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We rarely use abstract and concrete concepts in isolation but rather

embedded within a linguistic context. To examine the modulatory impact

of the linguistic context on conceptual processing, we isolated the case of

sentential negation polarity, in which an interaction occurs between the

syntactic operator not and conceptual information in the negation’s scope.

Previous studies suggested that sentential negation of concrete action-related

concepts modulates activation in the fronto-parieto-temporal action rep-

resentation network. In this functional magnetic resonance imaging study,

we examined the influence of negation on a wider spectrum of meanings,

by factorially manipulating sentence polarity (affirmative, negative) and

fine-grained abstract (mental state, emotion, mathematics) and concrete

(related to mouth, hand, leg actions) conceptual categories. We adopted a

multivariate pattern analysis approach, and tested the accuracy of a machine

learning classifier in discriminating brain activation patterns associated to

the factorial manipulation. Searchlight analysis was used to localize the

discriminating patterns. Overall, the neural processing of affirmative and

negative sentences with either an abstract or concrete content could be

accurately predicted by means of multivariate classification. We suggest

that sentential negation polarity modulates brain activation in distributed

representational semantic networks, through the functional mediation of

syntactic and cognitive control systems.

This article is part of the theme issue ‘Varieties of abstract concepts:

development, use and representation in the brain’.

1. Introduction
Research on conceptual knowledge has provided consistent neuropsychological

and neuroimaging evidence that abstract and concrete concepts are represented

in distributed brain networks, which are best differentiated at the level of struc-

tural and functional connectivity [1]. In so-called ‘hubs and spokes’ models of

conceptual knowledge, modality-specific nodes (i.e. spokes), for example in

sensory-motor or limbic areas, are linked together with modality-invariant and

graded hubs (though it is debated whether there are several hubs in the

fronto-parieto-temporal cortices [2] or a single hub in the anterior temporal

lobe [3]). According to multiple representation accounts developed within the

grounded cognition framework, the differential involvement of these distributed

networks for processing abstract and concrete concepts, and their more fine-

grained sub-categories, reflects the type of experiential information that is

more relevant for either concept type during acquisition [4,5]. Concrete concepts

mostly draw on sensory-motor experience [6], whereas abstract concepts mostly

draw on emotional, introspective, social and linguistic experience [5,7–10].

& 2018 The Author(s) Published by the Royal Society. All rights reserved.
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Whether and to what extent experiential information also

contributes to a context-dependent appropriate use of concepts

is debated. Previous work revealed differential contextual

effects on abstract and concrete word processing. These were

explained in terms of either lower context availability [11] or

higher context diversity [12] for abstract versus concrete

words. However, the neural mechanisms through which lin-

guistic contextual information modulates multiple grounded

representations are still poorly understood [13].

In the present study, we isolated the case of sentential

negation as a benchmark for testing the role of linguistic con-

text on neural conceptual representations, for two reasons.

First, by reversing the truth value of conceptual information,

sentential negation has clear-cut, discrete effects on its seman-

tic interpretation, applying equally to concrete (e.g. She
doesn’t kick the ball) and abstract (e.g. She doesn’t remember
the past) concepts. Second, there is evidence that the sentential

negation of concrete, action-related concepts reduces the

access to experience-related sensory-motor brain networks.

In a previous functional magnetic resonance imaging

(fMRI) study [14], we showed that sentential negation of

action-related concepts reduces activation and effective con-

nectivity within the left-hemispheric premotor-parieto-

temporal action representation system. Concordant evidence

of motor cortex activity reduction in the presence of sentential

negation was obtained in other fMRI [15], electroencephalo-

graphy (EEG) [16] and transcranial magnetic stimulation

(TMS) [17] studies. This effect has been interpreted as a

reduced grounding in the sensory-motor system for the

semantic processing of negative action-related sentences

[18], possibly due to action inhibition mechanisms [16].

Building on this evidence, in the present study we tested

not only concrete but also abstract concepts in order to

address the questions of whether processing of specific

semantic categories entails activation of brain areas coding

for the corresponding experiential information and whether

this activation is modulated by negation. We applied multi-

variate pattern analysis (MVPA) to fMRI data obtained

while participants processed fine-grained abstract (mental

state, emotion, mathematics) and concrete (related to

mouth, hand, leg actions) concepts, presented in either the

affirmative or negative polarity context (electronic sup-

plementary material, table S1). Compared with univariate

methods, MVPA can attain increased sensitivity, by consider-

ing activation across multiple voxels that may even be

distributed in non-adjacent anatomical regions, rather than

accepting or rejecting individual voxels based on a given sig-

nificance cut-off [19,20]. Based on machine learning

classification algorithms, MVPA aims at solving a classifi-

cation problem (CP), by predicting the stimuli associated

with a given activation pattern. Sentential negation for

abstract and concrete conceptual categories was examined

by specifying the following classification problems:

The first classification problem (CP1) tested whether

sentential negation differentially modulates abstract and

concrete semantic representations. According to multiple

representation accounts and to ‘hubs and spokes’ neuro-

anatomical models, abstract and concrete concepts are

represented in partially distinct and distributed brain

networks. Sentential negation may therefore operate on

abstract versus concrete networks independently, yielding in

principle four distinct neural representation levels: affirmative

abstract, negative abstract, affirmative concrete and negative

concrete. By means of CP1, we tested whether our fMRI data

contained sufficient information to discriminate between

these four sentence types. Previous evidence demonstrated

the feasibility of decoding abstract versus concrete semantic

content processing, with classification sensitive regions

widely distributed across the cortex [21]. To the best of our

knowledge, this study provides the first decoding attempt

applied to concreteness categories and negation polarities

jointly, as reflected by their 2 � 2 factorial interaction.

The second classification problem (CP2) examined the

sentential negation of abstract and concrete concepts at a

fine-grained semantic level, based on grounded, multiple rep-

resentation hypotheses that concepts representing different

types of experience are represented by distinct modality-specific

networks, and that negation operates on each of these networks

independently. By applying an MVPA decoding approach,

we aimed at predicting the brain activation patterns of each

fine-grained conceptual category (mental state, emotion, math-

ematics, mouth, hand, leg) presented either in the affirmative or

negative polarity context (6 � 2 factorial interaction).

We leveraged MVPA classification to also investigate the

main effects nested in our factorial manipulation. Namely,

sentential negation polarity (CP3: affirmative versus negative);

concreteness (CP4: abstract versus concrete), and fine-grained

conceptual category (CP5: mental state, emotion, mathemat-

ics, mouth, hand, leg). CP3 sought confirmation for a neural

correlate of negation at the syntactic level (i.e. independently

of the semantic meanings on which negation operates), an

aspect for which limited evidence obtained by means of uni-

variate analysis techniques is available [14,22]. CP4 and CP5

tackled the important question of replicability of previous

results for concreteness [21] and fine-grained conceptual cat-

egories [23,24].

2. Methods
(a) Participants
Fifty subjects (25 females, mean (M) age ¼ 23.02 years, s.d. age ¼

4.88) volunteered in the study. All subjects were Italian native

speakers with a comparable level of education and with no

reported history of neurological or psychiatric disorders. All sub-

jects were right-handed (Edinburgh Inventory score: M ¼ 0.94,

s.d. ¼ 0.05). Two subjects (one female) were excluded owing to

brain structural anomalies.

(b) Experimental design
We applied a within-subject factorial combination of conceptual

category (three abstract: mental state (Ms), emotion (Em), math-

ematics (Ma); three concrete: hand (Ha), mouth (Mo), leg (Le)

action-related), and polarity (affirmative (A), negative (N)). This

resulted in 12 experimental conditions: AMs, NMs, AEm,

NEm, AMa, NMa, AMo, NMo, AHa, NHa, ALe, NLe.

(c) Experimental stimuli
The set of stimuli consisted of 35 Italian sentences for each of the

six conceptual categories, each sentence presented in the affir-

mative and negative form (total ¼ 420 sentences) (electronic

supplementary material, table S1). The set of affirmative sen-

tences was validated in a previous rating study [9] with respect

to linguistic variables, namely: number of words (all four-word

sentences), number of syllables (chi-square d25¼ 36.37, p ¼ 0.07);

number of letters (F5,204 ¼ 1.25, p ¼ 0.29); lexical frequency for,
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respectively, nouns (F5,204 ¼ 1.86, p ¼ 0.10), verbs (F5,204 ¼ 1.72,

p ¼ 0.13), and noun–verb combinations (F5,204 ¼ 1.82, p ¼ 0.11).

In addition, sentences were rated with respect to semantic

variables, including category-specific association, body-part

association, concreteness, context availability and familiarity

(see tables 2–4 in [9]).

All affirmative and negative sentences were read aloud by a

female native Italian speaker and recorded in a sound-proof

room. Intensity was normalized for all sentences at 70 dB. Pitch

was balanced across the six conceptual categories, both for

affirmative, F5,204 ¼ 1.43, p ¼ 0.21, and negative sentences,

F5,204 ¼ 0.65, p ¼ 0.66.

In order to avoid repetition effects that could arise if partici-

pants were exposed to the same sentences in both polarities, the

pool of 420 sentences was split in two lists of 210 experimental

stimuli, each including only one version of each sentence, either

with affirmative or negative polarity. Each list was assigned to

one of two groups of subjects (Group A: 24 subjects, 12 females,

M age ¼ 23.71 years, s.d. ¼ 6.14, Edinburgh score M ¼ 0.94,

s.d. ¼ 0.06; Group B: 24 subjects, 12 females, M age ¼ 22.42

years, s.d. ¼ 3.61, Edinburgh score M ¼ 0.95, s.d. ¼ 0.05).

(d) Experimental procedure
Presentation 14.9 (Neurobehavioral Systems Inc.) was used

for stimulus presentation. Sentences were presented in an

event-related design. The acquisition session for each participant

comprised four runs of 12 min 40 s each. Each run consisted of 67

randomized trials: 51 experimental, nine catch and seven null

trials. Experimental trials began with the auditory presentation

of one sentence, followed by a 2000 ms interval, after which a

visual fixation cross appeared for 500 ms. In catch trials, the fix-

ation cross was replaced by a question mark, followed by a

written sentence presented for 1000 ms, and participants were

instructed to blink their eyelids once in case the written sentence

matched the auditory sentence, or twice in case of mismatch (for

full details, see [24], where the same procedure was applied).

(e) Data acquisition
MRI scans were acquired with a 3 T Intera Philips body scanner

(Philips Medical Systems), equipped with an eight-channel head

coil (SENSE factor ¼ 2). In order to prevent scanner noise from

affecting auditory sentence presentation, fMRI sparse sampling

was employed [25,26]. Whole-brain T2* blood-oxygenation-level

dependent (BOLD) images were acquired with a gradient-echo,

echo-planar imaging (EPI) pulse sequence (repetition time,

TR ¼ 2915 ms acquisition time þ 7585 ms silent period ¼ 10

500 ms; echo time, TE ¼ 30 ms). Each functional image comprised

35 axial slices (3.2 mm thick, 0.8 mm gap) acquired in ascending

order (field of view, FOV: 240 � 240 mm; matrix size: 128 � 128).

Each participant underwent four fMRI scanning sessions, each

comprising 71 scans, plus two initial dummy scans, which were

discarded prior to data analysis.

A high-resolution T1 anatomical image was acquired for each

participant (TR ¼ 7.2 ms; TE ¼ 3.5 ms), comprising 200 axial

slices (1 mm slice thickness, 1 � 1 mm in-plane resolution).

( f ) Data analysis
(i) Data preprocessing
Data were preprocessed with SPM8 (www.fil.ion.ucl.ac.uk/

spm), including slice time correction, realignment, and normali-

zation to the Montreal Neurological Institute (MNI) space.

Smoothing was not performed to provide optimal sensitivity

for high-frequency multi-voxel patterns in MVPA [27]. The

time series of each subject were high-pass filtered at 128 s. No

pre-whitening and no global normalization was applied. For

each subject, we modelled a 6 � 2 factorial design (conceptual

category � polarity) with four separate sessions and one regres-

sor for each experimental condition. Additional regressors

modelled the catch trials and movement parameters. For each

subject, we defined a set of Student’s t-contrasts, with a weight

of þ1 for one of the experimental condition regressors and a

weight of zero for all the other regressors. The resulting 12

t-contrast images (AMs, NMs, AEm, NEm, AMa, NMa, AMo,

NMo, AHa, NHa, ALe and NLe) of each participant were used

for the MVPA [28].

(ii) Multivariate pattern analyses
PyMVPA 2.5.0 (www.pymvpa.org; [29]) running under Python

2.7.9 (www.python.org) was used for MVPA. The t-contrast

images (spmT) were inclusively masked by an image defining

the set of non-zero voxels shared by all subjects, with grey

matter tissue probability .0.1 (for an equivalent procedure, see

[24]). Subject-wise z-scoring normalization was applied to correct

for noise-related inhomogeneities in voxel intensities. The t-
contrast images were averaged subject-wise and condition-wise.

A linear support vector machine (SVM) algorithm was used

for all CPs (CP1: 2 � 2 factorial interaction, and post hoc classifi-

cation of affirmative versus negative sentences, separately for

the abstract and concrete conditions, see §3a; CP2: 6 � 2 factorial

interaction; CP3: main effect of polarity; CP4: main effect of con-

creteness; CP5: main effect of fine-grained conceptual category).

Classifications were performed between subjects in order to exam-

ine whether brain activation patterns were consistent across

subjects, by means of a leave-one-subject-out cross-validation

[24]. We report the mean cross-individual classification accuracies

across all inclusive mask voxels (i.e. at the whole-brain level).

In addition, we used searchlight analysis [30] with 4 mm

radius spheres and a Gaussian Naive Bayes classifier [31] to loca-

lize anatomically the brain regions that significantly contributed

to accurate discrimination of the different classification problems,

as determined through a Monte Carlo permutation testing pro-

cedure. The condition labels were permuted in each sphere 1000

times [32], and the actual classification accuracy was then com-

pared against the random permutation distribution with a

declared p , 0.001 threshold. We report the mean classification

accuracies across leave-one-subject-out cross-validations and the

corresponding confusion matrices for the significant searchlight

spheres.

For CP5, in order to gain a deeper insight into the brain coding

of semantic information for the target conceptual categories, we

adapted the procedure described in [24], which is based on recur-

sive feature elimination and the sensitivity weights it provides.

Sensitivity weights reflect the contribution of each voxel to the

discrimination of one category from the others [33]. For each

category, we calculated the spatial intersection of all pairwise sen-

sitivity maps involving that category (e.g. for Ms: Ms-Em, Ms-Ma,

Ms-Mo, Ms-Ha, Ms-Le). Before calculation of the category-specific

intersections, the pairwise sensitivity maps were filtered for a

minimum cluster extension of 20 voxels, only the clusters with

sensitivity weights in the 9.5 highest percentile were retained,

and smoothing with a 3 mm full width at half maximum

(FWHM) Gaussian kernel was applied. The sensitivity intersec-

tion maps were then inspected anatomically and projected to

the Automated Anatomical Labeling Region Of Interest (AAL

ROI) atlas [34], in order to identify four distinct levels of semantic

coding, derived from ‘hubs and spokes’ models [2,3]: (i) category-

specific spokes: brain regions that were specific for just one

particular category; (ii) multi-category spokes: AAL ROIs present-

ing distinct and non-overlapping clusters for two or more

category-specific intersection maps; (iii) category-invariant

hubs: AAL ROIs presenting clusters with spatial overlap from

all the category-specific intersection maps; (iv) graded hubs:

AAL ROIs presenting both category-specific and overlapping

clusters from all the category-specific intersection maps.
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3. Results
(a) CP1: 2 � 2 concreteness by polarity interaction
The four concreteness by polarity factorial combinations were

classified with a mean accuracy of 35.42% across participants

(chance level: 100%/4 ¼ 25%) at the whole-brain level.

Searchlight permutation testing indicated that there were

135 searchlight spheres that significantly discriminated

between the four factorial combinations (p , 0.001 against

1000 permutations), with a mean classification accuracy of

38.41% (figure 1a). The significant searchlights were localized

over extensive bilateral regions of the brain, including the

medial and lateral frontal and parietal cortices, the anterior

temporal lobes, the anterior and middle cingulate cortex,

the caudate, and the cerebellum (figure 1b; electronic

supplementary material, table S2A).

Given successful discrimination of the 2 � 2 concreteness

by polarity interaction, we further examined our experi-

mental hypothesis that sentential negation modulates the

modality-specific brain networks not only for concrete but

CP3

10

18

classified
subjectsAA

18.11 12.86 10.54 10.68

11.03 14.90 9.85 9.07

9.03 10.45 16.05 11.70

9.83 9.79 11.56 16.55

AA

NC

AC

NA

NA AC NC

target

pr
ed

ic
tio

n
16

14

12

CP1 CP4

(a)

(b)

Figure 1. MVPA classification of the main effects of sentential negation polarity, concreteness, and their 2 � 2 factorial interaction. (a) Confusion matrix for CP1,
featuring the means of the classified spmT maps across the significant ( p , 0.001, against 1000 permutations) searchlight spheres. Cell numbers represent the
mean number of subjects that were classified either correctly (diagonal) or incorrectly (off the diagonal), with respect to the four concreteness by polarity factorial
combinations (AA, affirmative abstract; NA, negative abstract; AC, affirmative concrete; NC, negative concrete). (b) Anatomical localization of the searchlight spheres
yielding significant ( p , 0.001, against 1000 permutations) classification accuracy for CP1, CP3 and CP4. Colour codes are indicated by the colour palette inset. The
effects are displayed on lateral and medial wall surface renderings of the average anatomical image of all participants. Left and right hemispheres are displayed
according to the neurological convention.
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also for abstract concepts, by post hoc classification of affir-

mative versus negative sentences, separately for the abstract

and concrete conditions.

For abstract concepts, affirmative and negative sentences

were discriminated with a mean classification accuracy of

41.66% (chance level: 100%/2 ¼ 50%). Classification accuracy

in individual searchlights was more successful. Searchlight

permutation testing indicated that there were 23 spheres

that significantly discriminated between affirmative and

negative sentences (p , 0.001 against 1000 permutations),

with a mean classification accuracy of 76.32%, and the

mean confusion matrix [34.35 13.65; 13.65 34.35].

For concrete concepts, affirmative and negative sentences

were discriminated with a mean classification accuracy of

56.25% (chance level: 100%/2 ¼ 50%). Again, classification

accuracy in individual searchlights was more successful.

Searchlight permutation testing indicated that there were 44

spheres that significantly discriminated between affirmative

and negative sentences (p , 0.001 against 1000 permu-

tations), with a mean classification accuracy of 76.91%, and

the mean confusion matrix [34.82 13.18; 13.18 34.82].

The abstract and concrete conditions partially differed

with respect to the macro-anatomical distribution of the

searchlights, significantly discriminating between affirmative

and negative sentences (electronic supplementary material,

figure S1). For the abstract conditions, there was a unique

involvement of the left temporal pole, right medial temporal

lobe (amygdala, hippocampus and parahippocampal gyrus),

right precuneus, and cerebellum (electronic supplementary

material, table S2B). Only the concrete conditions, in turn,

involved the left posterior middle temporal gyrus, the left

angular gyrus, the pars opercularis of the right inferior fron-

tal gyrus, the right superior frontal gyrus, the calcarine and

lingual gyri, and, bilaterally, the postcentral gyrus and the

putamen (electronic supplementary material, table S2C).

(b) CP2: 6 � 2 fine-grained conceptual category
by polarity interaction

The mean whole-brain accuracy for the classification of the

12 classes of sentences was 14.93% (chance level: 100%/

12 ¼ 8.33%). However, the confusion matrix showed a mean-

ingless structure, that is, an inconsistently populated leading

diagonal, and a disproportionally high rate of densely

populated off-the-diagonal cells, representing incorrect predic-

tions-to-target correspondences (electronic supplementary

material, figure S2). Therefore, no further analysis of CP2

was carried out.

(c) CP3: main effect of polarity
Affirmative and negative sentences were discriminated with

a mean classification accuracy of 62.50% (chance level:

100%/2 ¼ 50%). Classification accuracy in individual search-

lights was more successful. Searchlight permutation testing

indicated that there were 47 spheres that significantly discri-

minated between affirmative and negative sentences (p ,

0.001 against 1000 permutations), with a mean classification

accuracy of 75.66%, and the mean confusion matrix [33.28

14.72; 14.72 33.28]. These searchlights were localized in the

left dorsolateral and medial frontal cortex, anterior and

middle cingulate gyrus, precuneus and calcarine gyri, left

caudate nucleus, right putamen and left thalamus, and

cerebellar hemispheres (figure 1b; electronic supplementary

material, table S3).

(d) CP4: main effect of concreteness
Abstract and concrete sentences were discriminated with a

mean classification accuracy of 83.33% (chance level: 100%/

2 ¼ 50%) at the whole-brain level. Searchlight permutation

testing indicated that there were 464 spheres that significantly

discriminated between abstract and concrete sentences (p ,

0.001 against 1000 permutations), with a mean classification

accuracy of 77.82%, and the mean confusion matrix [34.9

13.1; 13.1 34.9]. These searchlights were localized in the left

dorsolateral frontal cortex and, bilaterally, in the anterior,

posterior, and medial temporal lobe, the angular gyrus, and

the cerebellum (figure 1b; electronic supplementary material,

table S4).

(e) CP5: main effect of fine-grained conceptual
category

The mean whole-brain accuracy for the classification of the

fine-grained conceptual categories was 52.78% (chance

level: 100%/6 ¼ 16.67%) (figure 2a). Searchlight permutation

testing yielded a much lower mean classification accuracy

(18.17%), indicating that the to-be-discriminated patterns

distinguishing between the six categories are sparse and

distributed over broad neural territories.

To further investigate this broadly distributed category-

specificity we applied an alternative whole-brain approach

based on sensitivity weights, yielded by recursive feature

elimination. We calculated all pairwise classifications

among the six categories. For each and every pair, the

mean classification accuracy was well above the 50% chance

level, with a significant rate of correct predictions-to-targets

correspondences (p , 0.001 for all pairs) (electronic sup-

plementary material, table S5). Based on these successful

pairwise classifications and on the corresponding sensitivity

weights’ anatomical distribution, we identified brain regions

that might be ascribed to four distinct levels of semantic

coding, reflecting multiple representations (figure 2b; elec-

tronic supplementary material, table S6; see also §2f(ii)): (i)

brain regions that were specific for just one particular

category (‘category-specific spokes’), and (ii) regions

presenting distinct and non-overlapping clusters for two or

more categories (‘multi-category spokes’): both these coding

levels were sparsely distributed over large portions of the het-

eromodal cortices in both hemispheres, including the

cerebellum; (iii) regions of spatial overlap of all categories

(‘category-invariant hubs’): these were identified in the left

superior temporal gyrus/Heschl’s gyrus, right fusiform

gyrus, and the cerebellar vermis; (iv) regions presenting

both spatial overlap and specific clusters for all six categories

(‘graded hubs’): these were identified in the left insula, left

anterior middle temporal gyrus, and right precuneus.

4. Discussion
This study investigated how the neural processing of abstract

and concrete concepts expressed at the sentence level is modu-

lated by negation polarity. Sentential negation polarity is

thought to operate at the syntax-semantic interface [35,36],

thus representing a case of interplay between a linguistic
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contextual operator and conceptual representations. Our main

intent was to provide a proof of concept for the hypothesis that

the neural networks supporting semantic representations are

flexibly modulated by the linguistic sentential context [18].

We expanded on two different lines of research: a first line

indicating that abstract and concrete concepts, and their

respective fine-grained sub-categories, are distinctively

encoded in distributed brain networks including category-

invariant and category-specific nodes [3,4]; and a second

line, so far limited to concrete action-related concepts, indicat-

ing that sentential negation modulates neural activity of

category-specific conceptual representation nodes [14–17].

Our sentence processing fMRI study sought generalization

evidence for the modulatory effects of sentential negation by

factorial combination of fine-grained abstract and concrete

conceptual categories and affirmative/negative polarity.

By applying MVPA across participants, we demonstrated

that the fMRI data contained sufficient information to dis-

criminate between affirmative abstract, negative abstract,

affirmative concrete and negative concrete sentences resulting

from the 2 � 2 concreteness by polarity interaction (CP1). Post
hoc classifications showed that affirmative and negative sen-

tences were discriminable also when abstract and concrete

conditions were analysed separately. However, when consid-

ering a 6 � 2 factorial combination between polarity

(affirmative versus negative) and fine-grained abstract (Ms,

Em, Ma) and concrete (Mo, Ha, Le) categories (CP2),

MVPA failed to accurately discriminate the associated brain

activation patterns. Lack of sentential negation modulation

on fine-grained semantic categories might be due to meth-

odological aspects. In fact, analyses related to CP2 required

separately modelling each of the 12 experimental conditions.
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Figure 2. MVPA classification of the main effect of fine-grained conceptual category. (a) Confusion matrix for CP5, with cell numbers featuring the number of
subjects that were classified either correctly (diagonal) or incorrectly (off the diagonal) at the whole-brain level, with respect to the six fine-grained conceptual
categories. (b) Category-specific sensitivity intersection maps, representing the anatomical regions that consistently allowed us to correctly discriminate each category
from the other five categories, in a pairwise fashion. The category-specific intersections are displayed on axial slices (z-coordinate levels indicated in mm) of the
average anatomical image of all participants (neurological convention). Anatomical region boundaries are displayed for AAL ROIs classified as ‘category-invariant
hubs’ (black colour, LHeG: left Heschl’s gyrus; LSTG: left superior temporal gyrus; RFus: right fusiform gyrus; Ver: cerebellar vermis) or ‘graded hubs’ (grey colour,
LMTG: left middle temporal gyrus; LIns: left insula; RPcn: right precuneus).
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This was not the case for CP1, where data were averaged

across multiple experimental conditions. It is possible that

the number of trials for each experimental condition in our

study was not sufficient to ensure fully-fledged category by

polarity MVPA separation in CP2. However, this result

might also constitute true negative evidence, weakening the

conclusions drawn in the present study, and this important

limitation needs to be considered. To sum up, the expec-

tations of our proof of concept on negative versus

affirmative linguistic contexts were fully met at a level of a

simple but conceptually relevant distinction between

concrete and abstract sentences, suggesting that the effect of

sentential negation is not only limited to concrete action-

related concepts but also extends to abstract ones. Further-

more, successful classifications were observed when

considering the main effects nested in our factorial manipu-

lation. Concerning sentential negation polarity, the MVPA

yielded accurate whole-brain classification of the neural pat-

terns associated with affirmative versus negative sentences

although classification accuracy in individual searchlights

was more successful (CP3). More robust classification accu-

racy was observed for concreteness (CP4), and fine-grained

conceptual category (CP5) main effects.

Anatomical localization of condition-specific fMRI acti-

vation patterns is not straightforward in MVPA, since

decoding is blind to the spatial organization of these patterns

[37]. Nevertheless, MVPA localization techniques such as

searchlight analysis [30], in combination with independent

meta-analytic evidence on the brain functional organization

of semantic processing, can provide useful information on

the brain regions where contextual sentential negation modu-

lations may occur. In CP1, CP3 and CP4 the searchlight

analysis revealed an involvement of regions broadly distribu-

ted over both hemispheres, with a high degree of spatial

overlap across these three classification problems (figure 1b;

electronic supplementary material, tables S2A, S3 and S4).

The classification problems CP1 and CP3, which both

addressed the manipulation of syntactic polarity, showed

overlap in the pars triangularis of the inferior frontal gyrus,

the basal ganglia (notably, the left caudate nucleus), and

the anterior and middle cingulate cortex. Both the pars trian-

gularis of the inferior frontal gyrus [38,39] and the left

caudate nucleus [40,41] have been consistently implicated in

syntactic structure processing, that is, word order compu-

tation at the sentence level above and beyond the specific

issue of sentential negation. Of even greater relevance are

previous univariate fMRI studies specifically investigating

negation at the syntactic level, independently of the meanings

on which it operates, which found an involvement of the

basal ganglia [14] and of the left pars triangularis [22],

among a set of other brain regions not identified in the

present study. However, the inclusion of the anterior and

middle cingulate cortex as a region of overlap between CP1

and CP3 prompts another possible functional interpretation.

The anterior/middle cingulate and the left pars triangularis

are known to be key components of the cognitive control net-

work, also referred to as multiple-demand system, which is

recruited by language tasks, including syntactic ones [42].

The left caudate nucleus, in turn, is known to be crucially

involved in language monitoring and control [43]. It is there-

fore possible that these three brain regions jointly contribute

to a cognitive control system that may help regulating the

contextually-driven modulatory effects of negation on

conceptual representations. The syntactic and cognitive

control interpretations need not be mutually exclusive: the

neural circuit activations underlying syntactic and cognitive

control functions may be spatially and temporally distinct,

but display the observed spatio-temporal overlap due to the

relatively low spatial and temporal resolution of the fMRI

data, and to the multivariate analysis technique. Our results

may therefore indicate that both syntactic computation and

cognitive control are involved in processing negation polarity

at the sentence level.

In turn, the classification problems CP1 and CP4, which

both addressed the experimental manipulation of semantic

concreteness, showed overlap in an extended set of regions,

which is more consistent with a semantic functional role.

This set included the bilateral anterior temporal lobe, which

has been suggested to serve as the main brain’s semantic

hub [3,44]. But it also included, bilaterally, areas in the ventral

posterior and medial temporal cortex (fusiform and parahip-

pocampal gyri), parietal cortex (angular and supramarginal

gyri, precuneus), and frontal lobe (inferior frontal gyrus,

ventro- and dorsomedial prefrontal cortex), which, together

with the anterior temporal lobe, have been postulated to

form an extended semantic hub network based on the results

of extant metanalyses of fMRI studies [13,45–47].

The broad involvement of brain regions revealed by

CP1, CP3 and CP4 searchlight analysis also comprised

modality-specific areas, which are thought to contribute to

the discrimination of concrete and abstract concepts in embo-

died and grounded cognition accounts [4,5]. These included

areas in sensory-motor systems, such as the visual and audi-

tory cortices, the post-central gyrus, and supplementary

motor area, and in the limbic system, particularly the amyg-

dala. These and additional modality-specific brain regions

also emerged from the post hoc classification of affirmative

and negative sentences, separately for abstract and concrete

concepts. For abstract concepts, the discrimination of affirma-

tive versus negative sentences mainly occurred in regions in

the limbic system, including the amygdala. A specific modu-

lation of this system by processing abstract sentences is in line

with previous evidence showing that abstract concepts do

have an emotional connotation. It is possible that sentential

negation reduced access to this emotional content, dampen-

ing amygdala activation [48]. For concrete concepts, in turn,

modality-specific brain regions that contributed most to

the discrimination of affirmative versus negative sentences

included the post-central gyrus, and the visual cortices

(calcarine and lingual gyrus), along with portions of the left

posterior middle temporal gyrus previously ascribed to the

processing of concrete concepts, such as action-related sen-

tences [49], manipulable objects [50], or manipulation and

visual motion features [51]. The modulation of the left pos-

terior middle temporal gyrus by affirmative versus negative

concrete sentences confirms previous results on negation of

action-related sentences [14], although only partially since

in that study polarity modulations extended to the left

premotor-parietal action representation system. Altogether,

the distinct effects of negation polarity on abstract versus

concrete sentences in the present study are largely compatible

with our main hypothesis that sentential negation modulates

modality-specific semantic brain regions.

The ‘hubs and spokes’ organization of conceptual knowl-

edge also emerged from the pattern of results obtained in the

analysis of the fine-grained conceptual categories as a main
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effect (CP5). CP5 replicated previous studies [23,24] with

respect to both the successful discrimination between fine-

grained conceptual categories, and the anatomical sparseness

of the involved brain regions. In particular, we replicated the

findings in [24] by showing that category-specific and multi-

category spoke regions were sparsely distributed over

sensory-motor, limbic and heteromodal cortices. As in [24],

however, we didn’t observe consistent correspondences

between the conceptual categories and the experiential

systems in which their representation is thought to be

grounded according to grounded cognition accounts (e.g.

somatotopically organized motor areas for Mo, Ha and Le

action-related sentences). The sensitivity analysis also ident-

ified a number of candidate hub brain regions, albeit with

the notable exclusion of the ventral anterior temporal lobe,

for which the conventional acquisition protocol used in the

present study may have lacked signal detection sensitivity,

as compared with other studies (e.g. [52]) using an optimized

fMRI acquisition protocol [53]. Some of the identified candi-

date hub regions (i.e. the right fusiform gyrus, the left

superior temporal gyrus/Heschl’s gyrus, and the cerebellar

vermis) presented complete spatial overlap in the voxels

that contributed to discriminate between the fine-grained

conceptual categories. Based on this characteristic, the ‘cat-

egory-invariant hubs’ as we called them (see §2f(ii)), may

be assimilated to the class of semantic hubs. This appears

quite straightforward in the case of the fusiform gyrus,

since it has been identified as part of the ‘conceptual hub’ net-

work in a meta-analysis of neuroimaging studies of semantic

processing [13,45]. Less straightforward, however, is the case

of the superior temporal gyrus/Heschl’s gyrus, which has

been usually considered to play a role in speech perception

and phonological rather than semantic processing (but see

[45]). As for the cerebellum, there is increasing evidence of

its contribution to language functions and, more specifically,

to semantic processing tasks, such as predictive processing

during language comprehension, lexical–semantic associ-

ations and mapping of novel words onto existing concepts

[54,55]. However, there is no consensus so far as to what

the specific cerebellar contribution to semantic processing

might be [55]. Some other candidate hub brain regions (i.e.

the left insula, the left anterior middle temporal gyrus, and

the right precuneus) contained, in addition to voxels with

complete spatial overlap, specific voxels for each of the

six categories, thus contributing to discriminate all the

categories from each other. These hubs rather conform to

the class of ‘graded hubs’, namely brain regions that present

a functionally graded organization, possibly reflecting the

varying pattern of connectivity links with category-specific

spoke layers [3,24], such as the graded organization

for abstract and concrete concepts in the anterior temporal

lobe [52].

As discussed so far, the neural code patterns for the inter-

action between sentential negation polarity and abstract/

concrete semantic categories that emerge from our results

appear largely compatible with ‘hubs and spokes’ accounts

of semantic processing. Hub regions highly interconnected

with primary and secondary sensory-motor spoke regions

may be optimally suited to compute semantic representation

by integrating information from different modalities [13,51],

and also to combine multiple semantic representations, thus

producing semantic meanings at the sentence level [2,13].

The interplay between hubs and spokes might therefore

account for the distinction between abstract and concrete

concepts, which result from the differential integration of

information from multiple modalities (e.g. sensory and

motor information for concrete concepts, versus emotional,

introspective, social and linguistic information for abstract

concepts [5,7–10]). The linguistic context, such as the one

investigated here (i.e. sentential negation), might modulate

such interplay between hubs and spokes and therefore modu-

late the representation of abstract and concrete concepts. Still,

the exact information processing and coding dynamics occur-

ring between hub and spoke brain regions remain relatively

unclear. In one view, the anterior temporal lobe is put for-

ward as the brain’s sole semantic hub [3], but with multiple

subregions that have been suggested to code for different

semantic categories or representational modalities, based on

cytoarchitectonic, anatomical and functional connectivity

data [3]. In another view, semantic representations are

instead served by relatively undifferentiated but multiple

hubs [2], including some of the candidate hub regions ident-

ified in the present study, such as the medial prefrontal

cortex, the anterior and posterior cingulate, the insula, the lat-

eral parietal cortex and the precuneus. Our findings are

suggestive of semantic ‘hubs and spokes’ dynamics that

incorporate features from both views. On the one hand, we

found multiple hub brain regions located in the frontal,

temporal and parietal lobes. On the other hand, while

some of the multiple hub regions were undifferentiated

(i.e. category-invariant hubs), some others presented with

category-specific subregions for all types of abstract and con-

crete concepts included in our study (i.e. graded hubs). Our

results indicate that combinatorial meaning specificities

produced by the interaction between linguistic context and

conceptual category emerge from activation patterns across

multiple voxels distributed in unimodal spokes, as well as

in undifferentiated and graded hubs.

5. Conclusion
The overall picture emerging from this set of results is largely

compatible with the view that sentential negation polarity

operates by modulating the neural activation patterns

coding for concepts, to an extent that is sufficient to make

the processing of affirmative and negative sentences with

either an abstract or concrete content distinguishable by

means of MVPA. We suggest that the negation polarity

modulation occurs in distributed representational semantic

networks, through the functional mediation of syntactic and

cognitive control systems.
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