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ARTICLE OPEN

Relating psychiatric symptoms and self-regulation during the
COVID-19 crisis
Matilde M. Vaghi 1✉, McKenzie P. Hagen1,2, Henry M. Jones1,3, Jeanette A. Mumford1, Patrick G. Bissett1 and Russell A. Poldrack 1

© The Author(s) 2022

Disruptions of self-regulation are a hallmark of numerous psychiatric disorders. Here, we examine the relationship between
transdiagnostic dimensions of psychopathology and changes in self-regulation in the early phase of the COVID-19 pandemic. We
used a data-driven approach on a large number of cognitive tasks and self-reported surveys in training datasets. Then, we derived
measures of self-regulation and psychiatric functioning in an independent population sample (N= 102) tested both before and
after the onset of the COVID-19 pandemic, when the restrictions in place represented a threat to mental health and forced people
to flexibly adjust to modifications of daily routines. We found independent relationships between transdiagnostic dimensions of
psychopathology and longitudinal alterations in specific domains of self-regulation defined using a diffusion decision model.
Compared to the period preceding the onset of the pandemic, a symptom dimension related to anxiety and depression was
characterized by a more cautious behavior, indexed by the need to accumulate more evidence before making a decision. Instead,
social withdrawal related to faster non-decision processes. Self-reported measures of self-regulation predicted variance in
psychiatric symptoms both concurrently and prospectively, revealing the psychological dimensions relevant for separate
transdiagnostic dimensions of psychiatry, but tasks did not. Taken together, our results are suggestive of potential cognitive
vulnerabilities in the domain of self-regulation in people with underlying psychiatric difficulties in face of real-life stressors. More
generally, they also suggest that the study of cognition needs to take into account the dynamic nature of real-world events as well
as within-subject variability over time.
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INTRODUCTION
The psychological construct of self-regulation broadly refers to a
range of abilities that enable flexible and goal-directed behavior.
Together with related concepts such as cognitive control and
impulsivity, it has been associated to numerous real-world outcomes
such as academic performance, health, and economic well-being [1].
Distortions of self-regulation are a hallmark of numerous psychiatric
disorders, including schizophrenia, depression, and obsessive-
compulsive disorders [2]. Substantial evidence demonstrates disrup-
tion of cognitive constructs relevant for self-regulation [3–7] as well
as the associated neural circuitry [8, 9] across several psychiatric
conditions. Additionally, environmental demands such as physiolo-
gical and psychological stress are thought to impair cognitive
functions implicated in self-regulation [10, 11]. Even though it
remains unclear to what degree laboratory manipulations can
generalize to real-world stress, a large set of studies have identified
the ways in which stress affects self-regulation [11–16].
The rapidly evolving situation associated with the outbreak of

the SARS-CoV-2 virus causing the COVID-19 pandemic was
characterized by extreme uncertainty and fear of potential
infection, likely to increase perceived stress and anxiety. Regard-
less of the nature of the disaster, traumatic, natural, or
environmental crises aggravate depression, posttraumatic stress
disorders, as well as substance abuse [17]. Additionally, in the case

of the COVID-19 pandemic, containment measures implemented
to reduce the spread of the virus mainly included social distance
and self-isolation, which are known as risk factors for mental
health issues [18]. For example, recent work has shown transient
volumetric brain change patterns in regions commonly associated
with stress and anxiety occurring following the initial outbreak of
the COVID-19 pandemic. Those changes were associated with the
amount of time elapsed from lockdown relief [19]. Critically, in the
early phases of the pandemic, individuals had to adapt quickly to a
novel situation and employ a degree of cognitive and behavioral
flexibility to adjust to modifications in daily routines and
circumstances, due to changes in national behavioral patterns as
well as shutdowns of usual day-to-day functioning. Hence, the
pandemic provided an unprecedented opportunity to track the
relationship between an unfolding crisis and self-regulation, in an
ecological fashion, rather than relying on artificial manipulations
generally used in laboratory experiments [20].
While extensive research has documented the effect of the

pandemic on mental health [21–26], limited information is
currently available on its impact on cognitive mechanisms
supposedly relevant for flexible adaptation. Our study set out to
examine the role of individual differences in psychiatric symptoms
in relation to changes in self-regulation during the early stages of
the COVID-19 pandemic. Understanding such consequences can
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shed light on cognitive mechanisms vulnerable to real-life
stressors, especially for people with underlying psychiatric
difficulties.
To address this question, we took advantage of an existing

cohort that had been previously examined on a broad battery of
self-regulation entailing 37 computer-based cognitive tasks as well
as 22 self-reported surveys [27], providing a baseline for self-
regulation before the onset of the pandemic. A subset of these
individuals was invited to complete the entire battery again
during the unfolding of the initial phase of the pandemic (5th May
2020–11th June 2020), at which point they also provided
additional information regarding psychiatric symptomatology.
Additionally, on this second occasion, they also reported on their
wellbeing and the subjective impact of the COVID-19 pandemic.
Adoption of this large battery overcomes some of the

limitations of traditional approaches, which generally rely on
selecting a specific task (or a small subset) and do not account for
the possible heterogeneity between patients within a given
diagnostic entity. They also leave untested the hypothesis that
deficits observed across different tasks might be due to the same
underlying dysfunctional mechanism. Here, we used an extensive
multidimensional battery of tasks and self-report surveys that
aimed at dissecting and quantifying several constructs associated
with self-regulation, rather than focusing on a specific one. In
order to identify comprehensive cognitive factors, each capturing
specific processes of relevance for successful self-regulation, we
used Exploratory Factor Analysis (EFA) on training datasets to
derive latent orthogonal dimensions of self-regulation. These have
been shown to possess stability over time [28], overcoming some
of the challenges of obtaining robust individual differences from
cognitive paradigms [28–30]. Similarly, an analysis was conducted
on psychiatric symptom questionnaires to uncover transdiagnostic
dimensions of psychiatric symptoms [31, 32].
Using scores derived from psychiatric symptoms examined

transdiagnostically, we show that core dimensions of psycho-
pathology were related to a differential cognitive response in the
face of the emerging COVID-19 pandemic. We show that in spite
of a statistical relationship between psychiatric symptoms and
cognitive tasks, the latter fail to predict substantial variance in
psychiatric symptoms, challenging the possibility of using
cognitive tasks to predict mental health outcomes. In contrast,
the predictive success of self-reported measures of self-regulation
revealed the psychological dimensions relevant for separate
transdiagnostic dimensions of psychiatry. Overall, these results
show that people with high psychiatric traits were characterized
by changes in self-regulation cognitive functions during the
emergence of the COVID-19 pandemic.

MATERIALS AND METHODS
Participants
Subjects were recruited through Amazon Mechanical Turk participant tool
(MTurk). Testing was administered using the Experiment Factory Platform
[33], which enables collection of behavioral measures on MTurk in multiple
sessions, as necessitated by our long behavioral battery. Data from 102
participants passed quality check criteria which were defined by [27] and
extended to further screen our participants (Supplementary Material).
Hence, our longitudinal analyses were based on data collected on
102 subjects who provided data on self-regulation pre (i.e., 2016) and
post (i.e., 2020) the onset of the COVID-19 pandemic. See Supplementary
Material for further details on data collection and training datasets. Table
S1 reports demographic data of subjects included in the training and
testing datasets. The study was approved by the Stanford Institutional
Review Board (Protocol number: 55844). Participants read an informed
consent and agreed on participation.

Measures collected
Our battery for self-regulation mirrored the one used by [27] and included
37 behavioral tasks and 22 self-report surveys. Tables S11 and S12 give an

overview of tasks and surveys of self-regulation as well as the corresponding
derived variables. Derived variables of self-regulation reflected measures
such as temporal discounting and impulsivity as well as more generic
cognitive domains such as working memory, cognitive flexibility, informa-
tion processing as further described in the Supplementary Material. A full
description of self-regulation measures is reported in [27]. Procedures for the
selection of self-regulation variables and data cleaning for both the training
and testing datasets are specified in the Supplementary Materials.
In order to investigate a range of psychiatric symptoms we asked

participants to complete a host of self-report questionnaires. These
included: Self-Rating Depression Scale (SDS) [34], Short Scales for
Measuring Schizotypy (SSS) [35], Obsessive Compulsive Inventory Revised
(OCI-R) [36], Leibowitz Social Anxiety Scale (LSAS) [37], State Trait Anxiety
Inventory (STAI) [38], Apathy Evaluation Scale (AES) [39], Eating Attitude
Test (EAT-26) [40], Barratt Impulsiveness Scale (BIS-11) [41], and Alcohol
Use Disorder Identification Test (AUDIT) [42]. The selection of these surveys
was based on previous studies which used these measures to derive
parsimonious latent transdiagnostic psychiatric factors [31, 32].
Additionally, to estimate changes in wellbeing related to the emerging

pandemic we asked participants to complete the Short Scale for Measuring
Loneliness [43], the Perceived Stress Scale [44], and the Multidimensional
Scale of Perceived Social Support [45]. These measures were rated twice,
with reference to a period before and after the outbreak of the SARS-CoV-2
virus. We also used the Corona Health and Impact Survey (CRISIS) [46]
which measured “Covid worries” (e.g., how worried have been during the
past 2 weeks about infection), “life changes” (e.g., subjective impacts of
structural changes such as changes in social contacts), “mood states”
(including ten items from the circumplex model of affect), and “daily
behaviors” (e.g., frequency of exercise, sleep duration or media use) in
relation to the COVID-19 outbreak. Finally, we measured mindset towards
the global/societal impact caused by the outbreak of COVID-19 (Zion et al.,
in prep) and mindset towards stress [47] to investigate those as
moderators when evaluating the subjective impact of COVID-19.

Study design and procedure
We had a two-step analytical approach. Briefly, we used data from
previously published studies as training datasets to generate factor
structures (Fig. 1). On all the training datasets, we used maximum
likelihood estimation to perform EFA, followed by oblimin rotation to rotate
the factors without enforcing orthogonality. Factor scores were estimated
using the tenBerge method [48]. In line with previous investigations, EFA
was applied to the self-regulation variables [27] and at the item-level for
psychiatric measures [31, 32] and the CRISIS questionnaire [46]. All analyses
were implemented using the fa function from the psych package in R [49].
In order to determine the number of factors to extract, we relied on
methods used for each set of variables by previous investigators. Namely,
for the self-regulation measures and in the case of the CRISIS
questionnaire, we used the Bayesian Information Criteria (BIC) which
selects the number of factors to extract taking into account both model
complexity and the ability to capture the data. We extracted 3 factors for
psychiatric symptom measures, as a previous study on the training dataset
used here found that, according to the Cattell’s criterion, a model with
three underlying factors provided the best account of the covariance [32].
Finally, we used predict from the psych package in R to estimate factor
scores on our testing datasets, based on the EFA solution on the training
ones. Factor solutions obtained on the training datasets were used to
predict the factor scores of the independent pool of subjects (N= 102)
tested twice, in a longitudinal fashion, before (i.e., 2016) and after (i.e.,
2020) the onset of the pandemic. Thus, the factor analysis solutions used to
estimate factor scores for longitudinal analysis were derived from an
independent sample, avoiding any potential circularity.
We employed linear mixed models to examine longitudinal changes of self-

regulation, using the lme4 [50] and lmerTest [51] packages in R. Factor scores
estimated on our testing datasets from the EFA solution (based on
independent training data) represented our dependent variables. In all these
models, time was coded as −0.5 (pre-covid)/0.5 (post-covid), so that the main
effects for between-subjects covariates reflect the average time effect. Further,
between-subject variables were mean centered and scaled by the standard
deviation. Therefore, parameter estimates for these variables reflect changes in
standard deviation units, and the main effect of time and intercept refers to
the average value of the between-subject variables. All statistical tests were
two-sided. For longitudinal and cross-sectional analyses, significance values
were FDR corrected over the number of dependent variables tested within
each set of models. Full details are provided in the Supplementary Materials.
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RESULTS
Exploratory factor analysis on training datasets
To identify a latent structure pointing to dissociable factors, we
used EFA on each of our training datasets (Fig. 1 and
Supplementary Materials). Even though the method used here is
one of the many possible methods that could have been used for
dimensionality reduction, we define this approach as ‘data-driven’
because the dimensionality reduction is based on the structure of
the data themselves rather than on prior psychological theory. In
the case of self-regulation, 61 variables from surveys or 113
variables from tasks reflected means of specific item sets,
comparisons between task conditions, or model parameters
thought to capture psychological constructs (Fig. 1). Similarly,
EFA was applied to each of the training datasets pertaining to
psychiatric symptoms and to the Corona Health and Impact
Survey (CRISIS). For each EFA, overall model fit was satisfactory
(RMSEA < 0.08) [52] (Table S2), and the moderate correlations
among the factor scores (Pearson’s correlation < 0.5 [53]) within
each training set suggested that they reflected largely indepen-
dent constructs (Fig. S5).
A parsimonious latent structure of 4 and 8 factors was identified

for tasks and surveys of self-regulation, respectively, based on the
Bayesian Information Criterion. Similarly, a 10 factor solution was
obtained from the CRISIS survey (Fig. S2). Finally, 3 psychiatric
dimensions were obtained from the set of questionnaires
investigating psychiatric symptoms. Interpretation of the factor
solutions was based on the strongest individual loadings (Fig. 2).
Factors for the survey model reflected a combination of closely

related variables, deriving from different surveys aimed at
measuring overlapping constructs. For example, variables that

strongly loaded on the Sensation Seeking factor derived from the
Sensation Seeking Scale, the UPPS-P Impulsive Behavior Scale, and
the Domain Specific Risk taking scale. In contrast, an heterogenous
set of variables determined the nature of a few factors such as in
the case of the Emotional Control factor incorporating measures
related to emotional stability, future time perspective, eating
behavior, and behavioral inhibition. Similarly, the Goal-Directed/
Mindfulness factor relates to perseverance, grit, conscientiousness,
self-control, and mindfulness (Fig. 2A). For EFA on self-regulation
tasks, Strategic Information Processing (IP) captured high order
strategies as variables loading on this factor related to working
memory, risk taking, and model-based decision making. In
contrast, Speeded IP, Caution, and Perception/Response factors
related to speeded decision-making tasks and captured separate
parameters estimated using the diffusion decision model (DDM),
namely drift rate, threshold, and non-decision time, respectively
(Fig. 2B). Therefore, the identified factors recapitulate computa-
tional parameters which are likely correlated across tasks, but tap
onto different cognitive processes. The use of factor scores
alleviates the challenge of obtaining robust measurements from
the individual cognitive paradigms.
In agreement with previous work [31, 32], the EFA solution for

psychiatric questionnaires led to the identification of factors
reflecting Anxious-Depression (AD), Compulsive behavior, and
Intrusive Thoughts (CIT), and Social Withdrawal (SW) phenotype
based on the strongest individual item loadings (Fig. 2C).
The EFA solution on the CRISIS questionnaire isolated 10 factors

generally indexing mood (i.e., COVID-19 Worries, General Anxiety,
Negative Mood), life-changes (i.e., Changes relationship, Economic
concern, Stress life changes), and daily behavior (i.e., Media usage,

Fig. 1 Study design and experimental procedure. We used data from published studies as training datasets. The training datasets included
measures of self-regulation [27], psychiatric symptoms [32], and the impact of the COVID-19 pandemic [46] which were investigated in the
current study. We used Exploratory Factor Analysis (EFA) for each set of variables, and we applied the obtained factor solutions to our
independent testing datasets. Testing datasets included 102 participants who completed tasks and surveys of self-regulation twice; before
(July–September 2016; [27]) and after (May–June 2020) the onset of the COVID-19 pandemic. Data collection after the onset of COVID-19
additionally included a large battery of questionnaires investigating psychiatric symptoms as well as the impact of COVID-19, which was
assessed via the Corona Health and Impact Survey [46]. Finally, measures of wellbeing (i.e., perceived stress, loneliness, social support) were
collected after the onset of COVID-19. However, no training dataset was available for this set of measure. Hence, a different analysis pipeline
was used (see “Material and methods”). Amazon Mechanical Turk was used for data collection. The location of participants in our testing
datasets is illustrated on the map.
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Physical exercise, Sleep hours, Sleep time) related to the period
following the onset of the pandemic (Fig. 2D).

Effect of the pandemic outbreak on task-based self-regulation
measures
We first tested the hypothesis that individual differences in
psychiatric symptoms related to changes of self-regulation in
response to the emergence of COVID-19. To this aim, we used
factor scores of self-regulation as dependent variables in the
context of linear mixed models, which included transdiagnostic
psychiatric dimensions as regressors of interest, while system-
atically controlling for the effect of age, gender, and IQ (Table S3
and Supplementary Materials).
Longitudinal changes in self-regulation were related to

individual differences in transdiagnostic psychiatry symptoms.
We found that the Anxious-Depression psychiatric factor related
to longitudinal changes on the Caution self-regulation task factor
(β [95% CI]= 0.23 [0.06, 0.40]; Punc= 0.01, PFDR= 0.04) (Fig. 3). In
contrast, the Social-Withdrawal psychiatric factor was associated
with within-person changes on the Perception/Response self-
regulation task factor (β [95% CI]=−0.30 [−0.52, −0.07]; Punc=
.01, PFDR= 0.04). These results remained significant even after the

exclusion of influential cases as described in the Supplementary
Material (Caution: β [95% CI] AD*time= .21 [0.05, 0.35]; Punc= 0.01,
PFDR= 0.02; Perception/Response: β [95% CI] SW*time=−0.31
[−0.50, −0.12]; Punc < 0.001, PFDR < 0.001). We also used an analysis
of covariance conditioning on baseline [54] to confirm that our
results were not due to the specific analytical approach adopted.
In this set of analyses, we used the self-regulation factor score
following the onset of COVID-19 as dependent variable with the
baseline measurement (i.e., self-regulation before the onset of
COVID-19) as a covariate together with age, gender, IQ, and each
of the psychiatric factors. Results confirmed that the Anxious-
Depression phenotype related to longitudinal changes on the
Caution factor (β [95% CI]= 0.26 [0.10, 0.43]; Punc < 0.001, PFDR <
0.001). Similarly, there was an effect of the Social-Withdrawal
psychiatric factor on longitudinal changes on the Perception/
Response (β [95% CI]=−0.26 [−0.47, −0.05]; Punc= 0.02, PFDR=
0.04). Hence, higher scores on the Anxious-Depression phenotype
related to a larger increase in within-subject change over time in
cautious responding, where a higher threshold (i.e., more cautious
responding) was observed during the pandemic (compared to
pre-pandemic). There was also indication that a Social-Withdrawal
dimension corresponded to faster stimulus encoding and motor

Fig. 2 Exploratory Factor Analysis. Summary of Exploratory Factor Analysis (EFA) conducted on the training datasets for self-regulation
surveys (A), self-regulation tasks (B), psychiatric symptoms (C), Corona Health and Impact survey (D). For each factor, the five items loadings
more strongly are shown. The complete matrix of loadings is displayed in the online Jupyter Notebook. The height of the bar reflects the
loading. Color codes indicate the subset of variables on which EFA was performed. ^ indicates a parameter from the Diffusion Decision
Modeling. BAS Behavioral Activation System subscale; BIS Behavioral Inhibition System subscale; EB expected benefits subscale; RT risk taking
subscale; RP risk perception subscale; AES Apathy Evaluation Scale; SDS Self-rating Depression Scale; STAI State Trait Anxiety Inventory; OCI-R
Obsessive Compulsive Inventory Revised; LSAS Leibowitz Social Anxiety Scale.
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processes during the pandemic. Apart from an effect of these two
psychiatric factors, all the other regressors did not have a
significant effect on changes in self-regulation, as also shown via
equivalence testing (Fig. S6).
As expected, there were main effects of IQ and age (Table S3).

Higher IQ was associated with better performance on the Strategic
IP, and with faster decision time (Speeded IP). Older age was
associated with worse performance on the Strategic IP and
increased Caution.

Effect of pandemic outbreak on survey-based self-regulation
measures
In a separate set of models, mirroring those used for cognitive
factors of self-regulation, we tested whether pre to post pandemic

changes in survey-based self-regulation were moderated by
individual differences. As expected given that these measures of
self-regulation are thought to index largely stable traits, the
sudden onset of the pandemic did not cause a change on those
measures (Table S4). Equivalence testing (“Material and methods”)
confirmed that the effects of the interactions were smaller than
the smallest effect of interest (Fig. S7). In contrast, robust main
effects of the transdiagnostic psychiatric symptoms were
identified.
Impoverished emotional control could be observed across

psychiatric dimensions. Accordingly, higher values on the Anxious-
Depression (β [95% CI]=−0.43 [−0.56, −0.30]; Punc < 0.001,
PFDR < 0.001), Compulsive (β [95% CI]=−0.24 [−0.36, −0.13];
Punc < 0.001, PFDR < 0.001), and Social-Withdrawal (β [95% CI]=

Fig. 3 Relationship between psychiatric dimensions and within-subject self-regulation changes. The plots represent within-subject change
in cognitive factor from before to after the onset of the pandemic (y-axis) in relation to the severity of different symptoms dimensions (x-axis).
The first, second, third, and fourth column represents within-subject change for the Caution, Perception Response, Speeded IP, Strategic IP
factor, respectively. Severity of Anxious-Depression symptoms related to within-subject change in the Caution factor from before to after the
onset of the pandemic. Higher values on the Caution factor index the need to accumulate more evidence until a response is executed.
Severity of Social-Withdrawal symptoms related to a decrease on the Perception/Response factor after the onset of the pandemic, indexing
faster perceptual and motor execution processes. As our outcome measures did not contain any missing data for any subjects, a two stage
model can be used for visualization purposes [101]. Firstly, we computed the paired difference for the dependent variable of interest. Then, we
fit a linear model to the paired difference. Hence, the partial residuals, controlling for the effect of variables in the model, besides each of the
predictor (i.e., AD), were plotted (effect_plot from jtools package in R [102] was used for this visualization). The linear relationship between the
change score and the psychiatry symptoms displayed here is conceptually identical to the interaction effect of the model described in the
main text. All the psychiatric dimensions were entered in the same model, which also controlled for the influence of age, gender, and IQ as
explained in the “Materials and methods” section. P-values reported on the figure refer to the main analysis described in the main text and
reported in Table S3. P-values for each effect of interest (e.g., interaction effect, AD × Time pre/post on Caution) are FDR-corrected for multiple
comparisons over the number of dependent variables tested (N= 4). We ascertained that FDR-corrected P values remained significant even
after the exclusion of potential influential cases as described in the Methods section. Results were robust to different analytical approaches. All
the individual data points are shown in the plots.

M.M. Vaghi et al.

5

Translational Psychiatry          (2022) 12:271 



−0.41 [−0.53, −0.29]; Punc < 0.001, PFDR < 0.001) psychiatric factor
related to lower emotional control. However, selective profiles of
self-regulation were also identified for each psychiatric dimension.
In particular, the Anxious-Depression factor was significantly
associated with lower Goal Directed-Mindfulness (β [95% CI]=
−0.76 [−0.93, −0.58; Punc < 0.001, PFDR < 0.001), Agreeableness (β
[95% CI]=−0.50 [−0.71, −0.30]; Punc < 0.001, PFDR < 0.001), and
Risk Perception (β [95% CI]=−0.34 [−0.56, −0.12]; Punc < 0.001,
PFDR < 0.001). In contrast, the Compulsive behavior and Intrusive
Thoughts factor was significantly associated with increased Ethical
Risk-Taking (β [95% CI]= 0.29 [0.10, 0.47]; Punc < 0.001, PFDR <
0.001). Sensation Seeking, Reward Sensitivity and Social Risk-
Taking exhibited the reverse relationship with symptom clusters:
they were increased in subjects with higher scores on the
Compulsive behavior and Intrusive Thoughts factor and decreased
in subjects with higher scores on the Social-Withdrawal factor (all
PFDR < 0.001). Female gender was related to lower scores on the
Emotional Control, Sensation Seeking, and Ethical Risk Taking
factors.

Trajectories of wellbeing related to the pandemic onset
To quantify the dynamics of wellbeing as COVID-19 reverberated
across the U.S., we asked participants to self-report their current
stress, loneliness, and perceived social support during the
emerging phase of the pandemic (5th May 2020–11th June

2020). We also asked the same questions in relation to the period
preceding the onset of COVID-19; note that this assumes that
memory for previous mental states is unaffected by current
mental states, which is often not the case [55]. We modeled
longitudinal changes in stress, loneliness, and perceived social
support as a function of demographic characteristics, psychiatric
symptoms, and mindset. The non-significant interactions between
our variables and time (all PFDR > 0.09, Table S5 and Supplemen-
tary Material) suggested that none of them were associated with
longitudinal changes on perceived stress, loneliness, and social
support. Equivalence testing confirmed that the effects of the
interactions were smaller than the smallest effect of interest (Fig.
S8).
Our results also indicated that there was no effect of the

pandemic’s onset on wellbeing. In fact, there was no main effect
of time on perceived stress, loneliness, nor social support in the
period following the onset of COVID-19, compared the period
preceding the pandemic (all PFDR > 0.9, Fig. 4A, C, E). This may
reflect stability in those traits or biased memory retrieval for the
previous timepoint [55, 56].
These models, which included all three psychiatric factors

scores and controlled for age, gender, and mindset attitudes,
showed that higher levels of Anxious-Depression, Compulsive
behavior and Intrusive Thoughts, and Social-Withdrawal corre-
sponded to increased perceived stress (averaged across both time

Fig. 4 Trajectories of wellbeing in relation to the pandemic onset. A series of longitudinal models was conducted to examine psychological
and psychosocial changes in correspondence with the onset of the pandemic. In the top row, predicted values from the respective
longitudinal model are shown for each of the dependent variables. Predicted, rather than raw values are shown, to account for the covariates
included in the models. The predict function in R was used to obtain the predicted value based on the linear model implemented. Perceived
stress (A), loneliness (C), and social support (E) did not vary as a function of the pandemic onset. In the bottom row, association between
perceived stress (B), loneliness (D), and social support (F) and each of the psychiatric dimensions is displayed. Higher levels of
psychopathology were related to increased perceived stress. Additionally, an AD psychiatric symptom dimension related to increased
loneliness and reduced perceived social support. For each dependent variable, all the psychiatric dimensions were entered in the same model,
which also controlled for the influence of age, gender, IQ as well as mindset attitudes as explained in the Methods section. Hence, the
regression coefficients reflect adjusted values. The y-axis indicates the change in the dependent variable for each change of 1 SD of symptom
scores. Error bars denote SE. **PFDR < 0.01, ***PFDR < 0.001. P-values for each effect of interest (e.g., main effect of AD phenotype on perceived
stressed) are FDR-corrected for multiple comparisons over the number of dependent variables tested (N= 3). AD Anxious-Depression; CIT
Compulsive behavior and intrusive thoughts; SW Social Withdrawal. See also Table S5.
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points) (Fig. 4B and Table S5). Additionally, an Anxious-Depression
symptom dimension was associated with higher loneliness and
diminished perceived social support (Fig. 4D, F and Table S5).

Subjective impact of the pandemic onset
Finally, we aimed at evaluating the subjective impact of the
pandemic onset in the context of a cross-sectional analysis using
factors derived from the CRISIS questionnaire [46]. Namely, each
factor score from the CRISIS questionnaire was the dependent
variable of a general linear model which included several covariates
of interest (i.e., demographic characteristics, psychiatric symptoms,
and mindset) (Table S6). Overall, higher scores on the psychiatric
dimensions were associated with several factors from the CRISIS
questionnaires, suggesting a negative impact of the pandemic for
people with higher psychiatric traits.
More specifically, an Anxious-Depression phenotype was

characterized by a worsening of relationships with family and
friends (Table S6). Subjects with high compulsivity traits experi-
enced high COVID-19-related worries (e.g., worries of becoming
infected) as well as high stress related to life changes induced by
the pandemic (Table S6). High Compulsivity was also linked to
high economic difficulty, high media usage, and high physical
exercise during the pandemic period (Table S6). Both Social-
Withdrawal and Compulsivity related to higher values on the
general anxiety factor (Table S6). High negative mood states were
found in association with an Anxious-Depression, Compulsive
behavior and Intrusive Thoughts, and the Social Withdrawal
psychiatric factor (Table S6).
Mindset attitude was also associated with the subjective impact

of the pandemic. We found that a catastrophic mindset attitude
towards the pandemic was associated with increased COVID-19
worries as well as reduced sleep hours per night (Table S6). A
more positive mindset towards stress related to an improvement
of relationships with family and friends during the emergence of
the pandemic (Table S6).

Prediction of psychiatric symptoms
We next sought to assess whether measures of self-regulation can
successfully predict psychiatric symptoms during the COVID-19
pandemic (Supplementary Material). To conduct a preliminary
evaluation in this direction, we used factors of self-regulation
derived from tasks or surveys to predict transdiagnostic psychia-
tric dimensions. Our primary analysis used transdiagnostic
measures of psychopathology which in other contexts have
demonstrated superior value compared to the individual variables
from questionnaires of psychopathology [31, 32]. Secondary
analyses using the latter did not change the overall interpretation
(Tables S7–S10; see also Fig. S13 displaying the contribution of
each survey factor score to individual variables from question-
naires of psychopathology).
As psychiatric symptoms were assessed after the onset of the

pandemic but self-regulation was measured before and after, we
could test both the prospective and cross-sectional predictive
value of self-regulation factors for transdiagnostic dimensions of
psychiatry. Namely, to test the prospective predictive value of self-
regulation for psychiatric symptoms, we used factor scores
computed from data collected before the onset of the pandemic
as predictive features. In contrast, factor scores of self-regulation
derived from data collected after the onset of the pandemic were
used for cross-sectional predictions.
For each analysis, we created two separate predictive feature

matrices including either the 8 survey factor scores or the 4 task
factor scores. In sample as well as out-of-sample predictions were
assessed to predict psychiatric dimensions of interest. We used L2-
regularized linear regression using scikit learn, with an internal
crossvalidation loop to select the best hyper-parameter. Predictive
performance was quantified using R2 (computed using the sum of
squares formulation) and mean absolute error (MAE); note that

negative R2 values in this formulation are reflective of out-of-sample
predictions that are less accurate than the sample mean.
Cognitive factors had no predictive ability either prospectively

(average cross-validated, R2=−0.07, min: = −0.07, max=−0.07;
MAE= 0.8, min= 0.73, max= 0.84) or cross-sectionally (average
cross-validated, R2=−0.06, min: −0.07, max: −0.04; MAE= 0.79,
min= 0.71, max= 0.83). Insample predictive analyses failed to
reveal significant association as well (Fig. S9). Results remained
qualitatively unchanged when using the individual cognitive
variables to predict psychiatric symptoms.
In contrast to tasks, survey responses were significantly

predictive of all transdiagnostic psychiatric dimensions either
when considering their prospective (average cross-validated,
R2= 0.43, min: .39, max: 0.48; MAE= 0.55, min= 0.52, max= 0.58)
as well as their cross-sectional (average cross-validated, R2= 0.54,
min: 0.49, max: 0.6; MAE= 0.45, min= 0.43, max= 0.49) predictive
power (randomization test: P= 1/2500) (Fig. 5A). We visualized the
standardized β coefficients of the predictive models to create a
fingerprint representing the contribution of various self-regulation
constructs to the final predictive model for a particular psychiatric
dimension. Low correlation between the features included in the
model allowed interpretation of the resulting fingerprints (Fig. 5B,
C). It is evident that Emotional Control (referring to measures such
as emotional stability, behavioral inhibition, and emotional eating)
is a relevant dimension for all the psychiatric dimensions. In a
reduced regression model, Emotional Control was on its own
capable of achieving significant in-sample and out-of-sample
predictive accuracy, confirming its prominent role compared to
other prediction variables (Fig. S12). However, the fingerprints
point to the contribution of different self-regulation constructs for
specific psychiatric dimensions. For instance, while the AD
dimension related to a combination of Agreeableness and Goal-
Directed/Mindfulness, the CIT dimension related to Reward
Sensitivity, Sensation Seeking, and Social Risk-Taking. The overall
fingerprints (i.e., the contribution of each self-regulation construct
to each psychiatric dimensions) obtained from prospective (Fig.
5B), and cross-sectional predictions (Fig. 5C) were comparable.

Prediction of change in health risk behavior
That survey factor scores could accurately predict different
psychiatric dimensions aligns with previous work. Eisenberg and
colleagues (2019) established that survey-derived factors of self-
regulation relate not only to mental health broadly defined, but
also to other real-world outcomes such as smoking and drug use.
Here, we asked participants to answer questions related to their
health risk behavior during the emerging phase of the pandemic
(5th May 2020–11th June 2020). As the same questions were
asked to the same participants in 2016 we could test the
hypothesis that self-regulation factors referring to the period
before the onset of the pandemic could predict changes in health
risk behavior. We reasoned that these might have been potentially
affected by change in routines and lifestyle due to shelter in place
restrictions. We implemented a prediction analysis as the one
described above. In this case, our dependent variables were
represented by derived measures of change in outcome behavior,
obtained as described in the Supplementary Methods. Surveys,
but not task factor scores, exhibited above-chance prediction for a
small number of health risk outcomes (e.g., daily smoking; mental
health) (Fig. S11).

DISCUSSION
Here, we sought to delineate the relationship between dimensions
of psychopathology and longitudinal changes in self-regulation in
a period that required large-scale behavioral changes.
We show that in the initial phase of the COVID-19 pandemic,

changes in self-regulation could be observed in relation to trait-
like psychiatric symptoms. We administered a large number of
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cognitive tasks and personality surveys and adopted a data-driven
approach to derive orthogonal dimensions of self-regulation and
transdiagnostic factors for psychiatric symptoms. To the best of
our knowledge, this study represents the most comprehensive
assessment of the relationship between psychiatric symptoms and
cognitive self-regulation abilities during the emergence of the
COVID-19 pandemic to date.
Our quantitative approach revealed that an Anxious-Depression

psychiatric dimension interacted with the onset of the pandemic
and related to changes in the Caution cognitive factor, which
captures the threshold parameter from the DDM of speeded
decision-making tasks. Hence, in those with an Anxious-
Depression phenotype, behavior changed in the period after the
onset of the pandemic compared to a period preceding the onset
of the pandemic, more evidence needed to be accumulated
before making a decision. During decision making tasks, humans
can strategically prioritize accuracy or speed, resulting in high or
low decision thresholds [57]. Accordingly, the threshold parameter
can capture the well-known speed-accuracy trade-off in speeded
tasks [58]. In this context, participants were not explicitly
instructed to emphasize speed or accuracy. However, those with
increased values on the Anxious-Depression psychiatric dimension
tended towards a more cautious response mode during COVID-19,
compared to a period preceding the onset of the pandemic. DDM
has been previously applied in affective psychopathology research
[59–66], with findings of both increased threshold [60] and
reduced drift rate [59, 60] in patients with depression. That an AD
psychiatric symptom dimension was associated with changes in
decision threshold is consistent with some of these results where
clinical depression relates to higher decision threshold [60]. A
previous study has also identified a similar trend between decision
threshold and an AD dimension. In that case, higher AD was also
related to increased meta-cognitive efficiency [32]. A possible
relationship between decision threshold and meta-cognitive
accuracy has been recently highlighted by a study showing that
accumulating evidence resulting in faster decisions for a target

accuracy, incurs a cost in meta-cognitive accuracy [67]. Even
though such results are suggestive of a link between decision
parameters and metacognitive accuracy, how their interaction is
perturbed in the case of higher symptoms of depression or
anxiety needs to be further investigated.
The examination of a range of cognitive tasks allows general-

ization of our findings. The Caution factor encapsulates threshold
parameters from multiple tasks (e.g., Attention Network Task,
Simon, Shape matching, Three by two, Stroop) and points to a
potentially more cautious mode that can explain behavior seen
across different tasks in depression and anxiety. This finding also
highlights the utility of computational models (such as the DDM)
that allow behavior to be decomposed into more interpretable
components.
Additionally, we found that higher Social-Withdrawal was

associated with faster stimulus encoding and motor processes in
correspondence with the onset of the pandemic. Results accrued
in the literature suggest enhanced perceptual processes in social
anxiety disorder [68–70]. Our results align with these findings and
support the hypothesis of an amplification of early sensory
attention and the idea of a general hyper-vigilance in phobic
patients [71], even though previous research mostly related to
tasks deploying social stimuli. Overall, our results suggest that
situational demands and an increasingly stressful situation could
have impacted cognitive functioning, depending on psychiatric
dimensions, exacerbating a relationship that could not otherwise
be identified before the stresses of the COVID-19 pandemic.
That these processes were impacted under a challenging

environmental situation is suggestive of a potentially vulnerable
cognitive system in susceptible individuals [72]. We found that
distinct psychiatric dimensions are characterized by impairments
in different self-regulation domains. Hence, rather than sharing
impairments in common dimensions of self-regulation, specificity
can be identified for different psychiatric features. Critically, only
the AD and SW dimensions displayed cognitive susceptibility in a
period associated with stressful life circumstances, while for

Fig. 5 Prediction of psychiatric symptoms dimension using survey factor-scores. A Predictions where self-regulation survey-factors scores
of the period preceding (pre, prospective) or following (post, cross-sectional) the onset of COVID-19 were used to predict psychiatric
symptoms assessed during the initial phase of the COVID-19 pandemic. Fingerprints using factor scores of the period preceding (B) or
following (C) the onset of the COVID-10 pandemic are displayed. Dark and light bars indicate R2 cross-validated and insample prediction
respectively. Dashed gray boxes indicate 95% of null distribution, estimated from 2500 shuffles of the target outcome. Fingerprints displayed
as polar plots indicate the standardized β for each factor. The y-axes are scaled for each fingerprint to highlight the distribution of associations
—no inference can be drawn comparing individual factor magnitudes across outcomes. EMC Emotional Control, GD/MND Goal-Directed/
Mindfulness, Agr Agreeableness, RP Risk Perception, RS Reward Sensitivity, SS Sensation Seeking, SRT Social-Risk Taking, ERT Ethical Risk-
Taking, AD Anxious-Depression, CIT Compulsive behavior, and Intrusive Thoughts, SW Social Withdrawal.
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example the CIT dimension was spared. This might also point to
different pathogenic mechanisms for different class of symptoms.
Several social and environmental factors, such as for example
natural disasters or low social support, have been robustly
identified as elements of risk for major depressive disorder
[73, 74]. In contrast, no compelling evidence exists on the
relationship between psycho-social risk factors and, for example,
Obsessive-Compulsive Disorder [75].
However, the ability to directly link alterations of cognitive

functioning to an increased stressful situation is limited in the
current study by a lack of evidence in relation to an increase in
psychological and psychosocial distress during the outbreak of the
pandemic. Retrospective reports were the only viable solution for
a set of measures aimed at assessing trajectories of wellbeing, as
they were not acquired in the first wave of data collection. Due to
this methodological limitation, our null results might have been
driven by biases linked to retrospective reports, which are
vulnerable to different distortions. For example, they are
influenced by current mood [56] and, especially in the case of
negative mood states, tend to be exaggerated in retrospective
ratings [55]. Nevertheless, several other studies which used
different approaches to investigate the trajectory of psychological
distress in the period corresponding to the emergence of the
pandemic were unable to detect significant changes in psycho-
logical and psychosocial function in correspondence of the time
period investigated in this study. In a nationwide sample of
American adults, no significant mean changes in loneliness were
found between January and April 2020 [76]. Similarly, during the
seven weeks of strict lockdown in the UK, longitudinal assess-
ments revealed that loneliness levels remained relatively stable
[77]. Google Trends showed that Google searches for loneliness
increased in the month leading up to lockdowns in Western
Europe but remained high only for the following fortnight, before
returning to usual levels [78]. More generally, longitudinal studies
indicated that mental health in UK and USA sample has
deteriorated [79, 80], but only for a limited period of time.
Trajectories over time revealed that although psychological
distress rose in the initial stages of the pandemic in the USA
(April 2020), they returned to baseline levels within two months
[81]. A similar result was also confirmed by an independent study
where the proportion of US individuals reporting serious
psychological distress in April 2020 did not significantly differ
from that of July 2020 [82]. In USA, a considerable increase in
mental health-related Google searches was identified in the
period immediately preceding the government’s disposition (i.e.,
shelter in place, week March 16, 2020), but this quickly stabilized
in less than 4 days [83]. Given these multiple tiers of evidence, it is
possible that by the time of our data collection (May–June 2020)
distress already recovered towards baseline after an initial peak of
mental discomfort. A possible untested competing hypothesis is
that emerging cognitive difficulties were triggered by increased
uncertainty, which is often ill-tolerated in anxiety disorders and
depression [84].
Beside changes over time dependent on individual differences

in psychiatric dimensions, our results highlighted that older age is
associated with an increase in response caution, which is in line
with canonical findings of slower decisions in elder people,
through an increase in response caution and longer non decision
time [85]. We also identified an association such that higher
estimated IQ and younger age-related to better Strategic IP, as it
has been shown for a host of cognitive tasks measuring high order
functions captured by this factor [86].
Our prediction analysis showed that self-regulation cognitive

constructs lack predictive power for psychiatric symptoms. In
contrast, surveys of self-regulation predicted psychiatric symp-
toms moderately well. Previous work has shown the merits of
transdiagnostic psychiatric scores which capture information over
and above the individual constituent scales [31, 32]. However, in

this case, prediction power of cognitive measures was not
ameliorated by a transdiagnostic approach and predictive
performance of tasks was not significantly different when using
transdiagnostic measures for psychiatric symptoms or the
traditional individual scores.
Even though cognitive tasks have shown successful predictive

performance in the case of political attitudes [87], lack of
predictive power from cognitive tasks is not surprising. Our
results mirror and replicate previous published work where self-
regulation factor scores derived from surveys but not tasks
predicted real-world outcomes, including mental health [27].
Similarly, in a large sample of adolescents, self-reported measures
of compulsivity were predictive of longitudinal developmental
trajectory of a cognitive measure indexing model-based decision
making. In contrast, model-based learning was not predictive of
the longitudinal trajectory of symptoms [88]. Formal analytical
work has further clarified why tasks might be unsuitable to
capture individual differences, as, by construction, they are
characterized by low between—subject variability [28, 29]. The
predictive power of tasks might also have been affected by some
limitations such as a relatively small sample size as well as the
convenient sample recruited via MTurk. However, it is also evident
that these drawbacks were not undermining the ability of survey-
derived measures to predict psychiatric symptoms.
These results challenge the possibility of relying solely on existing

cognitive measures to yield robust predictions for psychiatric
symptoms that can be used by clinicians. One likely hypothesis is
that psychiatric diseases emerge from multiple causal factors that
vary across several units of analysis (i.e., molecular, social, cognitive)
[89]. For example, reflecting on the ability of cognitive neuroscience
in predicting real-world behavior, it has been suggested that, on
analogy with genetic data where each genetic variant can account
for small amount of variance, each of our (neuro)cognitive
measures will have small predictive power [90]. Therefore, it might
not be possible to assume the superiority of one level as the
obvious and unique candidate to explain psychiatric conditions
[91]. One implication is that several levels of analysis need to be
embraced to reach robust predictions.
Analogous to previous interpretations, successful performance

of surveys might be explained by methodological similarities
between the tools used to establish the presence of psychiatric
symptoms and those to evaluate self-regulation via surveys, as
both rely on self-report assessment. Additionally, deciding
whether a specific instrument is included among those evaluating
self-regulation or psychiatric symptoms can be an arbitrary
process. For example, in the original study by [27], the Barratt
Impulsiveness Scale was part of the battery of surveys aimed at
investigating constructs of relevance to self-regulation. However,
the same questionnaire has been used to derive transdiagnostic
dimensions of psychiatric symptoms [31, 32]. Here we avoided
circularity by including the Barratt Impulsiveness Scale only in the
set of measures to quantify transdiagnostic dimensions of
psychiatry. However, it is clear that the boundaries between the
two categories are labile.
Beside methodological similarities, data derived from surveys

and tasks can be differentially affected by temporal influences.
This aspect can influence their respective predictive abilities [92].
While questionnaires are designed to assess participant’s typical
behavior averaged across long period of times, tasks tap on
constructs that might potentially be influenced by transient
aspects such as for example hormonal and circadian rhythm and
arousal [93–95]. Interestingly, while surveys had increased
predictive power compared to cognitive measures, only the latter
were sensitive to environmental changes potentially associated to
physiological and psychological variations. Finally, cognitive
measures derived from tasks have the potential to inform on
the underlying mechanisms leading to psychiatric symptoms, a
possibility that is precluded to surveys.
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Our results suggest that self-regulation measures obtained from
surveys can be successfully leveraged to predict psychiatric
symptoms. Machine learning approaches have already shown the
potential for predicting response to specific antidepressant medica-
tion simply relying on self-reported symptoms obtained from
questionnaires [96]. Here, we showed that transdiagnostic psychia-
tric dimensions exhibit both uniformity and variability. For example,
although emotional control is of relevance across all psychiatric
factors, an AD dimension was associated with enhanced agreeable-
ness. In turn, a dimension related to compulsivity was related to
sensation seeking and reward sensitivity. This bears on the need to
effectively fractionate the components relevant for each psychiatric
dimension, in order to understand its underpinning. Hence, we
showed that specific self-reported measures of self-regulation, which
have been associated to vulnerability and expression of psychiatric
conditions [97], might represent an actionable target for prediction.
While our study employed a within-subject design, an important

caveat to our conclusions is the lack of a control group not exposed
to the pandemic. Secondly, this work is limited by its convenience
sample recruited via Mechanical Turk. It has been shown that
associations between cognitive variables and self-reported psychia-
tric symptoms obtained online can reflect impairments seen in
patients population interviewed in person [31, 98]. However, the
online nature of this study precluded face to face interview to assess
symptomatology and needs further validations in clinical samples.
Overall, we used an extensive and multidimensional battery

aimed at investigating self-regulation, allowing the precise
dissection of orthogonal cognitive constructs relevant to success-
ful self-regulation. Critically, a transdiagnostic analysis uncovered a
relationship between specific psychiatric phenotypes and para-
meters linked to decision formation, which were affected
concomitantly to naturally occurring stressor. Hence, we showed
that cognitive functioning can change over time, possibly
depending on the interaction between external events and trait-
like vulnerabilities, suggesting that the study of cognition needs to
take into account the dynamic nature of real-world events as well
as within subject variability over time [99, 100]. Finally, our results
challenge the possibility of using cognitive tasks to reach robust
prediction and offer insight on different self-regulation constructs
which might support the development of intervention based on
multiple domains of relevance for specific psychiatric dimensions.
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