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Abstract

Active matter is the study of collective motion of systems of particles that are

able to consume energy in order to perform systematic motion. Such systems

are abundant in nature and come on a large range of scales: from animal

herds and bird flocks, to bacterial colonies, to active polymer suspensions. In

this Thesis, we focus on the so-called wet active matter, where interactions

between an active particle and its environment (usually a surrounding fluid,

as in bacterial or active polymer suspensions) conserve momentum.

Dilute suspensions of motile bacteria are one of the best-studied examples of

wet active matter. When the density of the suspension is sufficiently high

enough, it exhibits a phenomenon often referred to as bacterial turbulence.

When it occurs, the suspension exhibits strong orientational and velocity and

correlations on large length scales, enhanced diffusion and mixing of the

suspending fluid, and reduced apparent viscosity that vanishes at the onset

of collective motion. While the transition to bacterial turbulence is reasonably

well-understood, the properties of the turbulent phase are largely unknown.

The purpose of this Thesis is to study theoretically aspects of collective

motion of self-propelled particles in the presence of hydrodynamic interaction.

Motivated by previous work on the onset of bacterial turbulence, first we

develop and study a lattice model of the collective phase. Since the transition

to bacterial turbulence was previously shown to be driven by the orientational

degrees of freedom alone, we confine model microswimmers to a regular lattice

and fix their positions. The dynamics of each microswimmer then comprise re-

orientations in the velocity fields created by other microswimmers and random

orientational changes representing bacterial tumble event. We observe that in

the absence of tumbling, all dynamics cease after some initial time, yielding a

frozen configuration. For sufficiently strong tumbling, these configurations melt,
and we discuss the implications of this scenario for bacterial turbulence.
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As the next step, we study partially filled lattices of microswimmer. In

addition to the dynamical rules presented above, each swimmer can now hop

on the lattice with a hopping rate dependent on the surrounding velocity

field. This hopping simultaneously represents self-propulsion, advection, and

spatial diffusion exhibited by real microswimmers. The model also incorporates

excluded volume interactions as only a single microswimmer is allowed to

occupy a single lattice site. In the absence of hydrodynamic interactions,

the model exhibits a motility-induced phase separation, typical of dry active

systems. In the presence of hydrodynamic interactions, the system exhibits

microphase separation instead, leading to a total disappearance of clusters. The

latter state is shown to be hyperuniform and we discuss how hydrodynamic

interactions affect the phase diagram of such systems.

Finally, we study another example of collective motion in active fluids. We

consider the active liquid crystalline model that is often referred to as active gel
or active nematic model, that is widely used in studying mechanics of biological

tissues, bacterial colonies, cell mechanics, etc. Previous work on these systems

mostly focussed on the case of a highly packed suspension with a constant

density of active agents. Here, motivated by our work above, we introduce

an analogous model that allows for local density variations. We study the onset

of spontaneous flows in this model and discuss how our observations differ from

their constant-density counterparts.
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Chapter 1

Active Matter

With the word Active Matter we describe a system of particles that does not

respect the principle of detailed balance. Some mechanism, usually some form

of self propulsion, injects energy into the system at a local level, maintaining

the system out of equilibrium. Opposite to more classic systems, that are driven

out of the equilibrium by some global large scale mechanism (like an external

flow or field gradient), the fact that the energy input is at the particle level is

what makes active systems behave differently. We can divide active systems in

two big categories, based on how the particles interact with their surrounding.

We talk of Dry Active Matter when total momentum is not conserved in the

system, because the background medium in which particles move acts only

as a momentum sink through friction. Examples of dry active systems can

be found in nature when we look at bird flocks or animal herds. In these

systems, the interaction between animals is only dictated by the rules that each

element of the flock follows to move respect to the others surrounding it, and

not mediated by any fluid. Conversely, we talk of Wet Active Matter when we

have self propelled particles that are suspended in a fluid that mediates their

interactions with hydrodynamics. In bacterial suspensions for example, each

bacterium swims creating a fluid flow that acts as a background flow for every

other swimmer in the suspension. This creates momentum-conserving long

range hydrodynamic interactions that, added to the bacteria swimming and

decorrelation mechanisms, contribute to the characteristic collective motion

that we observe in these systems.

Since the most common active matter system are usually living ones, their
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evolution is not only determined by physics, but often the biological nature of its

elements comes into play with driving forces dictated by the need of nutrients,

mating, a more favourable environment, or simply escaping predators.

Thanks to their peculiar out of equilibrium nature, active systems exhibit a wide

range of interesting collective behaviours, such as ordered/disordered phase

transitions, modified rheological properties and phase separation.

In all its declinations, active matter is able to describe an incredible number of

phenomena with a wide range of nature nature and scale: from kilometre-wide

animal herds and bird flocks to bacterial colonies and active polymers in the

micron scale, including also man-engineered systems.

1.1 Dry Active Matter

As introduced before, in Dry Active Systems the medium in which particles

move does not take part in the interaction between them, but rather acts at most

on the single particle physics, usually as a momentum sink. In these systems,

interaction are usually short ranged and mediated via communication between

nearest neighbours or spatial exclusion. A first theory of dry active system

was developed by Vicsek et al. [83], while working on a model to describe

a bird flock. He compared this system to the non-equilibrium equivalent of

a ferromagnetic system, with the only difference laying in the motility of the

single particles. Further work on developing a continuous minimal model for

dry active systems was pursued by Toner and Tu [80], Bertin, Droz, and Grégoire
[8].

1.1.1 Flocking and Vicsek Model

In his discrete model for simulating flocking, Vicsek considered a group of

particles moving in space at constant speed. The rule each particle follows is

that, at each timestep, it tries to align its velocity vector to the average direction

of motion of its neighbours, fighting the random noise present to disturb the

alignment.

We can summarise the model with these discrete equations for position x and
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orientation θ:

θi(t+ 1) = 〈θj(t)〉R + ξ, (1.1)

xi(t+ 1) = xi(t) + vi(t+ 1), (1.2)

where the vi(t + 1) has the direction of θi(t + 1) and constant modulus v0.

Averages are taken over particles in a circle of radius R and ξ represents a

random orientational noise chosen in the interval [−ηπ; ηπ]. Parameters of the

system are only: particle density ρ, speed v0, and the noise level η.

It is worth to notice that for v0 = 0 the system is essentially the XY-model, and

therefore analogue to a ferromagnetic material. For a non-zero velocity and

small densities (or high noise) particles will move around in random directions

trying to form small comoving clusters. If we raise the density and lower the

noise enough, we will witness a transition from chaotic to ordered motion as

particles will start moving in the same average direction.

This spontaneous symmetry breaking is what differentiate active systems from

ferromagnetic ones. As stated by Mermin-Wagner theorem [50], it is impossible

for an equilibrium 2d system with short range interaction to develop a long

range spontaneous breaking in the system’s symmetry. Flock’s property of being

able to "decide" a common direction to follow reside in their nonequilibrium

nature. Since each particle is moving consuming energy, the system is able

to convey this energy in creating and maintaining long range fluctuations that

break rotational invariance.

To describe it we utilise the average velocity normalised with single particle

velocity v0 as the order parameter for the system.

ϕ =
1

Nv0

∣∣∣∣∣∑
N

vi

∣∣∣∣∣ . (1.3)

Using ϕ we can clearly distinguish between a completely disordered state,

where every particle moves in a random direction keeping rotational symmetry

(ϕ = 0), and a fully ordered state, where all the particles in the system

are coherently moving in the same direction (ϕ = 1) breaking the isotropic

symmetry of the former case. The transition between the two phases occurs

when changing the density (or the noise level) of the flock. This phase transition

is observed to be comparable to continuous transitions in equilibrium systems,
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described by:

ϕ ∼ [ηc (ρ)− η]β , (1.4)

ϕ ∼ [ρ− ρc (η)]δ . (1.5)

Here ηc (ρ) and ρc (η) are critical values for noise and density in the thermody-

namic limit. Chatè et al. [19] showed that transition to collective motion in

flocks is not always continuous. They show evidence that, if the system size

is larger than a "crossover" value, the transition will be discontinuous. It is

important to notice that this system size diverges for many limits of the system

parameters, such as small velocity and extreme densities (both high and low).

1.1.2 Minimal Continuum Model

Following Vicsek work, Toner and Tu [79] developed a continuum model for

the collective motion of flocks. To achieve this result, they treated the flock as a

fluid using the coarse grained variables density (ρ(r, t)) and polarisation vector

(p(r, t)). It is important to notice that, since particles move at constant speed,

the polarisation vector works both as the orientation order parameter and as

fluid velocity.

Starting from Navier-Stokes equations, keeping only the terms that remain

consistent with the general symmetries and conservation laws of the system,

it is possible to build a continuum theory for dry active systems. A similar

result was derived by Bertin, Droz, and Grégoire [8], by coarse graining Vicsek’s

model.

The most striking difference between active and ferromagnetic systems is due

to the double nature of the order parameter.

Since p is both the orientation and the velocity, changes in p will be advected by

p itself, generating convection in the flock. This suppress velocity fluctuations

at long wavelength, helping the formation and the stabilisation of the ordered

phase.

Following the derivation shown by Marchetti et al. [42], we can write the

equation of motion for density ρ and order parameter p as:

∂tρ+ v0∇ · (ρp) = 0, (1.6)

∂tp + λ1 (p · ∇)p = −1

γ

δFp
δp

+ f . (1.7)
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Second terms on the left-hand side of each equation describe advection (v0
being the self propulsion velocity of each bird in the flock), and the order

parameter evolution is driven by the functional derivative of the free energy F .

In general, on the right-hand side of the ρ equation there should be a diffusive

current depending on δF/δρ and noise. For the sake of this derivation we ignore

this term since, in both the ordered and disordered phase that the flock will

present, its effects will be negligible compared to the effective diffusion due to

activity.

The two advection terms have different constants (respectively v0 and λ1)

because of the double nature of p, that is both orientational order parameter

and current. In the density equation it acts only as an advective term,

while in the order parameter equation acts on itself via advection and flow

alignment as well. This leads to density and orientation fluctuations being

advected at different speeds and the second term of the p equation having a

phenomenological constant (λ1 6= v0) that depends on microscopical properties

of the specific system we are considering. The noise term that generate

fluctuations in birds orientation is described by f and is gaussian, with zero

average and delta-correlated in position, time and element of the flock.

〈fα(r, t)fβ(r′, t′)〉 = 2∆δαβδ(r− r′)δ(t− t′). (1.8)

The free energy functional in the order parameter equation is given by:

Fp =

∫
r

dr

[
α̃(ρ)

2
|p|2 +

β̃

4
|p|4 +

K̃

2
(∂αpβ) (∂αpβ) +

+
w

2
|p|2∇ · p− w1∇ · p

δρ

ρ0
+
A

2

(
δρ

ρ0

)2
]
. (1.9)

The continuous transition from disordered to ordered phase is dictated by the

α̃ and β̃ terms. In particular occurs when α̃ = 0 and for stability β̃ is always

positive. We can model how α̃ changes with density around the transition using

the heuristic equation:

α̃(ρ) = a0 (1− ρ/ρc) , (1.10)

so that it changes sign at ρ = ρc. A more detailed derivation is given by

Bertin et al. [8] with their microscopical approach, where α̃ is found to be

dependent also by the noise strength. If we divide the constant a0 by γ we
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obtain a rotational diffusion rate Dr that we set to unity to scale time in our

equations. In the second term we use the one-constant approximation and take

the same elastic constant for splay and bend deformations, to describe spatial

deformations of the order parameter. The w and w1 terms give density and |p|2
contributes to spontaneous splay (ρ0 and δρ are respectively the average density

and the local fluctuations over the average). After integration, they generate a

local alignment field for the order parameter. Alternatively, merging the w and

α̃ terms, the former can be interpreted as a splay dependent correction to the

local order term α̃. Finally, A is a compression modulus that opposes to density

variations.

Plugging the free energy in the p equation (1.7) we obtain the complete

equation of motion for the order parameter of the flock:

∂tp + λ1 (p · ∇)p = −
[
α(ρ) + β|p|2

]
p +K∇2p

− v1∇
ρ

ρ0
+
λ

2
∇|p|2 − λp (∇ · p) + f . (1.11)

The driving term is now expanded and we can identify how each part acts on

the evolution of p. Writing the equation of motion in this form we hid γ in each

one of the constants: every letter without a tilde is equal to its correspondent

divided by gamma. The two new constants are λ = w/γ, v1 = w1/γ. These are

the coupling between density fluctuations and local order, same as we would

see in an equilibrium polar liquid crystal. An effective pressure gradient that

acts on p is given by the sum of the third and fourth terms on the right-hand

side of the equation, using the approximation P ∼ v1ρ − λ/2ρ0|p|2. A striking

difference between a passive system and an active one is that here the pressure

depends on density and particle’s propelling velocity instead of density and

temperature. Note how, in a more general derivation the λ coefficients are not

all the same for every term, although deriving the equation from the free energy

functional we do not distinguish between them.

As we noted before, the system undergoes a transition between ordered and

disordered phases when α crosses zero. In particular, when α > 0 it means that

the system will have a density smaller than the critical value (ρ0 < ρc) and it

will be in a homogeneous disordered isotropic state, with |p| = 0 and therefore

null average velocity and preserved rotational symmetry.

When density rises over ρc, α becomes negative and the rotational symmetry

breaks creating an ordered state where every particle follow the same average
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direction |p0| =
√
−α0/β, being α0 = α(ρ0). Because of the non null average

orientation, the system will now move at an average velocity v = v0p.

The dilute isotropic state

We can focus first on the homogeneous isotropic state (α > 0), studying how

it behaves under small perturbations in density and polarisation around their

averages (ρ0 < ρc and p0 = 0). Linearizing the equation of motion we get:

∂tδρ = −v0ρ0∇ · p (1.12)

∂tp = −α0p−
v1
ρ0
∇δρ+K∇2p + f . (1.13)

Searching for dispersion relations in the Fourier space we find that polarisation

fluctuations transverse to the wave vector q decouple and decay at a rate α0 +

Kq2, while polarisation fluctuations parallel to q and density fluctuations have

coupled modes with frequency:

ω±(q) = − i
2

(
α0 +Kq2

)
± i

2

√
(α0 +Kq2)2 − 4v0v1q2. (1.14)

As long v0v1 is positive, the disordered state will be linearly stable for every

parameter value. With the aid of microscopic models [8]it is possible to derive

that v1 = v0/2 at small densities, thus the isotropic state will be stable. For

higher densities (still below transition level ρc), a dependency on density of v1
arises, that brings instability effects in the isotropic phase of dry active systems.

Cates and Tailleur first studied this phenomenon, naming it motility induced

phase separation, or MIPS for short [18]. We will expand further about this

phenomenon in coming sections of this thesis, but for now we keep focusing on

the case where the disordered phase remains stable.

When α0 decreases, bringing the system close to transition to the ordered phase,

dispersion relations acquire a real part when α0 ≤ v0v1/K and qc− ≤ q ≤ qc+

with:

q2c± =
2v0v1
K2

[
1− Kα0

2v0v1
±
√

1− Kα0

v0v1

]
. (1.15)

In this situation, density fluctuations don’t diffuse, but propagate like waves.

In particular, close to transition, in the limit of α0 → 0+ also qc− vanishes,

qc+ ≈ 2
√
v0v1/K and ω± ≈ ±q

√
v0v1 similarly to sound waves.
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The dense polarised state

We now look at linear stability and properties of the system past transition,

hence in the ordered state. Here average density is higher than the critical value

ρ0 > ρc (so α < 0) and the order parameter has a non-null average p0 = p0n̂,

where n̂ is the directional unit vector for the order parameter. Without loss

of generality we will work in two dimensions and align n̂ with the x̂ direction

in our lab reference frame. Fluctuations of the order parameter of the type

δp = n̂δp+ p0δn will then be written as:

δn = δnŷ, (1.16)

δp = δpx̂ + p0δnŷ, (1.17)

and consequently the linearized equations of motion are:

(∂t + v0p0∂x) δρ = −v0ρ0∇ · δp, (1.18)

(∂t + λ1p0∂x) δp = −2|α0|x̂δp+ ap0δρ+ λ2p0 (∇ · δp)

−v1
ρ0
∇δρ+ λ3p0∇δp+K∇2δp + f , (1.19)

with a = −(∂ρα + ∂ρβp
2
0). This time we approach the transition from the order

phase, so α0 → 0− and p0 → 0+. Since fluctuations in magnitude of p decay

with a rate proportional to |α0|, near transition their timescale diverges, and we

can neglect coupling to δn. The decay of the director’s fluctuations has a stable

propagating mode with frequency:

ωn = −qλ1p20 − iKq2 (1.20)

For small wave vectors, the density and order parameter magnitude fluctuations

are governed by:

Im[ωp+] = −(s2q
2 + s4q

4 +O(q6)), (1.21)

s2 =
v0v1
2|α0|

(
1− v0a

2ρ20
4v1|α0|β

)
. (1.22)

Instability at small q therefore occurs when |α0| < v0a
2ρ20/4v1β. From

microscopic derivation emerges that both α0 ≈ v0 and v1 ≈ v0, so there is

a range of densities ρ0 > ρc for which the ordered state is unstable at small

velocities. Numerical simulations show that without noise, in this instability
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region, the system is no longer completely polarised, but it is possible to see

bands perpendicular to the direction of broken symmetry that travel along x̂,

similarly to what is possible to observe using the discrete Vicsek model.

If we look away from transition, at higher density and values of α0 << 0,

fluctuations of δp will decay at very short timescales. Assuming they already

decayed (and p0 = 1), and including the previously neglected diffusive terms in

the ρ equation, we find stable hydrodynamic modes that propagate like sound

waves, with dispersion relation:

ωs± = qc±(θ)− iq2K±(θ) +O(q3), (1.23)

Where c±(θ) is the speed and K±(θ) the damping of the propagating wave,

depending on the angle θ that describes the direction of the wave vector. In

contrast with a standard fluid, in active systems sound waves propagate at

different velocities depending on the direction in which the wave is travelling.

This is, of course, an effect of the missing rotational invariance and momentum

conservation that is typical of active systems.

Another weird behaviour of active system consists in how density fluctuations

scale with density itself. To analyse this, is useful to consider the static structure

factor S(q):

S(q) =
〈δρq(t)δρ−q(t)〉

ρ0V
=

∫ ∞
−∞

dω

2π
S(q, ω), (1.24)

S(q, ω) =
1

ρ0V

∫ ∞
0

dt〈δρq(0)δρ−q(t)〉eiωt. (1.25)

In the linearly stable regime, far from transition, we can integrate over

frequencies to find S(q) being proportional to 1/q2 and depending on the angle

θ. The static structure factor diverges then in the limit of large wavelength.

This has an important effect on number density fluctuations, since S(q → 0)

becomes

lim
q→0

S(q) =
∆N2

〈N〉 , (1.26)

where N is the number density (number of particles in a volume V), 〈N〉
is averaged over time, and ∆N2 is the variance of number fluctuations. In

equilibrium systems ∆N ≈
√
〈N〉, and S(q) vanishes as 1/

√
〈N〉 when 〈N〉 →

∞. In active systems, the dependence on 1/q2 changes things. The smallest
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wave vector has to be of the order of V −1/d (with d as the number of spatial

dimensions), being V directly proportional to 〈N〉, we have S(q → 0) ≈ 〈N〉2/d.
We can now write:

∆N ≈
√
〈N〉S(q → 0) ≈ 〈N〉 12+ 1

d . (1.27)

This implies that fluctuations in number will always grow faster regular

equilibrium systems. In particular, in two dimensions systems, the exponent

will be unitary bringing the fluctuations to grow at the same rate of 〈N〉. This

significative enhancement of density fluctuations manifests in active systems

because of how orientational fluctuations generate curvature, and curvature,

being a form of local polarity, leads to a current in the flock that generate the

changes in density.

1.1.3 Active Nematics

Another important example of flocking can be observed in active nematic

systems. Nematic is the most fundamental orientational symmetry, where all

particles are aligned on one axis, with nothing to differentiate positive from

negative orientation along this direction. A common example of systems that

exhibit nematic symmetry are of course any collection of elongated particles

with no particular front-back distinction, such as liquid crystals. Such system is

described by the conservation of number density ρ(r, t) and the Q-tensor as the

orientational order parameter:

Qαβ(r, t) =
1

ρ(r, t)

∑
i

(
ν̂iα(t)ν̂iβ(t)− δαβ

d

)
δ (r− ri(t)) , (1.28)

where ν̂i is the orientation unit vector of the i-th particle and d the dimension-

ality of the system. The Q-tensor main property is the capability of describing

the local nematic order (local alignment without distinction between front and

back). The free energy that drives the motion is:

FQ =

∫
r

[
αQ(ρ)

2
Q : Q +

βQ(ρ)

4
(Q : Q)2 +

KQ

2
(∇Q)2 +

+CQQ : ∇∇δρ
ρ0

+
A

2

(
δρ

ρ0

)2
]
. (1.29)
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Where we used the : notation for the double dot product (A : B = AijBij).

The system leans towards nematic order when αQ < 0 and βQ > 0, and we can

recognise the elasticity module in KQ, a bilinear coupling for Q and ρ in the CQ
term, and the compression term A that works against variations in density δρ.

Finally from the expression 1.28 we notice that for 2-dimensional Q-tensors,

every cubic term Q3 always vanishes. This would not hold true working in

three-dimensional systems.

We can write the equation of motion for Q and ρ as usual:

∂tQ = − 1
γQ

δFQ
δQ

+ fQ (1.30)

∂tρ = −∇ ·
(

1
γρ
∇ δFQ

δρ
+ Jactive

)
(1.31)

Aside from the usual mobility and noise terms, we have to look closely at the

density conservation equation. The density current is split in two different

contributions: a passive current ruled by the mobility parameter 1/γ, and an

active one due to the combined effects of activity and the geometry of the

system.

The collection of particles we are considering is composed of strictly apolar

elements, meaning that the whole system can have a preferred direction but,

even when tightly packed, will not distinguish between front and back on this

direction. A non-zero divergence of the Q-tensor generates a local curvature

that will be the only form of polarity allowed in the system, and since the

particles are active, this will generate a current. We can then write Jactive as:

Jactive = ξQ∇ ·Q. (1.32)

It is then possible to write a complete equation of motion for ρ as:

∂tρ = D∇2ρ+B∇2∇∇ : Q + ξQ∇∇ : Q +∇ · fρ. (1.33)

We added a random current fρ to generate fluctuations that are number-

conserving, and grouped the constants D = A/ρ20γρ and B = CQ/ρ0γρ. We

approach the study of density fluctuations only in the fully ordered state (where

αQ < 0, βQ > 0), and we set the nematic order to be along θ = 0. To linearise

the previous equation of motion, we can write the two-dimensional Q-tensor
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as:

Q =

(
S cos 2θ S sin 2θ

S sin 2θ −S cos 2θ

)
. (1.34)

We can now write ρ and Q with respect to their average value and fluctuations

as:

ρ = ρ0 + δρ(r, t),Q = diag(S,−S) + δQ. (1.35)

Small fluctuations in Q will have negligible diagonal elements: δQxx =

−δQyy = O(θ2) and off-diagonal elements proportional to the angle formed

with respect to the nematic order δQxy = δQyx ≈ 2Sθ. In Fourier space is

possible to find the correlation functions:

Sρqω = 1
ρ0V
〈|δρqω|2〉, (1.36)

Sθqω = 1
V
〈|θqω|2〉, (1.37)

Sρθqω = 1
V
〈|δρqωθ∗qω〉. (1.38)

From the linearised equations we can observe that CQ terms are subdominant

in wave number, so they bring only a finite renormalisation in the Q-tensor

equation. Dynamics of Q and ρ are then decoupled. The second term containing

Q in the density equation can be viewed as noise with variance ∝ q2xq
2
y/q

2 and

relaxation time ∝ 1/q2. This is because the term ∇∇ : Q can be rewritten as

∂x∂yθ, and θq correlations and lifetime are proportional to 1/q2. This noise term,

purely generated by activity, is analogue to a non-number-conserving noise and

with its long-time and distance effects overweighs the random current noise fQ

that has a zero-frequency weight vanishing proportionally to q2.

1.1.4 MIPS

It is possible for active particle systems to undergo spontaneous liquid-gas phase

separation when the activity (speed) depends directly on particle density. This

phenomenon, first discovered by Cates and Tailleur [71] takes the name of

motility induced phase separation (MIPS). In particular, if active particle’s speed

decreases fast enough when density rises, the system can engage a positive

feedback loop, in which dense regions make particle go slower, and slower

particles tend to accumulate increasing local density. Thanks to this loop, an
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homogeneous system can become unstable and spontaneously phase separate

into a slow dense phase with highly reduced motility and a fast dilute one.

It can be shown [18] that a system of swimmers having speed v(ρ) that decrease

with increasing density can be described at a mean field level similarly to a

system of a passive Brownian particles with attractive interactions. Due to

the irreversible dynamics of the active system the mapping between active

and passive cases holds only under specific conditions, for instance when we

assume that ρ is varying slowly and we can ignore gradient contributions on

the expansion of the particle velocity.

To properly treat this problem we have to resort to a modified version of the

generalised Cahn-Hillard equation for phase separation, expanding the free

energy at first order in gradients:

F [ρ] =

∫
f(ρ) + c(ρ)|∇ρ|2dr, (1.39)

∂tρ = −M(ρ)∇δF
δρ
. (1.40)

This brings to a non-equilibrium chemical potential of the form:

µ = g0(ρ)− κ(ρ)∇2ρ+ λ(ρ)|∇ρ|2. (1.41)

We can now restore the thermodynamic treatment if we use an effective density

R(ρ) that obeys:

κR′′ = −(2λ+ κ′)R′. (1.42)

From this treatment we can grasp the main difference with the equilibrium

phase separation. In equilibrium systems, the phase separation depends only

on bulk properties. If activity enters the picture, it is necessary to take into

account gradient terms where the activity appears, so physics at the interfaces

takes a leading role in the dynamics of phase separation.

1.2 Wet Active Matter

When we look at active particles inside a fluid considering it as a proper

medium, and not just a substrate, the main source of particle interaction

changes from the one seen in dry systems. In dry flocking models each
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particle spontaneously tries to align to others around it. When the particles

are suspended in a fluid medium, what drives them to change their orientation

is prevalently hydrodynamic interactions.

Just by swimming, each element of the system will push fluid around it and

will contribute to create the background fluid flow in which all other swimmers

will move. Two main differences with the dry case arise when we look at wet

systems: momentum is conserved by hydrodynamic interactions, and secondly

interactions become long range.

1.2.1 Introducing Hydrodynamics

If we suspend active particles inside a fluid, these will exert an active stress

on their surroundings. In most cases this active stress is caused by particles

swimming and it is the mechanism through which the system breaks detailed

balance (e.g. the burning of chemicals inside the cell that gives the energy to

power flagella or other cellular motors). This stress is what couples the motion

of active particles with the fluid equations, generating the collective dynamics

that we are going to observe.

To add hydrodynamics to the system, we have to couple the concentration

and orientation equations for the swimmers with a Navier-Stokes equation for

the fluid velocity. We have to bear in mind that in the wet case the order

parameter doesn’t parallel as the velocity field of the swimmers anymore. Now

the complete velocity field will be the sum of the actual swimming velocity in

the p direction plus the advection due to the background fluid velocity u. To

allow the coupling between swimmers and fluid equation, we have to treat

swimmers as force densities acting on the fluid. The minimal model for a

swimmer, as we will see in the next section, is a force dipole.

1.2.2 Swimming Mechanisms

In nature we find two main categories of swimmers, that differ in the way

they propel themselves: we call pushers organisms that move pushing the fluid

behind them (e.g. E. Coli, Sperm Cells), and pullers the ones that move pulling

the fluid towards them (e.g. Chlamydomonas). In both cases the simplest

organisms that are able to swim are composed of a main body and a propulsion
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organ (typically one or more flagella) located at the back of the organism in

pushers or in the front in pullers. Having pointed out the main differences

between pushers and pullers we will now omit explicitly mentioning the puller

case for the sake of readability, being straightforward the switch between one

and the other.

Since our main goal is to study collective motion of a large number of particles,

on length scales much larger than the single bacterium, it is pointless to delve

further on the details of swimming mechanisms. The highlight of what is

needed to continue is that pushing the fluid behind him with the flagellum,

the organism will move forward, with the side effect of pushing the fluid ahead

of it, since the swimmer is force-free.

We can then model both using force-free dipoles acting on the fluid around

them. The only difference in modelling pushers or pullers is their dipolar

strength: this will be positive for pushers, and negative for pullers. The

last thing to consider to fully explain how microorganisms swim, is the run-
and-tumble mechanism. Until now we only described straight motion. To

change direction, bacteria undergo what is called tumbling: after a short

period of linear swimming, they unbundle their flagella, with the effect of

stopping abruptly and changing their orientation. These events happen in a

time interval negligible with respect to the time spent swimming, so we can

consider tumbling instantaneous. After the tumbling happens, the bacteria will

reform its flagella bundle and start again swimming at constant speed in the

new direction. In our model we can treat this similarly to a random walk, with

a characteristic time and length, dictated by the average tumbling frequency

and the speed of the swimmer. In the framework of collective motion, the run-

and-tumble takes the role of a decorrelation mechanism and is the main source

of rotational diffusion of the system.

1.2.3 Hydrodynamic Equations

We look at a suspension of particles described by Ψ(x,p, t), a distribution

function of position x and orientation p (where p is a unit vector). The time

evolution of such distribution will be regulated by:

∂tΨ(x,p, t) = −∇x · (ẋΨ)−∇p · (ṗΨ) , (1.43)
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with Ψ(x,p, t) normalised as 1
V

∫
V
dx
∫
S
dpΨ = n (V being the volume of space

we are considering and S the surface of the unit sphere). We used the notation

∇p = (I−pp)∂p to represent the gradient operator on the unit sphere. Denoting

propulsion speed as U0, we can assert that particles oriented along p will swim

with velocity U0p with respect to the background fluid. For a more complete

description of the single particle equations of motion we can write:

ẋ = U0p + u−D∇x (ln Ψ) , (1.44)

ṗ = (I− pp) · [(γE + W) · p− dr∇p (ln Ψ)] . (1.45)

The three terms on the right-hand side of the translational velocity equation are

respectively: self propulsion, background fluid flow (u(x, t)) and translational

diffusion with a constant coefficient D. The angular velocity instead is

generated by local flow only, through the tensorial terms E = 1/2(∇u + ∇u†)
(fluid rate of strain) and W = 1/2(∇u − ∇u†) (vorticity). The coefficient γ is

a shape parameter for the swimmer that takes values between −1 and 1 (γ ≈ 1

for slender rods). Finally, as for the previous equation, we model rotational

diffusion with a constant coefficient dr.

From the distribution function, we can define the local concentration field and

the director field respectively:

c(x, t) =

∫
S

Ψ(x,p, t)dp, (1.46)

n(x, t) =
1

c(x, t)

∫
S

pΨ(x,p, t)dp. (1.47)

We look now at the evolution equation for c(x, t), derived integrating the

conservation equation for Ψ over orientations and using the incompressibility

condition for the fluid (∇xu = 0):

∂tc+ u · ∇xc−D∇2
xc = −U0∇x · (cn). (1.48)

On the left-hand side we have an advective term that originates from fluid flow

and a diffusive term that contrasts the advection. On the right-hand side we

can see how concentration evolution is directly driven by a cn term, that acts

as a source and involves the director field and self propulsion U0.

Having described the particle evolution, now we can write down the mass and
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momentum conservation for the fluid, resulting in:

∇ · u = 0, (1.49)

−µ∇2
xu +∇xq = ∇x · Σp. (1.50)

The first of these two equation is the condition for an incompressible fluid that

we already took advantage of, while in the second we denote the viscosity as µ,

pressure as q and the active stress that drives the motion as:

Σp(x, t) = σ0

∫
S

Ψ(x,p, t)

(
pp− 1

3

)
dp. (1.51)

As we mentioned before a single swimmer can be modelled as a force dipole,

and we are now denoting with σ0 its dipole strength. The active stress tensor

in the position x is the configuration average over all the orientations of all

the force dipoles that the particles at that position exert on the fluid. Scaling

distances by the swimmer length l, velocities by the swimming speed U0 and

times by l/U0 we can reduce the dipole strength σ0 to a constant α that depends

purely on the swimming mechanism:

σ0
U0µl

= α, (1.52)

Being α < 0 for pushers and α > 0 for pullers.

Making the right choice of units it is possible to make the evolution equations

dimensionless, and consequently eliminate every constant except for those

related to shape of the particles and swimming mechanism (γ and α). In

particular, using uc = U0, lc = 1/nl2 and tc = lc/uc we get the new normalisation

as:

1

V

∫
V

dx

∫
S

dpΨ = 1, (1.53)

the dimensionless equations for particle motion

ẋ = p + u−D∇x (ln Ψ) , (1.54)

ṗ = (I− pp) · [(γE + W) · p− dr∇p (ln Ψ)] , (1.55)
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(with D and dr dimensionless), and the continuity and momentum equations

∇ · u = 0, (1.56)

−∇2
xu +∇xq = ∇x · Σp. (1.57)

with dimensionless active stress tensor Σp(x, t) = α
∫
S

Ψ(x,p, t)
(
pp− 1

3

)
dp.

We can now look at stability of an active suspension, and to do that we look

first at the entropy of the system:

S =

∫
V

dx

∫
S

dp
Ψ

Ψ0

ln

(
Ψ

Ψ0

)
. (1.58)

For Ψ(x,p, t) = Ψ0 = 1/4π the system is in a homogeneous isotropic state that

minimises entropy (S = 0). Through some algebra using conservation equation

for Ψ and momentum equation we find that changes in entropy are described

by:

4πṠ = −6γ

α

∫
V

dxE : E−
∫
V

dx

∫
S

dp
[
D|∇x ln Ψ|2 + dr|∇p ln Ψ|2

]
Ψ, (1.59)

where the first term in the right-hand side is a flux term generated from the

active stress tensor, and the second term is clearly translational and rotational

diffusion. The diffusion terms (both translational and rotational) are always

contributing negatively to Ṡ, lowering the entropy and pushing the system

towards the homogeneous and isotropic state. The global sing of the entropy

change depends then on the sign of α, and therefore on the swimming

mechanism of the particles that propel in the fluid.

If the particles are pullers (α > 0) the flux term will have the same sign of

the diffusion, contributing to lower S, so that any fluctuation will dissipate into

the isotropic and homogeneous state where the entropy assumes its minimum

value (S = 0). If we are dealing with pushers instead (α < 0), the system

will undergo a positive feedback loop where fluctuations and velocity gradients

are sustaining themselves mutually, giving a positive contribute to the entropy

growth, in contrast with the diffusion term that tries to slow down this growth.

The two terms will at some point reach a stable balance and the system will

reach its steady state. It is possible to address better this problem studying

linear stability for the two cases of aligned and isotropic states.

Take a system that is almost uniform and aligned along ẑ axis with some
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deviation:

c(x, t) = 1 + εδc(x, t), (1.60)

n(x, t) = ẑ + εδn(x, t). (1.61)

In this notation ε is an arbitrary small constant (|ε| << 1) and δn · ẑ = 0 in order

to keep n a unit vector. Solving the linearised equations of motion in the Fourier

space and looking for plane wave solutions of the type δc = c̃(k) exp [ik · x + σt],

following the steps of [60] we find the dispersion relation:

λ± =
1

2
f(θ) cos 2θ

[
1±

(
1 + 4ik

sin2 θ cos θ

f(θ cos2 2θ)

)1/2
]
, (1.62)

where λ = σ ± ik cos θ, being θ the angle the plane wave travels at with respect

to ẑ, and f(θ) = −α[(γ + 1) cos2 θ − (γ − 1) sin2 θ]/2 is a function that stores all

the information about shape and swimming mechanism. Looking at the growth

rate <(λ) we can confirm that the aligned case is always unstable, since for

k > 0, independently of swimmer’s type there is always a fluctuation growth

rate greater than zero, no matter what angle the wave travels. Note that if

concentration is high enough to force the modelling of steric interaction to

describe the system correctly, it is possible for it to overcome the instability

and lead to a stable aligned case.

In the second case we have an isotropic and non uniform system, described by:

Ψ(x,p, t) =
1

4π
[1 + εδΨ(x,p, t)] . (1.63)

Solving for plane wave solutions of the form δΨ(x,p, t) = Ψ̃(p,k) exp [ik · x + σt],

we find the dispersion relation:

3iαγ

4k

[
2a3 − 4

3
a+

(
a4 − a2

)
log

(
a− 1

a+ 1

)]
= 1, (1.64)

with a = (iσ + Dk2)/k. Solving numerically the dispersion relation for a

system of pushers, it is possible to see how, for small values of k Re(σ) > 0

and =(σ) = 0, meaning that shear stress fluctuations will grow. For higher

wavenumbers, Re(σ) decreases until it reaches zero, where the fluctuations

become damped. Different values of translational diffusion contribute with

a term Dk2, therefore only helping the dampening appear at lower values of

k. For pullers the fluctuation growth rate is always negative, resulting in the
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suspension being always stable.

1.3 Conclusions

In this Chapter we described the state of the art of the study of active matter.

Active matter began as a simple model to describe how bird flocks fly in the sky,

but rapidly grew up to current models that lay the ground for new research in

many scientific fields: from pure statistical mechanics, to applications in better

understanding biological phenomena or technical improvements in medicine

and engineering.

We described the basic theory for dry active matter, introducing the continuum

model and the concepts of active nematics and motility-induced phase separa-

tion that we will encounter in future chapters. Most importantly for the purpose

of this thesis, we introduced the effect of hydrodynamic interactions in a active

system, to describe what is then called wet active matter, meaning that the

medium on which particles move is not just a momentum sink as in dry active

matter, but acts as the medium through which single particles interact. We here

described the ideas behind the swimming mechanisms of wet active particles

and the hydrodynamic equations we will need in the future Chapters of this

thesis.

20



Chapter 2

Swimming Crystals

In this chapter we will lay down the basic lattice model for simulations that we

developed to study the collective evolution of microswimmer suspensions.

As we saw in the previous Chapter, when concentration is above a certain

threshold, active suspensions undergo a phase transition. At lower concentra-

tions, swimming particles move independently, making the whole suspension

homogeneous and isotropic. Above the density threshold, particles in the

suspension start moving collectively, forming coherent flows and vortices at

bigger length scales than the typical swimmer’s size.

Even though in bacterial suspensions swimmers have a very low Reynolds

number, when the collective motion sets in we can observe a chaotic pattern

of vortices and jets, that reminds of turbulent flows we see in systems with

high Reynolds numbers. For this reason the collective motion phase in bacterial

suspension is also known as bacterial turbulence.

In previous papers [68] it was hinted that bacterial turbulence is obtainable not

only in suspensions of swimmers, but also in suspensions of microorganisms

that push the fluid without propelling themselves in any direction (we call

these shakers). Following the idea behind this information, we wanted to check

whether active turbulence was possible when the particles in the suspension are

stripped completely of any translational degree of freedom.

To pursue this idea we created a model for swimmers suspensions where each

swimmer, modelled as a force dipole acting on the surrounding fluid, is free to

rotate but its position is fixed on a rigid lattice. This led to an interesting result:
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without rotational decorrelation, the suspension quickly reached a frozen stable

steady state configuration, that we found fundamentally different in pushers

and pullers.

The former tried to reach a tetradic configuration, where each swimmer tends

to be perpendicular to its neighbours, while the latter arrange themselves to be

in a local nematic configuration. Since in our model we witnessed that without

decorrelation the isotropic state is always linearly unstable and decaying in the

frozen state mentioned above, we identified the latter with collective motion in

the active suspension.

2.1 Model Swimmer

Our model consists of N swimmers modelled, as we stated previously, as a point

dipole located at position r with orientation p and length L. Being the i-th

swimmer fixed in position, its evolution is only dictated by the equation:

ṗαi =
(
δαβ − pαi pβi

)
pγi∇γUβ(ri), (2.1)

where δαβ is the Kronecker delta, and U(ri) is the fluid velocity at the position

of the i-th swimmer. In this treatment the fluid velocity at ri will be generated

by all the other dipoles in the system. To implement this equation in the

simulations, we can write Eq.(2.1) up to the first order in ∆t as:

p∗ = pi + zi∆t, (2.2)

pi(t+ ∆t) =
p∗
|p∗|

, (2.3)

with zβi = pγi∇γUβ(ri). Anticipating Chapter 3, we will add tumbling changing

the dipole orientation randomly with a frequency λ: at each timestep of our

simulation every dipole will have a chance 1/λ to reorient in a new direction

picked randomly from a uniform distribution. Each dipole interacts with the

fluid applying two point forces of the same magnitude F : Fpi at the head of

the swimmer positioned at ri, and an opposite one −Fpi at its tail at ri + Lpi.

The sign of the force modulus will determine if the swimmer is a pusher (F > 0)

or a puller (F < 0). The dipole acts then on the fluid via two stokeslets, of the
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form:

Gαβ(r) =
δαβ

r
+
xαxβ

r3
, (2.4)

with xα/β being the cartesian component of r and r its modulus. The fluid

velocity field generated by the i-th dipole at position r will then be:

V α
i (r) =

F

8πµ

[
Gαβ(r− ri − Lpi)pαi −Gαβ(r− ri)p

α
i

]
≈ F

8πµ

[
Gαβ(r− ri) +∇γGαβ(r− ri)(−Lpγi )−Gαβ(r− ri)α

]
pαi

= − FL
8πµ

pαi p
γ
i∇γGαβ(r− ri). (2.5)

2.2 Swimmers on a Lattice

We consider a square lattice of size N = M ×M , and spacing a. At each lattice

point we locate a single swimmer as described in the previous section. Knowing

the distribution of all the swimmers on the lattice now we can compute the total

value of U(ri) by summing all the Vi(r) contributions from the other swimmers

in the system:

Uβ(ri) =
N∑
i=1
i 6=j

V β
j (r) = − FL

8πµ

N∑
i=1
i 6=j

pαj p
δ
j∇δGαβ(ri − rj), (2.6)

making it possible to write down the expression for the update step zi:

zβi = pγ∇γUβ(ri) = − FL
8πµ

N∑
i=1
i 6=j

pγi p
α
j p

δ
j∇γ∇δGαβ(ri − rj). (2.7)

Evaluating the term inside the summation, and removing the terms parallel to

pi, since they will disappear anyway after the action of the projector operator

(δαβ − pαi pβi ) in Eq.2.1, we obtain the following equation for zi:

zβi = − FL
8πµ

N∑
i=1
i 6=j

3(pi · x̂ij) + 6(pi · pj)(pj · x̂ij)− 15(pi · x̂ij)(pj · x̂ij)2
|xij|3

x̂βij, (2.8)
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where xij = ri − rj is the distance between i-th and j-th lattice points, and

x̂ij = xij/|xij|. As a last step in this derivation we can use dimensionless units

by scaling distances with lattice spacing a and times with τ = FL/(8πµa3)

resulting in:

zβi = sgn(F )
N∑
i=1
i 6=j

3(pi · x̂ij) + 6(pi · pj)(pj · x̂ij)− 15(pi · x̂ij)(pj · x̂ij)2
|xij|3

x̂βij.(2.9)

This expression is of great use for computational purposes, since reduces the

update step for the dipole orientation to being dependent only on distances

between lattice points and the relative unit vectors. Those values can be

precomputed at the start of the simulation and save a great amount of

computational time and resources.

2.3 Frozen lattice

Simulating systems of pushers and pullers on our lattice without rotational

diffusion we can see in detail the patterns formed when the system reaches

the frozen state. In figure 2.1 we can see how pushers and pullers arrange

themselves in a tetradic and nematic configuration respectively. It is shown on

the right side of the figure how for a single run (of N=400 swimmers) some

defects appear on the configuration, while on the left is the most probable

distribution of swimmers. We suspect that these defects are a finite-size effect

and will disappear in the thermodynamic limit with larger systems.

To show when the frozen state is effectively reached we introduce the quantity

Z̄(t) to represent the average magnitude squared of dipoles’ angular velocity:

Z̄(t) =
1

N

N∑
i=1

[(
δαβ − pαi pβi

)
zβi

]2
. (2.10)

In figure 2.2 we can see an example of the temporal evolution of Z̄(t) for a

lattice of N = 400 pullers on a squared lattice, as the one showed in figure 2.1.

Here Z̄(t) rapidly decays to 10−2 and briefly oscillates around those values.

After that small period of time Z̄(t) reaches 10−14 and remains stable in this

state, where we can consider the system frozen in a static state.

The next question to address is whether the frozen states are always reached
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Figure 2.1 Frozen states of systems of N = 400 swimmers displaced on a square
lattice. Here we show pushers on the top row (a and b) and pullers on
the bottom (c and d). Plots on the left (a and c) represent the most
probable configuration for both systems, while the ones on the right (b
and d) show how in singular runs defects can be present in the frozen
configurations.

eventually. To answer this we performed a large number of runs for a single

lattice size recording the freezing time, namely the first instant when the value

of Z̄(t) falls below 10−10. Using the resulting freezing times distribution we can

define the survival probability:

S(t) = 1−
∑Nruns

j=1 θ(t− tj)
Nruns

, (2.11)

where θ(t) is the step function, 0 < t < Tmax is a time value between zero and

the total simulation time Tmax, and Nruns is the number of runs performed. The

quantity S(t) represents then the probability that the system is not in a frozen

state after time t. In figure 2.3 we show the decay of the survival probability

with time in a system of swimmers (pushers) for increasing lattice sizes. Times

are here normailsed as mentioned in the previous section (τ = FL/(8πµa3)).

The calculation for S(t) has been performed with Nruns = 104. We can see
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Figure 2.2 Evolution of Z̄(t) against time for a square lattice ofN = 400 swimmers
(pushers). It is noticeable how the rotational dynamic dies after a short
time

that, even if survival probability at the same time instant increases with system

size, the curves appear to get closer to each other when the system grows bigger,

hinting a convergence in the shape of S(t) that is reached for very large systems.

Figure 2.3 Survival probability of a system of pushers of different lattice linear
sizes.

For a more quantitative measure of this convergence we can also plot the

average stopping time t̄0 for each lattice against the system size. In figure 2.4

we show these data along with a function we used to fit them.
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Figure 2.4 Average freezing time t0 against lattice linear size
√
N for systems of

pullers. The circles represent numerical data, while the dashed line is
the fit the expression of which is given in Eqn. (2.12)

The best fit the data shown in figure 2.4 we found to be:

t̄0 = 274.189− 353.349 exp (−0.0186788
√
N). (2.12)

With the growth of system size, the average stopping time approaches a

convergence value with an exponential slowdown. Already for systems with√
N = 400 we would reach a t̄0 within 0.1% of the convergence value.

Although these plots are not strict proof of the actual convergence of the

freezing time with lattice size, we were not able to run these tests for systems

bigger than N = 50×50 because of the limit imposed by the long computational

times needed to make enough runs to get an accurate statistics on bigger

systems.

2.4 Tumbling

In active suspensions, when no orientational decorrelation mechanisms are

involved in the system dynamics,the homogeneous and isotropic state is always

linearly unstable. After it evolves for enough time without such decorrelations,

the system always reaches a state where collective motion sets in.

As described in the previous section, starting simulations using our model

with the same premises of no decorrelations allowed in the evolution, the
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system always reaches the frozen states (tetradic or nematic). Inferring from

this consideration, we can then interpret the frozen states in our model as a

corresponding representation of the active collective motion.

After having acknowledged this analogy, and given a physical interpretation to

the frozen states, we can study how the system reacts to decorrelation. We

decided to look at two different mechanisms for orientational decorrelations:

tumbling and rotational diffusion. As mentioned in the first chapter, micro-

swimmers move with the so called run and tumble motion: they normally swim

on a straight line with constant speed (run state) until they suddenly stop to

abruptly change their direction in a random new one (tumble event). This is the

main mechanism microorganisms use to autonomously change their orientation

in order to swim towards favourable environments (more food, light or other

energy sources) or away from unfavourable ones.

While tumbling is a discrete change in direction that happens with a specific

frequency during the swimmer’s motion, rotational diffusion is a continuous

effect that forces the swimmer to smoothly change its direction, and it’s typically

due to thermal effects.

In our model we denote with Λ the dimensionless tumbling rate, which is

Figure 2.5 Different decorrelation mechanisms. On the left, run-and-tumble
motion is characterised by the swimmer moving in a straight line (run)
until a sudden reorientation event (tumble) changes its direction of
motion. On the right instead, rotational diffusion is represented; here
the direction of motion changes smoothly and continuously.

related to its dimensional counterpart λ by the expression:

Λ =
8πµa3λ

FL
. (2.13)
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We can reshape this equation by using reduced units for dipolar strength (κ =

FL/µ) and substituting 1/a2 with n2D, the area density of dipoles, obtaining:

Λ =
8πaλ

κn2D

. (2.14)

Utilising analytical work performed by Škultéty et al.[87], we can derive that

orientational instability sets in when this relation is satisfied:(
λ

κn2D

)
crit

=
kmax

8
, (2.15)

or, using dimensionless quantities:

Λcrit = πakmax. (2.16)

In previous equations, we denoted with kmax the highest Fourier wavenumber

available in the system. In our case this is the inverse of lattice spacing a, so we

obtain Λcrit = π.

2.5 Conclusions

In this Chapter, we discussed the basics behind the first implementation of our

lattice model. We chose our minimal swimmer model to be a single force dipole

(of positive sign for pushers and negative for pullers) acting on the surrounding

fluid and free to rotate affected by the local fluid flow. Fixing these swimmers

on a square lattice and leaving them free to rotate, we observed that the system,

without decorrelation, always incurred in freezed states both for pushers and

pullers suspensions, leading us to identify these states with collective motion in

the active suspension.

This Chapter lays the ground for the understanding of our lattice model for

motility-induced phase separation in a swimmer suspension. In the next

Chapter we will re-introduce translational degrees of freedom to our model,

giving swimmers the ability to move between lattice points, and implement

decorrelation mechanisms in the form of tumbling and diffusion. This will lead

us to understand how the presence of hydrodynamic interactions affects the

motility-induced phase separation in swimmers suspensions.
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Chapter 3

A lattice model of
motility-induced phase separation
in the presence of hydrodynamic
interactions

As mentioned in the Introduction, active matter comprises systems that are

strongly out-of-equilibrium. Self-propelled particles break the detailed balance

principle at the microscopic scale [15], and do not obey the laws of equilibrium

statistical mechanics. As the consequence, the observed state of active systems

in the absence of any external forcing is not given the minimum of the

corresponding free energy and can involve large-scale macroscopic currents.

Often such currents take the form of large-scale collective motion of the

particles, where a finite number of particles exhibiting the same type of motion

in the thermodynamic limit [42, 55, 84].

One of the most striking example of such a non-equilibrium phenomenon is the

motility-induced phase separation (MIPS) [18]. Similar to the Ising model in

equilibrium statistical physics, it requires a small number of physical ingredients

to generate a novel non-equilibrium phase transition. In its simplest form,

MIPS can be observed with self propelled particles that interact with each

other through an excluded volume potential (see [58], for example). A small

amount of spatial diffusion is ofter required to prevent kinematic trapping in

intermediate, metastable states [65]. At low volume fractions and/or for slowly
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moving particles, the system can be described as a disordered collection of run-

and-tumble particles. At sufficiently high volume fractions and self-propulsion

speeds, the system separates into a dense cluster embedded into a low-density

gas phase. As in a true phase separation, the volume fractions of the particles

in the high- and low-density phases are set by the system’s parameters (self-

propulsion speed, volume fraction and spatial diffusivity) and is independent

of the system size; this implies that the size of the clusters is growing linearly

with the system size and this is often used to prove the nature of the transition

in question.

The minimal number of ingredients required to study this transition ensured

that it received a lot of attention in the community. There is now a very large

number of theoretical and numerical studies confirming the phenomenology

described above [41, 51, 52, 57, 58, 69, 82, 92]. Its experimental confirmation

is significantly less developed with the main difficulty being associated with

creating particles that can self-propel autonomously. The most popular choices

utilised in this context are phoretic [13, 36, 53, 75] or light-controlled particles

[5] and motile organisms [38]. Both systems differ fundamentally from the

minimal ingredients described above as both types of particles require the

presence of a suspending viscous fluid to operate. Such a fluid mediates long-

range hydrodynamic interactions and it is unclear whether the phenomenology

described above can at all be observed under these conditions. Moreover,

experiments on motility-induced phase separation in these systems are further

complicated by the unavoidable presence of confining boundaries. With motile

organisms known to accumulate in a close vicinity of solid [7] and liquid [85]

boundaries, and with synthetic microswimmers being sufficiently heavier than

the surrounding fluid to sediment to the bottom of the confining geometry,

experimental studies of motility-induced phase separation necessarily involve

these two additional ingredients: the presence of a viscous fluid and of a

confining boundary. Under these conditions, experiments seem to confirm the

existence of dense clusters of self-propelled particles [13, 36, 53]. However,

their size appears to be set by an unknown mechanism and not depend trivially

on the system size.

Here, we study how hydrodynamic interactions influence motility-induced

phase separation. This question has already been studied in numerical simu-

lations with the emerging consensus being that the presence of fluid-mediated

interactions suppresses MIPS [1, 10, 48, 93]. These works, however, either
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focused on truly two-dimensional systems or a layer of microswimmers tightly

confined between two solid boundaries. Here we argue that these arrangements

miss an important aspect of the emerging hydrodynamic interactions.

To illustrate the point, consider a force dipole - the simplest model for the

velocity field generated by a microswimmer far away from its surface [35].

Let us assume that the dipole is positioned parallel to a solid wall at a distance

h away from it. The fluid velocity component u‖ parallel to the wall can be

deduced from the image system developed by [9] for a point force next to a

solid boundary with vanishing boundary conditions u‖(z = h) = 0, and is given

by [66]:

u‖(x) =
κ

8π

(
x

|x|3
[
3

(x · p)2

|x|2 − 1

]
+

x

R3

− 3x(x · p)2 + 6h2 {x + 2p(x · p)}
R5

+
30h2(x · p)2x

R7

)
.

(3.1)

Here, p and x are two-dimensional vectors that lie in the plane parallel to

the wall and denote respectively the dipole orientation and the point where

the velocity is evaluated relative to the position of the swimmer. Furthermore,

R =
√
|x|2 + 4h2, and κ is the strength of the dipole. In the limit h → ∞, this

expression reduces to the well-known result for the force dipole in an infinite

three-dimensional fluid.

Now we calculate the total flux of the fluid through a circle of radius X centred

on the microswimmer with the plane of the circle being parallel to the wall.

This calculation yields

∫
|x|=X

dx · u‖ =
κ

8X

[
1− X4 − 10X2h2 + 64h4

(X2 + 4h2)7/2
X3

]
. (3.2)

A similar result can be obtained next to liquid-liquid interface. This observa-

tion has profound implications for hydrodynamic interactions in the vicinity

of a boundary. Since the total flux through an arbitrary circle around a

microswimmer is non-zero, the velocity components parallel to the boundary

behave as if the fluid is effective compressible. Furthermore, the sign of the

expression for the flux derived above is determined by the sign of κ, as its

prefactor is strictly positive. Thus, on average, microswimmers with κ > 0
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(pushers) act as hydrodynamic sources in the plane parallel to the boundary,

while microswimmers with κ < 0 (pullers) act as hydrodynamic sinks. When

averaged over all orientations, two pusher microswimmers advect each other

away, while two pullers effectively attract each other. This argument illustrates

that hydrodynamic interactions between dipolar microswimmers moving next

to a boundary have a very different nature than their bulk counterparts,

which has previously been shown to promote dynamic self-assembly and

crystallisation in active particle systems [64, 77].

In this Chapter, we study the effect of such effectively compressible in-plane

hydrodynamic interactions on motility-induced phase separation. We choose

to study this effect in the simplest possible setting and consider a layer of

microswimmers confined to move on a two-dimensional plane surrounded by

a three-dimensional fluid, far away from any boundary. We assume that the

velocity field of each microswimmer is given by a dipolar field. This setting still

has the effective compressibility of the in-plane fluid velocity as can be seen

from Eq.(3.2) in the limit h → ∞. To take into account the excluded volume

interactions in its most rudimentary form, we constraint the microswimmers

to move on a square lattice with only a single microswimmer being allowed

to occupy a given lattice site. Below we will show that this simple model

generates a rich variety of predictions. First, we observe that hydrodynamic

interactions suppress MIPS, in line with the previous studies . Importantly, we

demonstrate that they also change the nature of the transition leading to a

microphase separation. At very high values of the dipolar fields, we observe

a novel hyperuniform state, specific to systems with effectively compressible

hydrodynamic interactions.

3.1 Model

3.1.1 Equations of motion

We consider a collection of model microswimmers confined to move on a

two-dimensional (2D) square lattice. As discussed in the introduction, the

lattice is embedded in a three-dimensional (3D) fluid and all hydrodynamic

interactions are assumed to take a form suitable for 3D. The lattice consists

of H × H sites, where H is an integer, with the lattice spacing being a. The
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microswimmers are modelled as N point dipoles with their spatial positions are

being confined to the lattice sites, while their orientations are continuous and

can point anywhere on the microswimmer plane. The microswimmer dynamics

consist of the following ingredients: the spatial position of a microswimmer

changes due to its self-propulsion, advection by the velocity field generated

by all other microswimmers at its position, and translational diffusion; its

orientation changes due to its aligning in the velocity field created by the other

microswimmers at its position, and random tumbling. We now discuss all these

ingredients in turn.

We assume that the dipolar microswimmers are located at the lattice positions

ri and have instantaneous orientations pi, where i = 1 . . . N enumerates the

microswimmers. Each microswimmer obeys the following Jeffrey’s equation

ṗαi =
(
δαβ − pαi pβi

)
zβi , (3.3)

where

zβi = pγi∇γUβ(ri), (3.4)

that treats each microswimmer as an infinitely slender object, i.e. strongly

aligning in an external flow. Here, δαβ is the Kronecker delta, U(ri) is the

velocity field generated by all other dipoles at the position of dipole i, and

indices refer to the Cartesian components the vectors.

To evaluate zβi , we start from the velocity field of a dipole j comprising two

point forces: −Fpj applied at rj and Fpj applied at rj + Lpj, where F is the

magnitude of the force and L is the dipolar length. The velocity field generated

by such an arrangement far away from the dipole is given by

V α
j (r) =

F

8πµ

[
Gαβ (r− rj − Lpj) pαj −Gαβ (r− rj) p

α
j

]
≈ F

8πµ

[
Gαβ (r− rj) +∇γGαβ (r− rj)

(
−Lpγj

)
−Gαβ (r− rj)

]
pαj

= − FL
8πµ

pαj p
γ
j∇γGαβ (r− rj) , (3.5)

where

Gαβ(r) =
δαβ

r
+
xαxβ

r3
, (3.6)
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is the Stokeslet, r = |r|, xα are Cartesian components of r, and µ is the viscosity

of the suspending fluid. The total velocity field at the position of dipole i is then

Uβ(ri) =
N∑
j=1
j 6=i

V β
j (ri) = − FL

8πµ

N∑
j=1
j 6=i

pαj p
δ
j∇δGαβ (ri − rj)

=
FL

8πµ

N∑
j=1
j 6=i

x̂βij
|xij|2

[
3 (pj · x̂ij)2 − 1

]
, (3.7)

and

zβi = pγi∇γUβ(ri) = − FL
8πµ

N∑
j=1
j 6=i

pγi p
α
j p

δ
j∇γ∇δGαβ (ri − rj) . (3.8)

This expression can either be evaluated directly, using Eq.(3.6), which gives a

result similar to the equations are (2.6) and (A.3) from [66]. This yields

pγi p
α
j p

δ
j∇γ∇δGαβ (ri − rj)

=
1

|xij|3
[
pβi − 3pβi (pj · x̂ij)2 +

+ x̂βij
{

15 (pi · x̂ij) (pj · x̂ij)2 − 3 (pi · x̂ij)− 6 (pi · pj) (pj · x̂ij)
} ]
, (3.9)

where we introduced xij = ri − rj, |xij| denotes its length, and x̂ij = xij/|xij|.
We now observe that the projection operator

(
δαβ − pαi pβi

)
in Eq.(3.3) removes

all vectors parallel to pi, and therefore the first two terms in the equation

above do not contribute to the dynamics as they are changing the length of

pi. Therefore,

zβi =
FL

8πµ

N∑
j=1
j 6=i

3 (pi · x̂ij) + 6 (pi · pj) (pj · x̂ij)− 15 (pi · x̂ij) (pj · x̂ij)2
|xij|3

x̂βij.

(3.10)
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Finally, the orientation obeys

ṗαi =
F`

8πµ(
δαβ − pαi pβi

) N∑
j=1
j 6=i

3 (pi · x̂ij) + 6 (pi · pj) (pj · x̂ij)− 15 (pi · x̂ij) (pj · x̂ij)2
|xij|3

x̂βij.

(3.11)

As mentioned above, the position of each microswimmer changes due to self-

propulsion and advection, and is encoded in the following equation

ẋαi = vsp
α
i + Uα (ri) , (3.12)

where vs is the self-propulsion speed, and the velocity U created by all other

dipoles at the position of the dipole i is given by Eq.(3.7).

The other two ingredients, spatial diffusion and tumbling, are stochastic in

nature and need to be treated separately. While spatial diffusion can be

represented by a noise term in Eq.(3.12), tumbling is a set of discrete events

and cannot be represented by a continuous in time random process. Below, we

outline how these are implemented in our lattice model.

3.1.2 Numerical implementation of the equations of

motion

To solve the equations of motion numerically, we cast them in a dimensionless

form. We choose the lattice spacing a as the unit of space, and λ−1 as a unit

of time, where λ is the tumble frequency. Rescaling the equations leads to the

following dimensionless quantities

L =
vs
λa
, D̃ =

D

a2λ
, K =

F`

8πµa3λ
, φ =

N

H2
. (3.13)

Here, L is the dimensionless persistence length, D̃ is the dimensionless

spatial diffusivity, and K is the dimensionless strength of the hydrodynamic

interactions; it is positive for pushers and negative for pullers. Note, in this

units the tumble rate is unity. Finally, φ is the filling fraction, defined as number
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of swimmers N divided by the total number of lattice sites H2.

To solve equations numerically, we discretise time with a timestep ∆t. The

orientations, which are treated as continuous vectors, are updated through the

following rule

p∗ = pi(t)

+ ∆tK
N∑
j=1
j 6=i

3 (pi · x̂ij) + 6 (pi · pj) (pj · x̂ij)− 15 (pi · x̂ij) (pj · x̂ij)2
|xij|3

x̂ij, (3.14)

pi(t+ ∆t) =
p∗
|p∗|

. (3.15)

While it might appear that these update rules lack the projection operator from

Eq.(3.3), we note that the two sets of equations are identical to first order

in ∆t. We have opted for this implementation instead of utilising Eq.(3.3)

directly to ensure that the length of all orientation vectors is strictly unity at

every timestep. To model tumbling, the orientation of every microswimmer is

changed to a new direction, chosen randomly from a uniform distribution with

the rate ∆t.

The dimensionless version of Eq.(3.12) is implemented as a two-step process.

First, each swimmer hops along one of the lattice directions with the rate D̃∆t,

provided the target site is free. Upon coarse-graining, this leads to the usual

spatial diffusion with the correct dimensionless diffusivity on an empty lattice,

while for finite values of φ this leads to an effective diffusivity that decreases

as a function of the local density of microswimmers. Second, we model self-

propulsion and advection as hopping along the lattice direction which is the

closest to the direction of its instantaneous velocity Vi. The hopping rate is

chosen to be

Ṽi ∆t

1 + ∆t(Ṽi − L)
, (3.16)

where

Ṽ α
i = Lpαi +K

N∑
j=1
j 6=i

x̂αij
|xij|2

[
3 (pj · x̂ij)2 − 1

]
, (3.17)

and Ṽi = |Ṽi|. Trivially, the hopping rate is zero when Ṽi = 0. More importantly,
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due to the presence of hydrodynamic interactions, Ṽi can become significantly

larger than the bare propulsion speed of a single microswimmer. This choice of

the hopping rate ensures that every microswimmer hops by at most one lattice

site every timestep. When the advection contribution is zero (K = 0), the rate

above reduces to L∆t, corresponding to self-propulsion with the dimensionless

speed L upon coarse-graining. Again, no hop can occur if the target site is

occupied.

3.2 Results

3.2.1 Motility-induced phase separation

Figure 3.1 Snapshots from a simulation with D̃ = 10, L = 30, and φ = 0.25 on a
400 × 400 lattice in the absence of hydrodynamic interactions, K = 0.
The dimensionless simulation time is a) 0, b) 50, c) 500, d) 2500, e)
5000, f) 48000.

Before studying what our model predicts in the presence of hydrodynamic

interactions between the particles, here we analyse the well-established case

of K = 0, that corresponds to a collection of run-and-tumble particles with

an effective excluded volume interaction. In Fig.3.1, we present the results of a

simulation with D̃ = 10, L = 30, and φ = 0.25 on a 400×400 lattice. We observe
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rapid formation of a high-density cluster phase that slowly coarsens towards

one large cluster. These observations are in line with the motility-induces

phase separation (MIPS) previously reported in run-and-tumble particles with

repulsive interactions [41, 51, 52, 58, 69, 82, 92].
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Figure 3.2 Time evolution of the typical cluster size L(t) with D̃ = 10, L = 30,
φ = 0.25, and K = 0 on lattices of various sizes. (left) Linear-linear
scale, (right) log-log scale. The dashed line in the right panel indicates
the slope 1/3, previously linked to phase separations with diffusive
transport of the order parameter and neglectable hydrodynamic
interactions [69]
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Figure 3.3 The long-time average cluster size L(t)
t

as a function of the system size
H for D̃ = 10, φ = 0.25, K = 0, and several values of L.

To demonstrate that this is indeed a true phase separation, as is expected of

MIPS, we now study the time-evolution of the typical cluster size, defined as

the first moment of the structure factor:

L(t) = 2π
[∫ dk S(k, t)k∫

dk S(k, t)

]−1
, (3.18)

where S(k, t) = 〈δφ(k, t)δφ(−k, t)〉 is the Fourier transform of the instantaneous

structure factor, δφ is the local deviation of the particle area fraction from its

average value, k is the wavevector, k = |k|, and 〈. . . 〉 denote the ensemble
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average. In Fig.3.2 we show the time evolution of L(t) for D̃ = 10, L = 30,

φ = 0.25, and K = 0 on lattices of various sizes. For all lattice sizes, we observe

that L(t) saturates at its asymptotic value for sufficiently large times. For largest

system sizes studied here, the approach to this asymptotic state is governed by

L(t) ∝ t1/3, previously observed in off-lattice simulations of MIPS [69].
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Figure 3.4 The probability distribution function of the cluster size for D̃ = 10,
L = 30, φ = 0.25, and K = 0 for various system sizes.

Next, we average L(t) over time in the asymptotic state and denote it by L(t)
t
.

In Fig.3.3, we plot the converged value of the cluster size L(t)
t

against the

system size for D̃ = 10, φ = 0.25, and K = 0, for several values of L. For

all cases studied here, we observe a linear scaling of L(t)
t

with H, indicating

that the final cluster size is selected by the system size and diverges in the

thermodynamic limit, as expected in a true phase separation.
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Figure 3.5 The probability distribution function of the local density of microswim-
mers for D̃ = 10, L = 30, φ = 0.25, and K = 0 for various system
sizes.

Visual inspection confirms that in all cases, simulations in the absence of
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hydrodynamic interactions lead to the formation of a single high-density cluster

immersed in the low-density surroundings. To confirm this observation, we

implemented a linked-list algorithm [70] to identify clusters of various sizes.

In Fig.3.4, we plot the probability distribution function to find a cluster of a

particular size against the cluster size for the same parameters as in Fig.3.1. We

observe that for all system sizes the system comprises a low-density phase that

consists of large number of very small clusters (with just a few particles), and

small number of very large clusters of a well-selected size that at infinite time

leads to the formation of a single high-density cluster. As already noted above,

in line with this transition being a true phase separation, we observe that the

largest cluster size increases with the system size. This is further supported by

Fig.3.5, where we plot the probability distribution function for the local particle

density to have a particular value. As can be seen there, the system indeed splits

into parts of two different densities. Importantly, while the cluster size linearly

increases with the system size, the density inside the cluster and the density of

the ‘gas’ phase remain independent of the system size.

Figure 3.6 MIPS phase diagram for D̃ = 10 and K = 0 obtained from simulations
on 100×100 lattices. The colour denotes the average number of nearest
and next-to-nearest neighbours of each microswimmer.

Our final observation in the absence of hydrodynamic interactions pertains

to the changes observed as we decrease the persistence length L. As can

be seen from Fig.3.3, the typical clusters are smaller for smaller values of L.

Simultaneously, the difference between the densities of the low- and high-

density phases visible in Fig.3.5 becomes smaller as L increases (not shown).

This behaviour indicates that the decreasing L leads to the system crossing

the phase boundary and leave the phase separated region of the parameter

space. To study this systematically, in Fig.3.6, we plot the phase diagram for
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the system with D̃ = 10 and K = 0 obtained from simulations performed on

100 × 100 lattices. To distinguish between the phases, we arbitrarily chosen

to plot the average number of nearest and next-to-nearest neighbours of each

microswimmer as a function of the persistence length L and the particle area

fraction φ. We confirmed that a steep rise of that number above 4 is consistent

with the appearance of the high-density peak on the density PDF graph, similar

to Fig.3.5.

The phase diagram and all other aspects of the phenomenology exhibited by our

lattice model is fully in line with the previous lattice [89] and off-lattice [41,

51, 52, 57, 58, 69, 82, 92] simulations of the motility induced phase separation.

Having established that our model can reproduce the classical results, we now

move to studying its predictions in the presence of hydrodynamic interactions.

3.2.2 Motility-induced phase separation in the presence of

hydrodynamic interactions

In this section, we study the effect of the (effectively compressible) hydrody-

namic interactions on the motility-induced phase separation discussed above.

Unless explicitly stated otherwise, below we consider the case with D̃ = 10,

L = 30, and φ = 0.25 for various values of K and the system size H. In Fig.3.7

we present the long-time simulation snapshots for various values of K obtained

on 200× 200 lattices.

At low values of K, we observe the formation of a large high-density cluster

immersed into a low-density phase, similar to the K = 0 case. The size of

the cluster, however, seems to be decreasing as K increases, until it entirely

disappears around K = 1. While the results presented in Fig.3.7 were obtained

by starting from a disordered configuration, we confirmed that we obtain the

same results if the initial condition was a fully phase-separated state obtained

previously for the K = 0 case.

To confirm that hydrodynamic interactions suppress the formation of large

clusters, in Fig.3.8 study the behaviour of the density probability distribution

function as a function of K. As K increases from zero, Fig.3.8(left), the

high-density peak decreases until it disappears entirely around K = 1, while

the distribution for the lower-density clusters becomes broader. At yet higher

values of K, Fig.3.8(right), the low-density peak sharpens until every point
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Figure 3.7 Snapshots from a set of simulations with D̃ = 10, L = 30, and φ = 0.25
on 200 × 200 lattices after 2000 time units for various values of the
strength of hydrodynamic interactions: a) K = 0.1, b) K = 0.3, c)
K = 0.5, d) K = 0.7, e) K = 1, f) K = 100.

of the system is found to experience the density of the microswimmers that

is approximately equal to its nominal value, φ = 0.25. Furthermore, the

probability distribution function of the cluster size quickly collapses towards

clusters comprising just a few microswimmers, as K increases, see Fig.3.9.

This further confirms that increasing the strength of hydrodynamic interactions

leads to the suppression of the phase-separated state and yields a homogeneous

suspension consisting almost entirely of single microswimmers.

Next, we demonstrate that hydrodynamic interaction strongly influence the

nature of the phase-separated state even below the K = 1 threshold. In

Fig.3.10, we plot the time-evolution of the typical cluster size for various values

of K. As in the case of MIPS, we observe that L(t) plateaus for sufficiently

long times, while the plateau value of L(t) decreases with K, consistent with

the discussion above. In Fig.3.11 we plot the plateau value averaged in the

statistically stationary state L(t)
t

as a function of the system size H for selected

values of K. While MIPS exhibits the linear growth L(t)
t ∝ H, the typical

cluster size scales sub-linearly with the system size for finite values of K. In

Fig.3.11, we show that the best fit to the data is obtained by an exponential
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Figure 3.8 The probability distribution function of the local density of microswim-
mers. (top) Small values of K, (bottom) larger values of K. The
vertical dashed line indicates the nominal area fraction of φ = 0.25.
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Figure 3.9 The probability distribution function of the cluster size for various
values of K.

dependence that saturates at a constant value for sufficiently large H. This

behaviour is followed by both L(t)
t
and the maximal cluster size determined by

the clustering algorithm discussed above. While we cannot claim that we have

discovered the exact functional form for L(t)
t

= L(t)
t
(H) for finite K ’s, our

results strongly suggest that the presence of hydrodynamic interactions change

macroscopic motility-induced phase separation into a microphase separation

where the cluster size is an intrinsic property of the system and is not set by
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Figure 3.11 Time average over the stationary state of the plateau value of L(t) as
a function of system size H. Selected values of K are shown.

the system size. Below, we show how these results can be rationalised with the

help of a simple analytical model.

45



3.3 Discussion

3.3.1 Mean-field theory of cluster formation in

motility-induced phase separation

Before attempting to understand how hydrodynamic interactions suppress

motility-induced phase separation and change its nature to a microphase

separation, we review here a mean-field argument for cluster formation in

MIPS, put forward by Redner et al. [58]. While the original argument was

made for particles with rotational diffusion, here we adapt it to the case of

run-and-tumble particles.

We start by considering a circular cluster of radius R0 surrounded by the low-

density (gas) phase. The number of microswimmers that can join the cluster

in a time interval t from a shell of width dα and radius α, measured from the

cluster’s surface, is given by

nG2π(R0 + α)dα(λt)
2R0

2π(R0 + α)
, (3.19)

where nG is the number density of microswimmers in the gas phase, and λ is the

tumble rate. Here, nG2π(R0 +α)dα is the number of particles in the shell, while

2R0/2π(R0 + α) gives the geometric probability for any given microswimmer

to be pointed towards the cluster. Finally, λt accounts for the fact that each

microswimmer would be re-set after a tumble event and should be considered

as an independent attempt to reach the cluster.

Next, we observe that only microswimmers starting at α <= αmax can reach the

cluster during a single run. The value of αmax is determined from the following

equation of motion for a single microswimmer

dα

dt
= −vs (3.20)

where α(0) = αmax and α(λ−1) = a, and the cluster’s centre is assumed to be

located at the origin. Note that α = a is the first available position next to the

cluster. Here, vs is the swimming speed. Solving this problem trivially gives

αmax = a+ vs/λ. The total number of particles joining the cluster during time t
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is thus given by

nG(λt)2R0

∫ αmax

0

dα = nG(λt)2R0

(vs
λ

+ a
)
. (3.21)

To estimate the number of particles leaving the cluster, we assume that the

microswimmers at the cluster’s surface will leave it when their orientation

points away from the cluster. A typical time for a microswimmer to stay at

the cluster’s surface is then 2λ−1. During this time, the number of particles

leaving the cluster’s surface is given by 2πR0anL, where a is the lattice spacing

and nL is the number density of the dense phase.

Equating the number of particles leaving the cluster and the number of particles

joining it during time 2λ−1 gives

2nGa
( vs
aλ

+ 1
)

= πanL. (3.22)

Introducing L = vs/(λa), and assuming that the dense phase is at maximal

number density, nL = 1/a2 for our lattice model, we obtain

φG(L+ 1) =
π

2
. (3.23)

Redner et al. [58] have introduced a fitting parameter instead of π/2 above

and, in terms of our notation, their condition would read φGL = 5.55.

To determine the size of the cluster to be observed in a particular simulation,

we start from the particle conservation

nA = nLAL + nGAG, (3.24)

where n is the total particle number density, and AL and AG are the areas of the

liquid and gas phases, respectively. The total area of the system is A = a2H2,

where H is the number of lattice points in each direction. Assuming that the

liquid phase forms a single cluster of radius Ra, and introducing dimensionless

variables, we obtain

πR2
0 = H2 φ− φG

φL − φG
. (3.25)

Since the area fraction of the dense phase is (visually) close to unity, we use

47



y

x

2
N

+
1

2N + 1

(1)

(2)

Figure 3.12 A model high-density cluster on a square lattice.

φL = 1. Together with the result above, this gives

R0 = H

√
1

π

φ− c
L+1

1− c
L+1

, (3.26)

where c is either 5.55, as in Redner et al. [58], or can be seen as a fitting

parameter.

3.3.2 Velocity fields generated by lattice clusters

As we will see below, to uncover the mechanism of how hydrodynamic

interactions affect MIPS, we need to understand the velocity field generated by

high-density clusters in our simulations. To this end, here we consider a model

arrangement of (2N + 1)2 point dipoles on a 2D regular lattice, see Fig.3.12.

Their positions are given by (m0, n0), where integers m0, n0 ∈ [−N,N ]; all

distances are made dimensionless with the lattice spacing a. Due to the spatial

symmetries, we are only going to consider the velocity field outside the cluster

along Directions (1) and (2), see Fig.3.12.

We consider two types of model clusters. For the first type, Fig.3.13(left), we

assume that the dipoles in the cluster are randomly oriented. Performing the

angular average over all possible orientation of the microswimmers, we obtain

for the velocity field at a point (m,n)

V α(m,n) =
K

2

N∑
m0,n0=−N

(m−m0, n− n0)
α[

(m−m0)
2 + (n− n0)

2]3/2 . (3.27)
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Figure 3.13 Model cluster configurations. (left) a cluster comprising randomly
oriented dipoles denotes by solid dots, (middle) a cluster with the
tetradic order, (right) same as (middle) with the x − y asymmetry
swapped.

The second type corresponds to a perfectly ordered lattice with a tetradic

symmetry, Fig.3.13(middle). Motivation for this arrangement is two fold.

First, we observe that such an arrangement of dipoles is a steady-state of the

orientational equation of motion, as it leads to the r.h.s. of Eq.(3.3) vanishing

exactly. Second, visual inspection of the high-density clusters observed in our

simulations with finite K confirms the presence of large patches with such

tetradic order. Therefore we include this type of a model cluster in our analysis.

For this arrangement, the velocity field at a point (m,n) is given by

V α(m,n) = K
N∑

m0,n0=−N

(m−m0, n− n0)
α[

(m−m0)
2 + (n− n0)

2]3/2×
×
{

3

[
pxm0,n0

(m−m0) + pym0,n0
(n− n0)

]2
(m−m0)

2 + (n− n0)
2 − 1

}
, (3.28)

where

pxm0,n0
=

1 + (−1)m0+n0+1

2
, (3.29)

pym0,n0
=

1 + (−1)m0+n0

2
. (3.30)

This arrangement assumes that the dipole at centre of the cluster, (m0, n0) =

(0, 0), is oriented along the y-direction. To study whether this choice introduces

any bias into the velocity field, we also study a complimentary configuration,

Fig.3.13(right), with the expressions for pxm0,n0
and pym0,n0

being swapped in

Eq.(3.28).
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Figure 3.14 The decay of the velocity field generated by the cluster against the
distance from the cluster surface α, in different directions, for a cluster
of size N = 10

In Fig.3.14, we plot the velocity field generated by the cluster evaluated

numerically for N = 10. When considering Direction (1), we plot V x(N +

α, 0)/K vs α, where α is the distance from the cluster’s surface; note that

V y(N+α, 0) = 0 for symmetry reasons. For Direction (2), we plot |V(N+α,N+

α)|/K as a function of α; note that α is a dimensionless integer that measures

the distance from the cluster as a number of the lattice spacings. As can be

seen from Fig.3.14, all model configurations produce indistinguishable velocity

fields in the same direction. The difference between the velocity magnitude in

Directions (1) and (2) is close to 2.

To understand the structure of this field, we study Eq.(3.27) analytically.

(According to Fig.3.14, ordered configurations produce similar velocity fields

while being analytically more involved.) The double sum in Eq.(3.27) cannot

be performed analytically and we approximate it by a double integral. For

Direction (1) this yields

V x(N + α, 0) =
K

2

N∑
m0,n0=−N

N + α−m0[
(N + α−m0)

2 + n2
0

]3/2
≈ K

2

∫ N

−N

∫ N

−N
dm0dn0

N + α−m0[
(N + α−m0)

2 + n2
0

]3/2
=
K

2
ln

[√
α2 +N2 +N√
α2 +N2 −N

√
α2 + 4αN + 5N2 −N√
α2 + 4αN + 5N2 +N

]
. (3.31)

At small distances, α� N , Eq.(3.31) predicts

V x(N + α, 0) ∼ K ln

2

√√
5− 1√
5 + 1

N

α

 , (3.32)
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Figure 3.15 Velocity around high-density clusters in our simulations. (left) the
magnitude of the velocity field at the lattice points not occupied by
microswimmers, and (right) zoom on the part of the simulation
domain denoted by the red dashed box in (left). The velocity field
of empty lattice sites is given by vectors. In addition, the red and
blue points in (right) mark the positions of two points discussed in the
main text.

while in the opposite limit, α� N ,

V x(N + α, 0) ∼ K
2N2

α2
, (3.33)

reflecting the dipolar nature of the velocity fields of individual particles. The

crossover from one limit to the other takes place for α ∼ N , since there is

no other lengthscale in the problem. In Fig.3.14, we compare the prediction

of Eq.(3.31) against the numerical data. We observe that the analytical result

correctly reproduces the logarithmic and algebraic decays for small and large

distances, respectively. Minor discrepancies at small distances are due to the

discrete nature of the cluster absent from the integral used to obtain Eq.(3.31).

Now we assess whether these predictions are compatible with our lattice

simulations. In Fig.3.15 we quantify the velocity field in a simulation snapshot

with K = 0.5 on a 300× 300 lattice. In Fig.3.15(left) we plot the magnitude of

the velocity field at the lattice points that are not occupied by particles, while

in Fig.3.15(right) we plot the velocity field around a single cluster marked by

the red box in Fig.3.15(left). We confirm that the largest velocity magnitude

is observed at the cluster surface (bar the odd vacancy inside clusters), and

that velocity field points away from the cluster surface everywhere along the

cluster’s perimeter. The velocity magnitude at the points marked by the red and

blue points in Fig.3.15(right) is 2.82K and 5.44K, respectively. Using N ∼ 40

in Eq.(3.32), we obtain V ∼ 3.9K, consistent with the simulations.
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Figure 3.16 A cartoon of a microswimmer being rotated away from the cluster by
its velocity field. This mechanism requires two ingredients: the cluster
velocity field has point radially outward and decay away from the
cluster.

3.3.3 Argument a la Redner et al. in the presence of HI

Having established the nature of the velocity fields generated by high-density

clusters of dipolar microswimmers, here we adapt the argument by Redner et
al. [58] to the case with hydrodynamic interactions. In this case, the argument

that leads to Eq.(3.21) requires two modifications.

First, we need to account for the velocity field created by the cluster advecting

swimmers away from the cluster’s surface. The second modification pertains the

orientation dynamics of swimmers in the vicinity of the cluster. The radially-

symmetric structure of the cluster velocity field and the fact that it decays

away from the cluster ensures that a swimmer approaching the cluster along

a direction that is not pointing towards the cluster’s centre is rotated further

away from the radial direction, see Fig.3.16. In the absence of HI we assumed

that a swimmer can join the cluster as long as its swimming direction points

somewhere from the cluster’s centre to its edge. The argument above shows

that the velocity field around the cluster makes this range of angles narrower:

a swimmer that is pointing sufficiently away from the centre of the cluster and

starting sufficiently far from the cluster’s surface, will end up being rotated past

the cluster’s edge and will not join it. Thus, the number of particles joining

the cluster in the presence of HI is reduced by two mechanisms: by the velocity

field ’blowing’ swimmers away from its surface and by rotating them away from

the cluster.
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Figure 3.17 Effect of hydrodynamic interactions on cluster size. We plot the
long-time average cluster size (L(t)

t
) as a function of the strength

of hydrodynamic interactions (K) fixing different values of system
size H and persistence length L. Dashed curves are simulations
made switching off particle advection (brown dashed curve) and
reorientation by external flows (magenta dashed curve).

Next, we consider the relative importance of these two mechanisms. To this

end, in Fig.3.17 we study the effect of HI on the average cluster size. We

measure L(t)
t

as function of K in our simulations with all other parameters

fixed and note the point where the clusters disappear. (We note that this

point does not correspond to L(t)
t ≈ 1, as small clusters transiently form and

disappear in the low-density phase; instead, the disappearance of the high-

density cluster is marked by L(t)
t ≈ 5 based on visual observations.) We

observe that as K is increased from zero, the cluster size becomes smaller until

all steady clusters disappear, for sufficiently large values of K. To disentangle

the two mechanisms mentioned above, we now repeat the same simulations

for L = 30 with the particle advection being artificially switched off (brown

curve) and the particle re-orientation by external flows being switched off

(magenta curve). We see that switching off particle advection has only a minor

effect on the cluster size behaviour and, therefore, in what follows we focus

on the orientational dynamics only. Another argument for the orientational

dynamics being the dominant mechanism comes from the dimensionless form

of Eq.(3.12): had the advection away from the cluster been the dominant

mechanism, one would expect the phase boundary to be approximately given by

K ∼ L, which corresponds to the ‘head-wind’ being equally strong as the self-

propulsion velocity of the microswimmers (in the dimensionless form). The fact

that the high-density clusters disappear way before this point, ie K ≈ 1 and not
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K ≈ 30 in the simulations above, indicates that the advection is a subdominant

mechanism here and we ignore it in the following.

In the absence of advection, we assume that the dimensionless distance of the

swimmer from the cluster’s surface follows α̃(t) = α̃0 − L t, where α0 is the

position of the swimmer at the beginning of the run phase. The swimmer’s

orientation, given by p = (cosφ, sinφ), where the angle φ is measured from the

local radial direction (see Fig.3.16), obeys Jeffrey’s equation:

ṗ = (I− pp) · (p · ∇V), (3.34)

where V is the local velocity field created by the cluster at the position of the

swimmer. Since V only has the radial component, the dynamics of φ is given

by

φ̇ =

(
V (α̃(t))

α̃(t) +R0

− V ′(α̃(t))

)
φ, (3.35)

which is valid for small angles φ. In the following, we are interested in

understanding how HI melt the cluster. In that regime, clusters are going to

be small and most of the swimmers approaching the cluster would experience

its far-field velocity

V = K
2R2

0

α̃2
er, (3.36)

where er is the unit vector in the radial direction. Solving for the dynamic of

the angle yields ∫ φf

φ0

dφ

φ
= 6KR2

0

∫ ts

0

dt

(α̃0 − Lt)3
(3.37)

where ts = (α̃0 − 1)/L is the time to reach the cluster’s surface (locate at

α̃0 = 1), while φ0 and φf are the initial and final values of the orientation

angle. Assuming that the final angle should not exceed the cluster’s angular

dimensions as seen from α̃0, we set φf = R0/(R0 + α̃). The range of initial

orientations that would lead a swimmer to reach the cluster is thus reduced

from [0, R0/(R0 + α̃)], as in Redner’s argument, to [0, φ0], where φ0 satisfies

φ0 =
R0

R0 + α̃0

exp

[
− 6KR2

0

2L

(
1− 1

α̃2
0

)]
. (3.38)
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The original Redner’s expression, Eq.(3.19), can now be modified to read

nG2π(R0 + α0)dα0(λt)
2R0

2π(R0 + α0)
exp

[
− 6KR̃2

0

2L

(
1− 1

α̃2
0

)]
. (3.39)

The total number of particles joining the cluster is given by the integral

2R0nG(λt)

∫ αm

0

dα0 exp

[
− 6KR̃2

0

2L

(
1− 1

α̃2
0

)]
, (3.40)

where α̃m = L + 1 is given by the requirement ts = 1. Equating the number of

particles moving towards the cluster with the number of particles leaving the

cluster during 2λ−1 seconds, we obtain to first order in K/L(
L− 3LR2

0K

L+ 1

)
φG ≈

(
L− 3R2

0K
)
φG = c ≈ 5.55. (3.41)

In the absence of hydrodynamic interactions, the cluster phase (MIPS) appears

at LMIPS given by φG = φ which trivially gives

LMIPS =
c

φ
. (3.42)

For larger L = LMIPS + δL, the clusters disappear again when φG = φ, this

giving

3R2
0Kcrit = δL. (3.43)

At this point the cluster is just a few particles wide, R0 ∼ 1, and we obtain

Kcrit ∼ δL – the strength of hydrodynamic interactions needed to melt all

clusters is linear in the distance from the MIPS threshold. This estimate is in a

reasonable agreement with our numerical observations.

3.3.4 Structure of the low-density phase at high values of

K

In addition to suppressing phase separation and changing the nature of the

cluster phase to a microphase separation, here we show that the hydrodynamic

interactions strongly affect the structure of the low density phase that we

observe at very large values of K. Visual inspection of Fig.3.7(e), for instance,
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suggests that the spatial distribution of microswimmers in that case is different

from a random homogeneous distribution, and here we assess the nature of the

ensuing order. Since the suspension appears to be homogeneous and isotropic,

this analysis can be performed analytically. Below we show that the high-K

phase corresponds to a hyperuniform state [81].

The starting point of our analysis is the mean-field kinetic theory of dilute

suspensions of microswimmers based on the following Smoluchowsky equation

∂tF +∇α{ẋαF}+ ∂α{ṗαF} = 0, (3.44)

Here, F (x,p, t) is the one-particle distribution function that defines the in-

stantaneous probability of finding a particle at a spatial position x with an

orientation p. Its normalisation condition is given by∫
dx dp F (x,p, t) = 1. (3.45)

The time evolution of the microswimmer positions and orientations are given

by Eqs.(3.12) and (3.3) together with the spatial diffusion and tumbling, as

discussed above. We note, however, that at the mean-field level tumbling is

similar to an effective rotational diffusion with the diffusivity 2Dr = λ, where λ

is the tumble rate [16]. Since the following calculation is significantly simpler

in the case of rotational diffusion than in the case of tumbling, we proceed with

the former case keeping in mind that the effective diffusivity Dr is a proxy for

the tumble rate λ.

Since we expect the suspension to be homogeneous and isotropic, we linearise

Eq.(3.44) around F (x,p, t) = F0 = 1/(2πA0), where A0 is the area of the

suspension, to obtain

∂tδf̂ + ivs (k · p) δf̂ +Dk2δf̂ −Dr∂
2
φδf̂ +

n

π
ikαδÛα

− n

π
i (k · p) pβδÛβ =

√
2DF0ik · ξ̂(k,p, t) +

√
2DrF0∂φζ̂(k,p, t). (3.46)

Here, δf̂(k,p, t) is the Fourier transform of a (small) deviation of F (x,p, t)

from F0, ξ and ζ are Gaussian processes with zero mean and unit variance

representing the spatial and rotational Brownian motion, respectively, and n is

the number density of the microswimmers. The Fourier transform of the mean-
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field velocity field, δUα(k, t), is given by

δÛα(k, t) =

∫
dp′ûαd (k,p′)δf̂(k,p′, t)

=
iκ

4

∫
dp′

[
k̂α
(
p′ · k̂

)2
− 2p′α

(
p′ · k̂

)]
δ̂f(k,p′, t). (3.47)

In two spatial dimensions, the orientation p can be parametrised by an angle φ.

To proceed, we expand δf̂(k,p, t) in Fourier harmonics and keep the first two

modes

δf̂(k,p, t) ≈
2∑

n=−2

δf̂n(k, t)einφ. (3.48)

Projecting the original equations onto these Fourier modes yields

∂tδf̂0 +
ivs
2

[
(kx + iky)δf̂1 + c.c.

]
+Dk2δf̂0

+
nκk

8

[
δf̂0 +

{
1

2
(k̂x + ik̂y)

2

}
δf̂2 + c.c.

]
= a0, (3.49)

∂tδf̂1 +
ivs
2

[
(kx − iky)δf̂0 + (kx + iky)δf̂2

]
+Dk2δf̂1 +Drδf̂1 = a1, (3.50)

∂tδf̂2 +
ivs
2

(kx − iky)δf̂1 +Dk2δf̂2 + 4Drδf̂2

− nκk

16

[
(k̂x − ik̂y)2δf̂0 +

3

2
δf̂2 −

1

2
(k̂x − ik̂y)4δf̂−2

]
= a2. (3.51)

Note that δf̂−1 and δf̂−2 are not the complex conjugates of δf̂1 and δf̂2,

respectively. They satisfy equations that are similar to the ones above but they

are not c.c.’s of them. The noise terms are given by

am =
1

2π

∫ 2π

0

dφ

[√
2DF0ik · ξ̂(k,p, t) +

√
2DrF0∂φζ̂(k,p, t)

]
e−imφ. (3.52)

By putting the time derivatives of all Fourier modes with n > 0 to zero, we

enslave their dynamics to that of the density. The equations for δ̂f±1 and δ̂f±2

can now be solved to give

∂tδ̂f 0(k, t) + L(k)δ̂f 0(k, t) = χ̂(k, t), (3.53)
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where

χ̂(k, t) = a0(k, t)− A(k)
[
a1(k, t)(ik̂x − k̂y) + a−1(k, t)(ik̂x + k̂y)

]
−B(k)

[
a2(k, t)(k̂x + ik̂y)

2 + a−2(k, t)(k̂x − ik̂y)2
]
. (3.54)

Here, L(k), A(k) and B(k) are some combersome functions of k but not of k.

Solving this equation formally gives

δf̂0(k, t) = δf̂0(k, t = 0)e−L(k)t + e−L(k)t
∫ t

0

dt′eL(k)t
′
χ̂(k, t′). (3.55)

In the limit t→∞, the structure factor can be obtained from

S(k) = 〈δf̂0(k, t)δf̂0(−k, t)〉 = e−2L(k)t
∫ t

0

dt′dt′′eL(k)(t
′+t′′)〈χ̂(k, t′)χ̂(−k, t′′)〉.

(3.56)

The spectral properties of the noise components are given by

〈ξ̂α(k, φ1, t1)ξ̂
β(−k, φ2, t2)〉 = A0δ

αβδ(φ1 − φ2)δ(t1 − t2), (3.57)

〈ζ̂(k, φ1, t1)ζ(−k, φ2, t2)〉 = A0δ(φ1 − φ2)δ(t1 − t2). (3.58)

Again, A0 is the area of the system. Using the definition of χ̂(k, t) and Eq.(3.52),
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we obtain after integration by parts

χ̂(k, t) =

√
2DF0

2π

∫ 2π

0

dφ1

[
1− A(k)

{
e−iφ1(ik̂x − k̂y) + eiφ1(ik̂x + k̂y)

}
−B(k)

{
e−2iφ1(k̂x + ik̂y)

2 + e2iφ1(k̂x − ik̂y)2
}]

ik · ξ̂(k, φ1, t)

+

√
2DrF0

2π

∫ 2π

0

dφ1

[
A(k)

{
−ie−iφ1(ik̂x − k̂y) + ieiφ1(ik̂x + k̂y)

}
+B(k)

{
−2ie−2iφ1(k̂x + ik̂y)

2 + 2ie2iφ1(k̂x − ik̂y)2
}]

ζ̂(k, φ1, t)

=

√
2DF0

2π

∫ 2π

0

dφ1

[
1− 2iA(k)

{
k̂x cosφ1 + k̂y sinφ1

}
− 2B(k)

{
(k̂2x − k̂2y) cos 2φ1 + 2k̂xk̂y sin 2φ1

}]
ik · ξ̂(k, φ1, t)

+

√
2DrF0

2π

∫ 2π

0

dφ1

[
2iA(k)

{
k̂y cosφ1 − k̂x sinφ1

}
+ 4B(k)

{
(k̂2y − k̂2x) sin 2φ1 + 2k̂xk̂y cos 2φ1

}]
ζ̂(k, φ1, t) (3.59)

The average is then

〈χ̂(k, t′)χ̂(−k, t′′)〉

=
1

2π2
δ(t′ − t′′)

[
Dk2

{
1 + 2A2(k) + 2B2(k)

}
+ 2Dr

{
A2(k) + 4B2(k)

}]
(3.60)

Substituting this into Eq.(3.56) gives as t→∞

S(k) =
1

4π2L(k)

[
Dk2

{
1 + 2A2(k) + 2B2(k)

}
+ 2Dr

{
A2(k) + 4B2(k)

}]
.

(3.61)

The resulting expression is a complicated function of k that is well-approximated

by a ratio of two linear polynomials. Introducing the following dimensionless
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quantities:

L =
vs

2Dra
, D̃ =

D

2Dra2
, K =

κ

2Dra3
, φ = na2, (3.62)

which are motivated by our lattice dimensionless parameters with λ replaced

by 2Dr, we obtain

S(q̃) ≈

[
256(D̃ + L2) + φ2K2

]
q̃

32φK + q̃
[
256(D̃ + L2)− 4φ2K2

] , (3.63)

where q̃ is the dimensionless wavenumber. For small values of q̃, we thus obtain

S(q̃) ∝ q̃, which is a hallmark of a hyperuniform state. At higher values of q̃,

S(q̃) becomes independent of q̃. The crossover happens at approximately

q̃ ∼ φK

8(D̃ + L2)
. (3.64)

Eq.(3.63) also predicts a divergence at sufficiently high values of K which

seems to be an artefact of the approximations made above.

Figure 3.18 Comparison between the predictions of Eq.(3.63) (on the left) with
the structure factor measured in our simulation (on the right) with
φ = 0.25, D̃ = 10, L = 30, for K = 1 . . . 100.

In Fig.3.18 we compare the predictions of Eq.(3.63) with the structure factor

measured in our simulation with φ = 0.25, D̃ = 10, L = 30, for K = 1 . . . 100.

We observe that for very large K the structure factor indeed scales linearly

with q̃, confirming our prediction that the low-density state at high K is

hyperuniform. At smaller values of K, we do not observe a linear scaling. Since

Eq.(3.64) predicts that the linear scaling should be observed up to a value of q̃
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that is proportional to K, we conclude that this is most likely due to the finite

size of the simulation box that sets the minimal value of q̃ accessible in our

simulations.

3.4 Discussion and Conclusion

a) b)

Figure 3.19 Snapshots from simulations at high area fraction of microswimmers,
φ = 0.6, with D̃ = 10, L = 30 on a250 × 250 lattice after 2000 time
units for various values of the strength of hydrodynamic interactions:
a) K = 0.0, b) K = 0.5.

In this Chapter, we studied how hydrodynamic interactions between mi-

croswimmers affect the motility-induced phase separation. We employed

a model where microswimmers move on a square lattice while having a

continuously changing orientation. Besides being advected and re-oriented by

the velocity fields generated by other microswimmers, each microswimmer is

subject to spatial diffusion and tumbling. To describe hydrodynamic interac-

tions, we approximated the velocity fields created by real microswimmers with

their far-field, dipolar components. The unique feature of our model is that

while the microswimmers are confined to move on a two-dimensional lattice,

their hydrodynamic interactions are described by the three-dimensional dipolar

fields. We argued that this setting captures the effective in-plane compressibility

of the velocity fields exhibited by microswimmers moving close to a boundary.

We demonstrated that in the absence of hydrodynamic interactions our model

reproduces the key features that define the motility-induced phase separation,

despite the obvious simplicity of our model. In the presence of hydrody-
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namic interactions we observed that the motility-induced phase separation is

suppressed, in line with the previous studies [1, 10, 48, 93]. Surprisingly,

our model predicts that the hydrodynamic interactions result in a change of

the transition type, yielding a microphase separation instead of a full phase

separation characteristic of MIPS. We explain this result with the help of simple

model that studies how a single microswimmer approaches a large cluster and

how this approach is influenced by the velocity field generated by the cluster.

At sufficiently high strength of hydrodynamic interactions, when the system is

outside the phase separated part of the phase diagram, we showed that the

suspension of microswimmers is hyperuniform as the result of the source-like

velocity fields generated by the microswimmers.

While our results are strikingly similar to the experimental observations often

cited as the confirmation of MIPS [5, 13, 36, 53, 75], our model has several

obvious weaknesses. First, as any lattice model, it biases the formation of

structures along the lattice directions and this might be of importance during

phase separation. Moreover, the far-field dipolar velocity fields are only

expected to faithfully approximate the velocity fields of the microorganisms

at distances up to a few microorganism radii. At shorter distances, relevant

in the high-density phase, other hydrodynamic singularities need to be taken

into account [35, 66]. At very short distances, these should be replaced by

the lubrication interactions. Nevertheless, the simple model we used to explain

how hydrodynamic interactions arrest the cluster formation, implies that the

most relevant interactions are those between the microswimmers at the cluster’s

surface and the microswimmers in the low-density phase. These interactions

should be well-described by the dipolar fields, and we expect our conclusions

to apply even to the true suspensions of microorganisms. More work is needed

to confirm our observations.

We note that in this work we focused only on a particular part of the phase

diagram where the overall density of microswimmers is sufficiently low. To

compliment this work, we have performed limited studies of the effect of

hydrodynamic interactions on high-density suspensions. In Fig.3.19 we show

simulation snapshots from two studies with φ = 0.6, D̃ = 10, and L = 30 on a

250× 250 lattice in the absence of hydrodynamic interactions, K = 0, and with

K = 0.5. As can be seen there, we observe a phenomenology that is similar

to lower-φ suspensions with the role of the clusters is being played by the low-

density ‘holes’. While for K = 0, the size of the holes scales with the system
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size, in the presence of hydrodynamic interactions their growth is arrested (not

shown). The question whether this hole-cluster symmetry applies across the

whole phase diagram will be the subject of future work.

Finally, here we only focussed on pusher microswimmers that, as we argued

in the Introduction, behave as effective sources of fluid when confined to a

two-dimensional plane embedded in a three-dimensional fluid. It would be

interesting to extend this study to the case of pullers, that act, effectively, as

sinks. Naively, one would expect that a suspension of such microswimmers

would behave similar to a suspension of run-and-tumble particles with attrac-

tive interactions [57]. Whether this is indeed the case, should be studied in the

future.
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Chapter 4

Active turbulence and
spontaneous phase separation in
inhomogeneous extensile active
gels

4.1 Introduction

Active gels [23, 54, 55] are fascinating examples of non-equilibrium soft matter.

Some well-known realisations of these systems include solutions of cytoskeletal

filaments, such as actin or microtubules, interacting with molecular motors,

such as myosin or kinesin [40, 61]. Other instances come from living materials,

and encompass microbial suspensions of algae or bacteria [31, 91]. In an active

gel, the constituent particles exert non-thermal forces on their environments.

Such forces can be modelled, at the simplest level, as force dipoles, whose

direction defines a nematic order parameter, which is a fundamental quantity

to describe the emergent physics of these systems [42].

The activity arising from the distribution of force dipoles leads to a phenomenol-

ogy which is strikingly different from that of passive colloidal particles or

polymer suspensions. For instance, these materials harbour a “spontaneous

flow” instability, which sets in for sufficiently strong activity, and comprises a

non-equilibrium transition between a quiescent suspension and a state where
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activity fuels continuous motion [17, 43, 44, 63, 86]. For sufficiently large

activity, the flow and orientation patterns of the spontaneously flowing state

are seemingly chaotic, and the associated state is known as “active turbulence”

[3, 14, 24, 29, 33, 68]. In active turbulence, active gels self-organise into

a random arrangement of vortices. Experiments and theories suggest that

in the nematic phase these vortices have a typical length scale, arising from

the competition between activity and elasticity [29], while recent work points

to important fundamental differences between active turbulence and its more

widely studied passive counterpart [2, 14]. Active gels also possess strongly

non-Newtonian rheological properties [59], such as marked activity-induced

thinning or thickening [17, 26, 31, 44, 46], Darcy-like flow [39], or negative

drag in microrheology [26, 27].

Existing theories and simulations of active gel hydrodynamics typically con-

sider systems with constant composition. In contrast, inspection of active

turbulent patterns found with microtubule–kinesin mixtures in the presence

of polyethylene-glycol (which causes adsorption to the oil–water interface

[47, 61]) shows that the concentration of active material is significantly

inhomogeneous. While a linear stability analysis shows that in extensile gels,

such as a microtubule–kinesin mixture, the onset of spontaneous flow depends

on orientational bend fluctuations and compositional fluctuations should be

irrelevant [4], active turbulence is a highly non-linear phenomenon and

the relevance of composition inhomogeneities to its physics remains unclear.

We call lyotropic a solution which properties are concentration-dependant.

Additionally, passive colloidal particles aggregate in active nematics [28],

through a mechanism reminiscent of path coalescence [45, 90] or fluctuation-

dominated phase ordering [20]. This nonequilibrium aggregation shows that

even a one-way coupling between composition and spontaneous flow (as tracers

are affected by the spontaneous flow but do not modify it) can in principle give

rise to composition inhomogeneities, and more in general to nontrivial physics

outside the reach of a constant-composition approximation.

To understand the role of compositional inhomogeneities in the physics of

spontaneous flow and active turbulence, here we study the hydrodynamic

equations of motion of a mixture of an isotropic fluid and an active nematic

gel by means of computer simulations. While the overall system is always

incompressible, the active gel component can change its concentration, as is

realistic for the microtubule–kinesin mixtures considered in [47]. With respect
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to previous work on Cahn–Hilliard models coupled to active nematics focussing

on the crossover between wet and dry systems driven by friction with the

substrate [22, 73, 76], here our focus is specifically on the qualitative role of

compositional inhomogeneities on the emerging physics and patterns. As in

active gels of uniform composition, we find that the system displays a transition

between a passive isotropic phase and an active nematic phase. This transition

can be triggered either by increasing activity or the nematic tendency of the

system (more specifically the coupling between active matter concentration

and orientational order). In the active nematic phase, though, compositional

inhomogenities play a fundamental role and give rise to some unique dynamical

behaviour. We find three dynamical regimes in this phase. Close to the

transition boundary, our lyotropic system settles into regular flowing patterns,

with approximately ordered spiral defect arrangements creating a rotational

active flow consisting of long-lived and stable vortices. For larger activity, or

deeper in the nematic phase, the flow becomes chaotic and we observe active

turbulence. Both regular patterns and active turbulence are regimes which

can be found in active gels of uniform composition. There are differences

though, as in our case the thermodynamic coupling between orientational and

compositional order parameters favours a concentration minimum, or relative

void of active matter, at defect cores. Additionally, active turbulent patterns

are characterised by a very broad distribution of local concentrations. The last

regime we observe is unique to inhomogeneous systems, and is found even

deeper in the nematic phase with respect to active turbulence, but for low

activities. Here the active mixture spontaneously phase separates into low-

concentration disordered and high-concentration nematic domains of irregular

shape. We show by a semi-analytical theoretical analysis that this phase

separation is due to the coupling between composition and nematic ordering

and hence is driven thermodynamically. The corresponding coarsening is

arrested in our case by the spontaneous active flow, and the size of the steady

state domains decreases with activity. We conclude by discussing ways in which

our study can be taken forward, both theoretically and experimentally.

4.2 Equations of motion

To describe the equilibrium properties of an inhomogeneous active nematic

system in the passive phase (i.e., when the activity parameter defined below is
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switched off), we employ a Landau–de Gennes free energy F , whose density we

call f . The latter consists of a contribution which characterises the orientational

order of the active liquid crystal, measured by a nematic tensor Qαβ, and of

another contribution determining the physics of compositional fluctuations,

depending on the compositional order parameter φ (which measures the local

concentration of active material). The liquid crystalline free energy density we

use is a standard one to describe passive nematic liquid crystals [21], and is

explicitly given by

fLC =
A0

2

(
1− γ(φ)

3

)
Q2
αβ −

A0γ(φ)

3
QαβQβγQγα

+
A0γ(φ)

4

(
Q2
αβ

)2
+
K

2
(∂γQαβ)2 , (4.1)

where the first term is a bulk contribution, describing the isotropic–nematic

transition, while the second term is an elastic distortion term. In the equation

above, A0 is a constant, γ(φ) controls the magnitude of order (so that it may

be viewed as an effective temperature or concentration for thermotropic and

lyotropic liquid crystals respectively), while K is an elastic constant — note we

are using the (standard in this field) one-constant approximation [21]. Here

and in what follows Greek indices denote cartesian components and summation

over repeated indices is implied. The coupling between concentration and

ordering arises through γ(φ), which equals

γ(φ) = γ0 + φ(r, t)∆, (4.2)

where γ0 and ∆ are appropriate constants. In our simulations described below,

we fix γ0 and vary ∆ (see Section 3 for full parameter list).

The free energy density used to describe compositional fluctuations is instead

given by a simple function, used to describe binary fluid in the mixed (non-

phase-separating) regime, and its form is simply given by

fφ =
a

2
φ2, (4.3)

where a is a constant related to the compressibility of the active gel component.

Note we do not include a surface-tension-like square gradient term, kφ
2

(∂αφ)2,

required for stabilisation in conventional binary mixture models, as density

variations are already penalised thermodynamically by the term proportional

to the elastic constant K in Eq. 4.1. Note also that the total free energy density
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f = fLC + fφ has two contributions which depend on φ: besides the mixing free

energy fφ, Eq. 4.3, there is also a φ dependence in the liquid crystalline free

energy fLC, Eq. 4.1, through the γ(φ) term.

The fluid velocity, u, obeys the continuity equation and the Navier–Stokes

equation,

∂αuα = 0, (4.4)

ρ (∂t + uβ∂β)uα = −∂αp0 + η∂2βuα + ∂βΠαβ − ζ∂β (φQαβ) , (4.5)

where ρ is the fluid density, η is an isotropic viscosity, and

Παβ = 2ξ(Qαβ +
1

3
δαβ)QγεHγε (4.6)

− ξHαγ(Qγβ +
1

3
δγβ)− ξ(Qαγ +

1

3
δαγ)Hγβ

− ∂αQγν
∂f

∂∂βQγν

+QαγHγβ −HαγQγβ. (4.7)

is the stress tensor, where ζ is the activity [42], and measures the strength

of active force dipoles. With the sign convention chosen here ζ > 0 means

extensile rods and ζ < 0 means contractile ones [42]. The molecular field H

which provides the driving motion is given by

H = −δF
δQ

+ (I/3)Tr
δF
δQ

, (4.8)

where Tr denotes the tensorial trace.

The equation of motion for Q is taken to be [6]

∂tQ + u · ∇Q = ΓH + S, (4.9)

where Γ is a collective rotational diffusion constant. The first term on the

left-hand side of Eq. 4.9 is the material derivative describing the usual time

dependence of a quantity advected by a fluid with velocity u. This is generalized

for rod-like molecules by a second term

S = (ξD + ω) ·
(
Q +

1

3
I

)
+

(
Q +

1

3
I

)
· (ξD− ω)

−2ξ

(
Q +

1

3
I

)
Tr (Q · ∇u) , (4.10)
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where

D =
∇u +∇u†

2
, (4.11)

ω =
∇u−∇u†

2
,

are the symmetric part and the anti-symmetric part respectively of the velocity

gradient tensor ∂βuα. The constant ξ depends on the molecular details of a

given liquid crystal. The first term on the right-hand side of Eq. 4.9 describes

the relaxation of the order parameter towards the minimum of the free energy.

Finally, the active material concentration, φ, obeys a Cahn–Hilliard-like equa-

tion,

∂tφ+ u · ∇φ = M∇2µ, (4.12)

where µ = δF
δφ

is the chemical potential of the active mixture, and M is a

mobility, which for simplicity we consider to be constant.

4.3 Numerical method

To study the dynamics of Eqs.(4.4)-(4.12), here we perform direct numerical

simulations. Note that in our simulations we assume that the fields are two-

dimensional and that the Q tensor describes nematic order in a 2D plane

(i.e., we assume that there is no out-of-plane nematic order). We employ an

in-house MPI-parallel code developed within the Dedalus spectral framework

[12]. Simulations are performed on a periodic rectangular domain [0, H]×[0, H]

with H = 200 (here and below, all quantities are given in simulation units).

All fields are represented by de-aliased, double periodic Fourier series with

512 × 512 Fourier modes. Our time-iteration scheme employs a 4th-order

semi-implicit backward differentiation formula (BDF) scheme [88] with the

timestep dt = 0.1. We have confirmed that our spatial and temporal accuracy

is sufficient to obtain numerically converged results. To obtain statistically

converged averages, simulations are performed for 30000 time units.

In what follows, we fix ρ = 2, η = 5/3, ξ = 0.7, A0 = 0.1, K = 0.01, γ0 = 2,

Γ = 1, and a = 0.003, and M = 4. These parameters are chosen as they

are in line with those used in previous hybrid lattice Boltzmann simulations of
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both constant-composition active nematics [43, 44] and self-motile active gel

droplets [78].

4.4 Results

To discuss our results, we first present numerical simulations, and then a semi-

analytical discussion of phase separation in the passive limit which sheds light

on the phase diagram which we find.

4.4.1 Simulation results

To address the role of compositional inhomogeneities in the hydrodynamics of

extensile active gels, we first report numerical simulations (for methodology

details, see Section 3). We characterise the dynamical behaviour of the system

as a function of two key parameters: activity, quantified by ζ, and tendency to

acquire nematic order, quantified by γ(φ0) = γ0 + φ0∆. In practice, we change

ζ and ∆ in our simulations, keeping other parameters fixed (see Section 3 for a

full list).

For each set of parameter values, we compute: (i) the average largest

eigenvalue of Q, denoted by 〈q〉, which we use to quantify the global magnitude

of order; (ii) the average fluid velocity, 〈|u|〉; and (iii) the average variance of

the compositional order parameter. In each case, these averages are computed

first spatially, over a configuration, and then over time. We acquire data when

the system is in a statistical steady state, removing any initial transient. These

quantities allow us to build a phase diagram.

The magnitude of order, 〈q〉, is shown in Fig. 4.1 and allows us to map

the boundary between the isotropic and nematic phase. The nematic phase

can be reached by increasing either ∆ (thereby γ(φ0)) or ζ. The former is a

thermodynamic route, the latter is a non-equilibrium one. The non-equilibrium

transition between isotropic and nematic phases arises because activity-induced

flows create shear, which in turn generates nematic order. Analogous transitions

in systems with constant composition or polar order have been studied in

[30, 62, 73]. A linear stability calculation analogous to that of [62] shows

that an isotropic state of constant φ is unstable, for sufficiently large ζ, to an
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active nematic state with non-zero flow and order. The critical threshold in the

(∆, ζ) plane is described by ζc(∆), where

ζc(∆) =
2

3
ξA0

(
1− γ0 + φ0∆

3

)(
1 +

9Γη

2ξ2

)
, (4.13)

corresponding to a straight line on the (∆, ζ) plane. This predicted boundary is

shown as a yellow line in Fig. 4.1. It agrees well with our numerics for small

∆, sufficiently far from the passive isotropic–nematic transition (at ζ = 0 and

∆ = 0.7). As the latter is a first-order discontinuous transition, which requires

the inclusion of non-linear terms in the equation of motion to be accurately

described, it is unsurprising that there is a quantitative discrepancy with our

linearised calculation close to this point.
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Figure 4.1 Heatmap of the magnitude of nematic order as a function of ζ and ∆.
The plot can be used to define regions in parameter space where the
system is in the isotropic passive (bottom left) or active nematic (top
right) phase. The prediction for the onset of spontaneous flow (passive–
active transition) from linear stability analysis (see text) is shown as
a yellow line. Note that the isotropic–nematic transition in the passive
limit (ζ = 0) occurs at γ(φ0) = 2.7 (corresponding to ∆ = 0.7; cf.
section 4.4.2).

Throughout the nematic phase, except at ζ = 0, we find a non-zero flow

in steady state. In other words, the emerging nematic structures are always

active in the parameter range which we have explored. To characterise their
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behaviour, we show in Fig. 4.2 the dynamical regimes we observe, before

discussing the phase diagram quantitatively.

Figure 4.2 From top to bottom rows represent: snapshots of concentration field,
{φ(x, y) | x, y ∈ [0, 200]}; director field, n̂ (scaled by local magnitude
of order, q, and coarse grained for visibility), overlaid on concentration
(for x ∈ [87, 113], y ∈ [168, 194]); vorticity (ωz); largest eigenvalue of
Q tensor (q); |Qxy|, qualitatively corresponding to a Schlieren pattern
as could be obtained experimentally with crossed polarisers. Parameters
are as in Section except: (a-e) ζ = 0.16, ∆ = 0.3; (f-j) ζ = 0.2, ∆ = 1;
(k-o) ζ = 0.02, ∆ = 1.
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Fig. 4.2(a–e) shows an example of regular active patterns. These are found

close to the isotropic–nematic transition for moderate values of ∆. The example

shown features regular compositional modulations in steady state (Fig. 4.2a),

where local minima are collocated with spiral defects in the director field of

topological charge 1. The latter are most easily visible through the 4-brush

pattern in the Schlieren-like plot of |Qxy| in Fig. 4.2e [21], and also correspond

to deep minima in the local nematic order parameter, as shown in Fig. 4.2d.

There are also steady vortices associated with the pattern, because spirals

continuously rotate as in previous models of defects in constant-composition

active nematics [34]. Such vortices can be identified as maxima and minima in

the vorticity plot in Fig. 4.2c. This collocation with vortices provides support

for the interpretation that these thermodynamically unstable structures are

stabilised in steady state by the active flow. It is the thermodynamic coupling

(proportional to ∆) between order parameter and concentration in our free

energy that drives the local concentration depletion at the centres of spirals,

giving rise to a correlation between concentration and order, where larger

concentration is associated with larger order, and vice versa. Thus the elastic

energy cost associated with defect formation is decreased through proximal

depletion, which explains the collocation of defects and voids. Our simulations

show that the regular defect patterns we find close to the transition can either

be stationary or self-motile (see Suppl. Movie 2 for the dynamics correspondent

to the snapshot in Fig. 4.2a–e).

Fig. 4.2(f–j) shows an example of a different dynamical regime, obtained

deeper in the nematic phase, for sufficiently large ζ and ∆ (see also Suppl.

Movie 3). Here, the patterns are never stable but display a chaotic dynamics and

diffuse around in the system. In line with constant-composition active nematic

literature [2, 14, 24], we refer to these spatiotemporally varying patterns as

active turbulence. Our simulations show that active turbulent patterns are

accompanied by the appearance of defects — mostly of half-integer topological

charge, corresponding to two-brush patterns in |Qxy| (Fig. 4.2j) — as in active

gels of uniform composition. We also find this regime is characterised by

large concentration variations (Fig. 4.2f). As in the case of regular patterns,

here too the concentration field tends to decrease close to defect cores (Fig.

4.2f,g). As the active chaotic spontaneous flow moves defects around, streaks

of concentration voids form (Fig. 4.2f,g) which follow defect trajectories.

While the regimes in Figs. 4.2(a–e) and 4.2(f–j) are qualitatively reminiscent
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of those found in the literature for constant-composition active extensile gels

[44, 62, 73], we also find a third dynamical regime which is unique to

inhomogeneous systems. This regime is found for low activity and sufficiently

large ∆, and consists in spontaneous phase separation into active and passive

domains (Fig. 4.2(k–o), see also Suppl. Movie 1). Active domains are

nematically ordered. Importantly, this is an example of microphase separation,

or arrested phase separation, as coarsening does not proceed indefinitely and

there are multiple domains in steady state (Figs. 4.2k,l, and S1). In other

words, the late-time domain size — computed, for instance, via the inverse first

moment of the structure factor — does not scale with system size and decreases

with increasing ζ (see Supplemental Material and Figs. S1, S2). The presence

of this spontaneous microphase separation regime is at first sight surprising, as

the φ-dependent part of the free energy does not promote demixing by itself. As

we show in section 4.4.2, however, phase separation is driven by the coupling

between nematic order and local concentration of active matter.

To quantitatively delineate the phase diagram of the system, and the boundaries

between the three different dynamical regimes shown in Fig. 4.2, we proceed as

follows. We use the plot in Fig. 4.1 to identify the phases as isotropic (〈q〉 ' 0)

or nematic (〈q〉 6= 0). We then classify cases where the kinetic energy reaches

a plateau as regular patterns. To discriminate between active turbulence and

spontaneous phase separation, we look at probability distribution functions for

φ (calculated over space, and averaged over time, see Fig. 4.3 for examples).

If this distribution is bimodal (i.e., it has two maxima), then we classify the

pattern as phase separated (Fig. 4.3, yellow curve). A similar identification

would arise from analysing the average concentration variance and the average

flow magnitude (Fig. 4.4). Flow and concentration variance are highest in

the active pattern and spontaneous phase separation regimes respectively. The

phase diagram for our inhomogeneous extensile mixture is shown in Fig. 4.5.
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Figure 4.3 Probability distribution functions showing frequency versus local
concentration at a grid point, for the active pattern (blue curve),
the active turbulence (maroon curve) and the spontaneous phase
separation (yellow curve) regimes. It can be seen that the distribution
corresponding to the active turbulent regime is unimodal, while that
associated with the spontaneous phase separated one is bimodal, with
peaks at φ ≈ 0.19, 1.41, cf. binodal points in Fig. 4.6.
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Figure 4.4 Combined heatmap of the averaged flow magnitude, |u| (blue), and
variance of φ (yellow), as functions of ζ and ∆. The plot can be used
to identify the regions of parameter space where phase separation is
most prominent (upper left) or where the steady active flow is strongest
(right).

The concentration distribution plots show that concentration variations are a

generic feature throughout the active nematic phase. First we note that, without

such concentration variations, the spontaneous microphase separation regime
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could not arise. The existence of this regime in a realisable system depends on

the value of ∆, which will be determined by microscopic parameters. Assuming

an Onsager-like theory for composition-dependent orientational order, we

expect this could be achievable with rod-like active particles of sufficiently large

aspect ratio. Note that we actually observe a bimodal distribution even in

the regular pattern regime, however here the magnitude of the peaks differs

by more than one order of magnitude. This corresponds to a detectable

depletion of active material at the cores of long-lived defects rather than actual

phase separation. A second observation is that the width of the concentration

distributions is remarkably large in the active turbulent regime, as the sampled

values of φ can vary from ∼ 0 to ∼ 2. This range is similar to the spread

observed in the spontaneous phase separation regime, although the distribution

remains peaked at φ ' φ0 = 1 for active turbulent patterns. This observation

is in line with experimental microscopy of quasi-2D extensile mixtures of

microtubules and molecular motors, which shows a highly inhomogeneous

concentration of active material [47].
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Figure 4.5 Phase diagram of the system in the (ζ,∆) plane. Each square
corresponds to one simulation. Regions A–D correspond respectively
to isotropic passive, active patterns, active turbulence, and spontaneous
microphase separation regimes.
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4.4.2 Coupling-induced demixing in the passive limit

To shed more light on the physics underlying the occurrence of our spontaneous

microphase separated regime, it is instructive to consider the passive limit of our

nematic mixture, where the behaviour is solely determined by thermodynamic

considerations. In this case, the free energy is minimised in equilibrium, and

a full phase diagram can be computed semi-analytically using the common

tangent construction (Fig. 4.6).

Recall that our model employs both conserved (composition φ) and non-

conserved (nematic tensor Qαβ) order parameters, which are mutually coupled

through the free energy given in Eq. 4.1. The resulting mixture is an example

of a lyotropic liquid crystal, such as that considered in [49], albeit with an

important distinction. Specifically, in the limit of no coupling (∆ = 0 in Eq.

4.2), the system we consider exhibits no phase separation and mixes freely. In

what follows, therefore, we shall see that passive phase separation is driven

only by the coupling.

To find the equilibrium state, we consider a uniformly aligned (homogeneous)

nematic phase, so that the elastic term contribution in Eq. 4.1 vanishes and the

total free energy can be written in terms of the magnitude of nematic order, q,

and of φ as follows,

fhom (q, φ) =
A0

3

(
1− γ(φ)

3

)
q2 − 2A0γ(φ)

27
q3 +

A0γ(φ)

9
q4 +

a

2
φ2. (4.14)

This homogeneous state has everywhere the same value of the conserved

composition. Thus, for each point (x, y) in the system, φ(x, y) =
∫
dxdy φ(x,y)∫

dxdy
≡

〈φ〉. The magnitude of order that minimizes the total free energy for this given

homogeneous value of φ is

qmin(φ) =

0, if γ ≤ γc

1
4

(
1 +

√
9− 24/γ(φ)

)
, if γ ≥ γc.

(4.15)

If the homogeneous state is stable against phase decomposition into regions

of high and low concentration, then there is no configuration for which

〈f〉, the spatial average of the free energy density, is less than the value of

fhom (qmin(φ), φ). However, as the common tangent construction illustrated
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Figure 4.6 Coupling-induced demixing derived semi-analytically from the free
energy for a uniformly aligned passive nematic phase given in Eq.
4.14. Panel (a) shows the free energy, fhom (qmin(φ), φ), which, for
a given value of φ, is minimized by qmin(φ) (see Section 4.4.2). The
second derivative with respect to φ is shown with a dashed curve, and is
negative in the spinodal region, highlighted in yellow. Here the system
is linearly unstable to demixing into regions of high (φ+) and low (φ−)
concentration, the values of which are given by the respective binodal
points, shown in grey. These points are found by the common tangent
construction illustrated by the green line, and share the same chemical
potential and pressure (Π, dashed in blue). In this plot ∆ is fixed at
0.7, and the presence of the lower spinodal point at φ = 1 compares well
with our simulation results, as illustrated in Fig. 4.5. Panel (b) shows
the φ–∆ plane, which is a phase diagram derived from the loci of the
spinodal and binodal points illustrated in panel (a), considered as we
vary φ and ∆. The shaded spinodal and binodal regions are bounded by
these loci, and show the parameter combinations for which the system
is unstable to phase decomposition. Note that all φ–axis values signify
the spatial average over the system, which is dropped from the notation
for readability.

in Fig. 4.6a shows, for each homogeneous configuration lying between the

binodal points, there exists a corresponding inhomogeneous configuration with

the same average composition, 〈φ〉, but a lower average free energy density,
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〈fdemixed〉, the value of which is given by the tangent line itself. Moreover, for

sufficiently large ∆ and certain values of φ, we find that fhom (qmin(φ), φ) is a

non-convex function. In this spinodal region, we therefore expect that the

nematic mixture is linearly unstable to phase separation. By comparison, in

the limit of vanishing activity, our simulation found phase decomposition in the

parameter range 〈φ〉 = 1, ∆ > 0.7 (see, for instance, the left border of Fig.

4.5). This simulated demixing is highlighted in Fig. 4.6b, and signifies good

agreement with our semi-analytic thermodynamic prediction.

In greater detail, the spinodal region — where the system is linearly unstable

to phase separation, for any perturbation however small — is precisely where

fhom (qmin(φ), φ) is concave down. Thus it is bounded by the inflexion points,

where the second derivative of fhom with respect to φ, fφφ (qmin(φ), φ), crosses

the φ axis in Fig. 4.6a. The lower spinodal point is simply φc = (γc − γ0)/∆,

whereas the upper spinodal point, φs, was found numerically as the only real

root of a seventh order polynomial.

This effective free energy also gives, by a common tangent construction,

the binodal points, namely the values of the coexisting concentrations of

the phase separated systems. Specifically, as coexisting phases must share

a common chemical potential (µ = fφ (qmin(φ), φ)) and a common pressure

(Π = fhom (qmin(φ), φ) − µφ), we have a system of two equations in two

unknowns. The two unknowns in question are the two concentrations, φ−
and φ+, for which a straight line tangentially touches the curve fhom (qmin(φ), φ)

exactly twice, and were found numerically. For values of 〈φ〉 between the

binodal points, this tangent represents the average free energy density of the

phase separated system, which is visibly lower than the free energy density of

the homogeneous system. Thus 〈fdemixed〉 < fhom (qmin(φ), φ) for φ− < 〈φ〉 < φ+.

The loci of these spinodal and binodal points as we vary φ and ∆ are the curves

plotted in the φ–∆ plane in Fig. 4.6b. Here we can see that, in line with our

simulation results shown in Fig. 4.5, there is a spinodal point at ∆ = 0.7 for

〈φ〉 = 1.

We stress again that the analysis in this section refers to the ζ = 0 passive limit

of our mixture. In the active case, macroscopic phase separation is generically

arrested by the activity-induced spontaneous flow. This leads to microphase

separation at steady state, similarly to what has been observed in sheared

passive binary mixtures [32, 67, 72] or in active model H [78].
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Quantitatively, our theory predicts a spinodal point at ∆ = 0.7 for 〈φ〉 = 1,

which compares well with our simulation results (Fig. 4.5). The predicted

binodal points for ∆ = 1, lie at φ = 0.18 and φ = 1.79 — these values should

be compared with the histogram peaks shown in Fig. 4.3, viz. φ = 0.19 and

φ = 1.41 — the lower value of the latter peak is likely due to the active flow

which drives the system away from thermodynamic equilibrium (assumed in

Fig. 4.6). Note our simulations only find phase separation in the spinodal

region in Fig. 4.6b, as the initial perturbation of the homogeneous state are

smaller than the scale required for nucleation.

4.5 Discussion and Conclusions

In summary, we have used computer simulations to study the hydrodynamics of

an inhomogeneous active nematic gel. With respect to conventional models for

active gels, which only consider the velocity field and Q tensor, our theory also

allows for the time evolution of the active matter concentration φ. Previous

work has shown by a linear stability analysis that compositional fluctuations

are irrelevant for the physics of the “generic instability” of active gels [4],

which stands for the transition between the passive (quiescent) and the active

(spontaneously flowing) phase. It has however remained unclear what their

role is deep in the active phase, where nonlinearities are important; shedding

light on this issue has been the focus of our current work.

Our main result is the quantitative characterisation of the phase diagram of

inhomogeneous active nematic (Fig. 4.5). We have found that there are three

regimes with distinct emergent behaviour in the active phase. First, close to

the transition between the passive isotropic and active nematic phase, there are

regular patterns typically composed of self-assembled rotating spirals. Second,

deeper in the active nematic phase there is an active turbulent regime featuring

chaotic dynamics of vortices and half-integer nematic defects. Third, for low

activity and large enough nematic tendency (∆ in our phase diagram in Fig.

4.5), we find spontaneous phase separation into active and passive domains.

This latter phase separation is arrested by the active flow, so that domains do

not coarsen past a typical size, which decreases with increasing activity.

The regular spiral/vortex patterns we find are reminiscent of those observed

with polar active gels in the ordered phase [25, 34]. While polar nematics can
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only exhibit defects with integer topological charge, defects in active (apolar)

nematics normally have half-integer topological charge, so it is non-trivial that

close to the passive-active transitions we observe spirals, whose topological

charge is +1. 1 Notwithstanding this qualitative resemblance, the patterns

we observe also have a non-trivial spatiotemporal dynamics (Suppl. Movie

2). The core of our spirals are also associated with notable concentration

minima, or voids, which arise because of the coupling between nematic order

and composition in the free energy of the system. The mechanism responsible

for this coupling is the same that drives inert colloidal particles or isotropic

droplets (with no anchoring on their surface) to the defect cores or disclinations

in passive liquid crystals [28, 56].

The chaotic, active turbulent regime we find for sufficiently large ζ is an

analog of the regime of the same name in active gels of uniform composition

[2, 14, 37, 74]. An important feature of this regime in our simulations, though,

is that there are very large compositional fluctuations (Fig. 4.3a). These

are qualitatively in line with experimental observations of active turbulence

in microtubule–motor mixtures, which show substantial inhomogeneities in

microtubule concentration over a sample [47, 61]. Whether such concentration

variations lead to a fundamental change in the scaling properties of active

turbulence is an open question which we believe deserves further investigation,

for instance by a quantitative detailed analysis of the scaling of velocity–velocity

correlations [3, 68, 87].

Regarding the spontaneous microphase separated regime, this is notable

especially because there is no term in the free energy density fφ which

explicitly favours demixing. In other words, in the absence of fLC the system

would remain uniform. Phase separation arises due to the coupling between

composition and order, measured by the parameter ∆. In this sense, phase

separation is not driven by activity but rather thermodynamically, and indeed it

can be explained with a theoretical discussion of the free energy in the passive

limit (Fig. 4.6). In simulations we observe a microphase separated pattern

rather than macroscopic phase separation, as the active flow arrests coarsening,

and controls the size of the steady-state domains observed at late times,

similarly to the case of active model H [78]. While experimental realisation of

active nematics have shown plenty of instances of active turbulence [47, 61],

1Note that in our geometry integration of the topological charge density, defined as in [11],
is conserved and equal to 0.
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the spontaneous microphase separation regime appears to not have been found

in the lab yet. Our model suggests that the most promising avenue to realise

this regime experimentally is to control the composition-order coupling ∆. The

latter may be estimated by monitoring how the isotropic–nematic transition

point depends on the concentration of nematogenic particles (for instance,

microtubules) in the passive limit of no activity.

Looking ahead, we can suggest a few directions in which our work can be

carried forward. First, it would be of interest to understand from a more

fundamental point of view the universal properties of the dynamical regimes

we have identified. For instance, one could quantify the dependence of

vortex correlation length and pattern size on physical parameters, and the

scaling of the power spectra of the kinetic energy. This would allow to clarify

the important theoretical question of whether or not inhomogeneous active

turbulence is in the same universality class as turbulence in active gels of

uniform composition. Second, from the experimental point of view, it would be

desirable to compare more quantitatively concentration distributions in active

turbulence with those predicted by our simulations. Third, with regards to

computer simulations, it would be highly interesting to explore the phase

behaviour and dynamics of inhomogeneous active nematics in 3D, comparing

and contrasting it with the one found here in 2D.
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Chapter 5

Conclusions

In this work of thesis we have shown the results from computational studies

collective motions in active fluids. Most studies (theory and experiments) on

active fluids are performed in two-dimensional environments. We developed a

minimal model for Bacterial Turbulence, in order to take into account the three-

dimensional nature of hydrodynamic interactions in bacterial suspensions, even

when swimmers are confined in a two-dimensional plane.

In Chapter 2, we laid down the basics of the minimal lattice model we

developed for studying bacterial turbulence, and explored results for fully

packed lattices identifying the analogue of collective motion states in what

appears to be frozen states in our simulations.

In Chapter 3 we improved on the previous model considering lattices with

density ≤ 1, in order to make the swimmers able to move. On these premises

we were able to reproduce Motility Induced Phase Separation (MIPS) and

study how hydrodynamic interactions affect it. We found that, other than just

suppressing MIPS, hydrodynamic interactions result in a change of transition

type, and the system exhibits a microphase separation. We also find that, due

to the swimmers being two-dimensional sources in a three-dimensional velocity

field, the suspension is hyperuniform when not in a separated phase.

Finally, in Chapter 4 we presented our result for numerical simulations on

inhomogeneous active gels. Since it has been shown by linear stability

analysis that inhomogeneities do not affect the stability near the transition

between passive and active phases, we focused on studying how compositional
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fluctuations in the active matter concentration deep in the active phase. In this

study we characterised the phase diagram of inhomogeneous active nematics

finding three distinct different regimes inside the active phase. In particular

the system showed: regular patterns of rotating spirals next to the transition

between passive isotropic and active nematic, a turbulent regime deep in the

active nematic phase, and spontaneous phase separation for low activity and

high nematic tendency.
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