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Abstract

Many ab initio approaches for calculating anharmonic phonon dispersion re-

lations have recently been developed, taking advantage of improvements in

computational power. In this thesis, anharmonic phonons in the diamond-type

semiconductors silicon and diamond are studied using two of these recently

developed ab initio techniques to better understand the role of anharmonicity

in these materials at elevated temperatures and pressures. The two techniques

are the self-consistent phonon method as implemented in the alamode code

and the temperature dependent effective potential approach implemented in the

TDEP code. Both these approaches rely on density functional theory calculations

to compute anharmonic phonon frequencies from first principles.

The renormalisation of the zone-centre optical phonon of silicon is calculated using

both methods. The TDEP approach accurately reproduces the experimentally

observed temperature dependence of the zone-centre phonon, whereas alamode

underestimates the renormalisation. This underestimation is determined to

originate from the exclusion of certain phonon–phonon interaction processes in

a series expansion central to the self-consistent phonon method. In particular,

an interaction process involving three phonons is identified to contribute strongly

to the anharmonic phonon renormalisation. An attempt was made to extend

alamode to include this interaction, which was, regrettably, unsuccessful.

The TDEP approach is then applied to diamond in the same manner as silicon.

The zone-centre optical phonon is calculated and a comparison to available

experimental data is made. The approach is again found to accurately reproduce

the experimental data. Consequently, the TDEP approach is used to investigate

the so-called quantum isotope effect in diamond. Deviations from the harmonic

frequency ratio of the zone-centre phonons are used to investigate the anharmonic
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nature of the interatomic potential, as well as to search for an experimentally

suggested “inversion” of the quantum isotope effect at high pressure. No such

inversion of the quantum isotope effect is observed in the calculations made

here. A detailed comparison of the effect of different exchange–correlation

functionals and pseudopotentials on the density functional theory calculations is

made, ultimately recommending local density approximation as the most accurate

predictor of phonon frequencies in diamond.

Finally, the Raman frequency of natural diamond is calculated at high temper-

ature and pressure using the highly accurate TDEP method. Improvements are

made to the stochastic sampling process, eliminating unwanted scatter from mis-

aligned eigenvectors at degenerate points in the Brillouin zone and increasing the

precision of the method. The calculated Raman frequency is used to suggest

a calibration of the high-frequency edge of the Raman signal from a diamond

anvil, which is used as a pressure marker in very-high-pressure experiments. The

suggested calibration extends to pressures up to 1TPa and temperatures up to

2000K.
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Lay summary

At finite temperatures, the atoms in a crystal vibrate about some fixed position.

These oscillations are coupled together in the form of waves that travel through

the crystal; these waves are known as phonons. The frequencies of these

waves determine the energy they carry, and consequently determine the thermal

properties of the material. The calculation of these phonon frequencies is therefore

of paramount importance to predicting a material’s thermal properties.

To calculate the phonon frequencies, one must somehow describe the forces

between the atoms. These forces are, in general, complicated, but one

approximation that works well in the majority of cases is the so-called harmonic

approximation: that the restoring force on an atom as it is displaced from its

equilibrium position is linear in the magnitude of this displacement. This simple

approximation is sufficient in many cases to compute the phonon energies and

the dependent material properties. However, the simple model is not perfect; the

discrepancy between the harmonic model and the observed frequencies is usually

slight, but becomes more pronounced at high temperatures when atoms are

displaced further from their equilibrium positions. To amend these discrepancies,

one must include the non-linear, or anharmonic, contributions to the force.

Two methods of doing this are considered in this thesis: the temperature-

dependent effective potential (TDEP), and alamode. Chapter 5 compares these

methods in silicon and, with comparison to experimental data, demonstrates that

the TDEP method is far more accurate in calculating the anharmonic phonon

frequencies at high temperature. The accuracy is then confirmed in diamond, a

crystal with the same atomic structure as silicon.

The same approach is used in chapter 6 to investigate subtle effects in the

frequencies that arise due to the changes in atomic mass. Several papers in the
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literature have stated that the anharmonic terms in the forces cause unusual and

counter-intuitive effects to appear in diamond at high pressure. By calculating

the anharmonic phonon frequencies in two isotopes of diamond (12C and 13C)

and comparing them, one may hope to find evidence of this unusual behaviour.

No such evidence is found.

Finally, the anharmonic phonon frequencies are calculated again for diamond in

an application that will prove useful to future experiments. The behaviour of

materials at high pressure is of particular interest to many physicists, and is

the focus of many experiments. In these experiments, one must create a high-

pressure environment, and then have some way of determining the pressure in

this environment. The high-pressure environment is often created by forcing two

diamonds together; diamond’s exceptional hardness makes it well-suited to this

method. One way of measuring the pressure is to measure the pressure-dependent

frequency of one of the phonons in the diamond. This frequency is calculated in

chapter 7 at temperatures and pressures up to 2000 K and 1 TPa, respectively.

These calculations are then used to suggest a calibration of the pressure scale

across this entire range of temperature and pressure.
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Chapter 1

Introduction

How atoms move has been an important question in condensed matter physics

since atoms were first discovered to move. In the case of solids, and particularly

crystals, one answer to this question was proposed by Einstein, who suggested

that the atoms in the crystal acted as independent quantum harmonic oscillators.

This approximation became known as the Einstein model of lattice dynamics and

was mostly successful in describing the heat capacity of a solid as the temperature

was lowered. However, there was still some disagreement between the predictions

of the Einstein model and the observations made from experiment; the Einstein

model underestimates the heat capacity of a solid at low temperatures. This

problem was solved by Debye, who suggested that the oscillators in the crystal

were not independent, but coupled. The coupling of the oscillators changed the

spectrum of the energy levels and the predicted heat capacity. Debye’s model

of coupled harmonic oscillators successfully reproduced the low-temperature

dependence of the heat capacity and provided the basis on which all modern

lattice dynamics is founded. It is from Debye’s model that the concept of a

phonon arises as a collective excitation of the crystal that may be considered as

a quasiparticle.

One crucial assumption in Debye’s model, and of the phonon picture that arises

from it, is that the oscillators in the crystal are harmonic; it is this harmonicity

that allows the phonons to be calculated. To go beyond this simple picture into

the realm of anharmonic phonons requires careful thought.
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Accurate calculation of anharmonic phonons from first principles is currently

a barrier to predicting and understanding the thermal properties of many

materials. This thesis will examine some different methods that currently exist

for calculating anharmonic phonons and apply them to two test systems — silicon

and diamond. These systems have been chosen to provide rigorous tests to each of

the methods so the strengths and weaknesses of each approach are understood.

Silicon is a material that has a large amount of experimental data available,

making it a good candidate to test the abilities of the methods. Diamond also

has an abundance of experimental data, but is also the subject of experiments

that have produced counter-intuitive and in some cases contradictory results.

Before discussing the methods in detail, however, something must first be said

about the nature of anharmonic phonons and why they are deserving of study.

Anharmonic phonons are present in all materials, however close to the purely har-

monic model they may be, but they are particularly conspicuous in materials with

novel thermal properties such as negative thermal expansion, thermoelectrics,

high temperature superconductors, multiferroelectrics, ultralow/high thermal

conductors, and more [1]. In all of these research areas, the ability to calculate

the thermal properties from first principles is crucial, both to understanding the

physics underpinning a material’s unusual behaviour, and for guiding research to

develop better and more efficient materials for a variety of applications.

This thesis shall test two promising methods for calculating anharmonic phonons

from first principles and compare the results both to each other, and to

experimental data. The first method is implemented in a software package

called alamode developed by Terumasa Tadano and Shinji Tsuneyuki and

applies quantum field theory to derive the anharmonic phonons directly from the

harmonic ones [2]. The second approach is known as the temperature dependent

effective potential (TDEP) and uses a more pragmatic approach to determine

the anharmonic phonons using stochastic sampling of the atomic forces. Its

implementation is the original one by Olle Hellman and Nina Shulumba in the

TDEP software package [3].

The structure of the thesis is as follows. After this introduction, chapter 2 will

provide an overview of the current state of anharmonic phonon calculations,

and the materials to which they have been applied, their successes, and

their weaknesses. Chapter 3 will discuss the theory underpinning anharmonic
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phonons, and the methods used to calculate them using density functional theory.

Chapter 4 will describe how the theory in chapter 3 is implemented in the codes

alamode and TDEP. Chapter 5 will apply these approaches to silicon and

diamond and compare the results of each method. It will also provide a detailed

look at the reasoning behind the implementation details of each approach and

how to accurately carry out the calculations. Chapter 6 will use the findings of

chapter 5 to calculate the pressure dependence of the so-called quantum isotope

effect in diamond. The TDEP method will be used to calculate the effect from

first principles and the results will be compared to unusual behaviour reported

in the literature. Chapter 7 will again apply the TDEP approach to diamond,

this time aiming to calculate a calibration of the diamond edge Raman pressure

scale to high temperatures and pressures. This scale is useful to high-pressure

experiments and a first-principles calculation will be beneficial as static pressure

experiments reach higher and higher pressures. Finally, chapter 8 will summarise

each investigation and provide reflections on the work in this thesis and the future

direction of first-principles anharmonic phonon calculations.
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Chapter 2

Background

Over the last 30 years, the field of lattice dynamics has seen new ground broken

in the area of ab initio calculations of anharmonic phonons. These explorations

have been made possible by the increase in computational power available at

high-performance computing centres, and the commensurate increase in the

computing power of the researcher’s own desktop. The ability to run more

simulations, more quickly, more easily, and more accurately means that it is now

possible to implement more sophisticated methods that had previously remained

intractable. These new methods use a variety of approaches to achieve the same

goal: calculation of the anharmonic phonon frequencies from first principles. This

section will review the differences between harmonic and anharmonic phonons

and highlight some of the systems where anharmonicity is most prominent before

examining the ways in which anharmonic phonons can be calculated from first

principles.

2.1 Harmonic and anharmonic phonons

Harmonic phonon theory underpins much of the field of lattice dynamics and is the

first port of call for anyone attempting to describe the atomic motion in a crystal.

The form of harmonic phonon theory commonly used today was introduced

by Born and Huang, who presented a formalism for describing the interactions

between the atoms in a crystal in terms of a Taylor expansion of the many-body
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Figure 2.1 The calculated harmonic (blue, dashed) anharmonic (red, solid)
phonon dispersions of PbTe compared with experimental inelastic
neutron scattering measurements (black circles). Figure reproduced
from [5].

interatomic potential [4]. In the harmonic approximation, this Taylor expansion is

truncated at second order. Treating the interatomic potential as strictly harmonic

makes for a mathematically simple model that can be solved exactly. However,

these harmonic calculations have several significant shortcomings that make more

advanced theories necessary. Harmonic phonon theory fails to predict the correct

thermal expansion in a material or the correct temperature dependence of the

phonon frequencies and their dependent properties. These shortcomings are a

result of the simplistic harmonic potential.

For example, the harmonic potential is symmetric, so the time-averaged position

of an atom vibrating in a perfectly harmonic potential is always exactly in the

centre of the potential, no matter the amplitude of vibration. As the temperature

and the amplitude of vibration increase, the atom will always have the same

average position relative to the potential, precluding the possibility of thermal

expansion. An atom in a harmonic potential also keeps the same frequency of

oscillation irrespective of the vibrational amplitude; increasing temperature will

not change the phonon frequency, neither will increasing pressure.

Some systems are more appropriately described by the harmonic approximation

than others. Materials with unusual thermal properties, dynamical instabilities,

and superconductors are likely candidates for strong anharmonicity.
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Figure 2.2 Schematic of an interatomic potential where the harmonic terms
predict an imaginary frequency (negative eigenvalue) but higher
order terms stabilise the potential.

The case of lead telluride (PbTe) is well known for exhibiting large changes in

the phonon frequencies when anharmonic effects are considered (see figure 2.1).

PbTe is an efficient thermoelectric material — a material that produces an

electric voltage when a thermal gradient is applied across the material. Such

materials are important for reclaiming energy that would otherwise be lost to

heat, or for using naturally occurring sources of heat to power electronic devices.

An understanding of their thermal properties is therefore essential. A strongly

anharmonic potential is common to many of the most promising thermoelectrics

that are being studied currently; the anharmonicity in the potential encourages

phonon–phonon scattering which lowers the thermal conductivity, making it

easier to impose the required temperature gradient [6].

Dynamical instabilities are predicted when the energy of the crystal would be

lowered by a static deformation of the crystal lattice. They occur when the energy

of the crystal is lowered rather than raised by the displacement of the atoms from

their static positions. Such instabilities are sometimes incorrectly predicted in

the harmonic approximation and are found to be eliminated when higher-order

terms are considered. An example of this is strontium titanate (SrTiO3) [2]. If

one truncates the interatomic potential of cubic SrTiO3 at the harmonic level,

then one finds that the phonon frequencies are imaginary over large regions of the

Brillouin zone. This would ordinarily indicate a dynamical instability. Dynamical

instabilities often drive phase changes when the phonon frequency at a point in the

Brillouin zone becomes imaginary. However, in the case of SrTiO3, the structure

is found to be stable at temperatures and pressures where the harmonic theory

predicts an instability. Higher-order terms in the interatomic potential stabilise
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the structure, eliminating the instability. Figure 2.2 shows schematically how a

potential may produce stable states only once higher-order terms are included.

For potentials such as these a method of accurately computing the anharmonic

phonon frequencies is required in order to describe its thermal properties.

2.2 Computing anharmonic phonons

A variety of techniques have been developed to calculate anharmonic phonons

beyond the harmonic approximation, employing a range of theoretical principles.

Most are still in their incipient stages having only been employed on a small

selection of systems. The approaches are each characterised by their theory,

implementation, and appropriacy to various systems or problems. Here, two

of the approaches are discussed in detail: the self-consistent phonon (SCPH)

approach implemented in alamode and the temperature dependent effective

potential (TDEP) approach implemented in the code of the same name [2, 3, 7, 8].

The section ends with a brief conspectus of the other approaches currently being

developed.

2.2.1 The quasiharmonic approximation

The first treatment of the anharmonicity of crystals comes from Mie and

Grüneisen in their papers in 1903 and 1908 [9, 10]. In these papers the authors

consider a temperature-dependent lattice parameter of a cubic crystal a(T ),

the potential energy is then also a function of T . At each temperature the

interatomic potential is expanded to harmonic order and the phonon frequencies

and eigenvectors are then found. This approximation is frequently referred to

as the quasiharmonic approximation (QHA) and is the simplest treatment of

anharmonicity, capturing only effects coming from the changing volume.

In spite of its simplicity, the QHA performs quite well in a large number of

cases and is often sufficient to describe, for example, the thermal expansion.

However, as the QHA was applied to an increasing number of systems, many of

these systems were found to be poorly described by the quasiharmonic formalism,

indicating the presence of strong anharmonicity. The QHA fails to accurately
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model such materials because the underlying assumption that the phonons are

harmonic at a particular volume is not accurate. To go beyond the QHA a method

of including the so-called pure anharmonicity is needed.

2.2.2 Self-consistent phonons

The SCPH method for calculating anharmonic phonon frequencies relies on the

calculation of the self-energy. The self-energy is the energy that a phonon (or

other particle) has as a result of interactions with its environment. For phonons,

this means the energy from interactions with other phonons. The self-energy is

expressed through the equation

V k
jj′ = Λk

jj′ + Σk
jj′(ω) , (2.1)

where Vjj′ is the matrix of renormalised phonon frequencies at wavevector k,

with j and j′ being band indices, Λk
jj′ is the matrix of harmonic (non-interacting)

phonons, and Σk
jj′(ω) is the self-energy matrix. This matrix is, in general, energy

dependent.

As a result, the strength of these interactions depends on the energies of the

phonons involved, a self-consistent approach is required to calculate it accurately.

This is the approach taken by alamode, which makes use of quantum field

theory to calculate the phonon self-energy from the phonon propagators. The self-

energy is calculated in the SCPH theory by including the effects of increasingly

complex phonon–phonon interactions characterised by terms in a series expansion

of Feynmann diagrams. Although the effect of any diagram can, in theory, be

included, only one of the lowest order contributions is included in the basic SCPH

approach taken by alamode. The other contributions are neglected, not just on

the basis that they are expected to contribute less to the renormalisation, but

also on the difficulty of their computation.

The first application of alamode was to the previously mentioned perovskite

SrTiO3, where the dynamical instabilities in the harmonic approximation are

successfully removed to produce a stable phonon dispersion [7, 11]. SrTiO3

was later revisited by the authors, and a temperature-induced structural phase

transition was predicted [12]. Other authors have since applied the SCPH method
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to SrTiO3 to calculate its electronic band gap [13], dielectric constants and their

strain dependence [14, 15], and the thermal conductivity [16]. In addition to

SrTiO3, alamode has been applied to a slew of other perovskites [14, 17–21]

and antiperovskites [22].

The SCPH approach has also shown promise when applied to superconductors

such as the high-temperature superconductor H3S. H3S is well known for having

once had, by a significant margin, the highest known critical temperature, Tc,

of any material, and refocussed the search for high-Tc superconductors back to

those of the conventional BCS type [23]. This move proved fruitful, as other

superconductors with even higher Tcs have since been discovered, with recent

claims of Tc above room temperature at ambient pressure [24–26], although

these claims have been met with scepticism [27–29]. alamode showed the

importance of anharmonic phonon effects in determining the critical temperature

of H3S, demonstrating that anharmonicity lowered the superconducting transition

temperature by 12% [30].

The high-temperature superconductors that have emerged from the renewed focus

on the conventional type of superconductivity have all included large amounts of

hydrogen, as the high phonon frequencies that come from such a light atom

are a major hallmark of the high-temperature conventional superconductivity.

In fact, pure hydrogen itself has been suggested as a candidate for room

temperature superconductivity [31]. Recent calculations on a candidate structure

for solid hydrogen have been made using alamode that again suggest that

anharmonicity plays an important role in determining the superconducting

transition temperature by reducing the electron-phonon coupling, and thus Tc

[32–34].

Although the standard version of the alamode software package includes only

one of the lowest order contributions, corresponding to a 4-phonon interaction

process, the authors have made an attempt to include a second interaction process

of the same order that corresponds to a 3-phonon process in a study on ScF3

[35]. The self-energy from the 4-phonon process is frequency independent; the

renormalisation of an anharmonic phonon from the 4-phonon process is the same

no matter the frequency of the phonon in question. For the 3-phonon process,

this is not the case; the self-energy must be evaluated at the correct frequency

of the phonon being renormalised. The authors elected to use the frequencies
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from the renormalisation from the 4-phonon process only. It is not clear that

this approach provides a better result than simply using the harmonic phonons

to calculate the third order effects, as it is possible for the cubic and quartic

effects to act antagonistically, as in the case of ScF3. The inclusion of the third-

order terms in ScF3 improved the quantitative agreement with the experimental

results, highlighting their importance. The inclusion of third-order terms in this

manner was not done using the alamode software package directly and required

additional calculations; the ability to calculate these terms is still not included in

the standard alamode software.

2.2.3 Temperature-dependent effective potential

While the SCPH approach derives the renormalised phonons as a correction to

the harmonic phonons, the temperature dependent effective potential (TDEP)

approach attempts to find the renormalised phonons directly from the forces and

displacements, without an intermediate calculation of the harmonic phonons. The

TDEP formalism is underpinned by the fact that the phonons, once renormalised,

are non-interacting and must therefore be the solution of a Hamiltonian with an

effective harmonic potential. The TDEP approach involves calculating the forces

on atoms displaced from their static lattice positions in a way that mimics the

displacements found in a real crystal at an elevated temperature and then asking

the question: What harmonic potential best describes this set of displacements

and forces? Once this effective harmonic potential is found, the renormalised

phonons can be extracted from using exactly the same approach as for the true

(non-effective) harmonic potential.

The TDEP method can be viewed as an extension of the self-consistent ab

initio lattice dynamics (SCAILD) approach developed by Souvatzis and co-

workers [36, 37]. SCAILD works on the idea that displacing all the atoms in

a supercell according to some mean square displacement and calculating the

phonon frequencies from the forces will provide new, slightly different phonon

frequencies. These updated frequencies can, in turn, be used to calculate a new

mean square displacement as the thermodynamic average of the phonon modes.

Once a new mean square displacement is found, a new configuration of displaced

atoms is created and the cycle continues until self-consistency is achieved.
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SCAILD is very robust as it makes no statement about the form of the

anharmonicity. In principle, the renormalised frequencies are found to all orders.

There are, however, some assumptions made in the method. Firstly, the phonon

polarisations are fixed throughout the self consistent cycle. This means that the

renormalised phonons have the same polarisations as the initial harmonic ones.

This need not be the case for strongly anharmonic systems. Secondly, the effect

of finite phonon lifetimes is not taken into account and very short-lived phonons

(caused by severe anharmonicity) will have an impact on the thermodynamic

averages and therefore affect the final frequencies produced by the self-consistent

cycle. Finally, as with most anharmonic phonon approaches, the calculations are

performed at a fixed volume, so additional thought is required to include the

effect of thermal expansion. Despite these assumptions, the SCAILD method

will work well for many systems. Its main limitation is that it requires a new

density functional theory (DFT) calculation upon every iteration, meaning that

the computational expense can be quite large.

TDEP is different from SCAILD in the way the atoms are displaced from

their equilibrium positions. In SCAILD, the atoms are displaced with some

Gaussian distribution around the mean square displacement, whereas TDEP aims

to produce a more physically meaningful distribution of atomic displacements.

The implementation of the TDEP method used in this thesis is the stochastic

TDEP, developed by Hellman et al. [3, 8], where the atomic configurations used

to calculate the force–displacement fitting data are generated by stochastically

populating the harmonic phonon modes in order to approximate the state of

the real crystal at a finite temperature. An alternative is to use snapshots

from a molecular dynamics simulation as the configurations for generating the

force–displacement data. These two flavours of TDEP differ only in the way

the configurations are generated and, indeed, both approaches require similar

attention to convergence and sampling. As the two flavours differ only in the

initial step of gathering the force–displacement data, the distinction between them

will not be drawn, and hereafter references to TDEP will refer to the stochastic

TDEP unless otherwise stated.

Applications of the TDEP method cover a wide range of materials. The method

was debuted by Hellman and co-workers in 2011 when it was successfully applied

to bcc Li and bcc Zr, managing to reproduce the experimentally observed phonon

dispersion at 300K and 1300K respectively. This flavour of TDEP was the non-
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stochastic flavour that took the force-displacement data from ab initio molecular

dynamics snapshots.

The stochastic flavour of TDEP was developed later in 2017 in an application to

the lead compounds PbSe, PbTe, and PbS [38]. As the stochastically generated

configurations require the population of phonon modes, one must have some

initial set of harmonic (or effective harmonic) force constants in order to generate

them. In the study of the lead compounds, the authors generated an initial guess

of the force constants from a simplistic pair potential. This initial guess was

used to generate more accurate force constants, which were then in turn used to

generate more configurations. This process continued until self-consistency was

reached. In total it took just three iterations of this self-consistent cycle where

50 configurations, each with 250 atoms, were used in each iteration. It is worth

noting that this was for a system that is known for large anharmonic effects

and starting from a very crude approximation of the force constants. For a less

anharmonic system, and from a more accurate starting guess, it is not necessary

to perform this self-consistent cycle at all.

Beyond this, the TDEP approach has also been used to study a range of

physical properties and phenomena. In addition to the direct calculation of

the renormalised phonon frequencies [39–42], the thermal conductivity [43, 44],

thermal expansion [40], elastic properties [45, 46], phase transitions [47–50],

and magnetic materials [51] have also been studied. Of particular note is an

application to silicon, where effective third-order force constants were used to

capture the antisymmetric parts of the potential that cannot be captured by the

effective harmonic term [8, 40]. As the effective harmonic potential is constrained

to be symmetric, it cannot describe any antisymmetric parts of the interatomic

potential. By extending the potential to include effective third-order force

constants these antisymmetric terms may be included through the calculation

of the self-energy from the 3-phonon interaction. Extensive use of this technique

will be made throughout this thesis.

The importance of considering the third-order force constants was further

demonstrated in a study of PbTe and SnTe, where an anomaly in the self-energy

measured from inelastic neutron scattering measurements was explained through

the consideration of the three-phonon scattering processes [39]. The authors

found that the renormalisation of the phonon frequencies at the Γ-point was
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large enough to create nesting (where large portions of the phonon spectrum

are separated by a constant wavevector, i.e. both phonon bands have the same

gradient) between the acoustic and optical branches. This nesting allowed for

large amounts of scattering and hence short phonon lifetimes. This manifests itself

as a peak in the imaginary part of the self-energy which, through the Kramers–

Kronig relations, appears as an oscillation in the real part of the self-energy

where two distinct peaks can be seen, one of which corresponds to the anomalous

self-energy peak observed in experiment.

2.2.4 Other methods

Beyond alamode and TDEP there are other methods for calculating anharmonic

phonon frequencies. Already mentioned was SCAILD as a precursor to the TDEP

approach. One method that has not been mentioned thus far is the frozen

phonon approach. The frozen phonon approach is well established; it originated

long before any of the other methods, even the finite displacement approach for

calculating harmonic force constants, were established [52–54]. Developed in the

1970s and becoming ubiquitous in the 1980s, the frozen-phonon method is used

to calculate the vibrational frequency of a single phonon mode [55].

A phonon describes a wave travelling through a crystal and hence, for a particular

phonon mode, the atoms are displaced from their equilibrium positions in a

periodic pattern. A frozen phonon calculation involves calculating the internal

energy with the atoms displaced from their equilibrium positions in this manner.

This in effect freezes in a particular phonon mode. The internal energy of

the crystal is computed for a series of such distorted supercells with a range

of displacement amplitudes. The force constant of the phonon mode is then

computed through the second derivative of the energy–displacement curve.

The frozen-phonon method is typically performed using DFT to calculate

the energies and is therefore restricted to phonon modes whose wavevector

is commensurate with the supercell used to calculate it. Fortunately, it is

frequently the phonons at the Brillouin zone boundaries (or centre) that are of

interest, which have a wavelength equal to the lattice parameter. Unfortunately,

it makes this method impractical for calculating thermodynamic properties

that generally require sampling the phonon frequencies of the entire Brillouin
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zone. Furthermore, the frozen-phonon approach requires several calculations of

the distorted supercell which can be quite computationally expensive for the

calculation of just one phonon mode. Calculations cannot be recycled for other

phonon modes.

Despite these drawbacks, the frozen phonon approach is still used today. As the

static crystal energy is calculated explicitly for a range of phonon amplitudes,

the resulting energy—displacement curve describes the potential for the phonon

mode inclusive of all anharmonicity and the energy levels of this potential can be

found by solving the time-independent Schrödinger equation. The frozen phonon

method therefore allows some insight into the anharmonicity of the crystal.

However, by only considering a single mode, it does not provide any insight

into the effect of phonon–phonon interactions.

Another method of computing the anharmonic phonon frequencies is the so-called

stochastic self-consistent harmonic approximation (SSCHA) developed by Errea

and co-workers [56]. The SSCHA attempts to find the renormalised phonon

dispersions by finding a density matrix that minimises the anharmonic free

energy. As it is not possible to trial all possible density matrices, the approach

restricts itself to trial density matrices that represent a harmonic system. In this

respect, the approach is similar to TDEP in asking which harmonic system best

approximates the anharmonic one. As the name of the stochastic self-consistent

harmonic approximation implies, the minimisation process involves the stochastic

sampling of the Born-Oppenheimer potential energy surface. This is the most

expensive part of the calculation and, while steps have been taken to considerably

reduce the number of times it is necessary to perform such sampling, it still

remains a very computationally expensive approach with each sample involving

the generation of “. . . up to several hundreds or thousands of configurations” [56].

For this reason, and the fact that the code was only recently released in 2021,

the SSCHA is not considered in this thesis, although a comparison to alamode

and TDEP would be valuable in order to assess in what cases the additional

computing time is justified compared to the techniques discussed here.

Phonopy and its sister code, Phono3py, are both well-established packages for

computing phonons and thermal properties [57, 58]. Phonopy is one of the

most well-used software packages for computing harmonic phonons and has the

capability to perform QHA calculations, which will be made use of in this thesis.
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Phono3py uses third order force constants to compute thermal properties of a

material. It does not, however, make use of the fourth-order and higher force

constants necessary to accurately calculate the anharmonic phonon frequency

renormalisation, leaving it outside the scope of this investigation.

Finally, although the most promising methods (at the current state of the field)

for computing anharmonic phonons have been mentioned, one must also point

out the other approaches that exist. hiphive is another software package, still

in its incipient stages, that aims to use machine learning to determine higher

order force constants more efficiently [59]. The Kaldo code aims to solve the

thermal transport equation using anharmonic force constants [60]. It is hoped

that these methods will continue to be developed and will enrich the field of ab

initio anharmonic phonon calculations in the years to come. Presently, however,

this thesis will restrict itself to the discussion of the SCPH method and the TDEP

method. Comparisons to other approaches are left for future studies.
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Chapter 3

Theory

3.1 Lattice dynamincs

3.1.1 The crystal

A periodic crystal is an arrangement of atoms in space with a spatially periodic

structure. This spatial periodicity is described mathematically by a lattice, a grid

of lattice points arranged such that the crystal is unchanged under a translation

from one lattice point to another. The positions of these points are described by

the vectors a1,a2,a3, which serve as the translation vectors of the lattice, and

the set of lattice vectors {R}, whose components are integers and describe the

positions of the lattice points in terms of the basis vectors. The set of all lattice

points is therefore described by

R = ha1 + ka2 + la3 with {h, k, l} ∈ Z . (3.1)

With the lattice defined, the positions of the atoms are described by the

application of the basis. The basis describes the displacement from the lattice

point to each atom associated with the lattice point. These basis vectors will be

called sµ where µ is the index of the atom in the unit cell — the parallelepiped

drawn out by the vectors a1,a2,a3.
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3.1.2 The Brillouin zone

In addition to the real space lattice, it is typical to define the reciprocal lattice,

a separate lattice associated with the real space lattice described by reciprocal

lattice vectors G and reciprocal translation vectors b1, b2, b3 where

G = hb1 + kb2 + lb3 with {h, k, l} ∈ Z . (3.2)

The reciprocal translation vectors are related to the real space translation vectors

by

b1 = 2π
a2 × a3

a1 · a2 × a3

(3.3)

b2 = 2π
a3 × a1

a2 · a3 × a1

(3.4)

b3 = 2π
a1 × a2

a3 · a1 × a2

. (3.5)

Defining the reciprocal lattice vectors in this manner enforces the relation

aibj = 2πδij , (3.6)

where δij is the Kronecker delta, and consequently,

R ·G = 2πN N with ∈ Z . (3.7)

Applying the Wigner-Seitz construction to the reciprocal lattice points, one can

construct a uniquely defined reciprocal unit cell called the Brillouin zone. Points

in the Brillouin zone are identified by a wavevector k, which has units of reciprocal

length.

3.1.3 The potential

At finite temperature, the atoms are in motion and are displaced from their

equilibrium positions. The displacements are small and one can therefore consider

the crystal potential as a Taylor expansion in the displacements around these
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equilibrium positions,

U = U0 + U1 + U2 + U3 + U4 + . . . (3.8)

The term Un is given by

Un =
1

n!

∑
{R,µ,i}

Φi1...in(R1µ1; . . . ;Rnµn)ui1(R1µ1) . . . uin(Rnµn) (3.9)

where the rank-n tensor Φ is given by

Φi1...in(R1µ1; . . . ;Rnµn) =
∂nU

∂ui1(R1µ1) . . . ∂uin(Rnµn)
(3.10)

and is called the matrix of force constants, and u are the displacements of the

atoms from their equilibrium positions. Both Φ and u are indexed by a set or sets

of three indices {R, µ, i}: R is the real space lattice vector, µ is the atom number

within the unit cell pointed to by R, and i represents a cartesian direction. As a

concrete example, the rank-two tensor corresponding to the harmonic potential

is given by

Φi1,i2(R1µ1;Rnµ2) =
∂2U

∂ui1(R1µ1)∂ui2(R2µ2)
. (3.11)

The elements of this matrix describe the force on atom R1µ1 in the i1 direction

as the result of the displacement of atom R2µ2 in the i2 direction. Recalling that

force is the negative of the first derivative of the potential,

Fi1(R1µ1) = − ∂U

∂ui1(R1µ1)
(3.12)

≈ − ∂2U

∂ui1(R1µ1)∂ui2(R2µ2)
ui2(R2µ2) (3.13)

≈ −Φi1,i2(R1µ1;Rnµ2)ui2(R2µ2) . (3.14)

As all of the tensors and vectors are indexed by sets of three indices, a more

compact notation using the stacked index
(
Rn
µn

in

)
of Leibfried and Ludwig shall be

introduced [61]. The top index describes the lattice vector of the unit cell, the

middle index is the index of the atom within this unit cell, and the bottom index

is the cartesian direction. Using this notation, the nth order contribution to the
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potential energy is written as:

Un =
1

n!

∑
{R,µ,i}

Φ
(
R1
µ1
i1

...
Rn
µn

in

)
u
(
R1
µ1
i1

)
. . . u

(
Rn
µn

in

)
. (3.15)

3.1.4 Harmonic phonons

The typical treatment of phonons considers only the harmonic terms of the

interatomic potential. Many treatments of harmonic phonons can be found,

employing a variety of methods to derive their existence [61–64]. Many of these

approaches make simplifications for pedagogical reasons; a reader interested in

such an approach is directed to the cited texts. Here the phonon treatment of

atomic vibrations will be derived from the force constant model for a general

crystal with multiple atoms per unit cell, and without any reference to concepts

beyond the interatomic potential, the periodicity of the crystal, and some basic

linear algebra. Proceeding in this manner allows the derived results to be applied

to a general crystal without alteration, and sets the foundation for the discussion

of the higher-order anharmonic terms.

Considering only the harmonic terms in the potential, U = U0 + U2 (U1 = 0 at

equilibrium), and, in fact, neglecting the equilibrium energy, U0, which has no

effect on the forces, the only remaining term is U2 and the equation of motion

becomes

Mµü
(
R
µ
i

)
(t) = −

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
u
(
S
ν
j

)
(t) . (3.16)

This can be symmetrised as

√
Mµü

(
R
µ
i

)
(t) = −

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
√
MµMν

√
Mνu

(
S
ν
j

)
(t) . (3.17)

To decouple these equations, one transforms to the eigenbasis. The eigenvalues

and eigenvectors are found by diagonalising
Φ

(
R
µ
i

S
ν
j

)
√

MµMν
. The secular equation is

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
√
MµMν

C
(
S
ν
j

k
ρ
r

)
=

[
ω
(
k
ρ
r

)]2
C
(
R
µ
i

k
ρ
r

)
, (3.18)
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where ω2 are the eigenvalues and C is the unitary transformation which

transforms to the eigenbasis (i.e. the matrix of eigenvectors). Applying this

transformation one finds

√
Mµu

(
R
µ
i

)
(t) =

∑
{k,ρ,r}

C
(
R
µ
i

k
ρ
r

)
a
(
k
ρ
r

)
(t) , (3.19)

where a
(
k
ρ
r

)
(t) is the normal mode indexed by a vector k, an integer ρ, and a

cartesian direction r.

Substituting equation 3.19 into equation 3.17 this becomes

∑
{k,ρ,r}

C
(
R
µ
i

k
ρ
r

)
ä
(
k
ρ
r

)
(t) = −

∑
{k,ρ,r}

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
√
MµMν

C
(
S
ν
j

k
ρ
r

)
a
(
k
ρ
r

)
(t) , (3.20)

and now using equation 3.18 one can derive the relation

∑
{k,ρ,r}

C
(
R
µ
i

k
ρ
r

)
ä
(
k
ρ
r

)
(t) = −

∑
{k,ρ,r}

[
ω
(
k
ρ
r

)]2
C
(
R
µ
i

k
ρ
r

)
a
(
k
ρ
r

)
(t) . (3.21)

Each term in the sum is now independent of the others and the differential

equation can now be solved for a as

a
(
k
ρ
r

)
(t) = A

(
k
ρ
r

)
exp

[
−iω

(
k
ρ
r

)
t
]
, (3.22)

where A
(
k
ρ
r

)
is some amplitude. The quantity ω may now be identified as a

frequency of vibration. This solution to the differential equation contains the

temporal part of the solution, while the matrix C
(
R
µ
i

k
ρ
r

)
contains the spatial part.

As the force constants Φ are periodic in the lattice vectors, the eigenvectors are

periodic also.

The eigenvectors may therefore be split into a spatially periodic wave, and a

constant vector called the polarisation vector,

C
(
R
µ
i

k
ρ
r

)
= E

(
R
µ
i

k
ρ
r

)
exp (ik ·R) . (3.23)

Here E is the matrix of normalised polarisation vectors and k is a wavevector.

If one substitutes this equation into the secular equation (equation 3.18), one
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finds

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
√
MµMν

exp (ik · S)E
(
S
ν
j

k
ρ
r

)
=

[
ω
(
k
ρ
r

)]2
E
(
R
µ
i

k
ρ
r

)
exp (ik ·R) . (3.24)

Multiplying by exp (−ik ·R) this becomes

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
√
MµMν

exp (ik · (S −R))︸ ︷︷ ︸
=D

(
R
µ
i

S
ν
j

)
E
(
S
ν
j

k
ρ
r

)
=

[
ω
(
k
ρ
r

)]2
E
(
R
µ
i

k
ρ
r

)
, (3.25)

where the dynamical matrix has been defined,

D
(
R
µ
i

S
ν
j

)
=

Φ
(
R
µ
i

S
ν
j

)
√
MµMν

exp (ik · (S −R)) . (3.26)

It can now be seen that the lattice periodicity means that the problem becomes a

diagonalisation problem of the dynamical matrix to find the frequencies and the

polarisation vectors. The waves described by these frequencies and polarisation

vectors are called phonons.

Now recalling equation 3.19,

√
Mµu

(
R
µ
i

)
(t) =

∑
{k,ρ,r}

a
(
k
ρ
r

)
(t)C

(
R
µ
i

k
ρ
r

)
(3.27)

=
∑

{k,ρ,r}

a
(
k
ρ
r

)
(t)E

(
R
µ
i

k
ρ
r

)
exp (ik ·R) , (3.28)

which gives the displacement of atom
(
R
µ
i

)
as

u
(
R
µ
i

)
(t) =

1√
Mµ

∑
{k,ρ,r}

A
(
k
ρ
r

)
E
(
R
µ
i

k
ρ
r

)
exp

[
ik ·R− iω

(
k
ρ
r

)
t
]
. (3.29)

This result will be crucial in describing the atomic displacements in the stochastic

TDEP method. So far the idea of phonons as normal modes has been introduced

and their description both by frequencies and polarisation vectors (eigenvalues

and eigenvectors of the dynamical matrix) and by the real-space displacement of
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the atoms from their equilibrium positions in the form of a wave.

3.1.5 Symmetries of the force constants

In order to diagonalise the dynamical matrix and determine the phonon

frequencies, one must first determine the interatomic force constants from

which it is constructed. Many of these force constants are equivalent by

symmetry. Following the approach of Leibfried and Ludwig, this section will

detail these symmetries and the constraints that arise from them [61]. The

number of independent force constants after applying these constraints is of great

importance, as that is what will determine the complexity of the calculations of

the anharmonic phonons.

Translation by a lattice vector

The crystal is invariant under translation by a lattice vector R and therefore the

force constants must be also. By adding a lattice vector H to the force constants

one finds

Φ
(
R
µ
i

S
ν
j

)
= Φ

(
R+H

µ
i

S+H
ν
j

)
= Φ

(
0
µ
i

S−R
ν
j

)
= Φ

(
0
µ
i

S′
ν
j

)
. (3.30)

The vector H has been set equal to −R, and the last equality is simply a

relabelling of the indices S −R → S′. Equation 3.30 shows that by considering

the force constants for the atoms in a single unit cell, one can determine the force

constants of the whole crystal.

Permutation of the indices

The interatomic force constants are defined as derivatives of the potential energy

surface (equation 3.10). As differential operators are commutative, the force

constants are unchanged under permutation of the indices in the derivatives,

Φ
(
R1
µ1
i1

R2
µ2
i2

)
= Φ

(
R2
µ2
i2

R1
µ1
i1

)
Φ
(
R1
µ1
i1

R2
µ2
i2

R3
µ3
i3

)
= Φ

(
R2
µ2
i2

R1
µ1
i1

R3
µ3
i3

)
= Φ

(
R3
µ3
i3

R2
µ2
i2

R1
µ1
i1

)
= . . .

...

(3.31)
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Crystal symmetry

The force constants must also be invariant under transformations that respect

the symmetry of the underlying crystal structure. Each symmetry operation S of

a crystal structure can be written as a rotation Ω and a translation T . Applying

this symmetry operation will transform the atomic positions X to an equivalent

set as ∑
j

SijX
(
R
µ
j

)
=

∑
j

ΩijX
(
R
µ
j

)
+ Ti = X

(
R′

µ′

i

)
. (3.32)

If the set of vectors

{
X
(
R
µ
j

)}
could be any of the atomic positions, then{

X
(
R′

µ′

i

)}
must also describe the set of the atomic positions. The Taylor

expansion in equation 3.15 must be the same whether it is made with respect

to the original or transformed displacements,

∑
{R,µ,i}

Φ
(
R1
µ1
i1

...
Rn
µn

in

)
u
(
R1
µ1
i1

)
. . . u

(
Rn
µn

in

)
=

∑
{R′,µ′,i′}

Φ

(
R′

1

µ′
1

i′1

...

R′
n

µ′
n

i′n

)
Si′1i1

u

(
R′

1

µ′
1

i′1

)
. . . Si′ninu

(
R′

n

µ′
n

i′n

)
. (3.33)

As the atomic displacements must be equivalent on each side, one can deduce

the relation between the primed (transformed) force constants and the unprimed

ones as ∑
{R,µ,i}

Φ
(
R1
µ1
i1

...
Rn
µn

in

)
=

∑
{R′,µ′,i′}

Φ

(
R′

1

µ′
1

i′1

...

R′
n

µ′
n

i′n

)
Si′1i1

. . . Si′nin , (3.34)

thereby demonstrating that the force constants are invariant under transforma-

tion of the crystal symmetry.

Translational and rotational invariance of the potential energy

The potential energy U of the crystal is a scalar quantity and must therefore

be invariant under translation and rotation. This constraint is true for any

translation and rotation of the crystal lattice. This is distinct from the previous

constraint which argued that the atomic positions were invariant under some
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specific transformation that respected the crystal symmetry. The transformations

considered here will be infinitesimal rotations and translations of the crystal

lattice that need not respect any particular symmetry.

The constraints derived here do not directly equate one force constant with

a symmetry equivalent one, as in the previous sections. Instead they place

constraints on the entire set of force constants at once. As these constraints do not

apply directly to any specific force constant, they will not lower the complexity of

the anharmonic phonon calculations. Instead these constraints are applied when

fitting a force constant model to a set of forces and displacements to ensure that

the result is physically reasonable.

By considering a rotation of the crystal it will be demonstrated that different

orders of force constant are not independent, and by considering a translation

of the crystal a constraint will be placed on the sum of force constants that will

ensure momentum is conserved.

For a general transformation, D,∑
j

DijX
(
R
µ
j

)
=

∑
j

ΩijX
(
R
µ
j

)
+ Ti (3.35)

where Ω again represents the rotation, and T the translation, the force constants

Φ
(
R1
µ1
i1

...
Rn
µn

in

)
must transform as

ΩΦ =
∑
j1...jn

Ωi1j1 . . .ΩinjnΦ
(
R1
µ1
j1

...
Rn
µn

jn

)
(3.36)

under rotation, and are invariant under translation.

Applying this transformation to the potential energy yields

DU(. . . X
(
R
µ
i

)
. . .) = U(. . . DX

(
R
µ
i

)
. . .) = U(. . . X

(
R
µ
i

)
. . .) (3.37)

where the last equality is the condition for invariance under the transformationD.

From here, a pure rotation Ω without any translational part will be considered.

The rotation Ω may be with or without inversion.

The rotation Ω may be considered as an active transformation, creating

displacements from the original positions as the atoms are moved. If one takes

24



uΩ

Figure 3.1 Rotation Ω of the crystal structure, indicated by the grid of squares.
For atomic positions on the corner of the squares, the displacements
created by the small rotation are indicated by uΩ.

the equilibrium positions (where the force constants are known to be well defined)

to be the starting positions, then one can express the new positions as

ΩX
(
R
µ
i

)
= X

(
R
µ
i

)
+ (Ω− 1)X

(
R
µ
i

)
(3.38)

= X
(
R
µ
i

)
+ uΩ

(
R
µ
i

)
, (3.39)

where uΩ
(
R
µ
i

)
are the displacements created by applying the transformation Ω and

R are the equilibrium positions. Rearranging equation 3.39, the displacements

may be written as the difference between the transformed and the original

displacements,

uΩ
(
R
µ
i

)
=

∑
k

(Ωik − δik)X
(
R
µ
k

)
. (3.40)

The rotation Ω and the displacements it creates are shown in figure 3.1.

To find the force constants at the displaced positions one may Taylor expand

the force constants, defined at the original positions, in terms of the small

displacement uΩ. As a force constant of order n is itself an nth-order derivative of

the crystal potential U , the coefficient of the mth term in this expansion will be
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the (n+m)th derivative of U and thus will be an (n+m)th-order force constant.

The force constants at the displaced positions are therefore

Φ
(
R1
µ1
i1

...
Rn
µn

in

)∣∣∣
{uΩ}

= Φ
(
R1
µ1
i1

...
Rn
µn

in

)∣∣∣
{uΩ=0}

+
∑
Rn+1
µn+1
in+1

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

in+1

)
uΩ

(
Rn+1
µn+1

in+1

)

+
∑

Rn+1,Rn+2
µn+1,µn+2
in+1,in+2

Φ
(
R1
µ1
i1

...
Rn+2
µn+2

in+2

)
uΩ

(
Rn+1
µn+1

in+1

)
uΩ

(
Rn+2
µn+2

in+2

)
+ . . . (3.41)

As both equation 3.36 and equation 3.41 are describing the transformed force

constants, they must be equal. Consider now a rotation that is infinitesimal and

antisymmetric,

Ωik = δik + ωik where ωik = −ωki . (3.42)

As ω is infinitesimal, only terms linear in ω should be retained from equation 3.41.

Using this and equation 3.36 one arrives at the relation

n∑
λ=1

∑
i′λ

ωiλi
′
λ
Φ
(
R1
µ1
i1

...
Rλ
µλ
iλ

...
Rn
µn

in

)
=

∑
Rn+1
µn+1
in+1
i

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

in+1

)
ωin+1iX

(
Rn+1
µn+1

i

)
, (3.43)

where

uΩ
(
R
µ
i

)
=

∑
k

(Ωik−δik)X
(
R
µ
k

)
=

∑
k

(ωik+δik−δik)X
(
R
µ
k

)
=

∑
k

ωikX
(
R
µ
k

)
(3.44)

has been used.

Re-indexing in+1 → i′ and using antisymmetry ωii′ = −ωi′i on the right hand side

one finds

0 =
∑
ii′

ωii′

∑
Rn+1
µn+1

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

i′

)
X
(
Rn+1
µn+1

i

)
+

n∑
λ=1

∑
i′λ

Φ
(
R1
µ1
i1

...
Rλ
µλ
iλ

...
Rn
µn

in

)
δiiλδi′i′λ .


(3.45)
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As ω was arbitrary except for the antisymmetry constraint, the only way to

guarantee that the whole sum is zero in the general case is for the part in the

square brackets to be symmetric in i↔ i′; for each ii′ term an i′i term will cancel

it.

The final constraint on the force constants is therefore that the expression

∑
Rn+1
µn+1

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

i′

)
X
(
Rn+1
µn+1

i

)
+

n∑
λ=1

∑
i′λ

Φ
(
R1
µ1
i1

...
Rλ
µλ
iλ

...
Rn
µn

in

)
δiiλδi′i′λ (3.46)

is antisymmetric in i ↔ i′. This constraint relates the force constants of order

n to those of n + 1, and for a force constant model including terms up to order

nmax, the constraint applies to all orders: n = 0, 1, 2, . . . , nmax.

Now considering the translational invariance, constraints on the force constants,

known as the acoustic sum rules, are derived. One may repeat the procedure of

considering the translation to be an active one and again expanding the force

constants in terms of the resulting displacements.

The force constants at the displaced positions are

Φ
(
R1
µ1
i1

...
Rn
µn

in

)∣∣∣
{uT }

= Φ
(
R1
µ1
i1

...
Rn
µn

in

)∣∣∣
{uT=0}

+
∑
Rn+1
µn+1
in+1

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

in+1

)
uT

(
Rn+1
µn+1

in+1

)

+
∑

Rn+1,Rn+2
µn+1,µn+2
in+1,in+2

Φ
(
R1
µ1
i1

...
Rn+2
µn+2

in+2

)
uT

(
Rn+1
µn+1

in+1

)
uT

(
Rn+2
µn+2

in+2

)
+ . . . (3.47)

(c.f. equation 3.41). This time the displacement comes from the translation

uT
(
R
µ
i

)
= Ti. As the force constants are defined through derivatives of the

atomic positions, adding a constant term has no effect and the force constants

are invariant under this transformation,

Φ
(
R1
µ1
i1

...
Rn
µn

in

)∣∣∣
{uT }

= Φ
(
R1
µ1
i1

...
Rn
µn

in

)∣∣∣
{uT=0}

. (3.48)

For an infinitesimal transformation Ti = ti only terms linear in t need be
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preserved, therefore ∑
Rn+1
µn+1
in+1

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

in+1

)
tin+1 = 0 . (3.49)

Since this infinitesimal transformation is arbitrary, for the above to be generally

true it must be the case that∑
Rn+1
µn+1
in+1

Φ
(
R1
µ1
i1

...
Rn+1
µn+1

in+1

)
= 0 . (3.50)

As with the rotational invariance, in a force constant model considering terms

up to nmax the constraint of equation 3.50 must apply to all orders n =

0, 1, 2, . . . nmax. When nmax = 2 this becomes the familiar acoustic sum rule.

3.2 Green’s functions

In the harmonic approximation, phonons do not interact with each other. The

exact diagonalisation of the dynamical matrix establishes the harmonic phonons

as the normal modes of the system, which are completely non-interacting. In

reality, anharmonic terms in the potential introduce couplings between the normal

modes of the harmonic system causing the phonons to interact. The coupling is

described by the self-energy Σ. The self-energy is the energy a particle (in this

case a phonon) has as a result of interactions with its environment. The self-

energy corrects the harmonic phonon frequencies as

Vij(k) = Λij(k) + Σij(k) (3.51)

where Λij(k) is the diagonal matrix of harmonic phonon frequencies and Σij(k)

is a Hermitian matrix with complex elements. The self-energy is frequently

expressed as Σ = ∆ + iΓ with ∆ and Γ being the real and imaginary parts.

The imaginary part of the self-energy describes the phonon lifetimes, how long a

phonon exists for before it scatters off another phonon, and the real part describes

the renormalisation. When Σ is added to Λ the real part of Σ changes the phonon

frequencies. This change, usually a lowering, is referred to as the renormalisation.
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The elements of the self-energy are found through the Green’s function formalism,

which will be described here. This section will follow the approach of Reissland

[62] in deriving the harmonic Green’s function and the self-energy of the two

lowest-order phonon–phonon interaction processes.

A Green’s function, also called a propagator, describes the evolution of a system

from a time t′ to a time t. It is, therefore, a solution to the equation of motion

which, in the quantum-mechanical case, is

iℏ
dΨ(r, t)

dt
= ĤΨ(r, t) (3.52)

with a time-dependent solution of

Ψ(r, t) =
∑
j

Cj(t)ψj(r)e
−iϵjt/ℏ . (3.53)

Here ψj and ϵj are the eigenstates and eigenvalues of the Hamiltonian Ĥ, and

Cj(t) are general, time-dependent coefficients. These coefficients are given by

Cj(t) =

∫
ψ∗
j (r

′)Ψ(r′, t)eiϵjt/ℏdr′ . (3.54)

Substituting this expression into equation 3.53 one finds

Ψ(r, t) =

∫ ∑
j

ψ∗
j (r

′)ψj(r)e
−iϵj(t−t′)/ℏ

︸ ︷︷ ︸
g(r′,t′;r,t)

Ψ(r′, t)dr′ . (3.55)

One may now identify the Green’s function as

g(r′, t′; r, t) =
∑
j

ψ∗
j (r

′)ψj(r)e
−iϵj(t−t′)/ℏ , (3.56)

where g(r′, t; r, t) is a function that relates the initial state ψj(r
′) at t = t′ to the

final state ψj(r) at t. In order to preserve causality, the Green’s function must

be zero before the perturbation of the system at t′. To this end, it is usual to

work with a modified form of g that simplifies the boundary conditions,

G(r′, t′; r, t) = −iη(t− t′)g(r′, t′; r, t) . (3.57)
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Causality is enforced by η(t − t′), the step function, which has the value 0 for

t < t′ and 1 for t > t′. With causality enforced one can now use the above

equation to describe the propagation of a newly created phonon state at time t′

to its destruction at time t. This creation and annihilation is indicated by the

traditional operators: a+(r′, t′) and a(r, t).

The one-particle Green’s function is therefore defined as

G(r′, t′; r, t) = −iη(t− t′)⟨a(r, t)a+(r′, t′)⟩ (3.58)

where ⟨. . .⟩ denotes the thermodynamic average. There is also the possibility of a

particle being destroyed at time t′ and later created at t (i.e. the propagation of

a hole). Considering this additional term, and choosing appropriate minus signs

to indicate the direction of propagation, one can define the three basic Green’s

functions: retarded, advanced, and causal.

GR(r
′, t′; r, t) = −iη(t− t′)

(
⟨a(r, t)a+(r′, t′)⟩ − ⟨a+(r, t)a(r′, t′)⟩

)
= −iη(t− t′)⟨

[
a(r, t), a+(r′, t′)

]
⟩ (3.59)

GA(r
′, t′; r, t) = iη(t′ − t)

(
⟨a(r, t)a+(r′, t′)⟩ − ⟨a+(r, t)a(r′, t′)⟩

)
= iη(t′ − t)⟨

[
a(r, t), a+(r′, t′)

]
⟩ (3.60)

GC(r
′, t′; r, t) = −iη(t− t′)⟨a(r, t)a+(r′, t′)⟩ − iη(t′ − t)⟨a+(r, t)a(r′, t′)⟩

= −i⟨T{a(r, t)a+(r′, t′)}⟩ (3.61)

The square brackets [. . .] are the standard commutation relations and the operator

T is the time-ordering operator, which reorders the operators it acts upon such

that they are time-ordered, e.g.

T{A(t1)B(t2)C(t3)} = C(t3)B(t2)A(t1) for t3 > t2 > t1 . (3.62)

In the case of phonons, the one-phonon Green’s function may be written

analogously to equation 3.61 with the appropriate indices to describe the phonon

wavevector and band index inserted as

G(k, j, t;k′, j′, t′) = i⟨T{Akj(t)A
∗
k′j′(t

′)}⟩ , (3.63)

where Akj(t) = a+−kj(t) + akj(t). With this definition, it is no longer necessary to
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ascribe a time direction to the propagator as each term contains both k and −k.

Temperature and imaginary time

It can be shown that the thermodynamic averages can be evaluated by taking the

trace over the density matrix ρ which, for phonons, with zero chemical potential,

is given by ρ = 1
Z
e−βĤ , where β = 1

kBT
and Z is the partition function. For now

assuming t′ < t,

⟨Akj(t)A
∗
k′j′(t

′)⟩ = Tr{Akj(t)A
∗
k′j′(t

′)ρ} . (3.64)

Using the Heisenberg picture of quantum mechanics where the time dependence

is ascribed to the operators, O(t) = eiĤt/ℏO(0)e−iĤt/ℏ, this becomes

⟨Akj(t)A
∗
k′j′(t

′)⟩ = Tr{ρeiĤt/ℏAkj(0)e
−iĤt/ℏA∗

k′j′(t
′)} (3.65)

where ρ has been brought to the front using the cyclic property of the trace.

If t′ > t then the time-ordering operator in equation 3.63 swaps the order of the

operators and computing the trace yields

⟨A∗
k′j′(t

′)Akj(t)⟩ = Tr{A∗
k′j′(t

′)Akj(t)ρ} . (3.66)

Again using the cyclic property of the trace,

⟨A∗
k′j′(t

′)Akj(t)⟩ = Tr{Akj(t)ρA
∗
k′j′(t

′)} . (3.67)

Now considering the case of t = 0 and inserting the expression for ρ and a factor

of e−βĤe+βĤ = 1 one may derive

⟨A∗
k′j′(t

′)Akj(0)⟩ =
1

Z
Tr{Akj(0)e

−βĤA∗
k′j′(t

′)} (3.68)

=
1

Z
Tr{e−βĤe+βĤAkj(0)e

−βĤA∗
k′j′(t

′)} (3.69)

= Tr{ρeβĤAkj(0)e
−βĤA∗

k′j′(t
′)} . (3.70)

It may now be observed that the right hand sides of equations 3.65 and 3.70 are

31



similar. By setting β = it/ℏ in equation 3.65 they can be made identical. One

may therefore state

⟨A∗
k′j′(t

′)Akj(0)⟩ = ⟨Akj(βℏ/i)A∗
k′j′(t

′)⟩ , (3.71)

drawing a formal equivalence between temperature and imaginary time. Now

defining a second variable u with the same dimensions as β where −β < u < 0,

it can then be shown that

G(k, j, 0;k′, j′, u) = i⟨A∗
k′j′(0)Akj(u)⟩ (3.72)

G(k, j, 0;k′, j′, u+ β) = i⟨Akj(u+ β)A∗
k′j′(0)⟩ (3.73)

=
i

Z
Tr{e(u+β)ĤAkj(0)e

−(u+β)ĤA∗
k′j′(0)e

−βĤ} (3.74)

=
i

Z
Tr{euĤAkj(0)e

−(u+β)ĤA∗
k′j′(0)e

−βĤeβĤ} (3.75)

=
i

Z
Tr{euĤAkj(0)e

−uĤe−βĤA∗
k′j′(0)} (3.76)

=
i

Z
Tr{A∗

k′j′(0)e
uĤAkj(0)e

−uĤe−βĤ} (3.77)

= i⟨A∗
k′j′(0)Akj(u)⟩ (3.78)

= G(k, j, 0;k′, j′, u) (3.79)

where the Heisenberg representation of the operators, the expression for the

density matrix, ρ = 1
Z
e−βĤ , and the cyclic property of the trace has been used.

The one-phonon Green’s function is therefore shown to be periodic in imaginary

time with periodicity β,

G(k, j, 0;k′, j′, u) = G(k, j, 0;k′, j′, u+ β) . (3.80)

The harmonic one-phonon Green’s function

The one-phonon Green’s function is defined as

G(k, j, t;k′, j′, t′) = i⟨T{Akj(t)A
∗
k′j′(t

′)}⟩ . (3.81)

In the case of a Hamiltonian that does not explicitly depend on time, one may

note that the propagator may depend only on the difference t − t′ and the one-
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phonon Green’s function may be written

G(k, j;k′, j′; t) = i⟨T{Akj(t)A
∗
k′j′(0)}⟩ (3.82)

where t− t′ → t.

Given that this function is periodic in imaginary time, define u = it/ℏ and expand

as a Fourier series,

G(k, j;k′, j′;u) =
∑
p

Gkjk′j′(ωp)e
iℏωp , (3.83)

where ωp = 2π
βℏp are the so-called Matsubara frequencies, and the coefficients

Gkjk′,j′(ωp) are given by

Gkjk′j′(ωp) =
1

β

∫ β

0

G(k, j;k′, j′;u)e−iℏωpudu . (3.84)

Although this function is only defined for the values of ωp, it can be analytically

continued to a continuous variable Gkjk′j′(ω).

For a harmonic Hamiltonian,

Ĥ0 =
∑
kj

(
a+kjakj +

1

2

)
ℏωkj =

∑
kj

(
nkj +

1

2

)
ℏωkj , (3.85)

these Fourier coefficients may be determined as follows: by writing the operators

Akj(t) and A
∗
kj(t) in full,

G0(k, j;k′, j′; t) = i⟨T{
[
a+−kj(u) + akj(u)

] [
a−k′j′(0) + a+k′j′(0)

]
}⟩ , (3.86)

it can be seen the propagator will be zero unless k = k′ and j = j′, and,

furthermore, only terms where both operators act on the same wavevector will

be non-zero in the thermodynamic average, resulting in an expression

G0(k, j; t) = ⟨T{a+−kj(u)a−kj(0) + akj(u)a
+
kj(0)}⟩ . (3.87)

Using the Heisenberg representation of the operators a+−kj(u) and akj(u) and

33



noting the time-ordering operator, one finds

G0(k, j; t) = ⟨eĤ0ua+−kj(0)e
−Ĥ0ua−kj(0) + eĤ0uakj(0)e

−Ĥ0ua+kj(0)⟩ (3.88)

for u > 0 and

G0(k, j; t) = ⟨a−kj(0)e
Ĥ0ua+−kj(0)e

−Ĥ0u + a+kj(0)e
Ĥ0uakj(0)e

−Ĥ0u⟩ (3.89)

for u < 0.

For both of these cases, the exponentials may be expressed as a power series of

the number operator n, and one may take advantage of the following:

ani = ani−1a+a (3.90)

= (aa+)ia (3.91)

= (1 + a+a)ia (3.92)

= (1 + n)ia . (3.93)

As each term in the series is transformed similarly, af(n) = f(1 + n)a, where f

is any function that can be represented as a power series in n. An analogous

expression a+f(n) = f(n − 1)a+ can be derived for the creation operator.

Consequently, for u > 0,

G0(k, j; t) = ⟨en−kjℏω−kjue−(n−kj−1)ℏω−kjua+−kj(0)a−kj(0)

+ enkjℏωkjue−(nkj+1)ℏωkjuakj(0)a
+
kj(0)⟩ (3.94)

where the terms in equation 3.85 with wavevectors that do not equal ±k (as

appropriate) commute and cancel in the exponentials, as do the 1
2
ℏω±kj terms.

Cancelling exponential factors and using the using aa+ = 1 + n yields

G0(k, j; t) = ⟨eℏω−kjun−kj + e−ℏωkju(nkj + 1)⟩ . (3.95)

A similar expression is derived for u < 0,

G0(k, j; t) = ⟨e−ℏω−kjun−kj + eℏωkju(nkj + 1)⟩ . (3.96)
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For both u > 0 and u < 0 one finds

G0(k, j; t) = eℏω−kj |u|n̄−kj + e−ℏωkj |u|(n̄kj + 1) , (3.97)

where ⟨nkj⟩ = n̄kj has been used.

Now finding the coefficients from equation 3.84,

Gkj(ωp) =
1

β

∫ β

0

(
eℏωkjun̄kj + e−ℏωkju(n̄kj + 1)

)
e−iℏωpudu (3.98)

Gkj(ωp) =
1

βℏ

[{
n̄kje

ℏωkju

ωkj − iωp

+
(n̄kj + 1)e−ℏωkju

−ωkj − iωp

}
e−iℏωpu

]β
0

. (3.99)

Substituting the limits and recalling the definition of n̄kj(ω) =
1

eβℏω−1
and that

e−iβℏωp = 1, one arrives at an expression for the harmonic phonon propagator,

Gkj(ωp) =
2ωkj

βℏ
(
ω2
kj + ω2

p

) . (3.100)

This propagator is the starting point for calculating the self-energy of anharmonic

phonons.

Higher-order terms

To extend the above argument beyond the harmonic terms one continues the

expansion of the Hamiltonian as

Ĥ = Ĥ0 + Ĥ ′ (3.101)

where Ĥ ′ is given by

Ĥ ′ =
∑
{k,j}

V
(
k1
j1

k2
j2

k3
j3

)
Ak1j1Ak2j2Ak3j3

+
∑
{k,j}

V
(
k1
j1

k2
j2

k3
j3

k4
j4

)
Ak1j1Ak2j2Ak3j3Ak4j4 . (3.102)
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The operators V
(
k1
j1

... kn
jn

)
are given by

V
(
k1
j1

... kn
jn

)
=

1

n!

√
ℏ

2ωk1j1

. . .

√
ℏ

2ωknjn

Φ̃
(
k1
j1

... kn
jn

)
. (3.103)

The factors of
√

ℏ
2ωkj

are there to ensure Akj are dimensionless; the tensors Φ̃, a

generalisation of the dynamical matrix, are given by

Φ̃
(
k1
j1

... kn
jn

)
=

Φ
(

0
µ1
i1

...
Rn
µn

in

)
√
Mµ1 . . .Mµn

E
(

0
µ1
i1

k1

j1

)
. . . E

(
Rn
µn

in

kn

jn

)
× exp [i(k2 ·R2 + . . .+ kn ·Rn)] . (3.104)

The Green’s function for such a perturbation has been derived by Maradudin and

Fein [65]. It is given by

G(k, j;k′, j′;u) =

〈
T{Ākj(u)Āk′j′(0)}

×
∞∑
n=0

(−1)n

n!

∫ β

0

dβ1 . . .

∫ β

0

dβnH̄
′(β1) . . . H̄

′(βn) ,

〉
(3.105)

where the notation Ō(u) = eĤ0uO(0)e−Ĥ0u has been introduced. Each term in

this expansion may be represented by a series of Feynman diagrams describing

the various phonon–phonon interaction processes of increasing complexity. Each

term represents the set of distinct, connected diagrams with n vertices, where n

is the order of the expansion term. The lines connecting the vertices represent

the phonon propagator (i.e. a phonon).

The lowest order diagrams are the so-called bubble and loop diagrams shown

in figure 3.2. The bubble diagram represents a single phonon splitting into two

with wavevectors k1 and k2 before recombining into a single phonon with the

same momentum as the original. The loop diagram shows the simultaneous

creation and destruction of an “instantaneous” phonon through a single 4-

phonon interaction. These two diagrams are contributions to the first term in

the expansion in equation 3.105. Their contributions to the self-energy will

be calculated and the phonon renormalisation as a result of these interaction

processes will be found.
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kj kj′

k1j1

k2j2
(a) Bubble diagram

kj k′j

k1j1

(b) Loop diagram

Figure 3.2 The lowest-order contributions to equation 3.105. The bubble
diagram consists of two 3-phonon processes and the loop diagram
consists of a single 4-phonon interaction.

The effect of each interaction diagram can be found by taking the product of the

interaction coefficients V
(
k1
j1

... kn
jn

)
, a weighting factor that represents the number

of possible ways the diagram can be connected, and a product of the harmonic

phonon propagators G0
kj(ωp) — one for each line in the diagram — and summing

the result over all the possible wavevectors k and band indices j of the phonons

involved.

The self-energies of these two diagrams are

Σbubble
p (kjj′) =

βℏ2

16

1
√
ωkjωkj′

∑
k1k2
j1j2

Φ̃
(
k
j′

−k1
j1

−k2
j2

)
Φ̃
(−k

j
k1
j1

k2
j2

)
ωk1j1ωk2j2

∆(k − k1 − k2)

×
{

n1 + n2 + 1

ω1 − iωp + ω2

+
n2 − n1

ω1 − iωp − ω2

+
n2 − n1

ω1 + iωp − ω2

+
n1 + n2 + 1

ω1 + iωp + ω2

}
(3.106)

and

Σloop
p (kjj′) =

ℏ2

8

∑
k1j1

2n1 + 1

ωk1j1

Φ̃
(
k
j

k
j′

k1
j1

−k1
j1

)
(3.107)

where ∆(K) is one if K is a reciprocal lattice vector and zero otherwise, and

the ks and js in the summations correspond to those in figure 3.2 [62]. The

expression for the loop diagram is stated without proof, the bubble diagram will

be derived in full in the following section.
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Evaluating the Bubble Diagram

This section will continue to follow the approach of Reissland [62]. Beginning

from the expression for the bubble diagram in terms of the harmonic phonon

propagators,

Σbubble
p (kjj′) = 18β2

∑
k1k2
j1j2

∑
p1
p2

V
(
k
j′

−k1
j1

−k2
j2

)
V
(−k

j
k1
j1

k2
j2

)
×G0

k1j1
(ωp1)G

0
k2j2

(ωp2)δ(p− p1 − p2) , (3.108)

where β is the usual 1
kBT

, V are the third order interaction coefficients, G0
kj(ω) is

the harmonic phonon propagator, and δ is the delta function; the ps are integers

that index the Matsubara frequencies given by

ωp =
2π

βℏ
p . (3.109)

Focussing on the second line of equation 3.108 and substituting in the expression

for G0
kj(ω) (equation 3.100) gives

4ω1ω2

β2ℏ2
∑
p1
p2

1

ω2
p1
− ω2

1

× 1

ω2
p2
− ω2

2

× δ(p− p1 − p2) . (3.110)

Here the notation has been condensed somewhat so ω1 = ωk1j1 , etc. The delta

function imposes the restriction p2 = p− p1 and therefore ωp2 = ωp − ωp1 . Using

this one can rewrite the above expression as

4ω1ω2

β2ℏ2
∞∑

p1=−∞

1

ω2
p1
− ω2

1

× 1

(ωp − ωp1)
2 − ω2

2

. (3.111)

Sums of this type can be solved by a contour integral, so at this point it is prudent

to turn the two double poles into four simple poles,

4ω1ω2

β2ℏ2
∞∑

p1=−∞

1

(ω1 − iωp1)

1

(ω1 + iωp1)

1

(ω2 − i(ωp − ωp1))

1

(ω2 + i(ωp − ωp1))
.

(3.112)
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ω1−ω1

−ω2 + iωp ω2 + iωp

Cp1

Figure 3.3 Complex plane of iωp1 showing the contour Cp1 and poles of
f(iωp1)n(iωp1). Blue crosses indicate the poles of n(iωp1), red
squares indicate the poles of f(iωp1).

To evaluate a sum of the form

∞∑
p1=−∞

f(iωp1)

one requires a function n(iωp1) that has poles at the Matsubara frequencies, and

has unit residue at these poles. Performing a contour integral of f(iωp1)n(iωp1)

around all poles and recognising that it is equal to the sum of the residues allows

one to draw a relation between the sum and the residues of f(iωp1).

The function that has the required properties is the Bose-Einstein distribution

βℏn(iωp1) = βℏ
1

eiβℏωp1 − 1
(3.113)

where the factor of βℏ ensures the residue of the function at each of the poles is

1.

Now one integrates

βℏ
∮
Cp1

f(iωp1)n(iωp1)d(iωp1) (3.114)

over the contour Cp1 where Cp1 is the square drawn out by the points (2πp1
βℏ +
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π
βℏ)(±1± i). That is, it passes midway between the poles of n(iωp1). The contour

and the poles of this integral are shown in figure 3.3. This integral goes to zero

as p1 → ∞. Owing to the choice of contour, n(iωp1) is a bounded function on the

square Cp1 , and therefore

|n(iωp1)| ≤M , (3.115)

whereM is some finite number. Additionally, one can see that the form of f(iωp1)

is such that zf(z) → 0 as |z| → ∞. In other words, f(z) goes to zero faster than
1
R

where R = |z|. This is only true for sufficiently large R, beyond the poles of

f . Therefore, for large R,

|f(iωp1)| ≤
ϵ

R
(3.116)

where ϵ is a small number that goes to zero as R → ∞.

The final relation to make use of is the fact that if |f(z)| ≤ M at all points on

the contour Cp1 , then the integral must be bounded as∣∣∣∣∣
∫
Cp1

f(z)dz

∣∣∣∣∣ ≤ |Ml| (3.117)

where l is the length of the contour. Putting all this together one can say

lim
p1→∞

∣∣∣∣∣
∮
Cp1

βℏf(iωp1)n(iωp1)d(iωp1)

∣∣∣∣∣ ≤ lim
R→∞

βℏMlϵ

R
= 0 , (3.118)

as l ∝ R. Therefore, the contour integral in equation 3.114 goes to zero as p1

goes to infinity.

The other way to compute this integral is by using the residue theorem. The

integral is equal to 2πi times the sum of the residues. There are simple poles at

the Matsubara frequencies thanks to the Bose-Einstein distribution, and at the

four poles in f(iωp1). Using the relation

Res {f(z)g(z), z = zf} = g(zf )× Res {f(z), z = zf} , (3.119)

where zf is a pole of f(z), and recalling that the residue of βℏn(iωp1) at the
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Matsubara frequencies is 1, it can be written

lim
p1→∞

∮
Cp1

βℏf(iωp1)n(iωp1)d(iωp1) =

2πi

 ∞∑
p1=−∞

f(iωp1) + βℏ
∑
ωf

n(ωf )Res {f(iωp1), iωp1 = ωf}

 (3.120)

where ωf are the poles of f(iωp1). Since the integral on the left-hand side goes

to zero one can write

∞∑
p1=−∞

f(iωp1) = −βℏ
∑
ωf

n(ωf )Res {f(iωp1), iωp1 = ωf} . (3.121)

If desired, this can be written as a contour integral again as

∞∑
p1=−∞

f(iωp1) = − βℏ
2πi

∮
C

f(iωp1)n(iωp1)d(iωp1) , (3.122)

where C this time only includes the poles of f(iωp1) and not the poles of n(iωp1).

Returning to equation 3.112 and using equation 3.121 one finds the expression

−4ω1ω2

βℏ

{
− n(ω1)

2ω1

1

(ω2 − iωp + ω1)

1

(ω2 + iωp − ω1)

+
n(−ω1)

2ω1

1

(ω2 − iωp − ω1)

1

(ω2 + iωp + ω1)

− n(ω2)

2ω2

1

(ω1 − iωp − ω2)

1

(ω1 + iωp + ω2)

+
n(−ω2)

2ω2

1

(ω1 − iωp + ω2)

1

(ω1 + iωp − ω2)

}
.

(3.123)

41



Using the relations

n(−ω) = 1

e−βℏω − 1
(3.124)

=
eβℏω

1− eβℏω
(3.125)

= − eβℏω

eβℏω − 1
(3.126)

= −1 + eβℏω − 1

eβℏω − 1
(3.127)

= − 1

eβℏω − 1
− eβℏω − 1

eβℏω − 1
(3.128)

n(−ω) = − [n(ω) + 1] (3.129)

and

n(iωp + ω) =
1

eβℏ(iωp+ω) − 1
(3.130)

=
1

eβℏiωpeβℏω − 1
(3.131)

=
1

e2πieβℏω − 1
(3.132)

=
1

eβℏω − 1
(3.133)

n(iωp + ω) = n(ω) (3.134)

and cancelling the minus signs, one arrives at the expression

−4ω1ω2

βℏ

{
− n(ω1)

2ω1

1

(ω2 − iωp + ω1)

1

(ω2 + iωp − ω1)

− n(ω1) + 1

2ω1

1

(ω2 − iωp − ω1)

1

(ω2 + iωp + ω1)

− n(ω2)

2ω2

1

(ω1 − iωp − ω2)

1

(ω1 + iωp + ω2)

− n(ω2) + 1

2ω2

1

(ω1 − iωp + ω2)

1

(ω1 + iωp − ω2)

}
.

(3.135)

This can now easily be split into partial fractions and, using the notation n(ω1) =
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n1 and n(ω2) = n2, this becomes

1

βℏ

{
n1

ω2 − iωp + ω1

+
n1

ω2 + iωp − ω1

+
n1 + 1

ω2 − iωp − ω1

+
n1 + 1

ω2 + iωp + ω1

+

n2

ω1 − iωp − ω2

+
n2

ω1 + iωp + ω2

+
n2 + 1

ω1 − iωp + ω2

+
n2 + 1

ω1 + iωp − ω2

}
.

(3.136)

Summing like terms one finds

1

βℏ

{
n1 + n2 + 1

ω1 − iωp + ω2

+
n2 − n1

ω1 − iωp − ω2

+
n2 − n1

ω1 + iωp − ω2

+
n1 + n2 + 1

ω1 + iωp + ω2

}
.

(3.137)

One now transforms to a continuous variable where f(ω) = f(iωp) when ω = iωp.

Formally, this is done by writing iωp = ω+ iϵ where ϵ→ 0. Applying this process

to functions of the form 1
ix

gives

lim
ϵ→0

1

x± iϵ
=

1

(x)p
∓ iπδ(x) , (3.138)

where p indicates the principle part of the Laurent series. This can be proven as

lim
ϵ→0

1

x± ϵ
= lim

ϵ→0

x∓ iϵ

x2 + ϵ2
(3.139)

= lim
ϵ→0

{
x

x2
∓ i

ϵ

x2 + ϵ2

}
(3.140)

=
1

x
∓ iπδ(x) , (3.141)

where the last step has been made by identifying the imaginary part as a

Lorentz curve which becomes infinitely narrow in the limit ϵ → 0. An infinitely

narrow Lorentz curve is the dirac delta function with the factor of π included for

normalisation.

Applying this to the expression for the bubble self-energy and including the rest
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of the terms from equation 3.108 one gets

Σbubble
p (kjj′) = 18β2

∑
k1k2
j1j2

V
(
k
j′

−k1
j1

−k2
j2

)
V
(−k

j
k1
j1

k2
j2

)
× 1

βℏ

{
n1 + n2 + 1

ω1 − iωp + ω2

+
n2 − n1

ω1 − iωp − ω2

+

n2 − n1

ω1 + iωp − ω2

+
n1 + n2 + 1

ω1 + iωp + ω2

}
. (3.142)

Adding the prefactors of equation 3.103 gives an extra factor of

1

3!× 3!× 8

1
√
ωkj

√
ωkj′

1

ωk1j1ωk2j2

,

and the final result is

Σbubble
p (kjj′) =

βℏ2

16

1
√
ωkjωkj′

∑
k1k2
j1j2

Φ̃
(
k
j′

−k1
j1

−k2
j2

)
Φ̃
(−k

j
k1
j1

k2
j2

)
ωk1j1ωk2j2

∆(k − k1 − k2)

×
{

n1 + n2 + 1

ω1 − iωp + ω2

+
n2 − n1

ω1 − iωp − ω2

+
n2 − n1

ω1 + iωp − ω2

+
n1 + n2 + 1

ω1 + iωp + ω2

}
. (3.143)

This expression represents the real part of the self-energy arising from the bubble

interaction process. It is used in the attempt to extend alamode’s SCPH

algorithm to include the contribution from this process. The results of this are

discussed in chapter 5. The corresponding expression for the loop diagram is

already included in the standard SCPH algorithm as it will described in the next

chapter.

3.3 Density functional theory

Density functional theory (DFT) is one of the most commonly used methods

for calculating the material properties of a solid from first principles. The

implementation of DFT used in this thesis is that of the Vienna ab-initio

simulation package (VASP) [66–68]. For the experienced reader it suffices
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to say that VASP is a plane-wave pseudopotential DFT code that, in this

investigation, made use of the projector augmented wave (PAW) pseudopotentials

[69]. For readers not familiar with DFT, the fundamental theory of DFT

common to all implementations will be discussed in section 3.3.1, the theory

relevant specifically to VASP, namely the pseudopotential and PAW approach, is

described in sections 3.3.2, approximations to the exchange–correlation functional

are discussed in section 3.3.3, and finally the calculation of forces in DFT is

discussed in section 3.3.4

3.3.1 Density functional theory fundamentals

Calculating material properties from quantum-mechanical first principles typi-

cally requires knowledge of the electronic many-body wavefunction. A direct

solution of the Schrödinger equation is usually not possible due to the large

number of degrees of freedom that are present. One simplification that is

frequently made is the Born-Oppenheimer approximation, which assumes that the

heavy nuclei can be considered static compared to the lighter and faster electrons.

This simplifies matters, as one is left to solve only the electronic system, but it is

not enough to turn the problem into one that is tractable. DFT is based on the

principle that the complex, many-body wavefunction can be replaced with the

much simpler electron density without losing any information about the system.

It is underpinned firstly by the idea that the ground state electron density can

be determined by minimising the energy with respect to the electron density, and

secondly that the electron density that provides this ground-state electron density

must be that of the the ground-state wavefunction. This is presented formally in

the two Hohenberg-Kohn theorems.

The Hohenberg-Kohn theorems

Consider a system of N electrons under the influence of an external potential,

V (r), and the electron-electron coulomb interaction Vee [70]. The Hamiltonian of

such a system is

H = T + V (r) + Vee , (3.144)
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where T is the kinetic energy. The first Hohenberg-Kohn theorem states that the

external potential, V (r), is uniquely defined by the ground state electron density.

The proof of this will be done in two parts; firstly it will be shown that there

is a unique mapping between the potential and the ground-state wavefunction,

and secondly that there is another unique mapping between the ground-state

wavefunction and the ground-state electron density.

Beginning with the first part, consider two different potentials represented by

operators VA and VB that give the same ground state wavefunction |ϕ0⟩. The two
associated Hamiltonians acting on the ground state gives two energies, EA and

EB,

HA |ϕ0⟩ = (T + VA + Vee) |ϕ0⟩ = EA |ϕ0⟩ (3.145a)

HB |ϕ0⟩ = (T + VB + Vee) |ϕ0⟩ = EB |ϕ0⟩ . (3.145b)

Subtracting 3.145b from 3.145a one finds

(VA − VB) |ϕ0⟩ = (EA − EB) |ϕ0⟩ (3.146)

which can be rearranged as

VA |ϕ0⟩ = VB |ϕ0⟩+ (EA − EB) |ϕ0⟩ (3.147)

VA |ϕ0⟩ = [VB + (EA − EB)] |ϕ0⟩ . (3.148)

Assuming that the wavefunction is not zero and given that EA − EB is a scalar

constant, the above equation implies that VA and VB are identical up to a

constant. Two different potentials cannot therefore give the same ground state

and the ground state |ϕ0⟩ uniquely defines the potential V (r).

A similar argument relates the ground state, |ϕ0⟩, to the electron density n(r).

Consider two different ground states |ϕA
0 ⟩ and |ϕB

0 ⟩ which, as has just been proven,

must come from two different potentials VA(r) and VB(r). Now imagine that

these two ground states, |ϕA
0 ⟩ and |ϕB

0 ⟩, have the same electron density n0(r).

The ground-state energy of state |ϕA
0 ⟩ in potential VA(r) is

EA = ⟨ϕA
0 |HA |ϕA

0 ⟩ (3.149)

where HA = T + VA + Vee as before. The energy EA, as it is the ground state
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energy, must be less than the energy of the other state, |ϕB
0 ⟩, in the same potential,

EA < ⟨ϕB
0 |HA |ϕB

0 ⟩ . (3.150)

Now using

HA = T + VA + Vee (3.151)

= T + VA + VB − VB + Vee (3.152)

= HB − VB + VA (3.153)

and substituting 3.153 into 3.150,

EA < ⟨ϕB
0 |HB − VB + VA |ϕB

0 ⟩ (3.154)

EA < ⟨ϕB
0 |HB |ϕB

0 ⟩+ ⟨ϕB
0 |VA − VB |ϕB

0 ⟩ (3.155)

EA < EB +

∫
d3r [VA(r)− VB(r)]n0(r) . (3.156)

Using the same argument for the other potential one arrives at the same relation

with subscripts A and B exchanged,

EB < EA −
∫

d3r [VA(r)− VB(r)]n0(r) . (3.157)

Summing 3.156 and 3.157 leads to the inequality

EA + EB < EA + EB . (3.158)

This is clearly untrue, and therefore the assumption that both |ϕA
0 ⟩ and |ϕB

0 ⟩ have
the same ground state electron density n0(r) is also untrue.

So far it has been proven firstly that each ground-state wavefunction corresponds

to a unique potential, and secondly that each ground-state electron density

corresponds to a unique ground-state wavefunction. These statements can be

combined to formally state the first Hohenberg-Kohn theorem.

Theorem 1 The external potential V (r) is a unique functional of the ground-

state electron density n0(r).

47



In other words, if one can find the ground-state electron density n0(r), one can

find the external potential V (r).

The question remains how one is to find the electron density of the ground state.

The second Hohenberg-Kohn theorem states that the functional E[n(r)], which

gives the total energy of the system, is minimised only when the electron density

is that of the true ground state, n(r) = n0(r). If there was an electron density

n(r) that was lower in energy than the ground state electron density n0(r), then

E[n(r)] < E[n0(r)] . (3.159)

It is known from the first Hohenberg-Kohn theorem that the external potential,

and thus the Hamiltonian (H = T + V + Vee), is a unique functional of the

ground-state electron density,

H[n0(r)] = T [n0(r)] + V [n0(r)] + Vee[n0(r)] . (3.160)

The ground-state wavefunction is also a unique functional of the ground-state

electron density,

|ϕ0⟩ = |ϕ0[n0(r)]⟩ . (3.161)

Therefore, the Hamiltonian of the true ground-state electron density H[n0(r)]

(the actual Hamiltonian of the system) yields an actual ground-state energy of

E0[n0] = ⟨ϕ0[n0(r)]|H[n0(r)] |ϕ0[n0(r)]⟩ . (3.162)

The energy of the same Hamiltonian in the “ground state” coming from the

electron density that is posited to be lower in energy is

E0[n] = ⟨ϕ0[n(r)]|H[n0(r)] |ϕ0[n(r)]⟩ , (3.163)

and if E0[n] < E0[n0], then

⟨ϕ0[n(r)]|H[n0(r)] |ϕ0[n(r)]⟩ < ⟨ϕ0[n0(r)]|H[n0(r)] |ϕ0[n0(r)]⟩ , (3.164)

which is forbidden by the variational principle. This means any electron density

n(r) that is not the ground state electron density n0(r) will have a higher energy

than that of the ground state, formally proving the second Hohenberg-Kohn
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theorem.

Theorem 2 The functional of the electron density that gives the total energy is

minimised only when the electron density is that of the ground state.

This allows one to find the electron density of the ground state by minimising

the energy functional E[n]. Once the ground-state electron density is found,

the potential V (r) and thus the Hamiltonian can be determined. From the

Hamiltonian the wavefunctions are calculated, from which all properties of the

system can be derived.

Kohn–Sham equations

The Hohenberg-Kohn theorems are promising, but a practical implementation is

needed if one is to determine the ground state electron density. The second

Hohenberg-Kohn theorem suggests that one should seek to find the electron

density that minimises the energy, but doing this for a many-body system can be

difficult.

To overcome this, the solution suggested by Kohn and Sham is commonly used

[71]. The Kohn–Sham approach turns the many-body interacting system of

electrons into a fictitious system of non-interacting electrons that has the same

ground state electron density. One may be concerned that the first Hohenberg-

Kohn theorem mentioned earlier demands that the potentials of these systems

be the same, but this is not the case, as the real (interacting electrons) and

fictitious (non-interacting electrons) potentials refer to different systems. The

Hamiltonian acting on the full, many-body wavefunction, |ϕ⟩, is replaced by a

fictitious, single-particle Hamiltonian acting on single-particle orbitals, |ψ⟩.

H |ϕ⟩ = (T + V + Vnuc) |ϕ⟩ = E |ϕ⟩ , (3.165)

where V is the full electron-electron potential and Vnuc is the potential arising

from the nuclei, becomes

HS |ψ⟩ = (TS + VS + Vnuc) |ψ⟩ = ES |ψ⟩ . (3.166)
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The subscript S indicates the single particle operators, and the original many-

body wavefunction, |ϕ⟩, has been replaced by a single particle wavefunction of

the fictitious system, |ψ⟩. VS can be further split into the Coulomb repulsion

between electrons and the so-called “exchange–correlation” part,

VS = Vee + Vxc . (3.167)

Vee is the Coulomb interaction from the other electrons in the system; it neglects

quantum fluctuations, their correlations, and the exchange interaction that arises

from the Fermionic nature of the electrons making it equivalent to the mean-field

or Hartree approximation. This part of the potential can be calculated exactly.

The neglected correlations are accounted for in the Vxc term. This term cannot

be exactly calculated, however many approximations exist to estimate it. It is

these approximations that make DFT inexact.

Correlations between electrons lower the energy. Quantum mechanical fluctu-

ations in the electron density cause electrons to be instantaneously nearer or

farther from each other than their average separation. If the electron density of

one electron fluctuates such that the electron cloud is brought closer to another,

the fluctuations of the second electron’s density will have an increased likelihood

of being in a direction that will lower the energy of the electron pair. This also has

an impact on the kinetic energy as a fluctuation of one electron density is likely

to induce another to move, creating correlations in the velocities of the electrons.

This creates a difference in the kinetic energy of the independent electrons and

the interacting ones, hence T → TS. This difference in the kinetic energy is also

included in Vxc.

The other effect included in the Vxc term is the exchange interaction. This is the

interaction that occurs due to the Pauli exclusion principle, and the requirement

for the wavefunction to be antisymmetric. This interaction causes a repulsion

between the electrons of like spin which causes them to move apart and lowers

the energy further.

In order to implement the Kohn–Sham approach to finding the ground state

electron density, there are two main practical considerations that must be made.

The first is that the Kohn–Sham orbitals of the fictitious non-interacting electrons

must be represented in some manageable way; they must be expanded in some
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basis,

|ψi(r)⟩ =
∑
j

Cij |θj(r)⟩ , (3.168)

where Cij are the coefficients that express the state |ψi(r)⟩ in terms of the basis

functions |θj(r)⟩.

The basis expansion used in VASP will be discussed in the next section. The

second consideration is the approximation to the exchange–correlation functional

Vxc. Approximations to this functional are discussed in section 3.3.3.

3.3.2 Plane wave density functional theory and

pseudopotentials

There is a need for an expansion of the Kohn–Sham wavefunctions in some basis

set. Two obvious choices present themselves: atomic orbitals, or plane waves.

Representing the wavefunction as a superposition of atomic orbitals has the

advantage of being physically motivated; a collection of independent atoms makes

a good starting point for the interacting system. However, the drawback of such

an approach is that the basis functions are difficult to manipulate mathematically.

This makes the mathematical routines that the DFT codes rely on very slow and

consequentially slows down the whole code.

The other approach is to use a mathematically simple basis and assume that

the speedup in the manipulation of the basis functions offsets the hindrance of

having to perform more of such operations. The basis chosen by VASP is plane

waves. This also has a physical justification; delocalised electrons in metals,

for example, lend themselves well to an expansion in plane waves, but the plane

wave basis is less appropriate to electrons that are in the tightly bound core states

where there is little hybridisation of the states and the electrons behave as in the

isolated atom. In addition, it is difficult for plane waves to accurately describe

the rapidly changing wavefunction close to the nucleus, where a large basis set

would be required1. These rapid changes occur due to the constraint that the

wavefunction of the valence electrons must be orthogonal to the wavefunctions of

1One may wonder whether it is possible to use both approaches, plane waves to describe the
delocalised electrons and atomic orbitals to describe the core. Such approaches exist and are
called augmented plane wave approaches.
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Figure 3.4 Comparison of the real (blue - dashed) potential and wavefunction
and the pseudo (red - solid) potential and wavefunction as a function
of distance from the nucleus r. Above some chosen cutoff radius
rc, the pseudo-wavefunction and potential exactly match their real
counterparts.

the core electrons.

To circumvent this problem, the idea of a pseudopotential is introduced. This

replaces the real potential coming from the nucleus and the core electrons, which

has little effect on the bonding, with a pseudopotential that is much smoother,

and therefore requires fewer plane waves to describe than the true potential. The

pseudopotential is designed so that the pseudowavefunction matches the true

wavefunction outside some cutoff, but provide a smoother function inside this

radius (see figure 3.4).

To obtain the greatest advantage from these pseudopotentials, one requires

them to be as slowly varying as possible, so that the minimum number of

Fourier coefficients is needed to describe them. This is referred to as the

“softness” of the pseudopotential. Pseudopotentials that vary more slowly are

softer than those that vary quickly. The softness of the pseudopotential is

limited by the requirement that the number of electrons inside the core region

should be conserved. This is equivalent to the statement that norm of the
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pseudowavefunction must equal one electron, hence the name norm-conserving

pseudopotential.

The condition of norm conservation can be relaxed, but doing so will mean that

the Kohn–Sham wavefunctions will no longer be orthogonal and normalised. This

is where the projector augmented wave (PAW) method is used. The PAWmethod

does not require that the norm of the pseudowavefunctions is equal to that of the

true Kohn–Sham wavefunctions, but does require that the two wavefunctions are

related by a linear transformation, T , as

|ψ⟩ = T |ψ̃⟩ , (3.169)

where |ψ⟩ is the true Kohn–Sham orbital, and |ψ̃⟩ is the pseudised version of this

orbital.

Inserting this into the Schrödinger equation one finds

HT |ψ̃⟩ = ET |ψ̃⟩ (3.170)

H |ψ̃⟩ = ET †T |ψ̃⟩ (3.171)

H |ψ̃⟩ = ES |ψ̃⟩ . (3.172)

The matrix S is the overlap matrix and describes the non-orthogonality of the

pseudowavefunctions |ψ̃⟩. Equation 3.172 can be identified as a generalised

eigenvalue problem. This type of problem is slightly more complex to solve

numerically, but the smaller basis set made possible by the PAW approach

outweighs this drawback.

The form of T must be that it leaves |ψ⟩ unchanged outside the cutoff radius,

but applies a transformation inside this radius. The form

T = I+ T̂ (3.173)

is therefore suggested, where I is the identity matrix and leaves the wavefunctions

unchanged and T̂ represents the difference between the true Kohn–Sham

wavefunction and the pseudowavefunction around the ionic core.

At this point it is useful to expand the pseudised Kohn–Sham wavefunctions

in some basis functions as in equation 3.168. These basis functions are most
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= + −
r r r r

|ψ⟩ = |ψ̃⟩ + |θi⟩ ⟨pi|ψ̃⟩ − |θ̃i⟩ ⟨pi|ψ̃⟩

Figure 3.5 Schematic indicating how the true wavefunction is obtained from the
pseudowavefunction through the use of projectors. The cutoff radius
is indicated by the dotted line

commonly chosen to be the solutions to the Kohn–Sham Schrödinger equation

for an isolated atom,

|ψ̃⟩ =
∑
i

Ci |θ̃i⟩ . (3.174)

The coefficients Ci are determined by the projectors |pi⟩ of the basis functions,

defined by ⟨pi|θ̃j⟩ = δij and
∑

i |pi⟩ ⟨pi| = I as

Ci = ⟨pi|ψ̃⟩ . (3.175)

The transformation T can now be written out explicitly as

T = I+
∑
i

(|θi⟩ − |θ̃i⟩) ⟨pi| . (3.176)

This transformation is applied to the original Kohn–Sham wavefunction to

transform it to the pseudised wavefunction,

|ψ⟩ = T |ψ̃⟩ = |ψ̃⟩+
∑
i

|θi⟩ ⟨pi|ψ̃⟩ − |θ̃i⟩ ⟨pi|ψ̃⟩ . (3.177)

Equation 3.177 is shown schematically in figure 3.5.

It is now possible to work with the pseudowavefunctions, |ψ̃⟩ , and relate them

back to the true wavefunctions, |ψ⟩, through the projectors of the basis functions,

|pi⟩. If an observable A is defined in the Kohn–Sham basis, then it can be

expressed in the pseudobasis as

Ã = A+
∑
ij

|pi⟩ (⟨θi|A|θj⟩ − ⟨θ̃i|A|θ̃j⟩) ⟨pj| . (3.178)
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With this approach the requirement for norm-conservation in the pseudopoten-

tials has been removed while still being able to compute observables of the

system. The number of plane waves required to represent the pseudowavefunction

is decreased and the computational efficiency is significantly improved, making

more demanding calculations tractable as well as increasing the throughput of

calculations.

3.3.3 Approximations to the exchange–correlation functional

DFT is an exact theory up to the point where the potential is split into

the Coulomb part and the exchange and correlation part. Although the first

Hohenberg-Kohn theorem states that the exchange–correlation functional exists,

there is currently no exact form that is known — it must be approximated.

The simplest approximation that can be made is to assume that the true

exchange–correlation energy density is equal point-by-point (locally) to that of

the homogeneous electron gas of the same density. This approximation is known

as the local density approximation (LDA) and was the approach proposed by

Hohenberg and Kohn in their seminal paper [70]. The exchange–correlation

energy in the LDA is given by

ELDA
xc [n(r)] =

∫
d3r n(r) ϵhom.

xc (n)
∣∣
n=n(r)

(3.179)

where ϵhom.
xc (n)

∣∣
n=n(r)

is the exchange correlation energy of the of the homogeneous

electron gas at the density n(r) corresponding to the volume element d3r. The

function ϵhom. has been determined exactly from Monte-Carlo simulations [72].

This approximation works well in many cases, but it is known to, in general,

overestimate the bonding strength and perform poorly in certain situations

[73, 74]. To correct this, the assumption that each volume element acts as a locally

homogeneous system can be improved upon with the assumption that each volume

element depends on the local density and its gradients in an approximation

known as the generalised gradient approximation (GGA). Unlike LDA, which

is determined entirely through first principles calculations and Monte-Carlo

simulations, the GGA exchange–correlation functional must be parameterised

somehow, and some parameters are fitted to reproduce experimentally observed
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data. In this vein, the GGA functionals are not truly a first-principles

approximation, but once the functional is made it is general enough that it can

be applied to almost any system. There are many types of GGA functionals,

some of which are designed for general use, and some that are designed to work

well with specific systems or to accurately calculate a specific material property.

Some common GGA functionals implemented in VASP are PBE [75], PBEsol

[76], AM05 [77–79], and PW91 [80].

3.3.4 Forces in density functional theory

To calculate the dynamics of the atoms it will be necessary to calculate forces

from DFT. These forces are calculated as the derivative of the potential energy

with respect to the atomic position through the Hellmann–Feynman theorem

[81, 82].

Although the Hellmann–Feynman theorem applies generally for any parameter

on which the energy eigenvalue is dependent, it shall here be stated explicitly for

one of the atomic coordinates X,

FX = −dE(X)

dX
= −

〈
ψ

∣∣∣∣dHdX
∣∣∣∣ψ〉 . (3.180)

The wavefunctions |ψ⟩ are the Kohn–Sham wavefunctions. The above relation

will be crucial to the phonon calculations performed in the following chapters

which rely heavily on the calculation of the forces.
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Chapter 4

Methods

4.1 Finite displacement

The methods for determining the force constants in this thesis are all variations

of the finite displacement approach. The finite displacement approach involves

displacing an atom from its static lattice position by some known displacement,

computing the force on the atom using DFT, and then fitting the resulting force–

displacement data to a system of equations of the form

F
(
R
µ
i

)
= −

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
u
(
S
ν
j

)
, (4.1)

where F is a vector of the forces computed from DFT, Φ is the matrix of harmonic

force constants, and u is the vector of atomic displacements. This approximates

the derivative in the definition of the force constants as

∂F

∂u
=

∆F

∆u
, (4.2)

where ∆u is chosen to be sufficiently small. This is the finite difference ap-

proximation — the finite displacement method of computing the force constants

employs the finite difference approximation to the derivative.

The technique can be generalised to higher-order force constants; a force constant
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model up to fourth order,

F
(
R
µ
i

)
= −

∑
{S,ν,j}

Φ
(
R
µ
i

S
ν
j

)
u
(
S
ν
j

)
−

∑
{
S,ν,j
T ,η,k

}Φ
(
R
µ
i

S
ν
j

T
η
k

)
u
(
S
ν
j

)
u
(
T
η
k

)

−
∑

{
S,ν,j
T ,η,k
U ,τ,l

}Φ
(
R
µ
i

S
ν
j

T
η
k

U
τ
l

)
u
(
S
ν
j

)
u
(
T
η
k

)
u
(
U
τ
l

)
, (4.3)

is employed and a least-squares fit is performed to determine the optimal set of

force constants.

In a finite displacement calculation, an atom or atoms are displaced in order to

target certain force constants. The particular arrangement of displaced atoms will

be referred to as a displacement pattern. Each element in the matrix Φ relates

a specific displacement pattern to a force created on an atom in a particular

direction. Many of these force constants relate forces on different atoms, or in

different directions, to the same displacement pattern, and many of the force

constants and displacement patterns are equivalent by symmetry. Therefore the

symmetry constraints of section 3.1.5 are used to determine some minimum set

of displacement patterns needed to fit all force constants. Atoms are displaced

along high-symmetry directions in the crystal, or along the cartesian axes (these

coincide for the diamond structure considered in this thesis). In the diamond

structure, only one displacement is necessary to deduce all independent harmonic

force constants in the crystal.

4.2 The quasiharmonic approximation

Static crystal energies are computed through DFT, and the finite displacement

method described above is used to compute the harmonic force constants and

subsequently the dynamical matrix, from which harmonic phonon frequencies

are calculated. All this is done without including any anharmonicity in the

interatomic potential. To include this, the simplest approximation one can make

is the quasiharmonic approximation (QHA), where the interatomic potential is

still assumed to be harmonic, but the associated force constants are allowed

to exhibit some volume dependence. As a consequence of this, the phonon
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dispersions and the dependent properties also assume a volume dependence.

Quasiharmonic phonon calculations are performed as follows:

1. For a range of volumes covering the pressure range of interest, perform

finite displacement calculations and obtain harmonic phonon frequencies

on a sufficiently dense grid throughout the Brillouin zone. Also compute

any phonon-frequency-dependent properties of interest, such as the zone-

centre optical phonon frequency.

2. For each volume, determine the Helmholtz free energy at a temperature T

as

F (T, V ) = U(V ) + Fph(T, V ) , (4.4)

where U(V ) is the static crystal energy calculated from DFT and the phonon

contribution is given by

Fph(T, V ) =
1

N

∑
k,j

{
1

2
ℏωkj(V ) + kbT ln

(
1− exp

[
ℏωk,j(V )

kBT

])}
. (4.5)

The sum in the above equation is a sum over the N phonons in the sampling

grid indexed by their wavevector k and their band index j.

3. Fit an equation of state to the free-energy–volume data. An equation of

state is typically a function of the equilibrium free energy U0, the zero-

pressure bulk modulus B0, its (first) derivative at zero pressure B′
0, and

the zero-pressure unit cell volume V0. An equation of state relating the

volume to the free energy can be turned into an equation of state relating

the volume to the pressure using the relation

P (V ) = − dF (T, V )

dV

∣∣∣∣
T

. (4.6)

4. Invert the P (V ) equation of state to obtain a V (P ) equation of state. This

may need to be done numerically.

5. Use the V (P ) equation of state to determine the volume at some pressure.

Through an appropriate volume interpolation of the phonon-frequency-

dependent property of interest from step 1, X(V ), one may now determine

this property at any pressure as X(V (P )).
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4.3 Temperature dependent effective potential

The TDEP approach to computing anharmonic force constants makes use of

the fact that a set of non-interacting (i.e. renormalised) phonons must satisfy

some fictitious harmonic potential. A TDEP calculation is performed by first

generating a set of atomic displacements that mimics the actual displacements

in the real crystal at some specified temperature. The forces on the atoms in

these configurations are then calculated (from here, a “configuration” will refer

to a particular arrangement of atoms within a supercell that have been randomly

displaced from their equilibrium positions by some amount) and the resulting

force–displacement data fitted to a harmonic force constant model,

F
(
R
µ
i

)
= −

∑
{S,ν,j}

Φ̂
(
R
µ
i

S
ν
j

)
u
(
S
ν
j

)
, (4.7)

where Φ̂ is some set of effective force constants. These effective force constants,

and the effective potential they create, are chosen in such a way that the forces

calculated from this effective potential are as close as possible to the forces from

the DFT calculation in a least squares sense. The TDEP approach aims to

minimise

∆F =
∣∣∣∣∣∣FTDEP

(
R
µ
i

)
− FDFT

(
R
µ
i

)∣∣∣∣∣∣ , (4.8)

where FDFT
(
R
µ
i

)
are the forces computed in the DFT calculations and FTDEP

(
R
µ
i

)
are calculated as in equation 4.7.

The effective harmonic potential is, in theory, able to capture anharmonicity to

infinite order. However, as the potential is harmonic, it cannot account for any

antisymmetric parts of the potential. To overcome this obstacle, effective third-

order force constants can be found by fitting to the equation

F
(
R
µ
i

)
− FEFF. HARM.

(
R
µ
i

)
= −

∑
{
S,ν,j
T ,η,k

} Φ̂
(
R
µ
i

S
ν
j

T
η
k

)
u
(
S
ν
j

)
u
(
T
η
k

)
. (4.9)

where FEFF. HARM.
(
R
µ
i

)
are the forces found from the effective harmonic part

of the potential. In other words, the cubic force constants are fitted after the

effective harmonic force constants to the residual forces. These effective cubic

force constants are used to calculate the effect of 3-phonon and other odd-integer

60



phonon interactions on the phonon frequency. The leading contribution to these

interactions is the bubble diagram in figure 3.2.

Inverse phonon lifetimes are commonly calculated from the imaginary part of the

phonon self-energy as

Im [Σjj′(k, ω)] =
πℏ

16
√
ωkjωkj′

∑
k1j1
k2j2

Φ̃
(−k

j
k1
j1

k2
j2

)
Φ̃
(
k
j

−k1
j1

−k2
j2

)
ωk1j1ωk2j2

∆(k1 + k2 − k)

×
[
(n(ωk1j1) + ωk2j2 + 1)δ(ωk1j1 + ωk2j2 − ω)

− (n(ωk2j2)− n(ωk1j1))δ(ωk1j1 − ωk2j2 + ω)

− (n(ωk1j1) + ωk2j2 + 1)δ(ωk1j1 + ωk2j2 + ω)

+ (n(ωk2j2)− n(ωk1j1))δ(ωk1j1 − ωk2j2 − ω)
]
,

(4.10)

where ∆(K) is 1 if K is a reciprocal lattice vector and 0 otherwise, and n(ω) is

the Bose-Einstein distribution [62]. The imaginary part of the self-energy is an ω-

dependent function that produces something density-of-states-like. The real part

of the self-energy can be found from equation 4.10 through the Kramers–Kronig

relations, which state that for a complex function Σ(ω)

Re [Σ(ω)] =
1

π

∫ ∞

−∞

Im [Σ(ω′)]

ω′ − ω
dω′ (4.11a)

Im [Σ(ω)] = − 1

π

∫ ∞

−∞

Re [Σ(ω′)]

ω′ − ω
dω′ . (4.11b)

A representative example of this process is shown in figure 4.1. The imaginary

part of the spectrum in the right-hand panel is calculated from equation 4.10

and the left-hand panel shows the real part of the spectrum calculated from

equation 4.11a.

This allows one to estimate the frequency renormalisation from the 3-phonon

processes. As the resulting real part of the self-energy is again a spectrum,

one must evaluate it at the correct frequency, ω, in order to obtain the

correct renormalisation. This is, strictly speaking, a problem to be solved

self-consistently, as the renormalised frequencies will give rise to a different
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Figure 4.1 Calculation of the 3-phonon contribution in silicon at different
temperatures. The real part of the self-energy (left) is found from
the imaginary part (right) by the Kramers–Kronig relations. The
renormalisation due to 3-phonon processes is given by the real part
of the self-energy evaluated at the phonon frequency, ω, at each
temperature, indicated by the black dots at the intersection of the
vertical dashed lines and Re [Σ]. Temperature indicated by the color
of the lines from blue (0K) to red (1000K).

imaginary part of the self-energy, which will, in turn, produce a different real

part and therefore a different renormalisation. As it is not computationally

feasible to iterate process to self-consistency, the assumption is made that the

effective harmonic frequencies provide a close approximation to the self-consistent

frequencies. In simple materials such as silicon and diamond this is likely to be

approximately correct, in more complex ones, or materials where the real part

of the self-energy has some pronounced features in region around the effective

harmonic frequency, this approximation may not be true.

A TDEP calculation is therefore performed as follows:

1. Generate a set of configurations that represent snapshots of the crystal at

finite temperature.

2. Perform DFT calculations on these configurations to determine the forces.

3. Fit the effective potential to the forces and displacements using equation 4.7.

4. Construct the dynamical matrix from the effective harmonic force constants
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and calculate the phonon frequencies.

5. (Optionally) Compute the 3-phonon frequency correction from effective

third-order force constants through the Kramers–Kronig relations.

Generating configurations

Before continuing, the method for generating the configurations used in TDEP

calculations must be explained. The success of the TDEP approach depends on

how representative the set of configurations used to fit the effective potential are

of the real crystal at the specified temperature. In order to find configurations

of atoms that reflect the real crystal, one may perform molecular dynamics

simulations and extract snapshots of the atoms at different times. This approach,

however, comes with difficulties. The snapshots must be uncorrelated for accurate

sampling of the N -body potential to occur, they must be taken from a molecular

dynamics simulation that has been allowed to reach equilibrium from its starting

configuration, and, perhaps most obviously, the method used to calculate the

forces from timestep to timestep (DFT, interatomic potential, etc. . . ) must be

sufficiently accurate to produce realistic snapshots. This last point may seem

trivially obvious but it has the effect of making the generation of configurations

for TDEP a very computationally intensive process.

In order to generate the configurations using the stochastic TDEP method, one

must first create an initial set of force constants from which the phonon modes to

be populated can be determined. This was done using a standard harmonic finite

displacement calculation where atoms were displaced along the high-symmetry

lines (see section 4.1) by 0.01 Å. From these harmonic force constants, phonon

modes are calculated and then sampled as a canonical ensemble to populate the

phonon modes in the TDEP configurations.

Sampling the Canonical Ensemble

To produce a physically realistic distribution of the atomic displacements in the

TDEP configurations, the phonon modes must be populated with an appropriate

distribution. To determine the form of this distribution one may consider the

equipartition theorem, which states that every degree of freedom in a system
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contributes on average 1
2
kBT to the total energy. Following from equation 3.29,

⟨1
2
Mµu̇

(
R
µ
i

)2

⟩ = ⟨1
2
Mµω

2
kjA

2
kj sin

2(ωkjt+ϕkj)⟩ =
1

4
Mµω

2
kj⟨A2

kj⟩ =
1

2
kBT , (4.12)

where Akj is the amplitude of the normal mode, and ωkj and ϕkj are respectively

the frequency and phase of a mode with wavevector k and band j. To go from

the second to the third equality the identity

⟨sin2 x⟩ = 1

2π

∫
sin2 xdx =

1

2

has been used.

One possibility is to choose ⟨Akj⟩ = 1
ωkj

√
2kBT
Mµ

for all Akj. In this case, the energy

of each mode (kinetic + potential) is kBT and the condition of equipartition

would be satisfied. However, a more physically reasonable approach is to assume

a Boltzmann distribution for the energies of the modes Ekj,

ζkj =
1

kBT

∫ Ekj

0

e−E/kBTdE , (4.13)

where ζkj is a uniformly distributed random number between 0 and 1.

Evaluating the integral, one can determine the mode energies to be

ζkj =
[
−e−E/kBT

]Ekj

0
(4.14)

= 1− e−Ekj/kBT , (4.15)

which can be rearranged to get

Ekj = kBT ln(1− ζkj) . (4.16)
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Averaging this expression for the mode energies one finds

⟨Ekj⟩ = −kBT ⟨ln(1− ζkj)⟩ (4.17)

= −kBT
{

1

1− 0

∫ 1

0

ln(1− ζkj)

}
(4.18)

= −kBT [(ζkj − 1) ln(1− ζkj)− ζkj]
1
0 (4.19)

= kBT , (4.20)

demonstrating the equipartition principle still holds using this Boltzmann

distribution for the energies. The normal mode amplitude can therefore be

changed from Akj = 1
ωkj

√
2kBT
Mµ

to Akj = 1
ωkj

√
2kBT
Mµ

√
− ln(1− ζkj) and still

satisfy equipartition.

This distribution of amplitudes can be used to determine the displacements of

the atoms when the supercell is populated with phonons,

u
(
R
µ
i

)
(t) =

∑
{k,j}

√
kBT

Mµωkj

√
−2 ln (ζkj)E

(
R
µ
i

k

j

)
exp (iωkjt) . (4.21)

The factor of k·R does not appear in the exponential as it has been set equal to 2π

in order to consider only modes commensurate with the supercell size. Populating

the supercell with modes not commensurate with the supercell will produce

unrealistic configurations when periodic boundary conditions are imposed.

Since ζkj is a uniform random number between 0 and 1, it can be substituted for

1 − ζkj with no effect. Now, in order to give the phonon a random phase one

can either choose a random time, or give it a random phase offset. Both these

operations can be expressed in a single random number as

u
(
R
µ
i

)
(t) =

∑
{k,j}

√
kBT

Mµωkj

√
−2 ln (ζkj)E

(
R
µ
i

k

j

)
exp (2πξkj) , (4.22)

where ξ is again a uniform random number between 0 and 1.

It can be shown that, in the quantum case, the same expression for the energy

distributions (equation 4.16) can be derived, and that the displacements of the

atoms in the quantum regime can be found by replacing the classical expression
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for the mode amplitude

⟨Akj⟩ =
1

ωkj

√
2kBT

Mµ

(4.23)

with the quantum

⟨Akj⟩ =

√
ℏ(2n(ωkj) + 1)

Mµωkj

, (4.24)

where n is the Bose–Einstein distribution.

This quantum distribution of displacements,

u
(
R
µ
i

)
(t) =

∑
{k,j}

1

Mµ

√
ℏ(2n(ωkj) + 1)

ωkj

√
−2 ln (ζkj)E

(
R
µ
i

k

j

)
exp (2πξkj) , (4.25)

is used to populate the phonon modes in this thesis, since all calculations will be

at temperatures comparable with the Debye temperature.

A principle concern of investigations in subsequent chapters of this thesis is

minimising the impact of the stochastic nature of the configuration generation

process. When comparing two TDEP calculations, for example at two different

temperatures, it is desirable to remove the stochastic error from the configuration

generation process so that genuine changes in the phonon frequencies are not

obscured by scatter in the frequencies. One obvious way of doing this is to use

the same seed for the random number generator used to generate the sets of

random numbers ζkj and ξkj. This is satisfactory in some cases, but, in others,

more laborious approaches are required which are described in the subsequent

chapters as they are employed.

4.4 Self-consistent phonons

The self-consistent phonon approach implements the theory discussed in sec-

tion 3.2. The method is used in the alamode software package and is broadly

implemented in the following manner. Firstly, force constants are determined up

to fourth order by the finite displacement method described in section 4.1. The

harmonic (second-order) force constants are used to determine a set of harmonic

phonon frequencies on a dense, Γ-centred sampling grid across the Brillouin zone
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k

k1

Figure 4.2 Grids used in the SCPH algorithm. The coarse k grid indicated
by the red circles is commensurate with the supercell size (here
2 × 2 × 2), the dense k1 grid is used to compute the self energies
and must be commensurate with the coarse k grid.

(indicated by blue crosses in figure 4.2). These harmonic phonon frequencies

and the higher-order force constants are used to calculate the self-energy Σjj′ , a

correction to the harmonic dynamical matrix, Λjj′ , on a coarser sampling grid

across the Brillouin zone (red circles in figure 4.2). The correction is then applied

to the harmonic dynamical matrix as

Vjj′ = Λjj′ + Σjj′ , (4.26)

and new, anharmonic phonons are calculated on the coarse grid by diagonalising

the matrix Vjj′ . Fourier interpolation of frequencies and eigenvectors is then

used to determine the new phonons on the dense grid. These new phonons are

then used to re-compute the self-energy, and the whole process is iterated until

self-consistency is achieved.

In greater detail, SCPH approach as implemented by alamode works as follows

[2]:

1. Construct and diagonalise the dynamical matrix from the harmonic force

constants. This gives the harmonic phonon frequencies ω
[h]
k1j1

and phonon

eigenvectors e
[h]
k1j1

on the dense k1 grid.

2. Calculate the s × s × s × s matrix Φ̃
(
k
j

k
j′

k1
j1

−k1
j1

)
, where s is the number

of bands, needed to compute the self-energy from the loop diagram (see

equations 3.104 and 3.107) for each pair of k points, k and k1. The vector

k is restricted to the irreducible points that are commensurate with the size
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of the supercell, and k1 cover the whole k-point grid (see figure 4.2).

3. Initialise the phonon frequencies as the harmonic frequencies ω
[1]
k1j1

= ω
[h]
k1j1

.

4. Construct the matrix

V
[1]
jj′ (k) =

[
ω
[h]
k1j

]2
δjj′ +

ℏ
4

∑
k1j1

2n(ω
[1]
k1j1

) + 1

ω
[1]
k1j1

× Φ̃[1]
(
k
j

k
j′

k1
j1

−k1
j1

)
,

where Φ̃[1]
(
k
j

k
j′

k1
j1

−k1
j1

)
is the matrix constructed using the harmonic phonon

eigenvectors.

5. Diagonalise the matrix V [1](k) as V [1](k) = C [1](k)W [1](k)C [1](k)
†
. This

yields a set of frequencies (as the eigenvalues) and a set of eigenvectors

on the coarse grid k. These eigenvectors are not the phonon eigenvectors.

They are related to the phonon eigenvectors by a unitary transformation

E[i](k) = E[h](k)C [i−1](k), where E(k) is the s × s matrix of phonon

eigenvectors, with the eigenvectors in the columns of E(k).

6. Construct the new dynamical matrix

D[1](k) = E[1](k)W [1](k)E[1](k)
†
= E[h](k)C [1](k)W [1](k)C [1](k)

†
E[h](k)

†

for each irreducible k.

7. Use the dynamical matrices calculated on the irreducible k-points and the

symmetries of the crystal to construct the dynamical matrices on the entire

grid of k. Recall that k was limited to the points commensurate with the

supercell size, and k1 covered the entire N1 ×N2 ×N3 k-point grid.

8. Use Fourier interpolation to calculate the dynamical matrix on the denser

k1 grid from the k grid.

9. From this dynamical matrix, find the phonon frequencies ω
[1]
k1j1

and

the unitary transformation matrix C [1](k1) on the dense k1 grid. The

transformation matrix is needed for the next iteration of the SCPH cycle.

10. Update the matrix Φ̃
(
k
j

k
j′

k1
j1

−k1
j1

)
by applying the unitary transformations

of Cij(k1) as

Φ̃[i]
(
k
i

k
j

k1
s

−k1
s

)
=

∑
kl

Φ̃[i−1]
(
k
i

k
j

k1
k

−k1
l

)
C

∗[i−1]
sk (k1)C

[i−1]
sl (k1)
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11. The first iteration of the SCPH cycle is now complete. Increment i and

repeat the process. The equation for the ith iteration of the cycle is1

V
[i]
jj′(k) =

[
ω
[h]
k1j

]2
δjj′ +

ℏ
4

∑
k1j1

2n(ω
[i−1]
k1j1

) + 1

ω
[i−1]
k1j1

× Φ̃[i−1]
(
k
j

k
j′

k1
j1

−k1
j1

)
.

12. Diagonalise the matrix V [i](k) as V [i](k) = C [i](k)W [i](k)C [i](k)
†

13. Construct the new dynamical matrix

D[i](k) = E[i](k)W [i](k)E[i](k)
†
= E[h](k)C [i](k)W [i](k)C [i](k)

†
E[h](k)

†

for each k in the coarse grid.

14. Construct the dynamical matrices on the entire grid of k using the

symmetry operations, as in step 7.

15. Use Fourier interpolation to calculate the dynamical matrix on the denser

k1 grid from the k grid.

16. From these dynamical matrices find the phonon frequencies ω
[i]
k1j1

and the

unitary transformation matrix C [i](k1).

17. Check for self-consistency (ω
[i]
kj = ω

[i−1]
kj within some tolerance) on all

irreducible k-points. If it is achieved, print the resulting frequencies and

eigenvectors and stop, else go to step 11.

To implement this approach, one must ensure that the fourth-order force

constants are calculated and fitted accurately, the two grids k and k1 are dense

enough to achieve convergence, and that the convergence criterion is sufficiently

restrictive. A closer examination of these facets of the calculation, particularly

the calculation and fitting of the force constants, is discussed in an application

to silicon in the next chapter. The TDEP approach is also described in similar

detail and the two approaches are compared.

1In actuality a mixing parameter is used here. This has been omitted for simplicity.
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Chapter 5

Temperature dependence of the

Raman signal in silicon and diamond

5.1 Background

The SCPH and TDEP approaches have each shown promise when applied to real

systems [11, 30, 40, 43], but a direct comparison on the same system(s) will be

instructive in highlighting the differences between the two approaches and the

considerations that are necessary to employ each method effectively.

To assess the accuracy of each approach, a comparison to experimental data

must be made. The systems chosen here are cubic silicon and cubic diamond,

chosen in part for the abundance of high-quality experimental data available

for comparison. The other reason for choosing these systems is to assess the

performance of the two approaches when computing anharmonic effects in what

are typically considered to be very harmonic materials, particularly diamond.

The SCPH and TDEP approaches have been well applied to complex, strongly

anharmonic systems, where capturing even some of the anharmonicity produces

impressive results and deviations from the true experimental value are not

unexpected [2, 30]. However, here a different approach is taken to investigate the

ability of each approach to precisely calculate the anharmonic renormalisation of

the phonon frequencies in simple systems, and fully account for any deviations

from experimental data.
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This section will look more closely at the technical details of the SCPH and

TDEP methods and the effect such implementation details have on the calculated

phonon frequencies. The chapter will begin with a brief outline of the existing

applications of each technique before describing the details of their current

application to silicon and diamond. The temperature dependence of the zone-

centre Raman frequency for both silicon and diamond will be used to assess the

accuracy of the calculations, and a comparison of the approaches will be made

with recommendations for future studies.

5.1.1 Alamode

It was mentioned in chapter 2 that the first application of the SCPH method by

alamode was to strontium titanate, SrTiO3 [2]. This inaugural investigation

used the finite displacement approach to determine the force constants, where

the atoms are displaced from their equilibrium positions by an amount ∆u.

The authors note that “finding an optimal value of ∆u is not a trivial task,

especially when imaginary modes exist within the harmonic approximation”.

A displacement magnitude of 0.1 Å did not produce reliable fourth-order force

constants. Instead, the force constants of third order and above were found from

an ab initio molecular dynamics (AIMD) simulation, which used the harmonic

force constants to calculate trajectories of the atoms. Snapshots were taken from

the simulation, and an additional displacement of 0.1 Å was added to each atom

in a random direction to reduce the cross-correlation of the positions.

From this, it is apparent that care must be taken to determine the higher-order

force constants. The instability of the fourth order force constants was attributed

in this instance to the double-well nature of the interatomic potential; without

a priori knowledge of the potential it may be difficult to determine the optimal

∆u to use. The AIMD approach circumvents this problem and is resemblant of

the TDEP method. The distinction between the two is that alamode calculates

actual force constants rather than effective ones.

The SCPH approach was subsequently applied to other perovskite systems by the

same group of authors, who employed the same method to avoid the instability

of the fourth order force constants. One application to a material unrelated to

the perovskites is to H3S, but by this time the AIMD approach had become the
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standard approach the authors of the alamode code used for creating the force–

displacement sets, so the same method was used for H3S. A study where the

standard finite displacement method is used is not known, although for simple

systems like silicon and diamond it should produce valid results.

5.1.2 TDEP

TDEP also has two ways in which the force–displacement data for the fitting

process may be generated, which were discussed in chapters 2 and 4: from AIMD

snapshots and from stochastically generated samples. As with alamode, much of

the existing literature makes use of expensive AIMD simulations to find realistic

displacement configurations, but, unlike alamode, success has been found with

the latter, less computationally expensive approach. As new configurations need

to be generated at every temperature and pressure, using a cheaper method to

create them results in a significant reduction in the computational cost when

performing calculations at a range of temperatures or pressures.

The stochastic TDEP approach used here, where configurations are generated

by populating phonon modes (see section 4.3), has been applied to silicon, lead

compounds (PbTe, PbTe, and PbS), and cementite (Fe3C), as well as others [38,

40, 46, 83]. In many of these applications, however, the number of configurations

used is not reported. In a study of lead telluride and other lead compounds the

authors used 50 snapshots of an AIMD simulation to ensure accurate frequencies

[38], but this figure alone does not provide a full picture of the convergence

with respect to the number of configurations, nor does it indicate how well the

stochastic method will perform compared to the AIMD method. In some papers,

it is almost suggested to be a single configuration of a single supercell, which

the work in this thesis will show to be insufficient. Similarly, the number of

snapshots from AIMD simulations is not reported. Despite this, it will be shown

that TDEP is a robust method that can be well converged with a reasonable

number of configurations.

Silicon has already been analysed using the TDEP approach by Hellman et

al. in order to better understand the source of the negative thermal expansion

at low temperatures [40]. In this investigation, it was found that the TDEP

formalism described the thermal expansion even better than the quasiharmonic
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approximation. Furthermore, it was found that the QHA is only so accurate

due to fortunate cancellation of errors, where some modes are predicted too hard

and some predicted too soft in such a manner that the total phonon free energy,

the quantity that is central to the QHA, was correct on average. This is an

encouraging showcase of TDEP’s capability, which will be taken advantage of in

this thesis.
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5.2 Methods

5.2.1 Displacement magnitude testing

In the finite displacement approach to determining force constants, atoms are

displaced from their equilibrium positions along high-symmetry directions in the

crystal by a magnitude ∆u. To determine an nth order force constant, n − 1

atoms must be displaced. In order to determine all symmetry-inequivalent force

constants of a given order, there is a minimum number of displacement patterns

that must be considered. In theory, one has complete freedom to choose ∆u for

each individual displacement of the atom(s) and for each displacement pattern. In

practice, for well-behaved interatomic potentials, a single displacement magnitude

can be used for all atoms in all displacement patterns for a given order n. The

different orders of force constants should have different displacement magnitudes

to probe the regions of the interatomic potential where each order of force

constants is most significant. The harmonic force constants should have the

lowest displacement, the cubic contributions to the potential become significant

at slightly larger displacement, and the quartic contributions become noticeable

at displacements that are larger still.

To implement the SCPH algorithm one requires force constants up to 4th order.

It is therefore necessary to determine the tuple of displacement magnitudes,

(u(2), u(3), u(4)), that are optimal for determining the second-, third-, and fourth-

order force constants, respectively. To do this, displacement patterns for cubic

silicon were created for each order with ∆u(i) equal to 0.001 Å, 0.004 Å, 0.008 Å,

0.012 Å, 0.016 Å, and 0.020 Å for i = 2, 3, 4.

For each displacement pattern, the forces were computed using DFT in the

manner described in section 3.3. The plane wave energy cutoff was 350 eV, and

a 3 × 3 × 3 Γ-centred k-point grid was used for the electronic integration.

Self-consistency was deemed to be achieved at a difference in the energy of

less than 1 × 10−8 eV between successive cycles. The Perdew-Berke-Ernzerhof

exchange-correlation (XC) functional [75] was used and the so-called “Si” PAW-

pseudopotential from the VASP library was used with the 2s and 2p orbitals

as valence states (4 electrons per atom) [69]. Calculations were performed on a

5 × 5 × 5 supercell of the primitive unit cell containing 250 atoms.
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Silicon has the so-called diamond structure, a face-centred cubic (fcc) lattice with

atoms at µ1 = (0, 0, 0) and µ2 = (0.25, 0.25, 0.25) in the crystal basis. Only one

displacement pattern is needed to determine all harmonic force constants in silicon

(the atom at the origin displaced in the positive x direction), 16 are needed for

the cubic force constants, and 19 for the quartic, making 36 DFT calculations in

total. These calculations were performed on a 64 core processor with a maximum

and minimum computing time of 62 and 23 minutes per configuration and an

average time of 47 minutes. The calculation time is determined primarily by

the symmetry of the configuration, with high-symmetry harmonic and cubic

configurations taking less time than the lower symmetry quartic configurations.

The main limiting factor in the computation was memory availability; 64GB of

memory was required for the large supercell sizes.

A force constant model was fitted to the force–displacement data by least-squares

fitting. The model considered all harmonic (two-atom) interactions in the 250

atom supercell, and cubic and quartic (three- and four-atom) interactions up

to the second and first coordination shell, respectively. Two choices present

themselves when fitting the force constant model; one may fit all orders of the

model at the same time, or one may first fit the harmonic terms, then the

cubic terms with harmonic terms fixed, and then the quartic terms with both

harmonic and cubic terms fixed. Both methods were attempted and the results

are presented in section 5.3.1.

5.2.2 Self-consistent phonons (silicon)

SCPH calculations were performed on silicon up to temperatures of 1000K

in increments of 100K. Force constants up to fourth order were determined

by the finite displacement method. The tuple of displacements (u(2), u(3), u(4))

described in section 5.2.1 was set to be (0.001 Å, 0.008 Å, 0.020 Å). The harmonic

displacement is as low as possible to ensure that the potential is truly harmonic,

the quartic displacement is chosen to match the mean square displacement at

1000K, and the cubic displacement was chosen to minimise the fitting error.

The force constants were fitted incrementally, starting with the harmonic force

constants, then the cubic, then the quartic to ensure that each order of force

constant did not pick up any contributions from higher orders. A full description

of the reasoning behind these choices is presented later in section 5.3.1. The DFT
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calculations were carried out in the manner described in the previous section

The SCPH calculations themselves were performed using an 8 × 8 × 8 k-point

grid both to calculate the interaction coefficients (equation 3.104) and to solve

the SCPH equation. The SCPH calculations converged sufficiently quickly that

no interpolation was necessary, and the SCPH calculation could be solved on the

dense grid directly. Considering the list of anharmonic phonon frequencies as a

vector Ω, convergence was deemed to have been reached when 1
N
|Ω(i)−Ω(i−1)| <

1×10−8Ry, whereN is the number of phonon modes and i is the iteration number.

At elevated temperatures, thermal expansion (generally) causes the interatomic

spacing to increase and the phonon frequencies to change accordingly. This

volume contribution to the phonon renormalisation was determined on the basis

of experimental thermal expansion data from Okada and Tokumaru and Lyon et

al. [84, 85], equation of state data from Anzellini et al. [86], and Raman data as

a function of pressure from Weinstein and Piermarini [87]. Firstly, the thermal

expansion data was integrated to determine a lattice parameter at an elevated

temperature,

a(T ) = a0

[∫ T

0

α(T ′)dT ′ + 1

]
; (5.1)

secondly, the reported Vinet equation of state of Anzellini et al. was used to turn

this volume fraction, η = V
V0
, into a pressure,

P (η) = 3B0

(
1− η

η2

)
e

3
2
(B′

0−1)(1−η) , (5.2)

with B0 = 101.5GPa and B′
0 = 3.43; and finally a quadratic function fitted to

the pressure–frequency data from Weinstein and Piermarini,

ω(P )

ω0

=
(0.07 cm−1/GPa2)P 2 + (5.2 cm−1/GPa)P + 519.5 cm−1

519.5 cm−1
, (5.3)

was used to translate this pressure into a frequency, given a 0K starting frequency

ω0 from the alamode calculation.
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5.2.3 Temperature-dependent effective potential

TDEP calculations were performed on silicon and diamond at 10 temperatures up

to 1500K. At each temperature, a number of displacement configurations must

be generated by stochastically populating the phonon modes determined from a

harmonic finite displacement calculation. Each configuration used a 5 × 5 × 5

supercell of the primitive unit cell with 250 atoms. Before performing a TDEP

calculation one must first determine how many configurations are needed to

achieve convergence of the phonon frequencies.

To establish this, 60 configurations were generated at 300K, and DFT calculations

were performed on each to determine the forces. A sample of size n was then

drawn without replacement from these 60 configurations. Effective harmonic force

constants were fitted to the displacements and forces from these n configurations,

and the phonon frequencies were subsequently calculated. This process was

repeated 30 times for each sample size n, and the standard deviation of the

resulting 30 frequencies (for each band) was found to provide an estimate of the

uncertainty in the phonon frequencies when n configurations are used.

Drawing a sample from the same 60 configurations each time reduced the

computational expense considerably, but does introduce correlations between the

samples as n becomes large; two samples of size n = 59 will share 14,500 of the

14,750 force–displacement data (98%), and will therefore show very low amounts

of scatter in the phonon frequencies regardless of the level of convergence. It

was therefore decided to limit n to 30, so that on average only half of the data

will be shared between any two samples. To completely eliminate the correlation

between the samples would require an unfeasible number of DFT calculations to

be performed. It was found in both silicon and diamond that 30 configurations

were needed to achieve a scatter of less than 1 cm−1, a result that was verified

by splitting the 60 configurations into two and comparing the phonon frequencies

from two completely independent samples, each of size n = 30.

30 configurations were therefore generated at each of the 10 temperatures up to

1500K in both silicon and diamond. DFT calculations were performed for silicon

on these configurations using the same parameters described in section 5.2.1,

except that the k-point grid was replaced with a grid of the same density generated

by the getKPpoints utility for increased efficiency [88, 89]. At each temperature

77



effective harmonic force constants and the associated phonon frequencies were

found; the correction from the three-phonon interaction was determined from

the third-order force constants using the Kramers–Kronig relations. Calculations

were this time performed using 128 cores and took approximately 30 minutes

per configuration for silicon and, totalling 150 hours of computing time for all

temperatures.

For diamond, a plane wave energy cutoff of 550 eV and a convergence criterion

of 1 × 10−9 eV was used. The LDA XC functional was used and the “C” PAW-

pseudopotential from the VASP library developed by G. Kresse, with 2s and

2p orbitals as the valence states (4 electrons), described the core regions of the

potential [69]. Like with silicon, a 5 × 5 × 5 supercell of the primitive unit

cell with 250 atoms was used for each configuration and a k-point grid from the

getKPoints utility with a density equivalent to a 5 × 5 × 5 grid was used for the

electronic integration [88, 89]. The diamond calculations were again calculated

using 128 cores and took, on average, 41 minutes per configuration, totalling 205

hours of computing time.

The DFT calculations for TDEP must be done anew for each temperature. As

such, unlike with the SCPH calculations, one may include the thermal expansion

effects without incurring any additional computational cost. As DFT is a ground-

state theory, the minimum-energy lattice parameter calculated by DFT excludes

any expansion from the zero-point motion. An estimate of the experimental

lattice parameter without zero-point expansion was found from thermal expansion

data by extrapolating the linear (classical) regime to zero temperature. The

ratio of the lattice parameters with and without zero point motion was then

found (
aZP0
a0

) and used to scale the minimum-energy lattice parameter from the

DFT calculations to simulate the inclusion of the zero-point expansion. The

thermal expansion data was then used to integrate this lattice parameter to finite

temperatures. These lattice parameters were used for the TDEP calculations.

For silicon, the low-temperature thermal expansion data of Lyon et al. and the

lattice parameter data of Okada and Tokumaru [84, 85] were used, and for

diamond thermal expansion data from Jacobson and Stoupin [90] were used.

Figure 5.1 shows in blue the extrapolation of the experimental linear regime to

0K. The intercepts of the solid and dashed blue lines indicate the 0K lattice

parameter with and without zero-point expansion, respectively. The red lines in
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Figure 5.1 Lattice parameters for silicon (left) and diamond (right) from
experimental data (blue) and an extrapolation of the linear regime to
0K (dashed line). The red lines correspond to the blue lines scaled
such that the intercept of the dashed red line is equal to the DFT
minimum-energy lattice parameter. The black diamonds indicate the
lattice parameters and temperatures at which the TDEP calculations
were performed [84, 85, 90].

figure 5.1 are (mathematically) similar to the blue lines, with the intercept of

the dashed red line being the minimum-energy lattice parameter calculated from

DFT. The black diamonds along the red line represent DFT lattice parameters

inclusive of zero-point and thermal expansion.
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5.3 Results

5.3.1 Silicon

The temperature dependence of the Raman signal was calculated both using

the SCPH algorithm implemented by alamode and by the TDEP formalism

implemented by the code of the same name. In each case, the specifics of these

calculations are reported and discussed to illustrate to the reasoning behind the

choices made and their effects. Finally, the results of the two approaches will be

compared and recommendations made to readers interested in performing their

own anharmonic phonon calculations.

Alamode

The process began with the displacement magnitude testing described in

section 5.2.1. Each fit of the force constants to the force–displacement data

from DFT calculations has an associated fitting error σ given by

σ =

√∑
i(f

DFT
i − ffit

i )2∑
i(f

DFT
i )2

. (5.4)

This fitting error may be associated with fitting force constants of all orders

simultaneously or incrementally, by fitting some particular order with lower orders

held at fixed values. For the harmonic force constants there is, of course, no

difference and the fitting error for the harmonic fitting at different displacements

is shown in figure 5.2.

The fitting error is small — less than 1% — and increases linearly with increasing

displacement magnitude, showing the deviation from the harmonic potential as

atomic displacement increases. The small value of the fitting error indicates that,

while there is some anharmonicity, silicon is overall modelled well by a harmonic

model. To minimise the fitting error one must use the smallest displacement

possible, where the atom is most firmly in the harmonic region of the potential

and higher order terms have the smallest impact.

Figure 5.3 shows the fitting error from fitting the cubic force constant model to
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Figure 5.2 Fitting error of the harmonic force constants in silicon as a function
of displacement magnitude ∆u(2).

the forces and displacements, both by fitting harmonic and cubic terms together

(left panel) and by fitting them incrementally (right panel). When both harmonic

and cubic force constants are fitted simultaneously the fitting error is minimised

when the harmonic displacement is 0.008 Å, but the cubic displacement has no

influence on the fitting error. When the force constants are fitted incrementally,

this is no longer the case. The minimum error still occurs when the harmonic

displacement is 0.008 Å, but the cubic terms are now coupled to the harmonic

displacement magnitude, and are minimised by a cubic displacement of 0.008 Å
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Figure 5.3 Fitting error for the third-order force constants in silicon as a func-
tion of harmonic and cubic displacement magnitude (∆u(2),∆u(3))
when they are fitted simultaneously (left) and incrementally (right).
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Figure 5.4 Slices through the displacement space (∆u(2),∆u(3),∆u(4)) for the
fitting error of the fourth-order force constants in silicon when they
are fitted simultaneously (top) and incrementally (bottom). Left-
hand slices have fixed ∆u(4) = 0.012 Å, right-hand slices have fixed
∆u(2) = 0.008 Å.

or 0.012 Å.

It seems that, when fitting simultaneously, the harmonic and cubic force constants

are correlated and can be adjusted together to produce an equally satisfactory

fit for any value of the displacement magnitudes. When the freedom to fit both

at once is removed, the cubic force constants can no longer adjust themselves so

freely and a dependence on the cubic displacement is introduced. In other words,

the harmonic and cubic force constants are correlated.

A similar story is present in the quartic force constants; when the cubic and

quartic force constants are fitted simultaneously, the fitting error is minimised

for a specific quartic displacement, 0.004 Å (figure 5.4, top panels), but the cubic
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displacement does not affect the fitting error, once again indicating that the third-

order force constants allow the flexibility in the fit to minimise the fitting error

regardless of the magnitude of the displacement. In this case, the harmonic and

cubic force constants are completely uncorrelated.

When the force constants are fitted incrementally (figure 5.4, bottom panels),

the cubic and quartic force constants are still largely decoupled, in that the cubic

displacement does not have any effect on the fitting error. For all but the smallest

displacements, the harmonic and cubic displacement magnitude may take any

value without affecting the fitting error.

The conclusion of this, therefore, is that the cubic displacement magnitude may

be chosen independently of the harmonic and quartic displacements, whether

simultaneous or incremental fitting is used. The third-order terms would aim to

fit the antisymmetric parts of the potential and therefore will not be affected by

the choice of displacement for the symmetric harmonic and quartic terms. The

flexibility in the fit provided by the simultaneous fitting is likely detrimental to

establishing physically realistic force constants. More accurate force constants

will be obtained by fitting the harmonic force constants first with the smallest

possible displacement, as in figure 5.2. The quartic displacement should, on

physical grounds, be larger than the harmonic and cubic ones; it should be

large enough to sample the potential at the temperature(s) of interest, the

quartic displacement should therefore be comparable to the root mean square

displacement.

The recipe for choosing the displacement magnitudes without the kind of detailed

investigation performed here is:

1. The harmonic displacement should be as small as possible without causing

numerical issues.

2. The quartic displacement should be chosen to equal the root mean square

displacement at the temperature of interest.

3. The cubic displacement is largely uncorrelated with the other two so should

be chosen to lie somewhere in the middle of the harmonic and quartic

displacements.

Since the investigation was done in the instance of silicon it was decided to use the
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Figure 5.5 Temperature dependence of the Γ-point phonon frequency in silicon
as a function of temperature calculated by the SCPH method. Filled
and open black data are from Raman scattering experiments in
references [92, 93].

smallest possible displacement for the harmonic displacement, 0.001 Å, a quartic

displacement equal to the root mean square displacement at room temperature

0.020 Å [91], and a cubic displacement between the two that minimised the fitting

error, 0.008 Å. The fitting was done incrementally to ensure that the higher order

terms did not interfere with the fitting of the lower order terms, and to produce

the most accurate force constants possible.

The temperature dependence of the zone-centre optical phonon calculated by the

SCPH approach is shown in figure 5.5. The SCPH approach severely underesti-

mates the phonon frequency renormalisation. At 1000K the renormalisation from

the pure anharmonic effects, without thermal expansion, is only around 2 cm−1,

compared to approximately 22 cm−1 observed in experiments. Including the

thermal expansion contribution only accounts for a small additional amount, and

is not enough to bring the calculated renormalisation close to the experimental

value.

It will be argued later by comparison with the TDEP data, that this shortcoming

84



is due to the omission of 3-phonon effects and higher-order terms in the expansion

of the self-energy. The fourth-order force constants being calculated incorrectly

could cause an incorrect renormalisation of the phonons to be calculated, but the

experiments show that there is a clear anharmonic contribution to the potential

at 1000K, which should be present in the quartic displacement patterns chosen

to have a displacement matching the root mean square displacement at this

temperature. The quartic force constants should therefore be adequately large to

recreate this anharmonic potential. If anything, the quartic force constants may

be overestimated due to the omission of terms higher than fourth order in the

interatomic potential. This would cause the quartic force constants to include

contributions from these other terms. Assuming the higher-order force constants

act in the same way as the quartic force constants (to either stiffen or soften

the potential), the inclusion of higher-order contributions in the quartic force

constants will cause the magnitude of these quartic force constants to increase.

Underestimation of the quartic force constants is therefore not thought to be the

cause of the underestimation of the renormalisation.

TDEP

Section 5.2.3 described the method used to determine the number of configu-

rations needed to achieve convergence for a particular system. The standard

deviations of the calculated phonon frequencies in silicon are shown in figure 5.6.

From this figure it can be seen in the left panel that the Γ-point frequency has a

larger scatter than the other points in the Brillouin zone, but at a sample size of

30 configurations the frequency is converged to ±1 cm−1; the other points in the

Brillouin zone are converged to well within ±0.4 cm−1.

The source of the increased scatter appears to be due to the longer wavelength

of phonons in the centre of the Brillouin zone than those at the Brillouin zone

boundary. The right panel of figure 5.6 shows the standard deviation decreases

rapidly at a wavelength of 0.2× 2a. This decrease occurs at the point where the

supercell size becomes greater than half a wavelength. When the configurations

are generated by populating modes in a supercell of dimension N in the direction

of the phonon, a phonon at the Brillouin zone boundary will have N
2
complete

oscillations across the supercell, whereas a phonon close to the Γ-point will

complete only a fraction of an oscillation, and therefore have a weaker signal
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Figure 5.6 Standard deviation of the phonon frequencies in silicon for different
numbers of configurations used in the TDEP calculation. Left panel
show special points in the Brillouin zone, right panel shows points
along the Γ-X line k = π
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in the final displacement pattern.

To check the convergence was not due to the repetition of data between

the different samples, the 60 configurations were split into two completely

independent groups of 30 configurations each; the difference in the Γ-point

frequency between the two groups was 0.4 cm−1. The differences in the X-,

K-, and L-point optical frequencies were 0.5 cm−1, 0.6 cm−1, and 0.5 cm−1

respectively. On this basis, it can be said that the phonon frequencies are

converged to within one wavenumber.

The temperature dependence of the Γ-point phonon frequency was then calculated

using 30 configurations per temperature and a lattice parameter determined from

the experimental data described in section 5.2.3. The result is shown in figure 5.7

with and without 3-phonon effects, along with the SCPH results. The TDEP

calculations show much better agreement with the experimental data than the

SCPH calculations, almost perfectly following the data of Compaan et al. and

Balkanski et al. [92, 93].
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Figure 5.7 Temperature dependence of the Γ-point phonon frequency in silicon
as a function of temperature calculated by both TDEP and the SCPH
method. Both TDEP data include the thermal expansion from the
data of references [84, 85]. Filled and open black data are from
Raman scattering experiments in references [92, 93].

The inclusion of the 3-phonon effects through the Kramers–Kronig relations is

evidently important, and their omission from the SCPH calculations is likely

to account for a large part of the underestimation of the renormalisation. The

effect of thermal expansion (included in both TDEP results in figure 5.7) is also

necessary to accurately reproduce the experimental temperature dependence of

the zone-centre optical phonon frequency.

It is clear from figure 5.7 that TDEP is the better approach to take to accurately

compute the anharmonic phonon frequencies in silicon. The success of alamode

in other materials such as strontium titanate and lead telluride may be due to

the presence of anharmonicity strong enough to introduce significant effects from

the 4-phonon interaction process, or simply due to a type of anharmonicity that

happens to favour the 4-phonon process, since both 3- and 4-phonon processes

are ostensibly same-order effects. It is not clear if it is possible to predict which

systems would lend themselves well to the approach of alamode, but perhaps
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examining the density of states and making a Klemens-type assumption (where

a phonon scatters into two or more phonons each with equal frequency) would be

sufficient to predict whether a 4-phonon scattering process would have a strong

influence.

The overwhelming success of TDEP and the comparatively poor performance of

the SCPH approach suggests it is not practical to continue to use alamode in

its current form to calculate the anharmonic phonon frequencies. An attempt

to extend the code to include the effect of the 3-phonon process was made and

is described in section 5.4, but unfortunately the approach did not yield any

useful results and had to be abandoned. Despite this setback, TDEP shows great

promise in describing the behaviour of the phonons at elevated temperature. This

suitability to the diamond-type semiconductors was next verified by applying the

technique to diamond.

5.3.2 Diamond

The TDEP calculations were repeated for diamond, first verifying the convergence

of the phonon frequencies with respect to the number of configurations. The

standard deviation as a function of sample size is shown in figure 5.8. As

before, the Γ-point shows a larger standard deviation than the other points in

the Brillouin zone; again this is attributed to the long wavelength of the zone-

centre phonons. The scale of convergence is similar to silicon in that the phonon

frequencies are converged to within ±1 cm−1, although the zone-centre optical

phonon frequency in diamond is over twice the zone-centre frequency in silicon

— 1332 cm−1 compared to 520 cm−1 — resulting in a lower relative error. The 60

configurations were again split into two groups of 30 and the differences between

the Γ-, X-, K-, and L-points were 1.8 cm−1, 1.2 cm−1, 1.1 cm−1 and 1.5 cm−1

respectively.

The overlap in data between different samples may have had a more pronounced

effect in diamond than in silicon, or it may simply be that the two groups of 30

happened to have a difference in frequency that was more than a single standard

deviation apart. With only two independent groups little can be said. Crucially,

it may be noted from figure 5.8 that the standard deviation of the phonon

frequencies is no longer decreasing significantly by 30 configurations, implying
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that the limit of accuracy has been reached.

As with silicon, the temperature dependence of the zone-centre optical phonon

was calculated and compared to experimental data. This comparison is shown

with and without the 3-phonon interactions in figure 5.9. As before, the

TDEP method of calculating anharmonic phonons accurately reproduces the

experimental data when 3-phonon effects are included. The 3-phonon interaction

process accounts for nearly half of the renormalisation at 1500K. A full discussion

of the various experiments used for comparison is deferred until chapter 7, where

calculations of the Γ-point frequency are made at both high temperature and

pressure. For now, it is sufficient to note that the TDEP calculations follow the

majority of the experiments over the entire range of temperature shown.

It can therefore be said that TDEP works well to calculate the phonon frequencies

in silicon and diamond, and reviewing the existing literature it can further be said

that it is a method that works well across a range of different systems — both

strongly and weakly anharmonic. Furthermore, the process undertaken here is
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Figure 5.9 Temperature dependence of the Γ-point phonon frequency in diamond
as a function of temperature calculated by TDEP. The effect
of thermal expansion is included by choosing a different lattice
parameter for each temperature. Experimental data are taken from
references [94–103].

robust, and can be applied easily to any system with little pre-existing knowledge

required. In contrast, alamode does not work well with the weakly anharmonic

system of silicon, and the existing literature focusses primarily on the strongly

anharmonic perovskite systems. For these systems it appears well suited, but

the omission of 3-phonon effects makes it unsuitable for more weakly anharmonic

systems such as the diamond-type semiconductors. If the 3-phonon interaction

could be included, it could make alamode a comparably successful method that

would yield insight into the specific phonon–phonon interactions involved in the

renormalisation.
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5.4 Improvements to the self-consistent phonon

method

The results of the previous section highlight the importance of the 3-phonon

contribution to the renormalisation. On this basis, an attempt was made to

include the effect of the bubble diagram in the SCPH algorithm that, regrettably,

was not successful. Nevertheless, it shall be documented here for completeness

and some comments on the reason for its failure will be made, as well as some

thoughts on possible changes and difficulties that would need to be overcome to

make it successful.

The SCPH algorithm in alamode solves self-consistently the equation

Vjj′(k, ω) = ω
[h]
kj δjj′ − (2ωkj)

1
2 (2ωkj′)

1
2Σjj′(k, ω) (5.5)

on the irreducible points of a grid of k-points k. The harmonic phonons ω
[h]
kj

are renormalised by the self-energy Σjj′(k, ω). When only the 4-phonon process

(shown in the loop diagram on page 37 and in equation 3.107) is included, the

self-energy does not have an explicit ω dependence, and equation 5.5 is simplified

as

Vjj′(k) = ω
[h]
kj δjj′ − (2ωkj)

1
2 (2ωkj′)

1
2Σjj′(k) . (5.6)

This equation must still be solved self-consistently as the self-energy depends

on the anharmonic phonon frequencies, but the explicit ω dependence has been

removed.

The self-energy for the bubble diagram, which includes two 3-phonon processes,

does depend explicitly on ω; the self-energy Σjj′(k, ω) describes a renormalisation

that is dependent on the frequency of the phonon that is being renormalised.

The attempted improvement to the SCPH algorithm relied on the principle

that the SCPH equation may be solved mode-by-mode for a given k-point, and

for each mode the frequency-dependent renormalisation could be accounted for.

An improvement of this type would go beyond including just 3- and 4-phonon

corrections, it would make it possible to include any frequency-dependent self-

energy, theoretically allowing the inclusion of any interaction process.

The suggested update to the SCPH algorithm includes a second self-consistent
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Figure 5.10 Convergence of the modified SCPH algorithm. The left panel
shows the convergence criterion used in the outer self-consistent
loop, 1

N |Ω(i) − Ω(i−1)|, where Ω is a vector of the renormalised
frequencies. The right panel shows the frequency of a representative
point in the Brillouin zone at each iteration. At the 88th iteration
the algorithm returns not-a-number for one of the frequencies and
stops.

loop within the main loop to determine the self-energy at the frequency of the

phonon in question. Step 11 of the method described on page 67 would be

modified to include the frequency-dependent self-energy of the bubble diagram,

and then steps 11 and 12 would be repeated until the square root of the eigenvalue

of the matrix Vjj′(k, ω) (the anharmonic phonon frequency) was consistent with

the frequency at which the self-energy was computed.

For reasons that are not fully clear, the above suggestion was not numerically

stable; figure 5.10 shows the convergence of the new algorithm for some lead

telluride sample data. The phonon frequencies do not tend towards convergence

(as shown in the right panel of figure 5.10) and spikes in the convergence criterion

can be seen in the left panel. The last spike seems to cause an instability that

causes the algorithm to fail at the 88th iteration of the outer self-consistent

loop. The inner self consistent loop, at any given iteration of the outer one

and for any particular k-point and band, converges smoothly and in only a

few iterations. This therefore suggests that the problem lies not in calculating

the renormalisation of any particular k-point or band, but in assembling these
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solutions into a complete set of phonon frequencies and eigenvectors. Some

suggestions for why this should be the case are discussed below.

Although every effort was made to eliminate errors in the code, it cannot be ruled

out that the numerical instability was simply due to a coding bug. However, there

is some reason to think that the instability had more physical origins.

The eigenvectors of Vjj′(k, ω) describe the propagation of the anharmonic phonons

and, as Σjj′(k, ω) is a Hermitian matrix, they are orthogonal. As the self-energy

matrix is different for each ω = ωkj, the eigenvectors of Vjj′(k, ω) will be different

also at each ω. Therefore, when the self-energy is evaluated at different ω,

different sets of orthogonal eigenvectors will be found for each band. However,

the eigenvector for anharmonic phonon j = 1 will not necessarily be orthogonal

to the eigenvector for the anharmonic phonon j = 2, and so on, resulting in a set

of phonon eigenvectors that are not orthogonal.

Whether this poses a problem is not clear. Certainly it would require extending

the algorithm further to deal with non-orthogonal eigenvectors, most likely

through the introduction of an overlap matrix, but this is perhaps not impossible.

Another question is the physical meaning of the non-orthogonal eigenvectors,

since orthogonal eigenvectors arise from Hermitian operators, which represent

physical observables. Would the phonon frequencies have any physical meaning

if they were calculated in this way?

One other possibility for the instability of the algorithm is that a simple self-

consistent cycle is not sufficient to find the solution to equation 5.5. A mixing

parameter was introduced in an attempt to eliminate instability, but did not have

the desired effect. The possibility remains that a more sophisticated root-finding

algorithm may produce better results for the inner self-consistent loop.

Finally, there is the question of whether having an inner and outer self-consistent

loop is sensible. When the update is split into the inner loop and the outer

loop, the determination of the frequency at which to evaluate the self-energy and

the update of the interaction coefficients are performed separately. It would be

possible to perform both these operations at once. This was mimicked by setting

the maximum number of iterations of the inner loop to one, but unfortunately

this did not stabilise the algorithm.
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Much of this section is speculative, but some things can be stated with certainty.

The calculation of the bubble self-energy was implemented correctly. The

expression for the bubble self-energy was carefully derived and reported in

section 3.2; it was noticed that the expression in the paper detailing the original

implementation of alamode did not match that reported by Reissland [2, 62].

The expression reported in section 3.2 shows the correct symmetries and matches

what is reported by Reissland, so is believed to be correct. Furthermore,

the algorithm shows the expected behaviour when only the loop self-energy is

considered. In this case, the inner self-consistent loop converges immediately, as

one would expect from a self-energy that does not have a frequency dependence,

and the results of each iteration of the outer loop exactly match that of the

original algorithm.

It remains to be seen whether this approach can prove fruitful. It is the opinion

of this author that further development of the method is worthwhile, although,

due to time constraints and stalling progress, the decision was made to abandon

the project. Nevertheless, some suggested next steps for the project are:

� Further investigate the non-orthogonality of the eigenvectors and attempt

to account for this through the introduction of the overlap matrix.

� Try other, more sophisticated root finding methods for the inner self-

consistent loop.

� Re-structure the code to allow for more targeted testing of each part. This

would help eliminate bugs and coding errors; the code currently cannot

easily be supplied with dummy data and despite significant changes already

made, data is not encapsulated well in the current implementation.

It is sincerely hoped that these suggestions could produce a working algorithm

that includes the bubble (and higher-order) self-energy contributions, but, in the

interest of securing results, the rest of this thesis will focus on the TDEP method

of computing anharmonic frequencies.
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Chapter 6

Diamond and the quantum isotope

effect

6.1 Background

Isotopic mass is known to affect the properties of a material. The differences

exhibited under isotopic substitution may be used to assess the validity of a

theoretical model that has some dependence on the atomic mass. Many of these

differences occur due to changes in the phonon frequencies. Properties such

as the heat capacity, thermal expansion, and thermal conductivity depend on

the phonon dispersion, and changes in the phonon frequencies due to isotopic

substitution will alter these properties also. Here, the change in the phonon

frequencies and the dependent change in the atomic volume in diamond (carbon)

will be studied. The change in the phonon frequencies arises simply from the

dependence of an oscillator’s frequency on its mass; the ensuing volume change

arises from the change in the thermal pressure that comes from this change in

the phonon frequencies. The exact nature of the isotope effect depends on the

form of the interatomic potential.

There are two stable isotopes of carbon, 12C and 13C, with a mass ratio of 1.0836.

A 12C diamond crystal contains lighter nuclei and therefore has the higher phonon

frequency. The harmonic phonon theory in section 3.1.4 describes the harmonic

phonon frequency to be inversely proportional to the square root of the mass
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Figure 6.1 Ratio of the 12C to 13C Raman frequencies (
12ν
13ν

) of isotopically
pure 12C and 13C diamond as a function of pressure as measured
by Enkovich et al. [105]. Data are calculated from Raman
measurements of a sample of each isotope placed in the same DAC.
Blue data are taken at 300K, pink data are collected at 80K, the red
curve is a quadratic fit to the data, the harmonic ratio is indicated
by the dashed line. Figure reproduced from [105].

of the nuclei (ω ∼ m− 1
2 ). The harmonic theory therefore predicts the ratio of

the phonon frequencies in 12C and 13C diamond to be exactly ω12

ω13
=

√
m13

m12
=√

13.003355
12.0

= 1.040967299 . . . at all temperatures and pressures. Deviation from

this harmonic ratio is indicative of anharmonicity in the interatomic potential.

Attempts to measure this frequency ratio at high pressure have been made, but

there is little agreement in the literature as to its behaviour. Muinov, Kanda, and

Stishov performed experiments on natural diamond and isotopically enriched 13C

diamond (up to 9% 13C) up to 14GPa and observed a decrease in the frequency

ratio from the zero-pressure value [104]. A later study was performed by Enkovich

et al. in 2016 [105]. The data, shown in figure 6.1, were much more extensive,

but show unusual behaviour in the frequency ratio on increasing pressure. The

authors report a minimum in the phonon frequency ratio at ≈ 22GPa. Such

a minimum would indicate a non-trivial dependence of the anharmonic parts of

the interatomic potential on pressure. This unusual behaviour was attributed to

quantum effects.

Unusual behaviour at high pressure in the volume isotope effect has also been

observed by Fujihisa et al. [106]. These authors observed that, at high pressure,

the 12C diamond had a smaller atomic volume than the 13C diamond, in
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Figure 6.2 Difference in the lattice parameters for isotopically pure 12C and
13C diamond measured by Fujihisa et al. [106]. At zero pressure it
is expected that the 12C diamond will have the larger volume. The
dashed line (1) represents a prediction made by reference [104]. The
solid line (2) is the difference between the fitted equations of state
to the pressure–volume data. Filled and open circles indicate the
difference between the experimental 12C points and the 13C equation
of state and vice-versa. Figure reproduced from [106].

opposition to what has been observed at ambient pressure, as well as what one

would expect in the simple harmonic (or quasiharmonic) picture (see figure 6.2).

This so-called inversion of the quantum isotope effect1was attributed to non-

trivial behaviour of the quantum contribution to the lattice constants[106].

Beyond these studies, the majority of the existing research into isotope effects

in diamond is focussed on isotopically mixed crystals. This is only tangentially

related to the study at hand; many of the effects and processes involving isotopic

disorder will not be observed in the isotopically pure crystals. Nevertheless, these

studies offer insight into the behaviour of the pure crystals as the limiting case

of a mixed crystal. The general case of isotopically mixed diamond will not be

discussed in depth here, but the interested reader is directed to the review articles

[108, 109].

1The isotope effect is dubbed quantum as, at low temperatures, it arises from the zero-point
motion of the atoms [107].
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Frequency isotope effect

The aforementioned study of Enkovich et al. is distinguished from other studies by

the inclusion of both 12C and 13C samples in the same diamond anvil cell (DAC)

[105]. A chip of each isotope was placed in the DAC along with a helium pressure-

transmitting medium and a chip of ruby. The DAC was pressurised, and the

Raman spectrum of each sample was measured with a laser sufficiently focussed

to measure each sample separately. This ensured that the two samples were at

the same pressure (except for any pressure gradients within the sample chamber),

allowing the authors to directly compare frequencies at a common pressure and

compute a frequency ratio that was unaffected by uncertainty in the pressure

calibration. Pressure gradients in the DAC were minimised, as helium was used

as the pressure-transmitting medium. Helium is known to be the best pressure-

transmitting medium, yet only remains truly hydrostatic up to ≈20GPa [110].

Above this pressure a small amount of non-hydrostaticity is introduced, though

significantly less than any other pressure-transmitting medium. Although 20GPa

is approximately the same pressure as the turnover in Enkovich’s data, non-

hydrostatic effects are not likely to be the cause of the turnover, as these effects

are small in helium and other sources of uncertainty dominate the measured

frequency ratio.

Difficulties distinguishing the sample Raman signal from the signal of the diamond

anvils created pressure ranges where the Raman frequency was unable to be

determined. Inspection of figure 6.1 shows the two lacunae to be between 3GPa

and 10GPa, where the 12C signal could not be distinguished, and between 16GPa

and 25GPa, where the 13C signal could not be distinguished. Outside these

regions it was possible to determine the raman frequencies of each isotope against

the anvil background, and the ratio can therefore be confidently reported.

Aside from the high-pressure data of Enkovich et al., measurements have been

made of the frequency ratio at ambient pressure. A summary of the experimental

data and theoretical predictions of the frequency ratio are shown in figure 6.3.

Chrenko measured the Raman spectra of five synthetic diamonds with an isotopic

composition ranging from 1.1% to 89% 13C [111]. Chrenko extrapolated the

Raman frequency of these isotopically mixed crystals to their pure form and stated

Raman frequencies of 1333 cm−1 and 1280 cm−1 for 12C and 13C respectively. This

gives a frequency ratio of 1.041406. This is higher than the 1.040967. . . expected
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Figure 6.3 Existing zero-pressure experimental data (solid arrowheads) and
theoretical predictions (open arrowheads) of the frequency ratio in
diamond. Data from [111–116]. The dashed black line represents
the harmonic ratio.

from harmonic theory, a point which is not commented on by Chrenko due to

the frequencies not being stated to sufficient accuracy. They are only reported to

the nearest wavenumber; greater precision is required to determine the frequency

ratio to a satisfactory precision.

The harmonic approximation can be used to make an estimate of the precision

in the Raman frequencies required to accurately determine the frequency ratio.

Assuming the 12C Raman frequency to be exactly 1332 cm−1, the 13C Raman

frequency must be 1279.579 cm−1. An uncertainty on these figures of ± 1 cm−1

results in an uncertainty in the frequency ratio of ±0.001. If the Raman

frequencies are measured to a precision of ± 0.1 cm−1 then this uncertainty in

the ratio is reduced to ±0.0001. Examining figure 6.3 shows that if the Raman

frequencies are reported only to the nearest wavenumber, then the harmonic ratio

(and most other measurements) are within error. It can therefore be said that for

an acceptably precise determination of the frequency ratio, the Raman frequencies

should be determined to ± 0.1 cm−1 or better.

Hass et al. performed a similar experiment to Chrenko with a larger range

of isotopic compositions [112]. The authors again used five diamonds: one

natural, one purified 12C, and three enriched with 13C to varying degrees. The

highest concentration of 13C was 98.99%. The frequency–composition curve the

authors report is the product of a force constant model and extensive numerical

calculations, and is therefore not trivial to extrapolate to the pure crystals.

However, their data were revisited by Vogelgesang et al. [113] who, with additional
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data for natural diamond, fitted a polynomial,

ω(x) = 1332.82− 34.77x− 16.98x2 , (6.1)

to Hass’s data, where x is the fraction of 13C isotope. The frequency ratio found

from the x = 0 and x = 1 values of this polynomial is 1.040396.

Vogelgesang and co-workers go beyond this and apply a theoretical model of an

interatomic potential that contains a harmonic and cubic contribution to the

bond stretching and to the bond bending [113]. In the end, the anharmonic

bending terms cancel exactly. Applying this model to their own data, the authors

alter slightly the extrapolation to the isotopically pure 13C crystal, and predict a

frequency ratio of 1.040534. From this, and comparing with figure 6.3, one can

start to see some agreement in the experimental data.

Hanzawa et al. also report a polynomial to describe the dependence of the Raman

frequency on isotopic composition, however this polynomial was fixed to assume

an exactly harmonic ratio of the Raman frequencies in the limiting case of the

isotopically pure crystals [114]. Nevertheless, these authors report that the

difference in frequency between their highest and lowest 13C concentrations (1.1%

and 99%) was 52.3 cm−1. The reported Raman frequency of the natural diamond

crystal was 1332.5 cm−1, which implies a frequency ratio for the highest and lowest
13C concentrations of 1.040853, only slightly below the harmonic ratio, and the

values calculated from Hass’s and Vogelgesang’s data.

The fact that this is higher than most of the other reported values means that

there must be some uncertainty in the data; it cannot be due to the fact that

the data has not been extrapolated to the isotopically pure crystals. Given that

the Raman frequency decreases monotonically as a function of the fraction of
13C isotope, a small amount of 13C impurity in the 12C crystal will lower the ω12

Raman frequency, and a small amount of 12C impurity in the 13C crystal will

raise the ω13 Raman frequency. Any combination of these two effects will serve

to lower the frequency ratio ω12

ω13
.

Theoretical studies have also been made. From the phonon self-energy, consid-

ering only 3-phonon effects, Cardona and Ruf suggest that the renormalisation

(the depression of the phonon frequency relative to the harmonic value) due

to zero-point effects varies in proportion to to M−1, where M is the atomic
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mass, and has been found to be 16 cm−1 for natural diamond [115]. Assuming

a renormalised phonon frequency of 1332 cm−1 for 12C, this implies harmonic

(non-renormalised) frequencies of 1348.0 cm−1 for 12C and 1294.9 cm−1 for 13C .

The renormalised frequency for 13C is therefore 1280.2 cm−1, giving a frequency

ratio of 1.040475. Lang et al. also suggest an M−1 dependence on the basis

of density functional perturbation theory (DFPT) + frozen-phonon calculations

[116]. Their calculations suggest a frequency ratio of 1.0399723. This difference

in the ratio arises from Cardona and Ruf stating the renormalisation of natural

diamond to be almost half what is stated by Lang et al.: 16 cm−1 compared to

31.6 cm−1. This directly demonstrates that increasing anharmonic effects cause

a greater deviation from the harmonic frequency ratio.

Biernaki studied the isotope effect in mixed crystals using a tight-binding model

that used different force constants for 12C–13C, 12C–12C, and 13C–13C bonds

[117]. The tight-binding model had only a single free parameter to be fitted to

experiment, the value of which is the same for the entire row of the periodic

table and therefore is the same for both isotopes. The mass dependence is

introduced through the Helmholtz free energy in a manner which is similar to

the quasiharmonic calculations that will be presented later. The ratio of the 12C–
12C and 13C–13C bond frequencies was calculated to be 1.040512, in agreement

with the values from Hass’s data, as well as the self-energy argument made by

Cardona and Ruf [112, 113, 115].

Path integral Monte Carlo (PIMC) simulations performed by Herrero employed a

Tersoff potential to describe the interatomic potential in diamond, and produced

good agreement with experimental data [118]. Herrero reports the ratio of the

total vibrational energies per simulation cell (not just the zone-centre phonon

but all vibrations) to be 1.039. This is lower than the values for the zone-centre

phonon frequency ratio determined from Raman measurements and possibly

indicates that the average frequency ratio across all phonons is lower than the

ratio of the zone-centre optical phonon, and that the zone-centre phonon is

particularly harmonic compared to other phonons in the Brillouin zone.
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12C (Å) 13C (Å)
Volume difference

(Å
3
/atom)

Holloway et al. [119] 3.567 15(5) 3.566 62(5) 2.528 630(15)× 10−3

Yamanaka et al. [120] 3.567 12(5) 3.566 59(7) 2.528 588(17)× 10−3

Shikata et al. [121] 3.567 135(15) 3.566 658(17) 2.275 782(5) × 10−3

Table 6.1 Lattice parameters of 12C and 13C from different experimental studies.

Volume isotope effects

In addition to the already mentioned study by Fujihisa et al., which predicted an

inversion of the isotope effect at high pressure, other authors have measured the

change in the lattice parameter of diamond under isotopic substitution. Most of

these studies have been at ambient pressure, with only a few at high pressure.

The results of the zero-pressure measurements are shown in table 6.1.

As with the frequency isotope effect, much of the existing research is focussed on

isotopically mixed crystals. Both Holloway et al. and Yamanaka et al. performed

x-ray diffraction measurements on isotopically mixed crystals to determine the

lattice parameter [119, 120]. Whereas Holloway et al. report a linear dependence

of the lattice parameter on the fraction of 13C in the sample, Yamanaka et

al. observed a curvature in their data (see figure 6.4). Yamanaka et al. point

out that a linear relationship is unlikely as the two isotopes have different bulk

moduli and Grüneisen parameters. Both of these quantities depend on the phonon

frequencies, which vary non-linearly with isotope concentration. Yamanaka and

Morimoto later revisited the question and attributed the non-linearity both to

anharmonic phonon effects and differences in the valence electron density arising

from electron–phonon coupling [122].

The effect of sample quality on the lattice parameter was investigated by Shikata

et al. [121]. Various diamond samples were synthesised using different methods

and their lattice parameters precisely measured. It was found that, with the

exception of the doped samples and the 13C crystal, the lattice parameter

was unchanged by the method of synthesis to within the error from the x-ray

diffraction experiments. Poor sample synthesis is insufficient to account for the

linear relation observed by Holloway et al. Isotopically mixed crystals (beyond the

natural composition) were not considered, so no conclusions can be drawn on the
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effect of uncertainty in the isotope fraction on the lattice parameter, although the

isotope fraction would have to be very poorly determined to accidentally obtain a

linear relation like Holloway et al., and can therefore be discounted as its origin.

However, it is interesting to note that Yamanaka et al. characterised their samples

using a mass spectrometer, whereas Holloway et al. state that “uncertainties

in composition are quite negligible by comparison with those arising from the

measurements of lattice constant” [119].

Fujihisa et al. are the only authors to directly measure the volume isotope effect

at high pressure. Other insights into its possible behaviour come from Gillet et

al. [123], who measured the equation of state of both isotopes at high pressure;

and indirect volume determinations from Enkovich et al. using their measured

Raman frequencies and a Grüneisen model, V
V0

=
(

ω
ω0

)−0.97

, to determine the

volume [105].

Gillet et al. reported tabulated volumes at high pressure for both isotopes along

with fitted parameters for a Birch–Murnaghan equation of state. By finding the

difference between the reported volumes of one isotope and the volume computed

from the equation of state of the other, a volume difference can be found from

Gillet’s data. Note that this is beyond what is attempted by the authors.

Figure 6.4 Lattice constant of diamond with isotope concentration. Hollow
squares are the data of Holloway et al. [119] and solid circles
are the data of Yamanaka et al. [120]. Figure reproduced from
reference [120].
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This process relies on an equation of state to compute the volume difference

between the isotopes at a common pressure. Gillet et al. reported several sets of

parameters to the Birch–Murnaghan equation of state for the different isotopes

and pressure-transmitting media, but the exact method used to preform the

fitting is not clear. The authors state that “V (P ) data . . . were fitted to a Birch–

Murnaghan equation of state”, but the Birch–Murnaghan equation of state is

a P (V ) function that cannot be analytically inverted. Gillet et al.’s data were

re-analysed by attempting to fit the V (P ) data to a Birch–Murnaghan equation

of state using numerical inversion. Unfortunately, this proved to be unstable

and no reliable parameters could be found. An ordinary least-squares fit to the

P (V ) Birch–Murnaghan equation of state, using the errors in the unit cell volume

as weights, was also performed, but the ensuing parameters did not match the

values reported by Gillet et al. The authors also talk of “. . . taking into account

the uncertainties in both pressures and cell volumes”, something which is not

possible in ordinary least-squares fitting. To do this, something akin to orthogonal

distance regression (ODR) is required.

The equation of state parameters reported by Gillet et al. along with the

parameters found in the re-analysis are shown in table 6.2. The ordinary least-

squares and the ODR fits omitted three data points from the tabulated values in

reference [123]. These were two points that had been omitted from the author’s

P–V graph, suggesting them to be outliers — the highest pressure of the 12C, N2

data set and the highest pressure of the 13C, Ar data set — and data at 0.46GPa of

the 12C methanol-ethanol-water (MEW) data set, where there is a typographical

error. Including or amending these points did not cause the equation of state

parameters from the re-analysis to match those reported by Gillet et al.
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One may notice that, in many cases, the values reported by Gillet et al. match

the values from the ODR, albeit with different errors, but this is not common

to all fits; one cannot conclude that this was the approach used by Gillet et

al., especially since the publication date of 1999 pre-dates widespread use of the

method. One possibility is that the authors used something similar but not

identical to ODR. The differing errors could be attributed to an alternative

method of determining them. It is also possible that whatever approach was

used by the authors did not fully converge, resulting in values that are not the

true best fit to the data.

Comparing the different fitting methods applied to different data sets little

consensus on the correct values can be reached. All approaches agree that 12C

has the larger unit cell volume, but there is disagreement as to which of the

two isotopes has the larger bulk modulus. The most reliable values likely come

from the consideration of the whole data set using the more sophisticated ODR

fitting method. Given the limited compression of diamond over the small pressure

range, the inclusion of B′
0 as a fitting parameter provides little advantage, and in

many cases is far from the accepted value of approximately 4 (later calculations

in this chapter put the value between 3.47 and 3.81). Therefore the ODR fits

with fixed B′
0 = 4 are chosen here as the most accurate fits to the data reported

by Gillet et al., although in reality the data are not of sufficient quality to make

any significant statements on the volume difference.

Nevertheless, a volume difference calculated from the tabulated volumes and these

equation of state parameters is shown in figure 6.5. The scatter in the data is too

great to make significant comment on the quantum isotope effect at zero pressure,

and the data is not of sufficient quality to notice any trend on increasing pressure.

The dashed blue line indicates the volume difference as a function of pressure

calculated from the 12C and 13C Birch–Murnaghan equation of states and shows

that the the volume difference increases as pressure increases.

This increase is a result of the bulk modulus of 12C being larger than that of
13C by 6GPa. Ultrasonic measurements from Hurley et al. disagree with this

and state 13C to have the larger bulk modulus. However, the authors state

the difference to be 74.5GPa — an increase of 17% [124]. This is far too high

to be believable. Brillouin scattering measurements by Vogelgesang et al. also

describe the bulk modulus of each isotope; the bulk modulus of pure 12C is
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Figure 6.5 Experimental determinations of the volume difference per atom in
diamond at high pressure. Light green circles are the difference
between measured 12C volumes from Gillet et al. [123] and the
volume calculated from the 13C equation of state fitted to the whole
dataset using ODR and fixing B′

0 = 4, and vice versa for dark green
squares. Light blue data are the reported volume differences obtained
from the Grüneisen model and Raman frequencies in [105].

reported as 443.2±0.8GPa and the bulk modulus of their sample with the highest
13C concentration (99.2%) is reported to be 442.9 ± 1.2GPa. Although this

superficially agrees with Gillet et al. in that 13C has the highest bulk modulus,

the difference of only 0.3GPa is far exceeded by the errors, and is an order of

magnitude smaller than predicted by Gillet et al. It seems there is no experimental

consensus on the bulk modulus of the pure isotopes.

The volume difference calculated using the Grüneisen model by Enkovich et al. is

also shown in figure 6.5. It mirrors the unusual turnover observed in the Raman

frequencies, and inherits all the problems in the measurement of these frequencies

— namely the difficulty in discerning the sample signal from the anvil. It is

unclear whether assuming a constant Grüneisen parameter for both isotopes and

at high pressure is a valid assumption when considering effects of such small

magnitude. The validity of Enkovich’s data is therefore held in question until the
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Raman measurements can be verified.

The PIMC calculations of Herrero mentioned in the previous section were

also used to calculate the volume isotope effect [118]. A volume difference of

1.888 × 10−3 Å
3
/atom (at 0K) was reported, which decreases with increasing

pressure. At 500GPa, the fractional volume change ∆V
V

had more than halved,

which is attributed to a reduction of the zero-point lattice expansion due to

an increasing bulk modulus. The tight-binding model of Biernacki calculates

the length of the nearest-neighbour bond for each isotope, from which a volume

difference of 2.42× 10−3 Å
3
at 0K and 1.16× 10−3 Å

3
at 300K can be deduced2.

The zero temperature value agrees with the experimental values shown in

table 6.1, which are results of room temperature measurements, whereas the

300K value is too small by some 50%. It was suggested that this is due to the

crudeness of the Einstein approximation in which the full phonon dispersion is

replaced by a single frequency; by considering only one mode of vibration of a

single bond this is, in effect, the assumption that has been made. This indicates

the importance of considering the entire phonon spectrum, as is done in the

quasiharmonic calculations presented later.

Other works

Analogous studies have been done on silicon and germanium, also diamond-

type semiconductors. Herrero, for example, repeated his PIMC calculations for

silicon,and found a similar isotope effect in the vibrational energies of 28Si and
30Si as in diamond, albeit an order of magnitude smaller owing to the smaller

relative mass difference between the isotopes [125, 126].

Enkovich repeated the high-pressure measurements of the Raman frequencies

on silicon [127]. The frequency ratio between 28Si and 30Si shown in figure 6.6

appears completely flat, and does not deviate from the harmonic ratio at room

temperature. Only at low temperature do the quantum effects play a role [128].

In germanium, where the mass ratio of the isotopes is even smaller, and the Debye

temperature even lower, the quantum effects are even less apparent.

2A typographical error causes Biernacki to report the difference in the lattice parameter at

300K to be 1.1×10−4 Å (volume difference 6.1×10−5 Å
3
). This does not affect the subsequent

conclusions.
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Figure 6.6 Pressure dependence of the frequency ratio for 28Si and 30Si. Blue
squares are data taken at 296K and red circles are data taken at
80K. The dashed line indicates the harmonic frequency ratio. Figure
reproduced from [127].

In summary, it has been frequently reported that quantum contributions cause

unusual behaviour in the isotope effect in diamond at high pressure. No similar

effect is observed in silicon or germanium, which show no pressure dependence

of the isotope effect, and in diamond there is disagreement in the literature as to

the behaviour of these isotope effects at high pressure. The question of the high-

pressure behaviour of the isotope effect in diamond has been frequently asked,

yet so far no satisfactory answer has been found. This investigation will use

anharmonic phonon calculations to provide an answer to this question from first

principles.
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6.2 Methods

6.2.1 Quasiharmonic calculations

The quantum isotope effect was investigated firstly with the QHA as described in

section 4.2. The finite displacement method was used to calculate the harmonic

phonon dispersions at 15 volumes covering the pressure range 0GPa to 80GPa.

Each of the finite displacement calculations was performed using a 4 × 4 × 4

supercell of the primitive unit cell, with the atom at the origin displaced 0.01 Å

from its equilibrium position in the positive x direction. A 4 × 4 × 4 Monkhorst-

Pack k-point grid was used for the electronic integration, and a stopping criterion

of less than 1 × 10−8 eV between successive self-consistent cycles was used to

halt the calculations once convergence was achieved. The effect of the XC

functional and pseudopotential on the final results was investigated, and the

above calculations were done once each using the LDA, PBE, and PBEsol XC

functionals (using the so-called “C” pseudopotential) and once each using the C

and C h pseudopotential (using LDA). C and C h are the standard and “hard”

PAW pseudopotentials provided by VASP and constructed by G. Kresse with the

2s and 2p electrons as valence electrons [69, 70, 72, 75, 76, 129].

Density functional theory depends only on the electronic configuration and is

therefore agnostic towards the masses of the nuclei. Consequently, the same

DFT calculations were used to determine both the 12C and the 13C phonon free

energies. The differing masses manifest only in the calculation of the phonon

frequencies (which in the harmonic approximation follow the ω ∼ 1√
m

scaling).

This change in the phonon frequencies in turn affects the phonon free energies,

thus producing different equations of state for the two isotopes. The fitting of

the phonon free energies in the QHA was performed using three energy–volume

equations of state:

Murnaghan,

U(V ) = U0 +B0V0

{
1

B′
0(B

′
0 − 1)

(
V

V0

)1−B′
0

+
1

B′
0

V

V0
− 1

B′
0 − 1

}
, (6.2)
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Birch–Murnaghan,

U(V ) = U0 +
9B0V0
16

{
B′

0(η
−2 − 1)3 + (η−2 − 1)2(6− 4η−2)

}
, (6.3)

and Vinet,

U(V ) = U0 +
2B0V0

(B′
0 − 1)2

×
{
2− [5 + 3B′

0(η − 1)− 3η]× exp

[
3

2
(B′

0 − 1)(1− η)

]}
, (6.4)

where B0, B
′
0, and V0 are the equilibrium bulk modulus, the pressure derivative

of the bulk modulus at equilibrium, and the equilibrium volume respectively; and

η =
(

V
V0

) 1
3
.

6.2.2 TDEP

The frequency isotope effect was also investigated using the TDEP approach

described in section 4.3. It was assumed that the frequency ratio was affected

independently by the volume difference, the effects of which would be shown in

the quasiharmonic calculations, and the pure anharmonicity of the zone-centre

phonon optical frequency, which would be calculated by the TDEP calculations.

Given that the volume difference between the two isotopes at a common pressure

is very small, this approximation is expected to be reasonable; there will only be

negligible changes in the anharmonicity of the potential between the two volumes

at a common pressure. This assumption avoided the computational expense of

calculating the fully-anharmonic phonon frequencies over the entire Brillouin zone

necessary for the calculation of the fully anharmonic free energy. The pressure in

the TDEP calculations was determined from the quasiharmonic calculations.

Nine lattice parameters were chosen corresponding to the average of the 12C and
13C lattice parameters at pressures over the range 0GPa to 80GPa in 10GPa

increments. At each of these lattice parameters, a harmonic finite displacement

calculation was performed to determine the harmonic force constants necessary

to create the TDEP configurations.

By using an averaged lattice parameter from both isotopes, the same harmonic
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force constants were used to generate the configurations3. This alleviated a

numerical problem where minutely different force constants lead to significantly

different phonon eigenvectors at degenerate points in the Brillouin zone. At these

degenerate points, the eigenvectors are not uniquely defined and are confined to a

plane (or hyperplane) with a dimension equivalent to the degeneracy. Therefore,

the small changes in the force constants that occur between the volumes of the

two isotopes cause drastic changes in the orientation of eigenvectors at these

degenerate points. As the eigenvectors are used to determine the direction

in which the atoms should be displaced, atoms end up displaced in different

directions in what should be similar configurations.

TDEP calculations were carried out at 300K at the nine lattice parameters. Each

TDEP calculation used 30 configurations of a 5 × 5 × 5 supercell of the primitive

unit cell, resulting in a convergence of the zone-centre optical phonon frequency to

within 1 cm−1. The plane-wave energy cutoff for these calculations was increased

to 550 eV to ensure accurate calculation of the forces; the convergence criterion

was reduced to a difference of less than 1 × 10−9 eV between successive self-

consistent cycles; and the k-point grid was replaced with a grid generated by the

getKPoints utility [88, 89] of equivalent density to the 4 × 4 × 4 grid used in the

QHA calculations, for increased efficiency. The calculations were done using the

LDA XC functional, as this best matched the experimental value for the Raman

frequency, and the standard C pseudopotential, as the harder pseudopotential

produced no advantage and required a higher energy cutoff to converge.

Verifying the similarity of the configurations

After using the same harmonic force constants to generate the configurations,

the resulting 30 configurations for the two isotopes were, as much as possible,

scaled versions of one another. The displacements depend on the normal mode

amplitudes, which in turn depend on the mass; the eigenvectors, which ultimately

depend on the force constants; and the phonon frequencies, which depend on the

mass and on the force constants. By using the same seed for the configuration

generation and the same set of force constants for both isotopes, only the mass

was left to affect the atomic configurations.

3The different displacement magnitudes for the 12C and 13 isotopes is retained through the
mass-dependent normal mode amplitudes
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The mass affects the displacements through the normal mode amplitudes which

are

⟨Ais⟩ =

√
ℏ(2n(ωs) + 1)

2miωs

(6.5)

in the quantum case, and

⟨Ais⟩ =
1

ωs

√
kBT

mi

(6.6)

in the classical. Here ℏ is the reduced Planck’s constant, n(ω) is the Bose-Einstein

distribution for frequency ω, mi is the mass of atom i, ωs is the frequency of mode

s, kB is the Boltzmann constant, and T is the temperature.

As harmonic calculations are used for the configuration generation, the frequen-

cies scale inversely with the square-root of the mass. The ratio of the normal

mode amplitudes can therefore be found as

⟨A12
is ⟩

⟨A13
is ⟩

=

√
ω12
s

ω13
s

√
2n(ω12

s ) + 1

2n(ω13
s ) + 1

(6.7)

in the quantum case, and

⟨A12
is ⟩

⟨A13
is ⟩

=
ω13
s

ω12
s

√
m13

i

m12
i

= 1 (6.8)

in the classical.
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Figure 6.7 Ratio of the 12C and 13C normal mode amplitudes ⟨A⟩(ω12)
⟨A⟩(ω13)

at 300K.

The frequency denoted on the x-axis is the 12C frequency, ω12. The
13C frequency, ω13, is given by

√
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13.003355 × ω12.
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Figure 6.8 Angle (left) between corresponding atomic displacements in the 12C
and 13C configurations and their magnitude ratio (right). The red
line in the right panel indicates the average displacement ratio over
all atoms and configurations.

It is apparent that the isotope effect only exists in the quantum limit, where it

depends on the frequency of the mode and the temperature (through the Bose-

Einstein distribution). The mode amplitude ratio in the quantum limit is plotted

in figure 6.7. The maximum ratio of the normal mode amplitudes in diamond

is around 1.02 at 1332 cm−1; a phonon mode at this frequency will produce an

atomic displacement 2% larger in the 12C crystal than the 13C crystal. If the

average frequency is roughly half the Γ-point frequency, then the average ratio of

the normal mode amplitudes is roughly 1.01, and the atomic configurations for
12C are expected to have 1% larger displacements than the 13C configurations.

The average ratio of the displacement magnitudes over all 250 atoms in all 30

configurations was found to be 1.0131 for the zero-pressure calculation.

Each atomic displacement in a 12C configuration has a corresponding displace-

ment of the same atom the 13C configuration. The distributions of the magnitude

ratio and the angle between these corresponding displacements are shown in

figure 6.8. This figure demonstrates that, by and large, the atoms in the
12C and 13C configurations are displaced in the same direction by an amount

that is on average 1.3% larger in 12C than 13C. Those with a larger angle

between them are the small displacements where the stochastic nature of the

configuration generation has the most pronounced effect. One configuration is

clearly recognisable as a scaled version of the other.
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6.3 Results

6.3.1 Quasiharmonic results

Equation of state fitting

The three equations of state were each fitted to the free-energy–volume data.

The resulting parameters of these fits are shown in table 6.3. The values of B′
0

for all isotopes are identical; between 12C and natural diamond there are only

minute differences in the parameters, as expected. It can be seen that, for all

three isotopes, the Murnaghan equation of state produces values which are out

of line with the other two equations, and the Vinet and the Birch–Murnaghan

equations agree with each other much better. Unless otherwise specified, the

Vinet equation of state is chosen to present the results in this section; it will later

be shown that the results do not depend on the choice of equation of state.

It was confirmed that the results of table 6.3 were not simply due to correlation

effects between B0 and B
′
0 in the equation of state fitting process by repeating the

fit with B′
0 fixed at the average of the 12C and 13C values (using the full numerical

precision of the fits). This procedure left the values in table 6.3 unchanged within

Isotope Equation of state B0 (GPa) B′
0 V0 (Å

3
/atom)

Natural diamond Vinet 452.18(4) 3.76(1) 5.5846(1)
Murnaghan 454.56(5) 3.47(2) 5.5849(2)
Birch–Murnaghan 452.73(3) 3.69(1) 5.5846(1)

12C diamond Vinet 452.17(4) 3.76(1) 5.5846(1)
Murnaghan 454.56(5) 3.47(2) 5.5849(2)
Birch–Murnaghan 452.72(3) 3.69(1) 5.5847(1)

13C diamond Vinet 452.57(3) 3.76(1) 5.5822(1)
Murnaghan 454.90(5) 3.47(1) 5.5826(1)
Birch–Murnaghan 453.10(3) 3.69(1) 5.5823(1)

Table 6.3 Values of the equilibrium bulk modulus B0, the pressure derivative of
the bulk modulus at zero pressure B′

0 and the equilibrium volume V0

at 300K for the Vinet, Murnaghan, and Birch–Murnaghan equations
of state for natural diamond, 12C diamond, and 13C diamond from
fitting energy–volume data calculated from the QHA calculations.
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the fitting uncertainty.

The values in table 6.3 should be compared with the experimental values of

Gillet et al. [123]. The re-analysis of Gillet et al.’s data suggested an ODR fit

to a Birch–Murnaghan equation of state with fixed B′
0 = 4 produced the best

results. The resulting values for B0, and V0 in 12C diamond were 449GPa and

5.676 Å
3
/atom; and 443GPa and 5.673 Å

3
/atom in 13C diamond. One notes that

the experimental volume is larger, and the bulk modulus smaller, than any of

the DFT results in table 6.3. This indicates the over-binding typical of the LDA

exchange–correlation functional used in the DFT calculations — the material is

calculated to be stiffer with a smaller volume. Comparing the experimental and

calculated equilibrium volumes, the LDA can be said to over-bind by 1.6% for

both isotopes.

It was mentioned previously that the bulk moduli from Gillet et al.’s data

vary between the two isotopes by 6GPa and the equilibrium volumes differs by

0.004 Å
3
, with 12C having the larger value in both cases. This is qualitatively and

quantitatively different to the QHA results where the difference between the two

Isotope XC functional B0 (GPa) B′
0 V0 (Å

3
/atom)

Natural diamond LDA 452.17(4) 3.76(1) 5.5846(1)
PBE 419.60(4) 3.81(1) 5.7595(3)
PBEsol 436.74(4) 3.77(1) 5.6755(2)

12C diamond LDA 452.17(4) 3.76(1) 5.5846(1)
PBE 419.59(4) 3.81(1) 5.7595(3)
PBEsol 436.74(4) 3.77(1) 5.6757(1)

13C diamond LDA 452.57(3) 3.76(1) 5.5822(1)
PBE 419.97(4) 3.81(1) 5.7570(3)
PBEsol 437.12(4) 3.77(1) 5.6733(1)

DFT (static) LDA 465.10(3) 3.74(1) 5.5202(1)
PBE 432.20(4) 3.79(1) 5.6913(2)
PBEsol 449.39(3) 3.75(1) 5.6098(1)

Table 6.4 Values of the equilibrium bulk modulus B0, the pressure derivative of
the bulk modulus at zero pressure B′

0 and the equilibrium volume V0

at 300K for the LDA, PBE, and PBEsol XC functionals for natural
diamond, 12C diamond, and 13C diamond using the Vinet equation of
state. The values for a static DFT calculation where the phonon-free
energy has not been included in the fitting are also shown.
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Figure 6.9 Static (left) and QHA (right) pressure–volume relation of diamond
for different XC functionals. QHA data is for natural diamond using
the Vinet equation of state. Legends in the figure apply to both
panels. Blue and black crosses are LDA and GGA (PBEsol) data
using PAW pseudopotentials from [132], orange squares are single-
crystal x-ray diffraction data from [133].

isotopes is just 0.4GPa and 0.0025 Å
3
, with 12C having the larger volume but

the smaller bulk modulus. The QHA results are in reasonable agreement with a

theoretical prediction made by Vogelgesang et al. on the basis of an interatomic

potential including cubic terms, which predicts the relative increase of the bulk

modulus between 12C and 13C to be 0.12%. Using the average 12C bulk modulus

from table 6.3, this gives a difference of 0.54GPa.

The effect of XC functional was investigated by repeating the QHA calculations

for LDA with the PBE and PBEsol functionals [70, 72, 75, 76]. The values are

shown in table 6.4, where the Vinet equation of state has been used for the

fitting. Again, LDA exhibits the over-binding while PBE and PBEsol under-bind

to varying degrees. The final three rows of the table show the result of a fit to

the volumes and pressures calculated from the stress theorem [130, 131] and can

be directly compared to the work of Kunc et al. [132], where similar calculations

were performed. These static pressure–volume fits are shown in comparison with

the data of Kunc et al. in figure 6.9.

The static LDA results of the present investigation shown in the left-hand panel

of figure 6.9 lie below the LDA results of Kunc’s work due to a different plane-
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wave energy cutoff. The cutoff used in Kunc et al.’s work was significantly higher

as a result of the harder pseudopotential and the necessity of well-converged DFT

pressures calculated by the stress theorem. Such highly converged pressures were

not required for this investigation, which obtains pressures through the QHA,

although increasing the cutoff does move the curves in figure 6.9 slightly closer

to the data reported by Kunc et al. The left panel of figure 6.9 shows LDA to

present the biggest underestimation of the volume in the static case, with PBE

aligning most closely with experimental data. This agreement is altered by the

inclusion of the phonon free-energy as shown in the right panel. When the phonon

free energy is considered, PBEsol shows the most faithful representation of the

experimental data.

Pressure–frequency

Despite calculations using PBEsol showing best agreement with experimental

volumes, LDA was shown to produce the closest agreement with the frequencies.

The volumes at which the frequencies were calculated were translated into

pressure through the fitted equation of state, and a quadratic function was fitted
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Figure 6.10 Frequency–pressure curves in diamond from the QHA using
different XC functionals (left) and different temperatures (right).
Solid and dashed lines indicate 12C and 13C data respectively. The
0K data in the right panel (blue) is coincident with the black line.
The grey lines in the right panel are the 300K data scaled to match
the experimental data at zero pressure.
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to the ensuing pressure–frequency data. The results of this for different XC

functionals are shown in the left panel of figure 6.10. There is a noticeable spread

between the different XC functionals with LDA being closest to the experimental

data, but still being short by 20 cm−1. All three XC functionals follow the

same trend, indicating that they differ only by a constant offset and not in any

qualitative way.

The QHA results for different temperatures are shown in the right panel of

figure 6.10. This figure indicates little difference between the 0K and 300K

values; diamond has such a high Debye temperature that, compared to the Debye

temperature, 300K is still a very low temperature. The grey dashed and solid

lines in figure 6.10 represent the 300K results for both 12C and 13C scaled up by

1.86%. This scaling was chosen to align the 300K results with the experimental

data, and provides assurance that the frequency ratio results are not affected by

the underestimation of the phonon frequencies by DFT.

Volume difference

The volume difference between the two isotopes of diamond is shown in figure 6.11.

It can be seen from this figure that the zero-pressure QHA result is in excellent

agreement with the zero-pressure experimental data. The agreement is less good

when compared with the experimental high-pressure data, yet there is reason to

believe it is the experimental data that is in error. The data of Gillet et al. have

already been discussed; it was determined that the upward trend in the volume

difference was the result of the bulk modulus of 12C being higher than that of
13C, but that this result was sensitive to the type of fitting performed.

The highest-pressure data from Enkovich et al. agree with the QHA, as do the

zero-pressure data from the same authors. Aside from these points, however, the

QHA results do not reproduce the trend of Enkovich et al.’s results, as there is

no maximum at 30GPa. In contrast with the conclusions drawn by Enkovich,

the volume difference calculated here demonstrates that quantum effects decrease

steadily with increasing pressure. Increasing temperature also serves to lower the

quantum contribution in line with the conclusions of Herrero [118].

The high-pressure experimental data presented in figure 6.11 should be treated

with caution. The experiment performed by Gillet et al. did not have sufficient
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Figure 6.11 Volume difference (V (12C) − V (13C)) per atom as a function of
pressure as calculated by the QHA. The black arrow indicates
an averaged volume difference from the experimental zero-pressure
data in table 6.1. The experimental uncertainty on the black arrow
is less than the line width of the arrow stem. Light blue data are
obtained indirectly from Raman frequencies and a Grüneisen model
[105]; Light and dark green data are from [123] and are found as
the difference between the tabulated volumes of one isotope and the
equation-of-state volumes of the other isotope, as in figure 6.5. The
results of the QHA calculations are shown by the blue, black, and
red lines.

precision to accurately deduce the volume difference (but recall that this is beyond

what is attempted by the authors) and the volume data provided by Enkovich

et al. is indirect, coming from the Grüneisen model applied to the measured

Raman frequencies. Nevertheless, the QHA data is in excellent agreement with

the zero-pressure data, which is believed to be very accurate, and there is no

reason to suspect that the high-pressure QHA results are any less accurate than

the zero-pressure results.

The QHA calculations are robust against changes in the XC correlation functional

and pseudopotential used in the DFT calculations, as well as the equation of

state used to describe the energy–volume (and subsequently pressure–volume)
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Figure 6.12 QHA volume isotope effect in diamond for different XC functionals
(left), pseudopotentials (centre), and equations of state (right).

relation. Figure 6.12 shows the volume difference computed for different XC

functionals, pseudopotentials, and equations of state. From this figure it can

be seen that the greatest uncertainty comes from the choice of XC functionals,

with the uncertainty being greatest at zero pressure and diminishing at higher

pressure. The choice of pseudopotential and the choice of equation of state do

not show a noticeable change in the volume difference. Therefore the QHA can

be said to accurately and robustly calculate the volume isotope effect in diamond,

and its predictions at high pressure should be regarded as credible.

Frequency ratio

The frequency isotope effect in diamond calculated by the QHA is shown in

figure 6.13. The zero-pressure ratio is in best agreement with the experimental

observations of Vogelgesang et al. [113] and the prediction of Cardona and Ruf,

who suggested that the renormalisation varied as M−1 and had been found to be

16 cm−1 in natural diamond. The ratio found by Lang et al., who also suggested a

M−1 dependence of the renormalisation but that it was found to be 31.6 cm−1 in

natural diamond, apparently overestimate the role of quantum effects in diamond.

The QHA calculations predict a much reduced role of quantum effects compared

to the results of Enkovich et al. The disagreement between Enkovich’s data

and the quasiharmonic calculations, as well as the most credible zero-pressure

experimental data, suggest that there are systematic errors introduced by the

DAC in the high-pressure measurements. The QHA calculations also fail to

produce any turnover or inversion of the quantum isotope effect, either in the
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Figure 6.13 Frequency ratio as calculated by the QHA with the Vinet equation of
state and LDA as the XC functional. The blue, orange, and green
arrows indicate the frequency ratios reported by Hass, Vogelgesang,
and Hanzawa [112–114]. The magenta and cyan arrows are the
ratios reported by Lang et al. and Cardona and Ruf [115, 116].
Purple data and the associated curve are the data from [105] and
a fitted quadratic. The dashed black line shows the harmonic
frequency ratio.

volume or frequency isotope effects. In both cases the quantum effects reduce

smoothly and monotonically with increasing pressure. Increasing temperature

also reduces the quantum effects, which is the expected behaviour as one

approaches the Debye temperature.

As with the volume isotope effect, the frequency ratio calculations were shown

to be robust with respect to the XC functional, the pseudopotential, and the

equation of state. These aspects of the calculation were each varied and the

results are shown in figure 6.14. The XC functional and the equation of state do

not have any significant influence on the frequency ratio. The pseudopotential has

the greatest effect with a difference in the ratio of 2× 10−4 at zero pressure and
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Figure 6.14 QHA frequency isotope effect for different XC functionals (left),
pseudopotentials (centre), and equations of state (right). The
dashed line indicates the harmonic frequency ratio.

decreasing as pressure increases. Assuming this difference to be representative of

of an error on the QHA calculations, the conclusions drawn from figure 6.13 are

unchanged by an error of this magnitude.

6.3.2 TDEP results

The QHA accounts for some anharmonicity through the volume dependence of the

interatomic potential, but cannot account for the so-called “pure” anharmonicity

arising from terms in the potential higher than quadratic order. To investigate

the effect of this pure anharmonicity on the phonon frequency ratio, TDEP

calculations were performed. The TDEP approach splits the pure anharmonic

contribution to the potential into an effective harmonic part, representing the even

terms in the expansion (see equations 3.8 and 3.9), and an effective 3-phonon part

deduced from the phonon linewidth and the Kramers–Kronig relations.

The volume effect, shown to be accurately accounted for by the QHA calculations,

was included separately. The small volume difference between the two isotopes

at a common pressure creates a small frequency difference. As described in

section 6.2.2, the TDEP calculations were performed at the midpoint of these

two volumes, and 12C and 13C anharmonic phonon frequencies were found. The

QHA frequency effect was then added to the TDEP results by adding half the

QHA frequency difference to the 12C frequency, and subtracting half from the
13C frequency, then taking the ratio. The results are shown in figure 6.15.
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Figure 6.15 Frequency isotope effect in diamond calculated using the TDEP
formalism for an effective-harmonic potential. The frequency ratio
from an effective harmonic potential is indicated by the blue circles
and the ratio from the effective-harmonic potential with 3-phonon
effects is shown by the red squares. The black triangles indicate
these effective harmonic + 3-phonon data with the contribution
from the differing isotope volumes from QHA calculations included.
The solid black line shows the ratio of the QHA calculation
at 300K. The open black star show the zero-pressure effective
harmonic + 3-phonon ratio with a isotope volume contribution
found from the experimental lattice parameters in table 6.1. Arrows
indicate experimental (solid) and theoretical (open) frequency ratios
from references [112–116]. Purple data and the associated curve
are the data from [105] and a fitted quadratic. The dashed black
line shows the harmonic frequency ratio.

Strikingly, the effective harmonic potential shows a frequency ratio that is larger

than the harmonic one, implying that the even (quartic and above) terms of

the potential cause the potential to stiffen at greater atomic displacement. The

lighter 12C atom, which more deeply probes this potential, therefore has a

higher frequency than it would from the harmonic term only, and thus raises

the frequency ratio. This effect is reversed in near equal magnitude by the
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consideration of the 3-phonon corrections, which indicates that the potential, with

all terms considered, softens with increasing atomic displacement. In addition to

this, the inclusion of the volume effect lowers the frequency ratio again, indicating

a softening of the potential as the lattice expands, as is common across materials.

A slight downward trend can be distinguished in all the TDEP results. The slope

of this trend is so slight that it is flat to within the uncertainty of the fit; the

pure anharmonic and volume effects combined produce a pressure-independent

frequency ratio. This is in line with what has been seen in silicon [127]. It is

striking that the volume and pure-anharmonic effects should cancel so exactly,

but the calculations that account for the volume effect through the QHA and

the pure anharmonicity through the TDEP calculations show that the quantum

isotope effect is largely pressure independent, and provide no evidence for the

reported inversion. The large disagreement between the frequency ratio reported

by Enkovich et al. and both the zero-pressure experimental results and the ab

initio calculations reported here suggests that Enkovich’s experimental results

are not reliable.
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Chapter 7

The Diamond Edge Raman Scale

7.1 Background

Diamond is typically considered to be an exceptionally harmonic material;

isotopically pure diamond has the highest known thermal conductivity of any

material [134] indicating that there is very little phonon–phonon scattering. This,

along with many other of the well-known superlative properties of diamond, is

a result of the strong, highly directional covalent bonds that form between the

carbon atoms.

Another, better known, property of diamond is its exceptional hardness. Its

resistance to deformation makes it ideal for creating high-pressure environments

in a DAC. A DAC consists of two opposing diamonds held in place by a metal

casing. A diagram of a typical DAC is shown in figure 7.1. Between the diamonds

there is a small chamber surrounded by a metal gasket containing the sample and

a pressure-transmitting medium. When the screws in the casing are tightened,

a force is created at the diamond tips that creates hydrostatic pressure in the

sample chamber. The small surface area of the diamond tips coupled with the

hardness of the diamonds creates pressures of up to 1TPa [135, 136].

When experiments are performed using a DAC, the pressure in the cell must

be measured in some way. One common approach is to use ruby fluorescence

[138–140]. When a ruby is illuminated with a laser it produces a fluorescence,
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Figure 7.1 Schematic (left) and exploded diagram (right) of the diamond anvil
cell using a ruby chip as a pressure marker. In the left figure, the
sample (green) and the ruby pressure marker (red) are in the sample
chamber which is filled with a pressure transmitting medium. The
pressure in the sample chamber is increased by tightening the Allen
screws. Optical measurements are taken through the aperture in the
cell casing. Right diagram reproduced from [137].

whose light has a specific frequency. This frequency changes with pressure, and

by linking this change to a known pressure scale (for example the equation of

state of a well-studied material) the pressure in the ruby can be determined.

Another common approach, used particularly at multi-megabar pressure where

the ruby calibration is not as reliable, or where no ruby chip can be placed in

the DAC, is to use the so-called diamond edge Raman scale. The Raman signal

from a diamond under ambient conditions consists of a sharp peak at 1333 cm−1

corresponding to the zone-centre optical phonon (T2g mode) [141]. When the

diamond is used as an anvil in a DAC, a pressure gradient from the table of

the diamond to the tip is created. As a result, the sharp peak is spread out

over a wide range of frequencies, with a defined edge at the highest frequency

corresponding to the highest pressure at the tip of the diamond. If one knows

the pressure dependence of this Raman edge, one can use this as a measure of

the pressure inside the DAC.
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Figure 7.2 The Raman frequency of diamond as a function of pressure measured
from various experiments on an absolute scale (a) and relative to a
reference DFT calculation where the phonon frequency is calculated
using harmonic finite displacement and the pressures are found from
a Davis–Gordon equation of state fitted to the static crystal energies,
with no consideration of the phonon free energy (grey line) (b). The
grey region in the bottom panel indicates a ±1% error of the reference
DFT calculation. Experimental data from [133, 142–158].
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7.1.1 The diamond edge Raman scale

Hanfland and Syassen first proposed the idea of using the Raman signal from the

diamond anvil itself as a pressure marker in 1985 [149]. In their experiment, a

linear relation was found between the high-frequency edge of the Raman signal

and the pressure. The relation was valid in the range 5GPa to 30GPa with a

minimal deviation from this linear relationship at pressures below 5GPa. This

deviation was attributed to the plastic deformation of the gaskets under initial

loading. This inaugural study positioned the Raman edge as a potentially viable

method of determining the pressure inside a DAC, but further study was needed to

establish the true calibration of the pressure scale and its transferability between

experiments. Such studies have been performed by a number of researchers, and

are still being improved upon and updated to this day.

Figure 7.2 shows diamond edge Raman measurements from many different

authors. The top panel shows the data on an absolute scale and the bottom

panel show the same data relative to a frequency–pressure curve calculated from

DFT, where the frequency was calculated using harmonic finite displacement

phonon calculations and the pressure found by fitting a Davis–Gordon equation

of state to the static crystal energy as a function of volume (with no consideration

of the phonon free energy). The same DFT reference curve is shown in the top

panel as a grey line.

On the absolute scale, all the data show general agreement and attention must

be directed to the bottom panel of figure 7.2 to see subtle variations in the

gradients of the reported results. It is striking that, with one exception, the data

fall into two distinct groups: one with a low-pressure gradient greater than the

reference DFT calculation and one with a low-pressure gradient that is smaller.

The exception to this is the data from Dubrovinskaia et al. [157] whose low-

pressure gradient is close to the reference DFT calculation. If this outlier is

removed, the resulting lacuna separates the data into a group that measured the

Raman frequency of a sample of diamond suspended in a pressure transmitting

medium inside a DAC and a group that measured the high-frequency edge of the

Raman signal directly from the anvil. This can also be observed in table 7.1,

which shows a summary of the various experiments.
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This discrepancy was evident from the beginning with the inaugural work of

Hanfland and Syassen in 1985. Another publication in the same year by the same

authors, along with three other contributors, performed a similar experiment

using a sample of diamond inside a DAC [149, 150]. Both studies reported

a linear relation between the Raman frequency and the ruby fluorescence line

(and consequently the pressure), but the gradients of these lines were not

the same. The experiment that used a diamond sample produced a gradient

of 2.90 ± 0.05 cm−1/GPa, whereas the experiment that used the Raman edge

produced a gradient of 2.3± 0.3 cm−1/GPa.

Mernagh and Lui explicitly addressed the discrepancy in the gradients by

measuring the Raman frequency both from a sample of diamond in a DAC,

and the Raman edge of the anvil. The findings corroborated what had been

observed in the two papers by Hanfland and Syassen and coworkers in 1985. The

authors observed significant scatter in the data, which they attributed to the

uniaxial stress, and this leads the authors to conclude that the Raman edge was

not suitable as a pressure marker.

However, the pressure achieved in this experiment was moderate, only 17GPa,

far below the pressures where the Raman edge pressure marker would be most

advantageous. The first study to reach these high pressures was conducted by

Vohra et al., who observed the Raman edge up to a pressure of 250GPa [161]. The

authors achieved the pressures where the ruby florescence becomes unreliable and

used x-ray diffraction of copper powder as the pressure marker above 190GPa.

These authors suggested their own calibration for the Raman edge, but one that

only applies at pressures greater than 50GPa.

This ushered in an age of calibrations of the Raman edge to pressures greater than

100GPa. These were done chiefly by two groups: Akahama and Kawamura, and

Eremets. Eremets started first in 2003, establishing a calibration up to 200GPa

[153], then Akahama and Kawamura published four papers over the course of

the 2000s, each time increasing the maximum pressure and directing focus to a

particular question concerning the universality and practicality of the scale [142–

145]. After this, Eremets renewed his interest in the Raman edge with the intent

of applying it to high-pressure research on hydrogen [155]. It is Eremets who has

reported the highest pressure data for the scale at almost 480GPa [154].
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7.1.2 Requirements of the diamond edge pressure scale

In order for the Raman edge to be useful as a pressure marker it must have

a universal calibration. The calibration should be independent of pressure

transmitting medium, shape of the anvils, and transferable from one experiment

to the next. There are three main things to consider when constructing a universal

scale. Firstly, the existing pressure scale against which to calibrate the new scale.

When calibrating the Raman edge the pressure must be determined accurately in

order for the scale to be true. This is a problem common to all pressure markers

and self-consistency between the different approaches is the only practical way to

ensure they are accurate. The exception to this are ab initio calculations such as

the ones presented here; these calculations will aid efforts to produce a universal

scale, as they are able to determine the pressure independently of any existing

pressure calibration. Secondly, the effect of anisotropic stresses in the anvils must

be determined. While it is in principle possible to characterise the Raman signal

from stressed diamonds, doing so requires knowledge of the exact nature of the

stress distribution within the anvil. A scale that relies on a stressed diamond anvil

will not be a universal scale, as the stress profile of different anvils could differ

significantly [174, 175]. Finally, a consistent method of determining the position

of the high-frequency Raman edge must be found, and one that accurately relates

to the signal from the true highest pressure in the DAC.

Raman edge position

Two principal methods exist in the literature for determining the position of the

edge. Firstly, one can find the edge using the minimum of the first derivative

of the Raman signal; an example is shown in figure 7.3. The high-frequency

edge appears as a minimum in the derivative of the spectrum that may be used

to determine its position. The problem with this approach is that the pressure

profile in the anvil is non-linear, slowly increasing from the table of the diamond

towards the tip with a sharp increase at the end [149]. As a result, a smaller

volume of the diamond is at high pressure than at low pressure, and the intensity

of the signal at high pressure is reduced compared to the low frequency, zero

pressure signal. At very high pressures the diamond tip may be producing a very

weak signal compared to the bulk of the anvil meaning that the sharpness of
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Figure 7.3 Raman spectrum of a diamond anvil under load (lower) and the
differential spectrum dI

dω (upper). The local minimum in the
differential spectrum indicated by the arrow corresponds to the high
pressure edge of the anvil. Figure recreated from [144].

the edge and its signature in the derivative of the spectrum is diminished. This

is without considering the axial focussing of the Raman laser which can alter

the shape of the observed signal considerably [142, 149]. When determining the

position of the edge through the minimum of the first derivative, it is assumed

that the laser is sufficiently focussed on the tip that the largest component of the

signal comes from the diamond tip.

An alternative approach that does not make this assumption is to use the height

at half-maximum treating the high frequency edge as a peak with a definite width

[149, 163]. For a laser system that is not highly focussed on the tip, this accounts

somewhat for the diminished intensity coming from the smaller volume of the

diamond at high pressure. However, the accommodation is imprecise, and there

is no guarantee that the height at half-maximum will correspond to the signal

from the highest pressure. This method is again best suited to signals where the

edge is sharply defined in the Raman spectrum.

A final approach, taken by Sun et al. [170], is to subtract the (half-)width of the

zero-pressure signal from the highest frequency observed with non-zero intensity.

If the linewidth of the Raman signal is constant under pressure (approximately

true) then a volume element of diamond under hydrostatic conditions will produce
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a Raman peak centred at some frequency with a fixed width. The peak of

this signal will always be a fixed distance from the highest observed frequency,

although the smooth nature of the peak makes it difficult to determine where this

starts. Although Sun et al. use the full width at half maximum, it would perhaps

be more appropriate to use the half width.

Non-hydrostatic effects

The question of non-hydrostaticity was addressed directly by Akahama and

Kawamura [144]. In non-hydrostatic conditions, the triply degenerate T2g mode

of diamond splits into either three singly-degenerate modes (ω1, ω2, ω3) or one

singly-degenerate mode and one doubly-degenerate mode (ωS and ωD). The exact

nature of the splitting depends on the orientation of the crystal. Akahama and

Kawamura took advantage of this orientational dependency and, by using anvils

of different crystallographic orientations together with appropriate polarisation

filters, observed the different frequencies of the split modes. When both the anvil

(loading) axis and the incident Raman laser are along the [001], [110], and [111]

direction, the splittings are given by

F//[001] ωS = ωH +
2

3
∆ω[001] (7.1)

ωD = ωH − 1

3
∆ω[001] (7.2)

F//[110] ω1 = ωH − 1

3
∆ω[001] (7.3)

ω2 = ωH +
1

6
∆ω[001] +

1

2
∆ω[111] (7.4)

ω3 = ωH +
1

6
∆ω[001] −

1

2
∆ω[111] (7.5)

F//[111] ωS = ωH +
2

3
∆ω[111] (7.6)

ωD = ωH − 1

3
∆ω[111] . (7.7)

The magnitude of the splitting is determined by the ∆ωs and depends on the

stress in each direction. One could, in theory, determine the hydrostatic pressure

ωH by treating the above equations as a system of linear equations with unknowns,

but this does not fully remove the need to consider stress effects, as the hydrostatic

pressure in the diamond is not the pressure in the sample chamber. A typical edge
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calibration experiment will use diamond anvils oriented such that the axial force

is along the [001] direction. In the sample chamber there is a metal sample or ruby

chip to determine the pressure suspended in a hydrostatic pressure-transmitting

medium. The pressure of this medium, and thus the metal or ruby, will equilibrate

with the axial stress at the tip of the diamond.

The Raman frequency will typically be measured in the back scattering geometry,

focussing the laser at the very tip of the anvil. If the tip of the diamond is not

under hydrostatic conditions, the triply degenerate T2g mode of diamond will, for

stress in the [001] direction, split into a singlet state and a doublet state whose

frequencies ωS and ωD are related to the hydrostatic triplet frequency, ωH , by

equations 7.1 and 7.2.

When the diamond anvil is compressed, ∆ω[001] is negative, meaning ωS < ωH <

ωD. In the back scattering geometry with [001] oriented diamonds, one does not

observe the doublet state due to properties of the polarisation tensor. Therefore,

the typical edge calibration experiment observes only the lower frequency singlet

state and consequently underestimates the hydrostatic pressure at the diamond

tip.

The magnitude of the splitting depends on the difference between the axial and

radial stress (σz and σR, respectively). One may define the difference between

the axial and the radial stress as

τ = σz − σR . (7.8)

Exactly how the axial–radial stress difference depends on the hydrostatic pressure

will depend on the shape of the diamond and the construction of the DAC, but the

data in figure 7.2, which shows many experiments from different anvil experiments

to have a similar gradient, indicates it could be quite consistent. Nevertheless, one

would expect a monotonic increase of τ with pressure, meaning the magnitude

of the splitting will also increase monotonically. Since ∆ω[001] is negative, the

observed singlet frequency falls further below the hydrostatic triplet frequency

with increasing pressure, manifesting as a lower gradient for ωS than ωH . This

explains the difference in gradients between the two groups in figure 7.2.

Ideally, one wishes to determine the axial stress ωz in some way. If both ωH
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and ωS were known then it would in principle be possible to obtain τ from the

difference between ωH , and ωS. As ωH is related to the hydrostatic component

of the stress, σH (equivalently the average stress), it is also in principle possible

to obtain σH from ωH .

The average stress is given by

σH =
1

3
(σz + 2σR) (7.9)

If both τ and σH are known, then one can determine σR and, crucially, σz as

σR = σH − 1

3
τ (7.10)

σz = σH +
2

3
τ (7.11)

The drawback of this method is that one cannot determine ωH , from a single,

or even multiple, measurements of ωS. There are four possible solutions to this

problem. Firstly, one may create a calibration of ωH and ωS against an external

pressure scale and assume this scale is universal to all DAC experiments. This

could be a viable approach given that there is some consistency in the gradients

of Raman edge calibrations, indicating a consistent stress difference. However,

the gradients are not completely uniform and there is some scatter in the data.

Another solution might be to use a transmission scattering geometry to observe

both the singlet and the doublet state, from which ωH can be deduced, but this

is in general not practical for diamond anvil experiments due to difficulties of

discerning the weak Raman signal from the strong laser and reflections from each

of the diamond surfaces weakening the signal. In high-pressure experiments the

only commonly employed geometry for Raman experiments is the backscattering

one.

A third solution is to follow the approach of Akahama and Kawamura and use

an anvil oriented with the [110] direction as the direction of applied force. In this

configuration, with appropriate polarisation filters, all three singlet states can be

observed. From these three frequencies, the hydrostatic frequency and the axial–

radial stress difference can be deduced. This is not the typical orientation for

diamond anvils and, although pressures of 250GPa were achieved, it is not clear

how much higher this could be driven. Additionally, as a diamond is stressed
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it becomes birefringent. Linearly polarised light such as the type needed to

observe the three Raman frequencies of a [110] stressed anvil becomes elliptically

polarised as it travels through the diamond. This makes it difficult to target

certain selection rules and determine the individual frequencies. Akahama and

Kawamura do not comment on their polarisation setup in detail.

Finally one may insert a chip of diamond into the sample chamber in a similar

spirit to ruby fluorescence and current equation of state pressure markers. This

eliminates the need to consider the axial–radial stress difference in the anvil,

but a Raman experiment on a diamond chip in the sample chamber is marred

by difficulties discerning the signal from the chip and the signal from the nearby

anvil tip which is at a similar pressure, but it has been achieved by several authors

[133, 146–148, 150, 160]. In this method one is guaranteed that the pressure of

the diamond chip is very close to that of the sample.

In all of these possible approaches, the calibration of the hydrostatic Raman

signal of diamond as a function of pressure is essential. It is to this end that

the following investigation has been undertaken, to provide from first principles,

and to the best accuracy allowed by current theory, a calibration of the Raman

frequency of diamond as a function of temperature and pressure.
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7.2 Methods

The calculation of the Raman frequency in diamond as a function of pressure

was done using the TDEP formalism described in section 4.3. This section will

detail the specifics of the application of the formalism to diamond as well as some

extensions that were made to the standard approach.

The investigation was performed in three stages:

1. TDEP calculations were performed at temperatures from 0K to 2000K for

a series of 17 volumes corresponding to pressures from 0GPa to 1000GPa,

and the zone-centre phonon frequency and phonon free energies were

computed for each case. The TDEP calculations require a harmonic finite-

displacement calculation to generate the configurations; frequencies and

phonon free energies were found for these calculations also.

2. An equation of state was fitted to the resulting free-energy–volume curve,

and an extended mode Grüneisen model was fitted to the volume–frequency

curve at each temperature.

3. At this stage it is possible to relate the pressure to a volume through the

equation of state and the volume to a frequency through the extended mode

Grüneisen model at the specific temperature of the TDEP calcs in step 1 and

at any pressure. The results were generalised to an arbitrary temperature

by interpolation of the fitting parameters.

This process allows the zone-centre optical phonon frequency in diamond to be

evaluated at any temperature and pressure within the pressure and temperature

ranges specified in step 1. Three levels of theory were used to compute the

phonon free energies and phonon frequencies: the quasiharmonic from the finite

difference calculations, the effective harmonic from the TDEP approach, and

the effective harmonic with 3-phonon corrections included through the Kramers–

Kronig relations. For each of these levels of theory the fitting and interpolation

described in steps 2 and 3 was performed.
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7.2.1 TDEP calculations

The harmonic force constants necessary to compute the phonon frequencies and

eigenvectors used to generate the TDEP configurations were calculated using

the finite displacement method on a 5 × 5 × 5 supercell of the primitive

unit cell with the atom at the origin displaced 0.1 Å in the positive x direction.

The DFT calculations were performed using a 550 eV plane-wave energy cutoff,

a convergence criterion of 1 × 10−9 eV, and a k-point grid generated from the

getKPoints utility with a density equivalent to a 5 × 5 × 5 Monkhorst–Pack

grid [88, 89]. The LDA was used, as it was shown in the previous chapter that it

most accurately reproduced the experimental phonon frequencies once the phonon

free energy is accounted for. As demonstrated in the previous chapter, changing

the XC functional creates a constant offset of the absolute phonon frequencies of

up to 30 cm−1, or 2%; relative changes in the phonon frequencies are unaffected.

The standard “C” PAW pseudopotential developed by Kresse and provided by

the VASP library with the 2s and 2p electrons as valence electrons was also used

[69].

The TDEP calculations were performed by generating 30 configurations at each

of the 17 volumes for 11 temperatures between 0K and 2000K, using the same

seed for the random number generator in each case. An improvement to the

method of generating the configurations, described below, allowed the scatter

in the phonon frequency seen in the previous chapter to be almost completely

eliminated. The TDEP DFT calculations used the same settings as the finite

displacement calculations, except that the plane-wave energy cutoff was increased

to 850 eV.

Generation of the configurations

The general method for creating the configurations used in TDEP is described in

section 4.3, but for this investigation it was necessary to pay careful attention to

the eigenvectors of the phonon modes used to generate the configuration. As with

previous investigations in this thesis, an effort was made to reduce the random

scatter in the phonon frequencies introduced by the stochastic generation of the

configurations; this was, in part, achieved by using the same seed for the random

number generator at each volume. However, it was observed that this alone was
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insufficient to maintain similarity between the configurations at different volumes.

It was found that the eigenvectors were changing dramatically from one volume

to the next. In particular, the phonon eigenvectors at points in the Brillouin zone

where the frequencies are degenerate are not uniquely defined, and were being

assigned an almost random orientation whilst still being a valid diagonalisation

of the dynamical matrix.

Recall that the eigenvectors of, for example, a doubly degenerate phonon mode

are confined to a 2D-plane, and it is valid to choose any pair of orthogonal

eigenvectors in this plane to define the phonons. Changes in the force constants

between the volumes manifested as small changes in the dynamical matrix,

which caused the numerical diagonalisation routines to select completely different

eigenvectors at the degenerate points. This is the same problem that occurred

in the previous chapter and was overcome by using the same harmonic finite

displacement calculation for both isotopes.

Although freedom in the definition of the eigenvectors was a problem most

pronounced at points in the Brillouin zone where the phonons have degenerate

frequencies, there are other freedoms in choosing the eigenvectors that produced

similar problems, although less frequently, at non-degenerate points. One such

problem was that the eigenvectors are defined only up to a complex phase, and a

different phase could be chosen from one volume to the next. A second problem

was that the assignment of band indices to the eigenvalues and eigenvectors is

arbitrary. If phonons swapped band indices between volumes then the random

weight assigned by the configuration generation process would be swapped also.

Figure 7.4 shows how two eigenvectors may change between two volumes.

To correct these issues, the following procedure was employed. The dynamical

matrix was computed over a small line in the Brillouin zone from the point

(d1, d2, d3) to (d1, d2, d3) + (0.001, 0.002, 0.003), and the real and imaginary

components of the eigenvectors were extrapolated to the point (d1, d2, d3) by cubic

splines. At each point along the line it was necessary to re-index and align the

phases of the eigenvectors such that the components of each eigenvector varied

smoothly. The eigenvectors were aligned by taking one eigenvector at one point

along the line as the reference eigenvector, and searching through the eigenvectors

of the adjacent point for the candidate eigenvector with the largest absolute value

of the dot product with the reference eigenvector. An eigenvector that is mostly
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Figure 7.4 Diagram of eigenvectors at the same two-fold degenerate point in the
Brillouin zone at two different volumes on the left and right of the
centre line. The out-of-plane, non-degenerate eigenvector may move
a small amount determined by the dynamical matrix. The in-plane
eigenvectors are not constrained within the plane and may therefore
be rotated by an arbitrary angle ϕ. Note also that the labelling of the
eigenvectors has been swapped between the left and right volumes.

aligned with the reference eigenvector should have a dot product of approximately

1 (up to a complex phase) while the other, almost orthogonal, eigenvectors should

be close to zero. Mathematically this is expressed as

eref · ecand ≈

1× eiθ if aligned

0 otherwise.
(7.12)

The appropriate candidate was then divided by eiθ to ensure the phases of the

reference and candidate eigenvectors were similar, and then the candidate was

accepted as the new reference and the process was repeated at the next point

along the line.

Applying this approach to align the eigenvectors along the line in the Brillouin

zone and extrapolating to the degenerate point allowed the eigenvectors at the

degenerate points to be uniquely defined up to a phase and labelling of the

band indices. To ensure that eigenvectors were aligned (and thus receiving the

same random weighting when generating the configurations) across the different

volumes, it was necessary to repeat the alignment process just described, this

time using eigenvectors from two adjacent volumes as the reference and candidate

eigenvectors.
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7.2.2 Fitting

Step 2 of the process described at the start of the section illustrated the need to fit

an equation of state to the free-energy–volume data to relate the pressure to the

volume, as well as the need to fit the volume–frequency data to an extended mode

Grüneisen model to relate the volume to a zone-centre optical phonon frequency.

Volume–Frequency fitting

The typical way to relate a change in volume to a change in phonon frequency is

through the mode Grüneisen parameter γ defined as

γ =
V0
ω0

dω

dV
=

d ln(ω/ω0)

d ln(V/V0)
, (7.13)

which, if γ is constant, describes a linear relation between the natural logarithm

of the frequency and the natural logarithm of the volume. In the common case

of γ ≈ 1 the phonon frequency is related to the volume as ω ∝ 1
V
. In this

investigation, however, it was necessary to go beyond this simple relationship

and extend the mode Grüneisen parameter to include higher order terms. The

form of this expansion is derived as follows.

First, define variables x = ln(V/V0) and y = ln(ω/ω0), and x0 = ln(V0/V0) = 0

and y0 = ln(ω0/ω0) = 0, where ω = ω0 when V = V0. One can describe the

relationship between x and y through a Taylor expansion,

y = y(x0) +
dy

dx

∣∣∣∣
x=x0

(x− x0) +
1

2

d2y

dx2

∣∣∣∣
x=x0

(x− x0)
2

+
1

6

d3y

dx3

∣∣∣∣
x=x0

(x− x0)
3 + . . . (7.14)
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Transforming this back to the original variables this becomes

ln(ω/ω0) = ln(ω0/ω0) +
d ln(ω/ω0)

d ln(V/V0)

∣∣∣∣
V=V0

(ln(V/V0)− ln(V0/V0))

+
1

2

d2 ln(ω/ω0)

d[ln(V/V0)]2

∣∣∣∣
V=V0

[ln(V/V0)− ln(V0/V0)]
2

+
1

6

d3 ln(ω/ω0)

d[ln(V/V0)]3

∣∣∣∣
V=V0

[ln(V/V0)− ln(V0/V0)]
3 + . . .

(7.15)

Defining

γn =
1

n!

dn ln(ω/ω0)

d[ln(V/V0)]n

∣∣∣∣
V=V0

(7.16)

one arrives at

ln(ω/ω0) = γ1(ln(V/V0)) + γ2[ln(V/V0)]
2 + γ3[ln(V/V0)]

3 + . . . (7.17)

where γ1 is the well-known linear mode Grüneisen parameter.

The frequency ω is given by

ω = ω0 exp
{
γ1(ln(V/V0)) + γ2[ln(V/V0)]

2 + γ3[ln(V/V0)]
3 + . . .

}
(7.18)

For this investigation the terms up to and including second order (γ2) were

preserved. A comparison of the different orders of equation 7.18 on some

representative frequency–volume data is shown in figure 7.5. The residual plot

shows that the first-order mode Grüneisen model is insufficient to describe the

frequency–volume relationship, and that higher orders cannot be meaningfully

distinguished and that the series expansion had converged by second order.

Including orders higher than second order was found to introduce overfitting

in later stages of the process.

Energy–Volume fitting

The phonon free energies and volumes calculated in step 1 may be related through

an equation of state. There are many suggested analytic expressions for equations

of state, although they are most commonly stated as relations between the

pressure and the volume, P (V ), rather than the energy and the volume, E(V ).
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Figure 7.5 Frequency–volume fitting for different orders of γn. The frequencies
are calculated using the effective harmonic potential with 3-phonon
corrections included.

These two forms are related through the expression

P (V ) = −dE(V )

dV
. (7.19)

By integrating the pressure–volume relation one may obtain the energy–volume

relation more useful to first-principles calculations, where the energy is more

readily calculated. A library of such equations of state has been compiled by

Karl Syassen in his program DatLab [176]. This program had the functionality

of fitting multiple equations of state to energy–volume data and comparing the

fitted parameters and goodness-of-fit for each. However, owing to the age of the

program and its incompatibility with modern operating systems it was impractical

to use for this investigation.

A small python package was therefore written to implement this functionality.

The equations of state were transcribed from the DatLab manual, correcting

some errors and validating the integrations of the pressure–volume relations. Each
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Equation of state B0 (GPa) B′
0 V0 (Å

3
) χ2

Davis-Gordon O3 455.3(5) 3.62(1) 5.5892(4) 9.89× 10−7

Davis-Gordon 454.9(3) 3.632(3) 5.5892(4) 1.07× 10−6

Modified True Strain 456.6(4) 3.1870(9) 5.5901(5) 1.66× 10−6

Holzapfel-AP1 458.7(7) 3.508(4) 5.5904(8) 5.29× 10−6

Modified Rydberg 452.2(7) 3.662(5) 5.5898(9) 6.41× 10−6

Birch-3 452.8(6) 3.611(2) 5.5910(9) 6.50× 10−6

Bardeen 463(1) 3.418(8) 5.591(2) 2.20× 10−5

Rydberg-Vinet 446(2) 3.82(1) 5.589(2) 4.41× 10−5

Murnaghan 487(5) 2.87(2) 5.593(7) 4.14× 10−4

Table 7.2 Fitting parameters for some equations of state of diamond at 0K for
the harmonic energies. B0 is the zero-pressure bulk modulus, B′

0 is
the pressure derivative of the bulk modulus at zero-pressure, and V0

is the equilibrium volume.

equation of state was fitted to the energy–volume data and the χ2,

χ2 =
∑
i

(
Efit

i − EDFT
i

)2
, (7.20)

was compared for each. A representative summary of the fitting for the

quasiharmonic theory at 0K is shown in table 7.2.

For all levels of theory at all temperatures, the equation of state that gave the

lowest χ2 was the third-order Davis-Gordon equation. This equation of state uses

a higher-order expansion of the bulk modulus than the other equations which

allows greater flexibility of the function. In the least-squares sense this function

fits the data best, but it was found that the first and second pressure derivative

of the bulk modulus were highly correlated. This caused the first and second

derivative of the bulk modulus not to vary smoothly between fits at different

temperatures, and made interpolation to an arbitrary temperature difficult. The

decision was therefore made to discount the third order Davis-Gordon equation

and use the second order Davis-Gordon equation as the energy–volume relation.

The form of this equation of state is

U(V ) = U0 −B0

[
(B′

0 − 2)V0 log

(
V

V0

)
+
1

2
(B′

0 − 3)(V − V0) +
1

2
(B′

0 − 1)V0
V − V0
V

]
. (7.21)
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The fitting parameters U0, B0, B
′
0, and V0 are zero-pressure values for the internal

energy, bulk modulus, pressure derivative of the bulk modulus, and volume per

atom respectively. These same parameters (with the exception of U0) can then

be used to relate the volume to the pressure as

P (V ) = B0
V0 − V

V

[
1 +

1

2
(B′

0 − 1)
V0 − V

V

]
. (7.22)

7.2.3 Temperature interpolation

The above fitting processes relate the phonon free energy calculated at a specific

temperature to a volume, and a volume to a frequency calculated from a

temperature-dependent effective potential. Using the fitted parameters from the

energy–volume and volume–frequency fitting, one can determine the frequency

of the zone-centre optical phonon at any pressure, but only at the specific

temperatures which the TDEP calculations were performed at. To determine

the frequency at any temperature one must interpolate the fitted parameters

to find an appropriate set of values at intermediate temperatures. All the

parameters show a similar dependence on the temperature: at low temperature

the parameters are temperature independent with the gradient at 0K being zero

due to the third law or thermodynamics, then, at some temperature, the gradient

smoothly becomes finite before the function ends up linear at high temperature.

This smooth step in the gradient from zero to some constant value suggests that

the fitting parameters of the energy– and frequency–volume relations should be

fitted with the integral of a sigmoidal function. The function chosen was the

logistic function resulting in a parameter X(T ) being fitted to the function

X(T ) =

∫ T

−∞

L

1 + e−k(T ′−T0)
dT ′ + C (7.23)

=
L

k
ln
[
ek(T−T0) + 1

]
+ C , (7.24)

with each parameter of the energy– and frequency–volume relations having

different values of L, k, T0, and C.

In the logistic function, L describes the step height, k the width of the step, and

T0 the step position. In the integrated form, these parameters determine the final

linear gradient, the sharpness of the transition, and the position of the transition
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respectively. The constant C determines the value of X at T = −∞, which is

approximately equal to the T = 0K value.
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7.3 Results

The results of this investigation are, in effect, presented thrice, once for each level

of phonon theory: “quasiharmonic”, in which the phonons are purely harmonic

and the force constants are calculated as the second derivative of the interatomic

potential at small finite displacement; “effective harmonic”, where the phonons

are described using an effective harmonic potential at a specific temperature; and

“effective harmonic with 3-phonon corrections”, where the phonon frequencies are

determined with the same effective harmonic potential as previously, but with the

antisymmetric parts of the potential accounted for by the 3-phonon interactions

calculated using the Kramers–Kronig relations. Mention may also be made of

the “static” case, where the phonon frequencies are calculated with the harmonic

potential, but the phonon free energies are not accounted for and only the static

crystal energy is used.

The previous section ended with a description of the interpolation process

using an integrated logistic function to evaluate the zone-centre optical phonon

frequency at any temperature and pressure. The fitted parameters of the equation

of state and mode Grüneisen model, along with their interpolations, are shown

in figure 7.6. Almost all the parameters show the same trend on increasing

temperature: the parameters begin flat at low temperature before the gradient

either increases or decreases to a linear relationship at high temperature. The

parameter T0 gives a measure of the position about which the change in gradient

is centred. Examination of table 7.3 shows that, except for the mode Grüneisen

parameters for the quasiharmonic and effective harmonic cases, where the trend

is not observed, the values lie between 250K to 550K. One may treat this range

as the onset of finite temperature effects in diamond. Room temperature (300K)

is towards the lower end of this range, so finite temperature effects are likely to be

small but noticeable. The other parameter that does not fall in this range is the

equilibrium crystal energy U0, but this parameter is not used in the calculation

of the pressure–volume relation and is therefore not shown in figure 7.6.

The onset of finite-temperature effects is not the same for each parameter.

The bulk modulus and its pressure derivative have the lowest values of T0,

indicating that the elastic properties are affected by temperature first, followed

by the volume effects at around 530K. The equlibrium volume as a function

149



5.60

5.62

5.64

5.66

5.68

5.70

5.72
V

0
 (Å

3 )
(a)

420

430

440

450

B
0
 (G

Pa
)

(b)

3.62

3.64

3.66

3.68

3.70

3.72

3.74

B
′ 0

(c)

1240

1260

1280

1300

ω
0
 (c

m
-1

)

(d)

0 500 1000 1500 2000
Temperature (K)

1.00

1.01

1.02

1.03

1.04

γ
1

(e)

0 500 1000 1500 2000
Temperature (K)

0.07

0.08

0.09

0.10

0.11

γ
2

(f)

Figure 7.6 Calculated equation of state and frequency–volume parameters of
diamond and the fitted integrated logistic function for each. Blue
right triangles show the quasiharmonic parameters, green left
triangles indicate the effective harmonic parameters, and red circles
indicate the effective harmonic parameters with 3-phonon scattering
included.
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Parameter L k (K−1) T0 (K) C

Quasiharmonic U0 -3.47(11)×104 3.6180(3)×102 887(29) -9.937(2)
V0 8.31(14)×105 5.0930(5)×102 545(16) 5.587(7)
B0 -2.2476(2)×102 7.9(8)×103 394(9) 455.2(2)
B′

0 6.110(24)×105 1.8(3)×102 271(5) 3.6321(2)
ω0 -1.87(3)×102 5.33(5)×103 530(14) 1308.7(2)
γ1 2.08(3)×106 5.2(5)×103 537(15) 0.99382(2)
γ2 -1.90×1011 4×102 1669 0.07

Effective U0 -3.5(1)×104 3.6(3)×103 887(29) -9.932(2)
harmonic V0 8.1(1)×105 5.4(5)×103 533(12) 5.5878(6)

B0 -2.24(3)×102 8.2(16)×103 393(16) 455.8(3)
B′

0 6.7(3)×105 1.1(9)×102 307(47) 3.62(3)
ω0 -2.19(2)×102 5.7(5)×103 466(11) 1302.9(2)
γ1 -1.8422×106 7.22×102 -685 0.99952
γ2 -2.6(2)×106 1.5×1001 135 0.07412(3)

Effective U0 -3.6(1)×104 3.6(3)×103 888(28) -9.939(2)
harmonic V0 8.7(2)×105 5.0(6)×103 548(18) 5.5873(10)
+ 3-phonon B0 -2.32(4)×102 8.3(17)×103 391(17) 455.3(3)

B′
0 6.0(2)×105 5.2(306)×102 270(40) 3.629(2)

ω0 -3.81(6)×102 5.4(5)×103 504(14) 1290.8(4)
γ1 2.54(4)×105 6.5(9)×103 428(15) 1.0046(3)
γ2 1.74(2)×105 8.6(18)×103 337(16) 0.0802(2)

Table 7.3 Parameters to interpolate the frequency–volume and energy–volume
coefficients to arbitrary temperature. L is in units of [Q]/K and C is

in units of [Q], where [Q] is eV for U0, Å
3
for V0, GPa for B0, cm

−1

for ω0, and dimensionless for B′
0, γ1, and γ2.

of temperature (figure 7.6, panel (a)) indicates the thermal expansion of the

crystal. These data show that there is little thermal expansion below 500K; this

is supported by the results of Jacobson and Stoupin, whose integrated thermal

expansion data showed little increase in the lattice parameter below 500K [90].

The onset of finite temperature effects in the zone-centre phonon frequency ω0

occurs between 466 cm−1 and 530 cm−1. This broadly aligns with what has been

seen in the previous chapters, particularly chapter 5.

The values of the parameter C in the interpolation function (equation 7.23) is,

in most cases, largely unchanged between the different levels of theory. This

parameter represents the value at T = −∞ and therefore one would not expect

any anharmonic effects at all; agreement in this parameter across the levels of
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theory indicates that all three levels agree on the low-temperature behaviour of

the zone-centre phonon frequency.

The foremost aim of this investigation was to determine the pressure and

temperature dependence of the zone-centre Raman frequency of diamond. The

temperature dependence at ambient pressure and the pressure dependence at

ambient temperature are shown in figures 7.7 and 7.8, respectively.

On an absolute scale, the calculated pressure dependence at 300K follows the

experimental data very well as evidenced by the top panel of figure 7.7. Only

compared to the reference calculation in the bottom panel, where harmonic

phonon frequencies from the finite displacement method are used as the reference

calculation, and no consideration of the phonon free energy is made, can

differences be seen clearly. All three levels of theory show a very similar trend,

distinguished essentially by nearly constant offsets. Examination of the bottom

panel in figure 7.7 shows that the gradients of the calculated lines fall in the gap

between experiments that used a diamond sample and experiments that used the

anvil, and even the most extreme outliers do not differ from the calculated values

by more than a few percent.

One study that stands out as being closely aligned with the calculated results

is the study by Eremets et al. [154]. This is the most recent calibration of the

diamond edge Raman scale, published in February 2023. Although the low-

pressure gradient follows the usual pattern of being below that of the reference

calculation, at pressures of a few Mbar the gradient increases and becomes much

more aligned with that of the TDEP calculations. Even on an absolute scale

the data start to agree well with the effective harmonic calculations with 3-

phonon effects included. This is an encouraging result and suggests that, despite

the differences in the Raman signal between the diamond edge and hydrostatic

diamond, the ab initio calculations presented here could be a better calibration

of the diamond edge Raman scale at high pressures than expected. If this is

true, then this is particularly useful at high temperatures, where no experimental

calibrations exist. The results presented in the thesis thus far have shown that

TDEP can accurately predict the temperature dependence of the zone-centre

optical phonon frequency at ambient pressure, and figure 7.7 shows that it can

predict the pressure dependence of the zone-centre optical phonon frequency

at ambient temperature reasonably well also. It is therefore believable that
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Figure 7.7 The Raman frequency of diamond as a function of pressure measured
from various experiments on an absolute scale (a) and relative to a
reference DFT calculation where the phonon frequency is calculated
using harmonic finite displacement and the pressures are found from
a Davis–Gordon equation of state fitted to the static crystal energies,
with no consideration of the phonon free energy (grey line) (b). The
grey region in the bottom panel indicates a ±1% error of the reference
DFT calculation. Black squares, triangles, and circles represent
the data calculated using the quasiharmonic, effective harmonic,
and effective harmonic with 3-phonon formalisms, respectively.
Experimental data from [133, 142–158].
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Figure 7.8 Temperature dependence of the Raman frequency of diamond at
ambient pressure. Experimental data from [94–103].

TDEP can predict the renormalisation of the zone-centre phonon at both high

temperature and high pressure.

Nevertheless, as the calculations performed here are fully hydrostatic, one

would ideally expect them to match the hydrostatic data in figure 7.8 —

the group with the larger gradient. The calculated hydrostatic results show

a slightly too low gradient compared to these data. A too-low gradient

represents an increasingly underestimated phonon frequency at high pressure.

As anharmonicity is considered here already and any other contributions to the

phonon renormalisation tend to lower the frequency, it is unlikely that the phonon

frequency that is in error. It therefore remains that differences between the DFT

free-energy–volume relation and the true equation of state must be the cause

of the underestimated gradient. One possibility is that there are additional
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contributions to the free energy that are not considered in these calculations,

such as the electronic free energy.

The temperature dependence at ambient pressure, shown in figure 7.8, agrees very

well with experiment. The temperature dependence is more significantly affected

by the level of anharmonicity considered, but the effective harmonic theory with

3-phonon effects demonstrates at high pressures an almost exact agreement with

the data from Zouboulis and Grimsditch [103] and marginally underestimates

the data from Herchen and Capelli and Shi et al. [97, 101]. The spread in the

experimental data seen in figure 7.8 appears to be mostly due to the method

of heating the sample and the measuring the temperature. The determination

of the Raman frequency is expected to be very accurate even for the pre-laser

experiments of Nayar and Krishnan [98, 100]. Sample heating methods ranged

from furnaces [101, 177], to resistance heating of metal foil in contact with the

sample [94, 97, 100].

The inset in figure 7.8 shows the calculation using the effective harmonic

potential with 3-phonon effects included to lie slightly below the majority of

the data between 0K to 400K and all three lines have a finite slope at zero

temperature. This is thought to a be an artifact of the interpolation process

where the integrated logistic function was fitted to the equation of state and

Grüneisen model parameters. It was mentioned previously that the parameter C

in equation 7.23 gave the value at T = −∞, where the function has zero slope;

at T = 0K the slope is slightly non-zero, becoming more non-zero the closer T0

is to 0K. If this artefact were remedied and the gradient of the interpolation

function forced to be exactly zero at zero temperature then this underestimation

may vanish.

At temperatures of 500K to 1000K the effective harmonic plus 3-phonon curve

lies in the centre of all the available experimental data. This agreement with

the experimental data verifies the accuracy of the TDEP approach in predicting

the anharmonic phonon renormalisation and provides a basis for believing its

predictions both at ambient conditions and at high-pressure–high-temperature

conditions.

Figure 7.9 is analogous to figure 7.7b for a range of different temperatures. All

three levels of theory exhibit a strong pressure dependence of the renormalisation

at low pressures. It is especially noticeable that this pressure dependence is
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Figure 7.9 Pressure dependence of the frequency renormalisation in diamond
for the quasiharmonic, effective harmonic, and effective harmonic
with 3-phonon effects levels of theory.

present in the quasiharmonic case, where there is no renormalisation arising

directly from pure anharmonicity, rather the renormalisation is entirely due to the

change in the volume incited by the temperature-dependent phonon free-energy.

One can also note that the renormalisation in the quasiharmonic case tends to

the same value at high pressure. From these observations, and by examining the

free energies shown in figure 7.10, one can understand the origin of this effect and

why this effect is most prominent at low pressures.

At low pressures the volume is closest to V0, the minimum of the free energy

curve, and the temperature-dependent phonon contribution to the free energy is

largest relative to the temperature-independent static contribution. It is at these

low pressures where the inclusion of the phonon contribution to the free energy

has the greatest effect, and produces the greatest change in the volume of the

crystal at a given temperature and pressure. Conversely, at high pressures, the

free energy exhibits steep curvature and its volume-dependence is dominated by

the temperature-independent static crystal energy, with the phonon contribution

having little effect. One can therefore ascribe the low-pressure curvature of the

renormalisation in figure 7.9 to the volume effects arising from changes in the

phonon free-energy.

At high pressure, the pressure dependences in figure 7.9 are much diminished, but

the nature of this slight pressure dependence is different for the quasiharmonic,

effective harmonic, and effective harmonic with 3-phonon levels of theory. The

quasiharmonic case has already been explained and show nothing remarkable at

high pressure. Conversely, the TDEP results in the centre and right panels show
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a turnover in the renormalisation at high pressure. This shows there is clearly

some other contribution to the renormalisation whose contribution is greatest at

high pressures. The absence of this effect in the quasiharmonic data, which is

calculated from an interatomic potential that is only volume dependent, imply

that this second contribution is caused by the pure anharmonicity of the potential

directly — there is a volume contribution to the renormalisation that decreases

with pressure and a temperature contribution that increases with pressure. The

effect is most pronounced when 3-phonon effects are included, demonstrating the

additional anharmonicity captured by their inclusion.

The temperature-dependence of the renormalisation at a series of pressures

is shown in figure 7.11. The quasiharmonic case shows a decrease in the

renormalisation all the way up to 1000GPa, indicative of a potential that becomes

increasingly harmonic at high pressures. In the case of the TDEP results, both

with and without 3-phonon corrections, this decrease occurs mostly between

pressures between 0GPa and 300GPa, resulting in a pressure-independent

renormalisation at high pressure. This is simply another manifestation of the
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Figure 7.11 Temperature dependence of the frequency renormalisation for the
quasiharmonic, effective harmonic, and effective harmonic with 3-
phonon effects levels of theory.

turnover described in the previous paragraphs. The shallow and extended nature

of the turnover makes the pressure dependence appear almost flat. Nevertheless,

from figure 7.11 it can be seen most clearly that the 3-phonon processes contribute

most greatly at low pressure, and that at all pressures and temperatures they are

significant enough that they must be included for an accurate determination of

the Raman frequency of diamond.

In conclusion, the TDEP approach, where an effective harmonic potential is

considered and 3-phonon effects are taken into account through the Kramers–

Kronig relations, accurately predicts the renormalisation of the zone-centre

Raman frequency of diamond both at ambient pressure as a function of

temperature and at ambient temperature as a function of pressure. On this

basis, it is asserted that the predictions of this method at elevated pressures

and temperatures are to be believed, and that, through the parametrisations

of the equation of state parameters and the Grüneisen parameters described in

table 7.3, one can compute the Raman frequency of diamond at any temperature

and pressure.
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Chapter 8

Conclusion

First-principles calculations of anharmonic phonon frequencies is an area of

physics where several new approaches are available to a researcher. This thesis has

compared two of them, alamode and TDEP, in applications to the diamond-type

semiconductors silicon and diamond. The latter approach was found to be very

accurate in calculating the temperature dependence of the zone-centre optical

phonon frequency when applied to these systems. Consequently, it was applied

to diamond to investigate the quantum isotope effect under pressure, and then to

establish the behaviour of the Raman frequency in diamond at high temperature

and high pressure, which may be used as a reference for the calibration of the

diamond edge Raman scale. In both cases the accuracy of the method was

confirmed using available experimental data, inspiring further confidence in its

predictions. The poor performance of alamode in silicon was discussed, and

the omission of third-order terms was identified as being a significant factor in

alamode’s shortcomings. A suggestion of how these third-order terms may

be included was presented and an attempt was made to implement it. The

attempt was unsuccessful, but the insights gained and some avenues for further

development were discussed.

Chapter 5 served two purposes. Firstly, to compare alamode and TDEP,

but secondly to demonstrate in detail how each of these calculations should be

performed. The higher-order finite displacement calculations used by alamode

to determine the force constants were described in detail and a recipe for choosing

the magnitude of the displacements for each order was presented. Similarly, the
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convergence of the phonon frequencies in the TDEP approach was discussed; it

was demonstrated how one should determine the level of convergence using a

reasonable number of DFT calculations. This chapter showed TDEP to be the

most accurate method in silicon, and confirmed that it was accurate in diamond

also.

Advantage was taken of this accuracy in chapter 6 to investigate the quantum

isotope effect in diamond. The behaviour of the frequency and volume isotope

effects at high pressure is disputed in the literature, but the quasiharmonic

calculations presented in chapter 6 agreed well with the more accurate zero-

pressure experimental data. The effect of pure anharmonicity in the frequency

isotope effect was investigated using TDEP, and it was found that the effective

harmonic part of the potential raised the frequency ratio, whereas the 3-phonon

effects lowered it. The end result was that the pure anharmonicity did not

significantly alter the predictions of the quasiharmonic model, and the unusual

behaviour of the frequency isotope effect reported by Enkovich et al. at high

pressure could not be reproduced [105], raising questions about its existence and

the reliability of the reported experimental results.

Finally, chapter 7 addressed the diamond edge Raman scale and TDEP calcula-

tions were used to calculate the hydrostatic Raman frequency at pressures of up

to 1TPa and temperatures of 2000K. These calculations may serve as a starting

point for a calibration of the diamond edge Raman scale that accounts for the

non-hydrostatic effects. This chapter also included an overview of the existing

calibration experiments and discussed some of the key considerations that must

be made in creating an accurate diamond edge Raman calibration. In the course

of this investigation, special consideration was given to the manner in which the

eigenvectors affected the generation of the TDEP configurations, and an effective

method of reducing the vitiating effect misaligned eigenvectors had on the phonon

frequencies was presented.

Beyond this thesis, there remain many unexplored areas of research in the field of

anharmonic lattice dynamics, from further developing new or existing methods of

calculating anharmonic phonon frequencies to applying these approaches to gain

insight into the role of anharmonicity in various materials. Chapter 2 outlined

some of the materials where anharmonicity is likely to play a large role, as well as

some other approaches to computing anharmonic phonons that are currently in
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development. Further work comparing these approaches to the methods discussed

n this thesis would be instructive; the SSCHA has shown particular promise as

being a highly-accurate way of computing anharmonic phonons.

Throughout this thesis, the effect of third-order terms in the phonon frequency

renormalisation has been shown to be significant, often equal to that of the of the

fourth-order terms. Further study into these effects would be of great benefit; the

proposed extension to the SCPH method may still prove fruitful if the suggested

modifications are made. Alternatively, one could use approaches taken in other

areas of physics, such as particle or nuclear physics, to evaluate (or approximate)

Feynman diagrams of the sort described in chapter 3 and apply them to phonons.

Whatever explorations into the effects of anharmonic phonons are made in the

coming years, it is hoped that the discussions, theory, and insight contained

within this thesis proves in some way useful, and its contents will provide a

useful contribution to the field of anharmonic lattice dynamics.
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