2

[
1

27
α3
2 −

1

8
g3(1, τ)

]
.

To have a valid solution we must have that the two equations are consistent with
each other. We see that α2 must be the same sign as α to get β ∈ R. Moreover,
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as g2(1, τ) > 0 because α2 is real, we can check that

1

2

[
1

27
α3
2 −

1

8
g3(1, τ)

]
=

1

2

[
sgn(α2)

27
(3g2(1, τ)/4)

3/2 − 1

8
g3(1, τ)

]
,

=
sgn(α2)g2(1, τ)

3/2

16
√
27

[
1− sgn(g3(1, τ))

sgn(α2)

√
27g23
g32

]
,

=
sgn(α2) (4α

2
2/3)

3/2

16
√
27

[
1− sgn(g3(1, τ))

sgn(α2)

(
1− 1728

j

)1/2
]
,

=
α3
2

2× 27

[
1− sgn(g3(1, τ))

sgn(α2)
(1− 4α(1− α))1/2

]
,

=
α3
2

2× 27

[
1− sgn(g3(1, τ))

sgn(α2) sgn(1− 2α)
(1− 2α)

]
,

=
αα3

2

27
if sgn(g3(1, τ)) = sgn(α2) sgn(1− 2α).

Hence the two equations are consistent, provided the stated sign condition holds,
or if α = 0. A consideration of the information given about τ and g3 in §2.1.5
tells us that we only get solutions in the region α ∈ [0, 1], where α = 0, 1 really
correspond to the limits limϵ→0+ ϵ, 1− ϵ respectively.

In order to exclude the possibility of other poles of the Nahm matrices in the
region s ∈ (0, 2), it is necessary that for all s ∈ (0, 2)

℘(s/
√
2; g2, g3) +

α2

6
> 0.

We know that (i) ℘ takes its minimum at s = 1; (ii) that the minimum value is
the most-positive root of the corresponding cubic 4℘3 − g2℘ − g3 = 0; (iii) that
this root is positive [DLMF, §23.5]. Therefore there are no other poles in (0, 2).
Further as α2 ̸= 0 has the same sign as α, then α2 > 0 so a21 > 0. Therefore
we know that a1 is always real, and hence so are all the Flaschka variables, thus
giving all the Nahm variables being real as desired.

The remaining condition required for valid Nahm data is that Ti(s) = Ti(2−
s)T . The nature of theWeierstrass ℘ is such that ℘((2−s)/

√
2; g2, g2) = ℘(s/

√
2; g2, g3),

so we automatically have that a1(2 − s) = a1(s), a0(s) = a0(2 − s). Moreover,
because of the change in the sign of the square root giving b1 at s = 1, we have
that b1(2 − s) = −b1(s). Taken together these ensure the desired symmetry of
the Nahm matrices and we have a 1-parameter family of new solutions. As such,
we have now proven the following theorem.

Theorem 3.4.4 ([BDH23]). Given α ∈ [0, 1], define

τ = τ(α) = i
2F1(1/6, 5/6, 1; 1− α)

2F1(1/6, 5/6, 1;α)
.
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Solving

1

3
α2
2 =

1

4
g2(1, τ),

1

27
α3
2 − 2β2 =

1

8
g3 (1, τ) ,

with sgn(α2) = sgn(α) yields a monopole spectral curve with D6 symmetry

η3 + α2ηζ
2 + β(ζ6 − 1) = 0.

Moreover, the Nahm data is given explicitly in terms of ℘ functions by Equation
3.39 and Equation 3.44.

Distinguished Curves

Having solved for general α ∈ [0, 1] we now investigate the special values of
α = 0, 1/2, 1.

• (α = 0+) The limit α→ 0 corresponds to τ → +i∞, and we have using the
asymptotic expansion of the Eisenstein series that g2(1, τ)→ 4π4

3
, g3(1, τ)→

8π6

27
, so α = 0 is indeed a solution with β = 0, α2 = π2. This recreates the

well known axially-symmetric monopole with spectral curve η(η2+π2ζ2) = 0
[Hit82, Hit83].

If we had β = 0 from the beginning (and so ∆ = 0, and for α2 ̸= 0 then
α = 0), we would have found a singular elliptic curve

4ũ3 − 1

3
α2
2ũ−

1

27
α3
2 = 4

(
ũ+

α2

6

)2 (
ũ− α2

3

)
,

with solution to the corresponding ODE (using known integrals) given by

ũ =
α2

3
+
α2

2
tan2

[√
α2

2
(s− s0)

]
, a1 =

√
α2

2
sec

[√
α2

2
(s− s0)

]
.

We could then manufacture the right residue at s = 0 by having s0 =
π
2
· 2√

α2
.

To get the correct periodicity, we would require that π
2
=

√
α2

2
(2 − s0) and

consequently that α2 = π2 again giving the axially-symmetric monopole.

• (α = 1−) To get this limit, we use τ(1−) = −1/τ(0+), so

g2(1, τ(1
−)) = g2(1,−1/τ(0+)) = τ(0+)4g2(1, τ(0

+)) =
1

τ(1−)4
4π4

3
,

and likewise for g3. Solving gives

α2 ∼ −
(π
τ

)2
, β ∼ ± i

3
√
3

(π
τ

)3
,

or equivalently writing τ = iϵ for 0 < ϵ≪ 1,

α2 ∼ 3

(
π√
3ϵ

)2

, β ∼ ±
(

π√
3ϵ

)3

,
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The corresponding spectral curve thus factorises as

0 = η3 + 3

(
∓π√
3ϵ

)2

ηζ3 −
(
∓π√
3ϵ

)3

(ζ6 − 1),

=

[
η −

(
∓π√
3ϵ

)
(ζ2 − 1)

] [
η −

(
∓π√
3ϵ

)
(ωζ2 − ω2)

] [
η −

(
∓π√
3ϵ

)
(ω2ζ2 − ω)

]
.

This corresponds to three well-separated 1-monopoles on the vertices of an
equilateral triangle in the x, y-plane with side length π

ϵ
[HMM95]. As ϵ tends

to zero these three vertices tend to the point ∞, the singular degeneration
to the cuspidal elliptic curve with ∆ = 0 and α = 1.

• (α = 1/2) In this case τ = i, and the lattice is the square lattice. The
values of g2, g3 for this lattice are known explicitly [DLMF, 23.5.8], giving
the equations

1

3
α2
2 =

1

4

Γ(1/4)8

16π2
,

1

27
α3
2 − 2β2 = 0⇒ α2 =

√
3Γ(1/4)4

8π
, β = ± Γ(1/4)6

32(
√
3π)3/2

.

The coefficients seen here are the same, up to a sign, as those of a dis-
tinguished monopole found in [HS96b]. This is no accident, but arises be-
cause the square lattice is behind the distinguished “twisted figure-of-eight”
monopole, as we show later in §3.4.2.

Scattering

To complete our understanding of these monopoles we discuss the corresponding
scattering. This has already been described using the rational map approach
in [Sut97b]. The D6-symmetric monopoles described here corresponds to the
prismatic subgroup D3h of O(3): this confines the monopoles (as located by
zero of the Higgs field) to lie in a plane, and thus any scattering observed must
be planar. Note for each value of α ̸= 0 there are two choices of β from the
defining equations, and these two branches coalesce where β = 0⇔ α = 0. This
gives us a view of scattering from α = 1 with three initially well-separated 1-
monopoles with a choice of sign. They move inwards along the axes of symmetry
of the corresponding equilateral triangle through α = 0 where the 3-monopoles
instantaneously takes the configuration of the axially-symmetric monopole. Here
we change branch (i.e. sign of β), and move back out to α = 1 where now because
of the change of sign these three well-separated 1-monopoles are deflected by π/3
radians. Note that as with the planar scattering of 2-monopoles [Ati87], because
of symmetry one cannot associate a given in-going monopole with an out-going
one but rather interpret the scattering process as the three in-going monopoles
splitting into thirds which then recombine to form the out-going monopoles.

3.4.2 V4

I shall now construct Nahm data for all V4-symmetric 3-monopoles analogously
to §3.4.1.
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Constructing Symmetric Nahm Matrices

For our curve with V4 symmetry the generators of the automorphism group are
(ζ, η) 7→ (−ζ,−η) and (ζ, η) 7→ (−1/ζ, η/ζ2); equivalently these correspond to
the rotations diag(−1,−1, 1) and diag(−1, 1,−1) whose product is the r defined
earlier in Example 3.3.2. Imposing further the involution (ζ, η) 7→ (ζ,−η) as
a symmetry (the composition of the action of − Id with the antiholomorphic
involution) restricts to the case of the inversion-symmetric 3-monopoles known
in [HS96a]. There they solve for Nahm matrices given in terms of three real-
valued functions fi satisfying f

′
1 = f2f3 (and cyclic), the Euler top equations,

with the corresponding spectral curve being

η3 + η
[(
f 2
1 − f 2

2

)
(ζ4 + 1) + (2f 2

1 + 2f 2
2 − 4f 3

3 )ζ
2
]
= 0.

We shall want to keep this in mind when constructing Nahm matrices for the
more general V4 monopoles.

Taking the polynomials ζ0ζ1(ζ
4
0 − ζ41 ), ζ20ζ21 , and ζ40 + ζ41 as the inputs to the

procedure of outlined in §3.3.2 gives the ODES in the six real-valued variables

x′ = 2x2 − 1

6
y20 +

1

2
y21 −

1

2
y22 +

1

6
y23 −

1

2
y24, y′2 =

1

3
y20 + y21 − 2xy2 − y22 −

1

3
y23 − y1y4,

y′0 = −2xy0 + 2y0y2 + 2y1y3 + y3y4, y′3 = 2y0y1 + 2xy3 − 2y2y3 + y0y4,

y′1 = 2xy1 + 2y1y2 +
2

3
y0y3 − y2y4, y′4 = −2y1y2 +

2

3
y0y3 − 4xy4,

with the corresponding spectral curve

C : η3 + η
[
a(ζ4 + 1) + bζ2

]
+ cζ(ζ4 − 1) = 0, (3.45)

where

a = 8xy0 + 4y0y2 − 4y1y3 + 4y3y4,

b = 4y20 − 12y21 + 48xy2 − 12y22 + 4y23 − 24y1y4,

c = −8iy20y1 − 8iy31 + 48ixy1y2 + 24iy1y
2
2 − 16ixy0y3 + 16iy0y2y3

+ 8iy1y
2
3 + 48ix2y4 − 4iy20y4 + 12iy21y4 − 12iy22y4 + 4iy23y4 − 4iy34.

The full Nahm matrices are

T1 =

0 0 0
0 0 −f̄1
0 f1 0

 , T2 =

 0 0 f2
0 0 0
−f̄2 0 0

 , T3 =

 0 −f̄3 0
f3 0 0
0 0 0

 . (3.46)

where the fi are given by

f1 = 2x+ y0 − iy1 + y2 + iy3 + iy4,

f2 = 2x− y0 − iy1 + y2 − iy3 + iy4,

f3 = 2x+ 2iy1 − 2y2 + iy4,

One can check that setting y1 = y3 = y4 = 0 is consistent, and corresponds to
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the inversion-symmetric case. In terms of the fi we can write the ODEs giving
Nahm’s equations as a complex generalisation of the Euler top equations23

f̄1
′
= f2f3 (and cyclic), (3.47)

with the constants in the spectral curve given as

a = |f1|2 − |f2|2 , b = 2 |f1|2 + 2 |f2|2 − 4 |f3|3 , c = 2(f1f2f3 − f̄1f̄2f̄3).

Remark 3.4.5. We observe that Equations 3.47 come from the Poisson structure
(as defined in [LGMV11])

{
fi, f̄j

}
= δij, with Hamiltonian c/2 = f1f2f3− f̄1f̄2f̄3.

This complex extension of the Euler equations is integrable.

Remark 3.4.6. We have not fully used up the gauge symmetry available to us.
Namely, if we conjugate the Ti by U = diag(u1, u2, u3) where uj = eiϕj and∑
ϕj = 0, we get

f1 7→ u3u
−1
2 f1, f2 7→ u1u

−1
3 f2, f3 7→ u2u

−1
1 f3,

which preserves the form of the equations.

A consequence of Remark 3.4.6 and the form of the Nahmmatrices in Equation
3.46 is that for the Ti to have residues which form an irreducible representation
of su(2) it is sufficient for the fi to have simple poles at s = 0, 2.

Solving Nahm’s Equations

In order to find a solution we note that aij = |fi|2−|fj|2 and c = 2(f1f2f3−f̄1f̄2f̄3)
are now constants. As c is imaginary it will be useful to introduce c̃ := −ic.
Setting F = |f1| we have

(F ′)2 =

{[(
f1f̄1

)1/2]′}2

=

{
1

2
(f1f̄1)

′(f1f̄1)
−1/2

}2

=
1

4
(f1f2f3 + f̄1f̄2f̄3)

2F−2,

=
1

4
F−2

[
(c/2)2 + 4|f1|2|f2|2|f3|2

]
,

=
1

4
F−2

[
(c/2)2 + 4F 2(F 2 − a12)(F 2 + a31)

]
,

and so with G = F 2 we get

(G′)2 =
1

4
c2 + 4G(G− a12)(G+ a31),

which then has solutions in terms of elliptic functions. In terms of the coefficients
of the spectral curve we already have a12 = a, and we can moreover find a31 =

23These equations are also found in [Hou97, (3.57)] where they are attributed to [ABDP62];
they also appear as the x-independent solutions in the description of 3-wave scattering
[NMPZ84, (17), p. 177]. We thank Pol Vanhaecke and Sasha Mikhailov for this latter ref-
erence.
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−1
4
(b+ 2a), so we can rewrite the equation as

(G̃′)2 = 4G̃3 − g2G̃− g3, (3.48)

where G̃ = G − b+6a
12

, g2 = a2 + b2

12
, and g3 = b(b2−36a2)

216
+ 1

4
c̃2. Then G̃ = ℘, the

Weierstrass ℘ function. The j-invariant for this elliptic curve is

j = 1728
g32

g32 − 27g33
=

(12a2 + b2)3(
a6 − 1

2
a4b2 + 1

16
a2b4 + 9

4
a2bc̃2 − 1

16
b3c̃2 − 27

16
c̃4
) , (3.49)

which is precisely that of the quotient of the full V4-symmetric curve (Equation
3.45) by the V4 symmetry. We also note that the pull-back of the invariant
differential of this quotient is exactly that needed when discussing the Ercolani-
Sinha constraint.

Imposing Boundary Condition

Before going on to solve Equation 3.47 completely, let us recall what remains
to be shown to get a monopole spectral curve (i.e. to have our Nahm matrices
satisfy all the conditions to give Nahm data). We need to have that the ℘ function
associated with the elliptic curve determined by Equation 3.48 has real period 2,
but we will be able to impose this by tuning the coefficients. As the right-hand
side of

℘ = |f1|2 −
b+ 6a

12
(3.50)

is always real this requires ℘ to be real and so to be taken on a rectangular or
rhombic lattice. Also for reality we need that

G(s) = ℘(s) +
b+ 6a

12
, G(s)− a12 = ℘(s) +

b− 6a

12
, G(s) + a31 = ℘(s)− b

6

are always positive. Once we have achieved these we will have regularity in the
region (0, 2), and so get the right pole structure. The final condition is symmetry
about s = 1, which is enforced on the |fj| (because |fj| ∼

√
℘), and so the

remaining Nahm constraint Tj(s) = Tj(2−s)T becomes simply fj(s) = −f̄j(2−s):
that is we require arg fj(s) = ±π − arg fj(2− s).

Indeed writing fj = |fj| eiθj we can work out the equations for the angles,
using

f ′
j =

(
|fj|′ + iθ′j |fj|

)
eiθj =

(
|fj|′

|fj|
+ iθ′j

)
fj ⇒ θ′j =

1

i

[
f ′
j

fj
− |fj|

′

|fj|

]
=
−c̃

4 |fj|2
.

(3.51)

The θj are thus strictly monotonic (unless c̃ = 0, in which case they are con-
stant), and symmetry about s = 1 of |fj| then necessitates that θj(s) − θj(1) is
antisymmetric about s = 1.
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We also have that

c̃ = 4 |f1| |f2| |f3| sin(θ1 + θ2 + θ3) =
√
c̃2 + 4(G′)2 sin(θ1 + θ2 + θ3).

At s = 1 where G′(s) = 0 we need sin(θ1 + θ2 + θ3) = 1, and by our gauge
freedom we can choose θ1(1) = π/2 = θ2(1) and so θ3(1) = −π/2, thus enforcing
our condition of symmetry about s = 1. We then see that the antisymmetry
of θj(s) − θj(1) about s = 1 enforces the remaining reality condition. We also
note that as |fj(s)|2 = ℘(s) − cj := ℘(u) − ℘(vj) for appropriate s and vj =∫ cj
∞ [4u3 − g2u− g3]−1/2

du we have [Law89, (6.14.6)]∫
du

℘(u)− ℘(v)
=

1

℘′(v)

[
2uζ(v) + log

σ(u− v)
σ(u+ v)

]
, (3.52)

where ζ, σ are the corresponding Weierstrass functions, allowing us to find the
θj(s) explicitly. We note that |fj(s)|2 = ℘(s)− cj := ℘(s)−℘(vj) does not fix the
sign of vj for ℘(±vj) = cj. We fix the sign as follows. First observe that

(G̃′(s))2 = (G′(s))2 =
1

4
c2 + 4[℘(s)− ℘(v1)][℘(s)− ℘(v2)][℘(s)− ℘(v3)],

and so ℘′ 2(vi) = c2/4; we fix the sign so that ℘′(vi) = c/2 = ic̃/2. Further
consider the elliptic function ℘′(s)− c/2 with three zeros (at s ∈ {v1, v2, v3}) and
three poles (at s = 0). Then with the base of the Abel-Jacobi map at s = 0 (as
is standard) we have that

∑
i vi is a lattice point. Also observe that

ζ(vi) + ζ(vj) = ζ(vi + vj).

We find from Equations 3.51 and 3.52 that

θi(s) := θi(1) + i

[
sζ(vj) +

1

2
log

σ(s− vj)σ(1 + vj)

σ(s+ vj)σ(1− vj)

]
. (3.53)

Then θi(−s) − θi(1) = − [θi(s)− θi(1)] is antisymmetric as required. Using the
Legendre relation we find that sin(θ1 + θ2 + θ3) is periodic in s as required for
consistency.

It remains to fix the real period of the corresponding elliptic curve. We de-
scribe two methods. The first makes use of the Jacobi elliptic functions to ex-
press the lattice invariants in terms of complete elliptic functions [AS72, §18.9].
Given the discriminant ∆ for the cubic defining ℘ [AS72, §18.9] gives equa-
tions for the lattice invariants in terms of complete elliptic functions. These
are related to the complete elliptic function K by g2 = 12 (K(m)2/3)

2
q1(m) and

g3 = 4 (K(m)2/3)
3
(2m− 1)q2(m). With sgn = sgn(∆) we have for ∆ > 0

g2 = 12

(
K2

3ω1

)2 (
1−m+m2

)
, g3 = 4

(
K2

3ω1

)3

(m− 2)(2m− 1)(m+ 1),
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whereas for ∆ < 0

g2 = 12

(
K2

3ω2

)2 (
1− 16m+ 16m2

)
, g3 = 8

(
K2

3ω2

)3

(2m−1)(32m2−32m−1).

Here m = k2 ∈ (0, 1) is the argument of K, the underlying lattice has periods
2ω, 2ω′, ω1 = ω and ω2 = ω + ω′. Fixing 2 as a period of the lattice, and
that the lattice is real, sets ω1 = 1 for ∆ > 0 and ω2 = 1 for ∆ < 0. Observe
that for sgn(∆) = ±1 that g2(m) takes its minimum value at m = 1/2 while for
m ∈ (0, 1/2) we have g3(m) > 0.

Our elliptic curve gave the equations a2 + b2

12
= g2,

b(b2−36a2)
216

+ 1
4
c̃2 = g3.

These equations are underdetermined, but we may substitute for a2 and take
α = −27c̃2/b3 to find

(4− 2α)b̃3 − g2b̃− g3 = 0, (3.54)

where b̃ = b
6
. The discriminant of this cubic is

∆α(m) = 4(4− 2α)g32 − 27(4− 2α)2g23 = 4(4− 2α)
[
g32 − 27(1− α/2)g23

]
.

Note ∆0 = ∆. For a given generic value of α in some region we may solve
Equation 3.54, determining b, c̃ and a in turn.

In order to get Nahm data, we require that b, c̃, and a are real. We know that
this cubic has real coefficients, and so there will always be a real root of the cubic.
To get reality of c̃, we need that this real root b̃ satisfies sgn(b̃) = − sgn(α), and

for reality of a we need
∣∣∣b̃∣∣∣ ≤ g2/3. This establishes the following theorem.

Theorem 3.4.7. Given α ∈ R, m ∈ [0, 1], and sgn = ±1, define g2, g3 by
g2 = 12 (K(m)2/3)

2
q1(m), g3 = 4 (K(m)2/3)

3
(2m− 1)q2(m), where

q1(m) =

{
1−m+m2, sgn = 1,

1− 16m+ 16m2, sgn = −1, q2(m) =

{
(m− 2)(m+ 1), sgn = 1,

2(32m2 − 32m− 1), sgn = −1.

If m is such that g2 > 0 and the polynomial (4− 2α)x3 − g2x− g3 has a real root
x∗ with |x∗| <

√
g2/3 and sgn(x∗) = − sgn(α), then we may solve

a2 +
b2

12
= g2,

b(b2 − 36a2)

216
+
c̃2

4
= g3,

for a, b, c̃ ∈ R. Then

η3 + η
[
a(ζ4 + 1) + bζ2

]
+ ic̃ζ(ζ4 − 1) = 0

is a monopole spectral curve with V4 symmetry. Moreover the Nahm data is given
explicitly in terms of elliptic functions by Equations 3.46, 3.50 and 3.53.

In contrast to theD6 monopoles found in §3.4.1, the V4 monopoles parametrised
in Theorem 3.4.7 can take surprising and intricate configurations not previously
seen studying monopoles, for example that seen in Figure 3.4.

Remark 3.4.8. Figures 3.4 and 3.6 were plotted in Python using a modification
of code provided to me by Paul Sutcliffe, first described in [HS96d]. Example
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(a)
(b)

Fig. 3.4 Surface of constant energy density E = 0.18 for the V4 monopole given
by the parameters m = 0.6, α = −2.0, sgn = 1

code showing how this may be done is provided, namely plotting_ script. sh ,
monopole_ plotting. py , V4_ nahmdata. py , and minimal_ plotting_ from_

file. ipynb . Note the code work with the convention that the norm on su(2) is
|X|2 = −1

2
Tr(X2) to be consistent with the Nahm data being defined for s ∈ [0, 2].

A second approach to fixing the correct real period to give Nahm data is to
invert the j-invariant of Equation 3.49 as done in the earlier D6 case. Though
we are unable to invert in terms of a single rational α as with the D6-symmetric
monopole, we may use [DI08, (4)] which gives

τ = i

[
2
√
π

Γ(7/12)Γ(11/12)
2F1(1/12, 5/12, 1/2;x)

2F1(1/12, 5/12, 1; 1− x)
− 1

]
,

where x = 1− 1728
j

= (1−2α−3γ)2

(1+γ)3
, with α = −27c̃2

b3
, γ = 12a2

b2
. One may then fix the

real period of the lattice, which will give solutions consistent with the definition of
x for some range of the parameters α, γ. We investigate one particular restriction
of this kind subsequently in §3.4.2. We remark that [Hou97] solved the associated
Nahm data only for the (1-parameter) case ∆ = 0 in which the elliptic curve
degenerates and has trigonometric solutions.

Restrictions on Elliptic Function Parameters

Theorem 3.4.7 implicitly restricts the range of α and m in order to ensure the
corresponding coefficient of the spectral curve are real. Necessary conditions to
find such solutions are as follows.

First consider ∆ > 0. Then g2 > 0 and g3 is monotonically decreasing for
m ∈ (0, 1) with sgn(g3) = − sgn(m− 1/2). We have the following properties.
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(i) If α > 2 the discriminant ∆α(m) < 0. Then Equation 3.54 has one real root
whose sign is opposite that of g3. Now sgn(b̃) = − sgn(α) < 0 is opposite
that of g3; hence we require g3 > 0 and so m ∈ (0, 1/2).

(ii) For α ∈ (0, 2) the discriminant ∆α(m) > 0 upon comparison with ∆ =
g32 − 27g23 > 0. Then, because the sum of the roots is zero, they cannot all
be the same sign.

(iii) When α < 0, from the derivative of the cubic we know it will have a local

maxima and minima at b̃ = ±
√

g2
3(4−2α)

; it is the minima when the sign is

positive. Recalling that we require a root with sign sgn b̃ = − sgnα = 1,
the local minima must be nonpositive, and the value at this b̃ is −2

3
b̃g2− g3.

As the value at this minima is monotonically increasing for m > 1/2, and
negative at m = 1/2, then the value at the minima is negative for all
m < m∗, the value for which is it zero. Solving, one gets the condition
∆α(m∗) = 0, taking the root greater than 1/2.

Therefore necessary conditions for a real root of the right sign to exist for ∆ > 0
are that

• if α > 2, m < 1/2,

• if α ∈ (0, 2), any m is valid,

• if α < 0, m < m2(α), where m2 is the root of ∆α(m) = 0 in (1/2, 1).

To get Nahm data we require that this real root is bounded in magnitude by√
g2/3, with the case that it is equal corresponding to a = 0, i.e. to the D4

monopoles of [HS96b]. Figures showing these parameter regions are given in
Figure 3.5.

In the case ∆ < 0, in order to get real roots of the right sign one analogously
gets restrictions on m relative to α such that

• if α < 0, m < 1/2,

• if α ∈ (0, 2), m > 1/2 or m < m1(α), defined to be the root < 1/2 of the
polynomial ∆α(m) = 0,

• if α > 2, m < m2(α), now defined to be the root > 1/2 of the polynomial
∆α(m) = 0.

Fixing the size of the root in this case requires more work, complicated by the fact
that g2 is real only if |m− 1/2| >

√
3/4. Using explicitly formulas for the roots b̃

from Cardano’s formula one can achieve explicit bounds, but here we omit these.
In practice, when using this approach to plot monopoles, numerical methods can
be used to find the appropriate m region for a given α, as done to generate Figure
3.5.

Note that, for certain admissible α,m there may be two possible monopoles
because two roots of the cubic defining b satisfy the required conditions. Nu-
merical investigations indicates that this phenomenon only occurs for ∆ > 0.
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(a) ∆ > 0 (b) ∆ < 0

Fig. 3.5 Valid parameter regions for V4 monopoles, with the subset corresponding
to D4 monopoles highlighted

We plotted two examples of this, seen in Figure 3.6 to investigate the difference
in the associated monopoles. The visual difference between the configurations
suggests that the parameters α,m do not provide the most physically significant
parametrisation of the moduli space. It is worth remarking that these regions
where there are multiple solutions where ∆ > 0 stitch together along with the
regions where ∆ ≤ 0 so as to make the moduli space connected.

D4 Monopoles

In [HS96b] a subfamily of the Nahm matrices in Equation 3.46 with D4 symmetry
was studied. To the existing V4 symmetries is appended the order-4 element
(ζ, η) 7→ (iζ,−iη) (corresponding to the composition of inversion with a rotation
of π/2 in the xy-plane). This symmetry then requires a = 0. By a dimension
argument we expect the j-invariant inversion to yield a 1-parameter family for
the enlarged symmetry group corresponding to a geodesic in the moduli space,
and this was the case considered in [HS96b] where the C4 quotient yields an
elliptic curve. Placing this curve in our V4 family allows us a different approach
to this family of curves. The restriction a = 0 means that 1728

j
= 4α(1− α) with

α = −27c̃2

b3
and we can then fix the real period via the same approach as for the

D6 monopole. The equations we get are

b2

3
=

1

4
g2(1, τ),

b3

27
+ 2c̃2 =

1

8
g3(1, τ),

with these being consistent with the definition of α provided sgn(g3(1, τ)) =
sgn(b) sgn(1 − 2α). To also have that c̃ is real, we must have sgn(b) = − sgn(α)
and hence our consistency condition is sgn(g3(1, τ)) = − sgn(α) sgn(1− 2α). We
thus have solutions in the region α ∈ (0, 1/2) if sgn(g3(1, τ)) < 0, which requires
τ = −1/τ(α). We can extend this to α ∈ (1/2, 1) still taking τ = −1/τ(α).
Moreover, for α < 0, we require g3(1, τ) > 0, which can be achieved taking
τ = τ(α). Finally, for α > 0, we require sgn(g1(1, τ)) > 0, achievable with
τ = −1/τ(α). As such the parameter region in this case is the whole of R. A

181



182 Alec Linden Disney-Hogg

(a) k = 0.45, α = 0.2, ∆ > 0, b = −3.21 (b) k = 0.45, α = 0.2, ∆ > 0, b = −7.19

(c) k = 0.77, α = −2.0, ∆ > 0, b = 1.42 (d) k = 0.77, α = −2.0, ∆ > 0, b = 7.24

Fig. 3.6 Comparison of two pairs of monopoles with equal values of α,m, taking
E = 0.17
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case-by-case consideration shows that G, G− a12, G+ a31 are always positive on
the interval [0, 2], so we do indeed get Nahm data as desired.

As with the D6-symmetric monopoles we may identify special values of α and
the curves they give. A similar analysis gives those found in [HS96b], namely

• α = ±∞ gives the tetrahedrally-symmetric monopole,

• α = 0+, 0− gives three well-separated 1-monopoles and the axially-symmetric
monopole respectively, and

• α = 1/2 gives the “twisted figure-of-eight” monopole. Note α = 1/2 corre-
sponds to the square lattice we saw as distinguished for the D6 monopole.

We additionally see the curve with α = 1 as distinguished in our parametrisation,
which gives the curve

η3 − π2ηζ2 ± i√
27
π3ζ(ζ4 − 1) = 0.

In terms of the parameters a, ϵ of [HS96b], this curve is given by a = 2
√
2, ϵ = −1.

Scattering

As such we can now understand our scattering as starting at α = 0+ with three
well-separated 1-monopoles. As α increases to ∞ we have to pick a choice of c̃
continuously (though there is no specific choice at α = 0+ as the map ζ 7→ −ζ
which swaps the choice of c̃ is a symmetry of our well separated configuration),
and we pass through two distinguished curves, arriving at the tetrahedrally-
symmetric monopoles in one orientation. We match that to α = −∞ taking the
tetrahedrally-symmetric monopole with the same orientation there, allowing α to
then increase up to 0− where it takes the configuration of the axially-symmetric
monopole. Here the two branches of c̃ coalesce, we change branch and do the
process in reverse.

3.4.3 C2

Here I shall now consider spectral curves of the form

P (ζ, η) = η3 + η(aζ4 + bζ2 + c) + (dζ6 + eζ4 + fζ2 + g) = 0

which have the C2 symmetry ζ 7→ −ζ which corresponds to the reflection R3 =
diag(1, 1,−1) ∈ O(3). This signature of the corresponding quotient is (1; 26). We
have already seen in §3.3.1 that the dimension of the moduli space of R3-invariant
3-monopoles is 4, so we cannot have dimR(M

0
3 )

⟨R3⟩−dimRNO(3)(⟨R3⟩) = δ′−1, but
this is consistent with the conjecture of §3.3.1 as under the action of R3 the differ-
ential Ω(1) = ηdζ

∂ηP
has eigenvalue −1, and so by the argument of [Bra11, p. 9] the

Ercolani-Sinha cycles es is also anti-invariant. Now using the method of [BSZ19]
one can check (see Sage notebook isogeny_decomposition_C2_3-monopole.

ipynb) that for a generic C invariant under C2 the isogeny decomposition of
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the Jacobian is Jac(C) ∼ Jac(C/C2) × A3, where A3 is some irreducible abelian
3-fold. By the previous computation the winding vector U lives in the irreducible
A3 factor, as this abelian variety is defined precisely to be the (−1)-eigenspace of
the C2 symmetry, and as such one cannot solve for Nahm data in terms of elliptic
functions. If one could solve in terms of elliptic functions, this would say that
there was an elliptic curve as an algebraic subvariety of the 3-fold A3 upon which
Nahm’s equations have linearised, contradicting the irreducibility of A3.

This final point deserves some amplification. Suppose that Nahm data could
be written down in terms of algebraic combinations of elliptic functions on the
same elliptic curve, with arguments linear in s, interpreted now as a coordinate
on the complex torus corresponding to the elliptic curve. To see the impact of this
we need to unpack exactly what the ‘linearisation’ process I have so far described
is. I shall follow the treatment of [Gri85, AvMV04]; to have agreement on conven-
tions transform the spectral curve by η 7→ −η so it is given by the characteristics
polynomial det [η Idk−L] = 0 (recall §3.2.2). To a Lax pair L(ζ, s),M(ζ, s) asso-
ciate the vector ξ(ζ, η, s), the eigenvector of L with eigenvalue η normalised such
that ξ1 = 1; this will be given by ξl =

∆1l

∆11
for l = 1, . . . , k, where ∆ij(ζ, η, s) is

the cofactor corresponding to the (i, j) entry of η Idk−L(ζ, s). By isospectrality,
the eigenvector will have s dependence given by

ξ′ +Mξ = λξ (3.55)

for some scalar function λ(ζ, η, s), given by

λ =
k∑

j=1

M1j
∆1j

∆11

.

At any value s, we associated to L the divisor DL on the spectral curve defined
to be the minimal effective divisor such that

∀ l = 1, . . . , k, (ξl) +DL ≥ 0.

The ‘linearisation’ map is then map into the Jacobian ι(s) = A∗(DL(s) −DL(0)).
Moreover, away from the support of DL(s), λ has poles only where M has poles,
which for the M of Equation 3.18 will be only where ζ = ∞. Assuming that
generically the point ∞j are not in the support of DL(s), λ then determines a
Laurent tail divisor supported at the ∞j that Griffiths denotes with ρ(M). I
will denote this set of Laurent tails with

{
r∞j

= λjζ
}
. The fundamental theorem

describing the linearisation procedure is then the following.

Theorem 3.4.9 ([AvMV04], Theorem 6.39, [Gri85], Theorem 7.7). Fixing a basis
of differentials {νj}, the derivative of the linearisation map is given by

d

ds
A∗(DL(s) −DL(0))i =

∑
j

Res∞j
(λjζνi) =

∑
j

Res∞j
(λνi).

As such when L,M , and hence λ, are given in terms of meromorphic functions
on a complex torus E with variable s we get a map from this complex torus into
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Jac(C) given by

E → Jac(C),

s→
∫ s

0

∑
j

Res∞j
(λ(s′)ν) ds′,

where I have written ν for the vector (ν1, . . . , νg). When the flow on the Jacobian
linearises, as occurs with the Lax pair for Nahm’s equations, this map becomes

s 7→ s
∑
j

Res∞j
(λ(0)ν) = sU .

Now because the linearisation map is a function of s only through the Lax matrix
L, and by assumption L depends on s only through elliptic functions linear in s,
we have that the linearisation map is well-defined on the complex torus E . That is,
if we vary s by a period of the elliptic curve, then the image in Jac(C) differs by a
period in this Jacobian. This would not be true in general for arbitrarily chosen
U , and means that that the image of the linearisation map CU is a complex
subtorus of the Jacobian, hence an abelian subvariety [BL04, Proposition 4.1.1].

We can thus not expect to find an expression for the Nahm data of the C2

monopole that is meromorphic and given in terms of elliptic functions. Never-
theless, for completeness I shall now present Nahm’s equations for curves of this
form in a somewhat simplified form. In order to get the C2-invariant matrices, it
turns out that starting with only polynomials semi-invariant under ζ0 → −ζ0 in
S2r, r = 1, 2, 3 as the input to the method of §3.3.2 gives that the matrix equation
3.29 is inconsistent. This is not in contradiction to how we constructed the algo-
rithm, as the map ζ0 → −ζ0 comes from a reflection R3 ∈ O(3) \ SO(3). Instead
one should start with the full basis of HMM (recall Equation 3.25), and then
impose the C2 symmetry and centring after the fact, similar to how we imposed
the additional involution on the C3-invariant Nahm matrices in §3.4.1. This gives
Nahm matrices

T1 =

 ig1 ig2 g3
ig2 ig4 g5
−g3 −g5 −i(g1 + g4)

 ,

T2 =

 ih1 ih2 h3
ih2 ih4 h5
−h3 −h5 −i(h1 + h4)

 ,

T3 =

 0 f1 if2
−f1 0 if3
if2 if3 0

 ,

where the fi, gi, hi are real functions that can themselves be given in terms of real
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functions x, yi. The ODEs the fi, gi, hi, satisfy are

f ′
1 = g2h1 − g1h2 + g4h2 + g5h3 − g2h4 − g3h5,
f ′
2 = −2g3h1 − g5h2 + 2g1h3 + g4h3 − g3h4 + g2h5,

f ′
3 = −g5h1 − g3h2 + g2h3 − 2g5h4 + g1h5 + 2g4h5,

g′1 = −2f1h2 + 2f2h3,

g′2 = f1h1 + f3h3 − f1h4 + f2h5,

g′3 = −2f2h1 − f3h2 − f2h4 − f1h5,
g′4 = 2f1h2 + 2f3h5,

g′5 = −f3h1 − f2h2 + f1h3 − 2f3h4,

and the hi ODEs being the same as the gi ODEs switching hi ↔ gi and picking
up an extra minus sign, that is if g′i = p(f, h), h′i = −p(f, g). Note that because
of the symmetry of the matrices, the ODEs for f3, g4, g5 are the same as those for
f2, g1, g3 respectively changing f1 ↔ −f1, f2 ↔ f3, h1 ↔ h4, and h3 ↔ h5. The
ODEs for g2 is necessarily invariant under this involution (for f1 anti-invariant).

3.4.4 Further Investigations

In this section we have proven Theorem 3.4.1, and for those 3-monopole with
reductions to elliptic curves for which the ES cycle pushes down appropriately,
we have constructed the Nahm data explicitly. This work then has two natural
extensions which should be properly investigated.

1. The higher-charge monopoles with reductions to elliptic curves should be
classified, and for those where the ES cycle pushes down the Nahm data
should be explicitly computed. Partial work in this direction was done in
[Hou97], for example it was shown that no charge-k monopole with Dk−1

generalising the V4 symmetry described in §3.4.2 can quotient by this Dk−1

to an elliptic curve. At present the possible signatures for group actions
with elliptic quotients in genus 9 and higher have not been computed in the
LMFDB, and so a first step would be the tabulation of those results.

2. Spectral curves corresponding to hyperbolic monopoles live in the minitwistor
space of hyperbolic space, which is isomorphic24 to P1 × P1, and specifi-
cally charge-k hyperbolic monopoles are bidegree-(k, k) curves in this sur-
face [Ati87]. As P1 × P1 is isomorphic to the nonsingular quadric in P3,
and bidegree-(3, 3) curves in this correspond to the other class of non-
hyperelliptic curves classified by Wiman, the work in this section has the
potential to classifying certain hyperbolic monopole spectral curves. Work
in this direction has already been completed in [NR07, Proposition 5.2],
where the authors classify all hyperbolic monopoles with G = A4, S4, or A5

rotational symmetry where the quotient by G is an elliptic curve.

24One can see this (at least partially) by observing that any geodesic of hyperbolic space is
determined by its endpoints, and that ∂H3 ∼= P1.
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Conclusion

Finally: It was stated at the outset, that this
system would not be here, and at once, perfected.
You cannot but plainly see that I have kept my
word. But now I leave my cetological System
standing thus unfinished, even as the great
Cathedral of Cologne was left, with the crane still
standing upon the top of the uncompleted tower.
For small erections may be finished by their first
architects; grand ones, true ones, ever leave the
copestone to posterity. God keep me from ever
completing anything. This whole book is but a
draught - nay, but the draught of a draught. Oh,
Time, Strength, Cash, and Patience!

– Herman Melville
Moby Dick

As I stated at the beginning of this thesis, the unifying thread running through-
out is the concept of symmetry. I shall conclude this thesis then with a brief
recollection of how this symmetry manifested itself in each key section, and my
estimations of which directions may prove ripe for further study.

In §2.2 the role of symmetry was in permuting the theta characteristics on the
curve; this orbit decomposition reveals intrinsic geometry through its relation to
the arrangement of tangent hyperplanes of the canonical embedding and the theta
divisor. I highlighted multiple ways to compute this decomposition both theo-
retically and practically, including algorithmic considerations, and enumerated
many examples for curves of small genus. The theory determining when there
are invariant characteristics is in its nascent stages, I have developed this further
and laid down sketches of the future form of results but leave much room for the
proving of new theorems pinning down these structures and verifying conjectures.

In §2.3 we looked at a particular curve with many symmetries. This symmetry
let us write down explicitly the period matrix, get geometric intuition for distin-
guished orbits, understand a rich structure of interleaving quotients, and analyt-
ically understand part of the orbit decomposition of theta characteristics. There
remained unexplained ‘coincidences’ in this structure, namely isomorphisms be-
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tween quotient elliptic curves and a ‘threeness’ of the orbit decomposition that
we were unable to explain which further investigation may clarify. It is possible
that these are related to the modular aspects of Bring’s curve which were left
unexplored in this thesis.

In §3.3 we were able to utilise the connection between magnetic monopoles
and their various algebraic manifestations to constrain the possible monopole
configurations with certain symmetries in O(3). This included constraining the
dimension of the moduli space using ramification data of the action on spectral
curves, and providing algorithms implemented in Sage for constructing Nahm
data invariant under certain symmetries. There remain questions to be answered
on both of these techniques in order to strengthen the existing results I have given.
Moreover, I have not investigated what role the distinguished theta characteristics
on monopole spectral curves play in providing insight into their geometry and as
such the geometry of the monopole. It is likely that in such a study the real
geometry of the curve and its Jacobian will be important.

Finally, §3.4 unified the mathematics of the rest of this thesis in classifying
charge-3 monopoles with elliptic quotients. Using the known symmetry data
I computed Nahm data and numerical visualisations for previously unknown
monopoles, a task not achieved in 25 years. Pushing these results to both higher
charge and to hyperbolic monopoles represents a natural continuation and one
which will further intertwine mathematical physics and algebraic geometry.
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Appendix A

Differences in Conventions

A.1 The Norm on su(2)

As mentioned, the monopole boundary conditions (Definition 3.1.5) desired de-
pend on the choice of norm used on su(2). Here we collate a record of a variety of
sources and the convention they use, in the form |X|2 = −αTr(X2), |ϕ| ∼ 1−m/r,
denoting with k the corresponding monopole charge.

Source α m

[AH88] 1/2 k/2
[BDH23] 1/2 k/2
[BE18] 1/2 k/2
[BE21] 1/2 k/2
[CG81] 2 k
[Cor82] 2 k
[Hit82] 1/2 k
[Hit83] 1/2 k
[Hit87] 1/2 k/2
[Hou97] 1/2 k/2
[HS96d] 1/2 k
[HS96a] 1/2 k/2
[HS96b] 1/2 k
[Hur83] 1/2 k/2
[Hur85a] 1/2 k/2
[JT80] 2 k
[MS04] 1/2 k/2
[PR81] 2 k
[Pra81] 2 k
[Stu94] 1/2 k/2
[War81a] 1/2 k/2
[War81c] 1/2 k/2
[WW91] 1/2 k

Note here the papers [Hit82, Hit83, HS96d, HS96b, WW91] stand out for using
the combination (1/2, k).
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[BN22] Charbonneau. B. and Á. Nagy, On the construction of monopoles
with arbitrary symmetry breaking, arXiv:2205.15246, 2022.

[Bog76] E. B. Bogomol’nyi, The Stability of Classical Solutions, Sovite Jour-
nal of Nuclear Physics 24 (1976), no. 4, 449–454.

[Bol87] O. Bolza, On binary sextics with linear transformations into them-
selves, American Journal of Mathematics 10 (1887), no. 1, 47–70.

[Boo05] Economist Books, Style guide, ninth ed., Profile Books, 2005.

[Bra11] H. W. Braden, Cyclic monopoles, affine Toda and spectral curves,
Communications in Mathematical Physics 308 (2011), no. 2, 303–
323.

[Bra21] , Spectral curves are transcendental, Letters in Mathematical
Physics 111 (2021), no. 1, 9.

[Bre00] T. Breuer, Characters and automorphism groups of compact Rie-
mann surfaces, London Mathematical Society Lecture Note Series,
vol. 280, Cambridge University Press, 2000.

[Bro90] S. A. Broughton, The equisymmetric stratification of the moduli
space and the Krull dimension of mapping class groups, Topology
and its Applications 37 (1990), no. 2, 101–113.

[Bro91] , Classifying finite group actions on surfaces of low genus,
Journal of Pure and Applied Algebra 69 (1991), no. 3, 233–270.
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[DI08] W. Duke and Ö. Imamoḡlu, The zeros of the Weierstrass ℘-function
and hypergeometric series, Mathematische Annalen 340 (2008),
no. 4, 897–905.

[DI10] I. V. Dolgachev and V. A. Iskovskikh, Finite subgroups of the plane
Cremona group, Algebra, Arithmetic, and Geometry: Volume I: In
Honor of Yu. I. Manin, Springer, 2010, pp. 443–548.

[Dir31] P. A. M. Dirac, Quantised Singularities in the Electromagnetic Field,
Proceedings of the Royal Society of London Series A 133 (1931),
no. 821, 60–72.

[DK93] I. Dolgachev and V. Kanev, Polar covariants of plane cubics and
quartics, Advances in Mathematics 98 (1993), 216–301.

[DLMF] NIST digital library of mathematical functions,
http://dlmf.nist.gov/, Release 1.1.8 of 2022-12-15, F. W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl,
and M. A. McClain, eds.

[Dol82] I. Dolgachev, Weighted projective varieties, Group Actions and Vec-
tor Fields, Springer, 1982, pp. 34–71.

[Dol97] , Lectures on modular forms, 1997, Accessed May 2023.

[Dol12] I. V. Dolgachev, Classical algebraic geometry: A modern view, Cam-
bridge University Press, 2012.

195

https://github.com/DisneyHogg/Abel-Jacobi-in-SageMath
https://github.com/DisneyHogg/Abel-Jacobi-in-SageMath


196 Alec Linden Disney-Hogg

[Don84] S. K. Donaldson, Nahm’s equations and the classification of
monopoles, Communications in Mathematical Physics 96 (1984),
no. 3, 387–407.

[DPS15] B. Deconinck, M. Patterson, and C. Swierczewski, Computing
the Riemann constant vector, https://depts.washington.edu/

bdecon/papers/pdfs/rcv.pdf, 2015.

[Dye91] R. H. Dye, Hexagons, conics, A5 and PSL2(K), Journal of the Lon-
don Mathematical Society s2-44 (1991), no. 2, 270–286.

[Dye95] , A plane sextic curve of genus 4 with A5 for collineation
group, Journal of the London Mathematical Society 52 (1995), no. 1,
97–110.

[Ear71] C. J. Earle, On the moduli of closed Riemann surfaces with symme-
tries, Advances in the Theory of Riemann Surfaces, Annals of Math-
ematics Studies, vol. 66, Princeton University Press, 1971, pp. 119–
130.

[Edg67] W. L. Edge, A canonical curve of genus 7, Proceedings of the London
Mathematical Society s3-17 (1967), no. 2, 207–225.

[Edg71] , The osculating of a certain curve in [4], Proceedings of the
Edinburgh Mathematical Society 17 (1971), no. 3, 277–280.

[Edg78] , Bring’s curve, J. London Math. Soc. s2-18 (1978), no. 3,
539–545.

[Edg81a] , A pencil of four-nodal plane sextics, Mathematical Proceed-
ings of the Cambridge Philosophical Society 89 (1981), no. 3, 413–
421.

[Edg81b] , Tritangent planes of Bring’s curve, Journal of the London
Mathematical Society s2-23 (1981), no. 2, 215–222.

[Edg84] , Fricke’s octavic curve, Proceedings of the Edinburgh Math-
ematical Society 27 (1984), no. 1, 91–101.

[ES89] N. Ercolani and A. Sinha, Monopoles and Baker functions, Commu-
nications in Mathematical Physics 125 (1989), no. 3, 385–416.

[Far12] G. Farkas, Theta characteristics and their moduli, Milan Journal of
Mathematics 80 (2012), no. 1, 1–24.

[Fay73] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in
Mathematics, vol. 352, Springer, 1973.
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[Hit08] N. Hitchin, Einstein metrics and magnetic monopoles, Géométrie
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scientifiques de l’École Normale Supérieure 4 (1971), no. 2, 181–192.

[MV06] K. Magaard and H. Völklein, On Weierstrass points of Hurwitz
curves, Journal of Algebra 300 (2006), no. 2, 647–654.

[Nah83] W. Nahm, All self-dual multimonopoles for arbitrary gauge groups,
Structural Elements in Particle Physics and Statistical Mechanics,
Springer, 1983, pp. 301–310.

203

https://people.math.harvard.edu/~ctm/papers/home/text/class/harvard/213b/course/course.pdf
https://people.math.harvard.edu/~ctm/papers/home/text/class/harvard/213b/course/course.pdf


204 Alec Linden Disney-Hogg

[Nak93] H. Nakajima, Monopoles and Nahm’s equations, Einstein Metrics
and Yang-Mills Connections, Lecture Notes in Pure and Applied
Mathematics, Taylor & Francis, 1993, pp. 193–211.

[Nas07] O. Nash, A new approach to monopole moduli spaces, Nonlinearity
20 (2007), no. 7, 1645–1675.

[Neu81] E. Neuenschwander, Studies in the history of complex function the-
ory II: Interactions among the French school, Riemann, and Weier-
strass, Bulletin of the American Mathematical Society 5 (1981), 87–
105.

[Neu18] C. Neurohr, Efficient integration on Riemann surfaces & applica-
tions, Ph.D. thesis, Carl von Ossietzky Universität Oldenburg, 2018.

[NMPZ84] S. Novikov, S. V. Manakov, L. P. Pitaevskĭı, and V. E. Zakharov,
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